diff options
Diffstat (limited to 'ELF/GdbIndex.cpp')
-rw-r--r-- | ELF/GdbIndex.cpp | 205 |
1 files changed, 205 insertions, 0 deletions
diff --git a/ELF/GdbIndex.cpp b/ELF/GdbIndex.cpp new file mode 100644 index 000000000000..762144dd0a96 --- /dev/null +++ b/ELF/GdbIndex.cpp @@ -0,0 +1,205 @@ +//===- GdbIndex.cpp -------------------------------------------------------===// +// +// The LLVM Linker +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// File contains classes for implementation of --gdb-index command line option. +// +// If that option is used, linker should emit a .gdb_index section that allows +// debugger to locate and read .dwo files, containing neccessary debug +// information. +// More information about implementation can be found in DWARF specification, +// latest version is available at http://dwarfstd.org. +// +// .gdb_index section format: +// (Information is based on/taken from +// https://sourceware.org/gdb/onlinedocs/gdb/Index-Section-Format.html (*)) +// +// A mapped index consists of several areas, laid out in order: +// 1) The file header. +// 2) "The CU (compilation unit) list. This is a sequence of pairs of 64-bit +// little-endian values, sorted by the CU offset. The first element in each +// pair is the offset of a CU in the .debug_info section. The second element +// in each pair is the length of that CU. References to a CU elsewhere in the +// map are done using a CU index, which is just the 0-based index into this +// table. Note that if there are type CUs, then conceptually CUs and type CUs +// form a single list for the purposes of CU indices."(*) +// 3) The types CU list. Depricated as .debug_types does not appear in the DWARF +// v5 specification. +// 4) The address area. The address area is a sequence of address +// entries, where each entrie contains low address, high address and CU +// index. +// 5) "The symbol table. This is an open-addressed hash table. The size of the +// hash table is always a power of 2. Each slot in the hash table consists of +// a pair of offset_type values. The first value is the offset of the +// symbol's name in the constant pool. The second value is the offset of the +// CU vector in the constant pool."(*) +// 6) "The constant pool. This is simply a bunch of bytes. It is organized so +// that alignment is correct: CU vectors are stored first, followed by +// strings." (*) +// +// For constructing the .gdb_index section following steps should be performed: +// 1) For file header nothing special should be done. It contains the offsets to +// the areas below. +// 2) Scan the compilation unit headers of the .debug_info sections to build a +// list of compilation units. +// 3) CU Types are no longer needed as DWARF skeleton type units never made it +// into the standard. lld does nothing to support parsing of .debug_types +// and generates empty types CU area in .gdb_index section. +// 4) Address area entries are extracted from DW_TAG_compile_unit DIEs of +// .debug_info sections. +// 5) For building the symbol table linker extracts the public names from the +// .debug_gnu_pubnames and .debug_gnu_pubtypes sections. Then it builds the +// hashtable in according to .gdb_index format specification. +// 6) Constant pool is populated at the same time as symbol table. +//===----------------------------------------------------------------------===// + +#include "GdbIndex.h" +#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" +#include "llvm/Object/ELFObjectFile.h" + +using namespace llvm; +using namespace llvm::object; +using namespace lld::elf; + +template <class ELFT> +GdbIndexBuilder<ELFT>::GdbIndexBuilder(InputSection<ELFT> *DebugInfoSec) + : DebugInfoSec(DebugInfoSec) { + if (Expected<std::unique_ptr<object::ObjectFile>> Obj = + object::ObjectFile::createObjectFile(DebugInfoSec->getFile()->MB)) + Dwarf.reset(new DWARFContextInMemory(*Obj.get(), this)); + else + error(toString(DebugInfoSec->getFile()) + ": error creating DWARF context"); +} + +template <class ELFT> +std::vector<std::pair<typename ELFT::uint, typename ELFT::uint>> +GdbIndexBuilder<ELFT>::readCUList() { + std::vector<std::pair<uintX_t, uintX_t>> Ret; + for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf->compile_units()) + Ret.push_back( + {DebugInfoSec->OutSecOff + CU->getOffset(), CU->getLength() + 4}); + return Ret; +} + +template <class ELFT> +std::vector<std::pair<StringRef, uint8_t>> +GdbIndexBuilder<ELFT>::readPubNamesAndTypes() { + const bool IsLE = ELFT::TargetEndianness == llvm::support::little; + StringRef Data[] = {Dwarf->getGnuPubNamesSection(), + Dwarf->getGnuPubTypesSection()}; + + std::vector<std::pair<StringRef, uint8_t>> Ret; + for (StringRef D : Data) { + DWARFDebugPubTable PubTable(D, IsLE, true); + for (const DWARFDebugPubTable::Set &S : PubTable.getData()) + for (const DWARFDebugPubTable::Entry &E : S.Entries) + Ret.push_back({E.Name, E.Descriptor.toBits()}); + } + return Ret; +} + +std::pair<bool, GdbSymbol *> GdbHashTab::add(uint32_t Hash, size_t Offset) { + if (Size * 4 / 3 >= Table.size()) + expand(); + + GdbSymbol **Slot = findSlot(Hash, Offset); + bool New = false; + if (*Slot == nullptr) { + ++Size; + *Slot = new (Alloc) GdbSymbol(Hash, Offset); + New = true; + } + return {New, *Slot}; +} + +void GdbHashTab::expand() { + if (Table.empty()) { + Table.resize(InitialSize); + return; + } + std::vector<GdbSymbol *> NewTable(Table.size() * 2); + NewTable.swap(Table); + + for (GdbSymbol *Sym : NewTable) { + if (!Sym) + continue; + GdbSymbol **Slot = findSlot(Sym->NameHash, Sym->NameOffset); + *Slot = Sym; + } +} + +// Methods finds a slot for symbol with given hash. The step size used to find +// the next candidate slot when handling a hash collision is specified in +// .gdb_index section format. The hash value for a table entry is computed by +// applying an iterative hash function to the symbol's name. +GdbSymbol **GdbHashTab::findSlot(uint32_t Hash, size_t Offset) { + uint32_t Index = Hash & (Table.size() - 1); + uint32_t Step = ((Hash * 17) & (Table.size() - 1)) | 1; + + for (;;) { + GdbSymbol *S = Table[Index]; + if (!S || ((S->NameOffset == Offset) && (S->NameHash == Hash))) + return &Table[Index]; + Index = (Index + Step) & (Table.size() - 1); + } +} + +template <class ELFT> +static InputSectionBase<ELFT> * +findSection(ArrayRef<InputSectionBase<ELFT> *> Arr, uint64_t Offset) { + for (InputSectionBase<ELFT> *S : Arr) + if (S && S != &InputSection<ELFT>::Discarded) + if (Offset >= S->Offset && Offset < S->Offset + S->getSize()) + return S; + return nullptr; +} + +template <class ELFT> +std::vector<AddressEntry<ELFT>> +GdbIndexBuilder<ELFT>::readAddressArea(size_t CurrentCU) { + std::vector<AddressEntry<ELFT>> Ret; + for (const auto &CU : Dwarf->compile_units()) { + DWARFAddressRangesVector Ranges; + CU->collectAddressRanges(Ranges); + + ArrayRef<InputSectionBase<ELFT> *> Sections = + DebugInfoSec->getFile()->getSections(); + + for (std::pair<uint64_t, uint64_t> &R : Ranges) + if (InputSectionBase<ELFT> *S = findSection(Sections, R.first)) + Ret.push_back( + {S, R.first - S->Offset, R.second - S->Offset, CurrentCU}); + ++CurrentCU; + } + return Ret; +} + +// We return file offset as load address for allocatable sections. That is +// currently used for collecting address ranges in readAddressArea(). We are +// able then to find section index that range belongs to. +template <class ELFT> +uint64_t GdbIndexBuilder<ELFT>::getSectionLoadAddress( + const object::SectionRef &Sec) const { + if (static_cast<const ELFSectionRef &>(Sec).getFlags() & ELF::SHF_ALLOC) + return static_cast<const ELFSectionRef &>(Sec).getOffset(); + return 0; +} + +template <class ELFT> +std::unique_ptr<LoadedObjectInfo> GdbIndexBuilder<ELFT>::clone() const { + return {}; +} + +namespace lld { +namespace elf { +template class GdbIndexBuilder<ELF32LE>; +template class GdbIndexBuilder<ELF32BE>; +template class GdbIndexBuilder<ELF64LE>; +template class GdbIndexBuilder<ELF64BE>; +} +} |