summaryrefslogtreecommitdiff
path: root/crypto/openssh/moduli.c
diff options
context:
space:
mode:
authorDag-Erling Smørgrav <des@FreeBSD.org>2008-07-22 19:01:18 +0000
committerDag-Erling Smørgrav <des@FreeBSD.org>2008-07-22 19:01:18 +0000
commite3ae3b098db0d696976a0a4a75e7563b0bdbf21a (patch)
tree9827eb822991aa369cf5d220fce40c3d2011c19f /crypto/openssh/moduli.c
parent92eb0aa103fa16ca6fc3ae7097a6a27d993f3b3c (diff)
downloadsrc-test2-e3ae3b098db0d696976a0a4a75e7563b0bdbf21a.tar.gz
src-test2-e3ae3b098db0d696976a0a4a75e7563b0bdbf21a.zip
Notes
Diffstat (limited to 'crypto/openssh/moduli.c')
-rw-r--r--crypto/openssh/moduli.c669
1 files changed, 0 insertions, 669 deletions
diff --git a/crypto/openssh/moduli.c b/crypto/openssh/moduli.c
deleted file mode 100644
index 44e5ddfc0c03..000000000000
--- a/crypto/openssh/moduli.c
+++ /dev/null
@@ -1,669 +0,0 @@
-/* $OpenBSD: moduli.c,v 1.19 2006/11/06 21:25:28 markus Exp $ */
-/*
- * Copyright 1994 Phil Karn <karn@qualcomm.com>
- * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
- * Copyright 2000 Niels Provos <provos@citi.umich.edu>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-/*
- * Two-step process to generate safe primes for DHGEX
- *
- * Sieve candidates for "safe" primes,
- * suitable for use as Diffie-Hellman moduli;
- * that is, where q = (p-1)/2 is also prime.
- *
- * First step: generate candidate primes (memory intensive)
- * Second step: test primes' safety (processor intensive)
- */
-
-#include "includes.h"
-
-#include <sys/types.h>
-
-#include <openssl/bn.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <stdarg.h>
-#include <time.h>
-
-#include "xmalloc.h"
-#include "log.h"
-
-/*
- * File output defines
- */
-
-/* need line long enough for largest moduli plus headers */
-#define QLINESIZE (100+8192)
-
-/* Type: decimal.
- * Specifies the internal structure of the prime modulus.
- */
-#define QTYPE_UNKNOWN (0)
-#define QTYPE_UNSTRUCTURED (1)
-#define QTYPE_SAFE (2)
-#define QTYPE_SCHNORR (3)
-#define QTYPE_SOPHIE_GERMAIN (4)
-#define QTYPE_STRONG (5)
-
-/* Tests: decimal (bit field).
- * Specifies the methods used in checking for primality.
- * Usually, more than one test is used.
- */
-#define QTEST_UNTESTED (0x00)
-#define QTEST_COMPOSITE (0x01)
-#define QTEST_SIEVE (0x02)
-#define QTEST_MILLER_RABIN (0x04)
-#define QTEST_JACOBI (0x08)
-#define QTEST_ELLIPTIC (0x10)
-
-/*
- * Size: decimal.
- * Specifies the number of the most significant bit (0 to M).
- * WARNING: internally, usually 1 to N.
- */
-#define QSIZE_MINIMUM (511)
-
-/*
- * Prime sieving defines
- */
-
-/* Constant: assuming 8 bit bytes and 32 bit words */
-#define SHIFT_BIT (3)
-#define SHIFT_BYTE (2)
-#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
-#define SHIFT_MEGABYTE (20)
-#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
-
-/*
- * Using virtual memory can cause thrashing. This should be the largest
- * number that is supported without a large amount of disk activity --
- * that would increase the run time from hours to days or weeks!
- */
-#define LARGE_MINIMUM (8UL) /* megabytes */
-
-/*
- * Do not increase this number beyond the unsigned integer bit size.
- * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
- */
-#define LARGE_MAXIMUM (127UL) /* megabytes */
-
-/*
- * Constant: when used with 32-bit integers, the largest sieve prime
- * has to be less than 2**32.
- */
-#define SMALL_MAXIMUM (0xffffffffUL)
-
-/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
-#define TINY_NUMBER (1UL<<16)
-
-/* Ensure enough bit space for testing 2*q. */
-#define TEST_MAXIMUM (1UL<<16)
-#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
-/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
-#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
-
-/* bit operations on 32-bit words */
-#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
-#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
-#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
-
-/*
- * Prime testing defines
- */
-
-/* Minimum number of primality tests to perform */
-#define TRIAL_MINIMUM (4)
-
-/*
- * Sieving data (XXX - move to struct)
- */
-
-/* sieve 2**16 */
-static u_int32_t *TinySieve, tinybits;
-
-/* sieve 2**30 in 2**16 parts */
-static u_int32_t *SmallSieve, smallbits, smallbase;
-
-/* sieve relative to the initial value */
-static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
-static u_int32_t largebits, largememory; /* megabytes */
-static BIGNUM *largebase;
-
-int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
-int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
-
-/*
- * print moduli out in consistent form,
- */
-static int
-qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
- u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
-{
- struct tm *gtm;
- time_t time_now;
- int res;
-
- time(&time_now);
- gtm = gmtime(&time_now);
-
- res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
- gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
- gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
- otype, otests, otries, osize, ogenerator);
-
- if (res < 0)
- return (-1);
-
- if (BN_print_fp(ofile, omodulus) < 1)
- return (-1);
-
- res = fprintf(ofile, "\n");
- fflush(ofile);
-
- return (res > 0 ? 0 : -1);
-}
-
-
-/*
- ** Sieve p's and q's with small factors
- */
-static void
-sieve_large(u_int32_t s)
-{
- u_int32_t r, u;
-
- debug3("sieve_large %u", s);
- largetries++;
- /* r = largebase mod s */
- r = BN_mod_word(largebase, s);
- if (r == 0)
- u = 0; /* s divides into largebase exactly */
- else
- u = s - r; /* largebase+u is first entry divisible by s */
-
- if (u < largebits * 2) {
- /*
- * The sieve omits p's and q's divisible by 2, so ensure that
- * largebase+u is odd. Then, step through the sieve in
- * increments of 2*s
- */
- if (u & 0x1)
- u += s; /* Make largebase+u odd, and u even */
-
- /* Mark all multiples of 2*s */
- for (u /= 2; u < largebits; u += s)
- BIT_SET(LargeSieve, u);
- }
-
- /* r = p mod s */
- r = (2 * r + 1) % s;
- if (r == 0)
- u = 0; /* s divides p exactly */
- else
- u = s - r; /* p+u is first entry divisible by s */
-
- if (u < largebits * 4) {
- /*
- * The sieve omits p's divisible by 4, so ensure that
- * largebase+u is not. Then, step through the sieve in
- * increments of 4*s
- */
- while (u & 0x3) {
- if (SMALL_MAXIMUM - u < s)
- return;
- u += s;
- }
-
- /* Mark all multiples of 4*s */
- for (u /= 4; u < largebits; u += s)
- BIT_SET(LargeSieve, u);
- }
-}
-
-/*
- * list candidates for Sophie-Germain primes (where q = (p-1)/2)
- * to standard output.
- * The list is checked against small known primes (less than 2**30).
- */
-int
-gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
-{
- BIGNUM *q;
- u_int32_t j, r, s, t;
- u_int32_t smallwords = TINY_NUMBER >> 6;
- u_int32_t tinywords = TINY_NUMBER >> 6;
- time_t time_start, time_stop;
- u_int32_t i;
- int ret = 0;
-
- largememory = memory;
-
- if (memory != 0 &&
- (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
- error("Invalid memory amount (min %ld, max %ld)",
- LARGE_MINIMUM, LARGE_MAXIMUM);
- return (-1);
- }
-
- /*
- * Set power to the length in bits of the prime to be generated.
- * This is changed to 1 less than the desired safe prime moduli p.
- */
- if (power > TEST_MAXIMUM) {
- error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
- return (-1);
- } else if (power < TEST_MINIMUM) {
- error("Too few bits: %u < %u", power, TEST_MINIMUM);
- return (-1);
- }
- power--; /* decrement before squaring */
-
- /*
- * The density of ordinary primes is on the order of 1/bits, so the
- * density of safe primes should be about (1/bits)**2. Set test range
- * to something well above bits**2 to be reasonably sure (but not
- * guaranteed) of catching at least one safe prime.
- */
- largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
-
- /*
- * Need idea of how much memory is available. We don't have to use all
- * of it.
- */
- if (largememory > LARGE_MAXIMUM) {
- logit("Limited memory: %u MB; limit %lu MB",
- largememory, LARGE_MAXIMUM);
- largememory = LARGE_MAXIMUM;
- }
-
- if (largewords <= (largememory << SHIFT_MEGAWORD)) {
- logit("Increased memory: %u MB; need %u bytes",
- largememory, (largewords << SHIFT_BYTE));
- largewords = (largememory << SHIFT_MEGAWORD);
- } else if (largememory > 0) {
- logit("Decreased memory: %u MB; want %u bytes",
- largememory, (largewords << SHIFT_BYTE));
- largewords = (largememory << SHIFT_MEGAWORD);
- }
-
- TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
- tinybits = tinywords << SHIFT_WORD;
-
- SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
- smallbits = smallwords << SHIFT_WORD;
-
- /*
- * dynamically determine available memory
- */
- while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
- largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
-
- largebits = largewords << SHIFT_WORD;
- largenumbers = largebits * 2; /* even numbers excluded */
-
- /* validation check: count the number of primes tried */
- largetries = 0;
- if ((q = BN_new()) == NULL)
- fatal("BN_new failed");
-
- /*
- * Generate random starting point for subprime search, or use
- * specified parameter.
- */
- if ((largebase = BN_new()) == NULL)
- fatal("BN_new failed");
- if (start == NULL) {
- if (BN_rand(largebase, power, 1, 1) == 0)
- fatal("BN_rand failed");
- } else {
- if (BN_copy(largebase, start) == NULL)
- fatal("BN_copy: failed");
- }
-
- /* ensure odd */
- if (BN_set_bit(largebase, 0) == 0)
- fatal("BN_set_bit: failed");
-
- time(&time_start);
-
- logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
- largenumbers, power);
- debug2("start point: 0x%s", BN_bn2hex(largebase));
-
- /*
- * TinySieve
- */
- for (i = 0; i < tinybits; i++) {
- if (BIT_TEST(TinySieve, i))
- continue; /* 2*i+3 is composite */
-
- /* The next tiny prime */
- t = 2 * i + 3;
-
- /* Mark all multiples of t */
- for (j = i + t; j < tinybits; j += t)
- BIT_SET(TinySieve, j);
-
- sieve_large(t);
- }
-
- /*
- * Start the small block search at the next possible prime. To avoid
- * fencepost errors, the last pass is skipped.
- */
- for (smallbase = TINY_NUMBER + 3;
- smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
- smallbase += TINY_NUMBER) {
- for (i = 0; i < tinybits; i++) {
- if (BIT_TEST(TinySieve, i))
- continue; /* 2*i+3 is composite */
-
- /* The next tiny prime */
- t = 2 * i + 3;
- r = smallbase % t;
-
- if (r == 0) {
- s = 0; /* t divides into smallbase exactly */
- } else {
- /* smallbase+s is first entry divisible by t */
- s = t - r;
- }
-
- /*
- * The sieve omits even numbers, so ensure that
- * smallbase+s is odd. Then, step through the sieve
- * in increments of 2*t
- */
- if (s & 1)
- s += t; /* Make smallbase+s odd, and s even */
-
- /* Mark all multiples of 2*t */
- for (s /= 2; s < smallbits; s += t)
- BIT_SET(SmallSieve, s);
- }
-
- /*
- * SmallSieve
- */
- for (i = 0; i < smallbits; i++) {
- if (BIT_TEST(SmallSieve, i))
- continue; /* 2*i+smallbase is composite */
-
- /* The next small prime */
- sieve_large((2 * i) + smallbase);
- }
-
- memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
- }
-
- time(&time_stop);
-
- logit("%.24s Sieved with %u small primes in %ld seconds",
- ctime(&time_stop), largetries, (long) (time_stop - time_start));
-
- for (j = r = 0; j < largebits; j++) {
- if (BIT_TEST(LargeSieve, j))
- continue; /* Definitely composite, skip */
-
- debug2("test q = largebase+%u", 2 * j);
- if (BN_set_word(q, 2 * j) == 0)
- fatal("BN_set_word failed");
- if (BN_add(q, q, largebase) == 0)
- fatal("BN_add failed");
- if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
- largetries, (power - 1) /* MSB */, (0), q) == -1) {
- ret = -1;
- break;
- }
-
- r++; /* count q */
- }
-
- time(&time_stop);
-
- xfree(LargeSieve);
- xfree(SmallSieve);
- xfree(TinySieve);
-
- logit("%.24s Found %u candidates", ctime(&time_stop), r);
-
- return (ret);
-}
-
-/*
- * perform a Miller-Rabin primality test
- * on the list of candidates
- * (checking both q and p)
- * The result is a list of so-call "safe" primes
- */
-int
-prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
-{
- BIGNUM *q, *p, *a;
- BN_CTX *ctx;
- char *cp, *lp;
- u_int32_t count_in = 0, count_out = 0, count_possible = 0;
- u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
- time_t time_start, time_stop;
- int res;
-
- if (trials < TRIAL_MINIMUM) {
- error("Minimum primality trials is %d", TRIAL_MINIMUM);
- return (-1);
- }
-
- time(&time_start);
-
- if ((p = BN_new()) == NULL)
- fatal("BN_new failed");
- if ((q = BN_new()) == NULL)
- fatal("BN_new failed");
- if ((ctx = BN_CTX_new()) == NULL)
- fatal("BN_CTX_new failed");
-
- debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
- ctime(&time_start), trials, generator_wanted);
-
- res = 0;
- lp = xmalloc(QLINESIZE + 1);
- while (fgets(lp, QLINESIZE, in) != NULL) {
- int ll = strlen(lp);
-
- count_in++;
- if (ll < 14 || *lp == '!' || *lp == '#') {
- debug2("%10u: comment or short line", count_in);
- continue;
- }
-
- /* XXX - fragile parser */
- /* time */
- cp = &lp[14]; /* (skip) */
-
- /* type */
- in_type = strtoul(cp, &cp, 10);
-
- /* tests */
- in_tests = strtoul(cp, &cp, 10);
-
- if (in_tests & QTEST_COMPOSITE) {
- debug2("%10u: known composite", count_in);
- continue;
- }
-
- /* tries */
- in_tries = strtoul(cp, &cp, 10);
-
- /* size (most significant bit) */
- in_size = strtoul(cp, &cp, 10);
-
- /* generator (hex) */
- generator_known = strtoul(cp, &cp, 16);
-
- /* Skip white space */
- cp += strspn(cp, " ");
-
- /* modulus (hex) */
- switch (in_type) {
- case QTYPE_SOPHIE_GERMAIN:
- debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
- a = q;
- if (BN_hex2bn(&a, cp) == 0)
- fatal("BN_hex2bn failed");
- /* p = 2*q + 1 */
- if (BN_lshift(p, q, 1) == 0)
- fatal("BN_lshift failed");
- if (BN_add_word(p, 1) == 0)
- fatal("BN_add_word failed");
- in_size += 1;
- generator_known = 0;
- break;
- case QTYPE_UNSTRUCTURED:
- case QTYPE_SAFE:
- case QTYPE_SCHNORR:
- case QTYPE_STRONG:
- case QTYPE_UNKNOWN:
- debug2("%10u: (%u)", count_in, in_type);
- a = p;
- if (BN_hex2bn(&a, cp) == 0)
- fatal("BN_hex2bn failed");
- /* q = (p-1) / 2 */
- if (BN_rshift(q, p, 1) == 0)
- fatal("BN_rshift failed");
- break;
- default:
- debug2("Unknown prime type");
- break;
- }
-
- /*
- * due to earlier inconsistencies in interpretation, check
- * the proposed bit size.
- */
- if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
- debug2("%10u: bit size %u mismatch", count_in, in_size);
- continue;
- }
- if (in_size < QSIZE_MINIMUM) {
- debug2("%10u: bit size %u too short", count_in, in_size);
- continue;
- }
-
- if (in_tests & QTEST_MILLER_RABIN)
- in_tries += trials;
- else
- in_tries = trials;
-
- /*
- * guess unknown generator
- */
- if (generator_known == 0) {
- if (BN_mod_word(p, 24) == 11)
- generator_known = 2;
- else if (BN_mod_word(p, 12) == 5)
- generator_known = 3;
- else {
- u_int32_t r = BN_mod_word(p, 10);
-
- if (r == 3 || r == 7)
- generator_known = 5;
- }
- }
- /*
- * skip tests when desired generator doesn't match
- */
- if (generator_wanted > 0 &&
- generator_wanted != generator_known) {
- debug2("%10u: generator %d != %d",
- count_in, generator_known, generator_wanted);
- continue;
- }
-
- /*
- * Primes with no known generator are useless for DH, so
- * skip those.
- */
- if (generator_known == 0) {
- debug2("%10u: no known generator", count_in);
- continue;
- }
-
- count_possible++;
-
- /*
- * The (1/4)^N performance bound on Miller-Rabin is
- * extremely pessimistic, so don't spend a lot of time
- * really verifying that q is prime until after we know
- * that p is also prime. A single pass will weed out the
- * vast majority of composite q's.
- */
- if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
- debug("%10u: q failed first possible prime test",
- count_in);
- continue;
- }
-
- /*
- * q is possibly prime, so go ahead and really make sure
- * that p is prime. If it is, then we can go back and do
- * the same for q. If p is composite, chances are that
- * will show up on the first Rabin-Miller iteration so it
- * doesn't hurt to specify a high iteration count.
- */
- if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
- debug("%10u: p is not prime", count_in);
- continue;
- }
- debug("%10u: p is almost certainly prime", count_in);
-
- /* recheck q more rigorously */
- if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
- debug("%10u: q is not prime", count_in);
- continue;
- }
- debug("%10u: q is almost certainly prime", count_in);
-
- if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
- in_tries, in_size, generator_known, p)) {
- res = -1;
- break;
- }
-
- count_out++;
- }
-
- time(&time_stop);
- xfree(lp);
- BN_free(p);
- BN_free(q);
- BN_CTX_free(ctx);
-
- logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
- ctime(&time_stop), count_out, count_possible,
- (long) (time_stop - time_start));
-
- return (res);
-}