summaryrefslogtreecommitdiff
path: root/ELF/SyntheticSections.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'ELF/SyntheticSections.cpp')
-rw-r--r--ELF/SyntheticSections.cpp1990
1 files changed, 1990 insertions, 0 deletions
diff --git a/ELF/SyntheticSections.cpp b/ELF/SyntheticSections.cpp
new file mode 100644
index 000000000000..3c8a439ba308
--- /dev/null
+++ b/ELF/SyntheticSections.cpp
@@ -0,0 +1,1990 @@
+//===- SyntheticSections.cpp ----------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains linker-synthesized sections. Currently,
+// synthetic sections are created either output sections or input sections,
+// but we are rewriting code so that all synthetic sections are created as
+// input sections.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SyntheticSections.h"
+#include "Config.h"
+#include "Error.h"
+#include "InputFiles.h"
+#include "LinkerScript.h"
+#include "Memory.h"
+#include "OutputSections.h"
+#include "Strings.h"
+#include "SymbolTable.h"
+#include "Target.h"
+#include "Threads.h"
+#include "Writer.h"
+#include "lld/Config/Version.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/RandomNumberGenerator.h"
+#include "llvm/Support/SHA1.h"
+#include "llvm/Support/xxhash.h"
+#include <cstdlib>
+
+using namespace llvm;
+using namespace llvm::dwarf;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() {
+ std::vector<DefinedCommon *> V;
+ for (Symbol *S : Symtab<ELFT>::X->getSymbols())
+ if (auto *B = dyn_cast<DefinedCommon>(S->body()))
+ V.push_back(B);
+ return V;
+}
+
+// Find all common symbols and allocate space for them.
+template <class ELFT> InputSection<ELFT> *elf::createCommonSection() {
+ auto *Ret = make<InputSection<ELFT>>(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1,
+ ArrayRef<uint8_t>(), "COMMON");
+ Ret->Live = true;
+
+ // Sort the common symbols by alignment as an heuristic to pack them better.
+ std::vector<DefinedCommon *> Syms = getCommonSymbols<ELFT>();
+ std::stable_sort(Syms.begin(), Syms.end(),
+ [](const DefinedCommon *A, const DefinedCommon *B) {
+ return A->Alignment > B->Alignment;
+ });
+
+ // Assign offsets to symbols.
+ size_t Size = 0;
+ size_t Alignment = 1;
+ for (DefinedCommon *Sym : Syms) {
+ Alignment = std::max<size_t>(Alignment, Sym->Alignment);
+ Size = alignTo(Size, Sym->Alignment);
+
+ // Compute symbol offset relative to beginning of input section.
+ Sym->Offset = Size;
+ Size += Sym->Size;
+ }
+ Ret->Alignment = Alignment;
+ Ret->Data = makeArrayRef<uint8_t>(nullptr, Size);
+ return Ret;
+}
+
+// Returns an LLD version string.
+static ArrayRef<uint8_t> getVersion() {
+ // Check LLD_VERSION first for ease of testing.
+ // You can get consitent output by using the environment variable.
+ // This is only for testing.
+ StringRef S = getenv("LLD_VERSION");
+ if (S.empty())
+ S = Saver.save(Twine("Linker: ") + getLLDVersion());
+
+ // +1 to include the terminating '\0'.
+ return {(const uint8_t *)S.data(), S.size() + 1};
+}
+
+// Creates a .comment section containing LLD version info.
+// With this feature, you can identify LLD-generated binaries easily
+// by "objdump -s -j .comment <file>".
+// The returned object is a mergeable string section.
+template <class ELFT> MergeInputSection<ELFT> *elf::createCommentSection() {
+ typename ELFT::Shdr Hdr = {};
+ Hdr.sh_flags = SHF_MERGE | SHF_STRINGS;
+ Hdr.sh_type = SHT_PROGBITS;
+ Hdr.sh_entsize = 1;
+ Hdr.sh_addralign = 1;
+
+ auto *Ret = make<MergeInputSection<ELFT>>(/*file=*/nullptr, &Hdr, ".comment");
+ Ret->Data = getVersion();
+ Ret->splitIntoPieces();
+ return Ret;
+}
+
+// .MIPS.abiflags section.
+template <class ELFT>
+MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags)
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
+ Flags(Flags) {}
+
+template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *Buf) {
+ memcpy(Buf, &Flags, sizeof(Flags));
+}
+
+template <class ELFT>
+MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
+ Elf_Mips_ABIFlags Flags = {};
+ bool Create = false;
+
+ for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections) {
+ if (!Sec->Live || Sec->Type != SHT_MIPS_ABIFLAGS)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ std::string Filename = toString(Sec->getFile());
+ const size_t Size = Sec->Data.size();
+ // Older version of BFD (such as the default FreeBSD linker) concatenate
+ // .MIPS.abiflags instead of merging. To allow for this case (or potential
+ // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
+ if (Size < sizeof(Elf_Mips_ABIFlags)) {
+ error(Filename + ": invalid size of .MIPS.abiflags section: got " +
+ Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
+ return nullptr;
+ }
+ auto *S = reinterpret_cast<const Elf_Mips_ABIFlags *>(Sec->Data.data());
+ if (S->version != 0) {
+ error(Filename + ": unexpected .MIPS.abiflags version " +
+ Twine(S->version));
+ return nullptr;
+ }
+
+ // LLD checks ISA compatibility in getMipsEFlags(). Here we just
+ // select the highest number of ISA/Rev/Ext.
+ Flags.isa_level = std::max(Flags.isa_level, S->isa_level);
+ Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev);
+ Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext);
+ Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size);
+ Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size);
+ Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size);
+ Flags.ases |= S->ases;
+ Flags.flags1 |= S->flags1;
+ Flags.flags2 |= S->flags2;
+ Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename);
+ };
+
+ if (Create)
+ return make<MipsAbiFlagsSection<ELFT>>(Flags);
+ return nullptr;
+}
+
+// .MIPS.options section.
+template <class ELFT>
+MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo Reginfo)
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
+ Reginfo(Reginfo) {}
+
+template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *Options = reinterpret_cast<Elf_Mips_Options *>(Buf);
+ Options->kind = ODK_REGINFO;
+ Options->size = getSize();
+
+ if (!Config->Relocatable)
+ Reginfo.ri_gp_value = In<ELFT>::MipsGot->getGp();
+ memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo));
+}
+
+template <class ELFT>
+MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
+ // N64 ABI only.
+ if (!ELFT::Is64Bits)
+ return nullptr;
+
+ Elf_Mips_RegInfo Reginfo = {};
+ bool Create = false;
+
+ for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections) {
+ if (!Sec->Live || Sec->Type != SHT_MIPS_OPTIONS)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ std::string Filename = toString(Sec->getFile());
+ ArrayRef<uint8_t> D = Sec->Data;
+
+ while (!D.empty()) {
+ if (D.size() < sizeof(Elf_Mips_Options)) {
+ error(Filename + ": invalid size of .MIPS.options section");
+ break;
+ }
+
+ auto *Opt = reinterpret_cast<const Elf_Mips_Options *>(D.data());
+ if (Opt->kind == ODK_REGINFO) {
+ if (Config->Relocatable && Opt->getRegInfo().ri_gp_value)
+ error(Filename + ": unsupported non-zero ri_gp_value");
+ Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask;
+ Sec->getFile()->MipsGp0 = Opt->getRegInfo().ri_gp_value;
+ break;
+ }
+
+ if (!Opt->size)
+ fatal(Filename + ": zero option descriptor size");
+ D = D.slice(Opt->size);
+ }
+ };
+
+ if (Create)
+ return make<MipsOptionsSection<ELFT>>(Reginfo);
+ return nullptr;
+}
+
+// MIPS .reginfo section.
+template <class ELFT>
+MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo Reginfo)
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
+ Reginfo(Reginfo) {}
+
+template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *Buf) {
+ if (!Config->Relocatable)
+ Reginfo.ri_gp_value = In<ELFT>::MipsGot->getGp();
+ memcpy(Buf, &Reginfo, sizeof(Reginfo));
+}
+
+template <class ELFT>
+MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
+ // Section should be alive for O32 and N32 ABIs only.
+ if (ELFT::Is64Bits)
+ return nullptr;
+
+ Elf_Mips_RegInfo Reginfo = {};
+ bool Create = false;
+
+ for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections) {
+ if (!Sec->Live || Sec->Type != SHT_MIPS_REGINFO)
+ continue;
+ Sec->Live = false;
+ Create = true;
+
+ if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) {
+ error(toString(Sec->getFile()) + ": invalid size of .reginfo section");
+ return nullptr;
+ }
+ auto *R = reinterpret_cast<const Elf_Mips_RegInfo *>(Sec->Data.data());
+ if (Config->Relocatable && R->ri_gp_value)
+ error(toString(Sec->getFile()) + ": unsupported non-zero ri_gp_value");
+
+ Reginfo.ri_gprmask |= R->ri_gprmask;
+ Sec->getFile()->MipsGp0 = R->ri_gp_value;
+ };
+
+ if (Create)
+ return make<MipsReginfoSection<ELFT>>(Reginfo);
+ return nullptr;
+}
+
+template <class ELFT> InputSection<ELFT> *elf::createInterpSection() {
+ auto *Ret = make<InputSection<ELFT>>(SHF_ALLOC, SHT_PROGBITS, 1,
+ ArrayRef<uint8_t>(), ".interp");
+ Ret->Live = true;
+
+ // StringSaver guarantees that the returned string ends with '\0'.
+ StringRef S = Saver.save(Config->DynamicLinker);
+ Ret->Data = {(const uint8_t *)S.data(), S.size() + 1};
+ return Ret;
+}
+
+static size_t getHashSize() {
+ switch (Config->BuildId) {
+ case BuildIdKind::Fast:
+ return 8;
+ case BuildIdKind::Md5:
+ case BuildIdKind::Uuid:
+ return 16;
+ case BuildIdKind::Sha1:
+ return 20;
+ case BuildIdKind::Hexstring:
+ return Config->BuildIdVector.size();
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+}
+
+template <class ELFT>
+BuildIdSection<ELFT>::BuildIdSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"),
+ HashSize(getHashSize()) {}
+
+template <class ELFT> void BuildIdSection<ELFT>::writeTo(uint8_t *Buf) {
+ const endianness E = ELFT::TargetEndianness;
+ write32<E>(Buf, 4); // Name size
+ write32<E>(Buf + 4, HashSize); // Content size
+ write32<E>(Buf + 8, NT_GNU_BUILD_ID); // Type
+ memcpy(Buf + 12, "GNU", 4); // Name string
+ HashBuf = Buf + 16;
+}
+
+// Split one uint8 array into small pieces of uint8 arrays.
+static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> Arr,
+ size_t ChunkSize) {
+ std::vector<ArrayRef<uint8_t>> Ret;
+ while (Arr.size() > ChunkSize) {
+ Ret.push_back(Arr.take_front(ChunkSize));
+ Arr = Arr.drop_front(ChunkSize);
+ }
+ if (!Arr.empty())
+ Ret.push_back(Arr);
+ return Ret;
+}
+
+// Computes a hash value of Data using a given hash function.
+// In order to utilize multiple cores, we first split data into 1MB
+// chunks, compute a hash for each chunk, and then compute a hash value
+// of the hash values.
+template <class ELFT>
+void BuildIdSection<ELFT>::computeHash(
+ llvm::ArrayRef<uint8_t> Data,
+ std::function<void(uint8_t *Dest, ArrayRef<uint8_t> Arr)> HashFn) {
+ std::vector<ArrayRef<uint8_t>> Chunks = split(Data, 1024 * 1024);
+ std::vector<uint8_t> Hashes(Chunks.size() * HashSize);
+
+ // Compute hash values.
+ forLoop(0, Chunks.size(),
+ [&](size_t I) { HashFn(Hashes.data() + I * HashSize, Chunks[I]); });
+
+ // Write to the final output buffer.
+ HashFn(HashBuf, Hashes);
+}
+
+template <class ELFT>
+void BuildIdSection<ELFT>::writeBuildId(ArrayRef<uint8_t> Buf) {
+ switch (Config->BuildId) {
+ case BuildIdKind::Fast:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ write64le(Dest, xxHash64(toStringRef(Arr)));
+ });
+ break;
+ case BuildIdKind::Md5:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ memcpy(Dest, MD5::hash(Arr).data(), 16);
+ });
+ break;
+ case BuildIdKind::Sha1:
+ computeHash(Buf, [](uint8_t *Dest, ArrayRef<uint8_t> Arr) {
+ memcpy(Dest, SHA1::hash(Arr).data(), 20);
+ });
+ break;
+ case BuildIdKind::Uuid:
+ if (getRandomBytes(HashBuf, HashSize))
+ error("entropy source failure");
+ break;
+ case BuildIdKind::Hexstring:
+ memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size());
+ break;
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+}
+
+template <class ELFT>
+GotSection<ELFT>::GotSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotEntrySize, ".got") {}
+
+template <class ELFT> void GotSection<ELFT>::addEntry(SymbolBody &Sym) {
+ Sym.GotIndex = NumEntries;
+ ++NumEntries;
+}
+
+template <class ELFT> bool GotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
+ if (Sym.GlobalDynIndex != -1U)
+ return false;
+ Sym.GlobalDynIndex = NumEntries;
+ // Global Dynamic TLS entries take two GOT slots.
+ NumEntries += 2;
+ return true;
+}
+
+// Reserves TLS entries for a TLS module ID and a TLS block offset.
+// In total it takes two GOT slots.
+template <class ELFT> bool GotSection<ELFT>::addTlsIndex() {
+ if (TlsIndexOff != uint32_t(-1))
+ return false;
+ TlsIndexOff = NumEntries * sizeof(uintX_t);
+ NumEntries += 2;
+ return true;
+}
+
+template <class ELFT>
+typename GotSection<ELFT>::uintX_t
+GotSection<ELFT>::getGlobalDynAddr(const SymbolBody &B) const {
+ return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t);
+}
+
+template <class ELFT>
+typename GotSection<ELFT>::uintX_t
+GotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
+ return B.GlobalDynIndex * sizeof(uintX_t);
+}
+
+template <class ELFT> void GotSection<ELFT>::finalize() {
+ Size = NumEntries * sizeof(uintX_t);
+}
+
+template <class ELFT> bool GotSection<ELFT>::empty() const {
+ // If we have a relocation that is relative to GOT (such as GOTOFFREL),
+ // we need to emit a GOT even if it's empty.
+ return NumEntries == 0 && !HasGotOffRel;
+}
+
+template <class ELFT> void GotSection<ELFT>::writeTo(uint8_t *Buf) {
+ this->relocate(Buf, Buf + Size);
+}
+
+template <class ELFT>
+MipsGotSection<ELFT>::MipsGotSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL,
+ SHT_PROGBITS, Target->GotEntrySize, ".got") {}
+
+template <class ELFT>
+void MipsGotSection<ELFT>::addEntry(SymbolBody &Sym, uintX_t Addend,
+ RelExpr Expr) {
+ // For "true" local symbols which can be referenced from the same module
+ // only compiler creates two instructions for address loading:
+ //
+ // lw $8, 0($gp) # R_MIPS_GOT16
+ // addi $8, $8, 0 # R_MIPS_LO16
+ //
+ // The first instruction loads high 16 bits of the symbol address while
+ // the second adds an offset. That allows to reduce number of required
+ // GOT entries because only one global offset table entry is necessary
+ // for every 64 KBytes of local data. So for local symbols we need to
+ // allocate number of GOT entries to hold all required "page" addresses.
+ //
+ // All global symbols (hidden and regular) considered by compiler uniformly.
+ // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation
+ // to load address of the symbol. So for each such symbol we need to
+ // allocate dedicated GOT entry to store its address.
+ //
+ // If a symbol is preemptible we need help of dynamic linker to get its
+ // final address. The corresponding GOT entries are allocated in the
+ // "global" part of GOT. Entries for non preemptible global symbol allocated
+ // in the "local" part of GOT.
+ //
+ // See "Global Offset Table" in Chapter 5:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (Expr == R_MIPS_GOT_LOCAL_PAGE) {
+ // At this point we do not know final symbol value so to reduce number
+ // of allocated GOT entries do the following trick. Save all output
+ // sections referenced by GOT relocations. Then later in the `finalize`
+ // method calculate number of "pages" required to cover all saved output
+ // section and allocate appropriate number of GOT entries.
+ PageIndexMap.insert({cast<DefinedRegular<ELFT>>(&Sym)->Section->OutSec, 0});
+ return;
+ }
+ if (Sym.isTls()) {
+ // GOT entries created for MIPS TLS relocations behave like
+ // almost GOT entries from other ABIs. They go to the end
+ // of the global offset table.
+ Sym.GotIndex = TlsEntries.size();
+ TlsEntries.push_back(&Sym);
+ return;
+ }
+ auto AddEntry = [&](SymbolBody &S, uintX_t A, GotEntries &Items) {
+ if (S.isInGot() && !A)
+ return;
+ size_t NewIndex = Items.size();
+ if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second)
+ return;
+ Items.emplace_back(&S, A);
+ if (!A)
+ S.GotIndex = NewIndex;
+ };
+ if (Sym.isPreemptible()) {
+ // Ignore addends for preemptible symbols. They got single GOT entry anyway.
+ AddEntry(Sym, 0, GlobalEntries);
+ Sym.IsInGlobalMipsGot = true;
+ } else if (Expr == R_MIPS_GOT_OFF32) {
+ AddEntry(Sym, Addend, LocalEntries32);
+ Sym.Is32BitMipsGot = true;
+ } else {
+ // Hold local GOT entries accessed via a 16-bit index separately.
+ // That allows to write them in the beginning of the GOT and keep
+ // their indexes as less as possible to escape relocation's overflow.
+ AddEntry(Sym, Addend, LocalEntries);
+ }
+}
+
+template <class ELFT>
+bool MipsGotSection<ELFT>::addDynTlsEntry(SymbolBody &Sym) {
+ if (Sym.GlobalDynIndex != -1U)
+ return false;
+ Sym.GlobalDynIndex = TlsEntries.size();
+ // Global Dynamic TLS entries take two GOT slots.
+ TlsEntries.push_back(nullptr);
+ TlsEntries.push_back(&Sym);
+ return true;
+}
+
+// Reserves TLS entries for a TLS module ID and a TLS block offset.
+// In total it takes two GOT slots.
+template <class ELFT> bool MipsGotSection<ELFT>::addTlsIndex() {
+ if (TlsIndexOff != uint32_t(-1))
+ return false;
+ TlsIndexOff = TlsEntries.size() * sizeof(uintX_t);
+ TlsEntries.push_back(nullptr);
+ TlsEntries.push_back(nullptr);
+ return true;
+}
+
+static uint64_t getMipsPageAddr(uint64_t Addr) {
+ return (Addr + 0x8000) & ~0xffff;
+}
+
+static uint64_t getMipsPageCount(uint64_t Size) {
+ return (Size + 0xfffe) / 0xffff + 1;
+}
+
+template <class ELFT>
+typename MipsGotSection<ELFT>::uintX_t
+MipsGotSection<ELFT>::getPageEntryOffset(const SymbolBody &B,
+ uintX_t Addend) const {
+ const OutputSectionBase *OutSec =
+ cast<DefinedRegular<ELFT>>(&B)->Section->OutSec;
+ uintX_t SecAddr = getMipsPageAddr(OutSec->Addr);
+ uintX_t SymAddr = getMipsPageAddr(B.getVA<ELFT>(Addend));
+ uintX_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff;
+ assert(Index < PageEntriesNum);
+ return (HeaderEntriesNum + Index) * sizeof(uintX_t);
+}
+
+template <class ELFT>
+typename MipsGotSection<ELFT>::uintX_t
+MipsGotSection<ELFT>::getBodyEntryOffset(const SymbolBody &B,
+ uintX_t Addend) const {
+ // Calculate offset of the GOT entries block: TLS, global, local.
+ uintX_t Index = HeaderEntriesNum + PageEntriesNum;
+ if (B.isTls())
+ Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size();
+ else if (B.IsInGlobalMipsGot)
+ Index += LocalEntries.size() + LocalEntries32.size();
+ else if (B.Is32BitMipsGot)
+ Index += LocalEntries.size();
+ // Calculate offset of the GOT entry in the block.
+ if (B.isInGot())
+ Index += B.GotIndex;
+ else {
+ auto It = EntryIndexMap.find({&B, Addend});
+ assert(It != EntryIndexMap.end());
+ Index += It->second;
+ }
+ return Index * sizeof(uintX_t);
+}
+
+template <class ELFT>
+typename MipsGotSection<ELFT>::uintX_t
+MipsGotSection<ELFT>::getTlsOffset() const {
+ return (getLocalEntriesNum() + GlobalEntries.size()) * sizeof(uintX_t);
+}
+
+template <class ELFT>
+typename MipsGotSection<ELFT>::uintX_t
+MipsGotSection<ELFT>::getGlobalDynOffset(const SymbolBody &B) const {
+ return B.GlobalDynIndex * sizeof(uintX_t);
+}
+
+template <class ELFT>
+const SymbolBody *MipsGotSection<ELFT>::getFirstGlobalEntry() const {
+ return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first;
+}
+
+template <class ELFT>
+unsigned MipsGotSection<ELFT>::getLocalEntriesNum() const {
+ return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() +
+ LocalEntries32.size();
+}
+
+template <class ELFT> void MipsGotSection<ELFT>::finalize() {
+ PageEntriesNum = 0;
+ for (std::pair<const OutputSectionBase *, size_t> &P : PageIndexMap) {
+ // For each output section referenced by GOT page relocations calculate
+ // and save into PageIndexMap an upper bound of MIPS GOT entries required
+ // to store page addresses of local symbols. We assume the worst case -
+ // each 64kb page of the output section has at least one GOT relocation
+ // against it. And take in account the case when the section intersects
+ // page boundaries.
+ P.second = PageEntriesNum;
+ PageEntriesNum += getMipsPageCount(P.first->Size);
+ }
+ Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) *
+ sizeof(uintX_t);
+}
+
+template <class ELFT> bool MipsGotSection<ELFT>::empty() const {
+ // We add the .got section to the result for dynamic MIPS target because
+ // its address and properties are mentioned in the .dynamic section.
+ return Config->Relocatable;
+}
+
+template <class ELFT>
+typename MipsGotSection<ELFT>::uintX_t MipsGotSection<ELFT>::getGp() const {
+ return ElfSym<ELFT>::MipsGp->template getVA<ELFT>(0);
+}
+
+template <class ELFT>
+static void writeUint(uint8_t *Buf, typename ELFT::uint Val) {
+ typedef typename ELFT::uint uintX_t;
+ write<uintX_t, ELFT::TargetEndianness, sizeof(uintX_t)>(Buf, Val);
+}
+
+template <class ELFT> void MipsGotSection<ELFT>::writeTo(uint8_t *Buf) {
+ // Set the MSB of the second GOT slot. This is not required by any
+ // MIPS ABI documentation, though.
+ //
+ // There is a comment in glibc saying that "The MSB of got[1] of a
+ // gnu object is set to identify gnu objects," and in GNU gold it
+ // says "the second entry will be used by some runtime loaders".
+ // But how this field is being used is unclear.
+ //
+ // We are not really willing to mimic other linkers behaviors
+ // without understanding why they do that, but because all files
+ // generated by GNU tools have this special GOT value, and because
+ // we've been doing this for years, it is probably a safe bet to
+ // keep doing this for now. We really need to revisit this to see
+ // if we had to do this.
+ auto *P = reinterpret_cast<typename ELFT::Off *>(Buf);
+ P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31);
+ Buf += HeaderEntriesNum * sizeof(uintX_t);
+ // Write 'page address' entries to the local part of the GOT.
+ for (std::pair<const OutputSectionBase *, size_t> &L : PageIndexMap) {
+ size_t PageCount = getMipsPageCount(L.first->Size);
+ uintX_t FirstPageAddr = getMipsPageAddr(L.first->Addr);
+ for (size_t PI = 0; PI < PageCount; ++PI) {
+ uint8_t *Entry = Buf + (L.second + PI) * sizeof(uintX_t);
+ writeUint<ELFT>(Entry, FirstPageAddr + PI * 0x10000);
+ }
+ }
+ Buf += PageEntriesNum * sizeof(uintX_t);
+ auto AddEntry = [&](const GotEntry &SA) {
+ uint8_t *Entry = Buf;
+ Buf += sizeof(uintX_t);
+ const SymbolBody *Body = SA.first;
+ uintX_t VA = Body->template getVA<ELFT>(SA.second);
+ writeUint<ELFT>(Entry, VA);
+ };
+ std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry);
+ std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry);
+ std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry);
+ // Initialize TLS-related GOT entries. If the entry has a corresponding
+ // dynamic relocations, leave it initialized by zero. Write down adjusted
+ // TLS symbol's values otherwise. To calculate the adjustments use offsets
+ // for thread-local storage.
+ // https://www.linux-mips.org/wiki/NPTL
+ if (TlsIndexOff != -1U && !Config->Pic)
+ writeUint<ELFT>(Buf + TlsIndexOff, 1);
+ for (const SymbolBody *B : TlsEntries) {
+ if (!B || B->isPreemptible())
+ continue;
+ uintX_t VA = B->getVA<ELFT>();
+ if (B->GotIndex != -1U) {
+ uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t);
+ writeUint<ELFT>(Entry, VA - 0x7000);
+ }
+ if (B->GlobalDynIndex != -1U) {
+ uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t);
+ writeUint<ELFT>(Entry, 1);
+ Entry += sizeof(uintX_t);
+ writeUint<ELFT>(Entry, VA - 0x8000);
+ }
+ }
+}
+
+template <class ELFT>
+GotPltSection<ELFT>::GotPltSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotPltEntrySize, ".got.plt") {}
+
+template <class ELFT> void GotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
+ Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size();
+ Entries.push_back(&Sym);
+}
+
+template <class ELFT> size_t GotPltSection<ELFT>::getSize() const {
+ return (Target->GotPltHeaderEntriesNum + Entries.size()) *
+ Target->GotPltEntrySize;
+}
+
+template <class ELFT> void GotPltSection<ELFT>::writeTo(uint8_t *Buf) {
+ Target->writeGotPltHeader(Buf);
+ Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize;
+ for (const SymbolBody *B : Entries) {
+ Target->writeGotPlt(Buf, *B);
+ Buf += sizeof(uintX_t);
+ }
+}
+
+// On ARM the IgotPltSection is part of the GotSection, on other Targets it is
+// part of the .got.plt
+template <class ELFT>
+IgotPltSection<ELFT>::IgotPltSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ Target->GotPltEntrySize,
+ Config->EMachine == EM_ARM ? ".got" : ".got.plt") {
+}
+
+template <class ELFT> void IgotPltSection<ELFT>::addEntry(SymbolBody &Sym) {
+ Sym.IsInIgot = true;
+ Sym.GotPltIndex = Entries.size();
+ Entries.push_back(&Sym);
+}
+
+template <class ELFT> size_t IgotPltSection<ELFT>::getSize() const {
+ return Entries.size() * Target->GotPltEntrySize;
+}
+
+template <class ELFT> void IgotPltSection<ELFT>::writeTo(uint8_t *Buf) {
+ for (const SymbolBody *B : Entries) {
+ Target->writeIgotPlt(Buf, *B);
+ Buf += sizeof(uintX_t);
+ }
+}
+
+template <class ELFT>
+StringTableSection<ELFT>::StringTableSection(StringRef Name, bool Dynamic)
+ : SyntheticSection<ELFT>(Dynamic ? (uintX_t)SHF_ALLOC : 0, SHT_STRTAB, 1,
+ Name),
+ Dynamic(Dynamic) {}
+
+// Adds a string to the string table. If HashIt is true we hash and check for
+// duplicates. It is optional because the name of global symbols are already
+// uniqued and hashing them again has a big cost for a small value: uniquing
+// them with some other string that happens to be the same.
+template <class ELFT>
+unsigned StringTableSection<ELFT>::addString(StringRef S, bool HashIt) {
+ if (HashIt) {
+ auto R = StringMap.insert(std::make_pair(S, this->Size));
+ if (!R.second)
+ return R.first->second;
+ }
+ unsigned Ret = this->Size;
+ this->Size = this->Size + S.size() + 1;
+ Strings.push_back(S);
+ return Ret;
+}
+
+template <class ELFT> void StringTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ // ELF string tables start with NUL byte, so advance the pointer by one.
+ ++Buf;
+ for (StringRef S : Strings) {
+ memcpy(Buf, S.data(), S.size());
+ Buf += S.size() + 1;
+ }
+}
+
+// Returns the number of version definition entries. Because the first entry
+// is for the version definition itself, it is the number of versioned symbols
+// plus one. Note that we don't support multiple versions yet.
+static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; }
+
+template <class ELFT>
+DynamicSection<ELFT>::DynamicSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC,
+ sizeof(uintX_t), ".dynamic") {
+ this->Entsize = ELFT::Is64Bits ? 16 : 8;
+ // .dynamic section is not writable on MIPS.
+ // See "Special Section" in Chapter 4 in the following document:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ if (Config->EMachine == EM_MIPS)
+ this->Flags = SHF_ALLOC;
+
+ addEntries();
+}
+
+// There are some dynamic entries that don't depend on other sections.
+// Such entries can be set early.
+template <class ELFT> void DynamicSection<ELFT>::addEntries() {
+ // Add strings to .dynstr early so that .dynstr's size will be
+ // fixed early.
+ for (StringRef S : Config->AuxiliaryList)
+ add({DT_AUXILIARY, In<ELFT>::DynStrTab->addString(S)});
+ if (!Config->RPath.empty())
+ add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH,
+ In<ELFT>::DynStrTab->addString(Config->RPath)});
+ for (SharedFile<ELFT> *F : Symtab<ELFT>::X->getSharedFiles())
+ if (F->isNeeded())
+ add({DT_NEEDED, In<ELFT>::DynStrTab->addString(F->getSoName())});
+ if (!Config->SoName.empty())
+ add({DT_SONAME, In<ELFT>::DynStrTab->addString(Config->SoName)});
+
+ // Set DT_FLAGS and DT_FLAGS_1.
+ uint32_t DtFlags = 0;
+ uint32_t DtFlags1 = 0;
+ if (Config->Bsymbolic)
+ DtFlags |= DF_SYMBOLIC;
+ if (Config->ZNodelete)
+ DtFlags1 |= DF_1_NODELETE;
+ if (Config->ZNow) {
+ DtFlags |= DF_BIND_NOW;
+ DtFlags1 |= DF_1_NOW;
+ }
+ if (Config->ZOrigin) {
+ DtFlags |= DF_ORIGIN;
+ DtFlags1 |= DF_1_ORIGIN;
+ }
+
+ if (DtFlags)
+ add({DT_FLAGS, DtFlags});
+ if (DtFlags1)
+ add({DT_FLAGS_1, DtFlags1});
+
+ if (!Config->Shared && !Config->Relocatable)
+ add({DT_DEBUG, (uint64_t)0});
+}
+
+// Add remaining entries to complete .dynamic contents.
+template <class ELFT> void DynamicSection<ELFT>::finalize() {
+ if (this->Size)
+ return; // Already finalized.
+
+ this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
+ if (In<ELFT>::RelaDyn->OutSec->Size > 0) {
+ bool IsRela = Config->Rela;
+ add({IsRela ? DT_RELA : DT_REL, In<ELFT>::RelaDyn});
+ add({IsRela ? DT_RELASZ : DT_RELSZ, In<ELFT>::RelaDyn->OutSec->Size});
+ add({IsRela ? DT_RELAENT : DT_RELENT,
+ uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))});
+
+ // MIPS dynamic loader does not support RELCOUNT tag.
+ // The problem is in the tight relation between dynamic
+ // relocations and GOT. So do not emit this tag on MIPS.
+ if (Config->EMachine != EM_MIPS) {
+ size_t NumRelativeRels = In<ELFT>::RelaDyn->getRelativeRelocCount();
+ if (Config->ZCombreloc && NumRelativeRels)
+ add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels});
+ }
+ }
+ if (In<ELFT>::RelaPlt->OutSec->Size > 0) {
+ add({DT_JMPREL, In<ELFT>::RelaPlt});
+ add({DT_PLTRELSZ, In<ELFT>::RelaPlt->OutSec->Size});
+ add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT,
+ In<ELFT>::GotPlt});
+ add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)});
+ }
+
+ add({DT_SYMTAB, In<ELFT>::DynSymTab});
+ add({DT_SYMENT, sizeof(Elf_Sym)});
+ add({DT_STRTAB, In<ELFT>::DynStrTab});
+ add({DT_STRSZ, In<ELFT>::DynStrTab->getSize()});
+ if (In<ELFT>::GnuHashTab)
+ add({DT_GNU_HASH, In<ELFT>::GnuHashTab});
+ if (In<ELFT>::HashTab)
+ add({DT_HASH, In<ELFT>::HashTab});
+
+ if (Out<ELFT>::PreinitArray) {
+ add({DT_PREINIT_ARRAY, Out<ELFT>::PreinitArray});
+ add({DT_PREINIT_ARRAYSZ, Out<ELFT>::PreinitArray, Entry::SecSize});
+ }
+ if (Out<ELFT>::InitArray) {
+ add({DT_INIT_ARRAY, Out<ELFT>::InitArray});
+ add({DT_INIT_ARRAYSZ, Out<ELFT>::InitArray, Entry::SecSize});
+ }
+ if (Out<ELFT>::FiniArray) {
+ add({DT_FINI_ARRAY, Out<ELFT>::FiniArray});
+ add({DT_FINI_ARRAYSZ, Out<ELFT>::FiniArray, Entry::SecSize});
+ }
+
+ if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Init))
+ add({DT_INIT, B});
+ if (SymbolBody *B = Symtab<ELFT>::X->find(Config->Fini))
+ add({DT_FINI, B});
+
+ bool HasVerNeed = In<ELFT>::VerNeed->getNeedNum() != 0;
+ if (HasVerNeed || In<ELFT>::VerDef)
+ add({DT_VERSYM, In<ELFT>::VerSym});
+ if (In<ELFT>::VerDef) {
+ add({DT_VERDEF, In<ELFT>::VerDef});
+ add({DT_VERDEFNUM, getVerDefNum()});
+ }
+ if (HasVerNeed) {
+ add({DT_VERNEED, In<ELFT>::VerNeed});
+ add({DT_VERNEEDNUM, In<ELFT>::VerNeed->getNeedNum()});
+ }
+
+ if (Config->EMachine == EM_MIPS) {
+ add({DT_MIPS_RLD_VERSION, 1});
+ add({DT_MIPS_FLAGS, RHF_NOTPOT});
+ add({DT_MIPS_BASE_ADDRESS, Config->ImageBase});
+ add({DT_MIPS_SYMTABNO, In<ELFT>::DynSymTab->getNumSymbols()});
+ add({DT_MIPS_LOCAL_GOTNO, In<ELFT>::MipsGot->getLocalEntriesNum()});
+ if (const SymbolBody *B = In<ELFT>::MipsGot->getFirstGlobalEntry())
+ add({DT_MIPS_GOTSYM, B->DynsymIndex});
+ else
+ add({DT_MIPS_GOTSYM, In<ELFT>::DynSymTab->getNumSymbols()});
+ add({DT_PLTGOT, In<ELFT>::MipsGot});
+ if (In<ELFT>::MipsRldMap)
+ add({DT_MIPS_RLD_MAP, In<ELFT>::MipsRldMap});
+ }
+
+ this->OutSec->Entsize = this->Entsize;
+ this->OutSec->Link = this->Link;
+
+ // +1 for DT_NULL
+ this->Size = (Entries.size() + 1) * this->Entsize;
+}
+
+template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *P = reinterpret_cast<Elf_Dyn *>(Buf);
+
+ for (const Entry &E : Entries) {
+ P->d_tag = E.Tag;
+ switch (E.Kind) {
+ case Entry::SecAddr:
+ P->d_un.d_ptr = E.OutSec->Addr;
+ break;
+ case Entry::InSecAddr:
+ P->d_un.d_ptr = E.InSec->OutSec->Addr + E.InSec->OutSecOff;
+ break;
+ case Entry::SecSize:
+ P->d_un.d_val = E.OutSec->Size;
+ break;
+ case Entry::SymAddr:
+ P->d_un.d_ptr = E.Sym->template getVA<ELFT>();
+ break;
+ case Entry::PlainInt:
+ P->d_un.d_val = E.Val;
+ break;
+ }
+ ++P;
+ }
+}
+
+template <class ELFT>
+typename ELFT::uint DynamicReloc<ELFT>::getOffset() const {
+ if (OutputSec)
+ return OutputSec->Addr + OffsetInSec;
+ return InputSec->OutSec->Addr + InputSec->getOffset(OffsetInSec);
+}
+
+template <class ELFT>
+typename ELFT::uint DynamicReloc<ELFT>::getAddend() const {
+ if (UseSymVA)
+ return Sym->getVA<ELFT>(Addend);
+ return Addend;
+}
+
+template <class ELFT> uint32_t DynamicReloc<ELFT>::getSymIndex() const {
+ if (Sym && !UseSymVA)
+ return Sym->DynsymIndex;
+ return 0;
+}
+
+template <class ELFT>
+RelocationSection<ELFT>::RelocationSection(StringRef Name, bool Sort)
+ : SyntheticSection<ELFT>(SHF_ALLOC, Config->Rela ? SHT_RELA : SHT_REL,
+ sizeof(uintX_t), Name),
+ Sort(Sort) {
+ this->Entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+}
+
+template <class ELFT>
+void RelocationSection<ELFT>::addReloc(const DynamicReloc<ELFT> &Reloc) {
+ if (Reloc.Type == Target->RelativeRel)
+ ++NumRelativeRelocs;
+ Relocs.push_back(Reloc);
+}
+
+template <class ELFT, class RelTy>
+static bool compRelocations(const RelTy &A, const RelTy &B) {
+ bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel;
+ bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel;
+ if (AIsRel != BIsRel)
+ return AIsRel;
+
+ return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL);
+}
+
+template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *Buf) {
+ uint8_t *BufBegin = Buf;
+ for (const DynamicReloc<ELFT> &Rel : Relocs) {
+ auto *P = reinterpret_cast<Elf_Rela *>(Buf);
+ Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
+
+ if (Config->Rela)
+ P->r_addend = Rel.getAddend();
+ P->r_offset = Rel.getOffset();
+ if (Config->EMachine == EM_MIPS && Rel.getInputSec() == In<ELFT>::MipsGot)
+ // Dynamic relocation against MIPS GOT section make deal TLS entries
+ // allocated in the end of the GOT. We need to adjust the offset to take
+ // in account 'local' and 'global' GOT entries.
+ P->r_offset += In<ELFT>::MipsGot->getTlsOffset();
+ P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL);
+ }
+
+ if (Sort) {
+ if (Config->Rela)
+ std::stable_sort((Elf_Rela *)BufBegin,
+ (Elf_Rela *)BufBegin + Relocs.size(),
+ compRelocations<ELFT, Elf_Rela>);
+ else
+ std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(),
+ compRelocations<ELFT, Elf_Rel>);
+ }
+}
+
+template <class ELFT> unsigned RelocationSection<ELFT>::getRelocOffset() {
+ return this->Entsize * Relocs.size();
+}
+
+template <class ELFT> void RelocationSection<ELFT>::finalize() {
+ this->Link = In<ELFT>::DynSymTab ? In<ELFT>::DynSymTab->OutSec->SectionIndex
+ : In<ELFT>::SymTab->OutSec->SectionIndex;
+
+ // Set required output section properties.
+ this->OutSec->Link = this->Link;
+ this->OutSec->Entsize = this->Entsize;
+}
+
+template <class ELFT>
+SymbolTableSection<ELFT>::SymbolTableSection(
+ StringTableSection<ELFT> &StrTabSec)
+ : SyntheticSection<ELFT>(StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0,
+ StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
+ sizeof(uintX_t),
+ StrTabSec.isDynamic() ? ".dynsym" : ".symtab"),
+ StrTabSec(StrTabSec) {
+ this->Entsize = sizeof(Elf_Sym);
+}
+
+// Orders symbols according to their positions in the GOT,
+// in compliance with MIPS ABI rules.
+// See "Global Offset Table" in Chapter 5 in the following document
+// for detailed description:
+// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) {
+ // Sort entries related to non-local preemptible symbols by GOT indexes.
+ // All other entries go to the first part of GOT in arbitrary order.
+ bool LIsInLocalGot = !L->IsInGlobalMipsGot;
+ bool RIsInLocalGot = !R->IsInGlobalMipsGot;
+ if (LIsInLocalGot || RIsInLocalGot)
+ return !RIsInLocalGot;
+ return L->GotIndex < R->GotIndex;
+}
+
+static uint8_t getSymbolBinding(SymbolBody *Body) {
+ Symbol *S = Body->symbol();
+ if (Config->Relocatable)
+ return S->Binding;
+ uint8_t Visibility = S->Visibility;
+ if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED)
+ return STB_LOCAL;
+ if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE)
+ return STB_GLOBAL;
+ return S->Binding;
+}
+
+template <class ELFT> void SymbolTableSection<ELFT>::finalize() {
+ this->OutSec->Link = this->Link = StrTabSec.OutSec->SectionIndex;
+ this->OutSec->Info = this->Info = NumLocals + 1;
+ this->OutSec->Entsize = this->Entsize;
+
+ if (Config->Relocatable) {
+ size_t I = NumLocals;
+ for (const SymbolTableEntry &S : Symbols)
+ S.Symbol->DynsymIndex = ++I;
+ return;
+ }
+
+ if (!StrTabSec.isDynamic()) {
+ std::stable_sort(Symbols.begin(), Symbols.end(),
+ [](const SymbolTableEntry &L, const SymbolTableEntry &R) {
+ return getSymbolBinding(L.Symbol) == STB_LOCAL &&
+ getSymbolBinding(R.Symbol) != STB_LOCAL;
+ });
+ return;
+ }
+ if (In<ELFT>::GnuHashTab)
+ // NB: It also sorts Symbols to meet the GNU hash table requirements.
+ In<ELFT>::GnuHashTab->addSymbols(Symbols);
+ else if (Config->EMachine == EM_MIPS)
+ std::stable_sort(Symbols.begin(), Symbols.end(),
+ [](const SymbolTableEntry &L, const SymbolTableEntry &R) {
+ return sortMipsSymbols(L.Symbol, R.Symbol);
+ });
+ size_t I = 0;
+ for (const SymbolTableEntry &S : Symbols)
+ S.Symbol->DynsymIndex = ++I;
+}
+
+template <class ELFT> void SymbolTableSection<ELFT>::addSymbol(SymbolBody *B) {
+ Symbols.push_back({B, StrTabSec.addString(B->getName(), false)});
+}
+
+template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ Buf += sizeof(Elf_Sym);
+
+ // All symbols with STB_LOCAL binding precede the weak and global symbols.
+ // .dynsym only contains global symbols.
+ if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic())
+ writeLocalSymbols(Buf);
+
+ writeGlobalSymbols(Buf);
+}
+
+template <class ELFT>
+void SymbolTableSection<ELFT>::writeLocalSymbols(uint8_t *&Buf) {
+ // Iterate over all input object files to copy their local symbols
+ // to the output symbol table pointed by Buf.
+ for (ObjectFile<ELFT> *File : Symtab<ELFT>::X->getObjectFiles()) {
+ for (const std::pair<const DefinedRegular<ELFT> *, size_t> &P :
+ File->KeptLocalSyms) {
+ const DefinedRegular<ELFT> &Body = *P.first;
+ InputSectionBase<ELFT> *Section = Body.Section;
+ auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+
+ if (!Section) {
+ ESym->st_shndx = SHN_ABS;
+ ESym->st_value = Body.Value;
+ } else {
+ const OutputSectionBase *OutSec = Section->OutSec;
+ ESym->st_shndx = OutSec->SectionIndex;
+ ESym->st_value = OutSec->Addr + Section->getOffset(Body);
+ }
+ ESym->st_name = P.second;
+ ESym->st_size = Body.template getSize<ELFT>();
+ ESym->setBindingAndType(STB_LOCAL, Body.Type);
+ Buf += sizeof(*ESym);
+ }
+ }
+}
+
+template <class ELFT>
+void SymbolTableSection<ELFT>::writeGlobalSymbols(uint8_t *Buf) {
+ // Write the internal symbol table contents to the output symbol table
+ // pointed by Buf.
+ auto *ESym = reinterpret_cast<Elf_Sym *>(Buf);
+ for (const SymbolTableEntry &S : Symbols) {
+ SymbolBody *Body = S.Symbol;
+ size_t StrOff = S.StrTabOffset;
+
+ uint8_t Type = Body->Type;
+ uintX_t Size = Body->getSize<ELFT>();
+
+ ESym->setBindingAndType(getSymbolBinding(Body), Type);
+ ESym->st_size = Size;
+ ESym->st_name = StrOff;
+ ESym->setVisibility(Body->symbol()->Visibility);
+ ESym->st_value = Body->getVA<ELFT>();
+
+ if (const OutputSectionBase *OutSec = getOutputSection(Body))
+ ESym->st_shndx = OutSec->SectionIndex;
+ else if (isa<DefinedRegular<ELFT>>(Body))
+ ESym->st_shndx = SHN_ABS;
+
+ if (Config->EMachine == EM_MIPS) {
+ // On MIPS we need to mark symbol which has a PLT entry and requires
+ // pointer equality by STO_MIPS_PLT flag. That is necessary to help
+ // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
+ // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
+ if (Body->isInPlt() && Body->NeedsCopyOrPltAddr)
+ ESym->st_other |= STO_MIPS_PLT;
+ if (Config->Relocatable) {
+ auto *D = dyn_cast<DefinedRegular<ELFT>>(Body);
+ if (D && D->isMipsPIC())
+ ESym->st_other |= STO_MIPS_PIC;
+ }
+ }
+ ++ESym;
+ }
+}
+
+template <class ELFT>
+const OutputSectionBase *
+SymbolTableSection<ELFT>::getOutputSection(SymbolBody *Sym) {
+ switch (Sym->kind()) {
+ case SymbolBody::DefinedSyntheticKind:
+ return cast<DefinedSynthetic>(Sym)->Section;
+ case SymbolBody::DefinedRegularKind: {
+ auto &D = cast<DefinedRegular<ELFT>>(*Sym);
+ if (D.Section)
+ return D.Section->OutSec;
+ break;
+ }
+ case SymbolBody::DefinedCommonKind:
+ return In<ELFT>::Common->OutSec;
+ case SymbolBody::SharedKind:
+ if (cast<SharedSymbol<ELFT>>(Sym)->needsCopy())
+ return Out<ELFT>::Bss;
+ break;
+ case SymbolBody::UndefinedKind:
+ case SymbolBody::LazyArchiveKind:
+ case SymbolBody::LazyObjectKind:
+ break;
+ }
+ return nullptr;
+}
+
+template <class ELFT>
+GnuHashTableSection<ELFT>::GnuHashTableSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_GNU_HASH, sizeof(uintX_t),
+ ".gnu.hash") {
+ this->Entsize = ELFT::Is64Bits ? 0 : 4;
+}
+
+template <class ELFT>
+unsigned GnuHashTableSection<ELFT>::calcNBuckets(unsigned NumHashed) {
+ if (!NumHashed)
+ return 0;
+
+ // These values are prime numbers which are not greater than 2^(N-1) + 1.
+ // In result, for any particular NumHashed we return a prime number
+ // which is not greater than NumHashed.
+ static const unsigned Primes[] = {
+ 1, 1, 3, 3, 7, 13, 31, 61, 127, 251,
+ 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071};
+
+ return Primes[std::min<unsigned>(Log2_32_Ceil(NumHashed),
+ array_lengthof(Primes) - 1)];
+}
+
+// Bloom filter estimation: at least 8 bits for each hashed symbol.
+// GNU Hash table requirement: it should be a power of 2,
+// the minimum value is 1, even for an empty table.
+// Expected results for a 32-bit target:
+// calcMaskWords(0..4) = 1
+// calcMaskWords(5..8) = 2
+// calcMaskWords(9..16) = 4
+// For a 64-bit target:
+// calcMaskWords(0..8) = 1
+// calcMaskWords(9..16) = 2
+// calcMaskWords(17..32) = 4
+template <class ELFT>
+unsigned GnuHashTableSection<ELFT>::calcMaskWords(unsigned NumHashed) {
+ if (!NumHashed)
+ return 1;
+ return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off));
+}
+
+template <class ELFT> void GnuHashTableSection<ELFT>::finalize() {
+ unsigned NumHashed = Symbols.size();
+ NBuckets = calcNBuckets(NumHashed);
+ MaskWords = calcMaskWords(NumHashed);
+ // Second hash shift estimation: just predefined values.
+ Shift2 = ELFT::Is64Bits ? 6 : 5;
+
+ this->OutSec->Entsize = this->Entsize;
+ this->OutSec->Link = this->Link = In<ELFT>::DynSymTab->OutSec->SectionIndex;
+ this->Size = sizeof(Elf_Word) * 4 // Header
+ + sizeof(Elf_Off) * MaskWords // Bloom Filter
+ + sizeof(Elf_Word) * NBuckets // Hash Buckets
+ + sizeof(Elf_Word) * NumHashed; // Hash Values
+}
+
+template <class ELFT> void GnuHashTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ writeHeader(Buf);
+ if (Symbols.empty())
+ return;
+ writeBloomFilter(Buf);
+ writeHashTable(Buf);
+}
+
+template <class ELFT>
+void GnuHashTableSection<ELFT>::writeHeader(uint8_t *&Buf) {
+ auto *P = reinterpret_cast<Elf_Word *>(Buf);
+ *P++ = NBuckets;
+ *P++ = In<ELFT>::DynSymTab->getNumSymbols() - Symbols.size();
+ *P++ = MaskWords;
+ *P++ = Shift2;
+ Buf = reinterpret_cast<uint8_t *>(P);
+}
+
+template <class ELFT>
+void GnuHashTableSection<ELFT>::writeBloomFilter(uint8_t *&Buf) {
+ unsigned C = sizeof(Elf_Off) * 8;
+
+ auto *Masks = reinterpret_cast<Elf_Off *>(Buf);
+ for (const SymbolData &Sym : Symbols) {
+ size_t Pos = (Sym.Hash / C) & (MaskWords - 1);
+ uintX_t V = (uintX_t(1) << (Sym.Hash % C)) |
+ (uintX_t(1) << ((Sym.Hash >> Shift2) % C));
+ Masks[Pos] |= V;
+ }
+ Buf += sizeof(Elf_Off) * MaskWords;
+}
+
+template <class ELFT>
+void GnuHashTableSection<ELFT>::writeHashTable(uint8_t *Buf) {
+ Elf_Word *Buckets = reinterpret_cast<Elf_Word *>(Buf);
+ Elf_Word *Values = Buckets + NBuckets;
+
+ int PrevBucket = -1;
+ int I = 0;
+ for (const SymbolData &Sym : Symbols) {
+ int Bucket = Sym.Hash % NBuckets;
+ assert(PrevBucket <= Bucket);
+ if (Bucket != PrevBucket) {
+ Buckets[Bucket] = Sym.Body->DynsymIndex;
+ PrevBucket = Bucket;
+ if (I > 0)
+ Values[I - 1] |= 1;
+ }
+ Values[I] = Sym.Hash & ~1;
+ ++I;
+ }
+ if (I > 0)
+ Values[I - 1] |= 1;
+}
+
+static uint32_t hashGnu(StringRef Name) {
+ uint32_t H = 5381;
+ for (uint8_t C : Name)
+ H = (H << 5) + H + C;
+ return H;
+}
+
+// Add symbols to this symbol hash table. Note that this function
+// destructively sort a given vector -- which is needed because
+// GNU-style hash table places some sorting requirements.
+template <class ELFT>
+void GnuHashTableSection<ELFT>::addSymbols(std::vector<SymbolTableEntry> &V) {
+ // Ideally this will just be 'auto' but GCC 6.1 is not able
+ // to deduce it correctly.
+ std::vector<SymbolTableEntry>::iterator Mid =
+ std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) {
+ return S.Symbol->isUndefined();
+ });
+ if (Mid == V.end())
+ return;
+ for (auto I = Mid, E = V.end(); I != E; ++I) {
+ SymbolBody *B = I->Symbol;
+ size_t StrOff = I->StrTabOffset;
+ Symbols.push_back({B, StrOff, hashGnu(B->getName())});
+ }
+
+ unsigned NBuckets = calcNBuckets(Symbols.size());
+ std::stable_sort(Symbols.begin(), Symbols.end(),
+ [&](const SymbolData &L, const SymbolData &R) {
+ return L.Hash % NBuckets < R.Hash % NBuckets;
+ });
+
+ V.erase(Mid, V.end());
+ for (const SymbolData &Sym : Symbols)
+ V.push_back({Sym.Body, Sym.STName});
+}
+
+template <class ELFT>
+HashTableSection<ELFT>::HashTableSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_HASH, sizeof(Elf_Word), ".hash") {
+ this->Entsize = sizeof(Elf_Word);
+}
+
+template <class ELFT> void HashTableSection<ELFT>::finalize() {
+ this->OutSec->Link = this->Link = In<ELFT>::DynSymTab->OutSec->SectionIndex;
+ this->OutSec->Entsize = this->Entsize;
+
+ unsigned NumEntries = 2; // nbucket and nchain.
+ NumEntries += In<ELFT>::DynSymTab->getNumSymbols(); // The chain entries.
+
+ // Create as many buckets as there are symbols.
+ // FIXME: This is simplistic. We can try to optimize it, but implementing
+ // support for SHT_GNU_HASH is probably even more profitable.
+ NumEntries += In<ELFT>::DynSymTab->getNumSymbols();
+ this->Size = NumEntries * sizeof(Elf_Word);
+}
+
+template <class ELFT> void HashTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ unsigned NumSymbols = In<ELFT>::DynSymTab->getNumSymbols();
+ auto *P = reinterpret_cast<Elf_Word *>(Buf);
+ *P++ = NumSymbols; // nbucket
+ *P++ = NumSymbols; // nchain
+
+ Elf_Word *Buckets = P;
+ Elf_Word *Chains = P + NumSymbols;
+
+ for (const SymbolTableEntry &S : In<ELFT>::DynSymTab->getSymbols()) {
+ SymbolBody *Body = S.Symbol;
+ StringRef Name = Body->getName();
+ unsigned I = Body->DynsymIndex;
+ uint32_t Hash = hashSysV(Name) % NumSymbols;
+ Chains[I] = Buckets[Hash];
+ Buckets[Hash] = I;
+ }
+}
+
+template <class ELFT>
+PltSection<ELFT>::PltSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
+ ".plt") {}
+
+template <class ELFT> void PltSection<ELFT>::writeTo(uint8_t *Buf) {
+ // At beginning of PLT, we have code to call the dynamic linker
+ // to resolve dynsyms at runtime. Write such code.
+ Target->writePltHeader(Buf);
+ size_t Off = Target->PltHeaderSize;
+
+ for (auto &I : Entries) {
+ const SymbolBody *B = I.first;
+ unsigned RelOff = I.second;
+ uint64_t Got = B->getGotPltVA<ELFT>();
+ uint64_t Plt = this->getVA() + Off;
+ Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
+ Off += Target->PltEntrySize;
+ }
+}
+
+template <class ELFT> void PltSection<ELFT>::addEntry(SymbolBody &Sym) {
+ Sym.PltIndex = Entries.size();
+ unsigned RelOff = In<ELFT>::RelaPlt->getRelocOffset();
+ Entries.push_back(std::make_pair(&Sym, RelOff));
+}
+
+template <class ELFT> size_t PltSection<ELFT>::getSize() const {
+ return Target->PltHeaderSize + Entries.size() * Target->PltEntrySize;
+}
+
+template <class ELFT>
+IpltSection<ELFT>::IpltSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
+ ".plt") {}
+
+template <class ELFT> void IpltSection<ELFT>::writeTo(uint8_t *Buf) {
+ // The IRelative relocations do not support lazy binding so no header is
+ // needed
+ size_t Off = 0;
+ for (auto &I : Entries) {
+ const SymbolBody *B = I.first;
+ unsigned RelOff = I.second + In<ELFT>::Plt->getSize();
+ uint64_t Got = B->getGotPltVA<ELFT>();
+ uint64_t Plt = this->getVA() + Off;
+ Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff);
+ Off += Target->PltEntrySize;
+ }
+}
+
+template <class ELFT> void IpltSection<ELFT>::addEntry(SymbolBody &Sym) {
+ Sym.PltIndex = Entries.size();
+ Sym.IsInIplt = true;
+ unsigned RelOff = In<ELFT>::RelaIplt->getRelocOffset();
+ Entries.push_back(std::make_pair(&Sym, RelOff));
+}
+
+template <class ELFT> size_t IpltSection<ELFT>::getSize() const {
+ return Entries.size() * Target->PltEntrySize;
+}
+
+template <class ELFT>
+GdbIndexSection<ELFT>::GdbIndexSection()
+ : SyntheticSection<ELFT>(0, SHT_PROGBITS, 1, ".gdb_index"),
+ StringPool(llvm::StringTableBuilder::ELF) {}
+
+template <class ELFT> void GdbIndexSection<ELFT>::parseDebugSections() {
+ for (InputSectionBase<ELFT> *S : Symtab<ELFT>::X->Sections)
+ if (InputSection<ELFT> *IS = dyn_cast<InputSection<ELFT>>(S))
+ if (IS->OutSec && IS->Name == ".debug_info")
+ readDwarf(IS);
+}
+
+// Iterative hash function for symbol's name is described in .gdb_index format
+// specification. Note that we use one for version 5 to 7 here, it is different
+// for version 4.
+static uint32_t hash(StringRef Str) {
+ uint32_t R = 0;
+ for (uint8_t C : Str)
+ R = R * 67 + tolower(C) - 113;
+ return R;
+}
+
+template <class ELFT>
+void GdbIndexSection<ELFT>::readDwarf(InputSection<ELFT> *I) {
+ GdbIndexBuilder<ELFT> Builder(I);
+ if (ErrorCount)
+ return;
+
+ size_t CuId = CompilationUnits.size();
+ std::vector<std::pair<uintX_t, uintX_t>> CuList = Builder.readCUList();
+ CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end());
+
+ std::vector<AddressEntry<ELFT>> AddrArea = Builder.readAddressArea(CuId);
+ AddressArea.insert(AddressArea.end(), AddrArea.begin(), AddrArea.end());
+
+ std::vector<std::pair<StringRef, uint8_t>> NamesAndTypes =
+ Builder.readPubNamesAndTypes();
+
+ for (std::pair<StringRef, uint8_t> &Pair : NamesAndTypes) {
+ uint32_t Hash = hash(Pair.first);
+ size_t Offset = StringPool.add(Pair.first);
+
+ bool IsNew;
+ GdbSymbol *Sym;
+ std::tie(IsNew, Sym) = SymbolTable.add(Hash, Offset);
+ if (IsNew) {
+ Sym->CuVectorIndex = CuVectors.size();
+ CuVectors.push_back({{CuId, Pair.second}});
+ continue;
+ }
+
+ std::vector<std::pair<uint32_t, uint8_t>> &CuVec =
+ CuVectors[Sym->CuVectorIndex];
+ CuVec.push_back({CuId, Pair.second});
+ }
+}
+
+template <class ELFT> void GdbIndexSection<ELFT>::finalize() {
+ if (Finalized)
+ return;
+ Finalized = true;
+
+ parseDebugSections();
+
+ // GdbIndex header consist from version fields
+ // and 5 more fields with different kinds of offsets.
+ CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize;
+ SymTabOffset = CuTypesOffset + AddressArea.size() * AddressEntrySize;
+
+ ConstantPoolOffset =
+ SymTabOffset + SymbolTable.getCapacity() * SymTabEntrySize;
+
+ for (std::vector<std::pair<uint32_t, uint8_t>> &CuVec : CuVectors) {
+ CuVectorsOffset.push_back(CuVectorsSize);
+ CuVectorsSize += OffsetTypeSize * (CuVec.size() + 1);
+ }
+ StringPoolOffset = ConstantPoolOffset + CuVectorsSize;
+
+ StringPool.finalizeInOrder();
+}
+
+template <class ELFT> size_t GdbIndexSection<ELFT>::getSize() const {
+ const_cast<GdbIndexSection<ELFT> *>(this)->finalize();
+ return StringPoolOffset + StringPool.getSize();
+}
+
+template <class ELFT> void GdbIndexSection<ELFT>::writeTo(uint8_t *Buf) {
+ write32le(Buf, 7); // Write version.
+ write32le(Buf + 4, CuListOffset); // CU list offset.
+ write32le(Buf + 8, CuTypesOffset); // Types CU list offset.
+ write32le(Buf + 12, CuTypesOffset); // Address area offset.
+ write32le(Buf + 16, SymTabOffset); // Symbol table offset.
+ write32le(Buf + 20, ConstantPoolOffset); // Constant pool offset.
+ Buf += 24;
+
+ // Write the CU list.
+ for (std::pair<uintX_t, uintX_t> CU : CompilationUnits) {
+ write64le(Buf, CU.first);
+ write64le(Buf + 8, CU.second);
+ Buf += 16;
+ }
+
+ // Write the address area.
+ for (AddressEntry<ELFT> &E : AddressArea) {
+ uintX_t BaseAddr = E.Section->OutSec->Addr + E.Section->getOffset(0);
+ write64le(Buf, BaseAddr + E.LowAddress);
+ write64le(Buf + 8, BaseAddr + E.HighAddress);
+ write32le(Buf + 16, E.CuIndex);
+ Buf += 20;
+ }
+
+ // Write the symbol table.
+ for (size_t I = 0; I < SymbolTable.getCapacity(); ++I) {
+ GdbSymbol *Sym = SymbolTable.getSymbol(I);
+ if (Sym) {
+ size_t NameOffset =
+ Sym->NameOffset + StringPoolOffset - ConstantPoolOffset;
+ size_t CuVectorOffset = CuVectorsOffset[Sym->CuVectorIndex];
+ write32le(Buf, NameOffset);
+ write32le(Buf + 4, CuVectorOffset);
+ }
+ Buf += 8;
+ }
+
+ // Write the CU vectors into the constant pool.
+ for (std::vector<std::pair<uint32_t, uint8_t>> &CuVec : CuVectors) {
+ write32le(Buf, CuVec.size());
+ Buf += 4;
+ for (std::pair<uint32_t, uint8_t> &P : CuVec) {
+ uint32_t Index = P.first;
+ uint8_t Flags = P.second;
+ Index |= Flags << 24;
+ write32le(Buf, Index);
+ Buf += 4;
+ }
+ }
+
+ StringPool.write(Buf);
+}
+
+template <class ELFT> bool GdbIndexSection<ELFT>::empty() const {
+ return !Out<ELFT>::DebugInfo;
+}
+
+template <class ELFT>
+EhFrameHeader<ELFT>::EhFrameHeader()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {}
+
+// .eh_frame_hdr contains a binary search table of pointers to FDEs.
+// Each entry of the search table consists of two values,
+// the starting PC from where FDEs covers, and the FDE's address.
+// It is sorted by PC.
+template <class ELFT> void EhFrameHeader<ELFT>::writeTo(uint8_t *Buf) {
+ const endianness E = ELFT::TargetEndianness;
+
+ // Sort the FDE list by their PC and uniqueify. Usually there is only
+ // one FDE for a PC (i.e. function), but if ICF merges two functions
+ // into one, there can be more than one FDEs pointing to the address.
+ auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; };
+ std::stable_sort(Fdes.begin(), Fdes.end(), Less);
+ auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; };
+ Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end());
+
+ Buf[0] = 1;
+ Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
+ Buf[2] = DW_EH_PE_udata4;
+ Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
+ write32<E>(Buf + 4, Out<ELFT>::EhFrame->Addr - this->getVA() - 4);
+ write32<E>(Buf + 8, Fdes.size());
+ Buf += 12;
+
+ uintX_t VA = this->getVA();
+ for (FdeData &Fde : Fdes) {
+ write32<E>(Buf, Fde.Pc - VA);
+ write32<E>(Buf + 4, Fde.FdeVA - VA);
+ Buf += 8;
+ }
+}
+
+template <class ELFT> size_t EhFrameHeader<ELFT>::getSize() const {
+ // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
+ return 12 + Out<ELFT>::EhFrame->NumFdes * 8;
+}
+
+template <class ELFT>
+void EhFrameHeader<ELFT>::addFde(uint32_t Pc, uint32_t FdeVA) {
+ Fdes.push_back({Pc, FdeVA});
+}
+
+template <class ELFT> bool EhFrameHeader<ELFT>::empty() const {
+ return Out<ELFT>::EhFrame->empty();
+}
+
+template <class ELFT>
+VersionDefinitionSection<ELFT>::VersionDefinitionSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
+ ".gnu.version_d") {}
+
+static StringRef getFileDefName() {
+ if (!Config->SoName.empty())
+ return Config->SoName;
+ return Config->OutputFile;
+}
+
+template <class ELFT> void VersionDefinitionSection<ELFT>::finalize() {
+ FileDefNameOff = In<ELFT>::DynStrTab->addString(getFileDefName());
+ for (VersionDefinition &V : Config->VersionDefinitions)
+ V.NameOff = In<ELFT>::DynStrTab->addString(V.Name);
+
+ this->OutSec->Link = this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
+
+ // sh_info should be set to the number of definitions. This fact is missed in
+ // documentation, but confirmed by binutils community:
+ // https://sourceware.org/ml/binutils/2014-11/msg00355.html
+ this->OutSec->Info = this->Info = getVerDefNum();
+}
+
+template <class ELFT>
+void VersionDefinitionSection<ELFT>::writeOne(uint8_t *Buf, uint32_t Index,
+ StringRef Name, size_t NameOff) {
+ auto *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
+ Verdef->vd_version = 1;
+ Verdef->vd_cnt = 1;
+ Verdef->vd_aux = sizeof(Elf_Verdef);
+ Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
+ Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0);
+ Verdef->vd_ndx = Index;
+ Verdef->vd_hash = hashSysV(Name);
+
+ auto *Verdaux = reinterpret_cast<Elf_Verdaux *>(Buf + sizeof(Elf_Verdef));
+ Verdaux->vda_name = NameOff;
+ Verdaux->vda_next = 0;
+}
+
+template <class ELFT>
+void VersionDefinitionSection<ELFT>::writeTo(uint8_t *Buf) {
+ writeOne(Buf, 1, getFileDefName(), FileDefNameOff);
+
+ for (VersionDefinition &V : Config->VersionDefinitions) {
+ Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux);
+ writeOne(Buf, V.Id, V.Name, V.NameOff);
+ }
+
+ // Need to terminate the last version definition.
+ Elf_Verdef *Verdef = reinterpret_cast<Elf_Verdef *>(Buf);
+ Verdef->vd_next = 0;
+}
+
+template <class ELFT> size_t VersionDefinitionSection<ELFT>::getSize() const {
+ return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum();
+}
+
+template <class ELFT>
+VersionTableSection<ELFT>::VersionTableSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
+ ".gnu.version") {}
+
+template <class ELFT> void VersionTableSection<ELFT>::finalize() {
+ this->OutSec->Entsize = this->Entsize = sizeof(Elf_Versym);
+ // At the moment of june 2016 GNU docs does not mention that sh_link field
+ // should be set, but Sun docs do. Also readelf relies on this field.
+ this->OutSec->Link = this->Link = In<ELFT>::DynSymTab->OutSec->SectionIndex;
+}
+
+template <class ELFT> size_t VersionTableSection<ELFT>::getSize() const {
+ return sizeof(Elf_Versym) * (In<ELFT>::DynSymTab->getSymbols().size() + 1);
+}
+
+template <class ELFT> void VersionTableSection<ELFT>::writeTo(uint8_t *Buf) {
+ auto *OutVersym = reinterpret_cast<Elf_Versym *>(Buf) + 1;
+ for (const SymbolTableEntry &S : In<ELFT>::DynSymTab->getSymbols()) {
+ OutVersym->vs_index = S.Symbol->symbol()->VersionId;
+ ++OutVersym;
+ }
+}
+
+template <class ELFT> bool VersionTableSection<ELFT>::empty() const {
+ return !In<ELFT>::VerDef && In<ELFT>::VerNeed->empty();
+}
+
+template <class ELFT>
+VersionNeedSection<ELFT>::VersionNeedSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
+ ".gnu.version_r") {
+ // Identifiers in verneed section start at 2 because 0 and 1 are reserved
+ // for VER_NDX_LOCAL and VER_NDX_GLOBAL.
+ // First identifiers are reserved by verdef section if it exist.
+ NextIndex = getVerDefNum() + 1;
+}
+
+template <class ELFT>
+void VersionNeedSection<ELFT>::addSymbol(SharedSymbol<ELFT> *SS) {
+ if (!SS->Verdef) {
+ SS->symbol()->VersionId = VER_NDX_GLOBAL;
+ return;
+ }
+ SharedFile<ELFT> *F = SS->file();
+ // If we don't already know that we need an Elf_Verneed for this DSO, prepare
+ // to create one by adding it to our needed list and creating a dynstr entry
+ // for the soname.
+ if (F->VerdefMap.empty())
+ Needed.push_back({F, In<ELFT>::DynStrTab->addString(F->getSoName())});
+ typename SharedFile<ELFT>::NeededVer &NV = F->VerdefMap[SS->Verdef];
+ // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef,
+ // prepare to create one by allocating a version identifier and creating a
+ // dynstr entry for the version name.
+ if (NV.Index == 0) {
+ NV.StrTab = In<ELFT>::DynStrTab->addString(
+ SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name);
+ NV.Index = NextIndex++;
+ }
+ SS->symbol()->VersionId = NV.Index;
+}
+
+template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *Buf) {
+ // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
+ auto *Verneed = reinterpret_cast<Elf_Verneed *>(Buf);
+ auto *Vernaux = reinterpret_cast<Elf_Vernaux *>(Verneed + Needed.size());
+
+ for (std::pair<SharedFile<ELFT> *, size_t> &P : Needed) {
+ // Create an Elf_Verneed for this DSO.
+ Verneed->vn_version = 1;
+ Verneed->vn_cnt = P.first->VerdefMap.size();
+ Verneed->vn_file = P.second;
+ Verneed->vn_aux =
+ reinterpret_cast<char *>(Vernaux) - reinterpret_cast<char *>(Verneed);
+ Verneed->vn_next = sizeof(Elf_Verneed);
+ ++Verneed;
+
+ // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over
+ // VerdefMap, which will only contain references to needed version
+ // definitions. Each Elf_Vernaux is based on the information contained in
+ // the Elf_Verdef in the source DSO. This loop iterates over a std::map of
+ // pointers, but is deterministic because the pointers refer to Elf_Verdef
+ // data structures within a single input file.
+ for (auto &NV : P.first->VerdefMap) {
+ Vernaux->vna_hash = NV.first->vd_hash;
+ Vernaux->vna_flags = 0;
+ Vernaux->vna_other = NV.second.Index;
+ Vernaux->vna_name = NV.second.StrTab;
+ Vernaux->vna_next = sizeof(Elf_Vernaux);
+ ++Vernaux;
+ }
+
+ Vernaux[-1].vna_next = 0;
+ }
+ Verneed[-1].vn_next = 0;
+}
+
+template <class ELFT> void VersionNeedSection<ELFT>::finalize() {
+ this->OutSec->Link = this->Link = In<ELFT>::DynStrTab->OutSec->SectionIndex;
+ this->OutSec->Info = this->Info = Needed.size();
+}
+
+template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
+ unsigned Size = Needed.size() * sizeof(Elf_Verneed);
+ for (const std::pair<SharedFile<ELFT> *, size_t> &P : Needed)
+ Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux);
+ return Size;
+}
+
+template <class ELFT> bool VersionNeedSection<ELFT>::empty() const {
+ return getNeedNum() == 0;
+}
+
+template <class ELFT>
+MipsRldMapSection<ELFT>::MipsRldMapSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
+ sizeof(typename ELFT::uint), ".rld_map") {}
+
+template <class ELFT> void MipsRldMapSection<ELFT>::writeTo(uint8_t *Buf) {
+ // Apply filler from linker script.
+ uint64_t Filler = Script<ELFT>::X->getFiller(this->Name);
+ Filler = (Filler << 32) | Filler;
+ memcpy(Buf, &Filler, getSize());
+}
+
+template <class ELFT>
+ARMExidxSentinelSection<ELFT>::ARMExidxSentinelSection()
+ : SyntheticSection<ELFT>(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
+ sizeof(typename ELFT::uint), ".ARM.exidx") {}
+
+// Write a terminating sentinel entry to the end of the .ARM.exidx table.
+// This section will have been sorted last in the .ARM.exidx table.
+// This table entry will have the form:
+// | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND |
+template <class ELFT>
+void ARMExidxSentinelSection<ELFT>::writeTo(uint8_t *Buf) {
+ // Get the InputSection before us, we are by definition last
+ auto RI = cast<OutputSection<ELFT>>(this->OutSec)->Sections.rbegin();
+ InputSection<ELFT> *LE = *(++RI);
+ InputSection<ELFT> *LC = cast<InputSection<ELFT>>(LE->getLinkOrderDep());
+ uint64_t S = LC->OutSec->Addr + LC->getOffset(LC->getSize());
+ uint64_t P = this->getVA();
+ Target->relocateOne(Buf, R_ARM_PREL31, S - P);
+ write32le(Buf + 4, 0x1);
+}
+
+template InputSection<ELF32LE> *elf::createCommonSection();
+template InputSection<ELF32BE> *elf::createCommonSection();
+template InputSection<ELF64LE> *elf::createCommonSection();
+template InputSection<ELF64BE> *elf::createCommonSection();
+
+template InputSection<ELF32LE> *elf::createInterpSection();
+template InputSection<ELF32BE> *elf::createInterpSection();
+template InputSection<ELF64LE> *elf::createInterpSection();
+template InputSection<ELF64BE> *elf::createInterpSection();
+
+template MergeInputSection<ELF32LE> *elf::createCommentSection();
+template MergeInputSection<ELF32BE> *elf::createCommentSection();
+template MergeInputSection<ELF64LE> *elf::createCommentSection();
+template MergeInputSection<ELF64BE> *elf::createCommentSection();
+
+template class elf::MipsAbiFlagsSection<ELF32LE>;
+template class elf::MipsAbiFlagsSection<ELF32BE>;
+template class elf::MipsAbiFlagsSection<ELF64LE>;
+template class elf::MipsAbiFlagsSection<ELF64BE>;
+
+template class elf::MipsOptionsSection<ELF32LE>;
+template class elf::MipsOptionsSection<ELF32BE>;
+template class elf::MipsOptionsSection<ELF64LE>;
+template class elf::MipsOptionsSection<ELF64BE>;
+
+template class elf::MipsReginfoSection<ELF32LE>;
+template class elf::MipsReginfoSection<ELF32BE>;
+template class elf::MipsReginfoSection<ELF64LE>;
+template class elf::MipsReginfoSection<ELF64BE>;
+
+template class elf::BuildIdSection<ELF32LE>;
+template class elf::BuildIdSection<ELF32BE>;
+template class elf::BuildIdSection<ELF64LE>;
+template class elf::BuildIdSection<ELF64BE>;
+
+template class elf::GotSection<ELF32LE>;
+template class elf::GotSection<ELF32BE>;
+template class elf::GotSection<ELF64LE>;
+template class elf::GotSection<ELF64BE>;
+
+template class elf::MipsGotSection<ELF32LE>;
+template class elf::MipsGotSection<ELF32BE>;
+template class elf::MipsGotSection<ELF64LE>;
+template class elf::MipsGotSection<ELF64BE>;
+
+template class elf::GotPltSection<ELF32LE>;
+template class elf::GotPltSection<ELF32BE>;
+template class elf::GotPltSection<ELF64LE>;
+template class elf::GotPltSection<ELF64BE>;
+
+template class elf::IgotPltSection<ELF32LE>;
+template class elf::IgotPltSection<ELF32BE>;
+template class elf::IgotPltSection<ELF64LE>;
+template class elf::IgotPltSection<ELF64BE>;
+
+template class elf::StringTableSection<ELF32LE>;
+template class elf::StringTableSection<ELF32BE>;
+template class elf::StringTableSection<ELF64LE>;
+template class elf::StringTableSection<ELF64BE>;
+
+template class elf::DynamicSection<ELF32LE>;
+template class elf::DynamicSection<ELF32BE>;
+template class elf::DynamicSection<ELF64LE>;
+template class elf::DynamicSection<ELF64BE>;
+
+template class elf::RelocationSection<ELF32LE>;
+template class elf::RelocationSection<ELF32BE>;
+template class elf::RelocationSection<ELF64LE>;
+template class elf::RelocationSection<ELF64BE>;
+
+template class elf::SymbolTableSection<ELF32LE>;
+template class elf::SymbolTableSection<ELF32BE>;
+template class elf::SymbolTableSection<ELF64LE>;
+template class elf::SymbolTableSection<ELF64BE>;
+
+template class elf::GnuHashTableSection<ELF32LE>;
+template class elf::GnuHashTableSection<ELF32BE>;
+template class elf::GnuHashTableSection<ELF64LE>;
+template class elf::GnuHashTableSection<ELF64BE>;
+
+template class elf::HashTableSection<ELF32LE>;
+template class elf::HashTableSection<ELF32BE>;
+template class elf::HashTableSection<ELF64LE>;
+template class elf::HashTableSection<ELF64BE>;
+
+template class elf::PltSection<ELF32LE>;
+template class elf::PltSection<ELF32BE>;
+template class elf::PltSection<ELF64LE>;
+template class elf::PltSection<ELF64BE>;
+
+template class elf::IpltSection<ELF32LE>;
+template class elf::IpltSection<ELF32BE>;
+template class elf::IpltSection<ELF64LE>;
+template class elf::IpltSection<ELF64BE>;
+
+template class elf::GdbIndexSection<ELF32LE>;
+template class elf::GdbIndexSection<ELF32BE>;
+template class elf::GdbIndexSection<ELF64LE>;
+template class elf::GdbIndexSection<ELF64BE>;
+
+template class elf::EhFrameHeader<ELF32LE>;
+template class elf::EhFrameHeader<ELF32BE>;
+template class elf::EhFrameHeader<ELF64LE>;
+template class elf::EhFrameHeader<ELF64BE>;
+
+template class elf::VersionTableSection<ELF32LE>;
+template class elf::VersionTableSection<ELF32BE>;
+template class elf::VersionTableSection<ELF64LE>;
+template class elf::VersionTableSection<ELF64BE>;
+
+template class elf::VersionNeedSection<ELF32LE>;
+template class elf::VersionNeedSection<ELF32BE>;
+template class elf::VersionNeedSection<ELF64LE>;
+template class elf::VersionNeedSection<ELF64BE>;
+
+template class elf::VersionDefinitionSection<ELF32LE>;
+template class elf::VersionDefinitionSection<ELF32BE>;
+template class elf::VersionDefinitionSection<ELF64LE>;
+template class elf::VersionDefinitionSection<ELF64BE>;
+
+template class elf::MipsRldMapSection<ELF32LE>;
+template class elf::MipsRldMapSection<ELF32BE>;
+template class elf::MipsRldMapSection<ELF64LE>;
+template class elf::MipsRldMapSection<ELF64BE>;
+
+template class elf::ARMExidxSentinelSection<ELF32LE>;
+template class elf::ARMExidxSentinelSection<ELF32BE>;
+template class elf::ARMExidxSentinelSection<ELF64LE>;
+template class elf::ARMExidxSentinelSection<ELF64BE>;