diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2016-07-23 20:41:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2016-07-23 20:41:05 +0000 |
commit | 01095a5d43bbfde13731688ddcf6048ebb8b7721 (patch) | |
tree | 4def12e759965de927d963ac65840d663ef9d1ea /lib/Transforms/Vectorize/SLPVectorizer.cpp | |
parent | f0f4822ed4b66e3579e92a89f368f8fb860e218e (diff) |
Notes
Diffstat (limited to 'lib/Transforms/Vectorize/SLPVectorizer.cpp')
-rw-r--r-- | lib/Transforms/Vectorize/SLPVectorizer.cpp | 1364 |
1 files changed, 895 insertions, 469 deletions
diff --git a/lib/Transforms/Vectorize/SLPVectorizer.cpp b/lib/Transforms/Vectorize/SLPVectorizer.cpp index f69a4e52c7e1..8a3c4d14fecb 100644 --- a/lib/Transforms/Vectorize/SLPVectorizer.cpp +++ b/lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -15,21 +15,17 @@ // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// -#include "llvm/Transforms/Vectorize.h" -#include "llvm/ADT/MapVector.h" +#include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" @@ -44,12 +40,12 @@ #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/Analysis/VectorUtils.h" +#include "llvm/Transforms/Vectorize.h" #include <algorithm> -#include <map> #include <memory> using namespace llvm; +using namespace slpvectorizer; #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" @@ -82,11 +78,11 @@ static cl::opt<int> ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, cl::desc("Limit the size of the SLP scheduling region per block")); -namespace { +static cl::opt<int> MinVectorRegSizeOption( + "slp-min-reg-size", cl::init(128), cl::Hidden, + cl::desc("Attempt to vectorize for this register size in bits")); // FIXME: Set this via cl::opt to allow overriding. -static const unsigned MinVecRegSize = 128; - static const unsigned RecursionMaxDepth = 12; // Limit the number of alias checks. The limit is chosen so that @@ -134,8 +130,8 @@ static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { /// \returns True if all of the values in \p VL are constants. static bool allConstant(ArrayRef<Value *> VL) { - for (unsigned i = 0, e = VL.size(); i < e; ++i) - if (!isa<Constant>(VL[i])) + for (Value *i : VL) + if (!isa<Constant>(i)) return false; return true; } @@ -223,46 +219,6 @@ static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { } } -/// \returns \p I after propagating metadata from \p VL. -static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { - Instruction *I0 = cast<Instruction>(VL[0]); - SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; - I0->getAllMetadataOtherThanDebugLoc(Metadata); - - for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { - unsigned Kind = Metadata[i].first; - MDNode *MD = Metadata[i].second; - - for (int i = 1, e = VL.size(); MD && i != e; i++) { - Instruction *I = cast<Instruction>(VL[i]); - MDNode *IMD = I->getMetadata(Kind); - - switch (Kind) { - default: - MD = nullptr; // Remove unknown metadata - break; - case LLVMContext::MD_tbaa: - MD = MDNode::getMostGenericTBAA(MD, IMD); - break; - case LLVMContext::MD_alias_scope: - MD = MDNode::getMostGenericAliasScope(MD, IMD); - break; - case LLVMContext::MD_noalias: - MD = MDNode::intersect(MD, IMD); - break; - case LLVMContext::MD_fpmath: - MD = MDNode::getMostGenericFPMath(MD, IMD); - break; - case LLVMContext::MD_nontemporal: - MD = MDNode::intersect(MD, IMD); - break; - } - } - I->setMetadata(Kind, MD); - } - return I; -} - /// \returns The type that all of the values in \p VL have or null if there /// are different types. static Type* getSameType(ArrayRef<Value *> VL) { @@ -274,36 +230,17 @@ static Type* getSameType(ArrayRef<Value *> VL) { return Ty; } -/// \returns True if the ExtractElement instructions in VL can be vectorized -/// to use the original vector. -static bool CanReuseExtract(ArrayRef<Value *> VL) { - assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); - // Check if all of the extracts come from the same vector and from the - // correct offset. - Value *VL0 = VL[0]; - ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); - Value *Vec = E0->getOperand(0); - - // We have to extract from the same vector type. - unsigned NElts = Vec->getType()->getVectorNumElements(); - - if (NElts != VL.size()) - return false; - - // Check that all of the indices extract from the correct offset. - ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); - if (!CI || CI->getZExtValue()) - return false; - - for (unsigned i = 1, e = VL.size(); i < e; ++i) { - ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); +/// \returns True if Extract{Value,Element} instruction extracts element Idx. +static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { + assert(Opcode == Instruction::ExtractElement || + Opcode == Instruction::ExtractValue); + if (Opcode == Instruction::ExtractElement) { ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); - - if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) - return false; + return CI && CI->getZExtValue() == Idx; + } else { + ExtractValueInst *EI = cast<ExtractValueInst>(E); + return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; } - - return true; } /// \returns True if in-tree use also needs extract. This refers to @@ -323,7 +260,7 @@ static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, } case Instruction::Call: { CallInst *CI = cast<CallInst>(UserInst); - Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (hasVectorInstrinsicScalarOpd(ID, 1)) { return (CI->getArgOperand(1) == Scalar); } @@ -353,6 +290,8 @@ static bool isSimple(Instruction *I) { return true; } +namespace llvm { +namespace slpvectorizer { /// Bottom Up SLP Vectorizer. class BoUpSLP { public: @@ -363,11 +302,24 @@ public: BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, - DominatorTree *Dt, AssumptionCache *AC) + DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, + const DataLayout *DL) : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), - SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), - Builder(Se->getContext()) { + SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), + DL(DL), Builder(Se->getContext()) { CodeMetrics::collectEphemeralValues(F, AC, EphValues); + // Use the vector register size specified by the target unless overridden + // by a command-line option. + // TODO: It would be better to limit the vectorization factor based on + // data type rather than just register size. For example, x86 AVX has + // 256-bit registers, but it does not support integer operations + // at that width (that requires AVX2). + if (MaxVectorRegSizeOption.getNumOccurrences()) + MaxVecRegSize = MaxVectorRegSizeOption; + else + MaxVecRegSize = TTI->getRegisterBitWidth(true); + + MinVecRegSize = MinVectorRegSizeOption; } /// \brief Vectorize the tree that starts with the elements in \p VL. @@ -399,11 +351,9 @@ public: BlockScheduling *BS = Iter.second.get(); BS->clear(); } + MinBWs.clear(); } - /// \returns true if the memory operations A and B are consecutive. - bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL); - /// \brief Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); @@ -412,6 +362,32 @@ public: return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; } + /// \return The vector element size in bits to use when vectorizing the + /// expression tree ending at \p V. If V is a store, the size is the width of + /// the stored value. Otherwise, the size is the width of the largest loaded + /// value reaching V. This method is used by the vectorizer to calculate + /// vectorization factors. + unsigned getVectorElementSize(Value *V); + + /// Compute the minimum type sizes required to represent the entries in a + /// vectorizable tree. + void computeMinimumValueSizes(); + + // \returns maximum vector register size as set by TTI or overridden by cl::opt. + unsigned getMaxVecRegSize() const { + return MaxVecRegSize; + } + + // \returns minimum vector register size as set by cl::opt. + unsigned getMinVecRegSize() const { + return MinVecRegSize; + } + + /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. + /// + /// \returns number of elements in vector if isomorphism exists, 0 otherwise. + unsigned canMapToVector(Type *T, const DataLayout &DL) const; + private: struct TreeEntry; @@ -421,6 +397,10 @@ private: /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); + /// \returns True if the ExtractElement/ExtractValue instructions in VL can + /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). + bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; + /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); @@ -431,14 +411,6 @@ private: /// vectorized, or NULL. They may happen in cycles. Value *alreadyVectorized(ArrayRef<Value *> VL) const; - /// \brief Take the pointer operand from the Load/Store instruction. - /// \returns NULL if this is not a valid Load/Store instruction. - static Value *getPointerOperand(Value *I); - - /// \brief Take the address space operand from the Load/Store instruction. - /// \returns -1 if this is not a valid Load/Store instruction. - static unsigned getAddressSpaceOperand(Value *I); - /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. int getGatherCost(Type *Ty); @@ -719,8 +691,11 @@ private: }; #ifndef NDEBUG - friend raw_ostream &operator<<(raw_ostream &os, - const BoUpSLP::ScheduleData &SD); + friend inline raw_ostream &operator<<(raw_ostream &os, + const BoUpSLP::ScheduleData &SD) { + SD.dump(os); + return os; + } #endif /// Contains all scheduling data for a basic block. @@ -917,16 +892,21 @@ private: AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; + AssumptionCache *AC; + DemandedBits *DB; + const DataLayout *DL; + unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. + unsigned MinVecRegSize; // Set by cl::opt (default: 128). /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; + + /// A map of scalar integer values to the smallest bit width with which they + /// can legally be represented. + MapVector<Value *, uint64_t> MinBWs; }; -#ifndef NDEBUG -raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { - SD.dump(os); - return os; -} -#endif +} // end namespace llvm +} // end namespace slpvectorizer void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ArrayRef<Value *> UserIgnoreLst) { @@ -937,8 +917,8 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, buildTree_rec(Roots, 0); // Collect the values that we need to extract from the tree. - for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { - TreeEntry *Entry = &VectorizableTree[EIdx]; + for (TreeEntry &EIdx : VectorizableTree) { + TreeEntry *Entry = &EIdx; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { @@ -987,7 +967,7 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { - bool SameTy = getSameType(VL); (void)SameTy; + bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; bool isAltShuffle = false; assert(SameTy && "Invalid types!"); @@ -1138,16 +1118,17 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( + for (Value *j : VL) + Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( PH->getIncomingBlock(i))); buildTree_rec(Operands, Depth + 1); } return; } + case Instruction::ExtractValue: case Instruction::ExtractElement: { - bool Reuse = CanReuseExtract(VL); + bool Reuse = canReuseExtract(VL, Opcode); if (Reuse) { DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); } else { @@ -1164,11 +1145,10 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { // loading/storing it as an i8 struct. If we vectorize loads/stores from // such a struct we read/write packed bits disagreeing with the // unvectorized version. - const DataLayout &DL = F->getParent()->getDataLayout(); Type *ScalarTy = VL[0]->getType(); - if (DL.getTypeSizeInBits(ScalarTy) != - DL.getTypeAllocSizeInBits(ScalarTy)) { + if (DL->getTypeSizeInBits(ScalarTy) != + DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); @@ -1184,8 +1164,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { return; } - if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { - if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) { + if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { + if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { ++NumLoadsWantToChangeOrder; } BS.cancelScheduling(VL); @@ -1227,8 +1207,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } @@ -1256,8 +1236,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } @@ -1298,8 +1278,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } @@ -1346,18 +1326,17 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1); } return; } case Instruction::Store: { - const DataLayout &DL = F->getParent()->getDataLayout(); // Check if the stores are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) - if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { + if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); @@ -1368,8 +1347,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(0)); buildTree_rec(Operands, Depth + 1); return; @@ -1379,7 +1358,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { CallInst *CI = cast<CallInst>(VL[0]); // Check if this is an Intrinsic call or something that can be // represented by an intrinsic call - Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); @@ -1393,7 +1372,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 1, e = VL.size(); i != e; ++i) { CallInst *CI2 = dyn_cast<CallInst>(VL[i]); if (!CI2 || CI2->getCalledFunction() != Int || - getIntrinsicIDForCall(CI2, TLI) != ID) { + getVectorIntrinsicIDForCall(CI2, TLI) != ID || + !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] @@ -1413,14 +1393,25 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { return; } } + // Verify that the bundle operands are identical between the two calls. + if (CI->hasOperandBundles() && + !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), + CI->op_begin() + CI->getBundleOperandsEndIndex(), + CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { + BS.cancelScheduling(VL); + newTreeEntry(VL, false); + DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" + << *VL[i] << '\n'); + return; + } } newTreeEntry(VL, true); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) { - CallInst *CI2 = dyn_cast<CallInst>(VL[j]); + for (Value *j : VL) { + CallInst *CI2 = dyn_cast<CallInst>(j); Operands.push_back(CI2->getArgOperand(i)); } buildTree_rec(Operands, Depth + 1); @@ -1451,8 +1442,8 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. - for (unsigned j = 0; j < VL.size(); ++j) - Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); + for (Value *j : VL) + Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1); } @@ -1466,6 +1457,74 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { } } +unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { + unsigned N; + Type *EltTy; + auto *ST = dyn_cast<StructType>(T); + if (ST) { + N = ST->getNumElements(); + EltTy = *ST->element_begin(); + } else { + N = cast<ArrayType>(T)->getNumElements(); + EltTy = cast<ArrayType>(T)->getElementType(); + } + if (!isValidElementType(EltTy)) + return 0; + uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); + if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) + return 0; + if (ST) { + // Check that struct is homogeneous. + for (const auto *Ty : ST->elements()) + if (Ty != EltTy) + return 0; + } + return N; +} + +bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { + assert(Opcode == Instruction::ExtractElement || + Opcode == Instruction::ExtractValue); + assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); + // Check if all of the extracts come from the same vector and from the + // correct offset. + Value *VL0 = VL[0]; + Instruction *E0 = cast<Instruction>(VL0); + Value *Vec = E0->getOperand(0); + + // We have to extract from a vector/aggregate with the same number of elements. + unsigned NElts; + if (Opcode == Instruction::ExtractValue) { + const DataLayout &DL = E0->getModule()->getDataLayout(); + NElts = canMapToVector(Vec->getType(), DL); + if (!NElts) + return false; + // Check if load can be rewritten as load of vector. + LoadInst *LI = dyn_cast<LoadInst>(Vec); + if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) + return false; + } else { + NElts = Vec->getType()->getVectorNumElements(); + } + + if (NElts != VL.size()) + return false; + + // Check that all of the indices extract from the correct offset. + if (!matchExtractIndex(E0, 0, Opcode)) + return false; + + for (unsigned i = 1, e = VL.size(); i < e; ++i) { + Instruction *E = cast<Instruction>(VL[i]); + if (!matchExtractIndex(E, i, Opcode)) + return false; + if (E->getOperand(0) != Vec) + return false; + } + + return true; +} + int BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef<Value*> VL = E->Scalars; @@ -1474,6 +1533,12 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); + // If we have computed a smaller type for the expression, update VecTy so + // that the costs will be accurate. + if (MinBWs.count(VL[0])) + VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), + VL.size()); + if (E->NeedToGather) { if (allConstant(VL)) return 0; @@ -1489,11 +1554,12 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { case Instruction::PHI: { return 0; } + case Instruction::ExtractValue: case Instruction::ExtractElement: { - if (CanReuseExtract(VL)) { + if (canReuseExtract(VL, Opcode)) { int DeadCost = 0; for (unsigned i = 0, e = VL.size(); i < e; ++i) { - ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); + Instruction *E = cast<Instruction>(VL[i]); if (E->hasOneUse()) // Take credit for instruction that will become dead. DeadCost += @@ -1527,7 +1593,14 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { } case Instruction::FCmp: case Instruction::ICmp: - case Instruction::Select: + case Instruction::Select: { + // Calculate the cost of this instruction. + VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); + int ScalarCost = VecTy->getNumElements() * + TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); + int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); + return VecCost - ScalarCost; + } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: @@ -1546,59 +1619,48 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { case Instruction::And: case Instruction::Or: case Instruction::Xor: { - // Calculate the cost of this instruction. - int ScalarCost = 0; - int VecCost = 0; - if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || - Opcode == Instruction::Select) { - VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); - ScalarCost = VecTy->getNumElements() * - TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); - VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); - } else { - // Certain instructions can be cheaper to vectorize if they have a - // constant second vector operand. - TargetTransformInfo::OperandValueKind Op1VK = - TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Op2VK = - TargetTransformInfo::OK_UniformConstantValue; - TargetTransformInfo::OperandValueProperties Op1VP = - TargetTransformInfo::OP_None; - TargetTransformInfo::OperandValueProperties Op2VP = - TargetTransformInfo::OP_None; - - // If all operands are exactly the same ConstantInt then set the - // operand kind to OK_UniformConstantValue. - // If instead not all operands are constants, then set the operand kind - // to OK_AnyValue. If all operands are constants but not the same, - // then set the operand kind to OK_NonUniformConstantValue. - ConstantInt *CInt = nullptr; - for (unsigned i = 0; i < VL.size(); ++i) { - const Instruction *I = cast<Instruction>(VL[i]); - if (!isa<ConstantInt>(I->getOperand(1))) { - Op2VK = TargetTransformInfo::OK_AnyValue; - break; - } - if (i == 0) { - CInt = cast<ConstantInt>(I->getOperand(1)); - continue; - } - if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && - CInt != cast<ConstantInt>(I->getOperand(1))) - Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; + // Certain instructions can be cheaper to vectorize if they have a + // constant second vector operand. + TargetTransformInfo::OperandValueKind Op1VK = + TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Op2VK = + TargetTransformInfo::OK_UniformConstantValue; + TargetTransformInfo::OperandValueProperties Op1VP = + TargetTransformInfo::OP_None; + TargetTransformInfo::OperandValueProperties Op2VP = + TargetTransformInfo::OP_None; + + // If all operands are exactly the same ConstantInt then set the + // operand kind to OK_UniformConstantValue. + // If instead not all operands are constants, then set the operand kind + // to OK_AnyValue. If all operands are constants but not the same, + // then set the operand kind to OK_NonUniformConstantValue. + ConstantInt *CInt = nullptr; + for (unsigned i = 0; i < VL.size(); ++i) { + const Instruction *I = cast<Instruction>(VL[i]); + if (!isa<ConstantInt>(I->getOperand(1))) { + Op2VK = TargetTransformInfo::OK_AnyValue; + break; + } + if (i == 0) { + CInt = cast<ConstantInt>(I->getOperand(1)); + continue; } - // FIXME: Currently cost of model modification for division by - // power of 2 is handled only for X86. Add support for other targets. - if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && - CInt->getValue().isPowerOf2()) - Op2VP = TargetTransformInfo::OP_PowerOf2; - - ScalarCost = VecTy->getNumElements() * - TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, - Op1VP, Op2VP); - VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, - Op1VP, Op2VP); + if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && + CInt != cast<ConstantInt>(I->getOperand(1))) + Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; } + // FIXME: Currently cost of model modification for division by power of + // 2 is handled for X86 and AArch64. Add support for other targets. + if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && + CInt->getValue().isPowerOf2()) + Op2VP = TargetTransformInfo::OP_PowerOf2; + + int ScalarCost = VecTy->getNumElements() * + TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, + Op2VK, Op1VP, Op2VP); + int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, + Op1VP, Op2VP); return VecCost - ScalarCost; } case Instruction::GetElementPtr: { @@ -1617,21 +1679,25 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { } case Instruction::Load: { // Cost of wide load - cost of scalar loads. + unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); int ScalarLdCost = VecTy->getNumElements() * - TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); - int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); + TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); + int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, + VecTy, alignment, 0); return VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. + unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); int ScalarStCost = VecTy->getNumElements() * - TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); - int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); + TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); + int VecStCost = TTI->getMemoryOpCost(Instruction::Store, + VecTy, alignment, 0); return VecStCost - ScalarStCost; } case Instruction::Call: { CallInst *CI = cast<CallInst>(VL0); - Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); // Calculate the cost of the scalar and vector calls. SmallVector<Type*, 4> ScalarTys, VecTys; @@ -1641,10 +1707,14 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { VecTy->getNumElements())); } + FastMathFlags FMF; + if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) + FMF = FPMO->getFastMathFlags(); + int ScalarCallCost = VecTy->getNumElements() * - TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); + TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); - int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); + int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost << " (" << VecCallCost << "-" << ScalarCallCost << ")" @@ -1659,8 +1729,8 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { TargetTransformInfo::OK_AnyValue; int ScalarCost = 0; int VecCost = 0; - for (unsigned i = 0; i < VL.size(); ++i) { - Instruction *I = cast<Instruction>(VL[i]); + for (Value *i : VL) { + Instruction *I = cast<Instruction>(i); if (!I) break; ScalarCost += @@ -1715,8 +1785,8 @@ int BoUpSLP::getSpillCost() { SmallPtrSet<Instruction*, 4> LiveValues; Instruction *PrevInst = nullptr; - for (unsigned N = 0; N < VectorizableTree.size(); ++N) { - Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); + for (const auto &N : VectorizableTree) { + Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); if (!Inst) continue; @@ -1725,6 +1795,13 @@ int BoUpSLP::getSpillCost() { continue; } + // Update LiveValues. + LiveValues.erase(PrevInst); + for (auto &J : PrevInst->operands()) { + if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) + LiveValues.insert(cast<Instruction>(&*J)); + } + DEBUG( dbgs() << "SLP: #LV: " << LiveValues.size(); for (auto *X : LiveValues) @@ -1733,13 +1810,6 @@ int BoUpSLP::getSpillCost() { Inst->dump(); ); - // Update LiveValues. - LiveValues.erase(PrevInst); - for (auto &J : PrevInst->operands()) { - if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) - LiveValues.insert(cast<Instruction>(&*J)); - } - // Now find the sequence of instructions between PrevInst and Inst. BasicBlock::reverse_iterator InstIt(Inst->getIterator()), PrevInstIt(PrevInst->getIterator()); @@ -1763,7 +1833,6 @@ int BoUpSLP::getSpillCost() { PrevInst = Inst; } - DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); return Cost; } @@ -1785,7 +1854,7 @@ int BoUpSLP::getTreeCost() { for (TreeEntry &TE : VectorizableTree) { int C = getEntryCost(&TE); DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " - << TE.Scalars[0] << " .\n"); + << *TE.Scalars[0] << ".\n"); Cost += C; } @@ -1802,15 +1871,29 @@ int BoUpSLP::getTreeCost() { if (EphValues.count(EU.User)) continue; - VectorType *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); - ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, - EU.Lane); + // If we plan to rewrite the tree in a smaller type, we will need to sign + // extend the extracted value back to the original type. Here, we account + // for the extract and the added cost of the sign extend if needed. + auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); + auto *ScalarRoot = VectorizableTree[0].Scalars[0]; + if (MinBWs.count(ScalarRoot)) { + auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); + VecTy = VectorType::get(MinTy, BundleWidth); + ExtractCost += TTI->getExtractWithExtendCost( + Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); + } else { + ExtractCost += + TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); + } } - Cost += getSpillCost(); + int SpillCost = getSpillCost(); + Cost += SpillCost + ExtractCost; - DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); - return Cost + ExtractCost; + DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" + << "SLP: Extract Cost = " << ExtractCost << ".\n" + << "SLP: Total Cost = " << Cost << ".\n"); + return Cost; } int BoUpSLP::getGatherCost(Type *Ty) { @@ -1830,63 +1913,6 @@ int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { return getGatherCost(VecTy); } -Value *BoUpSLP::getPointerOperand(Value *I) { - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->getPointerOperand(); - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->getPointerOperand(); - return nullptr; -} - -unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { - if (LoadInst *L = dyn_cast<LoadInst>(I)) - return L->getPointerAddressSpace(); - if (StoreInst *S = dyn_cast<StoreInst>(I)) - return S->getPointerAddressSpace(); - return -1; -} - -bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { - Value *PtrA = getPointerOperand(A); - Value *PtrB = getPointerOperand(B); - unsigned ASA = getAddressSpaceOperand(A); - unsigned ASB = getAddressSpaceOperand(B); - - // Check that the address spaces match and that the pointers are valid. - if (!PtrA || !PtrB || (ASA != ASB)) - return false; - - // Make sure that A and B are different pointers of the same type. - if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) - return false; - - unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); - Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); - APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); - - APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); - PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); - PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); - - APInt OffsetDelta = OffsetB - OffsetA; - - // Check if they are based on the same pointer. That makes the offsets - // sufficient. - if (PtrA == PtrB) - return OffsetDelta == Size; - - // Compute the necessary base pointer delta to have the necessary final delta - // equal to the size. - APInt BaseDelta = Size - OffsetDelta; - - // Otherwise compute the distance with SCEV between the base pointers. - const SCEV *PtrSCEVA = SE->getSCEV(PtrA); - const SCEV *PtrSCEVB = SE->getSCEV(PtrB); - const SCEV *C = SE->getConstant(BaseDelta); - const SCEV *X = SE->getAddExpr(PtrSCEVA, C); - return X == PtrSCEVB; -} - // Reorder commutative operations in alternate shuffle if the resulting vectors // are consecutive loads. This would allow us to vectorize the tree. // If we have something like- @@ -1899,12 +1925,10 @@ bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right) { - const DataLayout &DL = F->getParent()->getDataLayout(); - // Push left and right operands of binary operation into Left and Right - for (unsigned i = 0, e = VL.size(); i < e; ++i) { - Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); - Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); + for (Value *i : VL) { + Left.push_back(cast<Instruction>(i)->getOperand(0)); + Right.push_back(cast<Instruction>(i)->getOperand(1)); } // Reorder if we have a commutative operation and consecutive access @@ -1914,10 +1938,11 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { Instruction *VL1 = cast<Instruction>(VL[j]); Instruction *VL2 = cast<Instruction>(VL[j + 1]); - if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { + if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; - } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { + } else if (VL2->isCommutative() && + isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } @@ -1928,10 +1953,11 @@ void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { Instruction *VL1 = cast<Instruction>(VL[j]); Instruction *VL2 = cast<Instruction>(VL[j + 1]); - if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { + if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; - } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { + } else if (VL2->isCommutative() && + isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } @@ -2061,8 +2087,6 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, if (SplatRight || SplatLeft) return; - const DataLayout &DL = F->getParent()->getDataLayout(); - // Finally check if we can get longer vectorizable chain by reordering // without breaking the good operand order detected above. // E.g. If we have something like- @@ -2081,7 +2105,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, for (unsigned j = 0; j < VL.size() - 1; ++j) { if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { - if (isConsecutiveAccess(L, L1, DL)) { + if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } @@ -2089,7 +2113,7 @@ void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, } if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { - if (isConsecutiveAccess(L, L1, DL)) { + if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } @@ -2185,7 +2209,6 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { return Gather(E->Scalars, VecTy); } - const DataLayout &DL = F->getParent()->getDataLayout(); unsigned Opcode = getSameOpcode(E->Scalars); switch (Opcode) { @@ -2225,13 +2248,25 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { } case Instruction::ExtractElement: { - if (CanReuseExtract(E->Scalars)) { + if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { Value *V = VL0->getOperand(0); E->VectorizedValue = V; return V; } return Gather(E->Scalars, VecTy); } + case Instruction::ExtractValue: { + if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { + LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); + Builder.SetInsertPoint(LI); + PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); + Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); + LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); + E->VectorizedValue = V; + return propagateMetadata(V, E->Scalars); + } + return Gather(E->Scalars, VecTy); + } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: @@ -2382,7 +2417,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { unsigned Alignment = LI->getAlignment(); LI = Builder.CreateLoad(VecPtr); if (!Alignment) { - Alignment = DL.getABITypeAlignment(ScalarLoadTy); + Alignment = DL->getABITypeAlignment(ScalarLoadTy); } LI->setAlignment(Alignment); E->VectorizedValue = LI; @@ -2413,7 +2448,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); if (!Alignment) { - Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType()); + Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); } S->setAlignment(Alignment); E->VectorizedValue = S; @@ -2481,10 +2516,12 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { } Module *M = F->getParent(); - Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); + Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; Function *CF = Intrinsic::getDeclaration(M, ID, Tys); - Value *V = Builder.CreateCall(CF, OpVecs); + SmallVector<OperandBundleDef, 1> OpBundles; + CI->getOperandBundlesAsDefs(OpBundles); + Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); // The scalar argument uses an in-tree scalar so we add the new vectorized // call to ExternalUses list to make sure that an extract will be @@ -2559,15 +2596,28 @@ Value *BoUpSLP::vectorizeTree() { } Builder.SetInsertPoint(&F->getEntryBlock().front()); - vectorizeTree(&VectorizableTree[0]); + auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); + + // If the vectorized tree can be rewritten in a smaller type, we truncate the + // vectorized root. InstCombine will then rewrite the entire expression. We + // sign extend the extracted values below. + auto *ScalarRoot = VectorizableTree[0].Scalars[0]; + if (MinBWs.count(ScalarRoot)) { + if (auto *I = dyn_cast<Instruction>(VectorRoot)) + Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); + auto BundleWidth = VectorizableTree[0].Scalars.size(); + auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); + auto *VecTy = VectorType::get(MinTy, BundleWidth); + auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); + VectorizableTree[0].VectorizedValue = Trunc; + } DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // Extract all of the elements with the external uses. - for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); - it != e; ++it) { - Value *Scalar = it->Scalar; - llvm::User *User = it->User; + for (const auto &ExternalUse : ExternalUses) { + Value *Scalar = ExternalUse.Scalar; + llvm::User *User = ExternalUse.User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. @@ -2583,15 +2633,24 @@ Value *BoUpSLP::vectorizeTree() { Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); - Value *Lane = Builder.getInt32(it->Lane); + Value *Lane = Builder.getInt32(ExternalUse.Lane); // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. - if (isa<Instruction>(Vec)){ + if (auto *VecI = dyn_cast<Instruction>(Vec)) { if (PHINode *PH = dyn_cast<PHINode>(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { - Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); + TerminatorInst *IncomingTerminator = + PH->getIncomingBlock(i)->getTerminator(); + if (isa<CatchSwitchInst>(IncomingTerminator)) { + Builder.SetInsertPoint(VecI->getParent(), + std::next(VecI->getIterator())); + } else { + Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); + } Value *Ex = Builder.CreateExtractElement(Vec, Lane); + if (MinBWs.count(ScalarRoot)) + Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(PH->getIncomingBlock(i)); PH->setOperand(i, Ex); } @@ -2599,12 +2658,16 @@ Value *BoUpSLP::vectorizeTree() { } else { Builder.SetInsertPoint(cast<Instruction>(User)); Value *Ex = Builder.CreateExtractElement(Vec, Lane); + if (MinBWs.count(ScalarRoot)) + Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(cast<Instruction>(User)->getParent()); User->replaceUsesOfWith(Scalar, Ex); } } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); + if (MinBWs.count(ScalarRoot)) + Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(&F->getEntryBlock()); User->replaceUsesOfWith(Scalar, Ex); } @@ -2613,8 +2676,8 @@ Value *BoUpSLP::vectorizeTree() { } // For each vectorized value: - for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { - TreeEntry *Entry = &VectorizableTree[EIdx]; + for (TreeEntry &EIdx : VectorizableTree) { + TreeEntry *Entry = &EIdx; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { @@ -2655,9 +2718,8 @@ void BoUpSLP::optimizeGatherSequence() { DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. - for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), - e = GatherSeq.end(); it != e; ++it) { - InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); + for (Instruction *it : GatherSeq) { + InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); if (!Insert) continue; @@ -2718,12 +2780,10 @@ void BoUpSLP::optimizeGatherSequence() { // Check if we can replace this instruction with any of the // visited instructions. - for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), - ve = Visited.end(); - v != ve; ++v) { - if (In->isIdenticalTo(*v) && - DT->dominates((*v)->getParent(), In->getParent())) { - In->replaceAllUsesWith(*v); + for (Instruction *v : Visited) { + if (In->isIdenticalTo(v) && + DT->dominates(v->getParent(), In->getParent())) { + In->replaceAllUsesWith(v); eraseInstruction(In); In = nullptr; break; @@ -3139,90 +3199,265 @@ void BoUpSLP::scheduleBlock(BlockScheduling *BS) { BS->ScheduleStart = nullptr; } -/// The SLPVectorizer Pass. -struct SLPVectorizer : public FunctionPass { - typedef SmallVector<StoreInst *, 8> StoreList; - typedef MapVector<Value *, StoreList> StoreListMap; +unsigned BoUpSLP::getVectorElementSize(Value *V) { + // If V is a store, just return the width of the stored value without + // traversing the expression tree. This is the common case. + if (auto *Store = dyn_cast<StoreInst>(V)) + return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); + + // If V is not a store, we can traverse the expression tree to find loads + // that feed it. The type of the loaded value may indicate a more suitable + // width than V's type. We want to base the vector element size on the width + // of memory operations where possible. + SmallVector<Instruction *, 16> Worklist; + SmallPtrSet<Instruction *, 16> Visited; + if (auto *I = dyn_cast<Instruction>(V)) + Worklist.push_back(I); + + // Traverse the expression tree in bottom-up order looking for loads. If we + // encounter an instruciton we don't yet handle, we give up. + auto MaxWidth = 0u; + auto FoundUnknownInst = false; + while (!Worklist.empty() && !FoundUnknownInst) { + auto *I = Worklist.pop_back_val(); + Visited.insert(I); + + // We should only be looking at scalar instructions here. If the current + // instruction has a vector type, give up. + auto *Ty = I->getType(); + if (isa<VectorType>(Ty)) + FoundUnknownInst = true; + + // If the current instruction is a load, update MaxWidth to reflect the + // width of the loaded value. + else if (isa<LoadInst>(I)) + MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); + + // Otherwise, we need to visit the operands of the instruction. We only + // handle the interesting cases from buildTree here. If an operand is an + // instruction we haven't yet visited, we add it to the worklist. + else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || + isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { + for (Use &U : I->operands()) + if (auto *J = dyn_cast<Instruction>(U.get())) + if (!Visited.count(J)) + Worklist.push_back(J); + } - /// Pass identification, replacement for typeid - static char ID; + // If we don't yet handle the instruction, give up. + else + FoundUnknownInst = true; + } - explicit SLPVectorizer() : FunctionPass(ID) { - initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); + // If we didn't encounter a memory access in the expression tree, or if we + // gave up for some reason, just return the width of V. + if (!MaxWidth || FoundUnknownInst) + return DL->getTypeSizeInBits(V->getType()); + + // Otherwise, return the maximum width we found. + return MaxWidth; +} + +// Determine if a value V in a vectorizable expression Expr can be demoted to a +// smaller type with a truncation. We collect the values that will be demoted +// in ToDemote and additional roots that require investigating in Roots. +static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, + SmallVectorImpl<Value *> &ToDemote, + SmallVectorImpl<Value *> &Roots) { + + // We can always demote constants. + if (isa<Constant>(V)) { + ToDemote.push_back(V); + return true; } - ScalarEvolution *SE; - TargetTransformInfo *TTI; - TargetLibraryInfo *TLI; - AliasAnalysis *AA; - LoopInfo *LI; - DominatorTree *DT; - AssumptionCache *AC; + // If the value is not an instruction in the expression with only one use, it + // cannot be demoted. + auto *I = dyn_cast<Instruction>(V); + if (!I || !I->hasOneUse() || !Expr.count(I)) + return false; - bool runOnFunction(Function &F) override { - if (skipOptnoneFunction(F)) + switch (I->getOpcode()) { + + // We can always demote truncations and extensions. Since truncations can + // seed additional demotion, we save the truncated value. + case Instruction::Trunc: + Roots.push_back(I->getOperand(0)); + case Instruction::ZExt: + case Instruction::SExt: + break; + + // We can demote certain binary operations if we can demote both of their + // operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || + !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) return false; + break; - SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - TLI = TLIP ? &TLIP->getTLI() : nullptr; - AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); - LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - - StoreRefs.clear(); - bool Changed = false; - - // If the target claims to have no vector registers don't attempt - // vectorization. - if (!TTI->getNumberOfRegisters(true)) + // We can demote selects if we can demote their true and false values. + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(I); + if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || + !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) return false; + break; + } - // Use the vector register size specified by the target unless overridden - // by a command-line option. - // TODO: It would be better to limit the vectorization factor based on - // data type rather than just register size. For example, x86 AVX has - // 256-bit registers, but it does not support integer operations - // at that width (that requires AVX2). - if (MaxVectorRegSizeOption.getNumOccurrences()) - MaxVecRegSize = MaxVectorRegSizeOption; - else - MaxVecRegSize = TTI->getRegisterBitWidth(true); + // We can demote phis if we can demote all their incoming operands. Note that + // we don't need to worry about cycles since we ensure single use above. + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(I); + for (Value *IncValue : PN->incoming_values()) + if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) + return false; + break; + } - // Don't vectorize when the attribute NoImplicitFloat is used. - if (F.hasFnAttribute(Attribute::NoImplicitFloat)) - return false; + // Otherwise, conservatively give up. + default: + return false; + } - DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); + // Record the value that we can demote. + ToDemote.push_back(V); + return true; +} - // Use the bottom up slp vectorizer to construct chains that start with - // store instructions. - BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC); +void BoUpSLP::computeMinimumValueSizes() { + // If there are no external uses, the expression tree must be rooted by a + // store. We can't demote in-memory values, so there is nothing to do here. + if (ExternalUses.empty()) + return; - // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to - // delete instructions. + // We only attempt to truncate integer expressions. + auto &TreeRoot = VectorizableTree[0].Scalars; + auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); + if (!TreeRootIT) + return; - // Scan the blocks in the function in post order. - for (auto BB : post_order(&F.getEntryBlock())) { - // Vectorize trees that end at stores. - if (unsigned count = collectStores(BB, R)) { - (void)count; - DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); - Changed |= vectorizeStoreChains(R); - } + // If the expression is not rooted by a store, these roots should have + // external uses. We will rely on InstCombine to rewrite the expression in + // the narrower type. However, InstCombine only rewrites single-use values. + // This means that if a tree entry other than a root is used externally, it + // must have multiple uses and InstCombine will not rewrite it. The code + // below ensures that only the roots are used externally. + SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); + for (auto &EU : ExternalUses) + if (!Expr.erase(EU.Scalar)) + return; + if (!Expr.empty()) + return; - // Vectorize trees that end at reductions. - Changed |= vectorizeChainsInBlock(BB, R); - } + // Collect the scalar values of the vectorizable expression. We will use this + // context to determine which values can be demoted. If we see a truncation, + // we mark it as seeding another demotion. + for (auto &Entry : VectorizableTree) + Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); - if (Changed) { - R.optimizeGatherSequence(); - DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); - DEBUG(verifyFunction(F)); + // Ensure the roots of the vectorizable tree don't form a cycle. They must + // have a single external user that is not in the vectorizable tree. + for (auto *Root : TreeRoot) + if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) + return; + + // Conservatively determine if we can actually truncate the roots of the + // expression. Collect the values that can be demoted in ToDemote and + // additional roots that require investigating in Roots. + SmallVector<Value *, 32> ToDemote; + SmallVector<Value *, 4> Roots; + for (auto *Root : TreeRoot) + if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) + return; + + // The maximum bit width required to represent all the values that can be + // demoted without loss of precision. It would be safe to truncate the roots + // of the expression to this width. + auto MaxBitWidth = 8u; + + // We first check if all the bits of the roots are demanded. If they're not, + // we can truncate the roots to this narrower type. + for (auto *Root : TreeRoot) { + auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); + MaxBitWidth = std::max<unsigned>( + Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); + } + + // If all the bits of the roots are demanded, we can try a little harder to + // compute a narrower type. This can happen, for example, if the roots are + // getelementptr indices. InstCombine promotes these indices to the pointer + // width. Thus, all their bits are technically demanded even though the + // address computation might be vectorized in a smaller type. + // + // We start by looking at each entry that can be demoted. We compute the + // maximum bit width required to store the scalar by using ValueTracking to + // compute the number of high-order bits we can truncate. + if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { + MaxBitWidth = 8u; + for (auto *Scalar : ToDemote) { + auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); + auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); + MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); } - return Changed; + } + + // Round MaxBitWidth up to the next power-of-two. + if (!isPowerOf2_64(MaxBitWidth)) + MaxBitWidth = NextPowerOf2(MaxBitWidth); + + // If the maximum bit width we compute is less than the with of the roots' + // type, we can proceed with the narrowing. Otherwise, do nothing. + if (MaxBitWidth >= TreeRootIT->getBitWidth()) + return; + + // If we can truncate the root, we must collect additional values that might + // be demoted as a result. That is, those seeded by truncations we will + // modify. + while (!Roots.empty()) + collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); + + // Finally, map the values we can demote to the maximum bit with we computed. + for (auto *Scalar : ToDemote) + MinBWs[Scalar] = MaxBitWidth; +} + +namespace { +/// The SLPVectorizer Pass. +struct SLPVectorizer : public FunctionPass { + SLPVectorizerPass Impl; + + /// Pass identification, replacement for typeid + static char ID; + + explicit SLPVectorizer() : FunctionPass(ID) { + initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); + } + + + bool doInitialization(Module &M) override { + return false; + } + + bool runOnFunction(Function &F) override { + if (skipFunction(F)) + return false; + + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; + auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); + + return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); } void getAnalysisUsage(AnalysisUsage &AU) const override { @@ -3233,51 +3468,105 @@ struct SLPVectorizer : public FunctionPass { AU.addRequired<TargetTransformInfoWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<DemandedBitsWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.setPreservesCFG(); } +}; +} // end anonymous namespace -private: +PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { + auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); + auto *TTI = &AM.getResult<TargetIRAnalysis>(F); + auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); + auto *AA = &AM.getResult<AAManager>(F); + auto *LI = &AM.getResult<LoopAnalysis>(F); + auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); + auto *AC = &AM.getResult<AssumptionAnalysis>(F); + auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); + + bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); + if (!Changed) + return PreservedAnalyses::all(); + PreservedAnalyses PA; + PA.preserve<LoopAnalysis>(); + PA.preserve<DominatorTreeAnalysis>(); + PA.preserve<AAManager>(); + PA.preserve<GlobalsAA>(); + return PA; +} - /// \brief Collect memory references and sort them according to their base - /// object. We sort the stores to their base objects to reduce the cost of the - /// quadratic search on the stores. TODO: We can further reduce this cost - /// if we flush the chain creation every time we run into a memory barrier. - unsigned collectStores(BasicBlock *BB, BoUpSLP &R); +bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, + TargetTransformInfo *TTI_, + TargetLibraryInfo *TLI_, AliasAnalysis *AA_, + LoopInfo *LI_, DominatorTree *DT_, + AssumptionCache *AC_, DemandedBits *DB_) { + SE = SE_; + TTI = TTI_; + TLI = TLI_; + AA = AA_; + LI = LI_; + DT = DT_; + AC = AC_; + DB = DB_; + DL = &F.getParent()->getDataLayout(); + + Stores.clear(); + GEPs.clear(); + bool Changed = false; - /// \brief Try to vectorize a chain that starts at two arithmetic instrs. - bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); + // If the target claims to have no vector registers don't attempt + // vectorization. + if (!TTI->getNumberOfRegisters(true)) + return false; - /// \brief Try to vectorize a list of operands. - /// \@param BuildVector A list of users to ignore for the purpose of - /// scheduling and that don't need extracting. - /// \returns true if a value was vectorized. - bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, - ArrayRef<Value *> BuildVector = None, - bool allowReorder = false); + // Don't vectorize when the attribute NoImplicitFloat is used. + if (F.hasFnAttribute(Attribute::NoImplicitFloat)) + return false; - /// \brief Try to vectorize a chain that may start at the operands of \V; - bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); + DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); - /// \brief Vectorize the stores that were collected in StoreRefs. - bool vectorizeStoreChains(BoUpSLP &R); + // Use the bottom up slp vectorizer to construct chains that start with + // store instructions. + BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); - /// \brief Scan the basic block and look for patterns that are likely to start - /// a vectorization chain. - bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); + // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to + // delete instructions. - bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, - BoUpSLP &R, unsigned VecRegSize); + // Scan the blocks in the function in post order. + for (auto BB : post_order(&F.getEntryBlock())) { + collectSeedInstructions(BB); - bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, - BoUpSLP &R); -private: - StoreListMap StoreRefs; - unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. -}; + // Vectorize trees that end at stores. + if (!Stores.empty()) { + DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() + << " underlying objects.\n"); + Changed |= vectorizeStoreChains(R); + } + + // Vectorize trees that end at reductions. + Changed |= vectorizeChainsInBlock(BB, R); + + // Vectorize the index computations of getelementptr instructions. This + // is primarily intended to catch gather-like idioms ending at + // non-consecutive loads. + if (!GEPs.empty()) { + DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() + << " underlying objects.\n"); + Changed |= vectorizeGEPIndices(BB, R); + } + } + + if (Changed) { + R.optimizeGatherSequence(); + DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); + DEBUG(verifyFunction(F)); + } + return Changed; +} /// \brief Check that the Values in the slice in VL array are still existent in /// the WeakVH array. @@ -3290,15 +3579,13 @@ static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, return !std::equal(VL.begin(), VL.end(), VH.begin()); } -bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, - int CostThreshold, BoUpSLP &R, - unsigned VecRegSize) { +bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, + int CostThreshold, BoUpSLP &R, + unsigned VecRegSize) { unsigned ChainLen = Chain.size(); DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen << "\n"); - Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); - auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); - unsigned Sz = DL.getTypeSizeInBits(StoreTy); + unsigned Sz = R.getVectorElementSize(Chain[0]); unsigned VF = VecRegSize / Sz; if (!isPowerOf2_32(Sz) || VF < 2) @@ -3322,6 +3609,7 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, ArrayRef<Value *> Operands = Chain.slice(i, VF); R.buildTree(Operands); + R.computeMinimumValueSizes(); int Cost = R.getTreeCost(); @@ -3339,8 +3627,8 @@ bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, return Changed; } -bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, - int costThreshold, BoUpSLP &R) { +bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, + int costThreshold, BoUpSLP &R) { SetVector<StoreInst *> Heads, Tails; SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; @@ -3353,7 +3641,6 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, // all of the pairs of stores that follow each other. SmallVector<unsigned, 16> IndexQueue; for (unsigned i = 0, e = Stores.size(); i < e; ++i) { - const DataLayout &DL = Stores[i]->getModule()->getDataLayout(); IndexQueue.clear(); // If a store has multiple consecutive store candidates, search Stores // array according to the sequence: from i+1 to e, then from i-1 to 0. @@ -3366,7 +3653,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, IndexQueue.push_back(j - 1); for (auto &k : IndexQueue) { - if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) { + if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { Tails.insert(Stores[k]); Heads.insert(Stores[i]); ConsecutiveChain[Stores[i]] = Stores[k]; @@ -3396,7 +3683,7 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, // FIXME: Is division-by-2 the correct step? Should we assert that the // register size is a power-of-2? - for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { + for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { // Mark the vectorized stores so that we don't vectorize them again. VectorizedStores.insert(Operands.begin(), Operands.end()); @@ -3409,45 +3696,53 @@ bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, return Changed; } +void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { -unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { - unsigned count = 0; - StoreRefs.clear(); - const DataLayout &DL = BB->getModule()->getDataLayout(); - for (Instruction &I : *BB) { - StoreInst *SI = dyn_cast<StoreInst>(&I); - if (!SI) - continue; - - // Don't touch volatile stores. - if (!SI->isSimple()) - continue; + // Initialize the collections. We will make a single pass over the block. + Stores.clear(); + GEPs.clear(); - // Check that the pointer points to scalars. - Type *Ty = SI->getValueOperand()->getType(); - if (!isValidElementType(Ty)) - continue; + // Visit the store and getelementptr instructions in BB and organize them in + // Stores and GEPs according to the underlying objects of their pointer + // operands. + for (Instruction &I : *BB) { - // Find the base pointer. - Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); + // Ignore store instructions that are volatile or have a pointer operand + // that doesn't point to a scalar type. + if (auto *SI = dyn_cast<StoreInst>(&I)) { + if (!SI->isSimple()) + continue; + if (!isValidElementType(SI->getValueOperand()->getType())) + continue; + Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); + } - // Save the store locations. - StoreRefs[Ptr].push_back(SI); - count++; + // Ignore getelementptr instructions that have more than one index, a + // constant index, or a pointer operand that doesn't point to a scalar + // type. + else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { + auto Idx = GEP->idx_begin()->get(); + if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) + continue; + if (!isValidElementType(Idx->getType())) + continue; + if (GEP->getType()->isVectorTy()) + continue; + GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); + } } - return count; } -bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { +bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = { A, B }; return tryToVectorizeList(VL, R, None, true); } -bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, - ArrayRef<Value *> BuildVector, - bool allowReorder) { +bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, + ArrayRef<Value *> BuildVector, + bool allowReorder) { if (VL.size() < 2) return false; @@ -3459,13 +3754,11 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, return false; unsigned Opcode0 = I0->getOpcode(); - const DataLayout &DL = I0->getModule()->getDataLayout(); - Type *Ty0 = I0->getType(); - unsigned Sz = DL.getTypeSizeInBits(Ty0); // FIXME: Register size should be a parameter to this function, so we can // try different vectorization factors. - unsigned VF = MinVecRegSize / Sz; + unsigned Sz = R.getVectorElementSize(I0); + unsigned VF = R.getMinVecRegSize() / Sz; for (Value *V : VL) { Type *Ty = V->getType(); @@ -3513,6 +3806,7 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, Value *ReorderedOps[] = { Ops[1], Ops[0] }; R.buildTree(ReorderedOps, None); } + R.computeMinimumValueSizes(); int Cost = R.getTreeCost(); if (Cost < -SLPCostThreshold) { @@ -3529,15 +3823,16 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); unsigned VecIdx = 0; for (auto &V : BuildVectorSlice) { - IRBuilder<true, NoFolder> Builder( - InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); - InsertElementInst *IE = cast<InsertElementInst>(V); + IRBuilder<NoFolder> Builder(InsertAfter->getParent(), + ++BasicBlock::iterator(InsertAfter)); + Instruction *I = cast<Instruction>(V); + assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( VectorizedRoot, Builder.getInt32(VecIdx++))); - IE->setOperand(1, Extract); - IE->removeFromParent(); - IE->insertAfter(Extract); - InsertAfter = IE; + I->setOperand(1, Extract); + I->removeFromParent(); + I->insertAfter(Extract); + InsertAfter = I; } } // Move to the next bundle. @@ -3549,7 +3844,7 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, return Changed; } -bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { +bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { if (!V) return false; @@ -3662,9 +3957,14 @@ public: /// The width of one full horizontal reduction operation. unsigned ReduxWidth; - HorizontalReduction() - : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), - ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0) {} + /// Minimal width of available vector registers. It's used to determine + /// ReduxWidth. + unsigned MinVecRegSize; + + HorizontalReduction(unsigned MinVecRegSize) + : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), + ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), + MinVecRegSize(MinVecRegSize) {} /// \brief Try to find a reduction tree. bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { @@ -3779,6 +4079,7 @@ public: for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); + V.computeMinimumValueSizes(); // Estimate cost. int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); @@ -3928,6 +4229,25 @@ static bool findBuildVector(InsertElementInst *FirstInsertElem, return false; } +/// \brief Like findBuildVector, but looks backwards for construction of aggregate. +/// +/// \return true if it matches. +static bool findBuildAggregate(InsertValueInst *IV, + SmallVectorImpl<Value *> &BuildVector, + SmallVectorImpl<Value *> &BuildVectorOpds) { + if (!IV->hasOneUse()) + return false; + Value *V = IV->getAggregateOperand(); + if (!isa<UndefValue>(V)) { + InsertValueInst *I = dyn_cast<InsertValueInst>(V); + if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) + return false; + } + BuildVector.push_back(IV); + BuildVectorOpds.push_back(IV->getInsertedValueOperand()); + return true; +} + static bool PhiTypeSorterFunc(Value *V, Value *V2) { return V->getType() < V2->getType(); } @@ -3991,11 +4311,12 @@ static Value *getReductionValue(const DominatorTree *DT, PHINode *P, /// \returns true if a horizontal reduction was matched and reduced. /// \returns false if a horizontal reduction was not matched. static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, - BoUpSLP &R, TargetTransformInfo *TTI) { + BoUpSLP &R, TargetTransformInfo *TTI, + unsigned MinRegSize) { if (!ShouldVectorizeHor) return false; - HorizontalReduction HorRdx; + HorizontalReduction HorRdx(MinRegSize); if (!HorRdx.matchAssociativeReduction(P, BI)) return false; @@ -4008,7 +4329,7 @@ static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, return HorRdx.tryToReduce(R, TTI); } -bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { +bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector<Value *, 4> Incoming; SmallSet<Value *, 16> VisitedInstrs; @@ -4083,7 +4404,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { continue; // Try to match and vectorize a horizontal reduction. - if (canMatchHorizontalReduction(P, BI, R, TTI)) { + if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { Changed = true; it = BB->begin(); e = BB->end(); @@ -4110,7 +4431,8 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { if (StoreInst *SI = dyn_cast<StoreInst>(it)) if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(SI->getValueOperand())) { - if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI) || + if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, + R.getMinVecRegSize()) || tryToVectorize(BinOp, R)) { Changed = true; it = BB->begin(); @@ -4178,16 +4500,121 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { continue; } + + // Try to vectorize trees that start at insertvalue instructions feeding into + // a store. + if (StoreInst *SI = dyn_cast<StoreInst>(it)) { + if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { + const DataLayout &DL = BB->getModule()->getDataLayout(); + if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { + SmallVector<Value *, 16> BuildVector; + SmallVector<Value *, 16> BuildVectorOpds; + if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) + continue; + + DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); + if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { + Changed = true; + it = BB->begin(); + e = BB->end(); + } + continue; + } + } + } } return Changed; } -bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { +bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { + auto Changed = false; + for (auto &Entry : GEPs) { + + // If the getelementptr list has fewer than two elements, there's nothing + // to do. + if (Entry.second.size() < 2) + continue; + + DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " + << Entry.second.size() << ".\n"); + + // We process the getelementptr list in chunks of 16 (like we do for + // stores) to minimize compile-time. + for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { + auto Len = std::min<unsigned>(BE - BI, 16); + auto GEPList = makeArrayRef(&Entry.second[BI], Len); + + // Initialize a set a candidate getelementptrs. Note that we use a + // SetVector here to preserve program order. If the index computations + // are vectorizable and begin with loads, we want to minimize the chance + // of having to reorder them later. + SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); + + // Some of the candidates may have already been vectorized after we + // initially collected them. If so, the WeakVHs will have nullified the + // values, so remove them from the set of candidates. + Candidates.remove(nullptr); + + // Remove from the set of candidates all pairs of getelementptrs with + // constant differences. Such getelementptrs are likely not good + // candidates for vectorization in a bottom-up phase since one can be + // computed from the other. We also ensure all candidate getelementptr + // indices are unique. + for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { + auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); + if (!Candidates.count(GEPI)) + continue; + auto *SCEVI = SE->getSCEV(GEPList[I]); + for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { + auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); + auto *SCEVJ = SE->getSCEV(GEPList[J]); + if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { + Candidates.remove(GEPList[I]); + Candidates.remove(GEPList[J]); + } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { + Candidates.remove(GEPList[J]); + } + } + } + + // We break out of the above computation as soon as we know there are + // fewer than two candidates remaining. + if (Candidates.size() < 2) + continue; + + // Add the single, non-constant index of each candidate to the bundle. We + // ensured the indices met these constraints when we originally collected + // the getelementptrs. + SmallVector<Value *, 16> Bundle(Candidates.size()); + auto BundleIndex = 0u; + for (auto *V : Candidates) { + auto *GEP = cast<GetElementPtrInst>(V); + auto *GEPIdx = GEP->idx_begin()->get(); + assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); + Bundle[BundleIndex++] = GEPIdx; + } + + // Try and vectorize the indices. We are currently only interested in + // gather-like cases of the form: + // + // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... + // + // where the loads of "a", the loads of "b", and the subtractions can be + // performed in parallel. It's likely that detecting this pattern in a + // bottom-up phase will be simpler and less costly than building a + // full-blown top-down phase beginning at the consecutive loads. + Changed |= tryToVectorizeList(Bundle, R); + } + } + return Changed; +} + +bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. - for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); - it != e; ++it) { + for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; + ++it) { if (it->second.size() < 2) continue; @@ -4207,8 +4634,6 @@ bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { return Changed; } -} // end anonymous namespace - char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) @@ -4217,6 +4642,7 @@ INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) namespace llvm { |