summaryrefslogtreecommitdiff
path: root/utils/TableGen/CodeGenDAGPatterns.h
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2017-12-18 20:10:56 +0000
committerDimitry Andric <dim@FreeBSD.org>2017-12-18 20:10:56 +0000
commit044eb2f6afba375a914ac9d8024f8f5142bb912e (patch)
tree1475247dc9f9fe5be155ebd4c9069c75aadf8c20 /utils/TableGen/CodeGenDAGPatterns.h
parenteb70dddbd77e120e5d490bd8fbe7ff3f8fa81c6b (diff)
Notes
Diffstat (limited to 'utils/TableGen/CodeGenDAGPatterns.h')
-rw-r--r--utils/TableGen/CodeGenDAGPatterns.h727
1 files changed, 535 insertions, 192 deletions
diff --git a/utils/TableGen/CodeGenDAGPatterns.h b/utils/TableGen/CodeGenDAGPatterns.h
index 8b3e19142370..afbcb10a4b66 100644
--- a/utils/TableGen/CodeGenDAGPatterns.h
+++ b/utils/TableGen/CodeGenDAGPatterns.h
@@ -15,163 +15,334 @@
#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
+#include "CodeGenHwModes.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringSet.h"
#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
#include <algorithm>
+#include <array>
+#include <functional>
#include <map>
#include <set>
#include <vector>
namespace llvm {
- class Record;
- class Init;
- class ListInit;
- class DagInit;
- class SDNodeInfo;
- class TreePattern;
- class TreePatternNode;
- class CodeGenDAGPatterns;
- class ComplexPattern;
-
-/// EEVT::DAGISelGenValueType - These are some extended forms of
-/// MVT::SimpleValueType that we use as lattice values during type inference.
-/// The existing MVT iAny, fAny and vAny types suffice to represent
-/// arbitrary integer, floating-point, and vector types, so only an unknown
-/// value is needed.
-namespace EEVT {
- /// TypeSet - This is either empty if it's completely unknown, or holds a set
- /// of types. It is used during type inference because register classes can
- /// have multiple possible types and we don't know which one they get until
- /// type inference is complete.
- ///
- /// TypeSet can have three states:
- /// Vector is empty: The type is completely unknown, it can be any valid
- /// target type.
- /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one
- /// of those types only.
- /// Vector has one concrete type: The type is completely known.
- ///
- class TypeSet {
- SmallVector<MVT::SimpleValueType, 4> TypeVec;
- public:
- TypeSet() {}
- TypeSet(MVT::SimpleValueType VT, TreePattern &TP);
- TypeSet(ArrayRef<MVT::SimpleValueType> VTList);
-
- bool isCompletelyUnknown() const { return TypeVec.empty(); }
-
- bool isConcrete() const {
- if (TypeVec.size() != 1) return false;
- unsigned char T = TypeVec[0]; (void)T;
- assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny);
- return true;
- }
- MVT::SimpleValueType getConcrete() const {
- assert(isConcrete() && "Type isn't concrete yet");
- return (MVT::SimpleValueType)TypeVec[0];
- }
+class Record;
+class Init;
+class ListInit;
+class DagInit;
+class SDNodeInfo;
+class TreePattern;
+class TreePatternNode;
+class CodeGenDAGPatterns;
+class ComplexPattern;
+
+/// This represents a set of MVTs. Since the underlying type for the MVT
+/// is uint8_t, there are at most 256 values. To reduce the number of memory
+/// allocations and deallocations, represent the set as a sequence of bits.
+/// To reduce the allocations even further, make MachineValueTypeSet own
+/// the storage and use std::array as the bit container.
+struct MachineValueTypeSet {
+ static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
+ uint8_t>::value,
+ "Change uint8_t here to the SimpleValueType's type");
+ static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
+ using WordType = uint64_t;
+ static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
+ static unsigned constexpr NumWords = Capacity/WordWidth;
+ static_assert(NumWords*WordWidth == Capacity,
+ "Capacity should be a multiple of WordWidth");
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MachineValueTypeSet() {
+ clear();
+ }
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ unsigned size() const {
+ unsigned Count = 0;
+ for (WordType W : Words)
+ Count += countPopulation(W);
+ return Count;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ void clear() {
+ std::memset(Words.data(), 0, NumWords*sizeof(WordType));
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool empty() const {
+ for (WordType W : Words)
+ if (W != 0)
+ return false;
+ return true;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ unsigned count(MVT T) const {
+ return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
+ }
+ std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
+ bool V = count(T.SimpleTy);
+ Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
+ return {*this, V};
+ }
+ MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
+ for (unsigned i = 0; i != NumWords; ++i)
+ Words[i] |= S.Words[i];
+ return *this;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ void erase(MVT T) {
+ Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
+ }
- bool isDynamicallyResolved() const {
- return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny;
+ struct const_iterator {
+ // Some implementations of the C++ library require these traits to be
+ // defined.
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = MVT;
+ using difference_type = ptrdiff_t;
+ using pointer = const MVT*;
+ using reference = const MVT&;
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MVT operator*() const {
+ assert(Pos != Capacity);
+ return MVT::SimpleValueType(Pos);
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
+ Pos = End ? Capacity : find_from_pos(0);
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator &operator++() {
+ assert(Pos != Capacity);
+ Pos = find_from_pos(Pos+1);
+ return *this;
}
- const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const {
- assert(!TypeVec.empty() && "Not a type list!");
- return TypeVec;
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator==(const const_iterator &It) const {
+ return Set == It.Set && Pos == It.Pos;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator!=(const const_iterator &It) const {
+ return !operator==(It);
}
- bool isVoid() const {
- return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid;
+ private:
+ unsigned find_from_pos(unsigned P) const {
+ unsigned SkipWords = P / WordWidth;
+ unsigned SkipBits = P % WordWidth;
+ unsigned Count = SkipWords * WordWidth;
+
+ // If P is in the middle of a word, process it manually here, because
+ // the trailing bits need to be masked off to use findFirstSet.
+ if (SkipBits != 0) {
+ WordType W = Set->Words[SkipWords];
+ W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
+ if (W != 0)
+ return Count + findFirstSet(W);
+ Count += WordWidth;
+ SkipWords++;
+ }
+
+ for (unsigned i = SkipWords; i != NumWords; ++i) {
+ WordType W = Set->Words[i];
+ if (W != 0)
+ return Count + findFirstSet(W);
+ Count += WordWidth;
+ }
+ return Capacity;
}
- /// hasIntegerTypes - Return true if this TypeSet contains any integer value
- /// types.
- bool hasIntegerTypes() const;
+ const MachineValueTypeSet *Set;
+ unsigned Pos;
+ };
- /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
- /// a floating point value type.
- bool hasFloatingPointTypes() const;
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator begin() const { return const_iterator(this, false); }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator end() const { return const_iterator(this, true); }
- /// hasScalarTypes - Return true if this TypeSet contains a scalar value
- /// type.
- bool hasScalarTypes() const;
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator==(const MachineValueTypeSet &S) const {
+ return Words == S.Words;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator!=(const MachineValueTypeSet &S) const {
+ return !operator==(S);
+ }
- /// hasVectorTypes - Return true if this TypeSet contains a vector value
- /// type.
- bool hasVectorTypes() const;
+private:
+ friend struct const_iterator;
+ std::array<WordType,NumWords> Words;
+};
- /// getName() - Return this TypeSet as a string.
- std::string getName() const;
+struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
+ using SetType = MachineValueTypeSet;
+
+ TypeSetByHwMode() = default;
+ TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
+ TypeSetByHwMode(MVT::SimpleValueType VT)
+ : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
+ TypeSetByHwMode(ValueTypeByHwMode VT)
+ : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
+ TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
+
+ SetType &getOrCreate(unsigned Mode) {
+ if (hasMode(Mode))
+ return get(Mode);
+ return Map.insert({Mode,SetType()}).first->second;
+ }
- /// MergeInTypeInfo - This merges in type information from the specified
- /// argument. If 'this' changes, it returns true. If the two types are
- /// contradictory (e.g. merge f32 into i32) then this flags an error.
- bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP);
+ bool isValueTypeByHwMode(bool AllowEmpty) const;
+ ValueTypeByHwMode getValueTypeByHwMode() const;
- bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) {
- return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP);
- }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool isMachineValueType() const {
+ return isDefaultOnly() && Map.begin()->second.size() == 1;
+ }
- /// Force this type list to only contain integer types.
- bool EnforceInteger(TreePattern &TP);
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MVT getMachineValueType() const {
+ assert(isMachineValueType());
+ return *Map.begin()->second.begin();
+ }
- /// Force this type list to only contain floating point types.
- bool EnforceFloatingPoint(TreePattern &TP);
+ bool isPossible() const;
- /// EnforceScalar - Remove all vector types from this type list.
- bool EnforceScalar(TreePattern &TP);
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool isDefaultOnly() const {
+ return Map.size() == 1 && Map.begin()->first == DefaultMode;
+ }
- /// EnforceVector - Remove all non-vector types from this type list.
- bool EnforceVector(TreePattern &TP);
+ bool insert(const ValueTypeByHwMode &VVT);
+ bool constrain(const TypeSetByHwMode &VTS);
+ template <typename Predicate> bool constrain(Predicate P);
+ template <typename Predicate>
+ bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
- /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
- /// this an other based on this information.
- bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP);
+ void writeToStream(raw_ostream &OS) const;
+ static void writeToStream(const SetType &S, raw_ostream &OS);
- /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
- /// whose element is VT.
- bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
+ bool operator==(const TypeSetByHwMode &VTS) const;
+ bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
- /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
- /// whose element is VT.
- bool EnforceVectorEltTypeIs(MVT::SimpleValueType VT, TreePattern &TP);
+ void dump() const;
+ void validate() const;
- /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to
- /// be a vector type VT.
- bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP);
+private:
+ /// Intersect two sets. Return true if anything has changed.
+ bool intersect(SetType &Out, const SetType &In);
+};
- /// EnforceSameNumElts - If VTOperand is a scalar, then 'this' is a scalar.
- /// If VTOperand is a vector, then 'this' must have the same number of
- /// elements.
- bool EnforceSameNumElts(EEVT::TypeSet &VT, TreePattern &TP);
+raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
- /// EnforceSameSize - 'this' is now constrained to be the same size as VT.
- bool EnforceSameSize(EEVT::TypeSet &VT, TreePattern &TP);
+struct TypeInfer {
+ TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
- bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; }
- bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; }
+ bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
+ return VTS.isValueTypeByHwMode(AllowEmpty);
+ }
+ ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
+ bool AllowEmpty) const {
+ assert(VTS.isValueTypeByHwMode(AllowEmpty));
+ return VTS.getValueTypeByHwMode();
+ }
- private:
- /// FillWithPossibleTypes - Set to all legal types and return true, only
- /// valid on completely unknown type sets. If Pred is non-null, only MVTs
- /// that pass the predicate are added.
- bool FillWithPossibleTypes(TreePattern &TP,
- bool (*Pred)(MVT::SimpleValueType) = nullptr,
- const char *PredicateName = nullptr);
+ /// The protocol in the following functions (Merge*, force*, Enforce*,
+ /// expand*) is to return "true" if a change has been made, "false"
+ /// otherwise.
+
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
+ return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
+ }
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
+ return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
+ }
+
+ /// Reduce the set \p Out to have at most one element for each mode.
+ bool forceArbitrary(TypeSetByHwMode &Out);
+
+ /// The following four functions ensure that upon return the set \p Out
+ /// will only contain types of the specified kind: integer, floating-point,
+ /// scalar, or vector.
+ /// If \p Out is empty, all legal types of the specified kind will be added
+ /// to it. Otherwise, all types that are not of the specified kind will be
+ /// removed from \p Out.
+ bool EnforceInteger(TypeSetByHwMode &Out);
+ bool EnforceFloatingPoint(TypeSetByHwMode &Out);
+ bool EnforceScalar(TypeSetByHwMode &Out);
+ bool EnforceVector(TypeSetByHwMode &Out);
+
+ /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
+ /// unchanged.
+ bool EnforceAny(TypeSetByHwMode &Out);
+ /// Make sure that for each type in \p Small, there exists a larger type
+ /// in \p Big.
+ bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
+ /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
+ /// for each type U in \p Elem, U is a scalar type.
+ /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
+ /// (vector) type T in \p Vec, such that U is the element type of T.
+ bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
+ bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
+ const ValueTypeByHwMode &VVT);
+ /// Ensure that for each type T in \p Sub, T is a vector type, and there
+ /// exists a type U in \p Vec such that U is a vector type with the same
+ /// element type as T and at least as many elements as T.
+ bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
+ TypeSetByHwMode &Sub);
+ /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
+ /// 2. Ensure that for each vector type T in \p V, there exists a vector
+ /// type U in \p W, such that T and U have the same number of elements.
+ /// 3. Ensure that for each vector type U in \p W, there exists a vector
+ /// type T in \p V, such that T and U have the same number of elements
+ /// (reverse of 2).
+ bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
+ /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
+ /// such that T and U have equal size in bits.
+ /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
+ /// such that T and U have equal size in bits (reverse of 1).
+ bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
+
+ /// For each overloaded type (i.e. of form *Any), replace it with the
+ /// corresponding subset of legal, specific types.
+ void expandOverloads(TypeSetByHwMode &VTS);
+ void expandOverloads(TypeSetByHwMode::SetType &Out,
+ const TypeSetByHwMode::SetType &Legal);
+
+ struct ValidateOnExit {
+ ValidateOnExit(TypeSetByHwMode &T) : VTS(T) {}
+ ~ValidateOnExit() { VTS.validate(); }
+ TypeSetByHwMode &VTS;
};
-}
+
+ TreePattern &TP;
+ unsigned ForceMode; // Mode to use when set.
+ bool CodeGen = false; // Set during generation of matcher code.
+
+private:
+ TypeSetByHwMode getLegalTypes();
+
+ /// Cached legal types.
+ bool LegalTypesCached = false;
+ TypeSetByHwMode::SetType LegalCache = {};
+};
/// Set type used to track multiply used variables in patterns
-typedef std::set<std::string> MultipleUseVarSet;
+typedef StringSet<> MultipleUseVarSet;
/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
- SDTypeConstraint(Record *R);
+ SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
unsigned OperandNo; // The operand # this constraint applies to.
enum {
@@ -182,9 +353,6 @@ struct SDTypeConstraint {
union { // The discriminated union.
struct {
- MVT::SimpleValueType VT;
- } SDTCisVT_Info;
- struct {
unsigned OtherOperandNum;
} SDTCisSameAs_Info;
struct {
@@ -200,9 +368,6 @@ struct SDTypeConstraint {
unsigned OtherOperandNum;
} SDTCisSubVecOfVec_Info;
struct {
- MVT::SimpleValueType VT;
- } SDTCVecEltisVT_Info;
- struct {
unsigned OtherOperandNum;
} SDTCisSameNumEltsAs_Info;
struct {
@@ -210,6 +375,10 @@ struct SDTypeConstraint {
} SDTCisSameSizeAs_Info;
} x;
+ // The VT for SDTCisVT and SDTCVecEltisVT.
+ // Must not be in the union because it has a non-trivial destructor.
+ ValueTypeByHwMode VVT;
+
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, an error
@@ -230,7 +399,8 @@ class SDNodeInfo {
int NumOperands;
std::vector<SDTypeConstraint> TypeConstraints;
public:
- SDNodeInfo(Record *R); // Parse the specified record.
+ // Parse the specified record.
+ SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
unsigned getNumResults() const { return NumResults; }
@@ -258,14 +428,9 @@ public:
/// constraints for this node to the operands of the node. This returns
/// true if it makes a change, false otherwise. If a type contradiction is
/// found, an error is flagged.
- bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
- bool MadeChange = false;
- for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
- MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
- return MadeChange;
- }
+ bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
};
-
+
/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node. This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
@@ -277,14 +442,14 @@ public:
/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern *N);
-
+
TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
-
+
/// isAlwaysTrue - Return true if this is a noop predicate.
bool isAlwaysTrue() const;
-
- bool isImmediatePattern() const { return !getImmCode().empty(); }
-
+
+ bool isImmediatePattern() const { return hasImmCode(); }
+
/// getImmediatePredicateCode - Return the code that evaluates this pattern if
/// this is an immediate predicate. It is an error to call this on a
/// non-immediate pattern.
@@ -293,8 +458,7 @@ public:
assert(!Result.empty() && "Isn't an immediate pattern!");
return Result;
}
-
-
+
bool operator==(const TreePredicateFn &RHS) const {
return PatFragRec == RHS.PatFragRec;
}
@@ -304,18 +468,83 @@ public:
/// Return the name to use in the generated code to reference this, this is
/// "Predicate_foo" if from a pattern fragment "foo".
std::string getFnName() const;
-
+
/// getCodeToRunOnSDNode - Return the code for the function body that
/// evaluates this predicate. The argument is expected to be in "Node",
/// not N. This handles casting and conversion to a concrete node type as
/// appropriate.
std::string getCodeToRunOnSDNode() const;
-
+
+ /// Get the data type of the argument to getImmediatePredicateCode().
+ StringRef getImmType() const;
+
+ /// Get a string that describes the type returned by getImmType() but is
+ /// usable as part of an identifier.
+ StringRef getImmTypeIdentifier() const;
+
+ // Is the desired predefined predicate for a load?
+ bool isLoad() const;
+ // Is the desired predefined predicate for a store?
+ bool isStore() const;
+ // Is the desired predefined predicate for an atomic?
+ bool isAtomic() const;
+
+ /// Is this predicate the predefined unindexed load predicate?
+ /// Is this predicate the predefined unindexed store predicate?
+ bool isUnindexed() const;
+ /// Is this predicate the predefined non-extending load predicate?
+ bool isNonExtLoad() const;
+ /// Is this predicate the predefined any-extend load predicate?
+ bool isAnyExtLoad() const;
+ /// Is this predicate the predefined sign-extend load predicate?
+ bool isSignExtLoad() const;
+ /// Is this predicate the predefined zero-extend load predicate?
+ bool isZeroExtLoad() const;
+ /// Is this predicate the predefined non-truncating store predicate?
+ bool isNonTruncStore() const;
+ /// Is this predicate the predefined truncating store predicate?
+ bool isTruncStore() const;
+
+ /// Is this predicate the predefined monotonic atomic predicate?
+ bool isAtomicOrderingMonotonic() const;
+ /// Is this predicate the predefined acquire atomic predicate?
+ bool isAtomicOrderingAcquire() const;
+ /// Is this predicate the predefined release atomic predicate?
+ bool isAtomicOrderingRelease() const;
+ /// Is this predicate the predefined acquire-release atomic predicate?
+ bool isAtomicOrderingAcquireRelease() const;
+ /// Is this predicate the predefined sequentially consistent atomic predicate?
+ bool isAtomicOrderingSequentiallyConsistent() const;
+
+ /// Is this predicate the predefined acquire-or-stronger atomic predicate?
+ bool isAtomicOrderingAcquireOrStronger() const;
+ /// Is this predicate the predefined weaker-than-acquire atomic predicate?
+ bool isAtomicOrderingWeakerThanAcquire() const;
+
+ /// Is this predicate the predefined release-or-stronger atomic predicate?
+ bool isAtomicOrderingReleaseOrStronger() const;
+ /// Is this predicate the predefined weaker-than-release atomic predicate?
+ bool isAtomicOrderingWeakerThanRelease() const;
+
+ /// If non-null, indicates that this predicate is a predefined memory VT
+ /// predicate for a load/store and returns the ValueType record for the memory VT.
+ Record *getMemoryVT() const;
+ /// If non-null, indicates that this predicate is a predefined memory VT
+ /// predicate (checking only the scalar type) for load/store and returns the
+ /// ValueType record for the memory VT.
+ Record *getScalarMemoryVT() const;
+
private:
+ bool hasPredCode() const;
+ bool hasImmCode() const;
std::string getPredCode() const;
std::string getImmCode() const;
+ bool immCodeUsesAPInt() const;
+ bool immCodeUsesAPFloat() const;
+
+ bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
};
-
+
/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
/// patterns), and as such should be ref counted. We currently just leak all
@@ -324,7 +553,7 @@ class TreePatternNode {
/// The type of each node result. Before and during type inference, each
/// result may be a set of possible types. After (successful) type inference,
/// each is a single concrete type.
- SmallVector<EEVT::TypeSet, 1> Types;
+ std::vector<TypeSetByHwMode> Types;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
@@ -367,22 +596,24 @@ public:
// Type accessors.
unsigned getNumTypes() const { return Types.size(); }
- MVT::SimpleValueType getType(unsigned ResNo) const {
- return Types[ResNo].getConcrete();
+ ValueTypeByHwMode getType(unsigned ResNo) const {
+ return Types[ResNo].getValueTypeByHwMode();
}
- const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; }
- const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; }
- EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; }
- void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; }
-
- bool hasTypeSet(unsigned ResNo) const {
- return Types[ResNo].isConcrete();
+ const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
+ const TypeSetByHwMode &getExtType(unsigned ResNo) const {
+ return Types[ResNo];
+ }
+ TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
+ void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
+ MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
+ return Types[ResNo].getMachineValueType().SimpleTy;
}
- bool isTypeCompletelyUnknown(unsigned ResNo) const {
- return Types[ResNo].isCompletelyUnknown();
+
+ bool hasConcreteType(unsigned ResNo) const {
+ return Types[ResNo].isValueTypeByHwMode(false);
}
- bool isTypeDynamicallyResolved(unsigned ResNo) const {
- return Types[ResNo].isDynamicallyResolved();
+ bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
+ return Types[ResNo].empty();
}
Init *getLeafValue() const { assert(isLeaf()); return Val; }
@@ -401,8 +632,12 @@ public:
return false;
}
+ bool hasProperTypeByHwMode() const;
+ bool hasPossibleType() const;
+ bool setDefaultMode(unsigned Mode);
+
bool hasAnyPredicate() const { return !PredicateFns.empty(); }
-
+
const std::vector<TreePredicateFn> &getPredicateFns() const {
return PredicateFns;
}
@@ -484,15 +719,12 @@ public: // Higher level manipulation routines.
/// information. If N already contains a conflicting type, then flag an
/// error. This returns true if any information was updated.
///
- bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy,
- TreePattern &TP) {
- return Types[ResNo].MergeInTypeInfo(InTy, TP);
- }
-
+ bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
+ TreePattern &TP);
bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
- TreePattern &TP) {
- return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP);
- }
+ TreePattern &TP);
+ bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
+ TreePattern &TP);
// Update node type with types inferred from an instruction operand or result
// def from the ins/outs lists.
@@ -501,14 +733,7 @@ public: // Higher level manipulation routines.
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
- bool ContainsUnresolvedType() const {
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- if (!Types[i].isConcrete()) return true;
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (getChild(i)->ContainsUnresolvedType()) return true;
- return false;
- }
+ bool ContainsUnresolvedType(TreePattern &TP) const;
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true.
@@ -560,6 +785,9 @@ class TreePattern {
/// number for each operand encountered in a ComplexPattern to aid in that
/// check.
StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
+
+ TypeInfer Infer;
+
public:
/// TreePattern constructor - Parse the specified DagInits into the
@@ -576,6 +804,7 @@ public:
const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
unsigned getNumTrees() const { return Trees.size(); }
TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
+ void setTree(unsigned i, TreePatternNode *Tree) { Trees[i] = Tree; }
TreePatternNode *getOnlyTree() const {
assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
return Trees[0];
@@ -625,6 +854,8 @@ public:
HasError = false;
}
+ TypeInfer &getInfer() { return Infer; }
+
void print(raw_ostream &OS) const;
void dump() const;
@@ -634,6 +865,32 @@ private:
void ComputeNamedNodes(TreePatternNode *N);
};
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ const TypeSetByHwMode &InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ MVT::SimpleValueType InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ ValueTypeByHwMode InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+
/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
/// that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
@@ -680,31 +937,89 @@ public:
TreePatternNode *getResultPattern() const { return ResultPattern; }
};
+/// This class represents a condition that has to be satisfied for a pattern
+/// to be tried. It is a generalization of a class "Pattern" from Target.td:
+/// in addition to the Target.td's predicates, this class can also represent
+/// conditions associated with HW modes. Both types will eventually become
+/// strings containing C++ code to be executed, the difference is in how
+/// these strings are generated.
+class Predicate {
+public:
+ Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
+ assert(R->isSubClassOf("Predicate") &&
+ "Predicate objects should only be created for records derived"
+ "from Predicate class");
+ }
+ Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
+ IfCond(C), IsHwMode(true) {}
+
+ /// Return a string which contains the C++ condition code that will serve
+ /// as a predicate during instruction selection.
+ std::string getCondString() const {
+ // The string will excute in a subclass of SelectionDAGISel.
+ // Cast to std::string explicitly to avoid ambiguity with StringRef.
+ std::string C = IsHwMode
+ ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")")
+ : std::string(Def->getValueAsString("CondString"));
+ return IfCond ? C : "!("+C+')';
+ }
+ bool operator==(const Predicate &P) const {
+ return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
+ }
+ bool operator<(const Predicate &P) const {
+ if (IsHwMode != P.IsHwMode)
+ return IsHwMode < P.IsHwMode;
+ assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
+ if (IfCond != P.IfCond)
+ return IfCond < P.IfCond;
+ if (Def)
+ return LessRecord()(Def, P.Def);
+ return Features < P.Features;
+ }
+ Record *Def; ///< Predicate definition from .td file, null for
+ ///< HW modes.
+ std::string Features; ///< Feature string for HW mode.
+ bool IfCond; ///< The boolean value that the condition has to
+ ///< evaluate to for this predicate to be true.
+ bool IsHwMode; ///< Does this predicate correspond to a HW mode?
+};
+
/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
- PatternToMatch(Record *srcrecord, ListInit *preds, TreePatternNode *src,
- TreePatternNode *dst, std::vector<Record *> dstregs,
- int complexity, unsigned uid)
- : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src),
- DstPattern(dst), Dstregs(std::move(dstregs)),
- AddedComplexity(complexity), ID(uid) {}
+ PatternToMatch(Record *srcrecord, const std::vector<Predicate> &preds,
+ TreePatternNode *src, TreePatternNode *dst,
+ const std::vector<Record*> &dstregs,
+ int complexity, unsigned uid, unsigned setmode = 0)
+ : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
+ Predicates(preds), Dstregs(std::move(dstregs)),
+ AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
+
+ PatternToMatch(Record *srcrecord, std::vector<Predicate> &&preds,
+ TreePatternNode *src, TreePatternNode *dst,
+ std::vector<Record*> &&dstregs,
+ int complexity, unsigned uid, unsigned setmode = 0)
+ : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
+ Predicates(preds), Dstregs(std::move(dstregs)),
+ AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
Record *SrcRecord; // Originating Record for the pattern.
- ListInit *Predicates; // Top level predicate conditions to match.
TreePatternNode *SrcPattern; // Source pattern to match.
TreePatternNode *DstPattern; // Resulting pattern.
+ std::vector<Predicate> Predicates; // Top level predicate conditions
+ // to match.
std::vector<Record*> Dstregs; // Physical register defs being matched.
int AddedComplexity; // Add to matching pattern complexity.
unsigned ID; // Unique ID for the record.
+ unsigned ForceMode; // Force this mode in type inference when set.
Record *getSrcRecord() const { return SrcRecord; }
- ListInit *getPredicates() const { return Predicates; }
TreePatternNode *getSrcPattern() const { return SrcPattern; }
TreePatternNode *getDstPattern() const { return DstPattern; }
const std::vector<Record*> &getDstRegs() const { return Dstregs; }
int getAddedComplexity() const { return AddedComplexity; }
+ const std::vector<Predicate> &getPredicates() const { return Predicates; }
std::string getPredicateCheck() const;
@@ -720,7 +1035,8 @@ class CodeGenDAGPatterns {
CodeGenIntrinsicTable TgtIntrinsics;
std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
- std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms;
+ std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
+ SDNodeXForms;
std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
PatternFragments;
@@ -735,24 +1051,34 @@ class CodeGenDAGPatterns {
/// value is the pattern to match, the second pattern is the result to
/// emit.
std::vector<PatternToMatch> PatternsToMatch;
+
+ TypeSetByHwMode LegalVTS;
+
+ using PatternRewriterFn = std::function<void (TreePattern *)>;
+ PatternRewriterFn PatternRewriter;
+
public:
- CodeGenDAGPatterns(RecordKeeper &R);
+ CodeGenDAGPatterns(RecordKeeper &R,
+ PatternRewriterFn PatternRewriter = nullptr);
CodeGenTarget &getTargetInfo() { return Target; }
const CodeGenTarget &getTargetInfo() const { return Target; }
+ const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
Record *getSDNodeNamed(const std::string &Name) const;
const SDNodeInfo &getSDNodeInfo(Record *R) const {
- assert(SDNodes.count(R) && "Unknown node!");
- return SDNodes.find(R)->second;
+ auto F = SDNodes.find(R);
+ assert(F != SDNodes.end() && "Unknown node!");
+ return F->second;
}
// Node transformation lookups.
typedef std::pair<Record*, std::string> NodeXForm;
const NodeXForm &getSDNodeTransform(Record *R) const {
- assert(SDNodeXForms.count(R) && "Invalid transform!");
- return SDNodeXForms.find(R)->second;
+ auto F = SDNodeXForms.find(R);
+ assert(F != SDNodeXForms.end() && "Invalid transform!");
+ return F->second;
}
typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator
@@ -762,8 +1088,9 @@ public:
const ComplexPattern &getComplexPattern(Record *R) const {
- assert(ComplexPatterns.count(R) && "Unknown addressing mode!");
- return ComplexPatterns.find(R)->second;
+ auto F = ComplexPatterns.find(R);
+ assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
+ return F->second;
}
const CodeGenIntrinsic &getIntrinsic(Record *R) const {
@@ -791,19 +1118,22 @@ public:
}
const DAGDefaultOperand &getDefaultOperand(Record *R) const {
- assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!");
- return DefaultOperands.find(R)->second;
+ auto F = DefaultOperands.find(R);
+ assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
+ return F->second;
}
// Pattern Fragment information.
TreePattern *getPatternFragment(Record *R) const {
- assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
- return PatternFragments.find(R)->second.get();
+ auto F = PatternFragments.find(R);
+ assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
+ return F->second.get();
}
TreePattern *getPatternFragmentIfRead(Record *R) const {
- if (!PatternFragments.count(R))
+ auto F = PatternFragments.find(R);
+ if (F == PatternFragments.end())
return nullptr;
- return PatternFragments.find(R)->second.get();
+ return F->second.get();
}
typedef std::map<Record *, std::unique_ptr<TreePattern>,
@@ -825,8 +1155,9 @@ public:
DAGInstMap &DAGInsts);
const DAGInstruction &getInstruction(Record *R) const {
- assert(Instructions.count(R) && "Unknown instruction!");
- return Instructions.find(R)->second;
+ auto F = Instructions.find(R);
+ assert(F != Instructions.end() && "Unknown instruction!");
+ return F->second;
}
Record *get_intrinsic_void_sdnode() const {
@@ -849,10 +1180,13 @@ private:
void ParseDefaultOperands();
void ParseInstructions();
void ParsePatterns();
+ void ExpandHwModeBasedTypes();
void InferInstructionFlags();
void GenerateVariants();
void VerifyInstructionFlags();
+ std::vector<Predicate> makePredList(ListInit *L);
+
void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string,
@@ -861,6 +1195,15 @@ private:
TreePatternNode*> &InstResults,
std::vector<Record*> &InstImpResults);
};
+
+
+inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
+ TreePattern &TP) const {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
+ MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
+ return MadeChange;
+ }
} // end namespace llvm
#endif