summaryrefslogtreecommitdiff
path: root/ELF/ICF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/ICF.cpp')
-rw-r--r--ELF/ICF.cpp508
1 files changed, 273 insertions, 235 deletions
diff --git a/ELF/ICF.cpp b/ELF/ICF.cpp
index 10a2603b3b3e..32cd0f8a185c 100644
--- a/ELF/ICF.cpp
+++ b/ELF/ICF.cpp
@@ -7,63 +7,82 @@
//
//===----------------------------------------------------------------------===//
//
-// Identical Code Folding is a feature to merge sections not by name (which
-// is regular comdat handling) but by contents. If two non-writable sections
-// have the same data, relocations, attributes, etc., then the two
-// are considered identical and merged by the linker. This optimization
-// makes outputs smaller.
+// ICF is short for Identical Code Folding. This is a size optimization to
+// identify and merge two or more read-only sections (typically functions)
+// that happened to have the same contents. It usually reduces output size
+// by a few percent.
//
-// ICF is theoretically a problem of reducing graphs by merging as many
-// identical subgraphs as possible if we consider sections as vertices and
-// relocations as edges. It may sound simple, but it is a bit more
-// complicated than you might think. The order of processing sections
-// matters because merging two sections can make other sections, whose
-// relocations now point to the same section, mergeable. Graphs may contain
-// cycles. We need a sophisticated algorithm to do this properly and
-// efficiently.
+// In ICF, two sections are considered identical if they have the same
+// section flags, section data, and relocations. Relocations are tricky,
+// because two relocations are considered the same if they have the same
+// relocation types, values, and if they point to the same sections *in
+// terms of ICF*.
//
-// What we do in this file is this. We split sections into groups. Sections
-// in the same group are considered identical.
+// Here is an example. If foo and bar defined below are compiled to the
+// same machine instructions, ICF can and should merge the two, although
+// their relocations point to each other.
//
-// We begin by optimistically putting all sections into a single equivalence
-// class. Then we apply a series of checks that split this initial
-// equivalence class into more and more refined equivalence classes based on
-// the properties by which a section can be distinguished.
+// void foo() { bar(); }
+// void bar() { foo(); }
//
-// We begin by checking that the section contents and flags are the
-// same. This only needs to be done once since these properties don't depend
-// on the current equivalence class assignment.
+// If you merge the two, their relocations point to the same section and
+// thus you know they are mergeable, but how do you know they are
+// mergeable in the first place? This is not an easy problem to solve.
//
-// Then we split the equivalence classes based on checking that their
-// relocations are the same, where relocation targets are compared by their
-// equivalence class, not the concrete section. This may need to be done
-// multiple times because as the equivalence classes are refined, two
-// sections that had a relocation target in the same equivalence class may
-// now target different equivalence classes, and hence these two sections
-// must be put in different equivalence classes (whereas in the previous
-// iteration they were not since the relocation target was the same.)
+// What we are doing in LLD is to partition sections into equivalence
+// classes. Sections in the same equivalence class when the algorithm
+// terminates are considered identical. Here are details:
//
-// Our algorithm is smart enough to merge the following mutually-recursive
-// functions.
+// 1. First, we partition sections using their hash values as keys. Hash
+// values contain section types, section contents and numbers of
+// relocations. During this step, relocation targets are not taken into
+// account. We just put sections that apparently differ into different
+// equivalence classes.
//
-// void foo() { bar(); }
-// void bar() { foo(); }
+// 2. Next, for each equivalence class, we visit sections to compare
+// relocation targets. Relocation targets are considered equivalent if
+// their targets are in the same equivalence class. Sections with
+// different relocation targets are put into different equivalence
+// clases.
+//
+// 3. If we split an equivalence class in step 2, two relocations
+// previously target the same equivalence class may now target
+// different equivalence classes. Therefore, we repeat step 2 until a
+// convergence is obtained.
+//
+// 4. For each equivalence class C, pick an arbitrary section in C, and
+// merge all the other sections in C with it.
+//
+// For small programs, this algorithm needs 3-5 iterations. For large
+// programs such as Chromium, it takes more than 20 iterations.
+//
+// This algorithm was mentioned as an "optimistic algorithm" in [1],
+// though gold implements a different algorithm than this.
+//
+// We parallelize each step so that multiple threads can work on different
+// equivalence classes concurrently. That gave us a large performance
+// boost when applying ICF on large programs. For example, MSVC link.exe
+// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
+// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
+// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
+// faster than MSVC or gold though.
//
-// This algorithm is so-called "optimistic" algorithm described in
-// http://research.google.com/pubs/pub36912.html. (Note that what GNU
-// gold implemented is different from the optimistic algorithm.)
+// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
+// in the Gold Linker
+// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Config.h"
-#include "OutputSections.h"
#include "SymbolTable.h"
+#include "Threads.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/ELF.h"
-#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <atomic>
using namespace lld;
using namespace lld::elf;
@@ -71,143 +90,132 @@ using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
-namespace lld {
-namespace elf {
+namespace {
template <class ELFT> class ICF {
- typedef typename ELFT::Shdr Elf_Shdr;
- typedef typename ELFT::Sym Elf_Sym;
- typedef typename ELFT::uint uintX_t;
- typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
-
- using Comparator = std::function<bool(const InputSection<ELFT> *,
- const InputSection<ELFT> *)>;
-
public:
void run();
private:
- uint64_t NextId = 1;
-
- static void setLive(SymbolTable<ELFT> *S);
- static uint64_t relSize(InputSection<ELFT> *S);
- static uint64_t getHash(InputSection<ELFT> *S);
- static bool isEligible(InputSectionBase<ELFT> *Sec);
- static std::vector<InputSection<ELFT> *> getSections();
-
- void segregate(InputSection<ELFT> **Begin, InputSection<ELFT> **End,
- Comparator Eq);
-
- void forEachGroup(std::vector<InputSection<ELFT> *> &V, Comparator Eq);
+ void segregate(size_t Begin, size_t End, bool Constant);
template <class RelTy>
- static bool relocationEq(ArrayRef<RelTy> RA, ArrayRef<RelTy> RB);
+ bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
template <class RelTy>
- static bool variableEq(const InputSection<ELFT> *A,
- const InputSection<ELFT> *B, ArrayRef<RelTy> RA,
- ArrayRef<RelTy> RB);
-
- static bool equalsConstant(const InputSection<ELFT> *A,
- const InputSection<ELFT> *B);
-
- static bool equalsVariable(const InputSection<ELFT> *A,
- const InputSection<ELFT> *B);
+ bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
+ const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
+
+ bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
+ bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
+
+ size_t findBoundary(size_t Begin, size_t End);
+
+ void forEachClassRange(size_t Begin, size_t End,
+ std::function<void(size_t, size_t)> Fn);
+
+ void forEachClass(std::function<void(size_t, size_t)> Fn);
+
+ std::vector<InputSection<ELFT> *> Sections;
+
+ // We repeat the main loop while `Repeat` is true.
+ std::atomic<bool> Repeat;
+
+ // The main loop counter.
+ int Cnt = 0;
+
+ // We have two locations for equivalence classes. On the first iteration
+ // of the main loop, Class[0] has a valid value, and Class[1] contains
+ // garbage. We read equivalence classes from slot 0 and write to slot 1.
+ // So, Class[0] represents the current class, and Class[1] represents
+ // the next class. On each iteration, we switch their roles and use them
+ // alternately.
+ //
+ // Why are we doing this? Recall that other threads may be working on
+ // other equivalence classes in parallel. They may read sections that we
+ // are updating. We cannot update equivalence classes in place because
+ // it breaks the invariance that all possibly-identical sections must be
+ // in the same equivalence class at any moment. In other words, the for
+ // loop to update equivalence classes is not atomic, and that is
+ // observable from other threads. By writing new classes to other
+ // places, we can keep the invariance.
+ //
+ // Below, `Current` has the index of the current class, and `Next` has
+ // the index of the next class. If threading is enabled, they are either
+ // (0, 1) or (1, 0).
+ //
+ // Note on single-thread: if that's the case, they are always (0, 0)
+ // because we can safely read the next class without worrying about race
+ // conditions. Using the same location makes this algorithm converge
+ // faster because it uses results of the same iteration earlier.
+ int Current = 0;
+ int Next = 0;
};
}
-}
// Returns a hash value for S. Note that the information about
// relocation targets is not included in the hash value.
-template <class ELFT> uint64_t ICF<ELFT>::getHash(InputSection<ELFT> *S) {
- uint64_t Flags = S->getSectionHdr()->sh_flags;
- uint64_t H = hash_combine(Flags, S->getSize());
- for (const Elf_Shdr *Rel : S->RelocSections)
- H = hash_combine(H, (uint64_t)Rel->sh_size);
- return H;
+template <class ELFT> static uint32_t getHash(InputSection<ELFT> *S) {
+ return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
}
-// Returns true if Sec is subject of ICF.
-template <class ELFT> bool ICF<ELFT>::isEligible(InputSectionBase<ELFT> *Sec) {
- if (!Sec || Sec == &InputSection<ELFT>::Discarded || !Sec->Live)
- return false;
- auto *S = dyn_cast<InputSection<ELFT>>(Sec);
- if (!S)
- return false;
-
+// Returns true if section S is subject of ICF.
+template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
// .init and .fini contains instructions that must be executed to
// initialize and finalize the process. They cannot and should not
// be merged.
- StringRef Name = S->getSectionName();
- if (Name == ".init" || Name == ".fini")
- return false;
-
- const Elf_Shdr &H = *S->getSectionHdr();
- return (H.sh_flags & SHF_ALLOC) && (~H.sh_flags & SHF_WRITE);
-}
-
-template <class ELFT>
-std::vector<InputSection<ELFT> *> ICF<ELFT>::getSections() {
- std::vector<InputSection<ELFT> *> V;
- for (const std::unique_ptr<ObjectFile<ELFT>> &F :
- Symtab<ELFT>::X->getObjectFiles())
- for (InputSectionBase<ELFT> *S : F->getSections())
- if (isEligible(S))
- V.push_back(cast<InputSection<ELFT>>(S));
- return V;
+ return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
+ S->Name != ".init" && S->Name != ".fini";
}
-// All sections between Begin and End must have the same group ID before
-// you call this function. This function compare sections between Begin
-// and End using Eq and assign new group IDs for new groups.
+// Split an equivalence class into smaller classes.
template <class ELFT>
-void ICF<ELFT>::segregate(InputSection<ELFT> **Begin, InputSection<ELFT> **End,
- Comparator Eq) {
- // This loop rearranges [Begin, End) so that all sections that are
- // equal in terms of Eq are contiguous. The algorithm is quadratic in
- // the worst case, but that is not an issue in practice because the
- // number of distinct sections in [Begin, End) is usually very small.
- InputSection<ELFT> **I = Begin;
- for (;;) {
- InputSection<ELFT> *Head = *I;
+void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
+ // This loop rearranges sections in [Begin, End) so that all sections
+ // that are equal in terms of equals{Constant,Variable} are contiguous
+ // in [Begin, End).
+ //
+ // The algorithm is quadratic in the worst case, but that is not an
+ // issue in practice because the number of the distinct sections in
+ // each range is usually very small.
+
+ while (Begin < End) {
+ // Divide [Begin, End) into two. Let Mid be the start index of the
+ // second group.
auto Bound = std::stable_partition(
- I + 1, End, [&](InputSection<ELFT> *S) { return Eq(Head, S); });
- if (Bound == End)
- return;
- uint64_t Id = NextId++;
- for (; I != Bound; ++I)
- (*I)->GroupId = Id;
- }
-}
-
-template <class ELFT>
-void ICF<ELFT>::forEachGroup(std::vector<InputSection<ELFT> *> &V,
- Comparator Eq) {
- for (InputSection<ELFT> **I = V.data(), **E = I + V.size(); I != E;) {
- InputSection<ELFT> *Head = *I;
- auto Bound = std::find_if(I + 1, E, [&](InputSection<ELFT> *S) {
- return S->GroupId != Head->GroupId;
- });
- segregate(I, Bound, Eq);
- I = Bound;
+ Sections.begin() + Begin + 1, Sections.begin() + End,
+ [&](InputSection<ELFT> *S) {
+ if (Constant)
+ return equalsConstant(Sections[Begin], S);
+ return equalsVariable(Sections[Begin], S);
+ });
+ size_t Mid = Bound - Sections.begin();
+
+ // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
+ // updating the sections in [Begin, End). We use Mid as an equivalence
+ // class ID because every group ends with a unique index.
+ for (size_t I = Begin; I < Mid; ++I)
+ Sections[I]->Class[Next] = Mid;
+
+ // If we created a group, we need to iterate the main loop again.
+ if (Mid != End)
+ Repeat = true;
+
+ Begin = Mid;
}
}
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
-bool ICF<ELFT>::relocationEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
- const RelTy *IA = RelsA.begin();
- const RelTy *EA = RelsA.end();
- const RelTy *IB = RelsB.begin();
- const RelTy *EB = RelsB.end();
- if (EA - IA != EB - IB)
- return false;
- for (; IA != EA; ++IA, ++IB)
- if (IA->r_offset != IB->r_offset ||
- IA->getType(Config->Mips64EL) != IB->getType(Config->Mips64EL) ||
- getAddend<ELFT>(*IA) != getAddend<ELFT>(*IB))
- return false;
- return true;
+bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
+ auto Eq = [](const RelTy &A, const RelTy &B) {
+ return A.r_offset == B.r_offset &&
+ A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
+ getAddend<ELFT>(A) == getAddend<ELFT>(B);
+ };
+
+ return RelsA.size() == RelsB.size() &&
+ std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "non-moving" part of two InputSections, namely everything
@@ -215,125 +223,155 @@ bool ICF<ELFT>::relocationEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
- if (A->RelocSections.size() != B->RelocSections.size())
+ if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
+ A->getSize() != B->getSize() || A->Data != B->Data)
return false;
- for (size_t I = 0, E = A->RelocSections.size(); I != E; ++I) {
- const Elf_Shdr *RA = A->RelocSections[I];
- const Elf_Shdr *RB = B->RelocSections[I];
- ELFFile<ELFT> &FileA = A->File->getObj();
- ELFFile<ELFT> &FileB = B->File->getObj();
- if (RA->sh_type == SHT_RELA) {
- if (!relocationEq(FileA.relas(RA), FileB.relas(RB)))
- return false;
- } else {
- if (!relocationEq(FileA.rels(RA), FileB.rels(RB)))
- return false;
- }
- }
-
- return A->getSectionHdr()->sh_flags == B->getSectionHdr()->sh_flags &&
- A->getSize() == B->getSize() &&
- A->getSectionData() == B->getSectionData();
+ if (A->AreRelocsRela)
+ return constantEq(A->relas(), B->relas());
+ return constantEq(A->rels(), B->rels());
}
+// Compare two lists of relocations. Returns true if all pairs of
+// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
-bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A,
- const InputSection<ELFT> *B, ArrayRef<RelTy> RelsA,
- ArrayRef<RelTy> RelsB) {
- const RelTy *IA = RelsA.begin();
- const RelTy *EA = RelsA.end();
- const RelTy *IB = RelsB.begin();
- for (; IA != EA; ++IA, ++IB) {
- SymbolBody &SA = A->File->getRelocTargetSym(*IA);
- SymbolBody &SB = B->File->getRelocTargetSym(*IB);
+bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
+ const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
+ auto Eq = [&](const RelTy &RA, const RelTy &RB) {
+ // The two sections must be identical.
+ SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
+ SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
if (&SA == &SB)
- continue;
+ return true;
- // Or, the symbols should be pointing to the same section
- // in terms of the group ID.
+ // Or, the two sections must be in the same equivalence class.
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
if (!DA || !DB)
return false;
if (DA->Value != DB->Value)
return false;
- InputSection<ELFT> *X = dyn_cast<InputSection<ELFT>>(DA->Section);
- InputSection<ELFT> *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
- if (X && Y && X->GroupId && X->GroupId == Y->GroupId)
- continue;
- return false;
- }
- return true;
+
+ auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
+ auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
+ if (!X || !Y)
+ return false;
+
+ // Ineligible sections are in the special equivalence class 0.
+ // They can never be the same in terms of the equivalence class.
+ if (X->Class[Current] == 0)
+ return false;
+
+ return X->Class[Current] == Y->Class[Current];
+ };
+
+ return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
- for (size_t I = 0, E = A->RelocSections.size(); I != E; ++I) {
- const Elf_Shdr *RA = A->RelocSections[I];
- const Elf_Shdr *RB = B->RelocSections[I];
- ELFFile<ELFT> &FileA = A->File->getObj();
- ELFFile<ELFT> &FileB = B->File->getObj();
- if (RA->sh_type == SHT_RELA) {
- if (!variableEq(A, B, FileA.relas(RA), FileB.relas(RB)))
- return false;
- } else {
- if (!variableEq(A, B, FileA.rels(RA), FileB.rels(RB)))
- return false;
- }
+ if (A->AreRelocsRela)
+ return variableEq(A, A->relas(), B, B->relas());
+ return variableEq(A, A->rels(), B, B->rels());
+}
+
+template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
+ uint32_t Class = Sections[Begin]->Class[Current];
+ for (size_t I = Begin + 1; I < End; ++I)
+ if (Class != Sections[I]->Class[Current])
+ return I;
+ return End;
+}
+
+// Sections in the same equivalence class are contiguous in Sections
+// vector. Therefore, Sections vector can be considered as contiguous
+// groups of sections, grouped by the class.
+//
+// This function calls Fn on every group that starts within [Begin, End).
+// Note that a group must starts in that range but doesn't necessarily
+// have to end before End.
+template <class ELFT>
+void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
+ std::function<void(size_t, size_t)> Fn) {
+ if (Begin > 0)
+ Begin = findBoundary(Begin - 1, End);
+
+ while (Begin < End) {
+ size_t Mid = findBoundary(Begin, Sections.size());
+ Fn(Begin, Mid);
+ Begin = Mid;
}
- return true;
+}
+
+// Call Fn on each equivalence class.
+template <class ELFT>
+void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
+ // If threading is disabled or the number of sections are
+ // too small to use threading, call Fn sequentially.
+ if (!Config->Threads || Sections.size() < 1024) {
+ forEachClassRange(0, Sections.size(), Fn);
+ ++Cnt;
+ return;
+ }
+
+ Current = Cnt % 2;
+ Next = (Cnt + 1) % 2;
+
+ // Split sections into 256 shards and call Fn in parallel.
+ size_t NumShards = 256;
+ size_t Step = Sections.size() / NumShards;
+ forLoop(0, NumShards,
+ [&](size_t I) { forEachClassRange(I * Step, (I + 1) * Step, Fn); });
+ forEachClassRange(Step * NumShards, Sections.size(), Fn);
+ ++Cnt;
}
// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
- // Initially, we use hash values as section group IDs. Therefore,
- // if two sections have the same ID, they are likely (but not
- // guaranteed) to have the same static contents in terms of ICF.
- std::vector<InputSection<ELFT> *> V = getSections();
- for (InputSection<ELFT> *S : V)
- // Set MSB on to avoid collisions with serial group IDs
- S->GroupId = getHash(S) | (uint64_t(1) << 63);
-
- // From now on, sections in V are ordered so that sections in
- // the same group are consecutive in the vector.
- std::stable_sort(V.begin(), V.end(),
+ // Collect sections to merge.
+ for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
+ if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
+ if (isEligible(S))
+ Sections.push_back(S);
+
+ // Initially, we use hash values to partition sections.
+ for (InputSection<ELFT> *S : Sections)
+ // Set MSB to 1 to avoid collisions with non-hash IDs.
+ S->Class[0] = getHash(S) | (1 << 31);
+
+ // From now on, sections in Sections vector are ordered so that sections
+ // in the same equivalence class are consecutive in the vector.
+ std::stable_sort(Sections.begin(), Sections.end(),
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
- return A->GroupId < B->GroupId;
+ return A->Class[0] < B->Class[0];
});
// Compare static contents and assign unique IDs for each static content.
- forEachGroup(V, equalsConstant);
+ forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
- // Split groups by comparing relocations until we get a convergence.
- int Cnt = 1;
- for (;;) {
- ++Cnt;
- uint64_t Id = NextId;
- forEachGroup(V, equalsVariable);
- if (Id == NextId)
- break;
- }
- log("ICF needed " + Twine(Cnt) + " iterations.");
-
- // Merge sections in the same group.
- for (auto I = V.begin(), E = V.end(); I != E;) {
- InputSection<ELFT> *Head = *I++;
- auto Bound = std::find_if(I, E, [&](InputSection<ELFT> *S) {
- return Head->GroupId != S->GroupId;
- });
- if (I == Bound)
- continue;
- log("selected " + Head->getSectionName());
- while (I != Bound) {
- InputSection<ELFT> *S = *I++;
- log(" removed " + S->getSectionName());
- Head->replace(S);
+ // Split groups by comparing relocations until convergence is obtained.
+ do {
+ Repeat = false;
+ forEachClass(
+ [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
+ } while (Repeat);
+
+ log("ICF needed " + Twine(Cnt) + " iterations");
+
+ // Merge sections by the equivalence class.
+ forEachClass([&](size_t Begin, size_t End) {
+ if (End - Begin == 1)
+ return;
+
+ log("selected " + Sections[Begin]->Name);
+ for (size_t I = Begin + 1; I < End; ++I) {
+ log(" removed " + Sections[I]->Name);
+ Sections[Begin]->replace(Sections[I]);
}
- }
+ });
}
// ICF entry point function.