diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp | 864 |
1 files changed, 0 insertions, 864 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp b/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp deleted file mode 100644 index 8bce93b71c0c..000000000000 --- a/contrib/llvm/tools/clang/lib/CodeGen/SwiftCallingConv.cpp +++ /dev/null @@ -1,864 +0,0 @@ -//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Implementation of the abstract lowering for the Swift calling convention. -// -//===----------------------------------------------------------------------===// - -#include "clang/CodeGen/SwiftCallingConv.h" -#include "clang/Basic/TargetInfo.h" -#include "CodeGenModule.h" -#include "TargetInfo.h" - -using namespace clang; -using namespace CodeGen; -using namespace swiftcall; - -static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { - return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); -} - -static bool isPowerOf2(unsigned n) { - return n == (n & -n); -} - -/// Given two types with the same size, try to find a common type. -static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { - assert(first != second); - - // Allow pointers to merge with integers, but prefer the integer type. - if (first->isIntegerTy()) { - if (second->isPointerTy()) return first; - } else if (first->isPointerTy()) { - if (second->isIntegerTy()) return second; - if (second->isPointerTy()) return first; - - // Allow two vectors to be merged (given that they have the same size). - // This assumes that we never have two different vector register sets. - } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { - if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { - if (auto commonTy = getCommonType(firstVecTy->getElementType(), - secondVecTy->getElementType())) { - return (commonTy == firstVecTy->getElementType() ? first : second); - } - } - } - - return nullptr; -} - -static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { - return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); -} - -static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { - return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); -} - -void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { - // Deal with various aggregate types as special cases: - - // Record types. - if (auto recType = type->getAs<RecordType>()) { - addTypedData(recType->getDecl(), begin); - - // Array types. - } else if (type->isArrayType()) { - // Incomplete array types (flexible array members?) don't provide - // data to lay out, and the other cases shouldn't be possible. - auto arrayType = CGM.getContext().getAsConstantArrayType(type); - if (!arrayType) return; - - QualType eltType = arrayType->getElementType(); - auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); - for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { - addTypedData(eltType, begin + i * eltSize); - } - - // Complex types. - } else if (auto complexType = type->getAs<ComplexType>()) { - auto eltType = complexType->getElementType(); - auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); - auto eltLLVMType = CGM.getTypes().ConvertType(eltType); - addTypedData(eltLLVMType, begin, begin + eltSize); - addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); - - // Member pointer types. - } else if (type->getAs<MemberPointerType>()) { - // Just add it all as opaque. - addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); - - // Everything else is scalar and should not convert as an LLVM aggregate. - } else { - // We intentionally convert as !ForMem because we want to preserve - // that a type was an i1. - auto llvmType = CGM.getTypes().ConvertType(type); - addTypedData(llvmType, begin); - } -} - -void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { - addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); -} - -void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, - const ASTRecordLayout &layout) { - // Unions are a special case. - if (record->isUnion()) { - for (auto field : record->fields()) { - if (field->isBitField()) { - addBitFieldData(field, begin, 0); - } else { - addTypedData(field->getType(), begin); - } - } - return; - } - - // Note that correctness does not rely on us adding things in - // their actual order of layout; it's just somewhat more efficient - // for the builder. - - // With that in mind, add "early" C++ data. - auto cxxRecord = dyn_cast<CXXRecordDecl>(record); - if (cxxRecord) { - // - a v-table pointer, if the class adds its own - if (layout.hasOwnVFPtr()) { - addTypedData(CGM.Int8PtrTy, begin); - } - - // - non-virtual bases - for (auto &baseSpecifier : cxxRecord->bases()) { - if (baseSpecifier.isVirtual()) continue; - - auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); - addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); - } - - // - a vbptr if the class adds its own - if (layout.hasOwnVBPtr()) { - addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); - } - } - - // Add fields. - for (auto field : record->fields()) { - auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); - if (field->isBitField()) { - addBitFieldData(field, begin, fieldOffsetInBits); - } else { - addTypedData(field->getType(), - begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); - } - } - - // Add "late" C++ data: - if (cxxRecord) { - // - virtual bases - for (auto &vbaseSpecifier : cxxRecord->vbases()) { - auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); - addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); - } - } -} - -void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, - CharUnits recordBegin, - uint64_t bitfieldBitBegin) { - assert(bitfield->isBitField()); - auto &ctx = CGM.getContext(); - auto width = bitfield->getBitWidthValue(ctx); - - // We can ignore zero-width bit-fields. - if (width == 0) return; - - // toCharUnitsFromBits rounds down. - CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); - - // Find the offset of the last byte that is partially occupied by the - // bit-field; since we otherwise expect exclusive ends, the end is the - // next byte. - uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; - CharUnits bitfieldByteEnd = - ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); - addOpaqueData(recordBegin + bitfieldByteBegin, - recordBegin + bitfieldByteEnd); -} - -void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { - assert(type && "didn't provide type for typed data"); - addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); -} - -void SwiftAggLowering::addTypedData(llvm::Type *type, - CharUnits begin, CharUnits end) { - assert(type && "didn't provide type for typed data"); - assert(getTypeStoreSize(CGM, type) == end - begin); - - // Legalize vector types. - if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { - SmallVector<llvm::Type*, 4> componentTys; - legalizeVectorType(CGM, end - begin, vecTy, componentTys); - assert(componentTys.size() >= 1); - - // Walk the initial components. - for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { - llvm::Type *componentTy = componentTys[i]; - auto componentSize = getTypeStoreSize(CGM, componentTy); - assert(componentSize < end - begin); - addLegalTypedData(componentTy, begin, begin + componentSize); - begin += componentSize; - } - - return addLegalTypedData(componentTys.back(), begin, end); - } - - // Legalize integer types. - if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { - if (!isLegalIntegerType(CGM, intTy)) - return addOpaqueData(begin, end); - } - - // All other types should be legal. - return addLegalTypedData(type, begin, end); -} - -void SwiftAggLowering::addLegalTypedData(llvm::Type *type, - CharUnits begin, CharUnits end) { - // Require the type to be naturally aligned. - if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { - - // Try splitting vector types. - if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { - auto split = splitLegalVectorType(CGM, end - begin, vecTy); - auto eltTy = split.first; - auto numElts = split.second; - - auto eltSize = (end - begin) / numElts; - assert(eltSize == getTypeStoreSize(CGM, eltTy)); - for (size_t i = 0, e = numElts; i != e; ++i) { - addLegalTypedData(eltTy, begin, begin + eltSize); - begin += eltSize; - } - assert(begin == end); - return; - } - - return addOpaqueData(begin, end); - } - - addEntry(type, begin, end); -} - -void SwiftAggLowering::addEntry(llvm::Type *type, - CharUnits begin, CharUnits end) { - assert((!type || - (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && - "cannot add aggregate-typed data"); - assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); - - // Fast path: we can just add entries to the end. - if (Entries.empty() || Entries.back().End <= begin) { - Entries.push_back({begin, end, type}); - return; - } - - // Find the first existing entry that ends after the start of the new data. - // TODO: do a binary search if Entries is big enough for it to matter. - size_t index = Entries.size() - 1; - while (index != 0) { - if (Entries[index - 1].End <= begin) break; - --index; - } - - // The entry ends after the start of the new data. - // If the entry starts after the end of the new data, there's no conflict. - if (Entries[index].Begin >= end) { - // This insertion is potentially O(n), but the way we generally build - // these layouts makes that unlikely to matter: we'd need a union of - // several very large types. - Entries.insert(Entries.begin() + index, {begin, end, type}); - return; - } - - // Otherwise, the ranges overlap. The new range might also overlap - // with later ranges. -restartAfterSplit: - - // Simplest case: an exact overlap. - if (Entries[index].Begin == begin && Entries[index].End == end) { - // If the types match exactly, great. - if (Entries[index].Type == type) return; - - // If either type is opaque, make the entry opaque and return. - if (Entries[index].Type == nullptr) { - return; - } else if (type == nullptr) { - Entries[index].Type = nullptr; - return; - } - - // If they disagree in an ABI-agnostic way, just resolve the conflict - // arbitrarily. - if (auto entryType = getCommonType(Entries[index].Type, type)) { - Entries[index].Type = entryType; - return; - } - - // Otherwise, make the entry opaque. - Entries[index].Type = nullptr; - return; - } - - // Okay, we have an overlapping conflict of some sort. - - // If we have a vector type, split it. - if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { - auto eltTy = vecTy->getElementType(); - CharUnits eltSize = (end - begin) / vecTy->getNumElements(); - assert(eltSize == getTypeStoreSize(CGM, eltTy)); - for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { - addEntry(eltTy, begin, begin + eltSize); - begin += eltSize; - } - assert(begin == end); - return; - } - - // If the entry is a vector type, split it and try again. - if (Entries[index].Type && Entries[index].Type->isVectorTy()) { - splitVectorEntry(index); - goto restartAfterSplit; - } - - // Okay, we have no choice but to make the existing entry opaque. - - Entries[index].Type = nullptr; - - // Stretch the start of the entry to the beginning of the range. - if (begin < Entries[index].Begin) { - Entries[index].Begin = begin; - assert(index == 0 || begin >= Entries[index - 1].End); - } - - // Stretch the end of the entry to the end of the range; but if we run - // into the start of the next entry, just leave the range there and repeat. - while (end > Entries[index].End) { - assert(Entries[index].Type == nullptr); - - // If the range doesn't overlap the next entry, we're done. - if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { - Entries[index].End = end; - break; - } - - // Otherwise, stretch to the start of the next entry. - Entries[index].End = Entries[index + 1].Begin; - - // Continue with the next entry. - index++; - - // This entry needs to be made opaque if it is not already. - if (Entries[index].Type == nullptr) - continue; - - // Split vector entries unless we completely subsume them. - if (Entries[index].Type->isVectorTy() && - end < Entries[index].End) { - splitVectorEntry(index); - } - - // Make the entry opaque. - Entries[index].Type = nullptr; - } -} - -/// Replace the entry of vector type at offset 'index' with a sequence -/// of its component vectors. -void SwiftAggLowering::splitVectorEntry(unsigned index) { - auto vecTy = cast<llvm::VectorType>(Entries[index].Type); - auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); - - auto eltTy = split.first; - CharUnits eltSize = getTypeStoreSize(CGM, eltTy); - auto numElts = split.second; - Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); - - CharUnits begin = Entries[index].Begin; - for (unsigned i = 0; i != numElts; ++i) { - Entries[index].Type = eltTy; - Entries[index].Begin = begin; - Entries[index].End = begin + eltSize; - begin += eltSize; - } -} - -/// Given a power-of-two unit size, return the offset of the aligned unit -/// of that size which contains the given offset. -/// -/// In other words, round down to the nearest multiple of the unit size. -static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { - assert(isPowerOf2(unitSize.getQuantity())); - auto unitMask = ~(unitSize.getQuantity() - 1); - return CharUnits::fromQuantity(offset.getQuantity() & unitMask); -} - -static bool areBytesInSameUnit(CharUnits first, CharUnits second, - CharUnits chunkSize) { - return getOffsetAtStartOfUnit(first, chunkSize) - == getOffsetAtStartOfUnit(second, chunkSize); -} - -static bool isMergeableEntryType(llvm::Type *type) { - // Opaquely-typed memory is always mergeable. - if (type == nullptr) return true; - - // Pointers and integers are always mergeable. In theory we should not - // merge pointers, but (1) it doesn't currently matter in practice because - // the chunk size is never greater than the size of a pointer and (2) - // Swift IRGen uses integer types for a lot of things that are "really" - // just storing pointers (like Optional<SomePointer>). If we ever have a - // target that would otherwise combine pointers, we should put some effort - // into fixing those cases in Swift IRGen and then call out pointer types - // here. - - // Floating-point and vector types should never be merged. - // Most such types are too large and highly-aligned to ever trigger merging - // in practice, but it's important for the rule to cover at least 'half' - // and 'float', as well as things like small vectors of 'i1' or 'i8'. - return (!type->isFloatingPointTy() && !type->isVectorTy()); -} - -bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first, - const StorageEntry &second, - CharUnits chunkSize) { - // Only merge entries that overlap the same chunk. We test this first - // despite being a bit more expensive because this is the condition that - // tends to prevent merging. - if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin, - chunkSize)) - return false; - - return (isMergeableEntryType(first.Type) && - isMergeableEntryType(second.Type)); -} - -void SwiftAggLowering::finish() { - if (Entries.empty()) { - Finished = true; - return; - } - - // We logically split the layout down into a series of chunks of this size, - // which is generally the size of a pointer. - const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); - - // First pass: if two entries should be merged, make them both opaque - // and stretch one to meet the next. - // Also, remember if there are any opaque entries. - bool hasOpaqueEntries = (Entries[0].Type == nullptr); - for (size_t i = 1, e = Entries.size(); i != e; ++i) { - if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) { - Entries[i - 1].Type = nullptr; - Entries[i].Type = nullptr; - Entries[i - 1].End = Entries[i].Begin; - hasOpaqueEntries = true; - - } else if (Entries[i].Type == nullptr) { - hasOpaqueEntries = true; - } - } - - // The rest of the algorithm leaves non-opaque entries alone, so if we - // have no opaque entries, we're done. - if (!hasOpaqueEntries) { - Finished = true; - return; - } - - // Okay, move the entries to a temporary and rebuild Entries. - auto orig = std::move(Entries); - assert(Entries.empty()); - - for (size_t i = 0, e = orig.size(); i != e; ++i) { - // Just copy over non-opaque entries. - if (orig[i].Type != nullptr) { - Entries.push_back(orig[i]); - continue; - } - - // Scan forward to determine the full extent of the next opaque range. - // We know from the first pass that only contiguous ranges will overlap - // the same aligned chunk. - auto begin = orig[i].Begin; - auto end = orig[i].End; - while (i + 1 != e && - orig[i + 1].Type == nullptr && - end == orig[i + 1].Begin) { - end = orig[i + 1].End; - i++; - } - - // Add an entry per intersected chunk. - do { - // Find the smallest aligned storage unit in the maximal aligned - // storage unit containing 'begin' that contains all the bytes in - // the intersection between the range and this chunk. - CharUnits localBegin = begin; - CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); - CharUnits chunkEnd = chunkBegin + chunkSize; - CharUnits localEnd = std::min(end, chunkEnd); - - // Just do a simple loop over ever-increasing unit sizes. - CharUnits unitSize = CharUnits::One(); - CharUnits unitBegin, unitEnd; - for (; ; unitSize *= 2) { - assert(unitSize <= chunkSize); - unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); - unitEnd = unitBegin + unitSize; - if (unitEnd >= localEnd) break; - } - - // Add an entry for this unit. - auto entryTy = - llvm::IntegerType::get(CGM.getLLVMContext(), - CGM.getContext().toBits(unitSize)); - Entries.push_back({unitBegin, unitEnd, entryTy}); - - // The next chunk starts where this chunk left off. - begin = localEnd; - } while (begin != end); - } - - // Okay, finally finished. - Finished = true; -} - -void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { - assert(Finished && "haven't yet finished lowering"); - - for (auto &entry : Entries) { - callback(entry.Begin, entry.End, entry.Type); - } -} - -std::pair<llvm::StructType*, llvm::Type*> -SwiftAggLowering::getCoerceAndExpandTypes() const { - assert(Finished && "haven't yet finished lowering"); - - auto &ctx = CGM.getLLVMContext(); - - if (Entries.empty()) { - auto type = llvm::StructType::get(ctx); - return { type, type }; - } - - SmallVector<llvm::Type*, 8> elts; - CharUnits lastEnd = CharUnits::Zero(); - bool hasPadding = false; - bool packed = false; - for (auto &entry : Entries) { - if (entry.Begin != lastEnd) { - auto paddingSize = entry.Begin - lastEnd; - assert(!paddingSize.isNegative()); - - auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), - paddingSize.getQuantity()); - elts.push_back(padding); - hasPadding = true; - } - - if (!packed && !entry.Begin.isMultipleOf( - CharUnits::fromQuantity( - CGM.getDataLayout().getABITypeAlignment(entry.Type)))) - packed = true; - - elts.push_back(entry.Type); - - lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); - assert(entry.End <= lastEnd); - } - - // We don't need to adjust 'packed' to deal with possible tail padding - // because we never do that kind of access through the coercion type. - auto coercionType = llvm::StructType::get(ctx, elts, packed); - - llvm::Type *unpaddedType = coercionType; - if (hasPadding) { - elts.clear(); - for (auto &entry : Entries) { - elts.push_back(entry.Type); - } - if (elts.size() == 1) { - unpaddedType = elts[0]; - } else { - unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); - } - } else if (Entries.size() == 1) { - unpaddedType = Entries[0].Type; - } - - return { coercionType, unpaddedType }; -} - -bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { - assert(Finished && "haven't yet finished lowering"); - - // Empty types don't need to be passed indirectly. - if (Entries.empty()) return false; - - // Avoid copying the array of types when there's just a single element. - if (Entries.size() == 1) { - return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift( - Entries.back().Type, - asReturnValue); - } - - SmallVector<llvm::Type*, 8> componentTys; - componentTys.reserve(Entries.size()); - for (auto &entry : Entries) { - componentTys.push_back(entry.Type); - } - return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, - asReturnValue); -} - -bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, - ArrayRef<llvm::Type*> componentTys, - bool asReturnValue) { - return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, - asReturnValue); -} - -CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { - // Currently always the size of an ordinary pointer. - return CGM.getContext().toCharUnitsFromBits( - CGM.getContext().getTargetInfo().getPointerWidth(0)); -} - -CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { - // For Swift's purposes, this is always just the store size of the type - // rounded up to a power of 2. - auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); - if (!isPowerOf2(size)) { - size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); - } - assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); - return CharUnits::fromQuantity(size); -} - -bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, - llvm::IntegerType *intTy) { - auto size = intTy->getBitWidth(); - switch (size) { - case 1: - case 8: - case 16: - case 32: - case 64: - // Just assume that the above are always legal. - return true; - - case 128: - return CGM.getContext().getTargetInfo().hasInt128Type(); - - default: - return false; - } -} - -bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, - llvm::VectorType *vectorTy) { - return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), - vectorTy->getNumElements()); -} - -bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, - llvm::Type *eltTy, unsigned numElts) { - assert(numElts > 1 && "illegal vector length"); - return getSwiftABIInfo(CGM) - .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); -} - -std::pair<llvm::Type*, unsigned> -swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, - llvm::VectorType *vectorTy) { - auto numElts = vectorTy->getNumElements(); - auto eltTy = vectorTy->getElementType(); - - // Try to split the vector type in half. - if (numElts >= 4 && isPowerOf2(numElts)) { - if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) - return {llvm::VectorType::get(eltTy, numElts / 2), 2}; - } - - return {eltTy, numElts}; -} - -void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, - llvm::VectorType *origVectorTy, - llvm::SmallVectorImpl<llvm::Type*> &components) { - // If it's already a legal vector type, use it. - if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { - components.push_back(origVectorTy); - return; - } - - // Try to split the vector into legal subvectors. - auto numElts = origVectorTy->getNumElements(); - auto eltTy = origVectorTy->getElementType(); - assert(numElts != 1); - - // The largest size that we're still considering making subvectors of. - // Always a power of 2. - unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); - unsigned candidateNumElts = 1U << logCandidateNumElts; - assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); - - // Minor optimization: don't check the legality of this exact size twice. - if (candidateNumElts == numElts) { - logCandidateNumElts--; - candidateNumElts >>= 1; - } - - CharUnits eltSize = (origVectorSize / numElts); - CharUnits candidateSize = eltSize * candidateNumElts; - - // The sensibility of this algorithm relies on the fact that we never - // have a legal non-power-of-2 vector size without having the power of 2 - // also be legal. - while (logCandidateNumElts > 0) { - assert(candidateNumElts == 1U << logCandidateNumElts); - assert(candidateNumElts <= numElts); - assert(candidateSize == eltSize * candidateNumElts); - - // Skip illegal vector sizes. - if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { - logCandidateNumElts--; - candidateNumElts /= 2; - candidateSize /= 2; - continue; - } - - // Add the right number of vectors of this size. - auto numVecs = numElts >> logCandidateNumElts; - components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); - numElts -= (numVecs << logCandidateNumElts); - - if (numElts == 0) return; - - // It's possible that the number of elements remaining will be legal. - // This can happen with e.g. <7 x float> when <3 x float> is legal. - // This only needs to be separately checked if it's not a power of 2. - if (numElts > 2 && !isPowerOf2(numElts) && - isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { - components.push_back(llvm::VectorType::get(eltTy, numElts)); - return; - } - - // Bring vecSize down to something no larger than numElts. - do { - logCandidateNumElts--; - candidateNumElts /= 2; - candidateSize /= 2; - } while (candidateNumElts > numElts); - } - - // Otherwise, just append a bunch of individual elements. - components.append(numElts, eltTy); -} - -bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, - const RecordDecl *record) { - // FIXME: should we not rely on the standard computation in Sema, just in - // case we want to diverge from the platform ABI (e.g. on targets where - // that uses the MSVC rule)? - return !record->canPassInRegisters(); -} - -static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, - bool forReturn, - CharUnits alignmentForIndirect) { - if (lowering.empty()) { - return ABIArgInfo::getIgnore(); - } else if (lowering.shouldPassIndirectly(forReturn)) { - return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); - } else { - auto types = lowering.getCoerceAndExpandTypes(); - return ABIArgInfo::getCoerceAndExpand(types.first, types.second); - } -} - -static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, - bool forReturn) { - if (auto recordType = dyn_cast<RecordType>(type)) { - auto record = recordType->getDecl(); - auto &layout = CGM.getContext().getASTRecordLayout(record); - - if (mustPassRecordIndirectly(CGM, record)) - return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); - - SwiftAggLowering lowering(CGM); - lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); - lowering.finish(); - - return classifyExpandedType(lowering, forReturn, layout.getAlignment()); - } - - // Just assume that all of our target ABIs can support returning at least - // two integer or floating-point values. - if (isa<ComplexType>(type)) { - return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); - } - - // Vector types may need to be legalized. - if (isa<VectorType>(type)) { - SwiftAggLowering lowering(CGM); - lowering.addTypedData(type, CharUnits::Zero()); - lowering.finish(); - - CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); - return classifyExpandedType(lowering, forReturn, alignment); - } - - // Member pointer types need to be expanded, but it's a simple form of - // expansion that 'Direct' can handle. Note that CanBeFlattened should be - // true for this to work. - - // 'void' needs to be ignored. - if (type->isVoidType()) { - return ABIArgInfo::getIgnore(); - } - - // Everything else can be passed directly. - return ABIArgInfo::getDirect(); -} - -ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { - return classifyType(CGM, type, /*forReturn*/ true); -} - -ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, - CanQualType type) { - return classifyType(CGM, type, /*forReturn*/ false); -} - -void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { - auto &retInfo = FI.getReturnInfo(); - retInfo = classifyReturnType(CGM, FI.getReturnType()); - - for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { - auto &argInfo = FI.arg_begin()[i]; - argInfo.info = classifyArgumentType(CGM, argInfo.type); - } -} - -// Is swifterror lowered to a register by the target ABI. -bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { - return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); -} |
