summaryrefslogtreecommitdiff
path: root/ELF/CallGraphSort.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/CallGraphSort.cpp')
-rw-r--r--ELF/CallGraphSort.cpp249
1 files changed, 249 insertions, 0 deletions
diff --git a/ELF/CallGraphSort.cpp b/ELF/CallGraphSort.cpp
new file mode 100644
index 000000000000..33ac159a6e26
--- /dev/null
+++ b/ELF/CallGraphSort.cpp
@@ -0,0 +1,249 @@
+//===- CallGraphSort.cpp --------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// Implementation of Call-Chain Clustering from: Optimizing Function Placement
+/// for Large-Scale Data-Center Applications
+/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
+///
+/// The goal of this algorithm is to improve runtime performance of the final
+/// executable by arranging code sections such that page table and i-cache
+/// misses are minimized.
+///
+/// Definitions:
+/// * Cluster
+/// * An ordered list of input sections which are layed out as a unit. At the
+/// beginning of the algorithm each input section has its own cluster and
+/// the weight of the cluster is the sum of the weight of all incomming
+/// edges.
+/// * Call-Chain Clustering (C³) Heuristic
+/// * Defines when and how clusters are combined. Pick the highest weighted
+/// input section then add it to its most likely predecessor if it wouldn't
+/// penalize it too much.
+/// * Density
+/// * The weight of the cluster divided by the size of the cluster. This is a
+/// proxy for the ammount of execution time spent per byte of the cluster.
+///
+/// It does so given a call graph profile by the following:
+/// * Build a weighted call graph from the call graph profile
+/// * Sort input sections by weight
+/// * For each input section starting with the highest weight
+/// * Find its most likely predecessor cluster
+/// * Check if the combined cluster would be too large, or would have too low
+/// a density.
+/// * If not, then combine the clusters.
+/// * Sort non-empty clusters by density
+///
+//===----------------------------------------------------------------------===//
+
+#include "CallGraphSort.h"
+#include "OutputSections.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+
+using namespace llvm;
+using namespace lld;
+using namespace lld::elf;
+
+namespace {
+struct Edge {
+ int From;
+ uint64_t Weight;
+};
+
+struct Cluster {
+ Cluster(int Sec, size_t S) {
+ Sections.push_back(Sec);
+ Size = S;
+ }
+
+ double getDensity() const {
+ if (Size == 0)
+ return 0;
+ return double(Weight) / double(Size);
+ }
+
+ std::vector<int> Sections;
+ size_t Size = 0;
+ uint64_t Weight = 0;
+ uint64_t InitialWeight = 0;
+ std::vector<Edge> Preds;
+};
+
+class CallGraphSort {
+public:
+ CallGraphSort();
+
+ DenseMap<const InputSectionBase *, int> run();
+
+private:
+ std::vector<Cluster> Clusters;
+ std::vector<const InputSectionBase *> Sections;
+
+ void groupClusters();
+};
+
+// Maximum ammount the combined cluster density can be worse than the original
+// cluster to consider merging.
+constexpr int MAX_DENSITY_DEGRADATION = 8;
+
+// Maximum cluster size in bytes.
+constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
+} // end anonymous namespace
+
+// Take the edge list in Config->CallGraphProfile, resolve symbol names to
+// Symbols, and generate a graph between InputSections with the provided
+// weights.
+CallGraphSort::CallGraphSort() {
+ llvm::MapVector<std::pair<const InputSectionBase *, const InputSectionBase *>,
+ uint64_t> &Profile = Config->CallGraphProfile;
+ DenseMap<const InputSectionBase *, int> SecToCluster;
+
+ auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int {
+ auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size()));
+ if (Res.second) {
+ Sections.push_back(IS);
+ Clusters.emplace_back(Clusters.size(), IS->getSize());
+ }
+ return Res.first->second;
+ };
+
+ // Create the graph.
+ for (const auto &C : Profile) {
+ const auto *FromSB = cast<InputSectionBase>(C.first.first->Repl);
+ const auto *ToSB = cast<InputSectionBase>(C.first.second->Repl);
+ uint64_t Weight = C.second;
+
+ // Ignore edges between input sections belonging to different output
+ // sections. This is done because otherwise we would end up with clusters
+ // containing input sections that can't actually be placed adjacently in the
+ // output. This messes with the cluster size and density calculations. We
+ // would also end up moving input sections in other output sections without
+ // moving them closer to what calls them.
+ if (FromSB->getOutputSection() != ToSB->getOutputSection())
+ continue;
+
+ int From = GetOrCreateNode(FromSB);
+ int To = GetOrCreateNode(ToSB);
+
+ Clusters[To].Weight += Weight;
+
+ if (From == To)
+ continue;
+
+ // Add an edge
+ Clusters[To].Preds.push_back({From, Weight});
+ }
+ for (Cluster &C : Clusters)
+ C.InitialWeight = C.Weight;
+}
+
+// It's bad to merge clusters which would degrade the density too much.
+static bool isNewDensityBad(Cluster &A, Cluster &B) {
+ double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size);
+ if (NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION)
+ return true;
+ return false;
+}
+
+static void mergeClusters(Cluster &Into, Cluster &From) {
+ Into.Sections.insert(Into.Sections.end(), From.Sections.begin(),
+ From.Sections.end());
+ Into.Size += From.Size;
+ Into.Weight += From.Weight;
+ From.Sections.clear();
+ From.Size = 0;
+ From.Weight = 0;
+}
+
+// Group InputSections into clusters using the Call-Chain Clustering heuristic
+// then sort the clusters by density.
+void CallGraphSort::groupClusters() {
+ std::vector<int> SortedSecs(Clusters.size());
+ std::vector<Cluster *> SecToCluster(Clusters.size());
+
+ for (int SI = 0, SE = Clusters.size(); SI != SE; ++SI) {
+ SortedSecs[SI] = SI;
+ SecToCluster[SI] = &Clusters[SI];
+ }
+
+ std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) {
+ return Clusters[B].getDensity() < Clusters[A].getDensity();
+ });
+
+ for (int SI : SortedSecs) {
+ // Clusters[SI] is the same as SecToClusters[SI] here because it has not
+ // been merged into another cluster yet.
+ Cluster &C = Clusters[SI];
+
+ int BestPred = -1;
+ uint64_t BestWeight = 0;
+
+ for (Edge &E : C.Preds) {
+ if (BestPred == -1 || E.Weight > BestWeight) {
+ BestPred = E.From;
+ BestWeight = E.Weight;
+ }
+ }
+
+ // don't consider merging if the edge is unlikely.
+ if (BestWeight * 10 <= C.InitialWeight)
+ continue;
+
+ Cluster *PredC = SecToCluster[BestPred];
+ if (PredC == &C)
+ continue;
+
+ if (C.Size + PredC->Size > MAX_CLUSTER_SIZE)
+ continue;
+
+ if (isNewDensityBad(*PredC, C))
+ continue;
+
+ // NOTE: Consider using a disjoint-set to track section -> cluster mapping
+ // if this is ever slow.
+ for (int SI : C.Sections)
+ SecToCluster[SI] = PredC;
+
+ mergeClusters(*PredC, C);
+ }
+
+ // Remove empty or dead nodes. Invalidates all cluster indices.
+ llvm::erase_if(Clusters, [](const Cluster &C) {
+ return C.Size == 0 || C.Sections.empty();
+ });
+
+ // Sort by density.
+ std::stable_sort(Clusters.begin(), Clusters.end(),
+ [](const Cluster &A, const Cluster &B) {
+ return A.getDensity() > B.getDensity();
+ });
+}
+
+DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
+ groupClusters();
+
+ // Generate order.
+ llvm::DenseMap<const InputSectionBase *, int> OrderMap;
+ ssize_t CurOrder = 1;
+
+ for (const Cluster &C : Clusters)
+ for (int SecIndex : C.Sections)
+ OrderMap[Sections[SecIndex]] = CurOrder++;
+
+ return OrderMap;
+}
+
+// Sort sections by the profile data provided by -callgraph-profile-file
+//
+// This first builds a call graph based on the profile data then merges sections
+// according to the C³ huristic. All clusters are then sorted by a density
+// metric to further improve locality.
+DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
+ return CallGraphSort().run();
+}