diff options
| author | John Birrell <jb@FreeBSD.org> | 1998-05-08 05:41:57 +0000 | 
|---|---|---|
| committer | John Birrell <jb@FreeBSD.org> | 1998-05-08 05:41:57 +0000 | 
| commit | 184fcab826ceaf3e680e4d1aa564078f7cd8ab5a (patch) | |
| tree | 5946c78f76feb1fc6b8a384f9f2009365350a85d /lib/libc/stdlib | |
| parent | f9a8e5fafb6b35a08012a7f4ba7c169599de64fe (diff) | |
Notes
Diffstat (limited to 'lib/libc/stdlib')
| -rw-r--r-- | lib/libc/stdlib/Makefile.inc | 13 | ||||
| -rw-r--r-- | lib/libc/stdlib/netbsd_strtod.c | 2517 | 
2 files changed, 2528 insertions, 2 deletions
diff --git a/lib/libc/stdlib/Makefile.inc b/lib/libc/stdlib/Makefile.inc index 6ad404ef7976..0d7ae27093ad 100644 --- a/lib/libc/stdlib/Makefile.inc +++ b/lib/libc/stdlib/Makefile.inc @@ -1,5 +1,5 @@  #	from @(#)Makefile.inc	8.3 (Berkeley) 2/4/95 -#	$Id: Makefile.inc,v 1.13 1997/10/21 08:41:13 bde Exp $ +#	$Id: Makefile.inc,v 1.14 1998/02/20 08:41:46 jb Exp $  # machine-independent stdlib sources  .PATH: ${.CURDIR}/../libc/${MACHINE_ARCH}/stdlib ${.CURDIR}/../libc/stdlib @@ -7,9 +7,18 @@  MISRCS+=abort.c abs.c atexit.c atof.c atoi.c atol.c bsearch.c calloc.c div.c \  	exit.c getenv.c getopt.c getsubopt.c heapsort.c labs.c ldiv.c \  	malloc.c merge.c putenv.c qsort.c radixsort.c rand.c random.c \ -	realpath.c setenv.c strhash.c strtod.c strtol.c strtoq.c strtoul.c \ +	realpath.c setenv.c strhash.c strtol.c strtoq.c strtoul.c \  	strtouq.c system.c +.if ${MACHINE_ARCH} == "alpha" +#  XXX Temporary until the assumption that a long is 32-bits is resolved +#  XXX FreeBSD's code. NetBSD kludged this with Long = int32_t and +#  XXX ULong = u_int32_t +SRCS+=	netbsd_strtod.c +.else +SRCS+=	strtod.c +.endif +  # machine-dependent stdlib sources  .include "${.CURDIR}/../libc/${MACHINE_ARCH}/stdlib/Makefile.inc" diff --git a/lib/libc/stdlib/netbsd_strtod.c b/lib/libc/stdlib/netbsd_strtod.c new file mode 100644 index 000000000000..72cd366ff8db --- /dev/null +++ b/lib/libc/stdlib/netbsd_strtod.c @@ -0,0 +1,2517 @@ +/*	From: NetBSD: strtod.c,v 1.26 1998/02/03 18:44:21 perry Exp */ +/*	$Id$	*/ + +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to +	David M. Gay +	AT&T Bell Laboratories, Room 2C-463 +	600 Mountain Avenue +	Murray Hill, NJ 07974-2070 +	U.S.A. +	dmg@research.att.com or research!dmg + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are + * broken by the IEEE round-even rule.  Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + *	1. We only require IEEE, IBM, or VAX double-precision + *		arithmetic (not IEEE double-extended). + *	2. We get by with floating-point arithmetic in a case that + *		Clinger missed -- when we're computing d * 10^n + *		for a small integer d and the integer n is not too + *		much larger than 22 (the maximum integer k for which + *		we can represent 10^k exactly), we may be able to + *		compute (d*10^k) * 10^(e-k) with just one roundoff. + *	3. Rather than a bit-at-a-time adjustment of the binary + *		result in the hard case, we use floating-point + *		arithmetic to determine the adjustment to within + *		one bit; only in really hard cases do we need to + *		compute a second residual. + *	4. Because of 3., we don't need a large table of powers of 10 + *		for ten-to-e (just some small tables, e.g. of 10^k + *		for 0 <= k <= 22). + */ + +/* + * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least + *	significant byte has the lowest address. + * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most + *	significant byte has the lowest address. + * #define Long int on machines with 32-bit ints and 64-bit longs. + * #define Sudden_Underflow for IEEE-format machines without gradual + *	underflow (i.e., that flush to zero on underflow). + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic. + * #define Unsigned_Shifts if >> does treats its left operand as unsigned. + * #define No_leftright to omit left-right logic in fast floating-point + *	computation of dtoa. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + *	that use extended-precision instructions to compute rounded + *	products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + *	products but inaccurate quotients, e.g., for Intel i860. + * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision + *	integer arithmetic.  Whether this speeds things up or slows things + *	down depends on the machine and the number being converted. + * #define KR_headers for old-style C function headers. + * #define Bad_float_h if your system lacks a float.h or if it does not + *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) + *	if memory is available and otherwise does something you deem + *	appropriate.  If MALLOC is undefined, malloc will be invoked + *	directly -- and assumed always to succeed. + */ + +#include <sys/cdefs.h> +#if defined(LIBC_SCCS) && !defined(lint) +__RCSID("$NetBSD: strtod.c,v 1.26 1998/02/03 18:44:21 perry Exp $"); +#endif /* LIBC_SCCS and not lint */ + +#if defined(__m68k__) || defined(__sparc__) || defined(__i386__) || \ +    defined(__mips__) || defined(__ns32k__) || defined(__alpha__) || \ +    defined(__powerpc__) +#include <sys/types.h> +#if BYTE_ORDER == BIG_ENDIAN +#define IEEE_BIG_ENDIAN +#else +#define IEEE_LITTLE_ENDIAN +#endif +#endif + +#ifdef __arm32__ +/* + * Although the CPU is little endian the FP has different + * byte and word endianness. The byte order is still little endian + * but the word order is big endian. + */ +#define IEEE_BIG_ENDIAN +#endif + +#ifdef vax +#define VAX +#endif + +#define Long	int32_t +#define ULong	u_int32_t + +#ifdef DEBUG +#include "stdio.h" +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#endif + +#ifdef __cplusplus +#include "malloc.h" +#include "memory.h" +#else +#ifndef KR_headers +#include "stdlib.h" +#include "string.h" +#include "locale.h" +#else +#include "malloc.h" +#include "memory.h" +#endif +#endif +char *__dtoa __P((double, int, int, int *, int *, char **)); + +#ifdef MALLOC +#ifdef KR_headers +extern char *MALLOC(); +#else +extern void *MALLOC(size_t); +#endif +#else +#define MALLOC malloc +#endif + +#include "ctype.h" +#include "errno.h" + +#ifdef Bad_float_h +#undef __STDC__ +#ifdef IEEE_BIG_ENDIAN +#define IEEE_ARITHMETIC +#endif +#ifdef IEEE_LITTLE_ENDIAN +#define IEEE_ARITHMETIC +#endif + +#ifdef IEEE_ARITHMETIC +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#define FLT_ROUNDS 1 +#define DBL_MAX 1.7976931348623157e+308 +#endif + +#ifdef IBM +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 75 +#define DBL_MAX_EXP 63 +#define FLT_RADIX 16 +#define FLT_ROUNDS 0 +#define DBL_MAX 7.2370055773322621e+75 +#endif + +#ifdef VAX +#define DBL_DIG 16 +#define DBL_MAX_10_EXP 38 +#define DBL_MAX_EXP 127 +#define FLT_RADIX 2 +#define FLT_ROUNDS 1 +#define DBL_MAX 1.7014118346046923e+38 +#endif + +#ifndef LONG_MAX +#define LONG_MAX 2147483647 +#endif +#else +#include "float.h" +#endif +#ifndef __MATH_H__ +#include "math.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#ifndef CONST +#ifdef KR_headers +#define CONST /* blank */ +#else +#define CONST const +#endif +#endif + +#ifdef Unsigned_Shifts +#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000; +#else +#define Sign_Extend(a,b) /*no-op*/ +#endif + +#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \ +    defined(IBM) != 1 +Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or +IBM should be defined. +#endif + +#ifdef IEEE_LITTLE_ENDIAN +#define word0(x) ((ULong *)&x)[1] +#define word1(x) ((ULong *)&x)[0] +#else +#define word0(x) ((ULong *)&x)[0] +#define word1(x) ((ULong *)&x)[1] +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. + * An alternative that might be better on some machines is + * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) + */ +#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm32__) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) +#define Exp_shift  20 +#define Exp_shift1 20 +#define Exp_msk1    0x100000 +#define Exp_msk11   0x100000 +#define Exp_mask  0x7ff00000 +#define P 53 +#define Bias 1023 +#define IEEE_Arith +#define Emin (-1022) +#define Exp_1  0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask  0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask  0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ +#else +#undef  Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#define Exp_shift  24 +#define Exp_shift1 24 +#define Exp_msk1   0x1000000 +#define Exp_msk11  0x1000000 +#define Exp_mask  0x7f000000 +#define P 14 +#define Bias 65 +#define Exp_1  0x41000000 +#define Exp_11 0x41000000 +#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask  0xffffff +#define Frac_mask1 0xffffff +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask  0xefffff +#define Bndry_mask1 0xffffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 4 +#define Tiny0 0x100000 +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#define Exp_shift  23 +#define Exp_shift1 7 +#define Exp_msk1    0x80 +#define Exp_msk11   0x800000 +#define Exp_mask  0x7f80 +#define P 56 +#define Bias 129 +#define Exp_1  0x40800000 +#define Exp_11 0x4080 +#define Ebits 8 +#define Frac_mask  0x7fffff +#define Frac_mask1 0xffff007f +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask  0xffff007f +#define Bndry_mask1 0xffff007f +#define LSB 0x10000 +#define Sign_bit 0x8000 +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif +#endif + +#ifndef IEEE_Arith +#define ROUND_BIASED +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +#ifdef KR_headers +extern double rnd_prod(), rnd_quot(); +#else +extern double rnd_prod(double, double), rnd_quot(double, double); +#endif +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#ifndef Just_16 +/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. + * This makes some inner loops simpler and sometimes saves work + * during multiplications, but it often seems to make things slightly + * slower.  Hence the default is now to store 32 bits per Long. + */ +#ifndef Pack_32 +#define Pack_32 +#endif +#endif + +#define Kmax 15 + +#ifdef __cplusplus +extern "C" double strtod(const char *s00, char **se); +extern "C" char *__dtoa(double d, int mode, int ndigits, +			int *decpt, int *sign, char **rve); +#endif + + struct +Bigint { +	struct Bigint *next; +	int k, maxwds, sign, wds; +	ULong x[1]; +	}; + + typedef struct Bigint Bigint; + + static Bigint *freelist[Kmax+1]; + + static Bigint * +Balloc +#ifdef KR_headers +	(k) int k; +#else +	(int k) +#endif +{ +	int x; +	Bigint *rv; + +	if ((rv = freelist[k]) != NULL) { +		freelist[k] = rv->next; +		} +	else { +		x = 1 << k; +		rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long)); +		rv->k = k; +		rv->maxwds = x; +		} +	rv->sign = rv->wds = 0; +	return rv; +	} + + static void +Bfree +#ifdef KR_headers +	(v) Bigint *v; +#else +	(Bigint *v) +#endif +{ +	if (v) { +		v->next = freelist[v->k]; +		freelist[v->k] = v; +		} +	} + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ +y->wds*sizeof(Long) + 2*sizeof(int)) + + static Bigint * +multadd +#ifdef KR_headers +	(b, m, a) Bigint *b; int m, a; +#else +	(Bigint *b, int m, int a)	/* multiply by m and add a */ +#endif +{ +	int i, wds; +	ULong *x, y; +#ifdef Pack_32 +	ULong xi, z; +#endif +	Bigint *b1; + +	wds = b->wds; +	x = b->x; +	i = 0; +	do { +#ifdef Pack_32 +		xi = *x; +		y = (xi & 0xffff) * m + a; +		z = (xi >> 16) * m + (y >> 16); +		a = (int)(z >> 16); +		*x++ = (z << 16) + (y & 0xffff); +#else +		y = *x * m + a; +		a = (int)(y >> 16); +		*x++ = y & 0xffff; +#endif +		} +		while(++i < wds); +	if (a) { +		if (wds >= b->maxwds) { +			b1 = Balloc(b->k+1); +			Bcopy(b1, b); +			Bfree(b); +			b = b1; +			} +		b->x[wds++] = a; +		b->wds = wds; +		} +	return b; +	} + + static Bigint * +s2b +#ifdef KR_headers +	(s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9; +#else +	(CONST char *s, int nd0, int nd, ULong y9) +#endif +{ +	Bigint *b; +	int i, k; +	Long x, y; + +	x = (nd + 8) / 9; +	for(k = 0, y = 1; x > y; y <<= 1, k++) ; +#ifdef Pack_32 +	b = Balloc(k); +	b->x[0] = y9; +	b->wds = 1; +#else +	b = Balloc(k+1); +	b->x[0] = y9 & 0xffff; +	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; +#endif + +	i = 9; +	if (9 < nd0) { +		s += 9; +		do b = multadd(b, 10, *s++ - '0'); +			while(++i < nd0); +		s++; +		} +	else +		s += 10; +	for(; i < nd; i++) +		b = multadd(b, 10, *s++ - '0'); +	return b; +	} + + static int +hi0bits +#ifdef KR_headers +	(x) ULong x; +#else +	(ULong x) +#endif +{ +	int k = 0; + +	if (!(x & 0xffff0000)) { +		k = 16; +		x <<= 16; +		} +	if (!(x & 0xff000000)) { +		k += 8; +		x <<= 8; +		} +	if (!(x & 0xf0000000)) { +		k += 4; +		x <<= 4; +		} +	if (!(x & 0xc0000000)) { +		k += 2; +		x <<= 2; +		} +	if (!(x & 0x80000000)) { +		k++; +		if (!(x & 0x40000000)) +			return 32; +		} +	return k; +	} + + static int +lo0bits +#ifdef KR_headers +	(y) ULong *y; +#else +	(ULong *y) +#endif +{ +	int k; +	ULong x = *y; + +	if (x & 7) { +		if (x & 1) +			return 0; +		if (x & 2) { +			*y = x >> 1; +			return 1; +			} +		*y = x >> 2; +		return 2; +		} +	k = 0; +	if (!(x & 0xffff)) { +		k = 16; +		x >>= 16; +		} +	if (!(x & 0xff)) { +		k += 8; +		x >>= 8; +		} +	if (!(x & 0xf)) { +		k += 4; +		x >>= 4; +		} +	if (!(x & 0x3)) { +		k += 2; +		x >>= 2; +		} +	if (!(x & 1)) { +		k++; +		x >>= 1; +		if (!x & 1) +			return 32; +		} +	*y = x; +	return k; +	} + + static Bigint * +i2b +#ifdef KR_headers +	(i) int i; +#else +	(int i) +#endif +{ +	Bigint *b; + +	b = Balloc(1); +	b->x[0] = i; +	b->wds = 1; +	return b; +	} + + static Bigint * +mult +#ifdef KR_headers +	(a, b) Bigint *a, *b; +#else +	(Bigint *a, Bigint *b) +#endif +{ +	Bigint *c; +	int k, wa, wb, wc; +	ULong carry, y, z; +	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; +#ifdef Pack_32 +	ULong z2; +#endif + +	if (a->wds < b->wds) { +		c = a; +		a = b; +		b = c; +		} +	k = a->k; +	wa = a->wds; +	wb = b->wds; +	wc = wa + wb; +	if (wc > a->maxwds) +		k++; +	c = Balloc(k); +	for(x = c->x, xa = x + wc; x < xa; x++) +		*x = 0; +	xa = a->x; +	xae = xa + wa; +	xb = b->x; +	xbe = xb + wb; +	xc0 = c->x; +#ifdef Pack_32 +	for(; xb < xbe; xb++, xc0++) { +		if ((y = *xb & 0xffff) != 0) { +			x = xa; +			xc = xc0; +			carry = 0; +			do { +				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; +				carry = z >> 16; +				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; +				carry = z2 >> 16; +				Storeinc(xc, z2, z); +				} +				while(x < xae); +			*xc = carry; +			} +		if ((y = *xb >> 16) != 0) { +			x = xa; +			xc = xc0; +			carry = 0; +			z2 = *xc; +			do { +				z = (*x & 0xffff) * y + (*xc >> 16) + carry; +				carry = z >> 16; +				Storeinc(xc, z, z2); +				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; +				carry = z2 >> 16; +				} +				while(x < xae); +			*xc = z2; +			} +		} +#else +	for(; xb < xbe; xc0++) { +		if (y = *xb++) { +			x = xa; +			xc = xc0; +			carry = 0; +			do { +				z = *x++ * y + *xc + carry; +				carry = z >> 16; +				*xc++ = z & 0xffff; +				} +				while(x < xae); +			*xc = carry; +			} +		} +#endif +	for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; +	c->wds = wc; +	return c; +	} + + static Bigint *p5s; + + static Bigint * +pow5mult +#ifdef KR_headers +	(b, k) Bigint *b; int k; +#else +	(Bigint *b, int k) +#endif +{ +	Bigint *b1, *p5, *p51; +	int i; +	static int p05[3] = { 5, 25, 125 }; + +	if ((i = k & 3) != 0) +		b = multadd(b, p05[i-1], 0); + +	if (!(k >>= 2)) +		return b; +	if (!(p5 = p5s)) { +		/* first time */ +		p5 = p5s = i2b(625); +		p5->next = 0; +		} +	for(;;) { +		if (k & 1) { +			b1 = mult(b, p5); +			Bfree(b); +			b = b1; +			} +		if (!(k >>= 1)) +			break; +		if (!(p51 = p5->next)) { +			p51 = p5->next = mult(p5,p5); +			p51->next = 0; +			} +		p5 = p51; +		} +	return b; +	} + + static Bigint * +lshift +#ifdef KR_headers +	(b, k) Bigint *b; int k; +#else +	(Bigint *b, int k) +#endif +{ +	int i, k1, n, n1; +	Bigint *b1; +	ULong *x, *x1, *xe, z; + +#ifdef Pack_32 +	n = k >> 5; +#else +	n = k >> 4; +#endif +	k1 = b->k; +	n1 = n + b->wds + 1; +	for(i = b->maxwds; n1 > i; i <<= 1) +		k1++; +	b1 = Balloc(k1); +	x1 = b1->x; +	for(i = 0; i < n; i++) +		*x1++ = 0; +	x = b->x; +	xe = x + b->wds; +#ifdef Pack_32 +	if (k &= 0x1f) { +		k1 = 32 - k; +		z = 0; +		do { +			*x1++ = *x << k | z; +			z = *x++ >> k1; +			} +			while(x < xe); +		if ((*x1 = z) != 0) +			++n1; +		} +#else +	if (k &= 0xf) { +		k1 = 16 - k; +		z = 0; +		do { +			*x1++ = *x << k  & 0xffff | z; +			z = *x++ >> k1; +			} +			while(x < xe); +		if (*x1 = z) +			++n1; +		} +#endif +	else do +		*x1++ = *x++; +		while(x < xe); +	b1->wds = n1 - 1; +	Bfree(b); +	return b1; +	} + + static int +cmp +#ifdef KR_headers +	(a, b) Bigint *a, *b; +#else +	(Bigint *a, Bigint *b) +#endif +{ +	ULong *xa, *xa0, *xb, *xb0; +	int i, j; + +	i = a->wds; +	j = b->wds; +#ifdef DEBUG +	if (i > 1 && !a->x[i-1]) +		Bug("cmp called with a->x[a->wds-1] == 0"); +	if (j > 1 && !b->x[j-1]) +		Bug("cmp called with b->x[b->wds-1] == 0"); +#endif +	if (i -= j) +		return i; +	xa0 = a->x; +	xa = xa0 + j; +	xb0 = b->x; +	xb = xb0 + j; +	for(;;) { +		if (*--xa != *--xb) +			return *xa < *xb ? -1 : 1; +		if (xa <= xa0) +			break; +		} +	return 0; +	} + + static Bigint * +diff +#ifdef KR_headers +	(a, b) Bigint *a, *b; +#else +	(Bigint *a, Bigint *b) +#endif +{ +	Bigint *c; +	int i, wa, wb; +	Long borrow, y;	/* We need signed shifts here. */ +	ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef Pack_32 +	Long z; +#endif + +	i = cmp(a,b); +	if (!i) { +		c = Balloc(0); +		c->wds = 1; +		c->x[0] = 0; +		return c; +		} +	if (i < 0) { +		c = a; +		a = b; +		b = c; +		i = 1; +		} +	else +		i = 0; +	c = Balloc(a->k); +	c->sign = i; +	wa = a->wds; +	xa = a->x; +	xae = xa + wa; +	wb = b->wds; +	xb = b->x; +	xbe = xb + wb; +	xc = c->x; +	borrow = 0; +#ifdef Pack_32 +	do { +		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; +		borrow = y >> 16; +		Sign_Extend(borrow, y); +		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; +		borrow = z >> 16; +		Sign_Extend(borrow, z); +		Storeinc(xc, z, y); +		} +		while(xb < xbe); +	while(xa < xae) { +		y = (*xa & 0xffff) + borrow; +		borrow = y >> 16; +		Sign_Extend(borrow, y); +		z = (*xa++ >> 16) + borrow; +		borrow = z >> 16; +		Sign_Extend(borrow, z); +		Storeinc(xc, z, y); +		} +#else +	do { +		y = *xa++ - *xb++ + borrow; +		borrow = y >> 16; +		Sign_Extend(borrow, y); +		*xc++ = y & 0xffff; +		} +		while(xb < xbe); +	while(xa < xae) { +		y = *xa++ + borrow; +		borrow = y >> 16; +		Sign_Extend(borrow, y); +		*xc++ = y & 0xffff; +		} +#endif +	while(!*--xc) +		wa--; +	c->wds = wa; +	return c; +	} + + static double +ulp +#ifdef KR_headers +	(x) double x; +#else +	(double x) +#endif +{ +	Long L; +	double a; + +	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Sudden_Underflow +	if (L > 0) { +#endif +#ifdef IBM +		L |= Exp_msk1 >> 4; +#endif +		word0(a) = L; +		word1(a) = 0; +#ifndef Sudden_Underflow +		} +	else { +		L = -L >> Exp_shift; +		if (L < Exp_shift) { +			word0(a) = 0x80000 >> L; +			word1(a) = 0; +			} +		else { +			word0(a) = 0; +			L -= Exp_shift; +			word1(a) = L >= 31 ? 1 : 1 << (31 - L); +			} +		} +#endif +	return a; +	} + + static double +b2d +#ifdef KR_headers +	(a, e) Bigint *a; int *e; +#else +	(Bigint *a, int *e) +#endif +{ +	ULong *xa, *xa0, w, y, z; +	int k; +	double d; +#ifdef VAX +	ULong d0, d1; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + +	xa0 = a->x; +	xa = xa0 + a->wds; +	y = *--xa; +#ifdef DEBUG +	if (!y) Bug("zero y in b2d"); +#endif +	k = hi0bits(y); +	*e = 32 - k; +#ifdef Pack_32 +	if (k < Ebits) { +		d0 = Exp_1 | y >> (Ebits - k); +		w = xa > xa0 ? *--xa : 0; +		d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); +		goto ret_d; +		} +	z = xa > xa0 ? *--xa : 0; +	if (k -= Ebits) { +		d0 = Exp_1 | y << k | z >> (32 - k); +		y = xa > xa0 ? *--xa : 0; +		d1 = z << k | y >> (32 - k); +		} +	else { +		d0 = Exp_1 | y; +		d1 = z; +		} +#else +	if (k < Ebits + 16) { +		z = xa > xa0 ? *--xa : 0; +		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; +		w = xa > xa0 ? *--xa : 0; +		y = xa > xa0 ? *--xa : 0; +		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; +		goto ret_d; +		} +	z = xa > xa0 ? *--xa : 0; +	w = xa > xa0 ? *--xa : 0; +	k -= Ebits + 16; +	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; +	y = xa > xa0 ? *--xa : 0; +	d1 = w << k + 16 | y << k; +#endif + ret_d: +#ifdef VAX +	word0(d) = d0 >> 16 | d0 << 16; +	word1(d) = d1 >> 16 | d1 << 16; +#else +#undef d0 +#undef d1 +#endif +	return d; +	} + + static Bigint * +d2b +#ifdef KR_headers +	(d, e, bits) double d; int *e, *bits; +#else +	(double d, int *e, int *bits) +#endif +{ +	Bigint *b; +	int de, i, k; +	ULong *x, y, z; +#ifdef VAX +	ULong d0, d1; +	d0 = word0(d) >> 16 | word0(d) << 16; +	d1 = word1(d) >> 16 | word1(d) << 16; +#else +#define d0 word0(d) +#define d1 word1(d) +#endif + +#ifdef Pack_32 +	b = Balloc(1); +#else +	b = Balloc(2); +#endif +	x = b->x; + +	z = d0 & Frac_mask; +	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow +	de = (int)(d0 >> Exp_shift); +#ifndef IBM +	z |= Exp_msk11; +#endif +#else +	if ((de = (int)(d0 >> Exp_shift)) != 0) +		z |= Exp_msk1; +#endif +#ifdef Pack_32 +	if ((y = d1) != 0) { +		if ((k = lo0bits(&y)) != 0) { +			x[0] = y | z << (32 - k); +			z >>= k; +			} +		else +			x[0] = y; +		i = b->wds = (x[1] = z) ? 2 : 1; +		} +	else { +#ifdef DEBUG +		if (!z) +			Bug("Zero passed to d2b"); +#endif +		k = lo0bits(&z); +		x[0] = z; +		i = b->wds = 1; +		k += 32; +		} +#else +	if (y = d1) { +		if (k = lo0bits(&y)) +			if (k >= 16) { +				x[0] = y | z << 32 - k & 0xffff; +				x[1] = z >> k - 16 & 0xffff; +				x[2] = z >> k; +				i = 2; +				} +			else { +				x[0] = y & 0xffff; +				x[1] = y >> 16 | z << 16 - k & 0xffff; +				x[2] = z >> k & 0xffff; +				x[3] = z >> k+16; +				i = 3; +				} +		else { +			x[0] = y & 0xffff; +			x[1] = y >> 16; +			x[2] = z & 0xffff; +			x[3] = z >> 16; +			i = 3; +			} +		} +	else { +#ifdef DEBUG +		if (!z) +			Bug("Zero passed to d2b"); +#endif +		k = lo0bits(&z); +		if (k >= 16) { +			x[0] = z; +			i = 0; +			} +		else { +			x[0] = z & 0xffff; +			x[1] = z >> 16; +			i = 1; +			} +		k += 32; +		} +	while(!x[i]) +		--i; +	b->wds = i + 1; +#endif +#ifndef Sudden_Underflow +	if (de) { +#endif +#ifdef IBM +		*e = (de - Bias - (P-1) << 2) + k; +		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); +#else +		*e = de - Bias - (P-1) + k; +		*bits = P - k; +#endif +#ifndef Sudden_Underflow +		} +	else { +		*e = de - Bias - (P-1) + 1 + k; +#ifdef Pack_32 +		*bits = 32*i - hi0bits(x[i-1]); +#else +		*bits = (i+2)*16 - hi0bits(x[i]); +#endif +		} +#endif +	return b; +	} +#undef d0 +#undef d1 + + static double +ratio +#ifdef KR_headers +	(a, b) Bigint *a, *b; +#else +	(Bigint *a, Bigint *b) +#endif +{ +	double da, db; +	int k, ka, kb; + +	da = b2d(a, &ka); +	db = b2d(b, &kb); +#ifdef Pack_32 +	k = ka - kb + 32*(a->wds - b->wds); +#else +	k = ka - kb + 16*(a->wds - b->wds); +#endif +#ifdef IBM +	if (k > 0) { +		word0(da) += (k >> 2)*Exp_msk1; +		if (k &= 3) +			da *= 1 << k; +		} +	else { +		k = -k; +		word0(db) += (k >> 2)*Exp_msk1; +		if (k &= 3) +			db *= 1 << k; +		} +#else +	if (k > 0) +		word0(da) += k*Exp_msk1; +	else { +		k = -k; +		word0(db) += k*Exp_msk1; +		} +#endif +	return da / db; +	} + +static CONST double +tens[] = { +		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, +		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, +		1e20, 1e21, 1e22 +#ifdef VAX +		, 1e23, 1e24 +#endif +		}; + +#ifdef IEEE_Arith +static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; +#define n_bigtens 5 +#else +#ifdef IBM +static CONST double bigtens[] = { 1e16, 1e32, 1e64 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; +#define n_bigtens 3 +#else +static CONST double bigtens[] = { 1e16, 1e32 }; +static CONST double tinytens[] = { 1e-16, 1e-32 }; +#define n_bigtens 2 +#endif +#endif + + double +strtod +#ifdef KR_headers +	(s00, se) CONST char *s00; char **se; +#else +	(CONST char *s00, char **se) +#endif +{ +	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, +		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; +	CONST char *s, *s0, *s1; +	double aadj, aadj1, adj, rv, rv0; +	Long L; +	ULong y, z; +	Bigint *bb1, *bd0; +	Bigint *bb = NULL, *bd = NULL, *bs = NULL, *delta = NULL;/* pacify gcc */ + +#ifndef KR_headers +	CONST char decimal_point = localeconv()->decimal_point[0]; +#else +	CONST char decimal_point = '.'; +#endif + +	sign = nz0 = nz = 0; +	rv = 0.; + + +	for(s = s00; isspace((unsigned char) *s); s++) +		; + +	if (*s == '-') { +		sign = 1; +		s++; +	} else if (*s == '+') { +		s++; +	} + +	if (*s == '\0') { +		s = s00; +		goto ret; +	} + +	if (*s == '0') { +		nz0 = 1; +		while(*++s == '0') ; +		if (!*s) +			goto ret; +		} +	s0 = s; +	y = z = 0; +	for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) +		if (nd < 9) +			y = 10*y + c - '0'; +		else if (nd < 16) +			z = 10*z + c - '0'; +	nd0 = nd; +	if (c == decimal_point) { +		c = *++s; +		if (!nd) { +			for(; c == '0'; c = *++s) +				nz++; +			if (c > '0' && c <= '9') { +				s0 = s; +				nf += nz; +				nz = 0; +				goto have_dig; +				} +			goto dig_done; +			} +		for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: +			nz++; +			if (c -= '0') { +				nf += nz; +				for(i = 1; i < nz; i++) +					if (nd++ < 9) +						y *= 10; +					else if (nd <= DBL_DIG + 1) +						z *= 10; +				if (nd++ < 9) +					y = 10*y + c; +				else if (nd <= DBL_DIG + 1) +					z = 10*z + c; +				nz = 0; +				} +			} +		} + dig_done: +	e = 0; +	if (c == 'e' || c == 'E') { +		if (!nd && !nz && !nz0) { +			s = s00; +			goto ret; +			} +		s00 = s; +		esign = 0; +		switch(c = *++s) { +			case '-': +				esign = 1; +			case '+': +				c = *++s; +			} +		if (c >= '0' && c <= '9') { +			while(c == '0') +				c = *++s; +			if (c > '0' && c <= '9') { +				L = c - '0'; +				s1 = s; +				while((c = *++s) >= '0' && c <= '9') +					L = 10*L + c - '0'; +				if (s - s1 > 8 || L > 19999) +					/* Avoid confusion from exponents +					 * so large that e might overflow. +					 */ +					e = 19999; /* safe for 16 bit ints */ +				else +					e = (int)L; +				if (esign) +					e = -e; +				} +			else +				e = 0; +			} +		else +			s = s00; +		} +	if (!nd) { +		if (!nz && !nz0) +			s = s00; +		goto ret; +		} +	e1 = e -= nf; + +	/* Now we have nd0 digits, starting at s0, followed by a +	 * decimal point, followed by nd-nd0 digits.  The number we're +	 * after is the integer represented by those digits times +	 * 10**e */ + +	if (!nd0) +		nd0 = nd; +	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; +	rv = y; +	if (k > 9) +		rv = tens[k - 9] * rv + z; +	bd0 = 0; +	if (nd <= DBL_DIG +#ifndef RND_PRODQUOT +		&& FLT_ROUNDS == 1 +#endif +			) { +		if (!e) +			goto ret; +		if (e > 0) { +			if (e <= Ten_pmax) { +#ifdef VAX +				goto vax_ovfl_check; +#else +				/* rv = */ rounded_product(rv, tens[e]); +				goto ret; +#endif +				} +			i = DBL_DIG - nd; +			if (e <= Ten_pmax + i) { +				/* A fancier test would sometimes let us do +				 * this for larger i values. +				 */ +				e -= i; +				rv *= tens[i]; +#ifdef VAX +				/* VAX exponent range is so narrow we must +				 * worry about overflow here... +				 */ + vax_ovfl_check: +				word0(rv) -= P*Exp_msk1; +				/* rv = */ rounded_product(rv, tens[e]); +				if ((word0(rv) & Exp_mask) +				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) +					goto ovfl; +				word0(rv) += P*Exp_msk1; +#else +				/* rv = */ rounded_product(rv, tens[e]); +#endif +				goto ret; +				} +			} +#ifndef Inaccurate_Divide +		else if (e >= -Ten_pmax) { +			/* rv = */ rounded_quotient(rv, tens[-e]); +			goto ret; +			} +#endif +		} +	e1 += nd - k; + +	/* Get starting approximation = rv * 10**e1 */ + +	if (e1 > 0) { +		if ((i = e1 & 15) != 0) +			rv *= tens[i]; +		if (e1 &= ~15) { +			if (e1 > DBL_MAX_10_EXP) { + ovfl: +				errno = ERANGE; +#ifdef __STDC__ +				rv = HUGE_VAL; +#else +				/* Can't trust HUGE_VAL */ +#ifdef IEEE_Arith +				word0(rv) = Exp_mask; +				word1(rv) = 0; +#else +				word0(rv) = Big0; +				word1(rv) = Big1; +#endif +#endif +				if (bd0) +					goto retfree; +				goto ret; +				} +			if (e1 >>= 4) { +				for(j = 0; e1 > 1; j++, e1 >>= 1) +					if (e1 & 1) +						rv *= bigtens[j]; +			/* The last multiplication could overflow. */ +				word0(rv) -= P*Exp_msk1; +				rv *= bigtens[j]; +				if ((z = word0(rv) & Exp_mask) +				 > Exp_msk1*(DBL_MAX_EXP+Bias-P)) +					goto ovfl; +				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { +					/* set to largest number */ +					/* (Can't trust DBL_MAX) */ +					word0(rv) = Big0; +					word1(rv) = Big1; +					} +				else +					word0(rv) += P*Exp_msk1; +				} + +			} +		} +	else if (e1 < 0) { +		e1 = -e1; +		if ((i = e1 & 15) != 0) +			rv /= tens[i]; +		if (e1 &= ~15) { +			e1 >>= 4; +			if (e1 >= 1 << n_bigtens) +				goto undfl; +			for(j = 0; e1 > 1; j++, e1 >>= 1) +				if (e1 & 1) +					rv *= tinytens[j]; +			/* The last multiplication could underflow. */ +			rv0 = rv; +			rv *= tinytens[j]; +			if (!rv) { +				rv = 2.*rv0; +				rv *= tinytens[j]; +				if (!rv) { + undfl: +					rv = 0.; +					errno = ERANGE; +					if (bd0) +						goto retfree; +					goto ret; +					} +				word0(rv) = Tiny0; +				word1(rv) = Tiny1; +				/* The refinement below will clean +				 * this approximation up. +				 */ +				} +			} +		} + +	/* Now the hard part -- adjusting rv to the correct value.*/ + +	/* Put digits into bd: true value = bd * 10^e */ + +	bd0 = s2b(s0, nd0, nd, y); + +	for(;;) { +		bd = Balloc(bd0->k); +		Bcopy(bd, bd0); +		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */ +		bs = i2b(1); + +		if (e >= 0) { +			bb2 = bb5 = 0; +			bd2 = bd5 = e; +			} +		else { +			bb2 = bb5 = -e; +			bd2 = bd5 = 0; +			} +		if (bbe >= 0) +			bb2 += bbe; +		else +			bd2 -= bbe; +		bs2 = bb2; +#ifdef Sudden_Underflow +#ifdef IBM +		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else +		j = P + 1 - bbbits; +#endif +#else +		i = bbe + bbbits - 1;	/* logb(rv) */ +		if (i < Emin)	/* denormal */ +			j = bbe + (P-Emin); +		else +			j = P + 1 - bbbits; +#endif +		bb2 += j; +		bd2 += j; +		i = bb2 < bd2 ? bb2 : bd2; +		if (i > bs2) +			i = bs2; +		if (i > 0) { +			bb2 -= i; +			bd2 -= i; +			bs2 -= i; +			} +		if (bb5 > 0) { +			bs = pow5mult(bs, bb5); +			bb1 = mult(bs, bb); +			Bfree(bb); +			bb = bb1; +			} +		if (bb2 > 0) +			bb = lshift(bb, bb2); +		if (bd5 > 0) +			bd = pow5mult(bd, bd5); +		if (bd2 > 0) +			bd = lshift(bd, bd2); +		if (bs2 > 0) +			bs = lshift(bs, bs2); +		delta = diff(bb, bd); +		dsign = delta->sign; +		delta->sign = 0; +		i = cmp(delta, bs); +		if (i < 0) { +			/* Error is less than half an ulp -- check for +			 * special case of mantissa a power of two. +			 */ +			if (dsign || word1(rv) || word0(rv) & Bndry_mask) +				break; +			delta = lshift(delta,Log2P); +			if (cmp(delta, bs) > 0) +				goto drop_down; +			break; +			} +		if (i == 0) { +			/* exactly half-way between */ +			if (dsign) { +				if ((word0(rv) & Bndry_mask1) == Bndry_mask1 +				 &&  word1(rv) == 0xffffffff) { +					/*boundary case -- increment exponent*/ +					word0(rv) = (word0(rv) & Exp_mask) +						+ Exp_msk1 +#ifdef IBM +						| Exp_msk1 >> 4 +#endif +						; +					word1(rv) = 0; +					break; +					} +				} +			else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { + drop_down: +				/* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow +				L = word0(rv) & Exp_mask; +#ifdef IBM +				if (L <  Exp_msk1) +#else +				if (L <= Exp_msk1) +#endif +					goto undfl; +				L -= Exp_msk1; +#else +				L = (word0(rv) & Exp_mask) - Exp_msk1; +#endif +				word0(rv) = L | Bndry_mask1; +				word1(rv) = 0xffffffff; +#ifdef IBM +				goto cont; +#else +				break; +#endif +				} +#ifndef ROUND_BIASED +			if (!(word1(rv) & LSB)) +				break; +#endif +			if (dsign) +				rv += ulp(rv); +#ifndef ROUND_BIASED +			else { +				rv -= ulp(rv); +#ifndef Sudden_Underflow +				if (!rv) +					goto undfl; +#endif +				} +#endif +			break; +			} +		if ((aadj = ratio(delta, bs)) <= 2.) { +			if (dsign) +				aadj = aadj1 = 1.; +			else if (word1(rv) || word0(rv) & Bndry_mask) { +#ifndef Sudden_Underflow +				if (word1(rv) == Tiny1 && !word0(rv)) +					goto undfl; +#endif +				aadj = 1.; +				aadj1 = -1.; +				} +			else { +				/* special case -- power of FLT_RADIX to be */ +				/* rounded down... */ + +				if (aadj < 2./FLT_RADIX) +					aadj = 1./FLT_RADIX; +				else +					aadj *= 0.5; +				aadj1 = -aadj; +				} +			} +		else { +			aadj *= 0.5; +			aadj1 = dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS +			switch(FLT_ROUNDS) { +				case 2: /* towards +infinity */ +					aadj1 -= 0.5; +					break; +				case 0: /* towards 0 */ +				case 3: /* towards -infinity */ +					aadj1 += 0.5; +				} +#else +			if (FLT_ROUNDS == 0) +				aadj1 += 0.5; +#endif +			} +		y = word0(rv) & Exp_mask; + +		/* Check for overflow */ + +		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { +			rv0 = rv; +			word0(rv) -= P*Exp_msk1; +			adj = aadj1 * ulp(rv); +			rv += adj; +			if ((word0(rv) & Exp_mask) >= +					Exp_msk1*(DBL_MAX_EXP+Bias-P)) { +				if (word0(rv0) == Big0 && word1(rv0) == Big1) +					goto ovfl; +				word0(rv) = Big0; +				word1(rv) = Big1; +				goto cont; +				} +			else +				word0(rv) += P*Exp_msk1; +			} +		else { +#ifdef Sudden_Underflow +			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { +				rv0 = rv; +				word0(rv) += P*Exp_msk1; +				adj = aadj1 * ulp(rv); +				rv += adj; +#ifdef IBM +				if ((word0(rv) & Exp_mask) <  P*Exp_msk1) +#else +				if ((word0(rv) & Exp_mask) <= P*Exp_msk1) +#endif +					{ +					if (word0(rv0) == Tiny0 +					 && word1(rv0) == Tiny1) +						goto undfl; +					word0(rv) = Tiny0; +					word1(rv) = Tiny1; +					goto cont; +					} +				else +					word0(rv) -= P*Exp_msk1; +				} +			else { +				adj = aadj1 * ulp(rv); +				rv += adj; +				} +#else +			/* Compute adj so that the IEEE rounding rules will +			 * correctly round rv + adj in some half-way cases. +			 * If rv * ulp(rv) is denormalized (i.e., +			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid +			 * trouble from bits lost to denormalization; +			 * example: 1.2e-307 . +			 */ +			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) { +				aadj1 = (double)(int)(aadj + 0.5); +				if (!dsign) +					aadj1 = -aadj1; +				} +			adj = aadj1 * ulp(rv); +			rv += adj; +#endif +			} +		z = word0(rv) & Exp_mask; +		if (y == z) { +			/* Can we stop now? */ +			L = aadj; +			aadj -= L; +			/* The tolerances below are conservative. */ +			if (dsign || word1(rv) || word0(rv) & Bndry_mask) { +				if (aadj < .4999999 || aadj > .5000001) +					break; +				} +			else if (aadj < .4999999/FLT_RADIX) +				break; +			} + cont: +		Bfree(bb); +		Bfree(bd); +		Bfree(bs); +		Bfree(delta); +		} + retfree: +	Bfree(bb); +	Bfree(bd); +	Bfree(bs); +	Bfree(bd0); +	Bfree(delta); + ret: +	if (se) +		*se = (char *)s; +	return sign ? -rv : rv; +	} + + static int +quorem +#ifdef KR_headers +	(b, S) Bigint *b, *S; +#else +	(Bigint *b, Bigint *S) +#endif +{ +	int n; +	Long borrow, y; +	ULong carry, q, ys; +	ULong *bx, *bxe, *sx, *sxe; +#ifdef Pack_32 +	Long z; +	ULong si, zs; +#endif + +	n = S->wds; +#ifdef DEBUG +	/*debug*/ if (b->wds > n) +	/*debug*/	Bug("oversize b in quorem"); +#endif +	if (b->wds < n) +		return 0; +	sx = S->x; +	sxe = sx + --n; +	bx = b->x; +	bxe = bx + n; +	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */ +#ifdef DEBUG +	/*debug*/ if (q > 9) +	/*debug*/	Bug("oversized quotient in quorem"); +#endif +	if (q) { +		borrow = 0; +		carry = 0; +		do { +#ifdef Pack_32 +			si = *sx++; +			ys = (si & 0xffff) * q + carry; +			zs = (si >> 16) * q + (ys >> 16); +			carry = zs >> 16; +			y = (*bx & 0xffff) - (ys & 0xffff) + borrow; +			borrow = y >> 16; +			Sign_Extend(borrow, y); +			z = (*bx >> 16) - (zs & 0xffff) + borrow; +			borrow = z >> 16; +			Sign_Extend(borrow, z); +			Storeinc(bx, z, y); +#else +			ys = *sx++ * q + carry; +			carry = ys >> 16; +			y = *bx - (ys & 0xffff) + borrow; +			borrow = y >> 16; +			Sign_Extend(borrow, y); +			*bx++ = y & 0xffff; +#endif +			} +			while(sx <= sxe); +		if (!*bxe) { +			bx = b->x; +			while(--bxe > bx && !*bxe) +				--n; +			b->wds = n; +			} +		} +	if (cmp(b, S) >= 0) { +		q++; +		borrow = 0; +		carry = 0; +		bx = b->x; +		sx = S->x; +		do { +#ifdef Pack_32 +			si = *sx++; +			ys = (si & 0xffff) + carry; +			zs = (si >> 16) + (ys >> 16); +			carry = zs >> 16; +			y = (*bx & 0xffff) - (ys & 0xffff) + borrow; +			borrow = y >> 16; +			Sign_Extend(borrow, y); +			z = (*bx >> 16) - (zs & 0xffff) + borrow; +			borrow = z >> 16; +			Sign_Extend(borrow, z); +			Storeinc(bx, z, y); +#else +			ys = *sx++ + carry; +			carry = ys >> 16; +			y = *bx - (ys & 0xffff) + borrow; +			borrow = y >> 16; +			Sign_Extend(borrow, y); +			*bx++ = y & 0xffff; +#endif +			} +			while(sx <= sxe); +		bx = b->x; +		bxe = bx + n; +		if (!*bxe) { +			while(--bxe > bx && !*bxe) +				--n; +			b->wds = n; +			} +		} +	return q; +	} + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + *	1. Rather than iterating, we use a simple numeric overestimate + *	   to determine k = floor(log10(d)).  We scale relevant + *	   quantities using O(log2(k)) rather than O(k) multiplications. + *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + *	   try to generate digits strictly left to right.  Instead, we + *	   compute with fewer bits and propagate the carry if necessary + *	   when rounding the final digit up.  This is often faster. + *	3. Under the assumption that input will be rounded nearest, + *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + *	   That is, we allow equality in stopping tests when the + *	   round-nearest rule will give the same floating-point value + *	   as would satisfaction of the stopping test with strict + *	   inequality. + *	4. We remove common factors of powers of 2 from relevant + *	   quantities. + *	5. When converting floating-point integers less than 1e16, + *	   we use floating-point arithmetic rather than resorting + *	   to multiple-precision integers. + *	6. When asked to produce fewer than 15 digits, we first try + *	   to get by with floating-point arithmetic; we resort to + *	   multiple-precision integer arithmetic only if we cannot + *	   guarantee that the floating-point calculation has given + *	   the correctly rounded result.  For k requested digits and + *	   "uniformly" distributed input, the probability is + *	   something like 10^(k-15) that we must resort to the Long + *	   calculation. + */ + + char * +__dtoa +#ifdef KR_headers +	(d, mode, ndigits, decpt, sign, rve) +	double d; int mode, ndigits, *decpt, *sign; char **rve; +#else +	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve) +#endif +{ + /*	Arguments ndigits, decpt, sign are similar to those +	of ecvt and fcvt; trailing zeros are suppressed from +	the returned string.  If not null, *rve is set to point +	to the end of the return value.  If d is +-Infinity or NaN, +	then *decpt is set to 9999. + +	mode: +		0 ==> shortest string that yields d when read in +			and rounded to nearest. +		1 ==> like 0, but with Steele & White stopping rule; +			e.g. with IEEE P754 arithmetic , mode 0 gives +			1e23 whereas mode 1 gives 9.999999999999999e22. +		2 ==> max(1,ndigits) significant digits.  This gives a +			return value similar to that of ecvt, except +			that trailing zeros are suppressed. +		3 ==> through ndigits past the decimal point.  This +			gives a return value similar to that from fcvt, +			except that trailing zeros are suppressed, and +			ndigits can be negative. +		4-9 should give the same return values as 2-3, i.e., +			4 <= mode <= 9 ==> same return as mode +			2 + (mode & 1).  These modes are mainly for +			debugging; often they run slower but sometimes +			faster than modes 2-3. +		4,5,8,9 ==> left-to-right digit generation. +		6-9 ==> don't try fast floating-point estimate +			(if applicable). + +		Values of mode other than 0-9 are treated as mode 0. + +		Sufficient space is allocated to the return value +		to hold the suppressed trailing zeros. +	*/ + +	int bbits, b2, b5, be, dig, i, ieps, ilim0, +		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, +		try_quick; +	int ilim = 0, ilim1 = 0, spec_case = 0;	/* pacify gcc */ +	Long L; +#ifndef Sudden_Underflow +	int denorm; +	ULong x; +#endif +	Bigint *b, *b1, *delta, *mhi, *S; +	Bigint *mlo = NULL; /* pacify gcc */ +	double d2, ds, eps; +	char *s, *s0; +	static Bigint *result; +	static int result_k; + +	if (result) { +		result->k = result_k; +		result->maxwds = 1 << result_k; +		Bfree(result); +		result = 0; +		} + +	if (word0(d) & Sign_bit) { +		/* set sign for everything, including 0's and NaNs */ +		*sign = 1; +		word0(d) &= ~Sign_bit;	/* clear sign bit */ +		} +	else +		*sign = 0; + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith +	if ((word0(d) & Exp_mask) == Exp_mask) +#else +	if (word0(d)  == 0x8000) +#endif +		{ +		/* Infinity or NaN */ +		*decpt = 9999; +		s = +#ifdef IEEE_Arith +			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" : +#endif +				"NaN"; +		if (rve) +			*rve = +#ifdef IEEE_Arith +				s[3] ? s + 8 : +#endif +						s + 3; +		return s; +		} +#endif +#ifdef IBM +	d += 0; /* normalize */ +#endif +	if (!d) { +		*decpt = 1; +		s = "0"; +		if (rve) +			*rve = s + 1; +		return s; +		} + +	b = d2b(d, &be, &bbits); +#ifdef Sudden_Underflow +	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#else +	if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { +#endif +		d2 = d; +		word0(d2) &= Frac_mask1; +		word0(d2) |= Exp_11; +#ifdef IBM +		if (j = 11 - hi0bits(word0(d2) & Frac_mask)) +			d2 /= 1 << j; +#endif + +		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5 +		 * log10(x)	 =  log(x) / log(10) +		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) +		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) +		 * +		 * This suggests computing an approximation k to log10(d) by +		 * +		 * k = (i - Bias)*0.301029995663981 +		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); +		 * +		 * We want k to be too large rather than too small. +		 * The error in the first-order Taylor series approximation +		 * is in our favor, so we just round up the constant enough +		 * to compensate for any error in the multiplication of +		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, +		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, +		 * adding 1e-13 to the constant term more than suffices. +		 * Hence we adjust the constant term to 0.1760912590558. +		 * (We could get a more accurate k by invoking log10, +		 *  but this is probably not worthwhile.) +		 */ + +		i -= Bias; +#ifdef IBM +		i <<= 2; +		i += j; +#endif +#ifndef Sudden_Underflow +		denorm = 0; +		} +	else { +		/* d is denormalized */ + +		i = bbits + be + (Bias + (P-1) - 1); +		x = i > 32  ? word0(d) << (64 - i) | word1(d) >> (i - 32) +			    : word1(d) << (32 - i); +		d2 = x; +		word0(d2) -= 31*Exp_msk1; /* adjust exponent */ +		i -= (Bias + (P-1) - 1) + 1; +		denorm = 1; +		} +#endif +	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; +	k = (int)ds; +	if (ds < 0. && ds != k) +		k--;	/* want k = floor(ds) */ +	k_check = 1; +	if (k >= 0 && k <= Ten_pmax) { +		if (d < tens[k]) +			k--; +		k_check = 0; +		} +	j = bbits - i - 1; +	if (j >= 0) { +		b2 = 0; +		s2 = j; +		} +	else { +		b2 = -j; +		s2 = 0; +		} +	if (k >= 0) { +		b5 = 0; +		s5 = k; +		s2 += k; +		} +	else { +		b2 -= k; +		b5 = -k; +		s5 = 0; +		} +	if (mode < 0 || mode > 9) +		mode = 0; +	try_quick = 1; +	if (mode > 5) { +		mode -= 4; +		try_quick = 0; +		} +	leftright = 1; +	switch(mode) { +		case 0: +		case 1: +			ilim = ilim1 = -1; +			i = 18; +			ndigits = 0; +			break; +		case 2: +			leftright = 0; +			/* no break */ +		case 4: +			if (ndigits <= 0) +				ndigits = 1; +			ilim = ilim1 = i = ndigits; +			break; +		case 3: +			leftright = 0; +			/* no break */ +		case 5: +			i = ndigits + k + 1; +			ilim = i; +			ilim1 = i - 1; +			if (i <= 0) +				i = 1; +		} +	j = sizeof(ULong); +	for(result_k = 0; sizeof(Bigint) - sizeof(ULong) + j <= i; +		j <<= 1) result_k++; +	result = Balloc(result_k); +	s = s0 = (char *)result; + +	if (ilim >= 0 && ilim <= Quick_max && try_quick) { + +		/* Try to get by with floating-point arithmetic. */ + +		i = 0; +		d2 = d; +		k0 = k; +		ilim0 = ilim; +		ieps = 2; /* conservative */ +		if (k > 0) { +			ds = tens[k&0xf]; +			j = k >> 4; +			if (j & Bletch) { +				/* prevent overflows */ +				j &= Bletch - 1; +				d /= bigtens[n_bigtens-1]; +				ieps++; +				} +			for(; j; j >>= 1, i++) +				if (j & 1) { +					ieps++; +					ds *= bigtens[i]; +					} +			d /= ds; +			} +		else if ((j1 = -k) != 0) { +			d *= tens[j1 & 0xf]; +			for(j = j1 >> 4; j; j >>= 1, i++) +				if (j & 1) { +					ieps++; +					d *= bigtens[i]; +					} +			} +		if (k_check && d < 1. && ilim > 0) { +			if (ilim1 <= 0) +				goto fast_failed; +			ilim = ilim1; +			k--; +			d *= 10.; +			ieps++; +			} +		eps = ieps*d + 7.; +		word0(eps) -= (P-1)*Exp_msk1; +		if (ilim == 0) { +			S = mhi = 0; +			d -= 5.; +			if (d > eps) +				goto one_digit; +			if (d < -eps) +				goto no_digits; +			goto fast_failed; +			} +#ifndef No_leftright +		if (leftright) { +			/* Use Steele & White method of only +			 * generating digits needed. +			 */ +			eps = 0.5/tens[ilim-1] - eps; +			for(i = 0;;) { +				L = d; +				d -= L; +				*s++ = '0' + (int)L; +				if (d < eps) +					goto ret1; +				if (1. - d < eps) +					goto bump_up; +				if (++i >= ilim) +					break; +				eps *= 10.; +				d *= 10.; +				} +			} +		else { +#endif +			/* Generate ilim digits, then fix them up. */ +			eps *= tens[ilim-1]; +			for(i = 1;; i++, d *= 10.) { +				L = d; +				d -= L; +				*s++ = '0' + (int)L; +				if (i == ilim) { +					if (d > 0.5 + eps) +						goto bump_up; +					else if (d < 0.5 - eps) { +						while(*--s == '0'); +						s++; +						goto ret1; +						} +					break; +					} +				} +#ifndef No_leftright +			} +#endif + fast_failed: +		s = s0; +		d = d2; +		k = k0; +		ilim = ilim0; +		} + +	/* Do we have a "small" integer? */ + +	if (be >= 0 && k <= Int_max) { +		/* Yes. */ +		ds = tens[k]; +		if (ndigits < 0 && ilim <= 0) { +			S = mhi = 0; +			if (ilim < 0 || d <= 5*ds) +				goto no_digits; +			goto one_digit; +			} +		for(i = 1;; i++) { +			L = d / ds; +			d -= L*ds; +#ifdef Check_FLT_ROUNDS +			/* If FLT_ROUNDS == 2, L will usually be high by 1 */ +			if (d < 0) { +				L--; +				d += ds; +				} +#endif +			*s++ = '0' + (int)L; +			if (i == ilim) { +				d += d; +				if (d > ds || (d == ds && L & 1)) { + bump_up: +					while(*--s == '9') +						if (s == s0) { +							k++; +							*s = '0'; +							break; +							} +					++*s++; +					} +				break; +				} +			if (!(d *= 10.)) +				break; +			} +		goto ret1; +		} + +	m2 = b2; +	m5 = b5; +	mhi = mlo = 0; +	if (leftright) { +		if (mode < 2) { +			i = +#ifndef Sudden_Underflow +				denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif +#ifdef IBM +				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); +#else +				1 + P - bbits; +#endif +			} +		else { +			j = ilim - 1; +			if (m5 >= j) +				m5 -= j; +			else { +				s5 += j -= m5; +				b5 += j; +				m5 = 0; +				} +			if ((i = ilim) < 0) { +				m2 -= i; +				i = 0; +				} +			} +		b2 += i; +		s2 += i; +		mhi = i2b(1); +		} +	if (m2 > 0 && s2 > 0) { +		i = m2 < s2 ? m2 : s2; +		b2 -= i; +		m2 -= i; +		s2 -= i; +		} +	if (b5 > 0) { +		if (leftright) { +			if (m5 > 0) { +				mhi = pow5mult(mhi, m5); +				b1 = mult(mhi, b); +				Bfree(b); +				b = b1; +				} +			if ((j = b5 - m5) != 0) +				b = pow5mult(b, j); +			} +		else +			b = pow5mult(b, b5); +		} +	S = i2b(1); +	if (s5 > 0) +		S = pow5mult(S, s5); + +	/* Check for special case that d is a normalized power of 2. */ + +	if (mode < 2) { +		if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow +		 && word0(d) & Exp_mask +#endif +				) { +			/* The special case */ +			b2 += Log2P; +			s2 += Log2P; +			spec_case = 1; +			} +		else +			spec_case = 0; +		} + +	/* Arrange for convenient computation of quotients: +	 * shift left if necessary so divisor has 4 leading 0 bits. +	 * +	 * Perhaps we should just compute leading 28 bits of S once +	 * and for all and pass them and a shift to quorem, so it +	 * can do shifts and ors to compute the numerator for q. +	 */ +#ifdef Pack_32 +	if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) +		i = 32 - i; +#else +	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) +		i = 16 - i; +#endif +	if (i > 4) { +		i -= 4; +		b2 += i; +		m2 += i; +		s2 += i; +		} +	else if (i < 4) { +		i += 28; +		b2 += i; +		m2 += i; +		s2 += i; +		} +	if (b2 > 0) +		b = lshift(b, b2); +	if (s2 > 0) +		S = lshift(S, s2); +	if (k_check) { +		if (cmp(b,S) < 0) { +			k--; +			b = multadd(b, 10, 0);	/* we botched the k estimate */ +			if (leftright) +				mhi = multadd(mhi, 10, 0); +			ilim = ilim1; +			} +		} +	if (ilim <= 0 && mode > 2) { +		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { +			/* no digits, fcvt style */ + no_digits: +			k = -1 - ndigits; +			goto ret; +			} + one_digit: +		*s++ = '1'; +		k++; +		goto ret; +		} +	if (leftright) { +		if (m2 > 0) +			mhi = lshift(mhi, m2); + +		/* Compute mlo -- check for special case +		 * that d is a normalized power of 2. +		 */ + +		mlo = mhi; +		if (spec_case) { +			mhi = Balloc(mhi->k); +			Bcopy(mhi, mlo); +			mhi = lshift(mhi, Log2P); +			} + +		for(i = 1;;i++) { +			dig = quorem(b,S) + '0'; +			/* Do we yet have the shortest decimal string +			 * that will round to d? +			 */ +			j = cmp(b, mlo); +			delta = diff(S, mhi); +			j1 = delta->sign ? 1 : cmp(b, delta); +			Bfree(delta); +#ifndef ROUND_BIASED +			if (j1 == 0 && !mode && !(word1(d) & 1)) { +				if (dig == '9') +					goto round_9_up; +				if (j > 0) +					dig++; +				*s++ = dig; +				goto ret; +				} +#endif +			if (j < 0 || (j == 0 && !mode +#ifndef ROUND_BIASED +							&& !(word1(d) & 1) +#endif +					)) { +				if (j1 > 0) { +					b = lshift(b, 1); +					j1 = cmp(b, S); +					if ((j1 > 0 || (j1 == 0 && dig & 1)) +					&& dig++ == '9') +						goto round_9_up; +					} +				*s++ = dig; +				goto ret; +				} +			if (j1 > 0) { +				if (dig == '9') { /* possible if i == 1 */ + round_9_up: +					*s++ = '9'; +					goto roundoff; +					} +				*s++ = dig + 1; +				goto ret; +				} +			*s++ = dig; +			if (i == ilim) +				break; +			b = multadd(b, 10, 0); +			if (mlo == mhi) +				mlo = mhi = multadd(mhi, 10, 0); +			else { +				mlo = multadd(mlo, 10, 0); +				mhi = multadd(mhi, 10, 0); +				} +			} +		} +	else +		for(i = 1;; i++) { +			*s++ = dig = quorem(b,S) + '0'; +			if (i >= ilim) +				break; +			b = multadd(b, 10, 0); +			} + +	/* Round off last digit */ + +	b = lshift(b, 1); +	j = cmp(b, S); +	if (j > 0 || (j == 0 && dig & 1)) { + roundoff: +		while(*--s == '9') +			if (s == s0) { +				k++; +				*s++ = '1'; +				goto ret; +				} +		++*s++; +		} +	else { +		while(*--s == '0'); +		s++; +		} + ret: +	Bfree(S); +	if (mhi) { +		if (mlo && mlo != mhi) +			Bfree(mlo); +		Bfree(mhi); +		} + ret1: +	Bfree(b); +	if (s == s0) {				/* don't return empty string */ +		*s++ = '0'; +		k = 0; +	} +	*s = 0; +	*decpt = k + 1; +	if (rve) +		*rve = s; +	return s0; +	} +#ifdef __cplusplus +} +#endif  | 
