diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-01-19 10:01:25 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-01-19 10:01:25 +0000 |
commit | d8e91e46262bc44006913e6796843909f1ac7bcd (patch) | |
tree | 7d0c143d9b38190e0fa0180805389da22cd834c5 /lib/Analysis/MustExecute.cpp | |
parent | b7eb8e35e481a74962664b63dfb09483b200209a (diff) |
Notes
Diffstat (limited to 'lib/Analysis/MustExecute.cpp')
-rw-r--r-- | lib/Analysis/MustExecute.cpp | 255 |
1 files changed, 189 insertions, 66 deletions
diff --git a/lib/Analysis/MustExecute.cpp b/lib/Analysis/MustExecute.cpp index 8e85366b4618..180c38ddacc2 100644 --- a/lib/Analysis/MustExecute.cpp +++ b/lib/Analysis/MustExecute.cpp @@ -22,20 +22,32 @@ #include "llvm/Support/raw_ostream.h" using namespace llvm; -/// Computes loop safety information, checks loop body & header -/// for the possibility of may throw exception. -/// -void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { +const DenseMap<BasicBlock *, ColorVector> & +LoopSafetyInfo::getBlockColors() const { + return BlockColors; +} + +void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) { + ColorVector &ColorsForNewBlock = BlockColors[New]; + ColorVector &ColorsForOldBlock = BlockColors[Old]; + ColorsForNewBlock = ColorsForOldBlock; +} + +bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { + (void)BB; + return anyBlockMayThrow(); +} + +bool SimpleLoopSafetyInfo::anyBlockMayThrow() const { + return MayThrow; +} + +void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { assert(CurLoop != nullptr && "CurLoop can't be null"); BasicBlock *Header = CurLoop->getHeader(); - // Setting default safety values. - SafetyInfo->MayThrow = false; - SafetyInfo->HeaderMayThrow = false; // Iterate over header and compute safety info. - SafetyInfo->HeaderMayThrow = - !isGuaranteedToTransferExecutionToSuccessor(Header); - - SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow; + HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header); + MayThrow = HeaderMayThrow; // Iterate over loop instructions and compute safety info. // Skip header as it has been computed and stored in HeaderMayThrow. // The first block in loopinfo.Blocks is guaranteed to be the header. @@ -43,23 +55,59 @@ void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) { "First block must be header"); for (Loop::block_iterator BB = std::next(CurLoop->block_begin()), BBE = CurLoop->block_end(); - (BB != BBE) && !SafetyInfo->MayThrow; ++BB) - SafetyInfo->MayThrow |= - !isGuaranteedToTransferExecutionToSuccessor(*BB); + (BB != BBE) && !MayThrow; ++BB) + MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB); + + computeBlockColors(CurLoop); +} +bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const { + return ICF.hasICF(BB); +} + +bool ICFLoopSafetyInfo::anyBlockMayThrow() const { + return MayThrow; +} + +void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) { + assert(CurLoop != nullptr && "CurLoop can't be null"); + ICF.clear(); + MW.clear(); + MayThrow = false; + // Figure out the fact that at least one block may throw. + for (auto &BB : CurLoop->blocks()) + if (ICF.hasICF(&*BB)) { + MayThrow = true; + break; + } + computeBlockColors(CurLoop); +} + +void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst, + const BasicBlock *BB) { + ICF.insertInstructionTo(Inst, BB); + MW.insertInstructionTo(Inst, BB); +} + +void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) { + ICF.removeInstruction(Inst); + MW.removeInstruction(Inst); +} + +void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) { // Compute funclet colors if we might sink/hoist in a function with a funclet // personality routine. Function *Fn = CurLoop->getHeader()->getParent(); if (Fn->hasPersonalityFn()) if (Constant *PersonalityFn = Fn->getPersonalityFn()) if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn))) - SafetyInfo->BlockColors = colorEHFunclets(*Fn); + BlockColors = colorEHFunclets(*Fn); } /// Return true if we can prove that the given ExitBlock is not reached on the /// first iteration of the given loop. That is, the backedge of the loop must /// be executed before the ExitBlock is executed in any dynamic execution trace. -static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, +static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock, const DominatorTree *DT, const Loop *CurLoop) { auto *CondExitBlock = ExitBlock->getSinglePredecessor(); @@ -99,15 +147,94 @@ static bool CanProveNotTakenFirstIteration(BasicBlock *ExitBlock, return SimpleCst->isAllOnesValue(); } +/// Collect all blocks from \p CurLoop which lie on all possible paths from +/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set +/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty. +static void collectTransitivePredecessors( + const Loop *CurLoop, const BasicBlock *BB, + SmallPtrSetImpl<const BasicBlock *> &Predecessors) { + assert(Predecessors.empty() && "Garbage in predecessors set?"); + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + if (BB == CurLoop->getHeader()) + return; + SmallVector<const BasicBlock *, 4> WorkList; + for (auto *Pred : predecessors(BB)) { + Predecessors.insert(Pred); + WorkList.push_back(Pred); + } + while (!WorkList.empty()) { + auto *Pred = WorkList.pop_back_val(); + assert(CurLoop->contains(Pred) && "Should only reach loop blocks!"); + // We are not interested in backedges and we don't want to leave loop. + if (Pred == CurLoop->getHeader()) + continue; + // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all + // blocks of this inner loop, even those that are always executed AFTER the + // BB. It may make our analysis more conservative than it could be, see test + // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll. + // We can ignore backedge of all loops containing BB to get a sligtly more + // optimistic result. + for (auto *PredPred : predecessors(Pred)) + if (Predecessors.insert(PredPred).second) + WorkList.push_back(PredPred); + } +} + +bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop, + const BasicBlock *BB, + const DominatorTree *DT) const { + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + + // Fast path: header is always reached once the loop is entered. + if (BB == CurLoop->getHeader()) + return true; + + // Collect all transitive predecessors of BB in the same loop. This set will + // be a subset of the blocks within the loop. + SmallPtrSet<const BasicBlock *, 4> Predecessors; + collectTransitivePredecessors(CurLoop, BB, Predecessors); + + // Make sure that all successors of all predecessors of BB are either: + // 1) BB, + // 2) Also predecessors of BB, + // 3) Exit blocks which are not taken on 1st iteration. + // Memoize blocks we've already checked. + SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors; + for (auto *Pred : Predecessors) { + // Predecessor block may throw, so it has a side exit. + if (blockMayThrow(Pred)) + return false; + for (auto *Succ : successors(Pred)) + if (CheckedSuccessors.insert(Succ).second && + Succ != BB && !Predecessors.count(Succ)) + // By discharging conditions that are not executed on the 1st iteration, + // we guarantee that *at least* on the first iteration all paths from + // header that *may* execute will lead us to the block of interest. So + // that if we had virtually peeled one iteration away, in this peeled + // iteration the set of predecessors would contain only paths from + // header to BB without any exiting edges that may execute. + // + // TODO: We only do it for exiting edges currently. We could use the + // same function to skip some of the edges within the loop if we know + // that they will not be taken on the 1st iteration. + // + // TODO: If we somehow know the number of iterations in loop, the same + // check may be done for any arbitrary N-th iteration as long as N is + // not greater than minimum number of iterations in this loop. + if (CurLoop->contains(Succ) || + !CanProveNotTakenFirstIteration(Succ, DT, CurLoop)) + return false; + } + + // All predecessors can only lead us to BB. + return true; +} + /// Returns true if the instruction in a loop is guaranteed to execute at least /// once. -bool llvm::isGuaranteedToExecute(const Instruction &Inst, - const DominatorTree *DT, const Loop *CurLoop, - const LoopSafetyInfo *SafetyInfo) { - // We have to check to make sure that the instruction dominates all - // of the exit blocks. If it doesn't, then there is a path out of the loop - // which does not execute this instruction, so we can't hoist it. - +bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, + const DominatorTree *DT, + const Loop *CurLoop) const { // If the instruction is in the header block for the loop (which is very // common), it is always guaranteed to dominate the exit blocks. Since this // is a common case, and can save some work, check it now. @@ -116,52 +243,48 @@ bool llvm::isGuaranteedToExecute(const Instruction &Inst, // Inst unless we can prove that Inst comes before the potential implicit // exit. At the moment, we use a (cheap) hack for the common case where // the instruction of interest is the first one in the block. - return !SafetyInfo->HeaderMayThrow || - Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; + return !HeaderMayThrow || + Inst.getParent()->getFirstNonPHIOrDbg() == &Inst; - // Somewhere in this loop there is an instruction which may throw and make us - // exit the loop. - if (SafetyInfo->MayThrow) - return false; + // If there is a path from header to exit or latch that doesn't lead to our + // instruction's block, return false. + return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); +} - // Note: There are two styles of reasoning intermixed below for - // implementation efficiency reasons. They are: - // 1) If we can prove that the instruction dominates all exit blocks, then we - // know the instruction must have executed on *some* iteration before we - // exit. We do not prove *which* iteration the instruction must execute on. - // 2) If we can prove that the instruction dominates the latch and all exits - // which might be taken on the first iteration, we know the instruction must - // execute on the first iteration. This second style allows a conditional - // exit before the instruction of interest which is provably not taken on the - // first iteration. This is a quite common case for range check like - // patterns. TODO: support loops with multiple latches. - - const bool InstDominatesLatch = - CurLoop->getLoopLatch() != nullptr && - DT->dominates(Inst.getParent(), CurLoop->getLoopLatch()); - - // Get the exit blocks for the current loop. - SmallVector<BasicBlock *, 8> ExitBlocks; - CurLoop->getExitBlocks(ExitBlocks); - - // Verify that the block dominates each of the exit blocks of the loop. - for (BasicBlock *ExitBlock : ExitBlocks) - if (!DT->dominates(Inst.getParent(), ExitBlock)) - if (!InstDominatesLatch || - !CanProveNotTakenFirstIteration(ExitBlock, DT, CurLoop)) - return false; - - // As a degenerate case, if the loop is statically infinite then we haven't - // proven anything since there are no exit blocks. - if (ExitBlocks.empty()) - return false; +bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst, + const DominatorTree *DT, + const Loop *CurLoop) const { + return !ICF.isDominatedByICFIFromSameBlock(&Inst) && + allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT); +} + +bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB, + const Loop *CurLoop) const { + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); - // FIXME: In general, we have to prove that the loop isn't an infinite loop. - // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is - // just a special case of this.) + // Fast path: there are no instructions before header. + if (BB == CurLoop->getHeader()) + return true; + + // Collect all transitive predecessors of BB in the same loop. This set will + // be a subset of the blocks within the loop. + SmallPtrSet<const BasicBlock *, 4> Predecessors; + collectTransitivePredecessors(CurLoop, BB, Predecessors); + // Find if there any instruction in either predecessor that could write + // to memory. + for (auto *Pred : Predecessors) + if (MW.mayWriteToMemory(Pred)) + return false; return true; } +bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I, + const Loop *CurLoop) const { + auto *BB = I.getParent(); + assert(CurLoop->contains(BB) && "Should only be called for loop blocks!"); + return !MW.isDominatedByMemoryWriteFromSameBlock(&I) && + doesNotWriteMemoryBefore(BB, CurLoop); +} namespace { struct MustExecutePrinter : public FunctionPass { @@ -195,9 +318,9 @@ static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) { // TODO: merge these two routines. For the moment, we display the best // result obtained by *either* implementation. This is a bit unfair since no // caller actually gets the full power at the moment. - LoopSafetyInfo LSI; - computeLoopSafetyInfo(&LSI, L); - return isGuaranteedToExecute(I, DT, L, &LSI) || + SimpleLoopSafetyInfo LSI; + LSI.computeLoopSafetyInfo(L); + return LSI.isGuaranteedToExecute(I, DT, L) || isGuaranteedToExecuteForEveryIteration(&I, L); } |