diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2017-04-16 16:01:22 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2017-04-16 16:01:22 +0000 | 
| commit | 71d5a2540a98c81f5bcaeb48805e0e2881f530ef (patch) | |
| tree | 5343938942df402b49ec7300a1c25a2d4ccd5821 /lib/Transforms/Utils/VNCoercion.cpp | |
| parent | 31bbf64f3a4974a2d6c8b3b27ad2f519caf74057 (diff) | |
Notes
Diffstat (limited to 'lib/Transforms/Utils/VNCoercion.cpp')
| -rw-r--r-- | lib/Transforms/Utils/VNCoercion.cpp | 482 | 
1 files changed, 482 insertions, 0 deletions
diff --git a/lib/Transforms/Utils/VNCoercion.cpp b/lib/Transforms/Utils/VNCoercion.cpp new file mode 100644 index 000000000000..4aeea02b1b1b --- /dev/null +++ b/lib/Transforms/Utils/VNCoercion.cpp @@ -0,0 +1,482 @@ +#include "llvm/Transforms/Utils/VNCoercion.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/MemoryDependenceAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/Support/Debug.h" + +#define DEBUG_TYPE "vncoerce" +namespace llvm { +namespace VNCoercion { + +/// Return true if coerceAvailableValueToLoadType will succeed. +bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, +                                     const DataLayout &DL) { +  // If the loaded or stored value is an first class array or struct, don't try +  // to transform them.  We need to be able to bitcast to integer. +  if (LoadTy->isStructTy() || LoadTy->isArrayTy() || +      StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy()) +    return false; + +  // The store has to be at least as big as the load. +  if (DL.getTypeSizeInBits(StoredVal->getType()) < DL.getTypeSizeInBits(LoadTy)) +    return false; + +  return true; +} + +template <class T, class HelperClass> +static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy, +                                               HelperClass &Helper, +                                               const DataLayout &DL) { +  assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) && +         "precondition violation - materialization can't fail"); +  if (auto *C = dyn_cast<Constant>(StoredVal)) +    if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) +      StoredVal = FoldedStoredVal; + +  // If this is already the right type, just return it. +  Type *StoredValTy = StoredVal->getType(); + +  uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy); +  uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy); + +  // If the store and reload are the same size, we can always reuse it. +  if (StoredValSize == LoadedValSize) { +    // Pointer to Pointer -> use bitcast. +    if (StoredValTy->getScalarType()->isPointerTy() && +        LoadedTy->getScalarType()->isPointerTy()) { +      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); +    } else { +      // Convert source pointers to integers, which can be bitcast. +      if (StoredValTy->getScalarType()->isPointerTy()) { +        StoredValTy = DL.getIntPtrType(StoredValTy); +        StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); +      } + +      Type *TypeToCastTo = LoadedTy; +      if (TypeToCastTo->getScalarType()->isPointerTy()) +        TypeToCastTo = DL.getIntPtrType(TypeToCastTo); + +      if (StoredValTy != TypeToCastTo) +        StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo); + +      // Cast to pointer if the load needs a pointer type. +      if (LoadedTy->getScalarType()->isPointerTy()) +        StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); +    } + +    if (auto *C = dyn_cast<ConstantExpr>(StoredVal)) +      if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) +        StoredVal = FoldedStoredVal; + +    return StoredVal; +  } +  // If the loaded value is smaller than the available value, then we can +  // extract out a piece from it.  If the available value is too small, then we +  // can't do anything. +  assert(StoredValSize >= LoadedValSize && +         "canCoerceMustAliasedValueToLoad fail"); + +  // Convert source pointers to integers, which can be manipulated. +  if (StoredValTy->getScalarType()->isPointerTy()) { +    StoredValTy = DL.getIntPtrType(StoredValTy); +    StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy); +  } + +  // Convert vectors and fp to integer, which can be manipulated. +  if (!StoredValTy->isIntegerTy()) { +    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize); +    StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy); +  } + +  // If this is a big-endian system, we need to shift the value down to the low +  // bits so that a truncate will work. +  if (DL.isBigEndian()) { +    uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) - +                        DL.getTypeStoreSizeInBits(LoadedTy); +    StoredVal = Helper.CreateLShr( +        StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt)); +  } + +  // Truncate the integer to the right size now. +  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize); +  StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy); + +  if (LoadedTy != NewIntTy) { +    // If the result is a pointer, inttoptr. +    if (LoadedTy->getScalarType()->isPointerTy()) +      StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy); +    else +      // Otherwise, bitcast. +      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy); +  } + +  if (auto *C = dyn_cast<Constant>(StoredVal)) +    if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL)) +      StoredVal = FoldedStoredVal; + +  return StoredVal; +} + +/// If we saw a store of a value to memory, and +/// then a load from a must-aliased pointer of a different type, try to coerce +/// the stored value.  LoadedTy is the type of the load we want to replace. +/// IRB is IRBuilder used to insert new instructions. +/// +/// If we can't do it, return null. +Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, +                                      IRBuilder<> &IRB, const DataLayout &DL) { +  return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL); +} + +/// This function is called when we have a memdep query of a load that ends up +/// being a clobbering memory write (store, memset, memcpy, memmove).  This +/// means that the write *may* provide bits used by the load but we can't be +/// sure because the pointers don't must-alias. +/// +/// Check this case to see if there is anything more we can do before we give +/// up.  This returns -1 if we have to give up, or a byte number in the stored +/// value of the piece that feeds the load. +static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, +                                          Value *WritePtr, +                                          uint64_t WriteSizeInBits, +                                          const DataLayout &DL) { +  // If the loaded or stored value is a first class array or struct, don't try +  // to transform them.  We need to be able to bitcast to integer. +  if (LoadTy->isStructTy() || LoadTy->isArrayTy()) +    return -1; + +  int64_t StoreOffset = 0, LoadOffset = 0; +  Value *StoreBase = +      GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL); +  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL); +  if (StoreBase != LoadBase) +    return -1; + +  // If the load and store are to the exact same address, they should have been +  // a must alias.  AA must have gotten confused. +  // FIXME: Study to see if/when this happens.  One case is forwarding a memset +  // to a load from the base of the memset. + +  // If the load and store don't overlap at all, the store doesn't provide +  // anything to the load.  In this case, they really don't alias at all, AA +  // must have gotten confused. +  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy); + +  if ((WriteSizeInBits & 7) | (LoadSize & 7)) +    return -1; +  uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes. +  LoadSize /= 8; + +  bool isAAFailure = false; +  if (StoreOffset < LoadOffset) +    isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset; +  else +    isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset; + +  if (isAAFailure) +    return -1; + +  // If the Load isn't completely contained within the stored bits, we don't +  // have all the bits to feed it.  We could do something crazy in the future +  // (issue a smaller load then merge the bits in) but this seems unlikely to be +  // valuable. +  if (StoreOffset > LoadOffset || +      StoreOffset + StoreSize < LoadOffset + LoadSize) +    return -1; + +  // Okay, we can do this transformation.  Return the number of bytes into the +  // store that the load is. +  return LoadOffset - StoreOffset; +} + +/// This function is called when we have a +/// memdep query of a load that ends up being a clobbering store. +int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, +                                   StoreInst *DepSI, const DataLayout &DL) { +  // Cannot handle reading from store of first-class aggregate yet. +  if (DepSI->getValueOperand()->getType()->isStructTy() || +      DepSI->getValueOperand()->getType()->isArrayTy()) +    return -1; + +  Value *StorePtr = DepSI->getPointerOperand(); +  uint64_t StoreSize = +      DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()); +  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize, +                                        DL); +} + +/// This function is called when we have a +/// memdep query of a load that ends up being clobbered by another load.  See if +/// the other load can feed into the second load. +int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, +                                  const DataLayout &DL) { +  // Cannot handle reading from store of first-class aggregate yet. +  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) +    return -1; + +  Value *DepPtr = DepLI->getPointerOperand(); +  uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()); +  int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL); +  if (R != -1) +    return R; + +  // If we have a load/load clobber an DepLI can be widened to cover this load, +  // then we should widen it! +  int64_t LoadOffs = 0; +  const Value *LoadBase = +      GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL); +  unsigned LoadSize = DL.getTypeStoreSize(LoadTy); + +  unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize( +      LoadBase, LoadOffs, LoadSize, DepLI); +  if (Size == 0) +    return -1; + +  // Check non-obvious conditions enforced by MDA which we rely on for being +  // able to materialize this potentially available value +  assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!"); +  assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load"); + +  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL); +} + +int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, +                                     MemIntrinsic *MI, const DataLayout &DL) { +  // If the mem operation is a non-constant size, we can't handle it. +  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); +  if (!SizeCst) +    return -1; +  uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8; + +  // If this is memset, we just need to see if the offset is valid in the size +  // of the memset.. +  if (MI->getIntrinsicID() == Intrinsic::memset) +    return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), +                                          MemSizeInBits, DL); + +  // If we have a memcpy/memmove, the only case we can handle is if this is a +  // copy from constant memory.  In that case, we can read directly from the +  // constant memory. +  MemTransferInst *MTI = cast<MemTransferInst>(MI); + +  Constant *Src = dyn_cast<Constant>(MTI->getSource()); +  if (!Src) +    return -1; + +  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL)); +  if (!GV || !GV->isConstant()) +    return -1; + +  // See if the access is within the bounds of the transfer. +  int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), +                                              MemSizeInBits, DL); +  if (Offset == -1) +    return Offset; + +  unsigned AS = Src->getType()->getPointerAddressSpace(); +  // Otherwise, see if we can constant fold a load from the constant with the +  // offset applied as appropriate. +  Src = +      ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); +  Constant *OffsetCst = +      ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); +  Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, +                                       OffsetCst); +  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); +  if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL)) +    return Offset; +  return -1; +} + +template <class T, class HelperClass> +static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy, +                                     HelperClass &Helper, +                                     const DataLayout &DL) { +  LLVMContext &Ctx = SrcVal->getType()->getContext(); + +  uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; +  uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8; +  // Compute which bits of the stored value are being used by the load.  Convert +  // to an integer type to start with. +  if (SrcVal->getType()->getScalarType()->isPointerTy()) +    SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType())); +  if (!SrcVal->getType()->isIntegerTy()) +    SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8)); + +  // Shift the bits to the least significant depending on endianness. +  unsigned ShiftAmt; +  if (DL.isLittleEndian()) +    ShiftAmt = Offset * 8; +  else +    ShiftAmt = (StoreSize - LoadSize - Offset) * 8; +  if (ShiftAmt) +    SrcVal = Helper.CreateLShr(SrcVal, +                               ConstantInt::get(SrcVal->getType(), ShiftAmt)); + +  if (LoadSize != StoreSize) +    SrcVal = Helper.CreateTruncOrBitCast(SrcVal, +                                         IntegerType::get(Ctx, LoadSize * 8)); +  return SrcVal; +} + +/// This function is called when we have a memdep query of a load that ends up +/// being a clobbering store.  This means that the store provides bits used by +/// the load but the pointers don't must-alias.  Check this case to see if +/// there is anything more we can do before we give up. +Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, +                            Instruction *InsertPt, const DataLayout &DL) { + +  IRBuilder<> Builder(InsertPt); +  SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL); +  return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL); +} + +Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset, +                                       Type *LoadTy, const DataLayout &DL) { +  ConstantFolder F; +  SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL); +  return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL); +} + +/// This function is called when we have a memdep query of a load that ends up +/// being a clobbering load.  This means that the load *may* provide bits used +/// by the load but we can't be sure because the pointers don't must-alias. +/// Check this case to see if there is anything more we can do before we give +/// up. +Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, +                           Instruction *InsertPt, const DataLayout &DL) { +  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to +  // widen SrcVal out to a larger load. +  unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); +  unsigned LoadSize = DL.getTypeStoreSize(LoadTy); +  if (Offset + LoadSize > SrcValStoreSize) { +    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); +    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); +    // If we have a load/load clobber an DepLI can be widened to cover this +    // load, then we should widen it to the next power of 2 size big enough! +    unsigned NewLoadSize = Offset + LoadSize; +    if (!isPowerOf2_32(NewLoadSize)) +      NewLoadSize = NextPowerOf2(NewLoadSize); + +    Value *PtrVal = SrcVal->getPointerOperand(); +    // Insert the new load after the old load.  This ensures that subsequent +    // memdep queries will find the new load.  We can't easily remove the old +    // load completely because it is already in the value numbering table. +    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); +    Type *DestPTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8); +    DestPTy = +        PointerType::get(DestPTy, PtrVal->getType()->getPointerAddressSpace()); +    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); +    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); +    LoadInst *NewLoad = Builder.CreateLoad(PtrVal); +    NewLoad->takeName(SrcVal); +    NewLoad->setAlignment(SrcVal->getAlignment()); + +    DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); +    DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); + +    // Replace uses of the original load with the wider load.  On a big endian +    // system, we need to shift down to get the relevant bits. +    Value *RV = NewLoad; +    if (DL.isBigEndian()) +      RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8); +    RV = Builder.CreateTrunc(RV, SrcVal->getType()); +    SrcVal->replaceAllUsesWith(RV); + +    SrcVal = NewLoad; +  } + +  return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL); +} + +Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset, +                                      Type *LoadTy, const DataLayout &DL) { +  unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType()); +  unsigned LoadSize = DL.getTypeStoreSize(LoadTy); +  if (Offset + LoadSize > SrcValStoreSize) +    return nullptr; +  return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL); +} + +template <class T, class HelperClass> +T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset, +                                Type *LoadTy, HelperClass &Helper, +                                const DataLayout &DL) { +  LLVMContext &Ctx = LoadTy->getContext(); +  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8; + +  // We know that this method is only called when the mem transfer fully +  // provides the bits for the load. +  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { +    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and +    // independently of what the offset is. +    T *Val = cast<T>(MSI->getValue()); +    if (LoadSize != 1) +      Val = +          Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8)); +    T *OneElt = Val; + +    // Splat the value out to the right number of bits. +    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) { +      // If we can double the number of bytes set, do it. +      if (NumBytesSet * 2 <= LoadSize) { +        T *ShVal = Helper.CreateShl( +            Val, ConstantInt::get(Val->getType(), NumBytesSet * 8)); +        Val = Helper.CreateOr(Val, ShVal); +        NumBytesSet <<= 1; +        continue; +      } + +      // Otherwise insert one byte at a time. +      T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8)); +      Val = Helper.CreateOr(OneElt, ShVal); +      ++NumBytesSet; +    } + +    return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL); +  } + +  // Otherwise, this is a memcpy/memmove from a constant global. +  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); +  Constant *Src = cast<Constant>(MTI->getSource()); +  unsigned AS = Src->getType()->getPointerAddressSpace(); + +  // Otherwise, see if we can constant fold a load from the constant with the +  // offset applied as appropriate. +  Src = +      ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS)); +  Constant *OffsetCst = +      ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); +  Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src, +                                       OffsetCst); +  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS)); +  return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL); +} + +/// This function is called when we have a +/// memdep query of a load that ends up being a clobbering mem intrinsic. +Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, +                              Type *LoadTy, Instruction *InsertPt, +                              const DataLayout &DL) { +  IRBuilder<> Builder(InsertPt); +  return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset, +                                                          LoadTy, Builder, DL); +} + +Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, +                                         Type *LoadTy, const DataLayout &DL) { +  // The only case analyzeLoadFromClobberingMemInst cannot be converted to a +  // constant is when it's a memset of a non-constant. +  if (auto *MSI = dyn_cast<MemSetInst>(SrcInst)) +    if (!isa<Constant>(MSI->getValue())) +      return nullptr; +  ConstantFolder F; +  return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset, +                                                                LoadTy, F, DL); +} +} // namespace VNCoercion +} // namespace llvm  | 
