summaryrefslogtreecommitdiff
path: root/tools/llvm-objcopy/Object.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2017-12-18 20:10:56 +0000
committerDimitry Andric <dim@FreeBSD.org>2017-12-18 20:10:56 +0000
commit044eb2f6afba375a914ac9d8024f8f5142bb912e (patch)
tree1475247dc9f9fe5be155ebd4c9069c75aadf8c20 /tools/llvm-objcopy/Object.cpp
parenteb70dddbd77e120e5d490bd8fbe7ff3f8fa81c6b (diff)
Notes
Diffstat (limited to 'tools/llvm-objcopy/Object.cpp')
-rw-r--r--tools/llvm-objcopy/Object.cpp936
1 files changed, 936 insertions, 0 deletions
diff --git a/tools/llvm-objcopy/Object.cpp b/tools/llvm-objcopy/Object.cpp
new file mode 100644
index 000000000000..bd5bcd7fc188
--- /dev/null
+++ b/tools/llvm-objcopy/Object.cpp
@@ -0,0 +1,936 @@
+//===- Object.cpp ---------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Object.h"
+#include "llvm-objcopy.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileOutputBuffer.h"
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace object;
+using namespace ELF;
+
+template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
+ using Elf_Ehdr = typename ELFT::Ehdr;
+ using Elf_Phdr = typename ELFT::Phdr;
+
+ uint8_t *Buf = Out.getBufferStart();
+ Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
+ Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
+ Phdr.p_type = Type;
+ Phdr.p_flags = Flags;
+ Phdr.p_offset = Offset;
+ Phdr.p_vaddr = VAddr;
+ Phdr.p_paddr = PAddr;
+ Phdr.p_filesz = FileSize;
+ Phdr.p_memsz = MemSize;
+ Phdr.p_align = Align;
+}
+
+void Segment::writeSegment(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart() + Offset;
+ // We want to maintain segments' interstitial data and contents exactly.
+ // This lets us just copy segments directly.
+ std::copy(std::begin(Contents), std::end(Contents), Buf);
+}
+
+void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
+void SectionBase::initialize(SectionTableRef SecTable) {}
+void SectionBase::finalize() {}
+
+template <class ELFT>
+void SectionBase::writeHeader(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart();
+ Buf += HeaderOffset;
+ typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
+ Shdr.sh_name = NameIndex;
+ Shdr.sh_type = Type;
+ Shdr.sh_flags = Flags;
+ Shdr.sh_addr = Addr;
+ Shdr.sh_offset = Offset;
+ Shdr.sh_size = Size;
+ Shdr.sh_link = Link;
+ Shdr.sh_info = Info;
+ Shdr.sh_addralign = Align;
+ Shdr.sh_entsize = EntrySize;
+}
+
+void Section::writeSection(FileOutputBuffer &Out) const {
+ if (Type == SHT_NOBITS)
+ return;
+ uint8_t *Buf = Out.getBufferStart() + Offset;
+ std::copy(std::begin(Contents), std::end(Contents), Buf);
+}
+
+void StringTableSection::addString(StringRef Name) {
+ StrTabBuilder.add(Name);
+ Size = StrTabBuilder.getSize();
+}
+
+uint32_t StringTableSection::findIndex(StringRef Name) const {
+ return StrTabBuilder.getOffset(Name);
+}
+
+void StringTableSection::finalize() { StrTabBuilder.finalize(); }
+
+void StringTableSection::writeSection(FileOutputBuffer &Out) const {
+ StrTabBuilder.write(Out.getBufferStart() + Offset);
+}
+
+static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
+ switch (Index) {
+ case SHN_ABS:
+ case SHN_COMMON:
+ return true;
+ }
+ if (Machine == EM_HEXAGON) {
+ switch (Index) {
+ case SHN_HEXAGON_SCOMMON:
+ case SHN_HEXAGON_SCOMMON_2:
+ case SHN_HEXAGON_SCOMMON_4:
+ case SHN_HEXAGON_SCOMMON_8:
+ return true;
+ }
+ }
+ return false;
+}
+
+uint16_t Symbol::getShndx() const {
+ if (DefinedIn != nullptr) {
+ return DefinedIn->Index;
+ }
+ switch (ShndxType) {
+ // This means that we don't have a defined section but we do need to
+ // output a legitimate section index.
+ case SYMBOL_SIMPLE_INDEX:
+ return SHN_UNDEF;
+ case SYMBOL_ABS:
+ case SYMBOL_COMMON:
+ case SYMBOL_HEXAGON_SCOMMON:
+ case SYMBOL_HEXAGON_SCOMMON_2:
+ case SYMBOL_HEXAGON_SCOMMON_4:
+ case SYMBOL_HEXAGON_SCOMMON_8:
+ return static_cast<uint16_t>(ShndxType);
+ }
+ llvm_unreachable("Symbol with invalid ShndxType encountered");
+}
+
+void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
+ SectionBase *DefinedIn, uint64_t Value,
+ uint16_t Shndx, uint64_t Sz) {
+ Symbol Sym;
+ Sym.Name = Name;
+ Sym.Binding = Bind;
+ Sym.Type = Type;
+ Sym.DefinedIn = DefinedIn;
+ if (DefinedIn == nullptr) {
+ if (Shndx >= SHN_LORESERVE)
+ Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
+ else
+ Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
+ }
+ Sym.Value = Value;
+ Sym.Size = Sz;
+ Sym.Index = Symbols.size();
+ Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
+ Size += this->EntrySize;
+}
+
+void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
+ if (SymbolNames == Sec) {
+ error("String table " + SymbolNames->Name +
+ " cannot be removed because it is referenced by the symbol table " +
+ this->Name);
+ }
+ auto Iter =
+ std::remove_if(std::begin(Symbols), std::end(Symbols),
+ [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
+ Size -= (std::end(Symbols) - Iter) * this->EntrySize;
+ Symbols.erase(Iter, std::end(Symbols));
+}
+
+void SymbolTableSection::initialize(SectionTableRef SecTable) {
+ Size = 0;
+ setStrTab(SecTable.getSectionOfType<StringTableSection>(
+ Link,
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a valid index",
+ "Symbol table has link index of " + Twine(Link) +
+ " which is not a string table"));
+}
+
+void SymbolTableSection::finalize() {
+ // Make sure SymbolNames is finalized before getting name indexes.
+ SymbolNames->finalize();
+
+ uint32_t MaxLocalIndex = 0;
+ for (auto &Sym : Symbols) {
+ Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
+ if (Sym->Binding == STB_LOCAL)
+ MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
+ }
+ // Now we need to set the Link and Info fields.
+ Link = SymbolNames->Index;
+ Info = MaxLocalIndex + 1;
+}
+
+void SymbolTableSection::addSymbolNames() {
+ // Add all of our strings to SymbolNames so that SymbolNames has the right
+ // size before layout is decided.
+ for (auto &Sym : Symbols)
+ SymbolNames->addString(Sym->Name);
+}
+
+const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
+ if (Symbols.size() <= Index)
+ error("Invalid symbol index: " + Twine(Index));
+ return Symbols[Index].get();
+}
+
+template <class ELFT>
+void SymbolTableSectionImpl<ELFT>::writeSection(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart();
+ Buf += Offset;
+ typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
+ // Loop though symbols setting each entry of the symbol table.
+ for (auto &Symbol : Symbols) {
+ Sym->st_name = Symbol->NameIndex;
+ Sym->st_value = Symbol->Value;
+ Sym->st_size = Symbol->Size;
+ Sym->setBinding(Symbol->Binding);
+ Sym->setType(Symbol->Type);
+ Sym->st_shndx = Symbol->getShndx();
+ ++Sym;
+ }
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
+ const SectionBase *Sec) {
+ if (Symbols == Sec) {
+ error("Symbol table " + Symbols->Name + " cannot be removed because it is "
+ "referenced by the relocation "
+ "section " +
+ this->Name);
+ }
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::initialize(
+ SectionTableRef SecTable) {
+ setSymTab(SecTable.getSectionOfType<SymTabType>(
+ Link,
+ "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
+ "Link field value " + Twine(Link) + " in section " + Name +
+ " is not a symbol table"));
+
+ if (Info != SHN_UNDEF)
+ setSection(SecTable.getSection(Info,
+ "Info field value " + Twine(Info) +
+ " in section " + Name + " is invalid"));
+ else
+ setSection(nullptr);
+}
+
+template <class SymTabType>
+void RelocSectionWithSymtabBase<SymTabType>::finalize() {
+ this->Link = Symbols->Index;
+ if (SecToApplyRel != nullptr)
+ this->Info = SecToApplyRel->Index;
+}
+
+template <class ELFT>
+void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
+
+template <class ELFT>
+void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
+ Rela.r_addend = Addend;
+}
+
+template <class ELFT>
+template <class T>
+void RelocationSection<ELFT>::writeRel(T *Buf) const {
+ for (const auto &Reloc : Relocations) {
+ Buf->r_offset = Reloc.Offset;
+ setAddend(*Buf, Reloc.Addend);
+ Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
+ ++Buf;
+ }
+}
+
+template <class ELFT>
+void RelocationSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart() + Offset;
+ if (Type == SHT_REL)
+ writeRel(reinterpret_cast<Elf_Rel *>(Buf));
+ else
+ writeRel(reinterpret_cast<Elf_Rela *>(Buf));
+}
+
+void DynamicRelocationSection::writeSection(FileOutputBuffer &Out) const {
+ std::copy(std::begin(Contents), std::end(Contents),
+ Out.getBufferStart() + Offset);
+}
+
+void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
+ if (StrTab == Sec) {
+ error("String table " + StrTab->Name + " cannot be removed because it is "
+ "referenced by the section " +
+ this->Name);
+ }
+}
+
+bool SectionWithStrTab::classof(const SectionBase *S) {
+ return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
+}
+
+void SectionWithStrTab::initialize(SectionTableRef SecTable) {
+ auto StrTab = SecTable.getSection(Link,
+ "Link field value " + Twine(Link) +
+ " in section " + Name + " is invalid");
+ if (StrTab->Type != SHT_STRTAB) {
+ error("Link field value " + Twine(Link) + " in section " + Name +
+ " is not a string table");
+ }
+ setStrTab(StrTab);
+}
+
+void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }
+
+// Returns true IFF a section is wholly inside the range of a segment
+static bool sectionWithinSegment(const SectionBase &Section,
+ const Segment &Segment) {
+ // If a section is empty it should be treated like it has a size of 1. This is
+ // to clarify the case when an empty section lies on a boundary between two
+ // segments and ensures that the section "belongs" to the second segment and
+ // not the first.
+ uint64_t SecSize = Section.Size ? Section.Size : 1;
+ return Segment.Offset <= Section.OriginalOffset &&
+ Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
+}
+
+// Returns true IFF a segment's original offset is inside of another segment's
+// range.
+static bool segmentOverlapsSegment(const Segment &Child,
+ const Segment &Parent) {
+
+ return Parent.OriginalOffset <= Child.OriginalOffset &&
+ Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
+}
+
+static bool compareSegments(const Segment *A, const Segment *B) {
+ // Any segment without a parent segment should come before a segment
+ // that has a parent segment.
+ if (A->OriginalOffset < B->OriginalOffset)
+ return true;
+ if (A->OriginalOffset > B->OriginalOffset)
+ return false;
+ return A->Index < B->Index;
+}
+
+template <class ELFT>
+void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
+ uint32_t Index = 0;
+ for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
+ ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
+ (size_t)Phdr.p_filesz};
+ Segments.emplace_back(llvm::make_unique<Segment>(Data));
+ Segment &Seg = *Segments.back();
+ Seg.Type = Phdr.p_type;
+ Seg.Flags = Phdr.p_flags;
+ Seg.OriginalOffset = Phdr.p_offset;
+ Seg.Offset = Phdr.p_offset;
+ Seg.VAddr = Phdr.p_vaddr;
+ Seg.PAddr = Phdr.p_paddr;
+ Seg.FileSize = Phdr.p_filesz;
+ Seg.MemSize = Phdr.p_memsz;
+ Seg.Align = Phdr.p_align;
+ Seg.Index = Index++;
+ for (auto &Section : Sections) {
+ if (sectionWithinSegment(*Section, Seg)) {
+ Seg.addSection(&*Section);
+ if (!Section->ParentSegment ||
+ Section->ParentSegment->Offset > Seg.Offset) {
+ Section->ParentSegment = &Seg;
+ }
+ }
+ }
+ }
+ // Now we do an O(n^2) loop through the segments in order to match up
+ // segments.
+ for (auto &Child : Segments) {
+ for (auto &Parent : Segments) {
+ // Every segment will overlap with itself but we don't want a segment to
+ // be it's own parent so we avoid that situation.
+ if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
+ // We want a canonical "most parental" segment but this requires
+ // inspecting the ParentSegment.
+ if (compareSegments(Parent.get(), Child.get()))
+ if (Child->ParentSegment == nullptr ||
+ compareSegments(Parent.get(), Child->ParentSegment)) {
+ Child->ParentSegment = Parent.get();
+ }
+ }
+ }
+ }
+}
+
+template <class ELFT>
+void Object<ELFT>::initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
+ SymbolTableSection *SymTab,
+ SectionTableRef SecTable) {
+ const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
+ StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
+
+ for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
+ SectionBase *DefSection = nullptr;
+ StringRef Name = unwrapOrError(Sym.getName(StrTabData));
+
+ if (Sym.st_shndx >= SHN_LORESERVE) {
+ if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
+ error(
+ "Symbol '" + Name +
+ "' has unsupported value greater than or equal to SHN_LORESERVE: " +
+ Twine(Sym.st_shndx));
+ }
+ } else if (Sym.st_shndx != SHN_UNDEF) {
+ DefSection = SecTable.getSection(
+ Sym.st_shndx,
+ "Symbol '" + Name + "' is defined in invalid section with index " +
+ Twine(Sym.st_shndx));
+ }
+
+ SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
+ Sym.getValue(), Sym.st_shndx, Sym.st_size);
+ }
+}
+
+template <class ELFT>
+static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
+
+template <class ELFT>
+static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
+ ToSet = Rela.r_addend;
+}
+
+template <class ELFT, class T>
+void initRelocations(RelocationSection<ELFT> *Relocs,
+ SymbolTableSection *SymbolTable, T RelRange) {
+ for (const auto &Rel : RelRange) {
+ Relocation ToAdd;
+ ToAdd.Offset = Rel.r_offset;
+ getAddend(ToAdd.Addend, Rel);
+ ToAdd.Type = Rel.getType(false);
+ ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
+ Relocs->addRelocation(ToAdd);
+ }
+}
+
+SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
+ if (Index == SHN_UNDEF || Index > Sections.size())
+ error(ErrMsg);
+ return Sections[Index - 1].get();
+}
+
+template <class T>
+T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
+ Twine TypeErrMsg) {
+ if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
+ return Sec;
+ error(TypeErrMsg);
+}
+
+template <class ELFT>
+std::unique_ptr<SectionBase>
+Object<ELFT>::makeSection(const object::ELFFile<ELFT> &ElfFile,
+ const Elf_Shdr &Shdr) {
+ ArrayRef<uint8_t> Data;
+ switch (Shdr.sh_type) {
+ case SHT_REL:
+ case SHT_RELA:
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<DynamicRelocationSection>(Data);
+ }
+ return llvm::make_unique<RelocationSection<ELFT>>();
+ case SHT_STRTAB:
+ // If a string table is allocated we don't want to mess with it. That would
+ // mean altering the memory image. There are no special link types or
+ // anything so we can just use a Section.
+ if (Shdr.sh_flags & SHF_ALLOC) {
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<Section>(Data);
+ }
+ return llvm::make_unique<StringTableSection>();
+ case SHT_HASH:
+ case SHT_GNU_HASH:
+ // Hash tables should refer to SHT_DYNSYM which we're not going to change.
+ // Because of this we don't need to mess with the hash tables either.
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<Section>(Data);
+ case SHT_DYNSYM:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<DynamicSymbolTableSection>(Data);
+ case SHT_DYNAMIC:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<DynamicSection>(Data);
+ case SHT_SYMTAB: {
+ auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
+ SymbolTable = SymTab.get();
+ return std::move(SymTab);
+ }
+ case SHT_NOBITS:
+ return llvm::make_unique<Section>(Data);
+ default:
+ Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
+ return llvm::make_unique<Section>(Data);
+ }
+}
+
+template <class ELFT>
+SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
+ uint32_t Index = 0;
+ for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
+ if (Index == 0) {
+ ++Index;
+ continue;
+ }
+ SecPtr Sec = makeSection(ElfFile, Shdr);
+ Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
+ Sec->Type = Shdr.sh_type;
+ Sec->Flags = Shdr.sh_flags;
+ Sec->Addr = Shdr.sh_addr;
+ Sec->Offset = Shdr.sh_offset;
+ Sec->OriginalOffset = Shdr.sh_offset;
+ Sec->Size = Shdr.sh_size;
+ Sec->Link = Shdr.sh_link;
+ Sec->Info = Shdr.sh_info;
+ Sec->Align = Shdr.sh_addralign;
+ Sec->EntrySize = Shdr.sh_entsize;
+ Sec->Index = Index++;
+ Sections.push_back(std::move(Sec));
+ }
+
+ SectionTableRef SecTable(Sections);
+
+ // Now that all of the sections have been added we can fill out some extra
+ // details about symbol tables. We need the symbol table filled out before
+ // any relocations.
+ if (SymbolTable) {
+ SymbolTable->initialize(SecTable);
+ initSymbolTable(ElfFile, SymbolTable, SecTable);
+ }
+
+ // Now that all sections and symbols have been added we can add
+ // relocations that reference symbols and set the link and info fields for
+ // relocation sections.
+ for (auto &Section : Sections) {
+ if (Section.get() == SymbolTable)
+ continue;
+ Section->initialize(SecTable);
+ if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
+ auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
+ if (RelSec->Type == SHT_REL)
+ initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
+ else
+ initRelocations(RelSec, SymbolTable,
+ unwrapOrError(ElfFile.relas(Shdr)));
+ }
+ }
+
+ return SecTable;
+}
+
+template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
+ const auto &ElfFile = *Obj.getELFFile();
+ const auto &Ehdr = *ElfFile.getHeader();
+
+ std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
+ Type = Ehdr.e_type;
+ Machine = Ehdr.e_machine;
+ Version = Ehdr.e_version;
+ Entry = Ehdr.e_entry;
+ Flags = Ehdr.e_flags;
+
+ SectionTableRef SecTable = readSectionHeaders(ElfFile);
+ readProgramHeaders(ElfFile);
+
+ SectionNames = SecTable.getSectionOfType<StringTableSection>(
+ Ehdr.e_shstrndx,
+ "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
+ " is invalid",
+ "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
+ " is not a string table");
+}
+
+template <class ELFT>
+void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart();
+ Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
+ std::copy(Ident, Ident + 16, Ehdr.e_ident);
+ Ehdr.e_type = Type;
+ Ehdr.e_machine = Machine;
+ Ehdr.e_version = Version;
+ Ehdr.e_entry = Entry;
+ Ehdr.e_phoff = sizeof(Elf_Ehdr);
+ Ehdr.e_flags = Flags;
+ Ehdr.e_ehsize = sizeof(Elf_Ehdr);
+ Ehdr.e_phentsize = sizeof(Elf_Phdr);
+ Ehdr.e_phnum = Segments.size();
+ Ehdr.e_shentsize = sizeof(Elf_Shdr);
+ if (WriteSectionHeaders) {
+ Ehdr.e_shoff = SHOffset;
+ Ehdr.e_shnum = Sections.size() + 1;
+ Ehdr.e_shstrndx = SectionNames->Index;
+ } else {
+ Ehdr.e_shoff = 0;
+ Ehdr.e_shnum = 0;
+ Ehdr.e_shstrndx = 0;
+ }
+}
+
+template <class ELFT>
+void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
+ for (auto &Phdr : Segments)
+ Phdr->template writeHeader<ELFT>(Out);
+}
+
+template <class ELFT>
+void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
+ uint8_t *Buf = Out.getBufferStart() + SHOffset;
+ // This reference serves to write the dummy section header at the begining
+ // of the file. It is not used for anything else
+ Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
+ Shdr.sh_name = 0;
+ Shdr.sh_type = SHT_NULL;
+ Shdr.sh_flags = 0;
+ Shdr.sh_addr = 0;
+ Shdr.sh_offset = 0;
+ Shdr.sh_size = 0;
+ Shdr.sh_link = 0;
+ Shdr.sh_info = 0;
+ Shdr.sh_addralign = 0;
+ Shdr.sh_entsize = 0;
+
+ for (auto &Section : Sections)
+ Section->template writeHeader<ELFT>(Out);
+}
+
+template <class ELFT>
+void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
+ for (auto &Section : Sections)
+ Section->writeSection(Out);
+}
+
+template <class ELFT>
+void Object<ELFT>::removeSections(
+ std::function<bool(const SectionBase &)> ToRemove) {
+
+ auto Iter = std::stable_partition(
+ std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
+ if (ToRemove(*Sec))
+ return false;
+ if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
+ if (auto ToRelSec = RelSec->getSection())
+ return !ToRemove(*ToRelSec);
+ }
+ return true;
+ });
+ if (SymbolTable != nullptr && ToRemove(*SymbolTable))
+ SymbolTable = nullptr;
+ if (ToRemove(*SectionNames)) {
+ if (WriteSectionHeaders)
+ error("Cannot remove " + SectionNames->Name +
+ " because it is the section header string table.");
+ SectionNames = nullptr;
+ }
+ // Now make sure there are no remaining references to the sections that will
+ // be removed. Sometimes it is impossible to remove a reference so we emit
+ // an error here instead.
+ for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
+ for (auto &Segment : Segments)
+ Segment->removeSection(RemoveSec.get());
+ for (auto &KeepSec : make_range(std::begin(Sections), Iter))
+ KeepSec->removeSectionReferences(RemoveSec.get());
+ }
+ // Now finally get rid of them all togethor.
+ Sections.erase(Iter, std::end(Sections));
+}
+
+template <class ELFT> void ELFObject<ELFT>::sortSections() {
+ // Put all sections in offset order. Maintain the ordering as closely as
+ // possible while meeting that demand however.
+ auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
+ return A->OriginalOffset < B->OriginalOffset;
+ };
+ std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
+ CompareSections);
+}
+
+static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
+ // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
+ if (Align == 0)
+ Align = 1;
+ auto Diff =
+ static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
+ // We only want to add to Offset, however, so if Diff < 0 we can add Align and
+ // (Offset + Diff) & -Align == Addr & -Align will still hold.
+ if (Diff < 0)
+ Diff += Align;
+ return Offset + Diff;
+}
+
+// Orders segments such that if x = y->ParentSegment then y comes before x.
+static void OrderSegments(std::vector<Segment *> &Segments) {
+ std::stable_sort(std::begin(Segments), std::end(Segments), compareSegments);
+}
+
+// This function finds a consistent layout for a list of segments starting from
+// an Offset. It assumes that Segments have been sorted by OrderSegments and
+// returns an Offset one past the end of the last segment.
+static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
+ uint64_t Offset) {
+ assert(std::is_sorted(std::begin(Segments), std::end(Segments),
+ compareSegments));
+ // The only way a segment should move is if a section was between two
+ // segments and that section was removed. If that section isn't in a segment
+ // then it's acceptable, but not ideal, to simply move it to after the
+ // segments. So we can simply layout segments one after the other accounting
+ // for alignment.
+ for (auto &Segment : Segments) {
+ // We assume that segments have been ordered by OriginalOffset and Index
+ // such that a parent segment will always come before a child segment in
+ // OrderedSegments. This means that the Offset of the ParentSegment should
+ // already be set and we can set our offset relative to it.
+ if (Segment->ParentSegment != nullptr) {
+ auto Parent = Segment->ParentSegment;
+ Segment->Offset =
+ Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
+ } else {
+ Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
+ Segment->Offset = Offset;
+ }
+ Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
+ }
+ return Offset;
+}
+
+// This function finds a consistent layout for a list of sections. It assumes
+// that the ->ParentSegment of each section has already been laid out. The
+// supplied starting Offset is used for the starting offset of any section that
+// does not have a ParentSegment. It returns either the offset given if all
+// sections had a ParentSegment or an offset one past the last section if there
+// was a section that didn't have a ParentSegment.
+template <class SecPtr>
+static uint64_t LayoutSections(std::vector<SecPtr> &Sections, uint64_t Offset) {
+ // Now the offset of every segment has been set we can assign the offsets
+ // of each section. For sections that are covered by a segment we should use
+ // the segment's original offset and the section's original offset to compute
+ // the offset from the start of the segment. Using the offset from the start
+ // of the segment we can assign a new offset to the section. For sections not
+ // covered by segments we can just bump Offset to the next valid location.
+ uint32_t Index = 1;
+ for (auto &Section : Sections) {
+ Section->Index = Index++;
+ if (Section->ParentSegment != nullptr) {
+ auto Segment = Section->ParentSegment;
+ Section->Offset =
+ Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
+ } else {
+ Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
+ Section->Offset = Offset;
+ if (Section->Type != SHT_NOBITS)
+ Offset += Section->Size;
+ }
+ }
+ return Offset;
+}
+
+template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
+ // We need a temporary list of segments that has a special order to it
+ // so that we know that anytime ->ParentSegment is set that segment has
+ // already had its offset properly set.
+ std::vector<Segment *> OrderedSegments;
+ for (auto &Segment : this->Segments)
+ OrderedSegments.push_back(Segment.get());
+ OrderSegments(OrderedSegments);
+ // The size of ELF + program headers will not change so it is ok to assume
+ // that the first offset of the first segment is a good place to start
+ // outputting sections. This covers both the standard case and the PT_PHDR
+ // case.
+ uint64_t Offset;
+ if (!OrderedSegments.empty()) {
+ Offset = OrderedSegments[0]->Offset;
+ } else {
+ Offset = sizeof(Elf_Ehdr);
+ }
+ Offset = LayoutSegments(OrderedSegments, Offset);
+ Offset = LayoutSections(this->Sections, Offset);
+ // If we need to write the section header table out then we need to align the
+ // Offset so that SHOffset is valid.
+ if (this->WriteSectionHeaders)
+ Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
+ this->SHOffset = Offset;
+}
+
+template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
+ // We already have the section header offset so we can calculate the total
+ // size by just adding up the size of each section header.
+ auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
+ return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
+ NullSectionSize;
+}
+
+template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
+ this->writeHeader(Out);
+ this->writeProgramHeaders(Out);
+ this->writeSectionData(Out);
+ if (this->WriteSectionHeaders)
+ this->writeSectionHeaders(Out);
+}
+
+template <class ELFT> void ELFObject<ELFT>::finalize() {
+ // Make sure we add the names of all the sections.
+ if (this->SectionNames != nullptr)
+ for (const auto &Section : this->Sections) {
+ this->SectionNames->addString(Section->Name);
+ }
+ // Make sure we add the names of all the symbols.
+ if (this->SymbolTable != nullptr)
+ this->SymbolTable->addSymbolNames();
+
+ sortSections();
+ assignOffsets();
+
+ // Finalize SectionNames first so that we can assign name indexes.
+ if (this->SectionNames != nullptr)
+ this->SectionNames->finalize();
+ // Finally now that all offsets and indexes have been set we can finalize any
+ // remaining issues.
+ uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
+ for (auto &Section : this->Sections) {
+ Section->HeaderOffset = Offset;
+ Offset += sizeof(Elf_Shdr);
+ if (this->WriteSectionHeaders)
+ Section->NameIndex = this->SectionNames->findIndex(Section->Name);
+ Section->finalize();
+ }
+}
+
+template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
+ return TotalSize;
+}
+
+template <class ELFT>
+void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
+ for (auto &Section : this->Sections) {
+ if ((Section->Flags & SHF_ALLOC) == 0)
+ continue;
+ Section->writeSection(Out);
+ }
+}
+
+template <class ELFT> void BinaryObject<ELFT>::finalize() {
+ // TODO: Create a filter range to construct OrderedSegments from so that this
+ // code can be deduped with assignOffsets above. This should also solve the
+ // todo below for LayoutSections.
+ // We need a temporary list of segments that has a special order to it
+ // so that we know that anytime ->ParentSegment is set that segment has
+ // already had it's offset properly set. We only want to consider the segments
+ // that will affect layout of allocated sections so we only add those.
+ std::vector<Segment *> OrderedSegments;
+ for (auto &Section : this->Sections) {
+ if ((Section->Flags & SHF_ALLOC) != 0 &&
+ Section->ParentSegment != nullptr) {
+ OrderedSegments.push_back(Section->ParentSegment);
+ }
+ }
+ OrderSegments(OrderedSegments);
+ // Because we add a ParentSegment for each section we might have duplicate
+ // segments in OrderedSegments. If there were duplicates then LayoutSegments
+ // would do very strange things.
+ auto End =
+ std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
+ OrderedSegments.erase(End, std::end(OrderedSegments));
+
+ // Modify the first segment so that there is no gap at the start. This allows
+ // our layout algorithm to proceed as expected while not out writing out the
+ // gap at the start.
+ if (!OrderedSegments.empty()) {
+ auto Seg = OrderedSegments[0];
+ auto Sec = Seg->firstSection();
+ auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
+ Seg->OriginalOffset += Diff;
+ // The size needs to be shrunk as well
+ Seg->FileSize -= Diff;
+ Seg->MemSize -= Diff;
+ // The VAddr needs to be adjusted so that the alignment is correct as well
+ Seg->VAddr += Diff;
+ Seg->PAddr = Seg->VAddr;
+ // We don't want this to be shifted by alignment so we need to set the
+ // alignment to zero.
+ Seg->Align = 0;
+ }
+
+ uint64_t Offset = LayoutSegments(OrderedSegments, 0);
+
+ // TODO: generalize LayoutSections to take a range. Pass a special range
+ // constructed from an iterator that skips values for which a predicate does
+ // not hold. Then pass such a range to LayoutSections instead of constructing
+ // AllocatedSections here.
+ std::vector<SectionBase *> AllocatedSections;
+ for (auto &Section : this->Sections) {
+ if ((Section->Flags & SHF_ALLOC) == 0)
+ continue;
+ AllocatedSections.push_back(Section.get());
+ }
+ LayoutSections(AllocatedSections, Offset);
+
+ // Now that every section has been laid out we just need to compute the total
+ // file size. This might not be the same as the offset returned by
+ // LayoutSections, because we want to truncate the last segment to the end of
+ // its last section, to match GNU objcopy's behaviour.
+ TotalSize = 0;
+ for (const auto &Section : AllocatedSections) {
+ if (Section->Type != SHT_NOBITS)
+ TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
+ }
+}
+
+namespace llvm {
+
+template class Object<ELF64LE>;
+template class Object<ELF64BE>;
+template class Object<ELF32LE>;
+template class Object<ELF32BE>;
+
+template class ELFObject<ELF64LE>;
+template class ELFObject<ELF64BE>;
+template class ELFObject<ELF32LE>;
+template class ELFObject<ELF32BE>;
+
+template class BinaryObject<ELF64LE>;
+template class BinaryObject<ELF64BE>;
+template class BinaryObject<ELF32LE>;
+template class BinaryObject<ELF32BE>;
+
+} // end namespace llvm