summaryrefslogtreecommitdiff
path: root/ELF/AArch64ErrataFix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/AArch64ErrataFix.cpp')
-rw-r--r--ELF/AArch64ErrataFix.cpp648
1 files changed, 648 insertions, 0 deletions
diff --git a/ELF/AArch64ErrataFix.cpp b/ELF/AArch64ErrataFix.cpp
new file mode 100644
index 000000000000..6cc68cc08e10
--- /dev/null
+++ b/ELF/AArch64ErrataFix.cpp
@@ -0,0 +1,648 @@
+//===- AArch64ErrataFix.cpp -----------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file implements Section Patching for the purpose of working around
+// errata in CPUs. The general principle is that an erratum sequence of one or
+// more instructions is detected in the instruction stream, one of the
+// instructions in the sequence is replaced with a branch to a patch sequence
+// of replacement instructions. At the end of the replacement sequence the
+// patch branches back to the instruction stream.
+
+// This technique is only suitable for fixing an erratum when:
+// - There is a set of necessary conditions required to trigger the erratum that
+// can be detected at static link time.
+// - There is a set of replacement instructions that can be used to remove at
+// least one of the necessary conditions that trigger the erratum.
+// - We can overwrite an instruction in the erratum sequence with a branch to
+// the replacement sequence.
+// - We can place the replacement sequence within range of the branch.
+
+// FIXME:
+// - The implementation here only supports one patch, the AArch64 Cortex-53
+// errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core.
+// To keep the initial version simple there is no support for multiple
+// architectures or selection of different patches.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ErrataFix.h"
+#include "Config.h"
+#include "LinkerScript.h"
+#include "OutputSections.h"
+#include "Relocations.h"
+#include "Strings.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "lld/Common/Memory.h"
+
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+// Helper functions to identify instructions and conditions needed to trigger
+// the Cortex-A53-843419 erratum.
+
+// ADRP
+// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
+static bool isADRP(uint32_t Instr) {
+ return (Instr & 0x9f000000) == 0x90000000;
+}
+
+// Load and store bit patterns from ARMv8-A ARM ARM.
+// Instructions appear in order of appearance starting from table in
+// C4.1.3 Loads and Stores.
+
+// All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
+// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
+static bool isLoadStoreClass(uint32_t Instr) {
+ return (Instr & 0x0a000000) == 0x08000000;
+}
+
+// LDN/STN multiple no offset
+// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
+// LDN/STN multiple post-indexed
+// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
+// L == 0 for stores.
+
+// Utility routine to decode opcode field of LDN/STN multiple structure
+// instructions to find the ST1 instructions.
+// opcode == 0010 ST1 4 registers.
+// opcode == 0110 ST1 3 registers.
+// opcode == 0111 ST1 1 register.
+// opcode == 1010 ST1 2 registers.
+static bool isST1MultipleOpcode(uint32_t Instr) {
+ return (Instr & 0x0000f000) == 0x00002000 ||
+ (Instr & 0x0000f000) == 0x00006000 ||
+ (Instr & 0x0000f000) == 0x00007000 ||
+ (Instr & 0x0000f000) == 0x0000a000;
+}
+
+static bool isST1Multiple(uint32_t Instr) {
+ return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr);
+}
+
+// Writes to Rn (writeback).
+static bool isST1MultiplePost(uint32_t Instr) {
+ return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr);
+}
+
+// LDN/STN single no offset
+// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
+// LDN/STN single post-indexed
+// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
+// L == 0 for stores
+
+// Utility routine to decode opcode field of LDN/STN single structure
+// instructions to find the ST1 instructions.
+// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
+// opcode == 000 ST1 8-bit.
+// opcode == 010 ST1 16-bit.
+// opcode == 100 ST1 32 or 64-bit (Size determines which).
+static bool isST1SingleOpcode(uint32_t Instr) {
+ return (Instr & 0x0040e000) == 0x00000000 ||
+ (Instr & 0x0040e000) == 0x00004000 ||
+ (Instr & 0x0040e000) == 0x00008000;
+}
+
+static bool isST1Single(uint32_t Instr) {
+ return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr);
+}
+
+// Writes to Rn (writeback).
+static bool isST1SinglePost(uint32_t Instr) {
+ return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr);
+}
+
+static bool isST1(uint32_t Instr) {
+ return isST1Multiple(Instr) || isST1MultiplePost(Instr) ||
+ isST1Single(Instr) || isST1SinglePost(Instr);
+}
+
+// Load/store exclusive
+// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for Stores.
+static bool isLoadStoreExclusive(uint32_t Instr) {
+ return (Instr & 0x3f000000) == 0x08000000;
+}
+
+static bool isLoadExclusive(uint32_t Instr) {
+ return (Instr & 0x3f400000) == 0x08400000;
+}
+
+// Load register literal
+// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
+static bool isLoadLiteral(uint32_t Instr) {
+ return (Instr & 0x3b000000) == 0x18000000;
+}
+
+// Load/store no-allocate pair
+// (offset)
+// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for stores.
+// Never writes to register
+static bool isSTNP(uint32_t Instr) {
+ return (Instr & 0x3bc00000) == 0x28000000;
+}
+
+// Load/store register pair
+// (post-indexed)
+// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
+// Writes to Rn.
+static bool isSTPPost(uint32_t Instr) {
+ return (Instr & 0x3bc00000) == 0x28800000;
+}
+
+// (offset)
+// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+static bool isSTPOffset(uint32_t Instr) {
+ return (Instr & 0x3bc00000) == 0x29000000;
+}
+
+// (pre-index)
+// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// Writes to Rn.
+static bool isSTPPre(uint32_t Instr) {
+ return (Instr & 0x3bc00000) == 0x29800000;
+}
+
+static bool isSTP(uint32_t Instr) {
+ return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr);
+}
+
+// Load/store register (unscaled immediate)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
+// V == 0 for Scalar, V == 1 for Simd/FP.
+static bool isLoadStoreUnscaled(uint32_t Instr) {
+ return (Instr & 0x3b000c00) == 0x38000000;
+}
+
+// Load/store register (immediate post-indexed)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
+static bool isLoadStoreImmediatePost(uint32_t Instr) {
+ return (Instr & 0x3b200c00) == 0x38000400;
+}
+
+// Load/store register (unprivileged)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
+static bool isLoadStoreUnpriv(uint32_t Instr) {
+ return (Instr & 0x3b200c00) == 0x38000800;
+}
+
+// Load/store register (immediate pre-indexed)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
+static bool isLoadStoreImmediatePre(uint32_t Instr) {
+ return (Instr & 0x3b200c00) == 0x38000c00;
+}
+
+// Load/store register (register offset)
+// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
+static bool isLoadStoreRegisterOff(uint32_t Instr) {
+ return (Instr & 0x3b200c00) == 0x38200800;
+}
+
+// Load/store register (unsigned immediate)
+// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
+static bool isLoadStoreRegisterUnsigned(uint32_t Instr) {
+ return (Instr & 0x3b000000) == 0x39000000;
+}
+
+// Rt is always in bit position 0 - 4.
+static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); }
+
+// Rn is always in bit position 5 - 9.
+static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
+
+// C4.1.2 Branches, Exception Generating and System instructions
+// | op0 (3) 1 | 01 op1 (4) | x (22) |
+// op0 == 010 101 op1 == 0xxx Conditional Branch.
+// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
+// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
+// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
+// op0 == x01 101 op1 == 1xxx Test and branch immediate.
+static bool isBranch(uint32_t Instr) {
+ return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch.
+ ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
+ ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
+ ((Instr & 0x7c000000) == 0x34000000); // Compare and test branch.
+}
+
+static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) {
+ return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) ||
+ isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) ||
+ isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr);
+}
+
+// Note that this function refers to v8.0 only and does not include the
+// additional load and store instructions added for in later revisions of
+// the architecture such as the Atomic memory operations introduced
+// in v8.1.
+static bool isV8NonStructureLoad(uint32_t Instr) {
+ if (isLoadExclusive(Instr))
+ return true;
+ if (isLoadLiteral(Instr))
+ return true;
+ else if (isV8SingleRegisterNonStructureLoadStore(Instr)) {
+ // For Load and Store single register, Loads are derived from a
+ // combination of the Size, V and Opc fields.
+ uint32_t Size = (Instr >> 30) & 0xff;
+ uint32_t V = (Instr >> 26) & 0x1;
+ uint32_t Opc = (Instr >> 22) & 0x3;
+ // For the load and store instructions that we are decoding.
+ // Opc == 0 are all stores.
+ // Opc == 1 with a couple of exceptions are loads. The exceptions are:
+ // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
+ // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
+ return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) &&
+ !(Size == 3 && V == 0 && Opc == 2);
+ }
+ return false;
+}
+
+// The following decode instructions are only complete up to the instructions
+// needed for errata 843419.
+
+// Instruction with writeback updates the index register after the load/store.
+static bool hasWriteback(uint32_t Instr) {
+ return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) ||
+ isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) ||
+ isST1MultiplePost(Instr);
+}
+
+// For the load and store class of instructions, a load can write to the
+// destination register, a load and a store can write to the base register when
+// the instruction has writeback.
+static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
+ return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) ||
+ (hasWriteback(Instr) && getRn(Instr) == Reg);
+}
+
+// Scanner for Cortex-A53 errata 843419
+// Full details are available in the Cortex A53 MPCore revision 0 Software
+// Developers Errata Notice (ARM-EPM-048406).
+//
+// The instruction sequence that triggers the erratum is common in compiled
+// AArch64 code, however it is sensitive to the offset of the sequence within
+// a 4k page. This means that by scanning and fixing the patch after we have
+// assigned addresses we only need to disassemble and fix instances of the
+// sequence in the range of affected offsets.
+//
+// In summary the erratum conditions are a series of 4 instructions:
+// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
+// address of instruction either 0xff8 or 0xffc.
+// 2.) A load or store instruction that can be:
+// - A single register load or store, of either integer or vector registers.
+// - An STP or STNP, of either integer or vector registers.
+// - An Advanced SIMD ST1 store instruction.
+// - Must not write to Rn, but may optionally read from it.
+// 3.) An optional instruction that is not a branch and does not write to Rn.
+// 4.) A load or store from the Load/store register (unsigned immediate) class
+// that uses Rn as the base address register.
+//
+// Note that we do not attempt to scan for Sequence 2 as described in the
+// Software Developers Errata Notice as this has been assessed to be extremely
+// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
+
+// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
+// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
+// and 4.) in the Scanner for Cortex-A53 errata comment above.
+static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
+ uint32_t Instr4) {
+ if (!isADRP(Instr1))
+ return false;
+
+ uint32_t Rn = getRt(Instr1);
+ return isLoadStoreClass(Instr2) &&
+ (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) ||
+ isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) ||
+ isSTNP(Instr2) || isST1(Instr2)) &&
+ !doesLoadStoreWriteToReg(Instr2, Rn) &&
+ isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn;
+}
+
+// Scan the instruction sequence starting at Offset Off from the base of
+// InputSection IS. We update Off in this function rather than in the caller as
+// we can skip ahead much further into the section when we know how many
+// instructions we've scanned.
+// Return the offset of the load or store instruction in IS that we want to
+// patch or 0 if no patch required.
+static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off,
+ uint64_t Limit) {
+ uint64_t ISAddr = IS->getParent()->Addr + IS->OutSecOff;
+
+ // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
+ uint64_t InitialPageOff = (ISAddr + Off) & 0xfff;
+ if (InitialPageOff < 0xff8)
+ Off += 0xff8 - InitialPageOff;
+
+ bool OptionalAllowed = Limit - Off > 12;
+ if (Off >= Limit || Limit - Off < 12) {
+ // Need at least 3 4-byte sized instructions to trigger erratum.
+ Off = Limit;
+ return 0;
+ }
+
+ uint64_t PatchOff = 0;
+ const uint8_t *Buf = IS->Data.begin();
+ const uint32_t *InstBuf = reinterpret_cast<const uint32_t *>(Buf + Off);
+ uint32_t Instr1 = *InstBuf++;
+ uint32_t Instr2 = *InstBuf++;
+ uint32_t Instr3 = *InstBuf++;
+ if (is843419ErratumSequence(Instr1, Instr2, Instr3)) {
+ PatchOff = Off + 8;
+ } else if (OptionalAllowed && !isBranch(Instr3)) {
+ uint32_t Instr4 = *InstBuf++;
+ if (is843419ErratumSequence(Instr1, Instr2, Instr4))
+ PatchOff = Off + 12;
+ }
+ if (((ISAddr + Off) & 0xfff) == 0xff8)
+ Off += 4;
+ else
+ Off += 0xffc;
+ return PatchOff;
+}
+
+class lld::elf::Patch843419Section : public SyntheticSection {
+public:
+ Patch843419Section(InputSection *P, uint64_t Off);
+
+ void writeTo(uint8_t *Buf) override;
+
+ size_t getSize() const override { return 8; }
+
+ uint64_t getLDSTAddr() const;
+
+ // The Section we are patching.
+ const InputSection *Patchee;
+ // The offset of the instruction in the Patchee section we are patching.
+ uint64_t PatcheeOffset;
+ // A label for the start of the Patch that we can use as a relocation target.
+ Symbol *PatchSym;
+};
+
+lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off)
+ : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
+ ".text.patch"),
+ Patchee(P), PatcheeOffset(Off) {
+ this->Parent = P->getParent();
+ PatchSym = addSyntheticLocal(
+ Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
+ getSize(), this);
+ addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, this);
+}
+
+uint64_t lld::elf::Patch843419Section::getLDSTAddr() const {
+ return Patchee->getParent()->Addr + Patchee->OutSecOff + PatcheeOffset;
+}
+
+void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) {
+ // Copy the instruction that we will be replacing with a branch in the
+ // Patchee Section.
+ write32le(Buf, read32le(Patchee->Data.begin() + PatcheeOffset));
+
+ // Apply any relocation transferred from the original PatcheeSection.
+ // For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc
+ // also adds OutSecOff so we need to subtract to avoid double counting.
+ this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize());
+
+ // Return address is the next instruction after the one we have just copied.
+ uint64_t S = getLDSTAddr() + 4;
+ uint64_t P = PatchSym->getVA() + 4;
+ Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P);
+}
+
+void AArch64Err843419Patcher::init() {
+ // The AArch64 ABI permits data in executable sections. We must avoid scanning
+ // this data as if it were instructions to avoid false matches. We use the
+ // mapping symbols in the InputObjects to identify this data, caching the
+ // results in SectionMap so we don't have to recalculate it each pass.
+
+ // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
+ // half open intervals [Symbol Value, Next Symbol Value) of code and data
+ // within sections. If there is no next symbol then the half open interval is
+ // [Symbol Value, End of section). The type, code or data, is determined by
+ // the mapping symbol name, $x for code, $d for data.
+ auto IsCodeMapSymbol = [](const Symbol *B) {
+ return B->getName() == "$x" || B->getName().startswith("$x.");
+ };
+ auto IsDataMapSymbol = [](const Symbol *B) {
+ return B->getName() == "$d" || B->getName().startswith("$d.");
+ };
+
+ // Collect mapping symbols for every executable InputSection.
+ for (InputFile *File : ObjectFiles) {
+ auto *F = cast<ObjFile<ELF64LE>>(File);
+ for (Symbol *B : F->getLocalSymbols()) {
+ auto *Def = dyn_cast<Defined>(B);
+ if (!Def)
+ continue;
+ if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def))
+ continue;
+ if (auto *Sec = dyn_cast<InputSection>(Def->Section))
+ if (Sec->Flags & SHF_EXECINSTR)
+ SectionMap[Sec].push_back(Def);
+ }
+ }
+ // For each InputSection make sure the mapping symbols are in sorted in
+ // ascending order and free from consecutive runs of mapping symbols with
+ // the same type. For example we must remove the redundant $d.1 from $x.0
+ // $d.0 $d.1 $x.1.
+ for (auto &KV : SectionMap) {
+ std::vector<const Defined *> &MapSyms = KV.second;
+ if (MapSyms.size() <= 1)
+ continue;
+ std::stable_sort(
+ MapSyms.begin(), MapSyms.end(),
+ [](const Defined *A, const Defined *B) { return A->Value < B->Value; });
+ MapSyms.erase(
+ std::unique(MapSyms.begin(), MapSyms.end(),
+ [=](const Defined *A, const Defined *B) {
+ return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) ||
+ (IsDataMapSymbol(A) && IsDataMapSymbol(B));
+ }),
+ MapSyms.end());
+ }
+ Initialized = true;
+}
+
+// Insert the PatchSections we have created back into the
+// InputSectionDescription. As inserting patches alters the addresses of
+// InputSections that follow them, we try and place the patches after all the
+// executable sections, although we may need to insert them earlier if the
+// InputSectionDescription is larger than the maximum branch range.
+void AArch64Err843419Patcher::insertPatches(
+ InputSectionDescription &ISD, std::vector<Patch843419Section *> &Patches) {
+ uint64_t ISLimit;
+ uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff;
+ uint64_t PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
+
+ // Set the OutSecOff of patches to the place where we want to insert them.
+ // We use a similar strategy to Thunk placement. Place patches roughly
+ // every multiple of maximum branch range.
+ auto PatchIt = Patches.begin();
+ auto PatchEnd = Patches.end();
+ for (const InputSection *IS : ISD.Sections) {
+ ISLimit = IS->OutSecOff + IS->getSize();
+ if (ISLimit > PatchUpperBound) {
+ while (PatchIt != PatchEnd) {
+ if ((*PatchIt)->getLDSTAddr() >= PrevISLimit)
+ break;
+ (*PatchIt)->OutSecOff = PrevISLimit;
+ ++PatchIt;
+ }
+ PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing;
+ }
+ PrevISLimit = ISLimit;
+ }
+ for (; PatchIt != PatchEnd; ++PatchIt) {
+ (*PatchIt)->OutSecOff = ISLimit;
+ }
+
+ // merge all patch sections. We use the OutSecOff assigned above to
+ // determine the insertion point. This is ok as we only merge into an
+ // InputSectionDescription once per pass, and at the end of the pass
+ // assignAddresses() will recalculate all the OutSecOff values.
+ std::vector<InputSection *> Tmp;
+ Tmp.reserve(ISD.Sections.size() + Patches.size());
+ auto MergeCmp = [](const InputSection *A, const InputSection *B) {
+ if (A->OutSecOff < B->OutSecOff)
+ return true;
+ if (A->OutSecOff == B->OutSecOff && isa<Patch843419Section>(A) &&
+ !isa<Patch843419Section>(B))
+ return true;
+ return false;
+ };
+ std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(),
+ Patches.end(), std::back_inserter(Tmp), MergeCmp);
+ ISD.Sections = std::move(Tmp);
+}
+
+// Given an erratum sequence that starts at address AdrpAddr, with an
+// instruction that we need to patch at PatcheeOffset from the start of
+// InputSection IS, create a Patch843419 Section and add it to the
+// Patches that we need to insert.
+static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset,
+ InputSection *IS,
+ std::vector<Patch843419Section *> &Patches) {
+ // There may be a relocation at the same offset that we are patching. There
+ // are three cases that we need to consider.
+ // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
+ // instance of the erratum on a previous patch and altered the relocation. We
+ // have nothing more to do.
+ // Case 2: A load/store register (unsigned immediate) class relocation. There
+ // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
+ // they are both absolute. We need to add the same relocation to the patch,
+ // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
+ // Case 3: No relocation. We must create a new R_AARCH64_JUMP26 branch
+ // relocation at the offset.
+ auto RelIt = std::find_if(
+ IS->Relocations.begin(), IS->Relocations.end(),
+ [=](const Relocation &R) { return R.Offset == PatcheeOffset; });
+ if (RelIt != IS->Relocations.end() && RelIt->Type == R_AARCH64_JUMP26)
+ return;
+
+ if (Config->Verbose)
+ message("detected cortex-a53-843419 erratum sequence starting at " +
+ utohexstr(AdrpAddr) + " in unpatched output.");
+
+ auto *PS = make<Patch843419Section>(IS, PatcheeOffset);
+ Patches.push_back(PS);
+
+ auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) {
+ return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym};
+ };
+
+ if (RelIt != IS->Relocations.end()) {
+ PS->Relocations.push_back(
+ {RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym});
+ *RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym);
+ } else
+ IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym));
+}
+
+// Scan all the instructions in InputSectionDescription, for each instance of
+// the erratum sequence create a Patch843419Section. We return the list of
+// Patch843419Sections that need to be applied to ISD.
+std::vector<Patch843419Section *>
+AArch64Err843419Patcher::patchInputSectionDescription(
+ InputSectionDescription &ISD) {
+ std::vector<Patch843419Section *> Patches;
+ for (InputSection *IS : ISD.Sections) {
+ // LLD doesn't use the erratum sequence in SyntheticSections.
+ if (isa<SyntheticSection>(IS))
+ continue;
+ // Use SectionMap to make sure we only scan code and not inline data.
+ // We have already sorted MapSyms in ascending order and removed consecutive
+ // mapping symbols of the same type. Our range of executable instructions to
+ // scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value,
+ // section size).
+ std::vector<const Defined *> &MapSyms = SectionMap[IS];
+
+ auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) {
+ return MS->getName().startswith("$x");
+ });
+
+ while (CodeSym != MapSyms.end()) {
+ auto DataSym = std::next(CodeSym);
+ uint64_t Off = (*CodeSym)->Value;
+ uint64_t Limit =
+ (DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value;
+
+ while (Off < Limit) {
+ uint64_t StartAddr = IS->getParent()->Addr + IS->OutSecOff + Off;
+ if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit))
+ implementPatch(StartAddr, PatcheeOffset, IS, Patches);
+ }
+ if (DataSym == MapSyms.end())
+ break;
+ CodeSym = std::next(DataSym);
+ }
+ }
+ return Patches;
+}
+
+// For each InputSectionDescription make one pass over the executable sections
+// looking for the erratum sequence; creating a synthetic Patch843419Section
+// for each instance found. We insert these synthetic patch sections after the
+// executable code in each InputSectionDescription.
+//
+// PreConditions:
+// The Output and Input Sections have had their final addresses assigned.
+//
+// PostConditions:
+// Returns true if at least one patch was added. The addresses of the
+// Ouptut and Input Sections may have been changed.
+// Returns false if no patches were required and no changes were made.
+bool AArch64Err843419Patcher::createFixes() {
+ if (Initialized == false)
+ init();
+
+ bool AddressesChanged = false;
+ for (OutputSection *OS : OutputSections) {
+ if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
+ continue;
+ for (BaseCommand *BC : OS->SectionCommands)
+ if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
+ std::vector<Patch843419Section *> Patches =
+ patchInputSectionDescription(*ISD);
+ if (!Patches.empty()) {
+ insertPatches(*ISD, Patches);
+ AddressesChanged = true;
+ }
+ }
+ }
+ return AddressesChanged;
+}