diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2017-12-18 20:10:56 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2017-12-18 20:10:56 +0000 | 
| commit | 044eb2f6afba375a914ac9d8024f8f5142bb912e (patch) | |
| tree | 1475247dc9f9fe5be155ebd4c9069c75aadf8c20 /include/llvm/CodeGen/TargetInstrInfo.h | |
| parent | eb70dddbd77e120e5d490bd8fbe7ff3f8fa81c6b (diff) | |
Notes
Diffstat (limited to 'include/llvm/CodeGen/TargetInstrInfo.h')
| -rw-r--r-- | include/llvm/CodeGen/TargetInstrInfo.h | 1691 | 
1 files changed, 1691 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/TargetInstrInfo.h b/include/llvm/CodeGen/TargetInstrInfo.h new file mode 100644 index 000000000000..38a1b33aecad --- /dev/null +++ b/include/llvm/CodeGen/TargetInstrInfo.h @@ -0,0 +1,1691 @@ +//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the target machine instruction set to the code generator. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_TARGET_TARGETINSTRINFO_H +#define LLVM_TARGET_TARGETINSTRINFO_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/None.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineCombinerPattern.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <utility> +#include <vector> + +namespace llvm { + +class DFAPacketizer; +class InstrItineraryData; +class LiveIntervals; +class LiveVariables; +class MachineMemOperand; +class MachineRegisterInfo; +class MCAsmInfo; +class MCInst; +struct MCSchedModel; +class Module; +class ScheduleDAG; +class ScheduleHazardRecognizer; +class SDNode; +class SelectionDAG; +class RegScavenger; +class TargetRegisterClass; +class TargetRegisterInfo; +class TargetSchedModel; +class TargetSubtargetInfo; + +template <class T> class SmallVectorImpl; + +//--------------------------------------------------------------------------- +/// +/// TargetInstrInfo - Interface to description of machine instruction set +/// +class TargetInstrInfo : public MCInstrInfo { +public: +  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, +                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) +      : CallFrameSetupOpcode(CFSetupOpcode), +        CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), +        ReturnOpcode(ReturnOpcode) {} +  TargetInstrInfo(const TargetInstrInfo &) = delete; +  TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; +  virtual ~TargetInstrInfo(); + +  static bool isGenericOpcode(unsigned Opc) { +    return Opc <= TargetOpcode::GENERIC_OP_END; +  } + +  /// Given a machine instruction descriptor, returns the register +  /// class constraint for OpNum, or NULL. +  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum, +                                         const TargetRegisterInfo *TRI, +                                         const MachineFunction &MF) const; + +  /// Return true if the instruction is trivially rematerializable, meaning it +  /// has no side effects and requires no operands that aren't always available. +  /// This means the only allowed uses are constants and unallocatable physical +  /// registers so that the instructions result is independent of the place +  /// in the function. +  bool isTriviallyReMaterializable(const MachineInstr &MI, +                                   AliasAnalysis *AA = nullptr) const { +    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || +           (MI.getDesc().isRematerializable() && +            (isReallyTriviallyReMaterializable(MI, AA) || +             isReallyTriviallyReMaterializableGeneric(MI, AA))); +  } + +protected: +  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is +  /// set, this hook lets the target specify whether the instruction is actually +  /// trivially rematerializable, taking into consideration its operands. This +  /// predicate must return false if the instruction has any side effects other +  /// than producing a value, or if it requres any address registers that are +  /// not always available. +  /// Requirements must be check as stated in isTriviallyReMaterializable() . +  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, +                                                 AliasAnalysis *AA) const { +    return false; +  } + +  /// This method commutes the operands of the given machine instruction MI. +  /// The operands to be commuted are specified by their indices OpIdx1 and +  /// OpIdx2. +  /// +  /// If a target has any instructions that are commutable but require +  /// converting to different instructions or making non-trivial changes +  /// to commute them, this method can be overloaded to do that. +  /// The default implementation simply swaps the commutable operands. +  /// +  /// If NewMI is false, MI is modified in place and returned; otherwise, a +  /// new machine instruction is created and returned. +  /// +  /// Do not call this method for a non-commutable instruction. +  /// Even though the instruction is commutable, the method may still +  /// fail to commute the operands, null pointer is returned in such cases. +  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, +                                               unsigned OpIdx1, +                                               unsigned OpIdx2) const; + +  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable +  /// operand indices to (ResultIdx1, ResultIdx2). +  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be +  /// predefined to some indices or be undefined (designated by the special +  /// value 'CommuteAnyOperandIndex'). +  /// The predefined result indices cannot be re-defined. +  /// The function returns true iff after the result pair redefinition +  /// the fixed result pair is equal to or equivalent to the source pair of +  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that +  /// the pairs (x,y) and (y,x) are equivalent. +  static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, +                                   unsigned CommutableOpIdx1, +                                   unsigned CommutableOpIdx2); + +private: +  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is +  /// set and the target hook isReallyTriviallyReMaterializable returns false, +  /// this function does target-independent tests to determine if the +  /// instruction is really trivially rematerializable. +  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, +                                                AliasAnalysis *AA) const; + +public: +  /// These methods return the opcode of the frame setup/destroy instructions +  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in +  /// order to abstract away the difference between operating with a frame +  /// pointer and operating without, through the use of these two instructions. +  /// +  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } +  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } + +  /// Returns true if the argument is a frame pseudo instruction. +  bool isFrameInstr(const MachineInstr &I) const { +    return I.getOpcode() == getCallFrameSetupOpcode() || +           I.getOpcode() == getCallFrameDestroyOpcode(); +  } + +  /// Returns true if the argument is a frame setup pseudo instruction. +  bool isFrameSetup(const MachineInstr &I) const { +    return I.getOpcode() == getCallFrameSetupOpcode(); +  } + +  /// Returns size of the frame associated with the given frame instruction. +  /// For frame setup instruction this is frame that is set up space set up +  /// after the instruction. For frame destroy instruction this is the frame +  /// freed by the caller. +  /// Note, in some cases a call frame (or a part of it) may be prepared prior +  /// to the frame setup instruction. It occurs in the calls that involve +  /// inalloca arguments. This function reports only the size of the frame part +  /// that is set up between the frame setup and destroy pseudo instructions. +  int64_t getFrameSize(const MachineInstr &I) const { +    assert(isFrameInstr(I) && "Not a frame instruction"); +    assert(I.getOperand(0).getImm() >= 0); +    return I.getOperand(0).getImm(); +  } + +  /// Returns the total frame size, which is made up of the space set up inside +  /// the pair of frame start-stop instructions and the space that is set up +  /// prior to the pair. +  int64_t getFrameTotalSize(const MachineInstr &I) const { +    if (isFrameSetup(I)) { +      assert(I.getOperand(1).getImm() >= 0 && +             "Frame size must not be negative"); +      return getFrameSize(I) + I.getOperand(1).getImm(); +    } +    return getFrameSize(I); +  } + +  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } +  unsigned getReturnOpcode() const { return ReturnOpcode; } + +  /// Returns the actual stack pointer adjustment made by an instruction +  /// as part of a call sequence. By default, only call frame setup/destroy +  /// instructions adjust the stack, but targets may want to override this +  /// to enable more fine-grained adjustment, or adjust by a different value. +  virtual int getSPAdjust(const MachineInstr &MI) const; + +  /// Return true if the instruction is a "coalescable" extension instruction. +  /// That is, it's like a copy where it's legal for the source to overlap the +  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's +  /// expected the pre-extension value is available as a subreg of the result +  /// register. This also returns the sub-register index in SubIdx. +  virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, +                                     unsigned &DstReg, unsigned &SubIdx) const { +    return false; +  } + +  /// If the specified machine instruction is a direct +  /// load from a stack slot, return the virtual or physical register number of +  /// the destination along with the FrameIndex of the loaded stack slot.  If +  /// not, return 0.  This predicate must return 0 if the instruction has +  /// any side effects other than loading from the stack slot. +  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, +                                       int &FrameIndex) const { +    return 0; +  } + +  /// Check for post-frame ptr elimination stack locations as well. +  /// This uses a heuristic so it isn't reliable for correctness. +  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, +                                             int &FrameIndex) const { +    return 0; +  } + +  /// If the specified machine instruction has a load from a stack slot, +  /// return true along with the FrameIndex of the loaded stack slot and the +  /// machine mem operand containing the reference. +  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for +  /// any instructions that loads from the stack.  This is just a hint, as some +  /// cases may be missed. +  virtual bool hasLoadFromStackSlot(const MachineInstr &MI, +                                    const MachineMemOperand *&MMO, +                                    int &FrameIndex) const; + +  /// If the specified machine instruction is a direct +  /// store to a stack slot, return the virtual or physical register number of +  /// the source reg along with the FrameIndex of the loaded stack slot.  If +  /// not, return 0.  This predicate must return 0 if the instruction has +  /// any side effects other than storing to the stack slot. +  virtual unsigned isStoreToStackSlot(const MachineInstr &MI, +                                      int &FrameIndex) const { +    return 0; +  } + +  /// Check for post-frame ptr elimination stack locations as well. +  /// This uses a heuristic, so it isn't reliable for correctness. +  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, +                                            int &FrameIndex) const { +    return 0; +  } + +  /// If the specified machine instruction has a store to a stack slot, +  /// return true along with the FrameIndex of the loaded stack slot and the +  /// machine mem operand containing the reference. +  /// If not, return false.  Unlike isStoreToStackSlot, +  /// this returns true for any instructions that stores to the +  /// stack.  This is just a hint, as some cases may be missed. +  virtual bool hasStoreToStackSlot(const MachineInstr &MI, +                                   const MachineMemOperand *&MMO, +                                   int &FrameIndex) const; + +  /// Return true if the specified machine instruction +  /// is a copy of one stack slot to another and has no other effect. +  /// Provide the identity of the two frame indices. +  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, +                               int &SrcFrameIndex) const { +    return false; +  } + +  /// Compute the size in bytes and offset within a stack slot of a spilled +  /// register or subregister. +  /// +  /// \param [out] Size in bytes of the spilled value. +  /// \param [out] Offset in bytes within the stack slot. +  /// \returns true if both Size and Offset are successfully computed. +  /// +  /// Not all subregisters have computable spill slots. For example, +  /// subregisters registers may not be byte-sized, and a pair of discontiguous +  /// subregisters has no single offset. +  /// +  /// Targets with nontrivial bigendian implementations may need to override +  /// this, particularly to support spilled vector registers. +  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, +                                 unsigned &Size, unsigned &Offset, +                                 const MachineFunction &MF) const; + +  /// Returns the size in bytes of the specified MachineInstr, or ~0U +  /// when this function is not implemented by a target. +  virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { +    return ~0U; +  } + +  /// Return true if the instruction is as cheap as a move instruction. +  /// +  /// Targets for different archs need to override this, and different +  /// micro-architectures can also be finely tuned inside. +  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { +    return MI.isAsCheapAsAMove(); +  } + +  /// Return true if the instruction should be sunk by MachineSink. +  /// +  /// MachineSink determines on its own whether the instruction is safe to sink; +  /// this gives the target a hook to override the default behavior with regards +  /// to which instructions should be sunk. +  virtual bool shouldSink(const MachineInstr &MI) const { return true; } + +  /// Re-issue the specified 'original' instruction at the +  /// specific location targeting a new destination register. +  /// The register in Orig->getOperand(0).getReg() will be substituted by +  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with +  /// SubIdx. +  virtual void reMaterialize(MachineBasicBlock &MBB, +                             MachineBasicBlock::iterator MI, unsigned DestReg, +                             unsigned SubIdx, const MachineInstr &Orig, +                             const TargetRegisterInfo &TRI) const; + +  /// \brief Clones instruction or the whole instruction bundle \p Orig and +  /// insert into \p MBB before \p InsertBefore. The target may update operands +  /// that are required to be unique. +  /// +  /// \p Orig must not return true for MachineInstr::isNotDuplicable(). +  virtual MachineInstr &duplicate(MachineBasicBlock &MBB, +                                  MachineBasicBlock::iterator InsertBefore, +                                  const MachineInstr &Orig) const; + +  /// This method must be implemented by targets that +  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target +  /// may be able to convert a two-address instruction into one or more true +  /// three-address instructions on demand.  This allows the X86 target (for +  /// example) to convert ADD and SHL instructions into LEA instructions if they +  /// would require register copies due to two-addressness. +  /// +  /// This method returns a null pointer if the transformation cannot be +  /// performed, otherwise it returns the last new instruction. +  /// +  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, +                                              MachineInstr &MI, +                                              LiveVariables *LV) const { +    return nullptr; +  } + +  // This constant can be used as an input value of operand index passed to +  // the method findCommutedOpIndices() to tell the method that the +  // corresponding operand index is not pre-defined and that the method +  // can pick any commutable operand. +  static const unsigned CommuteAnyOperandIndex = ~0U; + +  /// This method commutes the operands of the given machine instruction MI. +  /// +  /// The operands to be commuted are specified by their indices OpIdx1 and +  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value +  /// 'CommuteAnyOperandIndex', which means that the method is free to choose +  /// any arbitrarily chosen commutable operand. If both arguments are set to +  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable +  /// operands; then commutes them if such operands could be found. +  /// +  /// If NewMI is false, MI is modified in place and returned; otherwise, a +  /// new machine instruction is created and returned. +  /// +  /// Do not call this method for a non-commutable instruction or +  /// for non-commuable operands. +  /// Even though the instruction is commutable, the method may still +  /// fail to commute the operands, null pointer is returned in such cases. +  MachineInstr * +  commuteInstruction(MachineInstr &MI, bool NewMI = false, +                     unsigned OpIdx1 = CommuteAnyOperandIndex, +                     unsigned OpIdx2 = CommuteAnyOperandIndex) const; + +  /// Returns true iff the routine could find two commutable operands in the +  /// given machine instruction. +  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. +  /// If any of the INPUT values is set to the special value +  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable +  /// operand, then returns its index in the corresponding argument. +  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method +  /// looks for 2 commutable operands. +  /// If INPUT values refer to some operands of MI, then the method simply +  /// returns true if the corresponding operands are commutable and returns +  /// false otherwise. +  /// +  /// For example, calling this method this way: +  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; +  ///     findCommutedOpIndices(MI, Op1, Op2); +  /// can be interpreted as a query asking to find an operand that would be +  /// commutable with the operand#1. +  virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, +                                     unsigned &SrcOpIdx2) const; + +  /// A pair composed of a register and a sub-register index. +  /// Used to give some type checking when modeling Reg:SubReg. +  struct RegSubRegPair { +    unsigned Reg; +    unsigned SubReg; + +    RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) +        : Reg(Reg), SubReg(SubReg) {} +  }; + +  /// A pair composed of a pair of a register and a sub-register index, +  /// and another sub-register index. +  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. +  struct RegSubRegPairAndIdx : RegSubRegPair { +    unsigned SubIdx; + +    RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, +                        unsigned SubIdx = 0) +        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} +  }; + +  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI +  /// and \p DefIdx. +  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of +  /// the list is modeled as <Reg:SubReg, SubIdx>. +  /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce +  /// two elements: +  /// - %1:sub1, sub0 +  /// - %2<:0>, sub1 +  /// +  /// \returns true if it is possible to build such an input sequence +  /// with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). +  /// +  /// \note The generic implementation does not provide any support for +  /// MI.isRegSequenceLike(). In other words, one has to override +  /// getRegSequenceLikeInputs for target specific instructions. +  bool +  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, +                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; + +  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI +  /// and \p DefIdx. +  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. +  /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: +  /// - %1:sub1, sub0 +  /// +  /// \returns true if it is possible to build such an input sequence +  /// with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). +  /// +  /// \note The generic implementation does not provide any support for +  /// MI.isExtractSubregLike(). In other words, one has to override +  /// getExtractSubregLikeInputs for target specific instructions. +  bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, +                              RegSubRegPairAndIdx &InputReg) const; + +  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI +  /// and \p DefIdx. +  /// \p [out] BaseReg and \p [out] InsertedReg contain +  /// the equivalent inputs of INSERT_SUBREG. +  /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: +  /// - BaseReg: %0:sub0 +  /// - InsertedReg: %1:sub1, sub3 +  /// +  /// \returns true if it is possible to build such an input sequence +  /// with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). +  /// +  /// \note The generic implementation does not provide any support for +  /// MI.isInsertSubregLike(). In other words, one has to override +  /// getInsertSubregLikeInputs for target specific instructions. +  bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, +                             RegSubRegPair &BaseReg, +                             RegSubRegPairAndIdx &InsertedReg) const; + +  /// Return true if two machine instructions would produce identical values. +  /// By default, this is only true when the two instructions +  /// are deemed identical except for defs. If this function is called when the +  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for +  /// aggressive checks. +  virtual bool produceSameValue(const MachineInstr &MI0, +                                const MachineInstr &MI1, +                                const MachineRegisterInfo *MRI = nullptr) const; + +  /// \returns true if a branch from an instruction with opcode \p BranchOpc +  ///  bytes is capable of jumping to a position \p BrOffset bytes away. +  virtual bool isBranchOffsetInRange(unsigned BranchOpc, +                                     int64_t BrOffset) const { +    llvm_unreachable("target did not implement"); +  } + +  /// \returns The block that branch instruction \p MI jumps to. +  virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { +    llvm_unreachable("target did not implement"); +  } + +  /// Insert an unconditional indirect branch at the end of \p MBB to \p +  /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to +  /// the offset of the position to insert the new branch. +  /// +  /// \returns The number of bytes added to the block. +  virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB, +                                        MachineBasicBlock &NewDestBB, +                                        const DebugLoc &DL, +                                        int64_t BrOffset = 0, +                                        RegScavenger *RS = nullptr) const { +    llvm_unreachable("target did not implement"); +  } + +  /// Analyze the branching code at the end of MBB, returning +  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't +  /// implemented for a target).  Upon success, this returns false and returns +  /// with the following information in various cases: +  /// +  /// 1. If this block ends with no branches (it just falls through to its succ) +  ///    just return false, leaving TBB/FBB null. +  /// 2. If this block ends with only an unconditional branch, it sets TBB to be +  ///    the destination block. +  /// 3. If this block ends with a conditional branch and it falls through to a +  ///    successor block, it sets TBB to be the branch destination block and a +  ///    list of operands that evaluate the condition. These operands can be +  ///    passed to other TargetInstrInfo methods to create new branches. +  /// 4. If this block ends with a conditional branch followed by an +  ///    unconditional branch, it returns the 'true' destination in TBB, the +  ///    'false' destination in FBB, and a list of operands that evaluate the +  ///    condition.  These operands can be passed to other TargetInstrInfo +  ///    methods to create new branches. +  /// +  /// Note that removeBranch and insertBranch must be implemented to support +  /// cases where this method returns success. +  /// +  /// If AllowModify is true, then this routine is allowed to modify the basic +  /// block (e.g. delete instructions after the unconditional branch). +  /// +  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid +  /// before calling this function. +  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, +                             MachineBasicBlock *&FBB, +                             SmallVectorImpl<MachineOperand> &Cond, +                             bool AllowModify = false) const { +    return true; +  } + +  /// Represents a predicate at the MachineFunction level.  The control flow a +  /// MachineBranchPredicate represents is: +  /// +  ///  Reg = LHS `Predicate` RHS         == ConditionDef +  ///  if Reg then goto TrueDest else goto FalseDest +  /// +  struct MachineBranchPredicate { +    enum ComparePredicate { +      PRED_EQ,     // True if two values are equal +      PRED_NE,     // True if two values are not equal +      PRED_INVALID // Sentinel value +    }; + +    ComparePredicate Predicate = PRED_INVALID; +    MachineOperand LHS = MachineOperand::CreateImm(0); +    MachineOperand RHS = MachineOperand::CreateImm(0); +    MachineBasicBlock *TrueDest = nullptr; +    MachineBasicBlock *FalseDest = nullptr; +    MachineInstr *ConditionDef = nullptr; + +    /// SingleUseCondition is true if ConditionDef is dead except for the +    /// branch(es) at the end of the basic block. +    /// +    bool SingleUseCondition = false; + +    explicit MachineBranchPredicate() = default; +  }; + +  /// Analyze the branching code at the end of MBB and parse it into the +  /// MachineBranchPredicate structure if possible.  Returns false on success +  /// and true on failure. +  /// +  /// If AllowModify is true, then this routine is allowed to modify the basic +  /// block (e.g. delete instructions after the unconditional branch). +  /// +  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, +                                      MachineBranchPredicate &MBP, +                                      bool AllowModify = false) const { +    return true; +  } + +  /// Remove the branching code at the end of the specific MBB. +  /// This is only invoked in cases where AnalyzeBranch returns success. It +  /// returns the number of instructions that were removed. +  /// If \p BytesRemoved is non-null, report the change in code size from the +  /// removed instructions. +  virtual unsigned removeBranch(MachineBasicBlock &MBB, +                                int *BytesRemoved = nullptr) const { +    llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); +  } + +  /// Insert branch code into the end of the specified MachineBasicBlock. The +  /// operands to this method are the same as those returned by AnalyzeBranch. +  /// This is only invoked in cases where AnalyzeBranch returns success. It +  /// returns the number of instructions inserted. If \p BytesAdded is non-null, +  /// report the change in code size from the added instructions. +  /// +  /// It is also invoked by tail merging to add unconditional branches in +  /// cases where AnalyzeBranch doesn't apply because there was no original +  /// branch to analyze.  At least this much must be implemented, else tail +  /// merging needs to be disabled. +  /// +  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid +  /// before calling this function. +  virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, +                                MachineBasicBlock *FBB, +                                ArrayRef<MachineOperand> Cond, +                                const DebugLoc &DL, +                                int *BytesAdded = nullptr) const { +    llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); +  } + +  unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, +                                     MachineBasicBlock *DestBB, +                                     const DebugLoc &DL, +                                     int *BytesAdded = nullptr) const { +    return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, +                        BytesAdded); +  } + +  /// Analyze the loop code, return true if it cannot be understoo. Upon +  /// success, this function returns false and returns information about the +  /// induction variable and compare instruction used at the end. +  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, +                           MachineInstr *&CmpInst) const { +    return true; +  } + +  /// Generate code to reduce the loop iteration by one and check if the loop is +  /// finished.  Return the value/register of the the new loop count.  We need +  /// this function when peeling off one or more iterations of a loop. This +  /// function assumes the nth iteration is peeled first. +  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, MachineInstr *IndVar, +                                   MachineInstr &Cmp, +                                   SmallVectorImpl<MachineOperand> &Cond, +                                   SmallVectorImpl<MachineInstr *> &PrevInsts, +                                   unsigned Iter, unsigned MaxIter) const { +    llvm_unreachable("Target didn't implement ReduceLoopCount"); +  } + +  /// Delete the instruction OldInst and everything after it, replacing it with +  /// an unconditional branch to NewDest. This is used by the tail merging pass. +  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, +                                       MachineBasicBlock *NewDest) const; + +  /// Return true if it's legal to split the given basic +  /// block at the specified instruction (i.e. instruction would be the start +  /// of a new basic block). +  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, +                                   MachineBasicBlock::iterator MBBI) const { +    return true; +  } + +  /// Return true if it's profitable to predicate +  /// instructions with accumulated instruction latency of "NumCycles" +  /// of the specified basic block, where the probability of the instructions +  /// being executed is given by Probability, and Confidence is a measure +  /// of our confidence that it will be properly predicted. +  virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, +                                   unsigned ExtraPredCycles, +                                   BranchProbability Probability) const { +    return false; +  } + +  /// Second variant of isProfitableToIfCvt. This one +  /// checks for the case where two basic blocks from true and false path +  /// of a if-then-else (diamond) are predicated on mutally exclusive +  /// predicates, where the probability of the true path being taken is given +  /// by Probability, and Confidence is a measure of our confidence that it +  /// will be properly predicted. +  virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, +                                   unsigned ExtraTCycles, +                                   MachineBasicBlock &FMBB, unsigned NumFCycles, +                                   unsigned ExtraFCycles, +                                   BranchProbability Probability) const { +    return false; +  } + +  /// Return true if it's profitable for if-converter to duplicate instructions +  /// of specified accumulated instruction latencies in the specified MBB to +  /// enable if-conversion. +  /// The probability of the instructions being executed is given by +  /// Probability, and Confidence is a measure of our confidence that it +  /// will be properly predicted. +  virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, +                                         unsigned NumCycles, +                                         BranchProbability Probability) const { +    return false; +  } + +  /// Return true if it's profitable to unpredicate +  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually +  /// exclusive predicates. +  /// e.g. +  ///   subeq  r0, r1, #1 +  ///   addne  r0, r1, #1 +  /// => +  ///   sub    r0, r1, #1 +  ///   addne  r0, r1, #1 +  /// +  /// This may be profitable is conditional instructions are always executed. +  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, +                                         MachineBasicBlock &FMBB) const { +    return false; +  } + +  /// Return true if it is possible to insert a select +  /// instruction that chooses between TrueReg and FalseReg based on the +  /// condition code in Cond. +  /// +  /// When successful, also return the latency in cycles from TrueReg, +  /// FalseReg, and Cond to the destination register. In most cases, a select +  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 +  /// +  /// Some x86 implementations have 2-cycle cmov instructions. +  /// +  /// @param MBB         Block where select instruction would be inserted. +  /// @param Cond        Condition returned by AnalyzeBranch. +  /// @param TrueReg     Virtual register to select when Cond is true. +  /// @param FalseReg    Virtual register to select when Cond is false. +  /// @param CondCycles  Latency from Cond+Branch to select output. +  /// @param TrueCycles  Latency from TrueReg to select output. +  /// @param FalseCycles Latency from FalseReg to select output. +  virtual bool canInsertSelect(const MachineBasicBlock &MBB, +                               ArrayRef<MachineOperand> Cond, unsigned TrueReg, +                               unsigned FalseReg, int &CondCycles, +                               int &TrueCycles, int &FalseCycles) const { +    return false; +  } + +  /// Insert a select instruction into MBB before I that will copy TrueReg to +  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. +  /// +  /// This function can only be called after canInsertSelect() returned true. +  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed +  /// that the same flags or registers required by Cond are available at the +  /// insertion point. +  /// +  /// @param MBB      Block where select instruction should be inserted. +  /// @param I        Insertion point. +  /// @param DL       Source location for debugging. +  /// @param DstReg   Virtual register to be defined by select instruction. +  /// @param Cond     Condition as computed by AnalyzeBranch. +  /// @param TrueReg  Virtual register to copy when Cond is true. +  /// @param FalseReg Virtual register to copy when Cons is false. +  virtual void insertSelect(MachineBasicBlock &MBB, +                            MachineBasicBlock::iterator I, const DebugLoc &DL, +                            unsigned DstReg, ArrayRef<MachineOperand> Cond, +                            unsigned TrueReg, unsigned FalseReg) const { +    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); +  } + +  /// Analyze the given select instruction, returning true if +  /// it cannot be understood. It is assumed that MI->isSelect() is true. +  /// +  /// When successful, return the controlling condition and the operands that +  /// determine the true and false result values. +  /// +  ///   Result = SELECT Cond, TrueOp, FalseOp +  /// +  /// Some targets can optimize select instructions, for example by predicating +  /// the instruction defining one of the operands. Such targets should set +  /// Optimizable. +  /// +  /// @param         MI Select instruction to analyze. +  /// @param Cond    Condition controlling the select. +  /// @param TrueOp  Operand number of the value selected when Cond is true. +  /// @param FalseOp Operand number of the value selected when Cond is false. +  /// @param Optimizable Returned as true if MI is optimizable. +  /// @returns False on success. +  virtual bool analyzeSelect(const MachineInstr &MI, +                             SmallVectorImpl<MachineOperand> &Cond, +                             unsigned &TrueOp, unsigned &FalseOp, +                             bool &Optimizable) const { +    assert(MI.getDesc().isSelect() && "MI must be a select instruction"); +    return true; +  } + +  /// Given a select instruction that was understood by +  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by +  /// merging it with one of its operands. Returns NULL on failure. +  /// +  /// When successful, returns the new select instruction. The client is +  /// responsible for deleting MI. +  /// +  /// If both sides of the select can be optimized, PreferFalse is used to pick +  /// a side. +  /// +  /// @param MI          Optimizable select instruction. +  /// @param NewMIs     Set that record all MIs in the basic block up to \p +  /// MI. Has to be updated with any newly created MI or deleted ones. +  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. +  /// @returns Optimized instruction or NULL. +  virtual MachineInstr *optimizeSelect(MachineInstr &MI, +                                       SmallPtrSetImpl<MachineInstr *> &NewMIs, +                                       bool PreferFalse = false) const { +    // This function must be implemented if Optimizable is ever set. +    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); +  } + +  /// Emit instructions to copy a pair of physical registers. +  /// +  /// This function should support copies within any legal register class as +  /// well as any cross-class copies created during instruction selection. +  /// +  /// The source and destination registers may overlap, which may require a +  /// careful implementation when multiple copy instructions are required for +  /// large registers. See for example the ARM target. +  virtual void copyPhysReg(MachineBasicBlock &MBB, +                           MachineBasicBlock::iterator MI, const DebugLoc &DL, +                           unsigned DestReg, unsigned SrcReg, +                           bool KillSrc) const { +    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); +  } + +  /// Store the specified register of the given register class to the specified +  /// stack frame index. The store instruction is to be added to the given +  /// machine basic block before the specified machine instruction. If isKill +  /// is true, the register operand is the last use and must be marked kill. +  virtual void storeRegToStackSlot(MachineBasicBlock &MBB, +                                   MachineBasicBlock::iterator MI, +                                   unsigned SrcReg, bool isKill, int FrameIndex, +                                   const TargetRegisterClass *RC, +                                   const TargetRegisterInfo *TRI) const { +    llvm_unreachable("Target didn't implement " +                     "TargetInstrInfo::storeRegToStackSlot!"); +  } + +  /// Load the specified register of the given register class from the specified +  /// stack frame index. The load instruction is to be added to the given +  /// machine basic block before the specified machine instruction. +  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, +                                    MachineBasicBlock::iterator MI, +                                    unsigned DestReg, int FrameIndex, +                                    const TargetRegisterClass *RC, +                                    const TargetRegisterInfo *TRI) const { +    llvm_unreachable("Target didn't implement " +                     "TargetInstrInfo::loadRegFromStackSlot!"); +  } + +  /// This function is called for all pseudo instructions +  /// that remain after register allocation. Many pseudo instructions are +  /// created to help register allocation. This is the place to convert them +  /// into real instructions. The target can edit MI in place, or it can insert +  /// new instructions and erase MI. The function should return true if +  /// anything was changed. +  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } + +  /// Check whether the target can fold a load that feeds a subreg operand +  /// (or a subreg operand that feeds a store). +  /// For example, X86 may want to return true if it can fold +  /// movl (%esp), %eax +  /// subb, %al, ... +  /// Into: +  /// subb (%esp), ... +  /// +  /// Ideally, we'd like the target implementation of foldMemoryOperand() to +  /// reject subregs - but since this behavior used to be enforced in the +  /// target-independent code, moving this responsibility to the targets +  /// has the potential of causing nasty silent breakage in out-of-tree targets. +  virtual bool isSubregFoldable() const { return false; } + +  /// Attempt to fold a load or store of the specified stack +  /// slot into the specified machine instruction for the specified operand(s). +  /// If this is possible, a new instruction is returned with the specified +  /// operand folded, otherwise NULL is returned. +  /// The new instruction is inserted before MI, and the client is responsible +  /// for removing the old instruction. +  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, +                                  int FrameIndex, +                                  LiveIntervals *LIS = nullptr) const; + +  /// Same as the previous version except it allows folding of any load and +  /// store from / to any address, not just from a specific stack slot. +  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, +                                  MachineInstr &LoadMI, +                                  LiveIntervals *LIS = nullptr) const; + +  /// Return true when there is potentially a faster code sequence +  /// for an instruction chain ending in \p Root. All potential patterns are +  /// returned in the \p Pattern vector. Pattern should be sorted in priority +  /// order since the pattern evaluator stops checking as soon as it finds a +  /// faster sequence. +  /// \param Root - Instruction that could be combined with one of its operands +  /// \param Patterns - Vector of possible combination patterns +  virtual bool getMachineCombinerPatterns( +      MachineInstr &Root, +      SmallVectorImpl<MachineCombinerPattern> &Patterns) const; + +  /// Return true when a code sequence can improve throughput. It +  /// should be called only for instructions in loops. +  /// \param Pattern - combiner pattern +  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; + +  /// Return true if the input \P Inst is part of a chain of dependent ops +  /// that are suitable for reassociation, otherwise return false. +  /// If the instruction's operands must be commuted to have a previous +  /// instruction of the same type define the first source operand, \P Commuted +  /// will be set to true. +  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; + +  /// Return true when \P Inst is both associative and commutative. +  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { +    return false; +  } + +  /// Return true when \P Inst has reassociable operands in the same \P MBB. +  virtual bool hasReassociableOperands(const MachineInstr &Inst, +                                       const MachineBasicBlock *MBB) const; + +  /// Return true when \P Inst has reassociable sibling. +  bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; + +  /// When getMachineCombinerPatterns() finds patterns, this function generates +  /// the instructions that could replace the original code sequence. The client +  /// has to decide whether the actual replacement is beneficial or not. +  /// \param Root - Instruction that could be combined with one of its operands +  /// \param Pattern - Combination pattern for Root +  /// \param InsInstrs - Vector of new instructions that implement P +  /// \param DelInstrs - Old instructions, including Root, that could be +  /// replaced by InsInstr +  /// \param InstrIdxForVirtReg - map of virtual register to instruction in +  /// InsInstr that defines it +  virtual void genAlternativeCodeSequence( +      MachineInstr &Root, MachineCombinerPattern Pattern, +      SmallVectorImpl<MachineInstr *> &InsInstrs, +      SmallVectorImpl<MachineInstr *> &DelInstrs, +      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; + +  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to +  /// reduce critical path length. +  void reassociateOps(MachineInstr &Root, MachineInstr &Prev, +                      MachineCombinerPattern Pattern, +                      SmallVectorImpl<MachineInstr *> &InsInstrs, +                      SmallVectorImpl<MachineInstr *> &DelInstrs, +                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; + +  /// This is an architecture-specific helper function of reassociateOps. +  /// Set special operand attributes for new instructions after reassociation. +  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, +                                     MachineInstr &NewMI1, +                                     MachineInstr &NewMI2) const {} + +  /// Return true when a target supports MachineCombiner. +  virtual bool useMachineCombiner() const { return false; } + +protected: +  /// Target-dependent implementation for foldMemoryOperand. +  /// Target-independent code in foldMemoryOperand will +  /// take care of adding a MachineMemOperand to the newly created instruction. +  /// The instruction and any auxiliary instructions necessary will be inserted +  /// at InsertPt. +  virtual MachineInstr * +  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, +                        ArrayRef<unsigned> Ops, +                        MachineBasicBlock::iterator InsertPt, int FrameIndex, +                        LiveIntervals *LIS = nullptr) const { +    return nullptr; +  } + +  /// Target-dependent implementation for foldMemoryOperand. +  /// Target-independent code in foldMemoryOperand will +  /// take care of adding a MachineMemOperand to the newly created instruction. +  /// The instruction and any auxiliary instructions necessary will be inserted +  /// at InsertPt. +  virtual MachineInstr *foldMemoryOperandImpl( +      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, +      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, +      LiveIntervals *LIS = nullptr) const { +    return nullptr; +  } + +  /// \brief Target-dependent implementation of getRegSequenceInputs. +  /// +  /// \returns true if it is possible to build the equivalent +  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isRegSequenceLike(). +  /// +  /// \see TargetInstrInfo::getRegSequenceInputs. +  virtual bool getRegSequenceLikeInputs( +      const MachineInstr &MI, unsigned DefIdx, +      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { +    return false; +  } + +  /// \brief Target-dependent implementation of getExtractSubregInputs. +  /// +  /// \returns true if it is possible to build the equivalent +  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isExtractSubregLike(). +  /// +  /// \see TargetInstrInfo::getExtractSubregInputs. +  virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, +                                          unsigned DefIdx, +                                          RegSubRegPairAndIdx &InputReg) const { +    return false; +  } + +  /// \brief Target-dependent implementation of getInsertSubregInputs. +  /// +  /// \returns true if it is possible to build the equivalent +  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. +  /// +  /// \pre MI.isInsertSubregLike(). +  /// +  /// \see TargetInstrInfo::getInsertSubregInputs. +  virtual bool +  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, +                            RegSubRegPair &BaseReg, +                            RegSubRegPairAndIdx &InsertedReg) const { +    return false; +  } + +public: +  /// getAddressSpaceForPseudoSourceKind - Given the kind of memory +  /// (e.g. stack) the target returns the corresponding address space. +  virtual unsigned +  getAddressSpaceForPseudoSourceKind(PseudoSourceValue::PSVKind Kind) const { +    return 0; +  } + +  /// unfoldMemoryOperand - Separate a single instruction which folded a load or +  /// a store or a load and a store into two or more instruction. If this is +  /// possible, returns true as well as the new instructions by reference. +  virtual bool +  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, +                      bool UnfoldLoad, bool UnfoldStore, +                      SmallVectorImpl<MachineInstr *> &NewMIs) const { +    return false; +  } + +  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, +                                   SmallVectorImpl<SDNode *> &NewNodes) const { +    return false; +  } + +  /// Returns the opcode of the would be new +  /// instruction after load / store are unfolded from an instruction of the +  /// specified opcode. It returns zero if the specified unfolding is not +  /// possible. If LoadRegIndex is non-null, it is filled in with the operand +  /// index of the operand which will hold the register holding the loaded +  /// value. +  virtual unsigned +  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, +                             unsigned *LoadRegIndex = nullptr) const { +    return 0; +  } + +  /// This is used by the pre-regalloc scheduler to determine if two loads are +  /// loading from the same base address. It should only return true if the base +  /// pointers are the same and the only differences between the two addresses +  /// are the offset. It also returns the offsets by reference. +  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, +                                       int64_t &Offset1, +                                       int64_t &Offset2) const { +    return false; +  } + +  /// This is a used by the pre-regalloc scheduler to determine (in conjunction +  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. +  /// On some targets if two loads are loading from +  /// addresses in the same cache line, it's better if they are scheduled +  /// together. This function takes two integers that represent the load offsets +  /// from the common base address. It returns true if it decides it's desirable +  /// to schedule the two loads together. "NumLoads" is the number of loads that +  /// have already been scheduled after Load1. +  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, +                                       int64_t Offset1, int64_t Offset2, +                                       unsigned NumLoads) const { +    return false; +  } + +  /// Get the base register and byte offset of an instruction that reads/writes +  /// memory. +  virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, +                                     int64_t &Offset, +                                     const TargetRegisterInfo *TRI) const { +    return false; +  } + +  /// Return true if the instruction contains a base register and offset. If +  /// true, the function also sets the operand position in the instruction +  /// for the base register and offset. +  virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, +                                        unsigned &BasePos, +                                        unsigned &OffsetPos) const { +    return false; +  } + +  /// If the instruction is an increment of a constant value, return the amount. +  virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { +    return false; +  } + +  /// Returns true if the two given memory operations should be scheduled +  /// adjacent. Note that you have to add: +  ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); +  /// or +  ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); +  /// to TargetPassConfig::createMachineScheduler() to have an effect. +  virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, unsigned BaseReg1, +                                   MachineInstr &SecondLdSt, unsigned BaseReg2, +                                   unsigned NumLoads) const { +    llvm_unreachable("target did not implement shouldClusterMemOps()"); +  } + +  /// Reverses the branch condition of the specified condition list, +  /// returning false on success and true if it cannot be reversed. +  virtual bool +  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { +    return true; +  } + +  /// Insert a noop into the instruction stream at the specified point. +  virtual void insertNoop(MachineBasicBlock &MBB, +                          MachineBasicBlock::iterator MI) const; + +  /// Return the noop instruction to use for a noop. +  virtual void getNoop(MCInst &NopInst) const; + +  /// Return true for post-incremented instructions. +  virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } + +  /// Returns true if the instruction is already predicated. +  virtual bool isPredicated(const MachineInstr &MI) const { return false; } + +  /// Returns true if the instruction is a +  /// terminator instruction that has not been predicated. +  virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; + +  /// Returns true if MI is an unconditional tail call. +  virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { +    return false; +  } + +  /// Returns true if the tail call can be made conditional on BranchCond. +  virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, +                                          const MachineInstr &TailCall) const { +    return false; +  } + +  /// Replace the conditional branch in MBB with a conditional tail call. +  virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, +                                         SmallVectorImpl<MachineOperand> &Cond, +                                         const MachineInstr &TailCall) const { +    llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); +  } + +  /// Convert the instruction into a predicated instruction. +  /// It returns true if the operation was successful. +  virtual bool PredicateInstruction(MachineInstr &MI, +                                    ArrayRef<MachineOperand> Pred) const; + +  /// Returns true if the first specified predicate +  /// subsumes the second, e.g. GE subsumes GT. +  virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, +                                 ArrayRef<MachineOperand> Pred2) const { +    return false; +  } + +  /// If the specified instruction defines any predicate +  /// or condition code register(s) used for predication, returns true as well +  /// as the definition predicate(s) by reference. +  virtual bool DefinesPredicate(MachineInstr &MI, +                                std::vector<MachineOperand> &Pred) const { +    return false; +  } + +  /// Return true if the specified instruction can be predicated. +  /// By default, this returns true for every instruction with a +  /// PredicateOperand. +  virtual bool isPredicable(const MachineInstr &MI) const { +    return MI.getDesc().isPredicable(); +  } + +  /// Return true if it's safe to move a machine +  /// instruction that defines the specified register class. +  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { +    return true; +  } + +  /// Test if the given instruction should be considered a scheduling boundary. +  /// This primarily includes labels and terminators. +  virtual bool isSchedulingBoundary(const MachineInstr &MI, +                                    const MachineBasicBlock *MBB, +                                    const MachineFunction &MF) const; + +  /// Measure the specified inline asm to determine an approximation of its +  /// length. +  virtual unsigned getInlineAsmLength(const char *Str, +                                      const MCAsmInfo &MAI) const; + +  /// Allocate and return a hazard recognizer to use for this target when +  /// scheduling the machine instructions before register allocation. +  virtual ScheduleHazardRecognizer * +  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, +                               const ScheduleDAG *DAG) const; + +  /// Allocate and return a hazard recognizer to use for this target when +  /// scheduling the machine instructions before register allocation. +  virtual ScheduleHazardRecognizer * +  CreateTargetMIHazardRecognizer(const InstrItineraryData *, +                                 const ScheduleDAG *DAG) const; + +  /// Allocate and return a hazard recognizer to use for this target when +  /// scheduling the machine instructions after register allocation. +  virtual ScheduleHazardRecognizer * +  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, +                                     const ScheduleDAG *DAG) const; + +  /// Allocate and return a hazard recognizer to use for by non-scheduling +  /// passes. +  virtual ScheduleHazardRecognizer * +  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { +    return nullptr; +  } + +  /// Provide a global flag for disabling the PreRA hazard recognizer that +  /// targets may choose to honor. +  bool usePreRAHazardRecognizer() const; + +  /// For a comparison instruction, return the source registers +  /// in SrcReg and SrcReg2 if having two register operands, and the value it +  /// compares against in CmpValue. Return true if the comparison instruction +  /// can be analyzed. +  virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, +                              unsigned &SrcReg2, int &Mask, int &Value) const { +    return false; +  } + +  /// See if the comparison instruction can be converted +  /// into something more efficient. E.g., on ARM most instructions can set the +  /// flags register, obviating the need for a separate CMP. +  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, +                                    unsigned SrcReg2, int Mask, int Value, +                                    const MachineRegisterInfo *MRI) const { +    return false; +  } +  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } + +  /// Try to remove the load by folding it to a register operand at the use. +  /// We fold the load instructions if and only if the +  /// def and use are in the same BB. We only look at one load and see +  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register +  /// defined by the load we are trying to fold. DefMI returns the machine +  /// instruction that defines FoldAsLoadDefReg, and the function returns +  /// the machine instruction generated due to folding. +  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, +                                          const MachineRegisterInfo *MRI, +                                          unsigned &FoldAsLoadDefReg, +                                          MachineInstr *&DefMI) const { +    return nullptr; +  } + +  /// 'Reg' is known to be defined by a move immediate instruction, +  /// try to fold the immediate into the use instruction. +  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, +  /// then the caller may assume that DefMI has been erased from its parent +  /// block. The caller may assume that it will not be erased by this +  /// function otherwise. +  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, +                             unsigned Reg, MachineRegisterInfo *MRI) const { +    return false; +  } + +  /// Return the number of u-operations the given machine +  /// instruction will be decoded to on the target cpu. The itinerary's +  /// IssueWidth is the number of microops that can be dispatched each +  /// cycle. An instruction with zero microops takes no dispatch resources. +  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, +                                  const MachineInstr &MI) const; + +  /// Return true for pseudo instructions that don't consume any +  /// machine resources in their current form. These are common cases that the +  /// scheduler should consider free, rather than conservatively handling them +  /// as instructions with no itinerary. +  bool isZeroCost(unsigned Opcode) const { +    return Opcode <= TargetOpcode::COPY; +  } + +  virtual int getOperandLatency(const InstrItineraryData *ItinData, +                                SDNode *DefNode, unsigned DefIdx, +                                SDNode *UseNode, unsigned UseIdx) const; + +  /// Compute and return the use operand latency of a given pair of def and use. +  /// In most cases, the static scheduling itinerary was enough to determine the +  /// operand latency. But it may not be possible for instructions with variable +  /// number of defs / uses. +  /// +  /// This is a raw interface to the itinerary that may be directly overridden +  /// by a target. Use computeOperandLatency to get the best estimate of +  /// latency. +  virtual int getOperandLatency(const InstrItineraryData *ItinData, +                                const MachineInstr &DefMI, unsigned DefIdx, +                                const MachineInstr &UseMI, +                                unsigned UseIdx) const; + +  /// Compute the instruction latency of a given instruction. +  /// If the instruction has higher cost when predicated, it's returned via +  /// PredCost. +  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, +                                   const MachineInstr &MI, +                                   unsigned *PredCost = nullptr) const; + +  virtual unsigned getPredicationCost(const MachineInstr &MI) const; + +  virtual int getInstrLatency(const InstrItineraryData *ItinData, +                              SDNode *Node) const; + +  /// Return the default expected latency for a def based on its opcode. +  unsigned defaultDefLatency(const MCSchedModel &SchedModel, +                             const MachineInstr &DefMI) const; + +  int computeDefOperandLatency(const InstrItineraryData *ItinData, +                               const MachineInstr &DefMI) const; + +  /// Return true if this opcode has high latency to its result. +  virtual bool isHighLatencyDef(int opc) const { return false; } + +  /// Compute operand latency between a def of 'Reg' +  /// and a use in the current loop. Return true if the target considered +  /// it 'high'. This is used by optimization passes such as machine LICM to +  /// determine whether it makes sense to hoist an instruction out even in a +  /// high register pressure situation. +  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, +                                     const MachineRegisterInfo *MRI, +                                     const MachineInstr &DefMI, unsigned DefIdx, +                                     const MachineInstr &UseMI, +                                     unsigned UseIdx) const { +    return false; +  } + +  /// Compute operand latency of a def of 'Reg'. Return true +  /// if the target considered it 'low'. +  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, +                                const MachineInstr &DefMI, +                                unsigned DefIdx) const; + +  /// Perform target-specific instruction verification. +  virtual bool verifyInstruction(const MachineInstr &MI, +                                 StringRef &ErrInfo) const { +    return true; +  } + +  /// Return the current execution domain and bit mask of +  /// possible domains for instruction. +  /// +  /// Some micro-architectures have multiple execution domains, and multiple +  /// opcodes that perform the same operation in different domains.  For +  /// example, the x86 architecture provides the por, orps, and orpd +  /// instructions that all do the same thing.  There is a latency penalty if a +  /// register is written in one domain and read in another. +  /// +  /// This function returns a pair (domain, mask) containing the execution +  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain +  /// function can be used to change the opcode to one of the domains in the +  /// bit mask.  Instructions whose execution domain can't be changed should +  /// return a 0 mask. +  /// +  /// The execution domain numbers don't have any special meaning except domain +  /// 0 is used for instructions that are not associated with any interesting +  /// execution domain. +  /// +  virtual std::pair<uint16_t, uint16_t> +  getExecutionDomain(const MachineInstr &MI) const { +    return std::make_pair(0, 0); +  } + +  /// Change the opcode of MI to execute in Domain. +  /// +  /// The bit (1 << Domain) must be set in the mask returned from +  /// getExecutionDomain(MI). +  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} + +  /// Returns the preferred minimum clearance +  /// before an instruction with an unwanted partial register update. +  /// +  /// Some instructions only write part of a register, and implicitly need to +  /// read the other parts of the register.  This may cause unwanted stalls +  /// preventing otherwise unrelated instructions from executing in parallel in +  /// an out-of-order CPU. +  /// +  /// For example, the x86 instruction cvtsi2ss writes its result to bits +  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so +  /// the instruction needs to wait for the old value of the register to become +  /// available: +  /// +  ///   addps %xmm1, %xmm0 +  ///   movaps %xmm0, (%rax) +  ///   cvtsi2ss %rbx, %xmm0 +  /// +  /// In the code above, the cvtsi2ss instruction needs to wait for the addps +  /// instruction before it can issue, even though the high bits of %xmm0 +  /// probably aren't needed. +  /// +  /// This hook returns the preferred clearance before MI, measured in +  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N +  /// instructions before MI.  It should only return a positive value for +  /// unwanted dependencies.  If the old bits of the defined register have +  /// useful values, or if MI is determined to otherwise read the dependency, +  /// the hook should return 0. +  /// +  /// The unwanted dependency may be handled by: +  /// +  /// 1. Allocating the same register for an MI def and use.  That makes the +  ///    unwanted dependency identical to a required dependency. +  /// +  /// 2. Allocating a register for the def that has no defs in the previous N +  ///    instructions. +  /// +  /// 3. Calling breakPartialRegDependency() with the same arguments.  This +  ///    allows the target to insert a dependency breaking instruction. +  /// +  virtual unsigned +  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, +                               const TargetRegisterInfo *TRI) const { +    // The default implementation returns 0 for no partial register dependency. +    return 0; +  } + +  /// \brief Return the minimum clearance before an instruction that reads an +  /// unused register. +  /// +  /// For example, AVX instructions may copy part of a register operand into +  /// the unused high bits of the destination register. +  /// +  /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 +  /// +  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a +  /// false dependence on any previous write to %xmm0. +  /// +  /// This hook works similarly to getPartialRegUpdateClearance, except that it +  /// does not take an operand index. Instead sets \p OpNum to the index of the +  /// unused register. +  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, +                                        const TargetRegisterInfo *TRI) const { +    // The default implementation returns 0 for no undef register dependency. +    return 0; +  } + +  /// Insert a dependency-breaking instruction +  /// before MI to eliminate an unwanted dependency on OpNum. +  /// +  /// If it wasn't possible to avoid a def in the last N instructions before MI +  /// (see getPartialRegUpdateClearance), this hook will be called to break the +  /// unwanted dependency. +  /// +  /// On x86, an xorps instruction can be used as a dependency breaker: +  /// +  ///   addps %xmm1, %xmm0 +  ///   movaps %xmm0, (%rax) +  ///   xorps %xmm0, %xmm0 +  ///   cvtsi2ss %rbx, %xmm0 +  /// +  /// An <imp-kill> operand should be added to MI if an instruction was +  /// inserted.  This ties the instructions together in the post-ra scheduler. +  /// +  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, +                                         const TargetRegisterInfo *TRI) const {} + +  /// Create machine specific model for scheduling. +  virtual DFAPacketizer * +  CreateTargetScheduleState(const TargetSubtargetInfo &) const { +    return nullptr; +  } + +  /// Sometimes, it is possible for the target +  /// to tell, even without aliasing information, that two MIs access different +  /// memory addresses. This function returns true if two MIs access different +  /// memory addresses and false otherwise. +  /// +  /// Assumes any physical registers used to compute addresses have the same +  /// value for both instructions. (This is the most useful assumption for +  /// post-RA scheduling.) +  /// +  /// See also MachineInstr::mayAlias, which is implemented on top of this +  /// function. +  virtual bool +  areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, +                                  AliasAnalysis *AA = nullptr) const { +    assert((MIa.mayLoad() || MIa.mayStore()) && +           "MIa must load from or modify a memory location"); +    assert((MIb.mayLoad() || MIb.mayStore()) && +           "MIb must load from or modify a memory location"); +    return false; +  } + +  /// \brief Return the value to use for the MachineCSE's LookAheadLimit, +  /// which is a heuristic used for CSE'ing phys reg defs. +  virtual unsigned getMachineCSELookAheadLimit() const { +    // The default lookahead is small to prevent unprofitable quadratic +    // behavior. +    return 5; +  } + +  /// Return an array that contains the ids of the target indices (used for the +  /// TargetIndex machine operand) and their names. +  /// +  /// MIR Serialization is able to serialize only the target indices that are +  /// defined by this method. +  virtual ArrayRef<std::pair<int, const char *>> +  getSerializableTargetIndices() const { +    return None; +  } + +  /// Decompose the machine operand's target flags into two values - the direct +  /// target flag value and any of bit flags that are applied. +  virtual std::pair<unsigned, unsigned> +  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { +    return std::make_pair(0u, 0u); +  } + +  /// Return an array that contains the direct target flag values and their +  /// names. +  /// +  /// MIR Serialization is able to serialize only the target flags that are +  /// defined by this method. +  virtual ArrayRef<std::pair<unsigned, const char *>> +  getSerializableDirectMachineOperandTargetFlags() const { +    return None; +  } + +  /// Return an array that contains the bitmask target flag values and their +  /// names. +  /// +  /// MIR Serialization is able to serialize only the target flags that are +  /// defined by this method. +  virtual ArrayRef<std::pair<unsigned, const char *>> +  getSerializableBitmaskMachineOperandTargetFlags() const { +    return None; +  } + +  /// Return an array that contains the MMO target flag values and their +  /// names. +  /// +  /// MIR Serialization is able to serialize only the MMO target flags that are +  /// defined by this method. +  virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> +  getSerializableMachineMemOperandTargetFlags() const { +    return None; +  } + +  /// Determines whether \p Inst is a tail call instruction. Override this +  /// method on targets that do not properly set MCID::Return and MCID::Call on +  /// tail call instructions." +  virtual bool isTailCall(const MachineInstr &Inst) const { +    return Inst.isReturn() && Inst.isCall(); +  } + +  /// True if the instruction is bound to the top of its basic block and no +  /// other instructions shall be inserted before it. This can be implemented +  /// to prevent register allocator to insert spills before such instructions. +  virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { +    return false; +  } + +  /// \brief Describes the number of instructions that it will take to call and +  /// construct a frame for a given outlining candidate. +  struct MachineOutlinerInfo { +    /// Number of instructions to call an outlined function for this candidate. +    unsigned CallOverhead; + +    /// \brief Number of instructions to construct an outlined function frame +    /// for this candidate. +    unsigned FrameOverhead; + +    /// \brief Represents the specific instructions that must be emitted to +    /// construct a call to this candidate. +    unsigned CallConstructionID; + +    /// \brief Represents the specific instructions that must be emitted to +    /// construct a frame for this candidate's outlined function. +    unsigned FrameConstructionID; + +    MachineOutlinerInfo() {} +    MachineOutlinerInfo(unsigned CallOverhead, unsigned FrameOverhead, +                        unsigned CallConstructionID, +                        unsigned FrameConstructionID) +        : CallOverhead(CallOverhead), FrameOverhead(FrameOverhead), +          CallConstructionID(CallConstructionID), +          FrameConstructionID(FrameConstructionID) {} +  }; + +  /// \brief Returns a \p MachineOutlinerInfo struct containing target-specific +  /// information for a set of outlining candidates. +  virtual MachineOutlinerInfo getOutlininingCandidateInfo( +      std::vector< +          std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> +          &RepeatedSequenceLocs) const { +    llvm_unreachable( +        "Target didn't implement TargetInstrInfo::getOutliningOverhead!"); +  } + +  /// Represents how an instruction should be mapped by the outliner. +  /// \p Legal instructions are those which are safe to outline. +  /// \p Illegal instructions are those which cannot be outlined. +  /// \p Invisible instructions are instructions which can be outlined, but +  /// shouldn't actually impact the outlining result. +  enum MachineOutlinerInstrType { Legal, Illegal, Invisible }; + +  /// Returns how or if \p MI should be outlined. +  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const { +    llvm_unreachable( +        "Target didn't implement TargetInstrInfo::getOutliningType!"); +  } + +  /// Insert a custom epilogue for outlined functions. +  /// This may be empty, in which case no epilogue or return statement will be +  /// emitted. +  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB, +                                      MachineFunction &MF, +                                      const MachineOutlinerInfo &MInfo) const { +    llvm_unreachable( +        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!"); +  } + +  /// Insert a call to an outlined function into the program. +  /// Returns an iterator to the spot where we inserted the call. This must be +  /// implemented by the target. +  virtual MachineBasicBlock::iterator +  insertOutlinedCall(Module &M, MachineBasicBlock &MBB, +                     MachineBasicBlock::iterator &It, MachineFunction &MF, +                     const MachineOutlinerInfo &MInfo) const { +    llvm_unreachable( +        "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); +  } + +  /// Insert a custom prologue for outlined functions. +  /// This may be empty, in which case no prologue will be emitted. +  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB, +                                      MachineFunction &MF, +                                      const MachineOutlinerInfo &MInfo) const { +    llvm_unreachable( +        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!"); +  } + +  /// Return true if the function can safely be outlined from. +  /// A function \p MF is considered safe for outlining if an outlined function +  /// produced from instructions in F will produce a program which produces the +  /// same output for any set of given inputs. +  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, +                                           bool OutlineFromLinkOnceODRs) const { +    llvm_unreachable("Target didn't implement " +                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); +  } + +private: +  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; +  unsigned CatchRetOpcode; +  unsigned ReturnOpcode; +}; + +/// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. +template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { +  using RegInfo = DenseMapInfo<unsigned>; + +  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { +    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), +                                          RegInfo::getEmptyKey()); +  } + +  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { +    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), +                                          RegInfo::getTombstoneKey()); +  } + +  /// \brief Reuse getHashValue implementation from +  /// std::pair<unsigned, unsigned>. +  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { +    std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); +    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); +  } + +  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, +                      const TargetInstrInfo::RegSubRegPair &RHS) { +    return RegInfo::isEqual(LHS.Reg, RHS.Reg) && +           RegInfo::isEqual(LHS.SubReg, RHS.SubReg); +  } +}; + +} // end namespace llvm + +#endif // LLVM_TARGET_TARGETINSTRINFO_H  | 
