summaryrefslogtreecommitdiff
path: root/ELF/AArch64ErrataFix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/AArch64ErrataFix.cpp')
-rw-r--r--ELF/AArch64ErrataFix.cpp495
1 files changed, 247 insertions, 248 deletions
diff --git a/ELF/AArch64ErrataFix.cpp b/ELF/AArch64ErrataFix.cpp
index ac753cb58265..b2eda4dcbc4e 100644
--- a/ELF/AArch64ErrataFix.cpp
+++ b/ELF/AArch64ErrataFix.cpp
@@ -1,9 +1,8 @@
//===- AArch64ErrataFix.cpp -----------------------------------------------===//
//
-// The LLVM Linker
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements Section Patching for the purpose of working around
@@ -57,8 +56,8 @@ using namespace lld::elf;
// ADRP
// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
-static bool isADRP(uint32_t Instr) {
- return (Instr & 0x9f000000) == 0x90000000;
+static bool isADRP(uint32_t instr) {
+ return (instr & 0x9f000000) == 0x90000000;
}
// Load and store bit patterns from ARMv8-A ARM ARM.
@@ -67,8 +66,8 @@ static bool isADRP(uint32_t Instr) {
// All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
-static bool isLoadStoreClass(uint32_t Instr) {
- return (Instr & 0x0a000000) == 0x08000000;
+static bool isLoadStoreClass(uint32_t instr) {
+ return (instr & 0x0a000000) == 0x08000000;
}
// LDN/STN multiple no offset
@@ -83,20 +82,20 @@ static bool isLoadStoreClass(uint32_t Instr) {
// opcode == 0110 ST1 3 registers.
// opcode == 0111 ST1 1 register.
// opcode == 1010 ST1 2 registers.
-static bool isST1MultipleOpcode(uint32_t Instr) {
- return (Instr & 0x0000f000) == 0x00002000 ||
- (Instr & 0x0000f000) == 0x00006000 ||
- (Instr & 0x0000f000) == 0x00007000 ||
- (Instr & 0x0000f000) == 0x0000a000;
+static bool isST1MultipleOpcode(uint32_t instr) {
+ return (instr & 0x0000f000) == 0x00002000 ||
+ (instr & 0x0000f000) == 0x00006000 ||
+ (instr & 0x0000f000) == 0x00007000 ||
+ (instr & 0x0000f000) == 0x0000a000;
}
-static bool isST1Multiple(uint32_t Instr) {
- return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr);
+static bool isST1Multiple(uint32_t instr) {
+ return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
}
// Writes to Rn (writeback).
-static bool isST1MultiplePost(uint32_t Instr) {
- return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr);
+static bool isST1MultiplePost(uint32_t instr) {
+ return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
}
// LDN/STN single no offset
@@ -111,41 +110,41 @@ static bool isST1MultiplePost(uint32_t Instr) {
// opcode == 000 ST1 8-bit.
// opcode == 010 ST1 16-bit.
// opcode == 100 ST1 32 or 64-bit (Size determines which).
-static bool isST1SingleOpcode(uint32_t Instr) {
- return (Instr & 0x0040e000) == 0x00000000 ||
- (Instr & 0x0040e000) == 0x00004000 ||
- (Instr & 0x0040e000) == 0x00008000;
+static bool isST1SingleOpcode(uint32_t instr) {
+ return (instr & 0x0040e000) == 0x00000000 ||
+ (instr & 0x0040e000) == 0x00004000 ||
+ (instr & 0x0040e000) == 0x00008000;
}
-static bool isST1Single(uint32_t Instr) {
- return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr);
+static bool isST1Single(uint32_t instr) {
+ return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
}
// Writes to Rn (writeback).
-static bool isST1SinglePost(uint32_t Instr) {
- return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr);
+static bool isST1SinglePost(uint32_t instr) {
+ return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
}
-static bool isST1(uint32_t Instr) {
- return isST1Multiple(Instr) || isST1MultiplePost(Instr) ||
- isST1Single(Instr) || isST1SinglePost(Instr);
+static bool isST1(uint32_t instr) {
+ return isST1Multiple(instr) || isST1MultiplePost(instr) ||
+ isST1Single(instr) || isST1SinglePost(instr);
}
// Load/store exclusive
// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for Stores.
-static bool isLoadStoreExclusive(uint32_t Instr) {
- return (Instr & 0x3f000000) == 0x08000000;
+static bool isLoadStoreExclusive(uint32_t instr) {
+ return (instr & 0x3f000000) == 0x08000000;
}
-static bool isLoadExclusive(uint32_t Instr) {
- return (Instr & 0x3f400000) == 0x08400000;
+static bool isLoadExclusive(uint32_t instr) {
+ return (instr & 0x3f400000) == 0x08400000;
}
// Load register literal
// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
-static bool isLoadLiteral(uint32_t Instr) {
- return (Instr & 0x3b000000) == 0x18000000;
+static bool isLoadLiteral(uint32_t instr) {
+ return (instr & 0x3b000000) == 0x18000000;
}
// Load/store no-allocate pair
@@ -153,8 +152,8 @@ static bool isLoadLiteral(uint32_t Instr) {
// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores.
// Never writes to register
-static bool isSTNP(uint32_t Instr) {
- return (Instr & 0x3bc00000) == 0x28000000;
+static bool isSTNP(uint32_t instr) {
+ return (instr & 0x3bc00000) == 0x28000000;
}
// Load/store register pair
@@ -162,69 +161,69 @@ static bool isSTNP(uint32_t Instr) {
// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
// Writes to Rn.
-static bool isSTPPost(uint32_t Instr) {
- return (Instr & 0x3bc00000) == 0x28800000;
+static bool isSTPPost(uint32_t instr) {
+ return (instr & 0x3bc00000) == 0x28800000;
}
// (offset)
// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
-static bool isSTPOffset(uint32_t Instr) {
- return (Instr & 0x3bc00000) == 0x29000000;
+static bool isSTPOffset(uint32_t instr) {
+ return (instr & 0x3bc00000) == 0x29000000;
}
// (pre-index)
// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
// Writes to Rn.
-static bool isSTPPre(uint32_t Instr) {
- return (Instr & 0x3bc00000) == 0x29800000;
+static bool isSTPPre(uint32_t instr) {
+ return (instr & 0x3bc00000) == 0x29800000;
}
-static bool isSTP(uint32_t Instr) {
- return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr);
+static bool isSTP(uint32_t instr) {
+ return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
}
// Load/store register (unscaled immediate)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
// V == 0 for Scalar, V == 1 for Simd/FP.
-static bool isLoadStoreUnscaled(uint32_t Instr) {
- return (Instr & 0x3b000c00) == 0x38000000;
+static bool isLoadStoreUnscaled(uint32_t instr) {
+ return (instr & 0x3b000c00) == 0x38000000;
}
// Load/store register (immediate post-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
-static bool isLoadStoreImmediatePost(uint32_t Instr) {
- return (Instr & 0x3b200c00) == 0x38000400;
+static bool isLoadStoreImmediatePost(uint32_t instr) {
+ return (instr & 0x3b200c00) == 0x38000400;
}
// Load/store register (unprivileged)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
-static bool isLoadStoreUnpriv(uint32_t Instr) {
- return (Instr & 0x3b200c00) == 0x38000800;
+static bool isLoadStoreUnpriv(uint32_t instr) {
+ return (instr & 0x3b200c00) == 0x38000800;
}
// Load/store register (immediate pre-indexed)
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
-static bool isLoadStoreImmediatePre(uint32_t Instr) {
- return (Instr & 0x3b200c00) == 0x38000c00;
+static bool isLoadStoreImmediatePre(uint32_t instr) {
+ return (instr & 0x3b200c00) == 0x38000c00;
}
// Load/store register (register offset)
// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
-static bool isLoadStoreRegisterOff(uint32_t Instr) {
- return (Instr & 0x3b200c00) == 0x38200800;
+static bool isLoadStoreRegisterOff(uint32_t instr) {
+ return (instr & 0x3b200c00) == 0x38200800;
}
// Load/store register (unsigned immediate)
// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
-static bool isLoadStoreRegisterUnsigned(uint32_t Instr) {
- return (Instr & 0x3b000000) == 0x39000000;
+static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
+ return (instr & 0x3b000000) == 0x39000000;
}
// Rt is always in bit position 0 - 4.
-static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); }
+static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
// Rn is always in bit position 5 - 9.
-static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
+static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
// C4.1.2 Branches, Exception Generating and System instructions
// | op0 (3) 1 | 01 op1 (4) | x (22) |
@@ -233,41 +232,41 @@ static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
// op0 == x01 101 op1 == 1xxx Test and branch immediate.
-static bool isBranch(uint32_t Instr) {
- return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch.
- ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
- ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
- ((Instr & 0x7c000000) == 0x34000000); // Compare and test branch.
+static bool isBranch(uint32_t instr) {
+ return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
+ ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
+ ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
+ ((instr & 0x7c000000) == 0x34000000); // Compare and test branch.
}
-static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) {
- return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) ||
- isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) ||
- isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr);
+static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
+ return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
+ isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
+ isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
}
// Note that this function refers to v8.0 only and does not include the
// additional load and store instructions added for in later revisions of
// the architecture such as the Atomic memory operations introduced
// in v8.1.
-static bool isV8NonStructureLoad(uint32_t Instr) {
- if (isLoadExclusive(Instr))
+static bool isV8NonStructureLoad(uint32_t instr) {
+ if (isLoadExclusive(instr))
return true;
- if (isLoadLiteral(Instr))
+ if (isLoadLiteral(instr))
return true;
- else if (isV8SingleRegisterNonStructureLoadStore(Instr)) {
+ else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
// For Load and Store single register, Loads are derived from a
// combination of the Size, V and Opc fields.
- uint32_t Size = (Instr >> 30) & 0xff;
- uint32_t V = (Instr >> 26) & 0x1;
- uint32_t Opc = (Instr >> 22) & 0x3;
+ uint32_t size = (instr >> 30) & 0xff;
+ uint32_t v = (instr >> 26) & 0x1;
+ uint32_t opc = (instr >> 22) & 0x3;
// For the load and store instructions that we are decoding.
// Opc == 0 are all stores.
// Opc == 1 with a couple of exceptions are loads. The exceptions are:
// Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
// Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
- return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) &&
- !(Size == 3 && V == 0 && Opc == 2);
+ return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
+ !(size == 3 && v == 0 && opc == 2);
}
return false;
}
@@ -276,18 +275,18 @@ static bool isV8NonStructureLoad(uint32_t Instr) {
// needed for errata 843419.
// Instruction with writeback updates the index register after the load/store.
-static bool hasWriteback(uint32_t Instr) {
- return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) ||
- isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) ||
- isST1MultiplePost(Instr);
+static bool hasWriteback(uint32_t instr) {
+ return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
+ isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
+ isST1MultiplePost(instr);
}
// For the load and store class of instructions, a load can write to the
// destination register, a load and a store can write to the base register when
// the instruction has writeback.
-static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
- return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) ||
- (hasWriteback(Instr) && getRn(Instr) == Reg);
+static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
+ return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
+ (hasWriteback(instr) && getRn(instr) == reg);
}
// Scanner for Cortex-A53 errata 843419
@@ -319,18 +318,18 @@ static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
// and 4.) in the Scanner for Cortex-A53 errata comment above.
-static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
- uint32_t Instr4) {
- if (!isADRP(Instr1))
+static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
+ uint32_t instr4) {
+ if (!isADRP(instr1))
return false;
- uint32_t Rn = getRt(Instr1);
- return isLoadStoreClass(Instr2) &&
- (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) ||
- isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) ||
- isSTNP(Instr2) || isST1(Instr2)) &&
- !doesLoadStoreWriteToReg(Instr2, Rn) &&
- isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn;
+ uint32_t rn = getRt(instr1);
+ return isLoadStoreClass(instr2) &&
+ (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
+ isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
+ isSTNP(instr2) || isST1(instr2)) &&
+ !doesLoadStoreWriteToReg(instr2, rn) &&
+ isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
}
// Scan the instruction sequence starting at Offset Off from the base of
@@ -339,143 +338,143 @@ static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
// instructions we've scanned.
// Return the offset of the load or store instruction in IS that we want to
// patch or 0 if no patch required.
-static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off,
- uint64_t Limit) {
- uint64_t ISAddr = IS->getVA(0);
+static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
+ uint64_t limit) {
+ uint64_t isecAddr = isec->getVA(0);
// Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
- uint64_t InitialPageOff = (ISAddr + Off) & 0xfff;
- if (InitialPageOff < 0xff8)
- Off += 0xff8 - InitialPageOff;
+ uint64_t initialPageOff = (isecAddr + off) & 0xfff;
+ if (initialPageOff < 0xff8)
+ off += 0xff8 - initialPageOff;
- bool OptionalAllowed = Limit - Off > 12;
- if (Off >= Limit || Limit - Off < 12) {
+ bool optionalAllowed = limit - off > 12;
+ if (off >= limit || limit - off < 12) {
// Need at least 3 4-byte sized instructions to trigger erratum.
- Off = Limit;
+ off = limit;
return 0;
}
- uint64_t PatchOff = 0;
- const uint8_t *Buf = IS->data().begin();
- const ulittle32_t *InstBuf = reinterpret_cast<const ulittle32_t *>(Buf + Off);
- uint32_t Instr1 = *InstBuf++;
- uint32_t Instr2 = *InstBuf++;
- uint32_t Instr3 = *InstBuf++;
- if (is843419ErratumSequence(Instr1, Instr2, Instr3)) {
- PatchOff = Off + 8;
- } else if (OptionalAllowed && !isBranch(Instr3)) {
- uint32_t Instr4 = *InstBuf++;
- if (is843419ErratumSequence(Instr1, Instr2, Instr4))
- PatchOff = Off + 12;
+ uint64_t patchOff = 0;
+ const uint8_t *buf = isec->data().begin();
+ const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
+ uint32_t instr1 = *instBuf++;
+ uint32_t instr2 = *instBuf++;
+ uint32_t instr3 = *instBuf++;
+ if (is843419ErratumSequence(instr1, instr2, instr3)) {
+ patchOff = off + 8;
+ } else if (optionalAllowed && !isBranch(instr3)) {
+ uint32_t instr4 = *instBuf++;
+ if (is843419ErratumSequence(instr1, instr2, instr4))
+ patchOff = off + 12;
}
- if (((ISAddr + Off) & 0xfff) == 0xff8)
- Off += 4;
+ if (((isecAddr + off) & 0xfff) == 0xff8)
+ off += 4;
else
- Off += 0xffc;
- return PatchOff;
+ off += 0xffc;
+ return patchOff;
}
class lld::elf::Patch843419Section : public SyntheticSection {
public:
- Patch843419Section(InputSection *P, uint64_t Off);
+ Patch843419Section(InputSection *p, uint64_t off);
- void writeTo(uint8_t *Buf) override;
+ void writeTo(uint8_t *buf) override;
size_t getSize() const override { return 8; }
uint64_t getLDSTAddr() const;
// The Section we are patching.
- const InputSection *Patchee;
+ const InputSection *patchee;
// The offset of the instruction in the Patchee section we are patching.
- uint64_t PatcheeOffset;
+ uint64_t patcheeOffset;
// A label for the start of the Patch that we can use as a relocation target.
- Symbol *PatchSym;
+ Symbol *patchSym;
};
-lld::elf::Patch843419Section::Patch843419Section(InputSection *P, uint64_t Off)
+lld::elf::Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
".text.patch"),
- Patchee(P), PatcheeOffset(Off) {
- this->Parent = P->getParent();
- PatchSym = addSyntheticLocal(
- Saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
+ patchee(p), patcheeOffset(off) {
+ this->parent = p->getParent();
+ patchSym = addSyntheticLocal(
+ saver.save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC, 0,
getSize(), *this);
- addSyntheticLocal(Saver.save("$x"), STT_NOTYPE, 0, 0, *this);
+ addSyntheticLocal(saver.save("$x"), STT_NOTYPE, 0, 0, *this);
}
uint64_t lld::elf::Patch843419Section::getLDSTAddr() const {
- return Patchee->getVA(PatcheeOffset);
+ return patchee->getVA(patcheeOffset);
}
-void lld::elf::Patch843419Section::writeTo(uint8_t *Buf) {
+void lld::elf::Patch843419Section::writeTo(uint8_t *buf) {
// Copy the instruction that we will be replacing with a branch in the
// Patchee Section.
- write32le(Buf, read32le(Patchee->data().begin() + PatcheeOffset));
+ write32le(buf, read32le(patchee->data().begin() + patcheeOffset));
// Apply any relocation transferred from the original PatcheeSection.
- // For a SyntheticSection Buf already has OutSecOff added, but relocateAlloc
- // also adds OutSecOff so we need to subtract to avoid double counting.
- this->relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + getSize());
+ // For a SyntheticSection Buf already has outSecOff added, but relocateAlloc
+ // also adds outSecOff so we need to subtract to avoid double counting.
+ this->relocateAlloc(buf - outSecOff, buf - outSecOff + getSize());
// Return address is the next instruction after the one we have just copied.
- uint64_t S = getLDSTAddr() + 4;
- uint64_t P = PatchSym->getVA() + 4;
- Target->relocateOne(Buf + 4, R_AARCH64_JUMP26, S - P);
+ uint64_t s = getLDSTAddr() + 4;
+ uint64_t p = patchSym->getVA() + 4;
+ target->relocateOne(buf + 4, R_AARCH64_JUMP26, s - p);
}
void AArch64Err843419Patcher::init() {
// The AArch64 ABI permits data in executable sections. We must avoid scanning
// this data as if it were instructions to avoid false matches. We use the
// mapping symbols in the InputObjects to identify this data, caching the
- // results in SectionMap so we don't have to recalculate it each pass.
+ // results in sectionMap so we don't have to recalculate it each pass.
// The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
// half open intervals [Symbol Value, Next Symbol Value) of code and data
// within sections. If there is no next symbol then the half open interval is
// [Symbol Value, End of section). The type, code or data, is determined by
// the mapping symbol name, $x for code, $d for data.
- auto IsCodeMapSymbol = [](const Symbol *B) {
- return B->getName() == "$x" || B->getName().startswith("$x.");
+ auto isCodeMapSymbol = [](const Symbol *b) {
+ return b->getName() == "$x" || b->getName().startswith("$x.");
};
- auto IsDataMapSymbol = [](const Symbol *B) {
- return B->getName() == "$d" || B->getName().startswith("$d.");
+ auto isDataMapSymbol = [](const Symbol *b) {
+ return b->getName() == "$d" || b->getName().startswith("$d.");
};
// Collect mapping symbols for every executable InputSection.
- for (InputFile *File : ObjectFiles) {
- auto *F = cast<ObjFile<ELF64LE>>(File);
- for (Symbol *B : F->getLocalSymbols()) {
- auto *Def = dyn_cast<Defined>(B);
- if (!Def)
+ for (InputFile *file : objectFiles) {
+ auto *f = cast<ObjFile<ELF64LE>>(file);
+ for (Symbol *b : f->getLocalSymbols()) {
+ auto *def = dyn_cast<Defined>(b);
+ if (!def)
continue;
- if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def))
+ if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
continue;
- if (auto *Sec = dyn_cast_or_null<InputSection>(Def->Section))
- if (Sec->Flags & SHF_EXECINSTR)
- SectionMap[Sec].push_back(Def);
+ if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
+ if (sec->flags & SHF_EXECINSTR)
+ sectionMap[sec].push_back(def);
}
}
// For each InputSection make sure the mapping symbols are in sorted in
// ascending order and free from consecutive runs of mapping symbols with
// the same type. For example we must remove the redundant $d.1 from $x.0
// $d.0 $d.1 $x.1.
- for (auto &KV : SectionMap) {
- std::vector<const Defined *> &MapSyms = KV.second;
- if (MapSyms.size() <= 1)
+ for (auto &kv : sectionMap) {
+ std::vector<const Defined *> &mapSyms = kv.second;
+ if (mapSyms.size() <= 1)
continue;
- std::stable_sort(
- MapSyms.begin(), MapSyms.end(),
- [](const Defined *A, const Defined *B) { return A->Value < B->Value; });
- MapSyms.erase(
- std::unique(MapSyms.begin(), MapSyms.end(),
- [=](const Defined *A, const Defined *B) {
- return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) ||
- (IsDataMapSymbol(A) && IsDataMapSymbol(B));
+ llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
+ return a->value < b->value;
+ });
+ mapSyms.erase(
+ std::unique(mapSyms.begin(), mapSyms.end(),
+ [=](const Defined *a, const Defined *b) {
+ return (isCodeMapSymbol(a) && isCodeMapSymbol(b)) ||
+ (isDataMapSymbol(a) && isDataMapSymbol(b));
}),
- MapSyms.end());
+ mapSyms.end());
}
- Initialized = true;
+ initialized = true;
}
// Insert the PatchSections we have created back into the
@@ -484,60 +483,60 @@ void AArch64Err843419Patcher::init() {
// executable sections, although we may need to insert them earlier if the
// InputSectionDescription is larger than the maximum branch range.
void AArch64Err843419Patcher::insertPatches(
- InputSectionDescription &ISD, std::vector<Patch843419Section *> &Patches) {
- uint64_t ISLimit;
- uint64_t PrevISLimit = ISD.Sections.front()->OutSecOff;
- uint64_t PatchUpperBound = PrevISLimit + Target->getThunkSectionSpacing();
- uint64_t OutSecAddr = ISD.Sections.front()->getParent()->Addr;
+ InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
+ uint64_t isecLimit;
+ uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
+ uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
+ uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
- // Set the OutSecOff of patches to the place where we want to insert them.
+ // Set the outSecOff of patches to the place where we want to insert them.
// We use a similar strategy to Thunk placement. Place patches roughly
// every multiple of maximum branch range.
- auto PatchIt = Patches.begin();
- auto PatchEnd = Patches.end();
- for (const InputSection *IS : ISD.Sections) {
- ISLimit = IS->OutSecOff + IS->getSize();
- if (ISLimit > PatchUpperBound) {
- while (PatchIt != PatchEnd) {
- if ((*PatchIt)->getLDSTAddr() - OutSecAddr >= PrevISLimit)
+ auto patchIt = patches.begin();
+ auto patchEnd = patches.end();
+ for (const InputSection *isec : isd.sections) {
+ isecLimit = isec->outSecOff + isec->getSize();
+ if (isecLimit > patchUpperBound) {
+ while (patchIt != patchEnd) {
+ if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
break;
- (*PatchIt)->OutSecOff = PrevISLimit;
- ++PatchIt;
+ (*patchIt)->outSecOff = prevIsecLimit;
+ ++patchIt;
}
- PatchUpperBound = PrevISLimit + Target->getThunkSectionSpacing();
+ patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
}
- PrevISLimit = ISLimit;
+ prevIsecLimit = isecLimit;
}
- for (; PatchIt != PatchEnd; ++PatchIt) {
- (*PatchIt)->OutSecOff = ISLimit;
+ for (; patchIt != patchEnd; ++patchIt) {
+ (*patchIt)->outSecOff = isecLimit;
}
- // merge all patch sections. We use the OutSecOff assigned above to
+ // merge all patch sections. We use the outSecOff assigned above to
// determine the insertion point. This is ok as we only merge into an
// InputSectionDescription once per pass, and at the end of the pass
- // assignAddresses() will recalculate all the OutSecOff values.
- std::vector<InputSection *> Tmp;
- Tmp.reserve(ISD.Sections.size() + Patches.size());
- auto MergeCmp = [](const InputSection *A, const InputSection *B) {
- if (A->OutSecOff < B->OutSecOff)
+ // assignAddresses() will recalculate all the outSecOff values.
+ std::vector<InputSection *> tmp;
+ tmp.reserve(isd.sections.size() + patches.size());
+ auto mergeCmp = [](const InputSection *a, const InputSection *b) {
+ if (a->outSecOff < b->outSecOff)
return true;
- if (A->OutSecOff == B->OutSecOff && isa<Patch843419Section>(A) &&
- !isa<Patch843419Section>(B))
+ if (a->outSecOff == b->outSecOff && isa<Patch843419Section>(a) &&
+ !isa<Patch843419Section>(b))
return true;
return false;
};
- std::merge(ISD.Sections.begin(), ISD.Sections.end(), Patches.begin(),
- Patches.end(), std::back_inserter(Tmp), MergeCmp);
- ISD.Sections = std::move(Tmp);
+ std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
+ patches.end(), std::back_inserter(tmp), mergeCmp);
+ isd.sections = std::move(tmp);
}
-// Given an erratum sequence that starts at address AdrpAddr, with an
-// instruction that we need to patch at PatcheeOffset from the start of
+// Given an erratum sequence that starts at address adrpAddr, with an
+// instruction that we need to patch at patcheeOffset from the start of
// InputSection IS, create a Patch843419 Section and add it to the
// Patches that we need to insert.
-static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset,
- InputSection *IS,
- std::vector<Patch843419Section *> &Patches) {
+static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
+ InputSection *isec,
+ std::vector<Patch843419Section *> &patches) {
// There may be a relocation at the same offset that we are patching. There
// are four cases that we need to consider.
// Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
@@ -552,29 +551,29 @@ static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset,
// and replace the relocation with a R_AARCH_JUMP26 branch relocation.
// Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
// relocation at the offset.
- auto RelIt = std::find_if(
- IS->Relocations.begin(), IS->Relocations.end(),
- [=](const Relocation &R) { return R.Offset == PatcheeOffset; });
- if (RelIt != IS->Relocations.end() &&
- (RelIt->Type == R_AARCH64_JUMP26 || RelIt->Expr == R_RELAX_TLS_IE_TO_LE))
+ auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
+ return r.offset == patcheeOffset;
+ });
+ if (relIt != isec->relocations.end() &&
+ (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
return;
log("detected cortex-a53-843419 erratum sequence starting at " +
- utohexstr(AdrpAddr) + " in unpatched output.");
+ utohexstr(adrpAddr) + " in unpatched output.");
- auto *PS = make<Patch843419Section>(IS, PatcheeOffset);
- Patches.push_back(PS);
+ auto *ps = make<Patch843419Section>(isec, patcheeOffset);
+ patches.push_back(ps);
- auto MakeRelToPatch = [](uint64_t Offset, Symbol *PatchSym) {
- return Relocation{R_PC, R_AARCH64_JUMP26, Offset, 0, PatchSym};
+ auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
+ return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
};
- if (RelIt != IS->Relocations.end()) {
- PS->Relocations.push_back(
- {RelIt->Expr, RelIt->Type, 0, RelIt->Addend, RelIt->Sym});
- *RelIt = MakeRelToPatch(PatcheeOffset, PS->PatchSym);
+ if (relIt != isec->relocations.end()) {
+ ps->relocations.push_back(
+ {relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
+ *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
} else
- IS->Relocations.push_back(MakeRelToPatch(PatcheeOffset, PS->PatchSym));
+ isec->relocations.push_back(makeRelToPatch(patcheeOffset, ps->patchSym));
}
// Scan all the instructions in InputSectionDescription, for each instance of
@@ -582,40 +581,40 @@ static void implementPatch(uint64_t AdrpAddr, uint64_t PatcheeOffset,
// Patch843419Sections that need to be applied to ISD.
std::vector<Patch843419Section *>
AArch64Err843419Patcher::patchInputSectionDescription(
- InputSectionDescription &ISD) {
- std::vector<Patch843419Section *> Patches;
- for (InputSection *IS : ISD.Sections) {
+ InputSectionDescription &isd) {
+ std::vector<Patch843419Section *> patches;
+ for (InputSection *isec : isd.sections) {
// LLD doesn't use the erratum sequence in SyntheticSections.
- if (isa<SyntheticSection>(IS))
+ if (isa<SyntheticSection>(isec))
continue;
- // Use SectionMap to make sure we only scan code and not inline data.
+ // Use sectionMap to make sure we only scan code and not inline data.
// We have already sorted MapSyms in ascending order and removed consecutive
// mapping symbols of the same type. Our range of executable instructions to
- // scan is therefore [CodeSym->Value, DataSym->Value) or [CodeSym->Value,
+ // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
// section size).
- std::vector<const Defined *> &MapSyms = SectionMap[IS];
+ std::vector<const Defined *> &mapSyms = sectionMap[isec];
- auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) {
- return MS->getName().startswith("$x");
+ auto codeSym = llvm::find_if(mapSyms, [&](const Defined *ms) {
+ return ms->getName().startswith("$x");
});
- while (CodeSym != MapSyms.end()) {
- auto DataSym = std::next(CodeSym);
- uint64_t Off = (*CodeSym)->Value;
- uint64_t Limit =
- (DataSym == MapSyms.end()) ? IS->data().size() : (*DataSym)->Value;
+ while (codeSym != mapSyms.end()) {
+ auto dataSym = std::next(codeSym);
+ uint64_t off = (*codeSym)->value;
+ uint64_t limit =
+ (dataSym == mapSyms.end()) ? isec->data().size() : (*dataSym)->value;
- while (Off < Limit) {
- uint64_t StartAddr = IS->getVA(Off);
- if (uint64_t PatcheeOffset = scanCortexA53Errata843419(IS, Off, Limit))
- implementPatch(StartAddr, PatcheeOffset, IS, Patches);
+ while (off < limit) {
+ uint64_t startAddr = isec->getVA(off);
+ if (uint64_t patcheeOffset = scanCortexA53Errata843419(isec, off, limit))
+ implementPatch(startAddr, patcheeOffset, isec, patches);
}
- if (DataSym == MapSyms.end())
+ if (dataSym == mapSyms.end())
break;
- CodeSym = std::next(DataSym);
+ codeSym = std::next(dataSym);
}
}
- return Patches;
+ return patches;
}
// For each InputSectionDescription make one pass over the executable sections
@@ -631,22 +630,22 @@ AArch64Err843419Patcher::patchInputSectionDescription(
// Ouptut and Input Sections may have been changed.
// Returns false if no patches were required and no changes were made.
bool AArch64Err843419Patcher::createFixes() {
- if (Initialized == false)
+ if (initialized == false)
init();
- bool AddressesChanged = false;
- for (OutputSection *OS : OutputSections) {
- if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
+ bool addressesChanged = false;
+ for (OutputSection *os : outputSections) {
+ if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
continue;
- for (BaseCommand *BC : OS->SectionCommands)
- if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
- std::vector<Patch843419Section *> Patches =
- patchInputSectionDescription(*ISD);
- if (!Patches.empty()) {
- insertPatches(*ISD, Patches);
- AddressesChanged = true;
+ for (BaseCommand *bc : os->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(bc)) {
+ std::vector<Patch843419Section *> patches =
+ patchInputSectionDescription(*isd);
+ if (!patches.empty()) {
+ insertPatches(*isd, patches);
+ addressesChanged = true;
}
}
}
- return AddressesChanged;
+ return addressesChanged;
}