diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:45:10 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:45:10 +0000 |
commit | 809500fc2c13c8173a16b052304d983864e4a1e1 (patch) | |
tree | 4fc2f184c499d106f29a386c452b49e5197bf63d /lib/CodeGen/CGAtomic.cpp | |
parent | be7c9ec198dcdb5bf73a35bfbb00b3333cb87909 (diff) | |
download | src-test2-809500fc2c13c8173a16b052304d983864e4a1e1.tar.gz src-test2-809500fc2c13c8173a16b052304d983864e4a1e1.zip |
Notes
Diffstat (limited to 'lib/CodeGen/CGAtomic.cpp')
-rw-r--r-- | lib/CodeGen/CGAtomic.cpp | 942 |
1 files changed, 942 insertions, 0 deletions
diff --git a/lib/CodeGen/CGAtomic.cpp b/lib/CodeGen/CGAtomic.cpp new file mode 100644 index 000000000000..817d5c4cc687 --- /dev/null +++ b/lib/CodeGen/CGAtomic.cpp @@ -0,0 +1,942 @@ +//===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the code for emitting atomic operations. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGCall.h" +#include "CodeGenModule.h" +#include "clang/AST/ASTContext.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Operator.h" + +using namespace clang; +using namespace CodeGen; + +// The ABI values for various atomic memory orderings. +enum AtomicOrderingKind { + AO_ABI_memory_order_relaxed = 0, + AO_ABI_memory_order_consume = 1, + AO_ABI_memory_order_acquire = 2, + AO_ABI_memory_order_release = 3, + AO_ABI_memory_order_acq_rel = 4, + AO_ABI_memory_order_seq_cst = 5 +}; + +namespace { + class AtomicInfo { + CodeGenFunction &CGF; + QualType AtomicTy; + QualType ValueTy; + uint64_t AtomicSizeInBits; + uint64_t ValueSizeInBits; + CharUnits AtomicAlign; + CharUnits ValueAlign; + CharUnits LValueAlign; + TypeEvaluationKind EvaluationKind; + bool UseLibcall; + public: + AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) : CGF(CGF) { + assert(lvalue.isSimple()); + + AtomicTy = lvalue.getType(); + ValueTy = AtomicTy->castAs<AtomicType>()->getValueType(); + EvaluationKind = CGF.getEvaluationKind(ValueTy); + + ASTContext &C = CGF.getContext(); + + uint64_t valueAlignInBits; + llvm::tie(ValueSizeInBits, valueAlignInBits) = C.getTypeInfo(ValueTy); + + uint64_t atomicAlignInBits; + llvm::tie(AtomicSizeInBits, atomicAlignInBits) = C.getTypeInfo(AtomicTy); + + assert(ValueSizeInBits <= AtomicSizeInBits); + assert(valueAlignInBits <= atomicAlignInBits); + + AtomicAlign = C.toCharUnitsFromBits(atomicAlignInBits); + ValueAlign = C.toCharUnitsFromBits(valueAlignInBits); + if (lvalue.getAlignment().isZero()) + lvalue.setAlignment(AtomicAlign); + + UseLibcall = + (AtomicSizeInBits > uint64_t(C.toBits(lvalue.getAlignment())) || + AtomicSizeInBits > C.getTargetInfo().getMaxAtomicInlineWidth()); + } + + QualType getAtomicType() const { return AtomicTy; } + QualType getValueType() const { return ValueTy; } + CharUnits getAtomicAlignment() const { return AtomicAlign; } + CharUnits getValueAlignment() const { return ValueAlign; } + uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } + uint64_t getValueSizeInBits() const { return AtomicSizeInBits; } + TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } + bool shouldUseLibcall() const { return UseLibcall; } + + /// Is the atomic size larger than the underlying value type? + /// + /// Note that the absence of padding does not mean that atomic + /// objects are completely interchangeable with non-atomic + /// objects: we might have promoted the alignment of a type + /// without making it bigger. + bool hasPadding() const { + return (ValueSizeInBits != AtomicSizeInBits); + } + + void emitMemSetZeroIfNecessary(LValue dest) const; + + llvm::Value *getAtomicSizeValue() const { + CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); + return CGF.CGM.getSize(size); + } + + /// Cast the given pointer to an integer pointer suitable for + /// atomic operations. + llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const; + + /// Turn an atomic-layout object into an r-value. + RValue convertTempToRValue(llvm::Value *addr, + AggValueSlot resultSlot) const; + + /// Copy an atomic r-value into atomic-layout memory. + void emitCopyIntoMemory(RValue rvalue, LValue lvalue) const; + + /// Project an l-value down to the value field. + LValue projectValue(LValue lvalue) const { + llvm::Value *addr = lvalue.getAddress(); + if (hasPadding()) + addr = CGF.Builder.CreateStructGEP(addr, 0); + + return LValue::MakeAddr(addr, getValueType(), lvalue.getAlignment(), + CGF.getContext(), lvalue.getTBAAInfo()); + } + + /// Materialize an atomic r-value in atomic-layout memory. + llvm::Value *materializeRValue(RValue rvalue) const; + + private: + bool requiresMemSetZero(llvm::Type *type) const; + }; +} + +static RValue emitAtomicLibcall(CodeGenFunction &CGF, + StringRef fnName, + QualType resultType, + CallArgList &args) { + const CGFunctionInfo &fnInfo = + CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args, + FunctionType::ExtInfo(), RequiredArgs::All); + llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); + llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName); + return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args); +} + +/// Does a store of the given IR type modify the full expected width? +static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, + uint64_t expectedSize) { + return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); +} + +/// Does the atomic type require memsetting to zero before initialization? +/// +/// The IR type is provided as a way of making certain queries faster. +bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { + // If the atomic type has size padding, we definitely need a memset. + if (hasPadding()) return true; + + // Otherwise, do some simple heuristics to try to avoid it: + switch (getEvaluationKind()) { + // For scalars and complexes, check whether the store size of the + // type uses the full size. + case TEK_Scalar: + return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); + case TEK_Complex: + return !isFullSizeType(CGF.CGM, type->getStructElementType(0), + AtomicSizeInBits / 2); + + // Just be pessimistic about aggregates. + case TEK_Aggregate: + return true; + } + llvm_unreachable("bad evaluation kind"); +} + +void AtomicInfo::emitMemSetZeroIfNecessary(LValue dest) const { + llvm::Value *addr = dest.getAddress(); + if (!requiresMemSetZero(addr->getType()->getPointerElementType())) + return; + + CGF.Builder.CreateMemSet(addr, llvm::ConstantInt::get(CGF.Int8Ty, 0), + AtomicSizeInBits / 8, + dest.getAlignment().getQuantity()); +} + +static void +EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, + llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, + uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { + llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; + llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; + + switch (E->getOp()) { + case AtomicExpr::AO__c11_atomic_init: + llvm_unreachable("Already handled!"); + + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__atomic_compare_exchange: + case AtomicExpr::AO__atomic_compare_exchange_n: { + // Note that cmpxchg only supports specifying one ordering and + // doesn't support weak cmpxchg, at least at the moment. + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); + LoadVal2->setAlignment(Align); + llvm::AtomicCmpXchgInst *CXI = + CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); + CXI->setVolatile(E->isVolatile()); + llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); + StoreVal1->setAlignment(Align); + llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); + CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); + return; + } + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load_n: + case AtomicExpr::AO__atomic_load: { + llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); + Load->setAtomic(Order); + Load->setAlignment(Size); + Load->setVolatile(E->isVolatile()); + llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); + StoreDest->setAlignment(Align); + return; + } + + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: { + assert(!Dest && "Store does not return a value"); + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); + Store->setAtomic(Order); + Store->setAlignment(Size); + Store->setVolatile(E->isVolatile()); + return; + } + + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__atomic_exchange: + Op = llvm::AtomicRMWInst::Xchg; + break; + + case AtomicExpr::AO__atomic_add_fetch: + PostOp = llvm::Instruction::Add; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_add: + case AtomicExpr::AO__atomic_fetch_add: + Op = llvm::AtomicRMWInst::Add; + break; + + case AtomicExpr::AO__atomic_sub_fetch: + PostOp = llvm::Instruction::Sub; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_sub: + case AtomicExpr::AO__atomic_fetch_sub: + Op = llvm::AtomicRMWInst::Sub; + break; + + case AtomicExpr::AO__atomic_and_fetch: + PostOp = llvm::Instruction::And; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_and: + case AtomicExpr::AO__atomic_fetch_and: + Op = llvm::AtomicRMWInst::And; + break; + + case AtomicExpr::AO__atomic_or_fetch: + PostOp = llvm::Instruction::Or; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_or: + case AtomicExpr::AO__atomic_fetch_or: + Op = llvm::AtomicRMWInst::Or; + break; + + case AtomicExpr::AO__atomic_xor_fetch: + PostOp = llvm::Instruction::Xor; + // Fall through. + case AtomicExpr::AO__c11_atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_xor: + Op = llvm::AtomicRMWInst::Xor; + break; + + case AtomicExpr::AO__atomic_nand_fetch: + PostOp = llvm::Instruction::And; + // Fall through. + case AtomicExpr::AO__atomic_fetch_nand: + Op = llvm::AtomicRMWInst::Nand; + break; + } + + llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); + LoadVal1->setAlignment(Align); + llvm::AtomicRMWInst *RMWI = + CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); + RMWI->setVolatile(E->isVolatile()); + + // For __atomic_*_fetch operations, perform the operation again to + // determine the value which was written. + llvm::Value *Result = RMWI; + if (PostOp) + Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); + if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) + Result = CGF.Builder.CreateNot(Result); + llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); + StoreDest->setAlignment(Align); +} + +// This function emits any expression (scalar, complex, or aggregate) +// into a temporary alloca. +static llvm::Value * +EmitValToTemp(CodeGenFunction &CGF, Expr *E) { + llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); + CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), + /*Init*/ true); + return DeclPtr; +} + +RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { + QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); + QualType MemTy = AtomicTy; + if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) + MemTy = AT->getValueType(); + CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); + uint64_t Size = sizeChars.getQuantity(); + CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); + unsigned Align = alignChars.getQuantity(); + unsigned MaxInlineWidthInBits = + getContext().getTargetInfo().getMaxAtomicInlineWidth(); + bool UseLibcall = (Size != Align || + getContext().toBits(sizeChars) > MaxInlineWidthInBits); + + llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; + Ptr = EmitScalarExpr(E->getPtr()); + + if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { + assert(!Dest && "Init does not return a value"); + LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext()); + EmitAtomicInit(E->getVal1(), lvalue); + return RValue::get(0); + } + + Order = EmitScalarExpr(E->getOrder()); + + switch (E->getOp()) { + case AtomicExpr::AO__c11_atomic_init: + llvm_unreachable("Already handled!"); + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load_n: + break; + + case AtomicExpr::AO__atomic_load: + Dest = EmitScalarExpr(E->getVal1()); + break; + + case AtomicExpr::AO__atomic_store: + Val1 = EmitScalarExpr(E->getVal1()); + break; + + case AtomicExpr::AO__atomic_exchange: + Val1 = EmitScalarExpr(E->getVal1()); + Dest = EmitScalarExpr(E->getVal2()); + break; + + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__atomic_compare_exchange_n: + case AtomicExpr::AO__atomic_compare_exchange: + Val1 = EmitScalarExpr(E->getVal1()); + if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) + Val2 = EmitScalarExpr(E->getVal2()); + else + Val2 = EmitValToTemp(*this, E->getVal2()); + OrderFail = EmitScalarExpr(E->getOrderFail()); + // Evaluate and discard the 'weak' argument. + if (E->getNumSubExprs() == 6) + EmitScalarExpr(E->getWeak()); + break; + + case AtomicExpr::AO__c11_atomic_fetch_add: + case AtomicExpr::AO__c11_atomic_fetch_sub: + if (MemTy->isPointerType()) { + // For pointer arithmetic, we're required to do a bit of math: + // adding 1 to an int* is not the same as adding 1 to a uintptr_t. + // ... but only for the C11 builtins. The GNU builtins expect the + // user to multiply by sizeof(T). + QualType Val1Ty = E->getVal1()->getType(); + llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); + CharUnits PointeeIncAmt = + getContext().getTypeSizeInChars(MemTy->getPointeeType()); + Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); + Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); + EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); + break; + } + // Fall through. + case AtomicExpr::AO__atomic_fetch_add: + case AtomicExpr::AO__atomic_fetch_sub: + case AtomicExpr::AO__atomic_add_fetch: + case AtomicExpr::AO__atomic_sub_fetch: + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_store_n: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__c11_atomic_fetch_and: + case AtomicExpr::AO__c11_atomic_fetch_or: + case AtomicExpr::AO__c11_atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_and: + case AtomicExpr::AO__atomic_fetch_or: + case AtomicExpr::AO__atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_nand: + case AtomicExpr::AO__atomic_and_fetch: + case AtomicExpr::AO__atomic_or_fetch: + case AtomicExpr::AO__atomic_xor_fetch: + case AtomicExpr::AO__atomic_nand_fetch: + Val1 = EmitValToTemp(*this, E->getVal1()); + break; + } + + if (!E->getType()->isVoidType() && !Dest) + Dest = CreateMemTemp(E->getType(), ".atomicdst"); + + // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . + if (UseLibcall) { + + SmallVector<QualType, 5> Params; + CallArgList Args; + // Size is always the first parameter + Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), + getContext().getSizeType()); + // Atomic address is always the second parameter + Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), + getContext().VoidPtrTy); + + const char* LibCallName; + QualType RetTy = getContext().VoidTy; + switch (E->getOp()) { + // There is only one libcall for compare an exchange, because there is no + // optimisation benefit possible from a libcall version of a weak compare + // and exchange. + // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, + // void *desired, int success, int failure) + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__atomic_compare_exchange: + case AtomicExpr::AO__atomic_compare_exchange_n: + LibCallName = "__atomic_compare_exchange"; + RetTy = getContext().BoolTy; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + Args.add(RValue::get(EmitCastToVoidPtr(Val2)), + getContext().VoidPtrTy); + Args.add(RValue::get(Order), + getContext().IntTy); + Order = OrderFail; + break; + // void __atomic_exchange(size_t size, void *mem, void *val, void *return, + // int order) + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__atomic_exchange_n: + case AtomicExpr::AO__atomic_exchange: + LibCallName = "__atomic_exchange"; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + Args.add(RValue::get(EmitCastToVoidPtr(Dest)), + getContext().VoidPtrTy); + break; + // void __atomic_store(size_t size, void *mem, void *val, int order) + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: + LibCallName = "__atomic_store"; + Args.add(RValue::get(EmitCastToVoidPtr(Val1)), + getContext().VoidPtrTy); + break; + // void __atomic_load(size_t size, void *mem, void *return, int order) + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__atomic_load: + case AtomicExpr::AO__atomic_load_n: + LibCallName = "__atomic_load"; + Args.add(RValue::get(EmitCastToVoidPtr(Dest)), + getContext().VoidPtrTy); + break; +#if 0 + // These are only defined for 1-16 byte integers. It is not clear what + // their semantics would be on anything else... + case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; + case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; + case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; + case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; + case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; +#endif + default: return EmitUnsupportedRValue(E, "atomic library call"); + } + // order is always the last parameter + Args.add(RValue::get(Order), + getContext().IntTy); + + const CGFunctionInfo &FuncInfo = + CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, + FunctionType::ExtInfo(), RequiredArgs::All); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); + llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); + RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); + if (E->isCmpXChg()) + return Res; + if (E->getType()->isVoidType()) + return RValue::get(0); + return convertTempToRValue(Dest, E->getType()); + } + + bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || + E->getOp() == AtomicExpr::AO__atomic_store || + E->getOp() == AtomicExpr::AO__atomic_store_n; + bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || + E->getOp() == AtomicExpr::AO__atomic_load || + E->getOp() == AtomicExpr::AO__atomic_load_n; + + llvm::Type *IPtrTy = + llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); + llvm::Value *OrigDest = Dest; + Ptr = Builder.CreateBitCast(Ptr, IPtrTy); + if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); + if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); + if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); + + if (isa<llvm::ConstantInt>(Order)) { + int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); + switch (ord) { + case AO_ABI_memory_order_relaxed: + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Monotonic); + break; + case AO_ABI_memory_order_consume: + case AO_ABI_memory_order_acquire: + if (IsStore) + break; // Avoid crashing on code with undefined behavior + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Acquire); + break; + case AO_ABI_memory_order_release: + if (IsLoad) + break; // Avoid crashing on code with undefined behavior + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Release); + break; + case AO_ABI_memory_order_acq_rel: + if (IsLoad || IsStore) + break; // Avoid crashing on code with undefined behavior + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::AcquireRelease); + break; + case AO_ABI_memory_order_seq_cst: + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::SequentiallyConsistent); + break; + default: // invalid order + // We should not ever get here normally, but it's hard to + // enforce that in general. + break; + } + if (E->getType()->isVoidType()) + return RValue::get(0); + return convertTempToRValue(OrigDest, E->getType()); + } + + // Long case, when Order isn't obviously constant. + + // Create all the relevant BB's + llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, + *AcqRelBB = 0, *SeqCstBB = 0; + MonotonicBB = createBasicBlock("monotonic", CurFn); + if (!IsStore) + AcquireBB = createBasicBlock("acquire", CurFn); + if (!IsLoad) + ReleaseBB = createBasicBlock("release", CurFn); + if (!IsLoad && !IsStore) + AcqRelBB = createBasicBlock("acqrel", CurFn); + SeqCstBB = createBasicBlock("seqcst", CurFn); + llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); + + // Create the switch for the split + // MonotonicBB is arbitrarily chosen as the default case; in practice, this + // doesn't matter unless someone is crazy enough to use something that + // doesn't fold to a constant for the ordering. + Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); + llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); + + // Emit all the different atomics + Builder.SetInsertPoint(MonotonicBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Monotonic); + Builder.CreateBr(ContBB); + if (!IsStore) { + Builder.SetInsertPoint(AcquireBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Acquire); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(1), AcquireBB); + SI->addCase(Builder.getInt32(2), AcquireBB); + } + if (!IsLoad) { + Builder.SetInsertPoint(ReleaseBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::Release); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(3), ReleaseBB); + } + if (!IsLoad && !IsStore) { + Builder.SetInsertPoint(AcqRelBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::AcquireRelease); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(4), AcqRelBB); + } + Builder.SetInsertPoint(SeqCstBB); + EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, + llvm::SequentiallyConsistent); + Builder.CreateBr(ContBB); + SI->addCase(Builder.getInt32(5), SeqCstBB); + + // Cleanup and return + Builder.SetInsertPoint(ContBB); + if (E->getType()->isVoidType()) + return RValue::get(0); + return convertTempToRValue(OrigDest, E->getType()); +} + +llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const { + unsigned addrspace = + cast<llvm::PointerType>(addr->getType())->getAddressSpace(); + llvm::IntegerType *ty = + llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); + return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace)); +} + +RValue AtomicInfo::convertTempToRValue(llvm::Value *addr, + AggValueSlot resultSlot) const { + if (EvaluationKind == TEK_Aggregate) { + // Nothing to do if the result is ignored. + if (resultSlot.isIgnored()) return resultSlot.asRValue(); + + assert(resultSlot.getAddr() == addr || hasPadding()); + + // In these cases, we should have emitted directly into the result slot. + if (!hasPadding() || resultSlot.isValueOfAtomic()) + return resultSlot.asRValue(); + + // Otherwise, fall into the common path. + } + + // Drill into the padding structure if we have one. + if (hasPadding()) + addr = CGF.Builder.CreateStructGEP(addr, 0); + + // If we're emitting to an aggregate, copy into the result slot. + if (EvaluationKind == TEK_Aggregate) { + CGF.EmitAggregateCopy(resultSlot.getAddr(), addr, getValueType(), + resultSlot.isVolatile()); + return resultSlot.asRValue(); + } + + // Otherwise, just convert the temporary to an r-value using the + // normal conversion routine. + return CGF.convertTempToRValue(addr, getValueType()); +} + +/// Emit a load from an l-value of atomic type. Note that the r-value +/// we produce is an r-value of the atomic *value* type. +RValue CodeGenFunction::EmitAtomicLoad(LValue src, AggValueSlot resultSlot) { + AtomicInfo atomics(*this, src); + + // Check whether we should use a library call. + if (atomics.shouldUseLibcall()) { + llvm::Value *tempAddr; + if (resultSlot.isValueOfAtomic()) { + assert(atomics.getEvaluationKind() == TEK_Aggregate); + tempAddr = resultSlot.getPaddedAtomicAddr(); + } else if (!resultSlot.isIgnored() && !atomics.hasPadding()) { + assert(atomics.getEvaluationKind() == TEK_Aggregate); + tempAddr = resultSlot.getAddr(); + } else { + tempAddr = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); + } + + // void __atomic_load(size_t size, void *mem, void *return, int order); + CallArgList args; + args.add(RValue::get(atomics.getAtomicSizeValue()), + getContext().getSizeType()); + args.add(RValue::get(EmitCastToVoidPtr(src.getAddress())), + getContext().VoidPtrTy); + args.add(RValue::get(EmitCastToVoidPtr(tempAddr)), + getContext().VoidPtrTy); + args.add(RValue::get(llvm::ConstantInt::get(IntTy, + AO_ABI_memory_order_seq_cst)), + getContext().IntTy); + emitAtomicLibcall(*this, "__atomic_load", getContext().VoidTy, args); + + // Produce the r-value. + return atomics.convertTempToRValue(tempAddr, resultSlot); + } + + // Okay, we're doing this natively. + llvm::Value *addr = atomics.emitCastToAtomicIntPointer(src.getAddress()); + llvm::LoadInst *load = Builder.CreateLoad(addr, "atomic-load"); + load->setAtomic(llvm::SequentiallyConsistent); + + // Other decoration. + load->setAlignment(src.getAlignment().getQuantity()); + if (src.isVolatileQualified()) + load->setVolatile(true); + if (src.getTBAAInfo()) + CGM.DecorateInstruction(load, src.getTBAAInfo()); + + // Okay, turn that back into the original value type. + QualType valueType = atomics.getValueType(); + llvm::Value *result = load; + + // If we're ignoring an aggregate return, don't do anything. + if (atomics.getEvaluationKind() == TEK_Aggregate && resultSlot.isIgnored()) + return RValue::getAggregate(0, false); + + // The easiest way to do this this is to go through memory, but we + // try not to in some easy cases. + if (atomics.getEvaluationKind() == TEK_Scalar && !atomics.hasPadding()) { + llvm::Type *resultTy = CGM.getTypes().ConvertTypeForMem(valueType); + if (isa<llvm::IntegerType>(resultTy)) { + assert(result->getType() == resultTy); + result = EmitFromMemory(result, valueType); + } else if (isa<llvm::PointerType>(resultTy)) { + result = Builder.CreateIntToPtr(result, resultTy); + } else { + result = Builder.CreateBitCast(result, resultTy); + } + return RValue::get(result); + } + + // Create a temporary. This needs to be big enough to hold the + // atomic integer. + llvm::Value *temp; + bool tempIsVolatile = false; + CharUnits tempAlignment; + if (atomics.getEvaluationKind() == TEK_Aggregate && + (!atomics.hasPadding() || resultSlot.isValueOfAtomic())) { + assert(!resultSlot.isIgnored()); + if (resultSlot.isValueOfAtomic()) { + temp = resultSlot.getPaddedAtomicAddr(); + tempAlignment = atomics.getAtomicAlignment(); + } else { + temp = resultSlot.getAddr(); + tempAlignment = atomics.getValueAlignment(); + } + tempIsVolatile = resultSlot.isVolatile(); + } else { + temp = CreateMemTemp(atomics.getAtomicType(), "atomic-load-temp"); + tempAlignment = atomics.getAtomicAlignment(); + } + + // Slam the integer into the temporary. + llvm::Value *castTemp = atomics.emitCastToAtomicIntPointer(temp); + Builder.CreateAlignedStore(result, castTemp, tempAlignment.getQuantity()) + ->setVolatile(tempIsVolatile); + + return atomics.convertTempToRValue(temp, resultSlot); +} + + + +/// Copy an r-value into memory as part of storing to an atomic type. +/// This needs to create a bit-pattern suitable for atomic operations. +void AtomicInfo::emitCopyIntoMemory(RValue rvalue, LValue dest) const { + // If we have an r-value, the rvalue should be of the atomic type, + // which means that the caller is responsible for having zeroed + // any padding. Just do an aggregate copy of that type. + if (rvalue.isAggregate()) { + CGF.EmitAggregateCopy(dest.getAddress(), + rvalue.getAggregateAddr(), + getAtomicType(), + (rvalue.isVolatileQualified() + || dest.isVolatileQualified()), + dest.getAlignment()); + return; + } + + // Okay, otherwise we're copying stuff. + + // Zero out the buffer if necessary. + emitMemSetZeroIfNecessary(dest); + + // Drill past the padding if present. + dest = projectValue(dest); + + // Okay, store the rvalue in. + if (rvalue.isScalar()) { + CGF.EmitStoreOfScalar(rvalue.getScalarVal(), dest, /*init*/ true); + } else { + CGF.EmitStoreOfComplex(rvalue.getComplexVal(), dest, /*init*/ true); + } +} + + +/// Materialize an r-value into memory for the purposes of storing it +/// to an atomic type. +llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const { + // Aggregate r-values are already in memory, and EmitAtomicStore + // requires them to be values of the atomic type. + if (rvalue.isAggregate()) + return rvalue.getAggregateAddr(); + + // Otherwise, make a temporary and materialize into it. + llvm::Value *temp = CGF.CreateMemTemp(getAtomicType(), "atomic-store-temp"); + LValue tempLV = CGF.MakeAddrLValue(temp, getAtomicType(), getAtomicAlignment()); + emitCopyIntoMemory(rvalue, tempLV); + return temp; +} + +/// Emit a store to an l-value of atomic type. +/// +/// Note that the r-value is expected to be an r-value *of the atomic +/// type*; this means that for aggregate r-values, it should include +/// storage for any padding that was necessary. +void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, + bool isInit) { + // If this is an aggregate r-value, it should agree in type except + // maybe for address-space qualification. + assert(!rvalue.isAggregate() || + rvalue.getAggregateAddr()->getType()->getPointerElementType() + == dest.getAddress()->getType()->getPointerElementType()); + + AtomicInfo atomics(*this, dest); + + // If this is an initialization, just put the value there normally. + if (isInit) { + atomics.emitCopyIntoMemory(rvalue, dest); + return; + } + + // Check whether we should use a library call. + if (atomics.shouldUseLibcall()) { + // Produce a source address. + llvm::Value *srcAddr = atomics.materializeRValue(rvalue); + + // void __atomic_store(size_t size, void *mem, void *val, int order) + CallArgList args; + args.add(RValue::get(atomics.getAtomicSizeValue()), + getContext().getSizeType()); + args.add(RValue::get(EmitCastToVoidPtr(dest.getAddress())), + getContext().VoidPtrTy); + args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), + getContext().VoidPtrTy); + args.add(RValue::get(llvm::ConstantInt::get(IntTy, + AO_ABI_memory_order_seq_cst)), + getContext().IntTy); + emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); + return; + } + + // Okay, we're doing this natively. + llvm::Value *intValue; + + // If we've got a scalar value of the right size, try to avoid going + // through memory. + if (rvalue.isScalar() && !atomics.hasPadding()) { + llvm::Value *value = rvalue.getScalarVal(); + if (isa<llvm::IntegerType>(value->getType())) { + intValue = value; + } else { + llvm::IntegerType *inputIntTy = + llvm::IntegerType::get(getLLVMContext(), atomics.getValueSizeInBits()); + if (isa<llvm::PointerType>(value->getType())) { + intValue = Builder.CreatePtrToInt(value, inputIntTy); + } else { + intValue = Builder.CreateBitCast(value, inputIntTy); + } + } + + // Otherwise, we need to go through memory. + } else { + // Put the r-value in memory. + llvm::Value *addr = atomics.materializeRValue(rvalue); + + // Cast the temporary to the atomic int type and pull a value out. + addr = atomics.emitCastToAtomicIntPointer(addr); + intValue = Builder.CreateAlignedLoad(addr, + atomics.getAtomicAlignment().getQuantity()); + } + + // Do the atomic store. + llvm::Value *addr = atomics.emitCastToAtomicIntPointer(dest.getAddress()); + llvm::StoreInst *store = Builder.CreateStore(intValue, addr); + + // Initializations don't need to be atomic. + if (!isInit) store->setAtomic(llvm::SequentiallyConsistent); + + // Other decoration. + store->setAlignment(dest.getAlignment().getQuantity()); + if (dest.isVolatileQualified()) + store->setVolatile(true); + if (dest.getTBAAInfo()) + CGM.DecorateInstruction(store, dest.getTBAAInfo()); +} + +void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { + AtomicInfo atomics(*this, dest); + + switch (atomics.getEvaluationKind()) { + case TEK_Scalar: { + llvm::Value *value = EmitScalarExpr(init); + atomics.emitCopyIntoMemory(RValue::get(value), dest); + return; + } + + case TEK_Complex: { + ComplexPairTy value = EmitComplexExpr(init); + atomics.emitCopyIntoMemory(RValue::getComplex(value), dest); + return; + } + + case TEK_Aggregate: { + // Memset the buffer first if there's any possibility of + // uninitialized internal bits. + atomics.emitMemSetZeroIfNecessary(dest); + + // HACK: whether the initializer actually has an atomic type + // doesn't really seem reliable right now. + if (!init->getType()->isAtomicType()) { + dest = atomics.projectValue(dest); + } + + // Evaluate the expression directly into the destination. + AggValueSlot slot = AggValueSlot::forLValue(dest, + AggValueSlot::IsNotDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased); + EmitAggExpr(init, slot); + return; + } + } + llvm_unreachable("bad evaluation kind"); +} |