diff options
| author | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 | 
|---|---|---|
| committer | Ed Schouten <ed@FreeBSD.org> | 2009-06-02 17:52:33 +0000 | 
| commit | 009b1c42aa6266385f2c37e227516b24077e6dd7 (patch) | |
| tree | 64ba909838c23261cace781ece27d106134ea451 /lib/Transforms/Utils/CodeExtractor.cpp | |
Notes
Diffstat (limited to 'lib/Transforms/Utils/CodeExtractor.cpp')
| -rw-r--r-- | lib/Transforms/Utils/CodeExtractor.cpp | 746 | 
1 files changed, 746 insertions, 0 deletions
| diff --git a/lib/Transforms/Utils/CodeExtractor.cpp b/lib/Transforms/Utils/CodeExtractor.cpp new file mode 100644 index 000000000000..6d5904e30886 --- /dev/null +++ b/lib/Transforms/Utils/CodeExtractor.cpp @@ -0,0 +1,746 @@ +//===- CodeExtractor.cpp - Pull code region into a new function -----------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the interface to tear out a code region, such as an +// individual loop or a parallel section, into a new function, replacing it with +// a call to the new function. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/FunctionUtils.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/Verifier.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/StringExtras.h" +#include <algorithm> +#include <set> +using namespace llvm; + +// Provide a command-line option to aggregate function arguments into a struct +// for functions produced by the code extractor. This is useful when converting +// extracted functions to pthread-based code, as only one argument (void*) can +// be passed in to pthread_create(). +static cl::opt<bool> +AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, +                 cl::desc("Aggregate arguments to code-extracted functions")); + +namespace { +  class VISIBILITY_HIDDEN CodeExtractor { +    typedef std::vector<Value*> Values; +    std::set<BasicBlock*> BlocksToExtract; +    DominatorTree* DT; +    bool AggregateArgs; +    unsigned NumExitBlocks; +    const Type *RetTy; +  public: +    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) +      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} + +    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); + +    bool isEligible(const std::vector<BasicBlock*> &code); + +  private: +    /// definedInRegion - Return true if the specified value is defined in the +    /// extracted region. +    bool definedInRegion(Value *V) const { +      if (Instruction *I = dyn_cast<Instruction>(V)) +        if (BlocksToExtract.count(I->getParent())) +          return true; +      return false; +    } + +    /// definedInCaller - Return true if the specified value is defined in the +    /// function being code extracted, but not in the region being extracted. +    /// These values must be passed in as live-ins to the function. +    bool definedInCaller(Value *V) const { +      if (isa<Argument>(V)) return true; +      if (Instruction *I = dyn_cast<Instruction>(V)) +        if (!BlocksToExtract.count(I->getParent())) +          return true; +      return false; +    } + +    void severSplitPHINodes(BasicBlock *&Header); +    void splitReturnBlocks(); +    void findInputsOutputs(Values &inputs, Values &outputs); + +    Function *constructFunction(const Values &inputs, +                                const Values &outputs, +                                BasicBlock *header, +                                BasicBlock *newRootNode, BasicBlock *newHeader, +                                Function *oldFunction, Module *M); + +    void moveCodeToFunction(Function *newFunction); + +    void emitCallAndSwitchStatement(Function *newFunction, +                                    BasicBlock *newHeader, +                                    Values &inputs, +                                    Values &outputs); + +  }; +} + +/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the +/// region, we need to split the entry block of the region so that the PHI node +/// is easier to deal with. +void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { +  bool HasPredsFromRegion = false; +  unsigned NumPredsOutsideRegion = 0; + +  if (Header != &Header->getParent()->getEntryBlock()) { +    PHINode *PN = dyn_cast<PHINode>(Header->begin()); +    if (!PN) return;  // No PHI nodes. + +    // If the header node contains any PHI nodes, check to see if there is more +    // than one entry from outside the region.  If so, we need to sever the +    // header block into two. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (BlocksToExtract.count(PN->getIncomingBlock(i))) +        HasPredsFromRegion = true; +      else +        ++NumPredsOutsideRegion; + +    // If there is one (or fewer) predecessor from outside the region, we don't +    // need to do anything special. +    if (NumPredsOutsideRegion <= 1) return; +  } + +  // Otherwise, we need to split the header block into two pieces: one +  // containing PHI nodes merging values from outside of the region, and a +  // second that contains all of the code for the block and merges back any +  // incoming values from inside of the region. +  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); +  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, +                                              Header->getName()+".ce"); + +  // We only want to code extract the second block now, and it becomes the new +  // header of the region. +  BasicBlock *OldPred = Header; +  BlocksToExtract.erase(OldPred); +  BlocksToExtract.insert(NewBB); +  Header = NewBB; + +  // Okay, update dominator sets. The blocks that dominate the new one are the +  // blocks that dominate TIBB plus the new block itself. +  if (DT) +    DT->splitBlock(NewBB); + +  // Okay, now we need to adjust the PHI nodes and any branches from within the +  // region to go to the new header block instead of the old header block. +  if (HasPredsFromRegion) { +    PHINode *PN = cast<PHINode>(OldPred->begin()); +    // Loop over all of the predecessors of OldPred that are in the region, +    // changing them to branch to NewBB instead. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (BlocksToExtract.count(PN->getIncomingBlock(i))) { +        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); +        TI->replaceUsesOfWith(OldPred, NewBB); +      } + +    // Okay, everthing within the region is now branching to the right block, we +    // just have to update the PHI nodes now, inserting PHI nodes into NewBB. +    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { +      PHINode *PN = cast<PHINode>(AfterPHIs); +      // Create a new PHI node in the new region, which has an incoming value +      // from OldPred of PN. +      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", +                                       NewBB->begin()); +      NewPN->addIncoming(PN, OldPred); + +      // Loop over all of the incoming value in PN, moving them to NewPN if they +      // are from the extracted region. +      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { +        if (BlocksToExtract.count(PN->getIncomingBlock(i))) { +          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); +          PN->removeIncomingValue(i); +          --i; +        } +      } +    } +  } +} + +void CodeExtractor::splitReturnBlocks() { +  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), +         E = BlocksToExtract.end(); I != E; ++I) +    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) +      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); +} + +// findInputsOutputs - Find inputs to, outputs from the code region. +// +void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { +  std::set<BasicBlock*> ExitBlocks; +  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), +       ce = BlocksToExtract.end(); ci != ce; ++ci) { +    BasicBlock *BB = *ci; + +    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { +      // If a used value is defined outside the region, it's an input.  If an +      // instruction is used outside the region, it's an output. +      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) +        if (definedInCaller(*O)) +          inputs.push_back(*O); + +      // Consider uses of this instruction (outputs). +      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); +           UI != E; ++UI) +        if (!definedInRegion(*UI)) { +          outputs.push_back(I); +          break; +        } +    } // for: insts + +    // Keep track of the exit blocks from the region. +    TerminatorInst *TI = BB->getTerminator(); +    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) +      if (!BlocksToExtract.count(TI->getSuccessor(i))) +        ExitBlocks.insert(TI->getSuccessor(i)); +  } // for: basic blocks + +  NumExitBlocks = ExitBlocks.size(); + +  // Eliminate duplicates. +  std::sort(inputs.begin(), inputs.end()); +  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); +  std::sort(outputs.begin(), outputs.end()); +  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); +} + +/// constructFunction - make a function based on inputs and outputs, as follows: +/// f(in0, ..., inN, out0, ..., outN) +/// +Function *CodeExtractor::constructFunction(const Values &inputs, +                                           const Values &outputs, +                                           BasicBlock *header, +                                           BasicBlock *newRootNode, +                                           BasicBlock *newHeader, +                                           Function *oldFunction, +                                           Module *M) { +  DOUT << "inputs: " << inputs.size() << "\n"; +  DOUT << "outputs: " << outputs.size() << "\n"; + +  // This function returns unsigned, outputs will go back by reference. +  switch (NumExitBlocks) { +  case 0: +  case 1: RetTy = Type::VoidTy; break; +  case 2: RetTy = Type::Int1Ty; break; +  default: RetTy = Type::Int16Ty; break; +  } + +  std::vector<const Type*> paramTy; + +  // Add the types of the input values to the function's argument list +  for (Values::const_iterator i = inputs.begin(), +         e = inputs.end(); i != e; ++i) { +    const Value *value = *i; +    DOUT << "value used in func: " << *value << "\n"; +    paramTy.push_back(value->getType()); +  } + +  // Add the types of the output values to the function's argument list. +  for (Values::const_iterator I = outputs.begin(), E = outputs.end(); +       I != E; ++I) { +    DOUT << "instr used in func: " << **I << "\n"; +    if (AggregateArgs) +      paramTy.push_back((*I)->getType()); +    else +      paramTy.push_back(PointerType::getUnqual((*I)->getType())); +  } + +  DOUT << "Function type: " << *RetTy << " f("; +  for (std::vector<const Type*>::iterator i = paramTy.begin(), +         e = paramTy.end(); i != e; ++i) +    DOUT << **i << ", "; +  DOUT << ")\n"; + +  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { +    PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy)); +    paramTy.clear(); +    paramTy.push_back(StructPtr); +  } +  const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); + +  // Create the new function +  Function *newFunction = Function::Create(funcType, +                                           GlobalValue::InternalLinkage, +                                           oldFunction->getName() + "_" + +                                           header->getName(), M); +  // If the old function is no-throw, so is the new one. +  if (oldFunction->doesNotThrow()) +    newFunction->setDoesNotThrow(true); +   +  newFunction->getBasicBlockList().push_back(newRootNode); + +  // Create an iterator to name all of the arguments we inserted. +  Function::arg_iterator AI = newFunction->arg_begin(); + +  // Rewrite all users of the inputs in the extracted region to use the +  // arguments (or appropriate addressing into struct) instead. +  for (unsigned i = 0, e = inputs.size(); i != e; ++i) { +    Value *RewriteVal; +    if (AggregateArgs) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::Int32Ty); +      Idx[1] = ConstantInt::get(Type::Int32Ty, i); +      std::string GEPname = "gep_" + inputs[i]->getName(); +      TerminatorInst *TI = newFunction->begin()->getTerminator(); +      GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2,  +                                                         GEPname, TI); +      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); +    } else +      RewriteVal = AI++; + +    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); +    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); +         use != useE; ++use) +      if (Instruction* inst = dyn_cast<Instruction>(*use)) +        if (BlocksToExtract.count(inst->getParent())) +          inst->replaceUsesOfWith(inputs[i], RewriteVal); +  } + +  // Set names for input and output arguments. +  if (!AggregateArgs) { +    AI = newFunction->arg_begin(); +    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) +      AI->setName(inputs[i]->getName()); +    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) +      AI->setName(outputs[i]->getName()+".out"); +  } + +  // Rewrite branches to basic blocks outside of the loop to new dummy blocks +  // within the new function. This must be done before we lose track of which +  // blocks were originally in the code region. +  std::vector<User*> Users(header->use_begin(), header->use_end()); +  for (unsigned i = 0, e = Users.size(); i != e; ++i) +    // The BasicBlock which contains the branch is not in the region +    // modify the branch target to a new block +    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) +      if (!BlocksToExtract.count(TI->getParent()) && +          TI->getParent()->getParent() == oldFunction) +        TI->replaceUsesOfWith(header, newHeader); + +  return newFunction; +} + +/// emitCallAndSwitchStatement - This method sets up the caller side by adding +/// the call instruction, splitting any PHI nodes in the header block as +/// necessary. +void CodeExtractor:: +emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, +                           Values &inputs, Values &outputs) { +  // Emit a call to the new function, passing in: *pointer to struct (if +  // aggregating parameters), or plan inputs and allocated memory for outputs +  std::vector<Value*> params, StructValues, ReloadOutputs; + +  // Add inputs as params, or to be filled into the struct +  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) +    if (AggregateArgs) +      StructValues.push_back(*i); +    else +      params.push_back(*i); + +  // Create allocas for the outputs +  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { +    if (AggregateArgs) { +      StructValues.push_back(*i); +    } else { +      AllocaInst *alloca = +        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", +                       codeReplacer->getParent()->begin()->begin()); +      ReloadOutputs.push_back(alloca); +      params.push_back(alloca); +    } +  } + +  AllocaInst *Struct = 0; +  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { +    std::vector<const Type*> ArgTypes; +    for (Values::iterator v = StructValues.begin(), +           ve = StructValues.end(); v != ve; ++v) +      ArgTypes.push_back((*v)->getType()); + +    // Allocate a struct at the beginning of this function +    Type *StructArgTy = StructType::get(ArgTypes); +    Struct = +      new AllocaInst(StructArgTy, 0, "structArg", +                     codeReplacer->getParent()->begin()->begin()); +    params.push_back(Struct); + +    for (unsigned i = 0, e = inputs.size(); i != e; ++i) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::Int32Ty); +      Idx[1] = ConstantInt::get(Type::Int32Ty, i); +      GetElementPtrInst *GEP = +        GetElementPtrInst::Create(Struct, Idx, Idx + 2, +                                  "gep_" + StructValues[i]->getName()); +      codeReplacer->getInstList().push_back(GEP); +      StoreInst *SI = new StoreInst(StructValues[i], GEP); +      codeReplacer->getInstList().push_back(SI); +    } +  } + +  // Emit the call to the function +  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), +                                    NumExitBlocks > 1 ? "targetBlock" : ""); +  codeReplacer->getInstList().push_back(call); + +  Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); +  unsigned FirstOut = inputs.size(); +  if (!AggregateArgs) +    std::advance(OutputArgBegin, inputs.size()); + +  // Reload the outputs passed in by reference +  for (unsigned i = 0, e = outputs.size(); i != e; ++i) { +    Value *Output = 0; +    if (AggregateArgs) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::Int32Ty); +      Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i); +      GetElementPtrInst *GEP +        = GetElementPtrInst::Create(Struct, Idx, Idx + 2, +                                    "gep_reload_" + outputs[i]->getName()); +      codeReplacer->getInstList().push_back(GEP); +      Output = GEP; +    } else { +      Output = ReloadOutputs[i]; +    } +    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); +    codeReplacer->getInstList().push_back(load); +    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); +    for (unsigned u = 0, e = Users.size(); u != e; ++u) { +      Instruction *inst = cast<Instruction>(Users[u]); +      if (!BlocksToExtract.count(inst->getParent())) +        inst->replaceUsesOfWith(outputs[i], load); +    } +  } + +  // Now we can emit a switch statement using the call as a value. +  SwitchInst *TheSwitch = +      SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty), +                         codeReplacer, 0, codeReplacer); + +  // Since there may be multiple exits from the original region, make the new +  // function return an unsigned, switch on that number.  This loop iterates +  // over all of the blocks in the extracted region, updating any terminator +  // instructions in the to-be-extracted region that branch to blocks that are +  // not in the region to be extracted. +  std::map<BasicBlock*, BasicBlock*> ExitBlockMap; + +  unsigned switchVal = 0; +  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), +         e = BlocksToExtract.end(); i != e; ++i) { +    TerminatorInst *TI = (*i)->getTerminator(); +    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) +      if (!BlocksToExtract.count(TI->getSuccessor(i))) { +        BasicBlock *OldTarget = TI->getSuccessor(i); +        // add a new basic block which returns the appropriate value +        BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; +        if (!NewTarget) { +          // If we don't already have an exit stub for this non-extracted +          // destination, create one now! +          NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub", +                                         newFunction); +          unsigned SuccNum = switchVal++; + +          Value *brVal = 0; +          switch (NumExitBlocks) { +          case 0: +          case 1: break;  // No value needed. +          case 2:         // Conditional branch, return a bool +            brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); +            break; +          default: +            brVal = ConstantInt::get(Type::Int16Ty, SuccNum); +            break; +          } + +          ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget); + +          // Update the switch instruction. +          TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), +                             OldTarget); + +          // Restore values just before we exit +          Function::arg_iterator OAI = OutputArgBegin; +          for (unsigned out = 0, e = outputs.size(); out != e; ++out) { +            // For an invoke, the normal destination is the only one that is +            // dominated by the result of the invocation +            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); + +            bool DominatesDef = true; + +            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { +              DefBlock = Invoke->getNormalDest(); + +              // Make sure we are looking at the original successor block, not +              // at a newly inserted exit block, which won't be in the dominator +              // info. +              for (std::map<BasicBlock*, BasicBlock*>::iterator I = +                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) +                if (DefBlock == I->second) { +                  DefBlock = I->first; +                  break; +                } + +              // In the extract block case, if the block we are extracting ends +              // with an invoke instruction, make sure that we don't emit a +              // store of the invoke value for the unwind block. +              if (!DT && DefBlock != OldTarget) +                DominatesDef = false; +            } + +            if (DT) +              DominatesDef = DT->dominates(DefBlock, OldTarget); + +            if (DominatesDef) { +              if (AggregateArgs) { +                Value *Idx[2]; +                Idx[0] = Constant::getNullValue(Type::Int32Ty); +                Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out); +                GetElementPtrInst *GEP = +                  GetElementPtrInst::Create(OAI, Idx, Idx + 2, +                                            "gep_" + outputs[out]->getName(), +                                            NTRet); +                new StoreInst(outputs[out], GEP, NTRet); +              } else { +                new StoreInst(outputs[out], OAI, NTRet); +              } +            } +            // Advance output iterator even if we don't emit a store +            if (!AggregateArgs) ++OAI; +          } +        } + +        // rewrite the original branch instruction with this new target +        TI->setSuccessor(i, NewTarget); +      } +  } + +  // Now that we've done the deed, simplify the switch instruction. +  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); +  switch (NumExitBlocks) { +  case 0: +    // There are no successors (the block containing the switch itself), which +    // means that previously this was the last part of the function, and hence +    // this should be rewritten as a `ret' + +    // Check if the function should return a value +    if (OldFnRetTy == Type::VoidTy) { +      ReturnInst::Create(0, TheSwitch);  // Return void +    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { +      // return what we have +      ReturnInst::Create(TheSwitch->getCondition(), TheSwitch); +    } else { +      // Otherwise we must have code extracted an unwind or something, just +      // return whatever we want. +      ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch); +    } + +    TheSwitch->eraseFromParent(); +    break; +  case 1: +    // Only a single destination, change the switch into an unconditional +    // branch. +    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); +    TheSwitch->eraseFromParent(); +    break; +  case 2: +    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), +                       call, TheSwitch); +    TheSwitch->eraseFromParent(); +    break; +  default: +    // Otherwise, make the default destination of the switch instruction be one +    // of the other successors. +    TheSwitch->setOperand(0, call); +    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); +    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case +    break; +  } +} + +void CodeExtractor::moveCodeToFunction(Function *newFunction) { +  Function *oldFunc = (*BlocksToExtract.begin())->getParent(); +  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); +  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); + +  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), +         e = BlocksToExtract.end(); i != e; ++i) { +    // Delete the basic block from the old function, and the list of blocks +    oldBlocks.remove(*i); + +    // Insert this basic block into the new function +    newBlocks.push_back(*i); +  } +} + +/// ExtractRegion - Removes a loop from a function, replaces it with a call to +/// new function. Returns pointer to the new function. +/// +/// algorithm: +/// +/// find inputs and outputs for the region +/// +/// for inputs: add to function as args, map input instr* to arg# +/// for outputs: add allocas for scalars, +///             add to func as args, map output instr* to arg# +/// +/// rewrite func to use argument #s instead of instr* +/// +/// for each scalar output in the function: at every exit, store intermediate +/// computed result back into memory. +/// +Function *CodeExtractor:: +ExtractCodeRegion(const std::vector<BasicBlock*> &code) { +  if (!isEligible(code)) +    return 0; + +  // 1) Find inputs, outputs +  // 2) Construct new function +  //  * Add allocas for defs, pass as args by reference +  //  * Pass in uses as args +  // 3) Move code region, add call instr to func +  // +  BlocksToExtract.insert(code.begin(), code.end()); + +  Values inputs, outputs; + +  // Assumption: this is a single-entry code region, and the header is the first +  // block in the region. +  BasicBlock *header = code[0]; + +  for (unsigned i = 1, e = code.size(); i != e; ++i) +    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); +         PI != E; ++PI) +      assert(BlocksToExtract.count(*PI) && +             "No blocks in this region may have entries from outside the region" +             " except for the first block!"); + +  // If we have to split PHI nodes or the entry block, do so now. +  severSplitPHINodes(header); + +  // If we have any return instructions in the region, split those blocks so +  // that the return is not in the region. +  splitReturnBlocks(); + +  Function *oldFunction = header->getParent(); + +  // This takes place of the original loop +  BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction, +                                                header); + +  // The new function needs a root node because other nodes can branch to the +  // head of the region, but the entry node of a function cannot have preds. +  BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot"); +  newFuncRoot->getInstList().push_back(BranchInst::Create(header)); + +  // Find inputs to, outputs from the code region. +  findInputsOutputs(inputs, outputs); + +  // Construct new function based on inputs/outputs & add allocas for all defs. +  Function *newFunction = constructFunction(inputs, outputs, header, +                                            newFuncRoot, +                                            codeReplacer, oldFunction, +                                            oldFunction->getParent()); + +  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); + +  moveCodeToFunction(newFunction); + +  // Loop over all of the PHI nodes in the header block, and change any +  // references to the old incoming edge to be the new incoming edge. +  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (!BlocksToExtract.count(PN->getIncomingBlock(i))) +        PN->setIncomingBlock(i, newFuncRoot); +  } + +  // Look at all successors of the codeReplacer block.  If any of these blocks +  // had PHI nodes in them, we need to update the "from" block to be the code +  // replacer, not the original block in the extracted region. +  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), +                                 succ_end(codeReplacer)); +  for (unsigned i = 0, e = Succs.size(); i != e; ++i) +    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { +      PHINode *PN = cast<PHINode>(I); +      std::set<BasicBlock*> ProcessedPreds; +      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +        if (BlocksToExtract.count(PN->getIncomingBlock(i))) { +          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) +            PN->setIncomingBlock(i, codeReplacer); +          else { +            // There were multiple entries in the PHI for this block, now there +            // is only one, so remove the duplicated entries. +            PN->removeIncomingValue(i, false); +            --i; --e; +          } +        } +    } + +  //cerr << "NEW FUNCTION: " << *newFunction; +  //  verifyFunction(*newFunction); + +  //  cerr << "OLD FUNCTION: " << *oldFunction; +  //  verifyFunction(*oldFunction); + +  DEBUG(if (verifyFunction(*newFunction)) abort()); +  return newFunction; +} + +bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { +  // Deny code region if it contains allocas or vastarts. +  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); +       BB != e; ++BB) +    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); +         I != Ie; ++I) +      if (isa<AllocaInst>(*I)) +        return false; +      else if (const CallInst *CI = dyn_cast<CallInst>(I)) +        if (const Function *F = CI->getCalledFunction()) +          if (F->getIntrinsicID() == Intrinsic::vastart) +            return false; +  return true; +} + + +/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new +/// function +/// +Function* llvm::ExtractCodeRegion(DominatorTree &DT, +                                  const std::vector<BasicBlock*> &code, +                                  bool AggregateArgs) { +  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); +} + +/// ExtractBasicBlock - slurp a natural loop into a brand new function +/// +Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { +  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); +} + +/// ExtractBasicBlock - slurp a basic block into a brand new function +/// +Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { +  std::vector<BasicBlock*> Blocks; +  Blocks.push_back(BB); +  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); +} | 
