summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/LoopInfo.h
diff options
context:
space:
mode:
authorEd Schouten <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
committerEd Schouten <ed@FreeBSD.org>2009-06-02 17:52:33 +0000
commit009b1c42aa6266385f2c37e227516b24077e6dd7 (patch)
tree64ba909838c23261cace781ece27d106134ea451 /include/llvm/Analysis/LoopInfo.h
downloadsrc-test2-009b1c42aa6266385f2c37e227516b24077e6dd7.tar.gz
src-test2-009b1c42aa6266385f2c37e227516b24077e6dd7.zip
Notes
Diffstat (limited to 'include/llvm/Analysis/LoopInfo.h')
-rw-r--r--include/llvm/Analysis/LoopInfo.h1095
1 files changed, 1095 insertions, 0 deletions
diff --git a/include/llvm/Analysis/LoopInfo.h b/include/llvm/Analysis/LoopInfo.h
new file mode 100644
index 000000000000..fb0b584d41cd
--- /dev/null
+++ b/include/llvm/Analysis/LoopInfo.h
@@ -0,0 +1,1095 @@
+//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the LoopInfo class that is used to identify natural loops
+// and determine the loop depth of various nodes of the CFG. Note that natural
+// loops may actually be several loops that share the same header node.
+//
+// This analysis calculates the nesting structure of loops in a function. For
+// each natural loop identified, this analysis identifies natural loops
+// contained entirely within the loop and the basic blocks the make up the loop.
+//
+// It can calculate on the fly various bits of information, for example:
+//
+// * whether there is a preheader for the loop
+// * the number of back edges to the header
+// * whether or not a particular block branches out of the loop
+// * the successor blocks of the loop
+// * the loop depth
+// * the trip count
+// * etc...
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_LOOP_INFO_H
+#define LLVM_ANALYSIS_LOOP_INFO_H
+
+#include "llvm/Pass.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Streams.h"
+#include <algorithm>
+#include <ostream>
+
+namespace llvm {
+
+template<typename T>
+static void RemoveFromVector(std::vector<T*> &V, T *N) {
+ typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
+ assert(I != V.end() && "N is not in this list!");
+ V.erase(I);
+}
+
+class DominatorTree;
+class LoopInfo;
+template<class N> class LoopInfoBase;
+template<class N> class LoopBase;
+
+typedef LoopBase<BasicBlock> Loop;
+
+//===----------------------------------------------------------------------===//
+/// LoopBase class - Instances of this class are used to represent loops that
+/// are detected in the flow graph
+///
+template<class BlockT>
+class LoopBase {
+ LoopBase<BlockT> *ParentLoop;
+ // SubLoops - Loops contained entirely within this one.
+ std::vector<LoopBase<BlockT>*> SubLoops;
+
+ // Blocks - The list of blocks in this loop. First entry is the header node.
+ std::vector<BlockT*> Blocks;
+
+ LoopBase(const LoopBase<BlockT> &); // DO NOT IMPLEMENT
+ const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
+public:
+ /// Loop ctor - This creates an empty loop.
+ LoopBase() : ParentLoop(0) {}
+ ~LoopBase() {
+ for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
+ delete SubLoops[i];
+ }
+
+ /// getLoopDepth - Return the nesting level of this loop. An outer-most
+ /// loop has depth 1, for consistency with loop depth values used for basic
+ /// blocks, where depth 0 is used for blocks not inside any loops.
+ unsigned getLoopDepth() const {
+ unsigned D = 1;
+ for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
+ CurLoop = CurLoop->ParentLoop)
+ ++D;
+ return D;
+ }
+ BlockT *getHeader() const { return Blocks.front(); }
+ LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
+
+ /// contains - Return true if the specified basic block is in this loop
+ ///
+ bool contains(const BlockT *BB) const {
+ return std::find(block_begin(), block_end(), BB) != block_end();
+ }
+
+ /// iterator/begin/end - Return the loops contained entirely within this loop.
+ ///
+ const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
+ typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
+ iterator begin() const { return SubLoops.begin(); }
+ iterator end() const { return SubLoops.end(); }
+ bool empty() const { return SubLoops.empty(); }
+
+ /// getBlocks - Get a list of the basic blocks which make up this loop.
+ ///
+ const std::vector<BlockT*> &getBlocks() const { return Blocks; }
+ typedef typename std::vector<BlockT*>::const_iterator block_iterator;
+ block_iterator block_begin() const { return Blocks.begin(); }
+ block_iterator block_end() const { return Blocks.end(); }
+
+ /// isLoopExit - True if terminator in the block can branch to another block
+ /// that is outside of the current loop.
+ ///
+ bool isLoopExit(const BlockT *BB) const {
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (typename BlockTraits::ChildIteratorType SI =
+ BlockTraits::child_begin(const_cast<BlockT*>(BB)),
+ SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
+ if (!contains(*SI))
+ return true;
+ }
+ return false;
+ }
+
+ /// getNumBackEdges - Calculate the number of back edges to the loop header
+ ///
+ unsigned getNumBackEdges() const {
+ unsigned NumBackEdges = 0;
+ BlockT *H = getHeader();
+
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType I =
+ InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
+ E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
+ if (contains(*I))
+ ++NumBackEdges;
+
+ return NumBackEdges;
+ }
+
+ /// isLoopInvariant - Return true if the specified value is loop invariant
+ ///
+ inline bool isLoopInvariant(Value *V) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return !contains(I->getParent());
+ return true; // All non-instructions are loop invariant
+ }
+
+ //===--------------------------------------------------------------------===//
+ // APIs for simple analysis of the loop.
+ //
+ // Note that all of these methods can fail on general loops (ie, there may not
+ // be a preheader, etc). For best success, the loop simplification and
+ // induction variable canonicalization pass should be used to normalize loops
+ // for easy analysis. These methods assume canonical loops.
+
+ /// getExitingBlocks - Return all blocks inside the loop that have successors
+ /// outside of the loop. These are the blocks _inside of the current loop_
+ /// which branch out. The returned list is always unique.
+ ///
+ void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I)
+ if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
+ // Not in current loop? It must be an exit block.
+ ExitingBlocks.push_back(*BI);
+ break;
+ }
+ }
+
+ /// getExitingBlock - If getExitingBlocks would return exactly one block,
+ /// return that block. Otherwise return null.
+ BlockT *getExitingBlock() const {
+ SmallVector<BlockT*, 8> ExitingBlocks;
+ getExitingBlocks(ExitingBlocks);
+ if (ExitingBlocks.size() == 1)
+ return ExitingBlocks[0];
+ return 0;
+ }
+
+ /// getExitBlocks - Return all of the successor blocks of this loop. These
+ /// are the blocks _outside of the current loop_ which are branched to.
+ ///
+ void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I)
+ if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ // Not in current loop? It must be an exit block.
+ ExitBlocks.push_back(*I);
+ }
+
+ /// getExitBlock - If getExitBlocks would return exactly one block,
+ /// return that block. Otherwise return null.
+ BlockT *getExitBlock() const {
+ SmallVector<BlockT*, 8> ExitBlocks;
+ getExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() == 1)
+ return ExitBlocks[0];
+ return 0;
+ }
+
+ /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
+ /// These are the blocks _outside of the current loop_ which are branched to.
+ /// This assumes that loop is in canonical form.
+ ///
+ void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ std::vector<BlockT*> switchExitBlocks;
+
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
+
+ BlockT *current = *BI;
+ switchExitBlocks.clear();
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I) {
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ // If block is inside the loop then it is not a exit block.
+ continue;
+
+ typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(*I);
+ BlockT *firstPred = *PI;
+
+ // If current basic block is this exit block's first predecessor
+ // then only insert exit block in to the output ExitBlocks vector.
+ // This ensures that same exit block is not inserted twice into
+ // ExitBlocks vector.
+ if (current != firstPred)
+ continue;
+
+ // If a terminator has more then two successors, for example SwitchInst,
+ // then it is possible that there are multiple edges from current block
+ // to one exit block.
+ if (std::distance(BlockTraits::child_begin(current),
+ BlockTraits::child_end(current)) <= 2) {
+ ExitBlocks.push_back(*I);
+ continue;
+ }
+
+ // In case of multiple edges from current block to exit block, collect
+ // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
+ // duplicate edges.
+ if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
+ == switchExitBlocks.end()) {
+ switchExitBlocks.push_back(*I);
+ ExitBlocks.push_back(*I);
+ }
+ }
+ }
+ }
+
+ /// getLoopPreheader - If there is a preheader for this loop, return it. A
+ /// loop has a preheader if there is only one edge to the header of the loop
+ /// from outside of the loop. If this is the case, the block branching to the
+ /// header of the loop is the preheader node.
+ ///
+ /// This method returns null if there is no preheader for the loop.
+ ///
+ BlockT *getLoopPreheader() const {
+ // Keep track of nodes outside the loop branching to the header...
+ BlockT *Out = 0;
+
+ // Loop over the predecessors of the header node...
+ BlockT *Header = getHeader();
+ typedef GraphTraits<BlockT*> BlockTraits;
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(Header),
+ PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
+ if (!contains(*PI)) { // If the block is not in the loop...
+ if (Out && Out != *PI)
+ return 0; // Multiple predecessors outside the loop
+ Out = *PI;
+ }
+
+ // Make sure there is only one exit out of the preheader.
+ assert(Out && "Header of loop has no predecessors from outside loop?");
+ typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
+ ++SI;
+ if (SI != BlockTraits::child_end(Out))
+ return 0; // Multiple exits from the block, must not be a preheader.
+
+ // If there is exactly one preheader, return it. If there was zero, then
+ // Out is still null.
+ return Out;
+ }
+
+ /// getLoopLatch - If there is a single latch block for this loop, return it.
+ /// A latch block is a block that contains a branch back to the header.
+ /// A loop header in normal form has two edges into it: one from a preheader
+ /// and one from a latch block.
+ BlockT *getLoopLatch() const {
+ BlockT *Header = getHeader();
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(Header);
+ typename InvBlockTraits::ChildIteratorType PE =
+ InvBlockTraits::child_end(Header);
+ if (PI == PE) return 0; // no preds?
+
+ BlockT *Latch = 0;
+ if (contains(*PI))
+ Latch = *PI;
+ ++PI;
+ if (PI == PE) return 0; // only one pred?
+
+ if (contains(*PI)) {
+ if (Latch) return 0; // multiple backedges
+ Latch = *PI;
+ }
+ ++PI;
+ if (PI != PE) return 0; // more than two preds
+
+ return Latch;
+ }
+
+ /// getCanonicalInductionVariable - Check to see if the loop has a canonical
+ /// induction variable: an integer recurrence that starts at 0 and increments
+ /// by one each time through the loop. If so, return the phi node that
+ /// corresponds to it.
+ ///
+ /// The IndVarSimplify pass transforms loops to have a canonical induction
+ /// variable.
+ ///
+ inline PHINode *getCanonicalInductionVariable() const {
+ BlockT *H = getHeader();
+
+ BlockT *Incoming = 0, *Backedge = 0;
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(H);
+ assert(PI != InvBlockTraits::child_end(H) &&
+ "Loop must have at least one backedge!");
+ Backedge = *PI++;
+ if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
+ Incoming = *PI++;
+ if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
+
+ if (contains(Incoming)) {
+ if (contains(Backedge))
+ return 0;
+ std::swap(Incoming, Backedge);
+ } else if (!contains(Backedge))
+ return 0;
+
+ // Loop over all of the PHI nodes, looking for a canonical indvar.
+ for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
+ if (CI->isNullValue())
+ if (Instruction *Inc =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
+ if (Inc->getOpcode() == Instruction::Add &&
+ Inc->getOperand(0) == PN)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+ if (CI->equalsInt(1))
+ return PN;
+ }
+ return 0;
+ }
+
+ /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
+ /// the canonical induction variable value for the "next" iteration of the
+ /// loop. This always succeeds if getCanonicalInductionVariable succeeds.
+ ///
+ inline Instruction *getCanonicalInductionVariableIncrement() const {
+ if (PHINode *PN = getCanonicalInductionVariable()) {
+ bool P1InLoop = contains(PN->getIncomingBlock(1));
+ return cast<Instruction>(PN->getIncomingValue(P1InLoop));
+ }
+ return 0;
+ }
+
+ /// getTripCount - Return a loop-invariant LLVM value indicating the number of
+ /// times the loop will be executed. Note that this means that the backedge
+ /// of the loop executes N-1 times. If the trip-count cannot be determined,
+ /// this returns null.
+ ///
+ /// The IndVarSimplify pass transforms loops to have a form that this
+ /// function easily understands.
+ ///
+ inline Value *getTripCount() const {
+ // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
+ // canonical induction variable and V is the trip count of the loop.
+ Instruction *Inc = getCanonicalInductionVariableIncrement();
+ if (Inc == 0) return 0;
+ PHINode *IV = cast<PHINode>(Inc->getOperand(0));
+
+ BlockT *BackedgeBlock =
+ IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
+ if (BI->isConditional()) {
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
+ if (ICI->getOperand(0) == Inc) {
+ if (BI->getSuccessor(0) == getHeader()) {
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ return ICI->getOperand(1);
+ } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
+ return ICI->getOperand(1);
+ }
+ }
+ }
+ }
+
+ return 0;
+ }
+
+ /// getSmallConstantTripCount - Returns the trip count of this loop as a
+ /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
+ /// of not constant. Will also return 0 if the trip count is very large
+ /// (>= 2^32)
+ inline unsigned getSmallConstantTripCount() const {
+ Value* TripCount = this->getTripCount();
+ if (TripCount) {
+ if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
+ // Guard against huge trip counts.
+ if (TripCountC->getValue().getActiveBits() <= 32) {
+ return (unsigned)TripCountC->getZExtValue();
+ }
+ }
+ }
+ return 0;
+ }
+
+ /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
+ /// trip count of this loop as a normal unsigned value, if possible. This
+ /// means that the actual trip count is always a multiple of the returned
+ /// value (don't forget the trip count could very well be zero as well!).
+ ///
+ /// Returns 1 if the trip count is unknown or not guaranteed to be the
+ /// multiple of a constant (which is also the case if the trip count is simply
+ /// constant, use getSmallConstantTripCount for that case), Will also return 1
+ /// if the trip count is very large (>= 2^32).
+ inline unsigned getSmallConstantTripMultiple() const {
+ Value* TripCount = this->getTripCount();
+ // This will hold the ConstantInt result, if any
+ ConstantInt *Result = NULL;
+ if (TripCount) {
+ // See if the trip count is constant itself
+ Result = dyn_cast<ConstantInt>(TripCount);
+ // if not, see if it is a multiplication
+ if (!Result)
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
+ switch (BO->getOpcode()) {
+ case BinaryOperator::Mul:
+ Result = dyn_cast<ConstantInt>(BO->getOperand(1));
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ // Guard against huge trip counts.
+ if (Result && Result->getValue().getActiveBits() <= 32) {
+ return (unsigned)Result->getZExtValue();
+ } else {
+ return 1;
+ }
+ }
+
+ /// isLCSSAForm - Return true if the Loop is in LCSSA form
+ inline bool isLCSSAForm() const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
+
+ for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
+ BlockT *BB = *BI;
+ for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ BlockT *UserBB = cast<Instruction>(*UI)->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(*UI)) {
+ UserBB = P->getIncomingBlock(UI);
+ }
+
+ // Check the current block, as a fast-path. Most values are used in
+ // the same block they are defined in.
+ if (UserBB != BB && !LoopBBs.count(UserBB))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ //===--------------------------------------------------------------------===//
+ // APIs for updating loop information after changing the CFG
+ //
+
+ /// addBasicBlockToLoop - This method is used by other analyses to update loop
+ /// information. NewBB is set to be a new member of the current loop.
+ /// Because of this, it is added as a member of all parent loops, and is added
+ /// to the specified LoopInfo object as being in the current basic block. It
+ /// is not valid to replace the loop header with this method.
+ ///
+ void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
+
+ /// replaceChildLoopWith - This is used when splitting loops up. It replaces
+ /// the OldChild entry in our children list with NewChild, and updates the
+ /// parent pointer of OldChild to be null and the NewChild to be this loop.
+ /// This updates the loop depth of the new child.
+ void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
+ LoopBase<BlockT> *NewChild) {
+ assert(OldChild->ParentLoop == this && "This loop is already broken!");
+ assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
+ typename std::vector<LoopBase<BlockT>*>::iterator I =
+ std::find(SubLoops.begin(), SubLoops.end(), OldChild);
+ assert(I != SubLoops.end() && "OldChild not in loop!");
+ *I = NewChild;
+ OldChild->ParentLoop = 0;
+ NewChild->ParentLoop = this;
+ }
+
+ /// addChildLoop - Add the specified loop to be a child of this loop. This
+ /// updates the loop depth of the new child.
+ ///
+ void addChildLoop(LoopBase<BlockT> *NewChild) {
+ assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
+ NewChild->ParentLoop = this;
+ SubLoops.push_back(NewChild);
+ }
+
+ /// removeChildLoop - This removes the specified child from being a subloop of
+ /// this loop. The loop is not deleted, as it will presumably be inserted
+ /// into another loop.
+ LoopBase<BlockT> *removeChildLoop(iterator I) {
+ assert(I != SubLoops.end() && "Cannot remove end iterator!");
+ LoopBase<BlockT> *Child = *I;
+ assert(Child->ParentLoop == this && "Child is not a child of this loop!");
+ SubLoops.erase(SubLoops.begin()+(I-begin()));
+ Child->ParentLoop = 0;
+ return Child;
+ }
+
+ /// addBlockEntry - This adds a basic block directly to the basic block list.
+ /// This should only be used by transformations that create new loops. Other
+ /// transformations should use addBasicBlockToLoop.
+ void addBlockEntry(BlockT *BB) {
+ Blocks.push_back(BB);
+ }
+
+ /// moveToHeader - This method is used to move BB (which must be part of this
+ /// loop) to be the loop header of the loop (the block that dominates all
+ /// others).
+ void moveToHeader(BlockT *BB) {
+ if (Blocks[0] == BB) return;
+ for (unsigned i = 0; ; ++i) {
+ assert(i != Blocks.size() && "Loop does not contain BB!");
+ if (Blocks[i] == BB) {
+ Blocks[i] = Blocks[0];
+ Blocks[0] = BB;
+ return;
+ }
+ }
+ }
+
+ /// removeBlockFromLoop - This removes the specified basic block from the
+ /// current loop, updating the Blocks as appropriate. This does not update
+ /// the mapping in the LoopInfo class.
+ void removeBlockFromLoop(BlockT *BB) {
+ RemoveFromVector(Blocks, BB);
+ }
+
+ /// verifyLoop - Verify loop structure
+ void verifyLoop() const {
+#ifndef NDEBUG
+ assert (getHeader() && "Loop header is missing");
+ assert (getLoopPreheader() && "Loop preheader is missing");
+ assert (getLoopLatch() && "Loop latch is missing");
+ for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
+ (*I)->verifyLoop();
+#endif
+ }
+
+ void print(std::ostream &OS, unsigned Depth = 0) const {
+ OS << std::string(Depth*2, ' ') << "Loop at depth " << getLoopDepth()
+ << " containing: ";
+
+ for (unsigned i = 0; i < getBlocks().size(); ++i) {
+ if (i) OS << ",";
+ BlockT *BB = getBlocks()[i];
+ WriteAsOperand(OS, BB, false);
+ if (BB == getHeader()) OS << "<header>";
+ if (BB == getLoopLatch()) OS << "<latch>";
+ if (isLoopExit(BB)) OS << "<exit>";
+ }
+ OS << "\n";
+
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ (*I)->print(OS, Depth+2);
+ }
+
+ void print(std::ostream *O, unsigned Depth = 0) const {
+ if (O) print(*O, Depth);
+ }
+
+ void dump() const {
+ print(cerr);
+ }
+
+private:
+ friend class LoopInfoBase<BlockT>;
+ explicit LoopBase(BlockT *BB) : ParentLoop(0) {
+ Blocks.push_back(BB);
+ }
+};
+
+
+//===----------------------------------------------------------------------===//
+/// LoopInfo - This class builds and contains all of the top level loop
+/// structures in the specified function.
+///
+
+template<class BlockT>
+class LoopInfoBase {
+ // BBMap - Mapping of basic blocks to the inner most loop they occur in
+ std::map<BlockT*, LoopBase<BlockT>*> BBMap;
+ std::vector<LoopBase<BlockT>*> TopLevelLoops;
+ friend class LoopBase<BlockT>;
+
+public:
+ LoopInfoBase() { }
+ ~LoopInfoBase() { releaseMemory(); }
+
+ void releaseMemory() {
+ for (typename std::vector<LoopBase<BlockT>* >::iterator I =
+ TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
+ delete *I; // Delete all of the loops...
+
+ BBMap.clear(); // Reset internal state of analysis
+ TopLevelLoops.clear();
+ }
+
+ /// iterator/begin/end - The interface to the top-level loops in the current
+ /// function.
+ ///
+ typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
+ iterator begin() const { return TopLevelLoops.begin(); }
+ iterator end() const { return TopLevelLoops.end(); }
+ bool empty() const { return TopLevelLoops.empty(); }
+
+ /// getLoopFor - Return the inner most loop that BB lives in. If a basic
+ /// block is in no loop (for example the entry node), null is returned.
+ ///
+ LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
+ typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
+ BBMap.find(const_cast<BlockT*>(BB));
+ return I != BBMap.end() ? I->second : 0;
+ }
+
+ /// operator[] - same as getLoopFor...
+ ///
+ const LoopBase<BlockT> *operator[](const BlockT *BB) const {
+ return getLoopFor(BB);
+ }
+
+ /// getLoopDepth - Return the loop nesting level of the specified block. A
+ /// depth of 0 means the block is not inside any loop.
+ ///
+ unsigned getLoopDepth(const BlockT *BB) const {
+ const LoopBase<BlockT> *L = getLoopFor(BB);
+ return L ? L->getLoopDepth() : 0;
+ }
+
+ // isLoopHeader - True if the block is a loop header node
+ bool isLoopHeader(BlockT *BB) const {
+ const LoopBase<BlockT> *L = getLoopFor(BB);
+ return L && L->getHeader() == BB;
+ }
+
+ /// removeLoop - This removes the specified top-level loop from this loop info
+ /// object. The loop is not deleted, as it will presumably be inserted into
+ /// another loop.
+ LoopBase<BlockT> *removeLoop(iterator I) {
+ assert(I != end() && "Cannot remove end iterator!");
+ LoopBase<BlockT> *L = *I;
+ assert(L->getParentLoop() == 0 && "Not a top-level loop!");
+ TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
+ return L;
+ }
+
+ /// changeLoopFor - Change the top-level loop that contains BB to the
+ /// specified loop. This should be used by transformations that restructure
+ /// the loop hierarchy tree.
+ void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
+ LoopBase<BlockT> *&OldLoop = BBMap[BB];
+ assert(OldLoop && "Block not in a loop yet!");
+ OldLoop = L;
+ }
+
+ /// changeTopLevelLoop - Replace the specified loop in the top-level loops
+ /// list with the indicated loop.
+ void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
+ LoopBase<BlockT> *NewLoop) {
+ typename std::vector<LoopBase<BlockT>*>::iterator I =
+ std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
+ assert(I != TopLevelLoops.end() && "Old loop not at top level!");
+ *I = NewLoop;
+ assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
+ "Loops already embedded into a subloop!");
+ }
+
+ /// addTopLevelLoop - This adds the specified loop to the collection of
+ /// top-level loops.
+ void addTopLevelLoop(LoopBase<BlockT> *New) {
+ assert(New->getParentLoop() == 0 && "Loop already in subloop!");
+ TopLevelLoops.push_back(New);
+ }
+
+ /// removeBlock - This method completely removes BB from all data structures,
+ /// including all of the Loop objects it is nested in and our mapping from
+ /// BasicBlocks to loops.
+ void removeBlock(BlockT *BB) {
+ typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
+ if (I != BBMap.end()) {
+ for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
+ L->removeBlockFromLoop(BB);
+
+ BBMap.erase(I);
+ }
+ }
+
+ // Internals
+
+ static bool isNotAlreadyContainedIn(const LoopBase<BlockT> *SubLoop,
+ const LoopBase<BlockT> *ParentLoop) {
+ if (SubLoop == 0) return true;
+ if (SubLoop == ParentLoop) return false;
+ return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
+ }
+
+ void Calculate(DominatorTreeBase<BlockT> &DT) {
+ BlockT *RootNode = DT.getRootNode()->getBlock();
+
+ for (df_iterator<BlockT*> NI = df_begin(RootNode),
+ NE = df_end(RootNode); NI != NE; ++NI)
+ if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
+ TopLevelLoops.push_back(L);
+ }
+
+ LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
+ if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
+
+ std::vector<BlockT *> TodoStack;
+
+ // Scan the predecessors of BB, checking to see if BB dominates any of
+ // them. This identifies backedges which target this node...
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType I =
+ InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
+ I != E; ++I)
+ if (DT.dominates(BB, *I)) // If BB dominates it's predecessor...
+ TodoStack.push_back(*I);
+
+ if (TodoStack.empty()) return 0; // No backedges to this block...
+
+ // Create a new loop to represent this basic block...
+ LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
+ BBMap[BB] = L;
+
+ BlockT *EntryBlock = BB->getParent()->begin();
+
+ while (!TodoStack.empty()) { // Process all the nodes in the loop
+ BlockT *X = TodoStack.back();
+ TodoStack.pop_back();
+
+ if (!L->contains(X) && // As of yet unprocessed??
+ DT.dominates(EntryBlock, X)) { // X is reachable from entry block?
+ // Check to see if this block already belongs to a loop. If this occurs
+ // then we have a case where a loop that is supposed to be a child of
+ // the current loop was processed before the current loop. When this
+ // occurs, this child loop gets added to a part of the current loop,
+ // making it a sibling to the current loop. We have to reparent this
+ // loop.
+ if (LoopBase<BlockT> *SubLoop =
+ const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
+ if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
+ // Remove the subloop from it's current parent...
+ assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
+ LoopBase<BlockT> *SLP = SubLoop->ParentLoop; // SubLoopParent
+ typename std::vector<LoopBase<BlockT>*>::iterator I =
+ std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
+ assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
+ SLP->SubLoops.erase(I); // Remove from parent...
+
+ // Add the subloop to THIS loop...
+ SubLoop->ParentLoop = L;
+ L->SubLoops.push_back(SubLoop);
+ }
+
+ // Normal case, add the block to our loop...
+ L->Blocks.push_back(X);
+
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+
+ // Add all of the predecessors of X to the end of the work stack...
+ TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
+ InvBlockTraits::child_end(X));
+ }
+ }
+
+ // If there are any loops nested within this loop, create them now!
+ for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
+ E = L->Blocks.end(); I != E; ++I)
+ if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
+ L->SubLoops.push_back(NewLoop);
+ NewLoop->ParentLoop = L;
+ }
+
+ // Add the basic blocks that comprise this loop to the BBMap so that this
+ // loop can be found for them.
+ //
+ for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
+ E = L->Blocks.end(); I != E; ++I) {
+ typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
+ BBMap.find(*I);
+ if (BBMI == BBMap.end()) // Not in map yet...
+ BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
+ }
+
+ // Now that we have a list of all of the child loops of this loop, check to
+ // see if any of them should actually be nested inside of each other. We
+ // can accidentally pull loops our of their parents, so we must make sure to
+ // organize the loop nests correctly now.
+ {
+ std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
+ for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
+ LoopBase<BlockT> *Child = L->SubLoops[i];
+ assert(Child->getParentLoop() == L && "Not proper child loop?");
+
+ if (LoopBase<BlockT> *ContainingLoop =
+ ContainingLoops[Child->getHeader()]) {
+ // If there is already a loop which contains this loop, move this loop
+ // into the containing loop.
+ MoveSiblingLoopInto(Child, ContainingLoop);
+ --i; // The loop got removed from the SubLoops list.
+ } else {
+ // This is currently considered to be a top-level loop. Check to see
+ // if any of the contained blocks are loop headers for subloops we
+ // have already processed.
+ for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
+ LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
+ if (BlockLoop == 0) { // Child block not processed yet...
+ BlockLoop = Child;
+ } else if (BlockLoop != Child) {
+ LoopBase<BlockT> *SubLoop = BlockLoop;
+ // Reparent all of the blocks which used to belong to BlockLoops
+ for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
+ ContainingLoops[SubLoop->Blocks[j]] = Child;
+
+ // There is already a loop which contains this block, that means
+ // that we should reparent the loop which the block is currently
+ // considered to belong to to be a child of this loop.
+ MoveSiblingLoopInto(SubLoop, Child);
+ --i; // We just shrunk the SubLoops list.
+ }
+ }
+ }
+ }
+ }
+
+ return L;
+ }
+
+ /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
+ /// of the NewParent Loop, instead of being a sibling of it.
+ void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
+ LoopBase<BlockT> *NewParent) {
+ LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
+ assert(OldParent && OldParent == NewParent->getParentLoop() &&
+ NewChild != NewParent && "Not sibling loops!");
+
+ // Remove NewChild from being a child of OldParent
+ typename std::vector<LoopBase<BlockT>*>::iterator I =
+ std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
+ NewChild);
+ assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
+ OldParent->SubLoops.erase(I); // Remove from parent's subloops list
+ NewChild->ParentLoop = 0;
+
+ InsertLoopInto(NewChild, NewParent);
+ }
+
+ /// InsertLoopInto - This inserts loop L into the specified parent loop. If
+ /// the parent loop contains a loop which should contain L, the loop gets
+ /// inserted into L instead.
+ void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
+ BlockT *LHeader = L->getHeader();
+ assert(Parent->contains(LHeader) &&
+ "This loop should not be inserted here!");
+
+ // Check to see if it belongs in a child loop...
+ for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
+ i != e; ++i)
+ if (Parent->SubLoops[i]->contains(LHeader)) {
+ InsertLoopInto(L, Parent->SubLoops[i]);
+ return;
+ }
+
+ // If not, insert it here!
+ Parent->SubLoops.push_back(L);
+ L->ParentLoop = Parent;
+ }
+
+ // Debugging
+
+ void print(std::ostream &OS, const Module* ) const {
+ for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
+ TopLevelLoops[i]->print(OS);
+ #if 0
+ for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
+ E = BBMap.end(); I != E; ++I)
+ OS << "BB '" << I->first->getName() << "' level = "
+ << I->second->getLoopDepth() << "\n";
+ #endif
+ }
+};
+
+class LoopInfo : public FunctionPass {
+ LoopInfoBase<BasicBlock>* LI;
+ friend class LoopBase<BasicBlock>;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ LoopInfo() : FunctionPass(&ID) {
+ LI = new LoopInfoBase<BasicBlock>();
+ }
+
+ ~LoopInfo() { delete LI; }
+
+ LoopInfoBase<BasicBlock>& getBase() { return *LI; }
+
+ /// iterator/begin/end - The interface to the top-level loops in the current
+ /// function.
+ ///
+ typedef std::vector<Loop*>::const_iterator iterator;
+ inline iterator begin() const { return LI->begin(); }
+ inline iterator end() const { return LI->end(); }
+ bool empty() const { return LI->empty(); }
+
+ /// getLoopFor - Return the inner most loop that BB lives in. If a basic
+ /// block is in no loop (for example the entry node), null is returned.
+ ///
+ inline Loop *getLoopFor(const BasicBlock *BB) const {
+ return LI->getLoopFor(BB);
+ }
+
+ /// operator[] - same as getLoopFor...
+ ///
+ inline const Loop *operator[](const BasicBlock *BB) const {
+ return LI->getLoopFor(BB);
+ }
+
+ /// getLoopDepth - Return the loop nesting level of the specified block. A
+ /// depth of 0 means the block is not inside any loop.
+ ///
+ inline unsigned getLoopDepth(const BasicBlock *BB) const {
+ return LI->getLoopDepth(BB);
+ }
+
+ // isLoopHeader - True if the block is a loop header node
+ inline bool isLoopHeader(BasicBlock *BB) const {
+ return LI->isLoopHeader(BB);
+ }
+
+ /// runOnFunction - Calculate the natural loop information.
+ ///
+ virtual bool runOnFunction(Function &F);
+
+ virtual void releaseMemory() { LI->releaseMemory(); }
+
+ virtual void print(std::ostream &O, const Module* M = 0) const {
+ if (O) LI->print(O, M);
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ /// removeLoop - This removes the specified top-level loop from this loop info
+ /// object. The loop is not deleted, as it will presumably be inserted into
+ /// another loop.
+ inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
+
+ /// changeLoopFor - Change the top-level loop that contains BB to the
+ /// specified loop. This should be used by transformations that restructure
+ /// the loop hierarchy tree.
+ inline void changeLoopFor(BasicBlock *BB, Loop *L) {
+ LI->changeLoopFor(BB, L);
+ }
+
+ /// changeTopLevelLoop - Replace the specified loop in the top-level loops
+ /// list with the indicated loop.
+ inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
+ LI->changeTopLevelLoop(OldLoop, NewLoop);
+ }
+
+ /// addTopLevelLoop - This adds the specified loop to the collection of
+ /// top-level loops.
+ inline void addTopLevelLoop(Loop *New) {
+ LI->addTopLevelLoop(New);
+ }
+
+ /// removeBlock - This method completely removes BB from all data structures,
+ /// including all of the Loop objects it is nested in and our mapping from
+ /// BasicBlocks to loops.
+ void removeBlock(BasicBlock *BB) {
+ LI->removeBlock(BB);
+ }
+};
+
+
+// Allow clients to walk the list of nested loops...
+template <> struct GraphTraits<const Loop*> {
+ typedef const Loop NodeType;
+ typedef std::vector<Loop*>::const_iterator ChildIteratorType;
+
+ static NodeType *getEntryNode(const Loop *L) { return L; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->end();
+ }
+};
+
+template <> struct GraphTraits<Loop*> {
+ typedef Loop NodeType;
+ typedef std::vector<Loop*>::const_iterator ChildIteratorType;
+
+ static NodeType *getEntryNode(Loop *L) { return L; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->end();
+ }
+};
+
+template<class BlockT>
+void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
+ LoopInfoBase<BlockT> &LIB) {
+ assert((Blocks.empty() || LIB[getHeader()] == this) &&
+ "Incorrect LI specified for this loop!");
+ assert(NewBB && "Cannot add a null basic block to the loop!");
+ assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
+
+ // Add the loop mapping to the LoopInfo object...
+ LIB.BBMap[NewBB] = this;
+
+ // Add the basic block to this loop and all parent loops...
+ LoopBase<BlockT> *L = this;
+ while (L) {
+ L->Blocks.push_back(NewBB);
+ L = L->getParentLoop();
+ }
+}
+
+} // End llvm namespace
+
+#endif