diff options
Diffstat (limited to 'ELF/AArch64ErrataFix.cpp')
-rw-r--r-- | ELF/AArch64ErrataFix.cpp | 648 |
1 files changed, 648 insertions, 0 deletions
diff --git a/ELF/AArch64ErrataFix.cpp b/ELF/AArch64ErrataFix.cpp new file mode 100644 index 000000000000..6cc68cc08e10 --- /dev/null +++ b/ELF/AArch64ErrataFix.cpp @@ -0,0 +1,648 @@ +//===- AArch64ErrataFix.cpp -----------------------------------------------===// +// +// The LLVM Linker +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// This file implements Section Patching for the purpose of working around +// errata in CPUs. The general principle is that an erratum sequence of one or +// more instructions is detected in the instruction stream, one of the +// instructions in the sequence is replaced with a branch to a patch sequence +// of replacement instructions. At the end of the replacement sequence the +// patch branches back to the instruction stream. + +// This technique is only suitable for fixing an erratum when: +// - There is a set of necessary conditions required to trigger the erratum that +// can be detected at static link time. +// - There is a set of replacement instructions that can be used to remove at +// least one of the necessary conditions that trigger the erratum. +// - We can overwrite an instruction in the erratum sequence with a branch to +// the replacement sequence. +// - We can place the replacement sequence within range of the branch. + +// FIXME: +// - The implementation here only supports one patch, the AArch64 Cortex-53 +// errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core. +// To keep the initial version simple there is no support for multiple +// architectures or selection of different patches. +//===----------------------------------------------------------------------===// + +#include "AArch64ErrataFix.h" +#include "Config.h" +#include "LinkerScript.h" +#include "OutputSections.h" +#include "Relocations.h" +#include "Strings.h" +#include "Symbols.h" +#include "SyntheticSections.h" +#include "Target.h" +#include "lld/Common/Memory.h" + +#include "llvm/Support/Endian.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> + +using namespace llvm; +using namespace llvm::ELF; +using namespace llvm::object; +using namespace llvm::support::endian; + +using namespace lld; +using namespace lld::elf; + +// Helper functions to identify instructions and conditions needed to trigger +// the Cortex-A53-843419 erratum. + +// ADRP +// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) | +static bool isADRP(uint32_t Instr) { + return (Instr & 0x9f000000) == 0x90000000; +} + +// Load and store bit patterns from ARMv8-A ARM ARM. +// Instructions appear in order of appearance starting from table in +// C4.1.3 Loads and Stores. + +// All loads and stores have 1 (at bit postion 27), (0 at bit position 25). +// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) | +static bool isLoadStoreClass(uint32_t Instr) { + return (Instr & 0x0a000000) == 0x08000000; +} + +// LDN/STN multiple no offset +// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) | +// LDN/STN multiple post-indexed +// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) | +// L == 0 for stores. + +// Utility routine to decode opcode field of LDN/STN multiple structure +// instructions to find the ST1 instructions. +// opcode == 0010 ST1 4 registers. +// opcode == 0110 ST1 3 registers. +// opcode == 0111 ST1 1 register. +// opcode == 1010 ST1 2 registers. +static bool isST1MultipleOpcode(uint32_t Instr) { + return (Instr & 0x0000f000) == 0x00002000 || + (Instr & 0x0000f000) == 0x00006000 || + (Instr & 0x0000f000) == 0x00007000 || + (Instr & 0x0000f000) == 0x0000a000; +} + +static bool isST1Multiple(uint32_t Instr) { + return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr); +} + +// Writes to Rn (writeback). +static bool isST1MultiplePost(uint32_t Instr) { + return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr); +} + +// LDN/STN single no offset +// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)| +// LDN/STN single post-indexed +// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)| +// L == 0 for stores + +// Utility routine to decode opcode field of LDN/STN single structure +// instructions to find the ST1 instructions. +// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4. +// opcode == 000 ST1 8-bit. +// opcode == 010 ST1 16-bit. +// opcode == 100 ST1 32 or 64-bit (Size determines which). +static bool isST1SingleOpcode(uint32_t Instr) { + return (Instr & 0x0040e000) == 0x00000000 || + (Instr & 0x0040e000) == 0x00004000 || + (Instr & 0x0040e000) == 0x00008000; +} + +static bool isST1Single(uint32_t Instr) { + return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr); +} + +// Writes to Rn (writeback). +static bool isST1SinglePost(uint32_t Instr) { + return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr); +} + +static bool isST1(uint32_t Instr) { + return isST1Multiple(Instr) || isST1MultiplePost(Instr) || + isST1Single(Instr) || isST1SinglePost(Instr); +} + +// Load/store exclusive +// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) | +// L == 0 for Stores. +static bool isLoadStoreExclusive(uint32_t Instr) { + return (Instr & 0x3f000000) == 0x08000000; +} + +static bool isLoadExclusive(uint32_t Instr) { + return (Instr & 0x3f400000) == 0x08400000; +} + +// Load register literal +// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) | +static bool isLoadLiteral(uint32_t Instr) { + return (Instr & 0x3b000000) == 0x18000000; +} + +// Load/store no-allocate pair +// (offset) +// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | +// L == 0 for stores. +// Never writes to register +static bool isSTNP(uint32_t Instr) { + return (Instr & 0x3bc00000) == 0x28000000; +} + +// Load/store register pair +// (post-indexed) +// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | +// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP +// Writes to Rn. +static bool isSTPPost(uint32_t Instr) { + return (Instr & 0x3bc00000) == 0x28800000; +} + +// (offset) +// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | +static bool isSTPOffset(uint32_t Instr) { + return (Instr & 0x3bc00000) == 0x29000000; +} + +// (pre-index) +// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) | +// Writes to Rn. +static bool isSTPPre(uint32_t Instr) { + return (Instr & 0x3bc00000) == 0x29800000; +} + +static bool isSTP(uint32_t Instr) { + return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr); +} + +// Load/store register (unscaled immediate) +// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) | +// V == 0 for Scalar, V == 1 for Simd/FP. +static bool isLoadStoreUnscaled(uint32_t Instr) { + return (Instr & 0x3b000c00) == 0x38000000; +} + +// Load/store register (immediate post-indexed) +// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) | +static bool isLoadStoreImmediatePost(uint32_t Instr) { + return (Instr & 0x3b200c00) == 0x38000400; +} + +// Load/store register (unprivileged) +// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) | +static bool isLoadStoreUnpriv(uint32_t Instr) { + return (Instr & 0x3b200c00) == 0x38000800; +} + +// Load/store register (immediate pre-indexed) +// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) | +static bool isLoadStoreImmediatePre(uint32_t Instr) { + return (Instr & 0x3b200c00) == 0x38000c00; +} + +// Load/store register (register offset) +// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt | +static bool isLoadStoreRegisterOff(uint32_t Instr) { + return (Instr & 0x3b200c00) == 0x38200800; +} + +// Load/store register (unsigned immediate) +// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) | +static bool isLoadStoreRegisterUnsigned(uint32_t Instr) { + return (Instr & 0x3b000000) == 0x39000000; +} + +// Rt is always in bit position 0 - 4. +static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); } + +// Rn is always in bit position 5 - 9. +static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; } + +// C4.1.2 Branches, Exception Generating and System instructions +// | op0 (3) 1 | 01 op1 (4) | x (22) | +// op0 == 010 101 op1 == 0xxx Conditional Branch. +// op0 == 110 101 op1 == 1xxx Unconditional Branch Register. +// op0 == x00 101 op1 == xxxx Unconditional Branch immediate. +// op0 == x01 101 op1 == 0xxx Compare and branch immediate. +// op0 == x01 101 op1 == 1xxx Test and branch immediate. +static bool isBranch(uint32_t Instr) { + return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch. + ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg. + ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm. + ((Instr & 0x7c000000) == 0x34000000); // Compare and test branch. +} + +static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) { + return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) || + isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) || + isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr); +} + +// Note that this function refers to v8.0 only and does not include the +// additional load and store instructions added for in later revisions of +// the architecture such as the Atomic memory operations introduced +// in v8.1. +static bool isV8NonStructureLoad(uint32_t Instr) { + if (isLoadExclusive(Instr)) + return true; + if (isLoadLiteral(Instr)) + return true; + else if (isV8SingleRegisterNonStructureLoadStore(Instr)) { + // For Load and Store single register, Loads are derived from a + // combination of the Size, V and Opc fields. + uint32_t Size = (Instr >> 30) & 0xff; + uint32_t V = (Instr >> 26) & 0x1; + uint32_t Opc = (Instr >> 22) & 0x3; + // For the load and store instructions that we are decoding. + // Opc == 0 are all stores. + // Opc == 1 with a couple of exceptions are loads. The exceptions are: + // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and + // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch. + return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) && + !(Size == 3 && V == 0 && Opc == 2); + } + return false; +} + +// The following decode instructions are only complete up to the instructions +// needed for errata 843419. + +// Instruction with writeback updates the index register after the load/store. +static bool hasWriteback(uint32_t Instr) { + return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) || + isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) || + isST1MultiplePost(Instr); +} + +// For the load and store class of instructions, a load can write to the +// destination register, a load and a store can write to the base register when +// the instruction has writeback. +static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) { + return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) || + (hasWriteback(Instr) && getRn(Instr) == Reg); +} + +// Scanner for Cortex-A53 errata 843419 +// Full details are available in the Cortex A53 MPCore revision 0 Software +// Developers Errata Notice (ARM-EPM-048406). +// +// The instruction sequence that triggers the erratum is common in compiled +// AArch64 code, however it is sensitive to the offset of the sequence within +// a 4k page. This means that by scanning and fixing the patch after we have +// assigned addresses we only need to disassemble and fix instances of the +// sequence in the range of affected offsets. +// +// In summary the erratum conditions are a series of 4 instructions: +// 1.) An ADRP instruction that writes to register Rn with low 12 bits of +// address of instruction either 0xff8 or 0xffc. +// 2.) A load or store instruction that can be: +// - A single register load or store, of either integer or vector registers. +// - An STP or STNP, of either integer or vector registers. +// - An Advanced SIMD ST1 store instruction. +// - Must not write to Rn, but may optionally read from it. +// 3.) An optional instruction that is not a branch and does not write to Rn. +// 4.) A load or store from the Load/store register (unsigned immediate) class +// that uses Rn as the base address register. +// +// Note that we do not attempt to scan for Sequence 2 as described in the +// Software Developers Errata Notice as this has been assessed to be extremely +// unlikely to occur in compiled code. This matches gold and ld.bfd behavior. + +// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match +// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.), +// and 4.) in the Scanner for Cortex-A53 errata comment above. +static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2, + uint32_t Instr4) { + if (!isADRP(Instr1)) + return false; + + uint32_t Rn = getRt(Instr1); + return isLoadStoreClass(Instr2) && + (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) || + isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) || + isSTNP(Instr2) || isST1(Instr2)) && + !doesLoadStoreWriteToReg(Instr2, Rn) && + isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn; +} + +// Scan the instruction sequence starting at Offset Off from the base of +// InputSection IS. We update Off in this function rather than in the caller as +// we can skip ahead much further into the section when we know how many +// instructions we've scanned. +// Return the offset of the load or store instruction in IS that we want to +// patch or 0 if no patch required. +static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off, + uint64_t Limit) { + uint64_t ISAddr = IS->getParent()->Addr + IS->OutSecOff; + + // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8. + uint64_t InitialPageOff = (ISAddr + Off) & 0xfff; + if (InitialPageOff < 0xff8) + Off += 0xff8 - InitialPageOff; + + bool OptionalAllowed = Limit - Off > 12; + if (Off >= Limit || Limit - Off < 12) { + // Need at least 3 4-byte sized instructions to trigger erratum. + Off = Limit; + return 0; + } + + uint64_t PatchOff = 0; + const uint8_t *Buf = IS->Data.begin(); + const uint32_t *InstBuf = reinterpret_cast<const uint32_t *>(Buf + Off); + uint32_t Instr1 = *InstBuf++; + uint32_t Instr2 = *InstBuf++; + uint32_t Instr3 = *InstBuf++; + if (is843419ErratumSequence(Instr1, Instr2, Instr3)) { + PatchOff = Off + 8; + } else if (OptionalAllowed && !isBranch(Instr3)) { + uint32_t Instr4 = *InstBuf++; + if (is843419ErratumSequence(Instr1, Instr2, Instr4)) + PatchOff = Off + 12; + } + if (((ISAddr + Off) & 0xfff) == 0xff8) + Off += 4; + else + Off += 0xffc; + return PatchOff; +} + +class lld::elf::Patch843419Section : public SyntheticSection { +public: + Patch843419Section(InputSection *P, uint64_t Off); + + void writeTo(uint8_t *Buf) override; + + size_t getSize() const override { return 8; } + + uint64_t getLDSTAddr() const; + + // The Section we are patching. + const InputSection *Patchee; + // The offset of the instruction in the Patchee section we are patching. + uint64_t PatcheeOffset; + // A label for the start of the Patch that we can use as a relocation target. + Symbol *PatchSym; +}; + +lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off) + : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4, + ".text.patch"), + Patchee(P), PatcheeOffset(Off) { + this->Parent = P->getParent(); + PatchSym = addSyntheticLocal( + Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0, + getSize(), this); + addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, this); +} + +uint64_t lld::elf::Patch843419Section::getLDSTAddr() const { + return Patchee->getParent()->Addr + Patchee->OutSecOff + PatcheeOffset; +} + +void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) { + // Copy the instruction that we will be replacing with a branch in the + // Patchee Section. + write32le(Buf, read32le(Patchee->Data.begin() + PatcheeOffset)); + + // Apply any relocation transferred from the original PatcheeSection. + // For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc + // also adds OutSecOff so we need to subtract to avoid double counting. + this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize()); + + // Return address is the next instruction after the one we have just copied. + uint64_t S = getLDSTAddr() + 4; + uint64_t P = PatchSym->getVA() + 4; + Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P); +} + +void AArch64Err843419Patcher::init() { + // The AArch64 ABI permits data in executable sections. We must avoid scanning + // this data as if it were instructions to avoid false matches. We use the + // mapping symbols in the InputObjects to identify this data, caching the + // results in SectionMap so we don't have to recalculate it each pass. + + // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe + // half open intervals [Symbol Value, Next Symbol Value) of code and data + // within sections. If there is no next symbol then the half open interval is + // [Symbol Value, End of section). The type, code or data, is determined by + // the mapping symbol name, $x for code, $d for data. + auto IsCodeMapSymbol = [](const Symbol *B) { + return B->getName() == "$x" || B->getName().startswith("$x."); + }; + auto IsDataMapSymbol = [](const Symbol *B) { + return B->getName() == "$d" || B->getName().startswith("$d."); + }; + + // Collect mapping symbols for every executable InputSection. + for (InputFile *File : ObjectFiles) { + auto *F = cast<ObjFile<ELF64LE>>(File); + for (Symbol *B : F->getLocalSymbols()) { + auto *Def = dyn_cast<Defined>(B); + if (!Def) + continue; + if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def)) + continue; + if (auto *Sec = dyn_cast<InputSection>(Def->Section)) + if (Sec->Flags & SHF_EXECINSTR) + SectionMap[Sec].push_back(Def); + } + } + // For each InputSection make sure the mapping symbols are in sorted in + // ascending order and free from consecutive runs of mapping symbols with + // the same type. For example we must remove the redundant $d.1 from $x.0 + // $d.0 $d.1 $x.1. + for (auto &KV : SectionMap) { + std::vector<const Defined *> &MapSyms = KV.second; + if (MapSyms.size() <= 1) + continue; + std::stable_sort( + MapSyms.begin(), MapSyms.end(), + [](const Defined *A, const Defined *B) { return A->Value < B->Value; }); + MapSyms.erase( + std::unique(MapSyms.begin(), MapSyms.end(), + [=](const Defined *A, const Defined *B) { + return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) || + (IsDataMapSymbol(A) && IsDataMapSymbol(B)); + }), + MapSyms.end()); + } + Initialized = true; +} + +// Insert the PatchSections we have created back into the +// InputSectionDescription. As inserting patches alters the addresses of +// InputSections that follow them, we try and place the patches after all the +// executable sections, although we may need to insert them earlier if the +// InputSectionDescription is larger than the maximum branch range. +void AArch64Err843419Patcher::insertPatches( + InputSectionDescription &ISD, std::vector<Patch843419Section *> &Patches) { + uint64_t ISLimit; + uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff; + uint64_t PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; + + // Set the OutSecOff of patches to the place where we want to insert them. + // We use a similar strategy to Thunk placement. Place patches roughly + // every multiple of maximum branch range. + auto PatchIt = Patches.begin(); + auto PatchEnd = Patches.end(); + for (const InputSection *IS : ISD.Sections) { + ISLimit = IS->OutSecOff + IS->getSize(); + if (ISLimit > PatchUpperBound) { + while (PatchIt != PatchEnd) { + if ((*PatchIt)->getLDSTAddr() >= PrevISLimit) + break; + (*PatchIt)->OutSecOff = PrevISLimit; + ++PatchIt; + } + PatchUpperBound = PrevISLimit + Target->ThunkSectionSpacing; + } + PrevISLimit = ISLimit; + } + for (; PatchIt != PatchEnd; ++PatchIt) { + (*PatchIt)->OutSecOff = ISLimit; + } + + // merge all patch sections. We use the OutSecOff assigned above to + // determine the insertion point. This is ok as we only merge into an + // InputSectionDescription once per pass, and at the end of the pass + // assignAddresses() will recalculate all the OutSecOff values. + std::vector<InputSection *> Tmp; + Tmp.reserve(ISD.Sections.size() + Patches.size()); + auto MergeCmp = [](const InputSection *A, const InputSection *B) { + if (A->OutSecOff < B->OutSecOff) + return true; + if (A->OutSecOff == B->OutSecOff && isa<Patch843419Section>(A) && + !isa<Patch843419Section>(B)) + return true; + return false; + }; + std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(), + Patches.end(), std::back_inserter(Tmp), MergeCmp); + ISD.Sections = std::move(Tmp); +} + +// Given an erratum sequence that starts at address AdrpAddr, with an +// instruction that we need to patch at PatcheeOffset from the start of +// InputSection IS, create a Patch843419 Section and add it to the +// Patches that we need to insert. +static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset, + InputSection *IS, + std::vector<Patch843419Section *> &Patches) { + // There may be a relocation at the same offset that we are patching. There + // are three cases that we need to consider. + // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this + // instance of the erratum on a previous patch and altered the relocation. We + // have nothing more to do. + // Case 2: A load/store register (unsigned immediate) class relocation. There + // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and + // they are both absolute. We need to add the same relocation to the patch, + // and replace the relocation with a R_AARCH_JUMP26 branch relocation. + // Case 3: No relocation. We must create a new R_AARCH64_JUMP26 branch + // relocation at the offset. + auto RelIt = std::find_if( + IS->Relocations.begin(), IS->Relocations.end(), + [=](const Relocation &R) { return R.Offset == PatcheeOffset; }); + if (RelIt != IS->Relocations.end() && RelIt->Type == R_AARCH64_JUMP26) + return; + + if (Config->Verbose) + message("detected cortex-a53-843419 erratum sequence starting at " + + utohexstr(AdrpAddr) + " in unpatched output."); + + auto *PS = make<Patch843419Section>(IS, PatcheeOffset); + Patches.push_back(PS); + + auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) { + return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym}; + }; + + if (RelIt != IS->Relocations.end()) { + PS->Relocations.push_back( + {RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym}); + *RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym); + } else + IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym)); +} + +// Scan all the instructions in InputSectionDescription, for each instance of +// the erratum sequence create a Patch843419Section. We return the list of +// Patch843419Sections that need to be applied to ISD. +std::vector<Patch843419Section *> +AArch64Err843419Patcher::patchInputSectionDescription( + InputSectionDescription &ISD) { + std::vector<Patch843419Section *> Patches; + for (InputSection *IS : ISD.Sections) { + // LLD doesn't use the erratum sequence in SyntheticSections. + if (isa<SyntheticSection>(IS)) + continue; + // Use SectionMap to make sure we only scan code and not inline data. + // We have already sorted MapSyms in ascending order and removed consecutive + // mapping symbols of the same type. Our range of executable instructions to + // scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value, + // section size). + std::vector<const Defined *> &MapSyms = SectionMap[IS]; + + auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) { + return MS->getName().startswith("$x"); + }); + + while (CodeSym != MapSyms.end()) { + auto DataSym = std::next(CodeSym); + uint64_t Off = (*CodeSym)->Value; + uint64_t Limit = + (DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value; + + while (Off < Limit) { + uint64_t StartAddr = IS->getParent()->Addr + IS->OutSecOff + Off; + if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit)) + implementPatch(StartAddr, PatcheeOffset, IS, Patches); + } + if (DataSym == MapSyms.end()) + break; + CodeSym = std::next(DataSym); + } + } + return Patches; +} + +// For each InputSectionDescription make one pass over the executable sections +// looking for the erratum sequence; creating a synthetic Patch843419Section +// for each instance found. We insert these synthetic patch sections after the +// executable code in each InputSectionDescription. +// +// PreConditions: +// The Output and Input Sections have had their final addresses assigned. +// +// PostConditions: +// Returns true if at least one patch was added. The addresses of the +// Ouptut and Input Sections may have been changed. +// Returns false if no patches were required and no changes were made. +bool AArch64Err843419Patcher::createFixes() { + if (Initialized == false) + init(); + + bool AddressesChanged = false; + for (OutputSection *OS : OutputSections) { + if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) + continue; + for (BaseCommand *BC : OS->SectionCommands) + if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) { + std::vector<Patch843419Section *> Patches = + patchInputSectionDescription(*ISD); + if (!Patches.empty()) { + insertPatches(*ISD, Patches); + AddressesChanged = true; + } + } + } + return AddressesChanged; +} |