summaryrefslogtreecommitdiff
path: root/ELF/GdbIndex.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/GdbIndex.cpp')
-rw-r--r--ELF/GdbIndex.cpp205
1 files changed, 205 insertions, 0 deletions
diff --git a/ELF/GdbIndex.cpp b/ELF/GdbIndex.cpp
new file mode 100644
index 000000000000..762144dd0a96
--- /dev/null
+++ b/ELF/GdbIndex.cpp
@@ -0,0 +1,205 @@
+//===- GdbIndex.cpp -------------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// File contains classes for implementation of --gdb-index command line option.
+//
+// If that option is used, linker should emit a .gdb_index section that allows
+// debugger to locate and read .dwo files, containing neccessary debug
+// information.
+// More information about implementation can be found in DWARF specification,
+// latest version is available at http://dwarfstd.org.
+//
+// .gdb_index section format:
+// (Information is based on/taken from
+// https://sourceware.org/gdb/onlinedocs/gdb/Index-Section-Format.html (*))
+//
+// A mapped index consists of several areas, laid out in order:
+// 1) The file header.
+// 2) "The CU (compilation unit) list. This is a sequence of pairs of 64-bit
+// little-endian values, sorted by the CU offset. The first element in each
+// pair is the offset of a CU in the .debug_info section. The second element
+// in each pair is the length of that CU. References to a CU elsewhere in the
+// map are done using a CU index, which is just the 0-based index into this
+// table. Note that if there are type CUs, then conceptually CUs and type CUs
+// form a single list for the purposes of CU indices."(*)
+// 3) The types CU list. Depricated as .debug_types does not appear in the DWARF
+// v5 specification.
+// 4) The address area. The address area is a sequence of address
+// entries, where each entrie contains low address, high address and CU
+// index.
+// 5) "The symbol table. This is an open-addressed hash table. The size of the
+// hash table is always a power of 2. Each slot in the hash table consists of
+// a pair of offset_type values. The first value is the offset of the
+// symbol's name in the constant pool. The second value is the offset of the
+// CU vector in the constant pool."(*)
+// 6) "The constant pool. This is simply a bunch of bytes. It is organized so
+// that alignment is correct: CU vectors are stored first, followed by
+// strings." (*)
+//
+// For constructing the .gdb_index section following steps should be performed:
+// 1) For file header nothing special should be done. It contains the offsets to
+// the areas below.
+// 2) Scan the compilation unit headers of the .debug_info sections to build a
+// list of compilation units.
+// 3) CU Types are no longer needed as DWARF skeleton type units never made it
+// into the standard. lld does nothing to support parsing of .debug_types
+// and generates empty types CU area in .gdb_index section.
+// 4) Address area entries are extracted from DW_TAG_compile_unit DIEs of
+// .debug_info sections.
+// 5) For building the symbol table linker extracts the public names from the
+// .debug_gnu_pubnames and .debug_gnu_pubtypes sections. Then it builds the
+// hashtable in according to .gdb_index format specification.
+// 6) Constant pool is populated at the same time as symbol table.
+//===----------------------------------------------------------------------===//
+
+#include "GdbIndex.h"
+#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
+#include "llvm/Object/ELFObjectFile.h"
+
+using namespace llvm;
+using namespace llvm::object;
+using namespace lld::elf;
+
+template <class ELFT>
+GdbIndexBuilder<ELFT>::GdbIndexBuilder(InputSection<ELFT> *DebugInfoSec)
+ : DebugInfoSec(DebugInfoSec) {
+ if (Expected<std::unique_ptr<object::ObjectFile>> Obj =
+ object::ObjectFile::createObjectFile(DebugInfoSec->getFile()->MB))
+ Dwarf.reset(new DWARFContextInMemory(*Obj.get(), this));
+ else
+ error(toString(DebugInfoSec->getFile()) + ": error creating DWARF context");
+}
+
+template <class ELFT>
+std::vector<std::pair<typename ELFT::uint, typename ELFT::uint>>
+GdbIndexBuilder<ELFT>::readCUList() {
+ std::vector<std::pair<uintX_t, uintX_t>> Ret;
+ for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf->compile_units())
+ Ret.push_back(
+ {DebugInfoSec->OutSecOff + CU->getOffset(), CU->getLength() + 4});
+ return Ret;
+}
+
+template <class ELFT>
+std::vector<std::pair<StringRef, uint8_t>>
+GdbIndexBuilder<ELFT>::readPubNamesAndTypes() {
+ const bool IsLE = ELFT::TargetEndianness == llvm::support::little;
+ StringRef Data[] = {Dwarf->getGnuPubNamesSection(),
+ Dwarf->getGnuPubTypesSection()};
+
+ std::vector<std::pair<StringRef, uint8_t>> Ret;
+ for (StringRef D : Data) {
+ DWARFDebugPubTable PubTable(D, IsLE, true);
+ for (const DWARFDebugPubTable::Set &S : PubTable.getData())
+ for (const DWARFDebugPubTable::Entry &E : S.Entries)
+ Ret.push_back({E.Name, E.Descriptor.toBits()});
+ }
+ return Ret;
+}
+
+std::pair<bool, GdbSymbol *> GdbHashTab::add(uint32_t Hash, size_t Offset) {
+ if (Size * 4 / 3 >= Table.size())
+ expand();
+
+ GdbSymbol **Slot = findSlot(Hash, Offset);
+ bool New = false;
+ if (*Slot == nullptr) {
+ ++Size;
+ *Slot = new (Alloc) GdbSymbol(Hash, Offset);
+ New = true;
+ }
+ return {New, *Slot};
+}
+
+void GdbHashTab::expand() {
+ if (Table.empty()) {
+ Table.resize(InitialSize);
+ return;
+ }
+ std::vector<GdbSymbol *> NewTable(Table.size() * 2);
+ NewTable.swap(Table);
+
+ for (GdbSymbol *Sym : NewTable) {
+ if (!Sym)
+ continue;
+ GdbSymbol **Slot = findSlot(Sym->NameHash, Sym->NameOffset);
+ *Slot = Sym;
+ }
+}
+
+// Methods finds a slot for symbol with given hash. The step size used to find
+// the next candidate slot when handling a hash collision is specified in
+// .gdb_index section format. The hash value for a table entry is computed by
+// applying an iterative hash function to the symbol's name.
+GdbSymbol **GdbHashTab::findSlot(uint32_t Hash, size_t Offset) {
+ uint32_t Index = Hash & (Table.size() - 1);
+ uint32_t Step = ((Hash * 17) & (Table.size() - 1)) | 1;
+
+ for (;;) {
+ GdbSymbol *S = Table[Index];
+ if (!S || ((S->NameOffset == Offset) && (S->NameHash == Hash)))
+ return &Table[Index];
+ Index = (Index + Step) & (Table.size() - 1);
+ }
+}
+
+template <class ELFT>
+static InputSectionBase<ELFT> *
+findSection(ArrayRef<InputSectionBase<ELFT> *> Arr, uint64_t Offset) {
+ for (InputSectionBase<ELFT> *S : Arr)
+ if (S && S != &InputSection<ELFT>::Discarded)
+ if (Offset >= S->Offset && Offset < S->Offset + S->getSize())
+ return S;
+ return nullptr;
+}
+
+template <class ELFT>
+std::vector<AddressEntry<ELFT>>
+GdbIndexBuilder<ELFT>::readAddressArea(size_t CurrentCU) {
+ std::vector<AddressEntry<ELFT>> Ret;
+ for (const auto &CU : Dwarf->compile_units()) {
+ DWARFAddressRangesVector Ranges;
+ CU->collectAddressRanges(Ranges);
+
+ ArrayRef<InputSectionBase<ELFT> *> Sections =
+ DebugInfoSec->getFile()->getSections();
+
+ for (std::pair<uint64_t, uint64_t> &R : Ranges)
+ if (InputSectionBase<ELFT> *S = findSection(Sections, R.first))
+ Ret.push_back(
+ {S, R.first - S->Offset, R.second - S->Offset, CurrentCU});
+ ++CurrentCU;
+ }
+ return Ret;
+}
+
+// We return file offset as load address for allocatable sections. That is
+// currently used for collecting address ranges in readAddressArea(). We are
+// able then to find section index that range belongs to.
+template <class ELFT>
+uint64_t GdbIndexBuilder<ELFT>::getSectionLoadAddress(
+ const object::SectionRef &Sec) const {
+ if (static_cast<const ELFSectionRef &>(Sec).getFlags() & ELF::SHF_ALLOC)
+ return static_cast<const ELFSectionRef &>(Sec).getOffset();
+ return 0;
+}
+
+template <class ELFT>
+std::unique_ptr<LoadedObjectInfo> GdbIndexBuilder<ELFT>::clone() const {
+ return {};
+}
+
+namespace lld {
+namespace elf {
+template class GdbIndexBuilder<ELF32LE>;
+template class GdbIndexBuilder<ELF32BE>;
+template class GdbIndexBuilder<ELF64LE>;
+template class GdbIndexBuilder<ELF64BE>;
+}
+}