summaryrefslogtreecommitdiff
path: root/ELF/Relocations.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/Relocations.cpp')
-rw-r--r--ELF/Relocations.cpp704
1 files changed, 704 insertions, 0 deletions
diff --git a/ELF/Relocations.cpp b/ELF/Relocations.cpp
new file mode 100644
index 000000000000..c09cf6b2b1ef
--- /dev/null
+++ b/ELF/Relocations.cpp
@@ -0,0 +1,704 @@
+//===- Relocations.cpp ----------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains platform-independent functions to process relocations.
+// I'll describe the overview of this file here.
+//
+// Simple relocations are easy to handle for the linker. For example,
+// for R_X86_64_PC64 relocs, the linker just has to fix up locations
+// with the relative offsets to the target symbols. It would just be
+// reading records from relocation sections and applying them to output.
+//
+// But not all relocations are that easy to handle. For example, for
+// R_386_GOTOFF relocs, the linker has to create new GOT entries for
+// symbols if they don't exist, and fix up locations with GOT entry
+// offsets from the beginning of GOT section. So there is more than
+// fixing addresses in relocation processing.
+//
+// ELF defines a large number of complex relocations.
+//
+// The functions in this file analyze relocations and do whatever needs
+// to be done. It includes, but not limited to, the following.
+//
+// - create GOT/PLT entries
+// - create new relocations in .dynsym to let the dynamic linker resolve
+// them at runtime (since ELF supports dynamic linking, not all
+// relocations can be resolved at link-time)
+// - create COPY relocs and reserve space in .bss
+// - replace expensive relocs (in terms of runtime cost) with cheap ones
+// - error out infeasible combinations such as PIC and non-relative relocs
+//
+// Note that the functions in this file don't actually apply relocations
+// because it doesn't know about the output file nor the output file buffer.
+// It instead stores Relocation objects to InputSection's Relocations
+// vector to let it apply later in InputSection::writeTo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Relocations.h"
+#include "Config.h"
+#include "OutputSections.h"
+#include "SymbolTable.h"
+#include "Target.h"
+#include "Thunks.h"
+
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+namespace lld {
+namespace elf {
+
+static bool refersToGotEntry(RelExpr Expr) {
+ return Expr == R_GOT || Expr == R_GOT_OFF || Expr == R_MIPS_GOT_LOCAL_PAGE ||
+ Expr == R_MIPS_GOT_OFF || Expr == R_MIPS_TLSGD ||
+ Expr == R_MIPS_TLSLD || Expr == R_GOT_PAGE_PC || Expr == R_GOT_PC ||
+ Expr == R_GOT_FROM_END || Expr == R_TLSGD || Expr == R_TLSGD_PC ||
+ Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE;
+}
+
+static bool isPreemptible(const SymbolBody &Body, uint32_t Type) {
+ // In case of MIPS GP-relative relocations always resolve to a definition
+ // in a regular input file, ignoring the one-definition rule. So we,
+ // for example, should not attempt to create a dynamic relocation even
+ // if the target symbol is preemptible. There are two two MIPS GP-relative
+ // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
+ // can be against a preemptible symbol.
+ // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all
+ // relocation types occupy eight bit. In case of N64 ABI we extract first
+ // relocation from 3-in-1 packet because only the first relocation can
+ // be against a real symbol.
+ if (Config->EMachine == EM_MIPS && (Type & 0xff) == R_MIPS_GPREL16)
+ return false;
+ return Body.isPreemptible();
+}
+
+// This function is similar to the `handleTlsRelocation`. MIPS does not support
+// any relaxations for TLS relocations so by factoring out MIPS handling into
+// the separate function we can simplify the code and does not pollute
+// `handleTlsRelocation` by MIPS `ifs` statements.
+template <class ELFT>
+static unsigned
+handleMipsTlsRelocation(uint32_t Type, SymbolBody &Body,
+ InputSectionBase<ELFT> &C, typename ELFT::uint Offset,
+ typename ELFT::uint Addend, RelExpr Expr) {
+ if (Expr == R_MIPS_TLSLD) {
+ if (Out<ELFT>::Got->addTlsIndex())
+ Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
+ Out<ELFT>::Got->getTlsIndexOff(), false,
+ nullptr, 0});
+ C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+ if (Target->isTlsGlobalDynamicRel(Type)) {
+ if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
+ typedef typename ELFT::uint uintX_t;
+ uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
+ Out<ELFT>::RelaDyn->addReloc(
+ {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
+ Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
+ Off + (uintX_t)sizeof(uintX_t), false,
+ &Body, 0});
+ }
+ C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+ return 0;
+}
+
+// Returns the number of relocations processed.
+template <class ELFT>
+static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body,
+ InputSectionBase<ELFT> &C,
+ typename ELFT::uint Offset,
+ typename ELFT::uint Addend, RelExpr Expr) {
+ if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
+ return 0;
+
+ if (!Body.isTls())
+ return 0;
+
+ typedef typename ELFT::uint uintX_t;
+
+ if (Config->EMachine == EM_MIPS)
+ return handleMipsTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr);
+
+ if ((Expr == R_TLSDESC || Expr == R_TLSDESC_PAGE || Expr == R_HINT) &&
+ Config->Shared) {
+ if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
+ uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
+ Out<ELFT>::RelaDyn->addReloc(
+ {Target->TlsDescRel, Out<ELFT>::Got, Off, false, &Body, 0});
+ }
+ if (Expr != R_HINT)
+ C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+
+ if (Expr == R_TLSLD_PC || Expr == R_TLSLD) {
+ // Local-Dynamic relocs can be relaxed to Local-Exec.
+ if (!Config->Shared) {
+ C.Relocations.push_back(
+ {R_RELAX_TLS_LD_TO_LE, Type, &C, Offset, Addend, &Body});
+ return 2;
+ }
+ if (Out<ELFT>::Got->addTlsIndex())
+ Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
+ Out<ELFT>::Got->getTlsIndexOff(), false,
+ nullptr, 0});
+ C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+
+ // Local-Dynamic relocs can be relaxed to Local-Exec.
+ if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) {
+ C.Relocations.push_back(
+ {R_RELAX_TLS_LD_TO_LE, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+
+ if (Expr == R_TLSDESC_PAGE || Expr == R_TLSDESC || Expr == R_HINT ||
+ Target->isTlsGlobalDynamicRel(Type)) {
+ if (Config->Shared) {
+ if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
+ uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
+ Out<ELFT>::RelaDyn->addReloc(
+ {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
+
+ // If the symbol is preemptible we need the dynamic linker to write
+ // the offset too.
+ if (isPreemptible(Body, Type))
+ Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
+ Off + (uintX_t)sizeof(uintX_t), false,
+ &Body, 0});
+ }
+ C.Relocations.push_back({Expr, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+
+ // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
+ // depending on the symbol being locally defined or not.
+ if (isPreemptible(Body, Type)) {
+ C.Relocations.push_back(
+ {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type,
+ &C, Offset, Addend, &Body});
+ if (!Body.isInGot()) {
+ Out<ELFT>::Got->addEntry(Body);
+ Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got,
+ Body.getGotOffset<ELFT>(), false, &Body,
+ 0});
+ }
+ return Target->TlsGdRelaxSkip;
+ }
+ C.Relocations.push_back(
+ {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, &C,
+ Offset, Addend, &Body});
+ return Target->TlsGdRelaxSkip;
+ }
+
+ // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
+ // defined.
+ if (Target->isTlsInitialExecRel(Type) && !Config->Shared &&
+ !isPreemptible(Body, Type)) {
+ C.Relocations.push_back(
+ {R_RELAX_TLS_IE_TO_LE, Type, &C, Offset, Addend, &Body});
+ return 1;
+ }
+ return 0;
+}
+
+template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) {
+ return read32<E>(Loc) & 0xffff;
+}
+
+template <class RelTy>
+static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
+ switch (Rel->getType(Config->Mips64EL)) {
+ case R_MIPS_HI16:
+ return R_MIPS_LO16;
+ case R_MIPS_GOT16:
+ return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
+ case R_MIPS_PCHI16:
+ return R_MIPS_PCLO16;
+ case R_MICROMIPS_HI16:
+ return R_MICROMIPS_LO16;
+ default:
+ return R_MIPS_NONE;
+ }
+}
+
+template <class ELFT, class RelTy>
+static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc,
+ SymbolBody &Sym, const RelTy *Rel,
+ const RelTy *End) {
+ uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
+ uint32_t Type = getMipsPairType(Rel, Sym);
+
+ // Some MIPS relocations use addend calculated from addend of the relocation
+ // itself and addend of paired relocation. ABI requires to compute such
+ // combined addend in case of REL relocation record format only.
+ // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (RelTy::IsRela || Type == R_MIPS_NONE)
+ return 0;
+
+ for (const RelTy *RI = Rel; RI != End; ++RI) {
+ if (RI->getType(Config->Mips64EL) != Type)
+ continue;
+ if (RI->getSymbol(Config->Mips64EL) != SymIndex)
+ continue;
+ const endianness E = ELFT::TargetEndianness;
+ return ((read32<E>(BufLoc) & 0xffff) << 16) +
+ readSignedLo16<E>(Buf + RI->r_offset);
+ }
+ warning("can't find matching " + getRelName(Type) + " relocation for " +
+ getRelName(Rel->getType(Config->Mips64EL)));
+ return 0;
+}
+
+// True if non-preemptable symbol always has the same value regardless of where
+// the DSO is loaded.
+template <class ELFT> static bool isAbsolute(const SymbolBody &Body) {
+ if (Body.isUndefined())
+ return !Body.isLocal() && Body.symbol()->isWeak();
+ if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body))
+ return DR->Section == nullptr; // Absolute symbol.
+ return false;
+}
+
+static bool needsPlt(RelExpr Expr) {
+ return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT ||
+ Expr == R_PLT_PAGE_PC || Expr == R_THUNK_PLT_PC;
+}
+
+// True if this expression is of the form Sym - X, where X is a position in the
+// file (PC, or GOT for example).
+static bool isRelExpr(RelExpr Expr) {
+ return Expr == R_PC || Expr == R_GOTREL || Expr == R_PAGE_PC ||
+ Expr == R_RELAX_GOT_PC || Expr == R_THUNK_PC || Expr == R_THUNK_PLT_PC;
+}
+
+template <class ELFT>
+static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
+ const SymbolBody &Body) {
+ // These expressions always compute a constant
+ if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF ||
+ E == R_MIPS_GOT_LOCAL_PAGE || E == R_MIPS_GOT_OFF || E == R_MIPS_TLSGD ||
+ E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC ||
+ E == R_TLSGD || E == R_PPC_PLT_OPD || E == R_TLSDESC_PAGE ||
+ E == R_HINT || E == R_THUNK_PC || E == R_THUNK_PLT_PC)
+ return true;
+
+ // These never do, except if the entire file is position dependent or if
+ // only the low bits are used.
+ if (E == R_GOT || E == R_PLT || E == R_TLSDESC)
+ return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
+
+ if (isPreemptible(Body, Type))
+ return false;
+
+ if (!Config->Pic)
+ return true;
+
+ bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls();
+ bool RelE = isRelExpr(E);
+ if (AbsVal && !RelE)
+ return true;
+ if (!AbsVal && RelE)
+ return true;
+
+ // Relative relocation to an absolute value. This is normally unrepresentable,
+ // but if the relocation refers to a weak undefined symbol, we allow it to
+ // resolve to the image base. This is a little strange, but it allows us to
+ // link function calls to such symbols. Normally such a call will be guarded
+ // with a comparison, which will load a zero from the GOT.
+ if (AbsVal && RelE) {
+ if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
+ return true;
+ error("relocation " + getRelName(Type) +
+ " cannot refer to absolute symbol " + Body.getName());
+ return true;
+ }
+
+ return Target->usesOnlyLowPageBits(Type);
+}
+
+static RelExpr toPlt(RelExpr Expr) {
+ if (Expr == R_PPC_OPD)
+ return R_PPC_PLT_OPD;
+ if (Expr == R_PC)
+ return R_PLT_PC;
+ if (Expr == R_PAGE_PC)
+ return R_PLT_PAGE_PC;
+ if (Expr == R_ABS)
+ return R_PLT;
+ return Expr;
+}
+
+static RelExpr fromPlt(RelExpr Expr) {
+ // We decided not to use a plt. Optimize a reference to the plt to a
+ // reference to the symbol itself.
+ if (Expr == R_PLT_PC)
+ return R_PC;
+ if (Expr == R_PPC_PLT_OPD)
+ return R_PPC_OPD;
+ if (Expr == R_PLT)
+ return R_ABS;
+ return Expr;
+}
+
+template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) {
+ typedef typename ELFT::uint uintX_t;
+
+ uintX_t SecAlign = SS->file()->getSection(SS->Sym)->sh_addralign;
+ uintX_t SymValue = SS->Sym.st_value;
+ int TrailingZeros =
+ std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue));
+ return 1 << TrailingZeros;
+}
+
+// Reserve space in .bss for copy relocation.
+template <class ELFT> static void addCopyRelSymbol(SharedSymbol<ELFT> *SS) {
+ typedef typename ELFT::uint uintX_t;
+ typedef typename ELFT::Sym Elf_Sym;
+
+ // Copy relocation against zero-sized symbol doesn't make sense.
+ uintX_t SymSize = SS->template getSize<ELFT>();
+ if (SymSize == 0)
+ fatal("cannot create a copy relocation for " + SS->getName());
+
+ uintX_t Alignment = getAlignment(SS);
+ uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Alignment);
+ Out<ELFT>::Bss->setSize(Off + SymSize);
+ Out<ELFT>::Bss->updateAlignment(Alignment);
+ uintX_t Shndx = SS->Sym.st_shndx;
+ uintX_t Value = SS->Sym.st_value;
+ // Look through the DSO's dynamic symbol table for aliases and create a
+ // dynamic symbol for each one. This causes the copy relocation to correctly
+ // interpose any aliases.
+ for (const Elf_Sym &S : SS->file()->getElfSymbols(true)) {
+ if (S.st_shndx != Shndx || S.st_value != Value)
+ continue;
+ auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>(
+ Symtab<ELFT>::X->find(check(S.getName(SS->file()->getStringTable()))));
+ if (!Alias)
+ continue;
+ Alias->OffsetInBss = Off;
+ Alias->NeedsCopyOrPltAddr = true;
+ Alias->symbol()->IsUsedInRegularObj = true;
+ }
+ Out<ELFT>::RelaDyn->addReloc(
+ {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0});
+}
+
+template <class ELFT>
+static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body,
+ bool IsWrite, RelExpr Expr, uint32_t Type,
+ const uint8_t *Data) {
+ bool Preemptible = isPreemptible(Body, Type);
+ if (Body.isGnuIFunc()) {
+ Expr = toPlt(Expr);
+ } else if (!Preemptible) {
+ if (needsPlt(Expr))
+ Expr = fromPlt(Expr);
+ if (Expr == R_GOT_PC)
+ Expr = Target->adjustRelaxExpr(Type, Data, Expr);
+ }
+ Expr = Target->getThunkExpr(Expr, Type, File, Body);
+
+ if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body))
+ return Expr;
+
+ // This relocation would require the dynamic linker to write a value to read
+ // only memory. We can hack around it if we are producing an executable and
+ // the refered symbol can be preemepted to refer to the executable.
+ if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
+ error("can't create dynamic relocation " + getRelName(Type) +
+ " against readonly segment");
+ return Expr;
+ }
+ if (Body.getVisibility() != STV_DEFAULT) {
+ error("cannot preempt symbol");
+ return Expr;
+ }
+ if (Body.isObject()) {
+ // Produce a copy relocation.
+ auto *B = cast<SharedSymbol<ELFT>>(&Body);
+ if (!B->needsCopy())
+ addCopyRelSymbol(B);
+ return Expr;
+ }
+ if (Body.isFunc()) {
+ // This handles a non PIC program call to function in a shared library. In
+ // an ideal world, we could just report an error saying the relocation can
+ // overflow at runtime. In the real world with glibc, crt1.o has a
+ // R_X86_64_PC32 pointing to libc.so.
+ //
+ // The general idea on how to handle such cases is to create a PLT entry and
+ // use that as the function value.
+ //
+ // For the static linking part, we just return a plt expr and everything
+ // else will use the the PLT entry as the address.
+ //
+ // The remaining problem is making sure pointer equality still works. We
+ // need the help of the dynamic linker for that. We let it know that we have
+ // a direct reference to a so symbol by creating an undefined symbol with a
+ // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
+ // the value of the symbol we created. This is true even for got entries, so
+ // pointer equality is maintained. To avoid an infinite loop, the only entry
+ // that points to the real function is a dedicated got entry used by the
+ // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
+ // R_386_JMP_SLOT, etc).
+ Body.NeedsCopyOrPltAddr = true;
+ return toPlt(Expr);
+ }
+ error("symbol is missing type");
+
+ return Expr;
+}
+
+template <class ELFT, class RelTy>
+static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File,
+ const uint8_t *SectionData,
+ const RelTy *End, const RelTy &RI,
+ RelExpr Expr, SymbolBody &Body) {
+ typedef typename ELFT::uint uintX_t;
+
+ uint32_t Type = RI.getType(Config->Mips64EL);
+ uintX_t Addend = getAddend<ELFT>(RI);
+ const uint8_t *BufLoc = SectionData + RI.r_offset;
+ if (!RelTy::IsRela)
+ Addend += Target->getImplicitAddend(BufLoc, Type);
+ if (Config->EMachine == EM_MIPS) {
+ Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End);
+ if (Type == R_MIPS_LO16 && Expr == R_PC)
+ // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp
+ // symbol. In that case we should use the following formula for
+ // calculation "AHL + GP - P + 4". Let's add 4 right here.
+ // For details see p. 4-19 at
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ Addend += 4;
+ if (Expr == R_GOTREL) {
+ Addend -= MipsGPOffset;
+ if (Body.isLocal())
+ Addend += File.getMipsGp0();
+ }
+ }
+ if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC)
+ Addend += getPPC64TocBase();
+ return Addend;
+}
+
+// The reason we have to do this early scan is as follows
+// * To mmap the output file, we need to know the size
+// * For that, we need to know how many dynamic relocs we will have.
+// It might be possible to avoid this by outputting the file with write:
+// * Write the allocated output sections, computing addresses.
+// * Apply relocations, recording which ones require a dynamic reloc.
+// * Write the dynamic relocations.
+// * Write the rest of the file.
+// This would have some drawbacks. For example, we would only know if .rela.dyn
+// is needed after applying relocations. If it is, it will go after rw and rx
+// sections. Given that it is ro, we will need an extra PT_LOAD. This
+// complicates things for the dynamic linker and means we would have to reserve
+// space for the extra PT_LOAD even if we end up not using it.
+template <class ELFT, class RelTy>
+static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
+ typedef typename ELFT::uint uintX_t;
+
+ bool IsWrite = C.getSectionHdr()->sh_flags & SHF_WRITE;
+
+ auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) {
+ Out<ELFT>::RelaDyn->addReloc(Reloc);
+ };
+
+ const elf::ObjectFile<ELFT> &File = *C.getFile();
+ ArrayRef<uint8_t> SectionData = C.getSectionData();
+ const uint8_t *Buf = SectionData.begin();
+ for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
+ const RelTy &RI = *I;
+ SymbolBody &Body = File.getRelocTargetSym(RI);
+ uint32_t Type = RI.getType(Config->Mips64EL);
+
+ RelExpr Expr = Target->getRelExpr(Type, Body);
+ bool Preemptible = isPreemptible(Body, Type);
+ Expr = adjustExpr(File, Body, IsWrite, Expr, Type, Buf + RI.r_offset);
+ if (HasError)
+ continue;
+
+ // Skip a relocation that points to a dead piece
+ // in a mergeable section.
+ if (C.getOffset(RI.r_offset) == (uintX_t)-1)
+ continue;
+
+ // This relocation does not require got entry, but it is relative to got and
+ // needs it to be created. Here we request for that.
+ if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC)
+ Out<ELFT>::Got->HasGotOffRel = true;
+
+ uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body);
+
+ if (unsigned Processed = handleTlsRelocation<ELFT>(
+ Type, Body, C, RI.r_offset, Addend, Expr)) {
+ I += (Processed - 1);
+ continue;
+ }
+
+ // Ignore "hint" relocation because it is for optional code optimization.
+ if (Expr == R_HINT)
+ continue;
+
+ if (needsPlt(Expr) || Expr == R_THUNK_ABS || Expr == R_THUNK_PC ||
+ Expr == R_THUNK_PLT_PC || refersToGotEntry(Expr) ||
+ !isPreemptible(Body, Type)) {
+ // If the relocation points to something in the file, we can process it.
+ bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body);
+
+ // If the output being produced is position independent, the final value
+ // is still not known. In that case we still need some help from the
+ // dynamic linker. We can however do better than just copying the incoming
+ // relocation. We can process some of it and and just ask the dynamic
+ // linker to add the load address.
+ if (!Constant)
+ AddDyn({Target->RelativeRel, &C, RI.r_offset, true, &Body, Addend});
+
+ // If the produced value is a constant, we just remember to write it
+ // when outputting this section. We also have to do it if the format
+ // uses Elf_Rel, since in that case the written value is the addend.
+ if (Constant || !RelTy::IsRela)
+ C.Relocations.push_back({Expr, Type, &C, RI.r_offset, Addend, &Body});
+ } else {
+ // We don't know anything about the finaly symbol. Just ask the dynamic
+ // linker to handle the relocation for us.
+ AddDyn({Target->getDynRel(Type), &C, RI.r_offset, false, &Body, Addend});
+ // MIPS ABI turns using of GOT and dynamic relocations inside out.
+ // While regular ABI uses dynamic relocations to fill up GOT entries
+ // MIPS ABI requires dynamic linker to fills up GOT entries using
+ // specially sorted dynamic symbol table. This affects even dynamic
+ // relocations against symbols which do not require GOT entries
+ // creation explicitly, i.e. do not have any GOT-relocations. So if
+ // a preemptible symbol has a dynamic relocation we anyway have
+ // to create a GOT entry for it.
+ // If a non-preemptible symbol has a dynamic relocation against it,
+ // dynamic linker takes it st_value, adds offset and writes down
+ // result of the dynamic relocation. In case of preemptible symbol
+ // dynamic linker performs symbol resolution, writes the symbol value
+ // to the GOT entry and reads the GOT entry when it needs to perform
+ // a dynamic relocation.
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
+ if (Config->EMachine == EM_MIPS)
+ Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr);
+ continue;
+ }
+
+ // Some targets might require creation of thunks for relocations.
+ // Now we support only MIPS which requires LA25 thunk to call PIC
+ // code from non-PIC one, and ARM which requires interworking.
+ if (Expr == R_THUNK_ABS || Expr == R_THUNK_PC || Expr == R_THUNK_PLT_PC) {
+ auto *Sec = cast<InputSection<ELFT>>(&C);
+ addThunk<ELFT>(Type, Body, *Sec);
+ }
+
+ // At this point we are done with the relocated position. Some relocations
+ // also require us to create a got or plt entry.
+
+ // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol.
+ if (needsPlt(Expr)) {
+ if (Body.isInPlt())
+ continue;
+ Out<ELFT>::Plt->addEntry(Body);
+
+ uint32_t Rel;
+ if (Body.isGnuIFunc() && !Preemptible)
+ Rel = Target->IRelativeRel;
+ else
+ Rel = Target->PltRel;
+
+ Out<ELFT>::GotPlt->addEntry(Body);
+ Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt,
+ Body.getGotPltOffset<ELFT>(), !Preemptible,
+ &Body, 0});
+ continue;
+ }
+
+ if (refersToGotEntry(Expr)) {
+ if (Config->EMachine == EM_MIPS) {
+ // MIPS ABI has special rules to process GOT entries
+ // and doesn't require relocation entries for them.
+ // See "Global Offset Table" in Chapter 5 in the following document
+ // for detailed description:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ Out<ELFT>::Got->addMipsEntry(Body, Addend, Expr);
+ if (Body.isTls())
+ AddDyn({Target->TlsGotRel, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
+ !Preemptible, &Body, 0});
+ continue;
+ }
+
+ if (Body.isInGot())
+ continue;
+
+ Out<ELFT>::Got->addEntry(Body);
+ if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) {
+ uint32_t DynType;
+ if (Body.isTls())
+ DynType = Target->TlsGotRel;
+ else if (Preemptible)
+ DynType = Target->GotRel;
+ else
+ DynType = Target->RelativeRel;
+ AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
+ !Preemptible, &Body, 0});
+ }
+ continue;
+ }
+ }
+}
+
+template <class ELFT> void scanRelocations(InputSection<ELFT> &C) {
+ typedef typename ELFT::Shdr Elf_Shdr;
+
+ // Scan all relocations. Each relocation goes through a series
+ // of tests to determine if it needs special treatment, such as
+ // creating GOT, PLT, copy relocations, etc.
+ // Note that relocations for non-alloc sections are directly
+ // processed by InputSection::relocateNonAlloc.
+ if (C.getSectionHdr()->sh_flags & SHF_ALLOC)
+ for (const Elf_Shdr *RelSec : C.RelocSections)
+ scanRelocations(C, *RelSec);
+}
+
+template <class ELFT>
+void scanRelocations(InputSectionBase<ELFT> &S,
+ const typename ELFT::Shdr &RelSec) {
+ ELFFile<ELFT> &EObj = S.getFile()->getObj();
+ if (RelSec.sh_type == SHT_RELA)
+ scanRelocs(S, EObj.relas(&RelSec));
+ else
+ scanRelocs(S, EObj.rels(&RelSec));
+}
+
+template void scanRelocations<ELF32LE>(InputSection<ELF32LE> &);
+template void scanRelocations<ELF32BE>(InputSection<ELF32BE> &);
+template void scanRelocations<ELF64LE>(InputSection<ELF64LE> &);
+template void scanRelocations<ELF64BE>(InputSection<ELF64BE> &);
+
+template void scanRelocations<ELF32LE>(InputSectionBase<ELF32LE> &,
+ const ELF32LE::Shdr &);
+template void scanRelocations<ELF32BE>(InputSectionBase<ELF32BE> &,
+ const ELF32BE::Shdr &);
+template void scanRelocations<ELF64LE>(InputSectionBase<ELF64LE> &,
+ const ELF64LE::Shdr &);
+template void scanRelocations<ELF64BE>(InputSectionBase<ELF64BE> &,
+ const ELF64BE::Shdr &);
+}
+}