summaryrefslogtreecommitdiff
path: root/clang/lib/AST/DeclCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/DeclCXX.cpp')
-rw-r--r--clang/lib/AST/DeclCXX.cpp3097
1 files changed, 3097 insertions, 0 deletions
diff --git a/clang/lib/AST/DeclCXX.cpp b/clang/lib/AST/DeclCXX.cpp
new file mode 100644
index 000000000000..12ec44fa0279
--- /dev/null
+++ b/clang/lib/AST/DeclCXX.cpp
@@ -0,0 +1,3097 @@
+//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/ASTUnresolvedSet.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/LambdaCapture.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/ODRHash.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/UnresolvedSet.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/Specifiers.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+void AccessSpecDecl::anchor() {}
+
+AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) AccessSpecDecl(EmptyShell());
+}
+
+void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
+ ExternalASTSource *Source = C.getExternalSource();
+ assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
+ assert(Source && "getFromExternalSource with no external source");
+
+ for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
+ I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
+ reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
+ Impl.Decls.setLazy(false);
+}
+
+CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
+ : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
+ Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
+ Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
+ HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
+ HasPrivateFields(false), HasProtectedFields(false),
+ HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
+ HasOnlyCMembers(true), HasInClassInitializer(false),
+ HasUninitializedReferenceMember(false), HasUninitializedFields(false),
+ HasInheritedConstructor(false), HasInheritedAssignment(false),
+ NeedOverloadResolutionForCopyConstructor(false),
+ NeedOverloadResolutionForMoveConstructor(false),
+ NeedOverloadResolutionForMoveAssignment(false),
+ NeedOverloadResolutionForDestructor(false),
+ DefaultedCopyConstructorIsDeleted(false),
+ DefaultedMoveConstructorIsDeleted(false),
+ DefaultedMoveAssignmentIsDeleted(false),
+ DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
+ HasTrivialSpecialMembersForCall(SMF_All),
+ DeclaredNonTrivialSpecialMembers(0),
+ DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
+ HasConstexprNonCopyMoveConstructor(false),
+ HasDefaultedDefaultConstructor(false),
+ DefaultedDefaultConstructorIsConstexpr(true),
+ HasConstexprDefaultConstructor(false),
+ DefaultedDestructorIsConstexpr(true),
+ HasNonLiteralTypeFieldsOrBases(false),
+ UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
+ ImplicitCopyConstructorCanHaveConstParamForVBase(true),
+ ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
+ ImplicitCopyAssignmentHasConstParam(true),
+ HasDeclaredCopyConstructorWithConstParam(false),
+ HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
+ IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
+ HasODRHash(false), Definition(D) {}
+
+CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
+ return Bases.get(Definition->getASTContext().getExternalSource());
+}
+
+CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
+ return VBases.get(Definition->getASTContext().getExternalSource());
+}
+
+CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ CXXRecordDecl *PrevDecl)
+ : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
+ DefinitionData(PrevDecl ? PrevDecl->DefinitionData
+ : nullptr) {}
+
+CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
+ DeclContext *DC, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ CXXRecordDecl *PrevDecl,
+ bool DelayTypeCreation) {
+ auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
+ PrevDecl);
+ R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
+
+ // FIXME: DelayTypeCreation seems like such a hack
+ if (!DelayTypeCreation)
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+CXXRecordDecl *
+CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
+ TypeSourceInfo *Info, SourceLocation Loc,
+ bool Dependent, bool IsGeneric,
+ LambdaCaptureDefault CaptureDefault) {
+ auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
+ nullptr, nullptr);
+ R->setBeingDefined(true);
+ R->DefinitionData =
+ new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
+ CaptureDefault);
+ R->setMayHaveOutOfDateDef(false);
+ R->setImplicit(true);
+ C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
+ return R;
+}
+
+CXXRecordDecl *
+CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
+ auto *R = new (C, ID) CXXRecordDecl(
+ CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
+ nullptr, nullptr);
+ R->setMayHaveOutOfDateDef(false);
+ return R;
+}
+
+/// Determine whether a class has a repeated base class. This is intended for
+/// use when determining if a class is standard-layout, so makes no attempt to
+/// handle virtual bases.
+static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
+ llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
+ SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
+ while (!WorkList.empty()) {
+ const CXXRecordDecl *RD = WorkList.pop_back_val();
+ for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
+ if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
+ if (!SeenBaseTypes.insert(B).second)
+ return true;
+ WorkList.push_back(B);
+ }
+ }
+ }
+ return false;
+}
+
+void
+CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
+ unsigned NumBases) {
+ ASTContext &C = getASTContext();
+
+ if (!data().Bases.isOffset() && data().NumBases > 0)
+ C.Deallocate(data().getBases());
+
+ if (NumBases) {
+ if (!C.getLangOpts().CPlusPlus17) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is [...] a class with [...] no base classes [...].
+ data().Aggregate = false;
+ }
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+ }
+
+ // The set of seen virtual base types.
+ llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
+
+ // The virtual bases of this class.
+ SmallVector<const CXXBaseSpecifier *, 8> VBases;
+
+ data().Bases = new(C) CXXBaseSpecifier [NumBases];
+ data().NumBases = NumBases;
+ for (unsigned i = 0; i < NumBases; ++i) {
+ data().getBases()[i] = *Bases[i];
+ // Keep track of inherited vbases for this base class.
+ const CXXBaseSpecifier *Base = Bases[i];
+ QualType BaseType = Base->getType();
+ // Skip dependent types; we can't do any checking on them now.
+ if (BaseType->isDependentType())
+ continue;
+ auto *BaseClassDecl =
+ cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
+
+ // C++2a [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has all non-static data members and bit-fields in the class and
+ // its base classes first declared in the same class
+ if (BaseClassDecl->data().HasBasesWithFields ||
+ !BaseClassDecl->field_empty()) {
+ if (data().HasBasesWithFields)
+ // Two bases have members or bit-fields: not standard-layout.
+ data().IsStandardLayout = false;
+ data().HasBasesWithFields = true;
+ }
+
+ // C++11 [class]p7:
+ // A standard-layout class is a class that:
+ // -- [...] has [...] at most one base class with non-static data
+ // members
+ if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
+ BaseClassDecl->hasDirectFields()) {
+ if (data().HasBasesWithNonStaticDataMembers)
+ data().IsCXX11StandardLayout = false;
+ data().HasBasesWithNonStaticDataMembers = true;
+ }
+
+ if (!BaseClassDecl->isEmpty()) {
+ // C++14 [meta.unary.prop]p4:
+ // T is a class type [...] with [...] no base class B for which
+ // is_empty<B>::value is false.
+ data().Empty = false;
+ }
+
+ // C++1z [dcl.init.agg]p1:
+ // An aggregate is a class with [...] no private or protected base classes
+ if (Base->getAccessSpecifier() != AS_public)
+ data().Aggregate = false;
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ if (BaseClassDecl->isPolymorphic()) {
+ data().Polymorphic = true;
+
+ // An aggregate is a class with [...] no virtual functions.
+ data().Aggregate = false;
+ }
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no non-standard-layout base classes
+ if (!BaseClassDecl->isStandardLayout())
+ data().IsStandardLayout = false;
+ if (!BaseClassDecl->isCXX11StandardLayout())
+ data().IsCXX11StandardLayout = false;
+
+ // Record if this base is the first non-literal field or base.
+ if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ // Now go through all virtual bases of this base and add them.
+ for (const auto &VBase : BaseClassDecl->vbases()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
+ VBases.push_back(&VBase);
+
+ // C++11 [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each [...] virtual base class B of X
+ // has a copy constructor whose first parameter is of type
+ // 'const B&' or 'const volatile B&' [...]
+ if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
+ if (!VBaseDecl->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
+
+ // C++1z [dcl.init.agg]p1:
+ // An aggregate is a class with [...] no virtual base classes
+ data().Aggregate = false;
+ }
+ }
+
+ if (Base->isVirtual()) {
+ // Add this base if it's not already in the list.
+ if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
+ VBases.push_back(Base);
+
+ // C++14 [meta.unary.prop] is_empty:
+ // T is a class type, but not a union type, with ... no virtual base
+ // classes
+ data().Empty = false;
+
+ // C++1z [dcl.init.agg]p1:
+ // An aggregate is a class with [...] no virtual base classes
+ data().Aggregate = false;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor, copy/move constructor, or copy/move assignment
+ // operator for a class X] is trivial [...] if:
+ // -- class X has [...] no virtual base classes
+ data().HasTrivialSpecialMembers &= SMF_Destructor;
+ data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has [...] no virtual base classes
+ data().IsStandardLayout = false;
+ data().IsCXX11StandardLayout = false;
+
+ // C++20 [dcl.constexpr]p3:
+ // In the definition of a constexpr function [...]
+ // -- if the function is a constructor or destructor,
+ // its class shall not have any virtual base classes
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+ data().DefaultedDestructorIsConstexpr = false;
+
+ // C++1z [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each potentially constructed subobject
+ // has a copy constructor whose first parameter is of type
+ // 'const B&' or 'const volatile B&' [...]
+ if (!BaseClassDecl->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
+ } else {
+ // C++ [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- all the direct base classes of its class have trivial default
+ // constructors.
+ if (!BaseClassDecl->hasTrivialDefaultConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- the constructor selected to copy/move each direct base class
+ // subobject is trivial, and
+ if (!BaseClassDecl->hasTrivialCopyConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
+
+ if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
+
+ // If the base class doesn't have a simple move constructor, we'll eagerly
+ // declare it and perform overload resolution to determine which function
+ // it actually calls. If it does have a simple move constructor, this
+ // check is correct.
+ if (!BaseClassDecl->hasTrivialMoveConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
+
+ if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- the assignment operator selected to copy/move each direct base
+ // class subobject is trivial, and
+ if (!BaseClassDecl->hasTrivialCopyAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
+ // If the base class doesn't have a simple move assignment, we'll eagerly
+ // declare it and perform overload resolution to determine which function
+ // it actually calls. If it does have a simple move assignment, this
+ // check is correct.
+ if (!BaseClassDecl->hasTrivialMoveAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
+
+ // C++11 [class.ctor]p6:
+ // If that user-written default constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // default constructor is constexpr.
+ if (!BaseClassDecl->hasConstexprDefaultConstructor())
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++1z [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each potentially constructed subobject
+ // has a copy constructor whose first parameter is of type
+ // 'const B&' or 'const volatile B&' [...]
+ if (!BaseClassDecl->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
+ }
+
+ // C++ [class.ctor]p3:
+ // A destructor is trivial if all the direct base classes of its class
+ // have trivial destructors.
+ if (!BaseClassDecl->hasTrivialDestructor())
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+
+ if (!BaseClassDecl->hasTrivialDestructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
+
+ if (!BaseClassDecl->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+
+ // C++11 [class.copy]p18:
+ // The implicitly-declared copy assignment oeprator for a class X will
+ // have the form 'X& X::operator=(const X&)' if each direct base class B
+ // of X has a copy assignment operator whose parameter is of type 'const
+ // B&', 'const volatile B&', or 'B' [...]
+ if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
+ data().ImplicitCopyAssignmentHasConstParam = false;
+
+ // A class has an Objective-C object member if... or any of its bases
+ // has an Objective-C object member.
+ if (BaseClassDecl->hasObjectMember())
+ setHasObjectMember(true);
+
+ if (BaseClassDecl->hasVolatileMember())
+ setHasVolatileMember(true);
+
+ if (BaseClassDecl->getArgPassingRestrictions() ==
+ RecordDecl::APK_CanNeverPassInRegs)
+ setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
+
+ // Keep track of the presence of mutable fields.
+ if (BaseClassDecl->hasMutableFields()) {
+ data().HasMutableFields = true;
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ }
+
+ if (BaseClassDecl->hasUninitializedReferenceMember())
+ data().HasUninitializedReferenceMember = true;
+
+ if (!BaseClassDecl->allowConstDefaultInit())
+ data().HasUninitializedFields = true;
+
+ addedClassSubobject(BaseClassDecl);
+ }
+
+ // C++2a [class]p7:
+ // A class S is a standard-layout class if it:
+ // -- has at most one base class subobject of any given type
+ //
+ // Note that we only need to check this for classes with more than one base
+ // class. If there's only one base class, and it's standard layout, then
+ // we know there are no repeated base classes.
+ if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
+ data().IsStandardLayout = false;
+
+ if (VBases.empty()) {
+ data().IsParsingBaseSpecifiers = false;
+ return;
+ }
+
+ // Create base specifier for any direct or indirect virtual bases.
+ data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
+ data().NumVBases = VBases.size();
+ for (int I = 0, E = VBases.size(); I != E; ++I) {
+ QualType Type = VBases[I]->getType();
+ if (!Type->isDependentType())
+ addedClassSubobject(Type->getAsCXXRecordDecl());
+ data().getVBases()[I] = *VBases[I];
+ }
+
+ data().IsParsingBaseSpecifiers = false;
+}
+
+unsigned CXXRecordDecl::getODRHash() const {
+ assert(hasDefinition() && "ODRHash only for records with definitions");
+
+ // Previously calculated hash is stored in DefinitionData.
+ if (DefinitionData->HasODRHash)
+ return DefinitionData->ODRHash;
+
+ // Only calculate hash on first call of getODRHash per record.
+ ODRHash Hash;
+ Hash.AddCXXRecordDecl(getDefinition());
+ DefinitionData->HasODRHash = true;
+ DefinitionData->ODRHash = Hash.CalculateHash();
+
+ return DefinitionData->ODRHash;
+}
+
+void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
+ // C++11 [class.copy]p11:
+ // A defaulted copy/move constructor for a class X is defined as
+ // deleted if X has:
+ // -- a direct or virtual base class B that cannot be copied/moved [...]
+ // -- a non-static data member of class type M (or array thereof)
+ // that cannot be copied or moved [...]
+ if (!Subobj->hasSimpleCopyConstructor())
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ if (!Subobj->hasSimpleMoveConstructor())
+ data().NeedOverloadResolutionForMoveConstructor = true;
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined as
+ // deleted if X has:
+ // -- a direct or virtual base class B that cannot be copied/moved [...]
+ // -- a non-static data member of class type M (or array thereof)
+ // that cannot be copied or moved [...]
+ if (!Subobj->hasSimpleMoveAssignment())
+ data().NeedOverloadResolutionForMoveAssignment = true;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
+ // A defaulted [ctor or dtor] for a class X is defined as
+ // deleted if X has:
+ // -- any direct or virtual base class [...] has a type with a destructor
+ // that is deleted or inaccessible from the defaulted [ctor or dtor].
+ // -- any non-static data member has a type with a destructor
+ // that is deleted or inaccessible from the defaulted [ctor or dtor].
+ if (!Subobj->hasSimpleDestructor()) {
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ data().NeedOverloadResolutionForMoveConstructor = true;
+ data().NeedOverloadResolutionForDestructor = true;
+ }
+
+ // C++2a [dcl.constexpr]p4:
+ // The definition of a constexpr destructor [shall] satisfy the
+ // following requirement:
+ // -- for every subobject of class type or (possibly multi-dimensional)
+ // array thereof, that class type shall have a constexpr destructor
+ if (!Subobj->hasConstexprDestructor())
+ data().DefaultedDestructorIsConstexpr = false;
+}
+
+bool CXXRecordDecl::hasConstexprDestructor() const {
+ auto *Dtor = getDestructor();
+ return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
+}
+
+bool CXXRecordDecl::hasAnyDependentBases() const {
+ if (!isDependentContext())
+ return false;
+
+ return !forallBases([](const CXXRecordDecl *) { return true; });
+}
+
+bool CXXRecordDecl::isTriviallyCopyable() const {
+ // C++0x [class]p5:
+ // A trivially copyable class is a class that:
+ // -- has no non-trivial copy constructors,
+ if (hasNonTrivialCopyConstructor()) return false;
+ // -- has no non-trivial move constructors,
+ if (hasNonTrivialMoveConstructor()) return false;
+ // -- has no non-trivial copy assignment operators,
+ if (hasNonTrivialCopyAssignment()) return false;
+ // -- has no non-trivial move assignment operators, and
+ if (hasNonTrivialMoveAssignment()) return false;
+ // -- has a trivial destructor.
+ if (!hasTrivialDestructor()) return false;
+
+ return true;
+}
+
+void CXXRecordDecl::markedVirtualFunctionPure() {
+ // C++ [class.abstract]p2:
+ // A class is abstract if it has at least one pure virtual function.
+ data().Abstract = true;
+}
+
+bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
+ ASTContext &Ctx, const CXXRecordDecl *XFirst) {
+ if (!getNumBases())
+ return false;
+
+ llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
+ llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
+ SmallVector<const CXXRecordDecl*, 8> WorkList;
+
+ // Visit a type that we have determined is an element of M(S).
+ auto Visit = [&](const CXXRecordDecl *RD) -> bool {
+ RD = RD->getCanonicalDecl();
+
+ // C++2a [class]p8:
+ // A class S is a standard-layout class if it [...] has no element of the
+ // set M(S) of types as a base class.
+ //
+ // If we find a subobject of an empty type, it might also be a base class,
+ // so we'll need to walk the base classes to check.
+ if (!RD->data().HasBasesWithFields) {
+ // Walk the bases the first time, stopping if we find the type. Build a
+ // set of them so we don't need to walk them again.
+ if (Bases.empty()) {
+ bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
+ Base = Base->getCanonicalDecl();
+ if (RD == Base)
+ return false;
+ Bases.insert(Base);
+ return true;
+ });
+ if (RDIsBase)
+ return true;
+ } else {
+ if (Bases.count(RD))
+ return true;
+ }
+ }
+
+ if (M.insert(RD).second)
+ WorkList.push_back(RD);
+ return false;
+ };
+
+ if (Visit(XFirst))
+ return true;
+
+ while (!WorkList.empty()) {
+ const CXXRecordDecl *X = WorkList.pop_back_val();
+
+ // FIXME: We don't check the bases of X. That matches the standard, but
+ // that sure looks like a wording bug.
+
+ // -- If X is a non-union class type with a non-static data member
+ // [recurse to each field] that is either of zero size or is the
+ // first non-static data member of X
+ // -- If X is a union type, [recurse to union members]
+ bool IsFirstField = true;
+ for (auto *FD : X->fields()) {
+ // FIXME: Should we really care about the type of the first non-static
+ // data member of a non-union if there are preceding unnamed bit-fields?
+ if (FD->isUnnamedBitfield())
+ continue;
+
+ if (!IsFirstField && !FD->isZeroSize(Ctx))
+ continue;
+
+ // -- If X is n array type, [visit the element type]
+ QualType T = Ctx.getBaseElementType(FD->getType());
+ if (auto *RD = T->getAsCXXRecordDecl())
+ if (Visit(RD))
+ return true;
+
+ if (!X->isUnion())
+ IsFirstField = false;
+ }
+ }
+
+ return false;
+}
+
+bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
+ assert(isLambda() && "not a lambda");
+
+ // C++2a [expr.prim.lambda.capture]p11:
+ // The closure type associated with a lambda-expression has no default
+ // constructor if the lambda-expression has a lambda-capture and a
+ // defaulted default constructor otherwise. It has a deleted copy
+ // assignment operator if the lambda-expression has a lambda-capture and
+ // defaulted copy and move assignment operators otherwise.
+ //
+ // C++17 [expr.prim.lambda]p21:
+ // The closure type associated with a lambda-expression has no default
+ // constructor and a deleted copy assignment operator.
+ if (getLambdaCaptureDefault() != LCD_None ||
+ getLambdaData().NumCaptures != 0)
+ return false;
+ return getASTContext().getLangOpts().CPlusPlus2a;
+}
+
+void CXXRecordDecl::addedMember(Decl *D) {
+ if (!D->isImplicit() &&
+ !isa<FieldDecl>(D) &&
+ !isa<IndirectFieldDecl>(D) &&
+ (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
+ cast<TagDecl>(D)->getTagKind() == TTK_Interface))
+ data().HasOnlyCMembers = false;
+
+ // Ignore friends and invalid declarations.
+ if (D->getFriendObjectKind() || D->isInvalidDecl())
+ return;
+
+ auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
+ if (FunTmpl)
+ D = FunTmpl->getTemplatedDecl();
+
+ // FIXME: Pass NamedDecl* to addedMember?
+ Decl *DUnderlying = D;
+ if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
+ DUnderlying = ND->getUnderlyingDecl();
+ if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
+ DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
+ }
+
+ if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isVirtual()) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with [...] no virtual functions.
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class...
+ data().PlainOldData = false;
+
+ // C++14 [meta.unary.prop]p4:
+ // T is a class type [...] with [...] no virtual member functions...
+ data().Empty = false;
+
+ // C++ [class.virtual]p1:
+ // A class that declares or inherits a virtual function is called a
+ // polymorphic class.
+ data().Polymorphic = true;
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
+ // A [default constructor, copy/move constructor, or copy/move
+ // assignment operator for a class X] is trivial [...] if:
+ // -- class X has no virtual functions [...]
+ data().HasTrivialSpecialMembers &= SMF_Destructor;
+ data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that: [...]
+ // -- has no virtual functions
+ data().IsStandardLayout = false;
+ data().IsCXX11StandardLayout = false;
+ }
+ }
+
+ // Notify the listener if an implicit member was added after the definition
+ // was completed.
+ if (!isBeingDefined() && D->isImplicit())
+ if (ASTMutationListener *L = getASTMutationListener())
+ L->AddedCXXImplicitMember(data().Definition, D);
+
+ // The kind of special member this declaration is, if any.
+ unsigned SMKind = 0;
+
+ // Handle constructors.
+ if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (!Constructor->isImplicit()) {
+ // Note that we have a user-declared constructor.
+ data().UserDeclaredConstructor = true;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class [...]
+ // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
+ // type is technically an aggregate in C++0x since it wouldn't be in 03.
+ data().PlainOldData = false;
+ }
+
+ if (Constructor->isDefaultConstructor()) {
+ SMKind |= SMF_DefaultConstructor;
+
+ if (Constructor->isUserProvided())
+ data().UserProvidedDefaultConstructor = true;
+ if (Constructor->isConstexpr())
+ data().HasConstexprDefaultConstructor = true;
+ if (Constructor->isDefaulted())
+ data().HasDefaultedDefaultConstructor = true;
+ }
+
+ if (!FunTmpl) {
+ unsigned Quals;
+ if (Constructor->isCopyConstructor(Quals)) {
+ SMKind |= SMF_CopyConstructor;
+
+ if (Quals & Qualifiers::Const)
+ data().HasDeclaredCopyConstructorWithConstParam = true;
+ } else if (Constructor->isMoveConstructor())
+ SMKind |= SMF_MoveConstructor;
+ }
+
+ // C++11 [dcl.init.aggr]p1: DR1518
+ // An aggregate is an array or a class with no user-provided [or]
+ // explicit [...] constructors
+ // C++20 [dcl.init.aggr]p1:
+ // An aggregate is an array or a class with no user-declared [...]
+ // constructors
+ if (getASTContext().getLangOpts().CPlusPlus2a
+ ? !Constructor->isImplicit()
+ : (Constructor->isUserProvided() || Constructor->isExplicit()))
+ data().Aggregate = false;
+ }
+
+ // Handle constructors, including those inherited from base classes.
+ if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
+ // Record if we see any constexpr constructors which are neither copy
+ // nor move constructors.
+ // C++1z [basic.types]p10:
+ // [...] has at least one constexpr constructor or constructor template
+ // (possibly inherited from a base class) that is not a copy or move
+ // constructor [...]
+ if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
+ data().HasConstexprNonCopyMoveConstructor = true;
+ }
+
+ // Handle destructors.
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
+ SMKind |= SMF_Destructor;
+
+ if (DD->isUserProvided())
+ data().HasIrrelevantDestructor = false;
+ // If the destructor is explicitly defaulted and not trivial or not public
+ // or if the destructor is deleted, we clear HasIrrelevantDestructor in
+ // finishedDefaultedOrDeletedMember.
+
+ // C++11 [class.dtor]p5:
+ // A destructor is trivial if [...] the destructor is not virtual.
+ if (DD->isVirtual()) {
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+ data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
+ }
+ }
+
+ // Handle member functions.
+ if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isCopyAssignmentOperator()) {
+ SMKind |= SMF_CopyAssignment;
+
+ const auto *ParamTy =
+ Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
+ if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
+ data().HasDeclaredCopyAssignmentWithConstParam = true;
+ }
+
+ if (Method->isMoveAssignmentOperator())
+ SMKind |= SMF_MoveAssignment;
+
+ // Keep the list of conversion functions up-to-date.
+ if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
+ // FIXME: We use the 'unsafe' accessor for the access specifier here,
+ // because Sema may not have set it yet. That's really just a misdesign
+ // in Sema. However, LLDB *will* have set the access specifier correctly,
+ // and adds declarations after the class is technically completed,
+ // so completeDefinition()'s overriding of the access specifiers doesn't
+ // work.
+ AccessSpecifier AS = Conversion->getAccessUnsafe();
+
+ if (Conversion->getPrimaryTemplate()) {
+ // We don't record specializations.
+ } else {
+ ASTContext &Ctx = getASTContext();
+ ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
+ NamedDecl *Primary =
+ FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
+ if (Primary->getPreviousDecl())
+ Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
+ Primary, AS);
+ else
+ Conversions.addDecl(Ctx, Primary, AS);
+ }
+ }
+
+ if (SMKind) {
+ // If this is the first declaration of a special member, we no longer have
+ // an implicit trivial special member.
+ data().HasTrivialSpecialMembers &=
+ data().DeclaredSpecialMembers | ~SMKind;
+ data().HasTrivialSpecialMembersForCall &=
+ data().DeclaredSpecialMembers | ~SMKind;
+
+ if (!Method->isImplicit() && !Method->isUserProvided()) {
+ // This method is user-declared but not user-provided. We can't work out
+ // whether it's trivial yet (not until we get to the end of the class).
+ // We'll handle this method in finishedDefaultedOrDeletedMember.
+ } else if (Method->isTrivial()) {
+ data().HasTrivialSpecialMembers |= SMKind;
+ data().HasTrivialSpecialMembersForCall |= SMKind;
+ } else if (Method->isTrivialForCall()) {
+ data().HasTrivialSpecialMembersForCall |= SMKind;
+ data().DeclaredNonTrivialSpecialMembers |= SMKind;
+ } else {
+ data().DeclaredNonTrivialSpecialMembers |= SMKind;
+ // If this is a user-provided function, do not set
+ // DeclaredNonTrivialSpecialMembersForCall here since we don't know
+ // yet whether the method would be considered non-trivial for the
+ // purpose of calls (attribute "trivial_abi" can be dropped from the
+ // class later, which can change the special method's triviality).
+ if (!Method->isUserProvided())
+ data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
+ }
+
+ // Note when we have declared a declared special member, and suppress the
+ // implicit declaration of this special member.
+ data().DeclaredSpecialMembers |= SMKind;
+
+ if (!Method->isImplicit()) {
+ data().UserDeclaredSpecialMembers |= SMKind;
+
+ // C++03 [class]p4:
+ // A POD-struct is an aggregate class that has [...] no user-defined
+ // copy assignment operator and no user-defined destructor.
+ //
+ // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
+ // aggregates could not have any constructors, clear it even for an
+ // explicitly defaulted or deleted constructor.
+ // type is technically an aggregate in C++0x since it wouldn't be in 03.
+ //
+ // Also, a user-declared move assignment operator makes a class non-POD.
+ // This is an extension in C++03.
+ data().PlainOldData = false;
+ }
+ }
+
+ return;
+ }
+
+ // Handle non-static data members.
+ if (const auto *Field = dyn_cast<FieldDecl>(D)) {
+ ASTContext &Context = getASTContext();
+
+ // C++2a [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has all non-static data members and bit-fields in the class and
+ // its base classes first declared in the same class
+ if (data().HasBasesWithFields)
+ data().IsStandardLayout = false;
+
+ // C++ [class.bit]p2:
+ // A declaration for a bit-field that omits the identifier declares an
+ // unnamed bit-field. Unnamed bit-fields are not members and cannot be
+ // initialized.
+ if (Field->isUnnamedBitfield()) {
+ // C++ [meta.unary.prop]p4: [LWG2358]
+ // T is a class type [...] with [...] no unnamed bit-fields of non-zero
+ // length
+ if (data().Empty && !Field->isZeroLengthBitField(Context) &&
+ Context.getLangOpts().getClangABICompat() >
+ LangOptions::ClangABI::Ver6)
+ data().Empty = false;
+ return;
+ }
+
+ // C++11 [class]p7:
+ // A standard-layout class is a class that:
+ // -- either has no non-static data members in the most derived class
+ // [...] or has no base classes with non-static data members
+ if (data().HasBasesWithNonStaticDataMembers)
+ data().IsCXX11StandardLayout = false;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...] no
+ // private or protected non-static data members (clause 11).
+ //
+ // A POD must be an aggregate.
+ if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
+ data().Aggregate = false;
+ data().PlainOldData = false;
+ }
+
+ // Track whether this is the first field. We use this when checking
+ // whether the class is standard-layout below.
+ bool IsFirstField = !data().HasPrivateFields &&
+ !data().HasProtectedFields && !data().HasPublicFields;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has the same access control for all non-static data members,
+ switch (D->getAccess()) {
+ case AS_private: data().HasPrivateFields = true; break;
+ case AS_protected: data().HasProtectedFields = true; break;
+ case AS_public: data().HasPublicFields = true; break;
+ case AS_none: llvm_unreachable("Invalid access specifier");
+ };
+ if ((data().HasPrivateFields + data().HasProtectedFields +
+ data().HasPublicFields) > 1) {
+ data().IsStandardLayout = false;
+ data().IsCXX11StandardLayout = false;
+ }
+
+ // Keep track of the presence of mutable fields.
+ if (Field->isMutable()) {
+ data().HasMutableFields = true;
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ }
+
+ // C++11 [class.union]p8, DR1460:
+ // If X is a union, a non-static data member of X that is not an anonymous
+ // union is a variant member of X.
+ if (isUnion() && !Field->isAnonymousStructOrUnion())
+ data().HasVariantMembers = true;
+
+ // C++0x [class]p9:
+ // A POD struct is a class that is both a trivial class and a
+ // standard-layout class, and has no non-static data members of type
+ // non-POD struct, non-POD union (or array of such types).
+ //
+ // Automatic Reference Counting: the presence of a member of Objective-C pointer type
+ // that does not explicitly have no lifetime makes the class a non-POD.
+ QualType T = Context.getBaseElementType(Field->getType());
+ if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
+ if (T.hasNonTrivialObjCLifetime()) {
+ // Objective-C Automatic Reference Counting:
+ // If a class has a non-static data member of Objective-C pointer
+ // type (or array thereof), it is a non-POD type and its
+ // default constructor (if any), copy constructor, move constructor,
+ // copy assignment operator, move assignment operator, and destructor are
+ // non-trivial.
+ setHasObjectMember(true);
+ struct DefinitionData &Data = data();
+ Data.PlainOldData = false;
+ Data.HasTrivialSpecialMembers = 0;
+
+ // __strong or __weak fields do not make special functions non-trivial
+ // for the purpose of calls.
+ Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
+ if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
+ data().HasTrivialSpecialMembersForCall = 0;
+
+ // Structs with __weak fields should never be passed directly.
+ if (LT == Qualifiers::OCL_Weak)
+ setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
+
+ Data.HasIrrelevantDestructor = false;
+
+ if (isUnion()) {
+ data().DefaultedCopyConstructorIsDeleted = true;
+ data().DefaultedMoveConstructorIsDeleted = true;
+ data().DefaultedMoveAssignmentIsDeleted = true;
+ data().DefaultedDestructorIsDeleted = true;
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ data().NeedOverloadResolutionForMoveConstructor = true;
+ data().NeedOverloadResolutionForMoveAssignment = true;
+ data().NeedOverloadResolutionForDestructor = true;
+ }
+ } else if (!Context.getLangOpts().ObjCAutoRefCount) {
+ setHasObjectMember(true);
+ }
+ } else if (!T.isCXX98PODType(Context))
+ data().PlainOldData = false;
+
+ if (T->isReferenceType()) {
+ if (!Field->hasInClassInitializer())
+ data().HasUninitializedReferenceMember = true;
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type [...] reference,
+ data().IsStandardLayout = false;
+ data().IsCXX11StandardLayout = false;
+
+ // C++1z [class.copy.ctor]p10:
+ // A defaulted copy constructor for a class X is defined as deleted if X has:
+ // -- a non-static data member of rvalue reference type
+ if (T->isRValueReferenceType())
+ data().DefaultedCopyConstructorIsDeleted = true;
+ }
+
+ if (!Field->hasInClassInitializer() && !Field->isMutable()) {
+ if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
+ if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
+ data().HasUninitializedFields = true;
+ } else {
+ data().HasUninitializedFields = true;
+ }
+ }
+
+ // Record if this field is the first non-literal or volatile field or base.
+ if (!T->isLiteralType(Context) || T.isVolatileQualified())
+ data().HasNonLiteralTypeFieldsOrBases = true;
+
+ if (Field->hasInClassInitializer() ||
+ (Field->isAnonymousStructOrUnion() &&
+ Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
+ data().HasInClassInitializer = true;
+
+ // C++11 [class]p5:
+ // A default constructor is trivial if [...] no non-static data member
+ // of its class has a brace-or-equal-initializer.
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++11 [dcl.init.aggr]p1:
+ // An aggregate is a [...] class with [...] no
+ // brace-or-equal-initializers for non-static data members.
+ //
+ // This rule was removed in C++14.
+ if (!getASTContext().getLangOpts().CPlusPlus14)
+ data().Aggregate = false;
+
+ // C++11 [class]p10:
+ // A POD struct is [...] a trivial class.
+ data().PlainOldData = false;
+ }
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined
+ // as deleted if X has:
+ // -- a non-static data member of reference type
+ if (T->isReferenceType())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+
+ // Bitfields of length 0 are also zero-sized, but we already bailed out for
+ // those because they are always unnamed.
+ bool IsZeroSize = Field->isZeroSize(Context);
+
+ if (const auto *RecordTy = T->getAs<RecordType>()) {
+ auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
+ if (FieldRec->getDefinition()) {
+ addedClassSubobject(FieldRec);
+
+ // We may need to perform overload resolution to determine whether a
+ // field can be moved if it's const or volatile qualified.
+ if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
+ // We need to care about 'const' for the copy constructor because an
+ // implicit copy constructor might be declared with a non-const
+ // parameter.
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ data().NeedOverloadResolutionForMoveConstructor = true;
+ data().NeedOverloadResolutionForMoveAssignment = true;
+ }
+
+ // C++11 [class.ctor]p5, C++11 [class.copy]p11:
+ // A defaulted [special member] for a class X is defined as
+ // deleted if:
+ // -- X is a union-like class that has a variant member with a
+ // non-trivial [corresponding special member]
+ if (isUnion()) {
+ if (FieldRec->hasNonTrivialCopyConstructor())
+ data().DefaultedCopyConstructorIsDeleted = true;
+ if (FieldRec->hasNonTrivialMoveConstructor())
+ data().DefaultedMoveConstructorIsDeleted = true;
+ if (FieldRec->hasNonTrivialMoveAssignment())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+ if (FieldRec->hasNonTrivialDestructor())
+ data().DefaultedDestructorIsDeleted = true;
+ }
+
+ // For an anonymous union member, our overload resolution will perform
+ // overload resolution for its members.
+ if (Field->isAnonymousStructOrUnion()) {
+ data().NeedOverloadResolutionForCopyConstructor |=
+ FieldRec->data().NeedOverloadResolutionForCopyConstructor;
+ data().NeedOverloadResolutionForMoveConstructor |=
+ FieldRec->data().NeedOverloadResolutionForMoveConstructor;
+ data().NeedOverloadResolutionForMoveAssignment |=
+ FieldRec->data().NeedOverloadResolutionForMoveAssignment;
+ data().NeedOverloadResolutionForDestructor |=
+ FieldRec->data().NeedOverloadResolutionForDestructor;
+ }
+
+ // C++0x [class.ctor]p5:
+ // A default constructor is trivial [...] if:
+ // -- for all the non-static data members of its class that are of
+ // class type (or array thereof), each such class has a trivial
+ // default constructor.
+ if (!FieldRec->hasTrivialDefaultConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
+
+ // C++0x [class.copy]p13:
+ // A copy/move constructor for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the constructor selected to copy/move that
+ // member is trivial;
+ if (!FieldRec->hasTrivialCopyConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
+
+ if (!FieldRec->hasTrivialCopyConstructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
+
+ // If the field doesn't have a simple move constructor, we'll eagerly
+ // declare the move constructor for this class and we'll decide whether
+ // it's trivial then.
+ if (!FieldRec->hasTrivialMoveConstructor())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
+
+ if (!FieldRec->hasTrivialMoveConstructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
+
+ // C++0x [class.copy]p27:
+ // A copy/move assignment operator for class X is trivial if [...]
+ // [...]
+ // -- for each non-static data member of X that is of class type (or
+ // an array thereof), the assignment operator selected to
+ // copy/move that member is trivial;
+ if (!FieldRec->hasTrivialCopyAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
+ // If the field doesn't have a simple move assignment, we'll eagerly
+ // declare the move assignment for this class and we'll decide whether
+ // it's trivial then.
+ if (!FieldRec->hasTrivialMoveAssignment())
+ data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
+
+ if (!FieldRec->hasTrivialDestructor())
+ data().HasTrivialSpecialMembers &= ~SMF_Destructor;
+ if (!FieldRec->hasTrivialDestructorForCall())
+ data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
+ if (!FieldRec->hasIrrelevantDestructor())
+ data().HasIrrelevantDestructor = false;
+ if (FieldRec->hasObjectMember())
+ setHasObjectMember(true);
+ if (FieldRec->hasVolatileMember())
+ setHasVolatileMember(true);
+ if (FieldRec->getArgPassingRestrictions() ==
+ RecordDecl::APK_CanNeverPassInRegs)
+ setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
+
+ // C++0x [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no non-static data members of type non-standard-layout
+ // class (or array of such types) [...]
+ if (!FieldRec->isStandardLayout())
+ data().IsStandardLayout = false;
+ if (!FieldRec->isCXX11StandardLayout())
+ data().IsCXX11StandardLayout = false;
+
+ // C++2a [class]p7:
+ // A standard-layout class is a class that:
+ // [...]
+ // -- has no element of the set M(S) of types as a base class.
+ if (data().IsStandardLayout &&
+ (isUnion() || IsFirstField || IsZeroSize) &&
+ hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
+ data().IsStandardLayout = false;
+
+ // C++11 [class]p7:
+ // A standard-layout class is a class that:
+ // -- has no base classes of the same type as the first non-static
+ // data member
+ if (data().IsCXX11StandardLayout && IsFirstField) {
+ // FIXME: We should check all base classes here, not just direct
+ // base classes.
+ for (const auto &BI : bases()) {
+ if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
+ data().IsCXX11StandardLayout = false;
+ break;
+ }
+ }
+ }
+
+ // Keep track of the presence of mutable fields.
+ if (FieldRec->hasMutableFields()) {
+ data().HasMutableFields = true;
+ data().NeedOverloadResolutionForCopyConstructor = true;
+ }
+
+ // C++11 [class.copy]p13:
+ // If the implicitly-defined constructor would satisfy the
+ // requirements of a constexpr constructor, the implicitly-defined
+ // constructor is constexpr.
+ // C++11 [dcl.constexpr]p4:
+ // -- every constructor involved in initializing non-static data
+ // members [...] shall be a constexpr constructor
+ if (!Field->hasInClassInitializer() &&
+ !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
+ // The standard requires any in-class initializer to be a constant
+ // expression. We consider this to be a defect.
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++11 [class.copy]p8:
+ // The implicitly-declared copy constructor for a class X will have
+ // the form 'X::X(const X&)' if each potentially constructed subobject
+ // of a class type M (or array thereof) has a copy constructor whose
+ // first parameter is of type 'const M&' or 'const volatile M&'.
+ if (!FieldRec->hasCopyConstructorWithConstParam())
+ data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
+
+ // C++11 [class.copy]p18:
+ // The implicitly-declared copy assignment oeprator for a class X will
+ // have the form 'X& X::operator=(const X&)' if [...] for all the
+ // non-static data members of X that are of a class type M (or array
+ // thereof), each such class type has a copy assignment operator whose
+ // parameter is of type 'const M&', 'const volatile M&' or 'M'.
+ if (!FieldRec->hasCopyAssignmentWithConstParam())
+ data().ImplicitCopyAssignmentHasConstParam = false;
+
+ if (FieldRec->hasUninitializedReferenceMember() &&
+ !Field->hasInClassInitializer())
+ data().HasUninitializedReferenceMember = true;
+
+ // C++11 [class.union]p8, DR1460:
+ // a non-static data member of an anonymous union that is a member of
+ // X is also a variant member of X.
+ if (FieldRec->hasVariantMembers() &&
+ Field->isAnonymousStructOrUnion())
+ data().HasVariantMembers = true;
+ }
+ } else {
+ // Base element type of field is a non-class type.
+ if (!T->isLiteralType(Context) ||
+ (!Field->hasInClassInitializer() && !isUnion() &&
+ !Context.getLangOpts().CPlusPlus2a))
+ data().DefaultedDefaultConstructorIsConstexpr = false;
+
+ // C++11 [class.copy]p23:
+ // A defaulted copy/move assignment operator for a class X is defined
+ // as deleted if X has:
+ // -- a non-static data member of const non-class type (or array
+ // thereof)
+ if (T.isConstQualified())
+ data().DefaultedMoveAssignmentIsDeleted = true;
+ }
+
+ // C++14 [meta.unary.prop]p4:
+ // T is a class type [...] with [...] no non-static data members other
+ // than subobjects of zero size
+ if (data().Empty && !IsZeroSize)
+ data().Empty = false;
+ }
+
+ // Handle using declarations of conversion functions.
+ if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
+ if (Shadow->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName) {
+ ASTContext &Ctx = getASTContext();
+ data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
+ }
+ }
+
+ if (const auto *Using = dyn_cast<UsingDecl>(D)) {
+ if (Using->getDeclName().getNameKind() ==
+ DeclarationName::CXXConstructorName) {
+ data().HasInheritedConstructor = true;
+ // C++1z [dcl.init.aggr]p1:
+ // An aggregate is [...] a class [...] with no inherited constructors
+ data().Aggregate = false;
+ }
+
+ if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
+ data().HasInheritedAssignment = true;
+ }
+}
+
+void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
+ assert(!D->isImplicit() && !D->isUserProvided());
+
+ // The kind of special member this declaration is, if any.
+ unsigned SMKind = 0;
+
+ if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (Constructor->isDefaultConstructor()) {
+ SMKind |= SMF_DefaultConstructor;
+ if (Constructor->isConstexpr())
+ data().HasConstexprDefaultConstructor = true;
+ }
+ if (Constructor->isCopyConstructor())
+ SMKind |= SMF_CopyConstructor;
+ else if (Constructor->isMoveConstructor())
+ SMKind |= SMF_MoveConstructor;
+ else if (Constructor->isConstexpr())
+ // We may now know that the constructor is constexpr.
+ data().HasConstexprNonCopyMoveConstructor = true;
+ } else if (isa<CXXDestructorDecl>(D)) {
+ SMKind |= SMF_Destructor;
+ if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
+ data().HasIrrelevantDestructor = false;
+ } else if (D->isCopyAssignmentOperator())
+ SMKind |= SMF_CopyAssignment;
+ else if (D->isMoveAssignmentOperator())
+ SMKind |= SMF_MoveAssignment;
+
+ // Update which trivial / non-trivial special members we have.
+ // addedMember will have skipped this step for this member.
+ if (D->isTrivial())
+ data().HasTrivialSpecialMembers |= SMKind;
+ else
+ data().DeclaredNonTrivialSpecialMembers |= SMKind;
+}
+
+void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
+ unsigned SMKind = 0;
+
+ if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ if (Constructor->isCopyConstructor())
+ SMKind = SMF_CopyConstructor;
+ else if (Constructor->isMoveConstructor())
+ SMKind = SMF_MoveConstructor;
+ } else if (isa<CXXDestructorDecl>(D))
+ SMKind = SMF_Destructor;
+
+ if (D->isTrivialForCall())
+ data().HasTrivialSpecialMembersForCall |= SMKind;
+ else
+ data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
+}
+
+bool CXXRecordDecl::isCLike() const {
+ if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
+ !TemplateOrInstantiation.isNull())
+ return false;
+ if (!hasDefinition())
+ return true;
+
+ return isPOD() && data().HasOnlyCMembers;
+}
+
+bool CXXRecordDecl::isGenericLambda() const {
+ if (!isLambda()) return false;
+ return getLambdaData().IsGenericLambda;
+}
+
+#ifndef NDEBUG
+static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
+ for (auto *D : R)
+ if (!declaresSameEntity(D, R.front()))
+ return false;
+ return true;
+}
+#endif
+
+static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
+ if (!RD.isLambda()) return nullptr;
+ DeclarationName Name =
+ RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
+ DeclContext::lookup_result Calls = RD.lookup(Name);
+
+ assert(!Calls.empty() && "Missing lambda call operator!");
+ assert(allLookupResultsAreTheSame(Calls) &&
+ "More than one lambda call operator!");
+ return Calls.front();
+}
+
+FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
+ NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
+ return dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
+}
+
+CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
+ NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
+
+ if (CallOp == nullptr)
+ return nullptr;
+
+ if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
+ return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
+
+ return cast<CXXMethodDecl>(CallOp);
+}
+
+CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
+ if (!isLambda()) return nullptr;
+ DeclarationName Name =
+ &getASTContext().Idents.get(getLambdaStaticInvokerName());
+ DeclContext::lookup_result Invoker = lookup(Name);
+ if (Invoker.empty()) return nullptr;
+ assert(allLookupResultsAreTheSame(Invoker) &&
+ "More than one static invoker operator!");
+ NamedDecl *InvokerFun = Invoker.front();
+ if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun))
+ return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
+
+ return cast<CXXMethodDecl>(InvokerFun);
+}
+
+void CXXRecordDecl::getCaptureFields(
+ llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
+ FieldDecl *&ThisCapture) const {
+ Captures.clear();
+ ThisCapture = nullptr;
+
+ LambdaDefinitionData &Lambda = getLambdaData();
+ RecordDecl::field_iterator Field = field_begin();
+ for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
+ C != CEnd; ++C, ++Field) {
+ if (C->capturesThis())
+ ThisCapture = *Field;
+ else if (C->capturesVariable())
+ Captures[C->getCapturedVar()] = *Field;
+ }
+ assert(Field == field_end());
+}
+
+TemplateParameterList *
+CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
+ if (!isGenericLambda()) return nullptr;
+ CXXMethodDecl *CallOp = getLambdaCallOperator();
+ if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
+ return Tmpl->getTemplateParameters();
+ return nullptr;
+}
+
+ArrayRef<NamedDecl *>
+CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
+ TemplateParameterList *List = getGenericLambdaTemplateParameterList();
+ if (!List)
+ return {};
+
+ assert(std::is_partitioned(List->begin(), List->end(),
+ [](const NamedDecl *D) { return !D->isImplicit(); })
+ && "Explicit template params should be ordered before implicit ones");
+
+ const auto ExplicitEnd = llvm::partition_point(
+ *List, [](const NamedDecl *D) { return !D->isImplicit(); });
+ return llvm::makeArrayRef(List->begin(), ExplicitEnd);
+}
+
+Decl *CXXRecordDecl::getLambdaContextDecl() const {
+ assert(isLambda() && "Not a lambda closure type!");
+ ExternalASTSource *Source = getParentASTContext().getExternalSource();
+ return getLambdaData().ContextDecl.get(Source);
+}
+
+static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
+ QualType T =
+ cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
+ ->getConversionType();
+ return Context.getCanonicalType(T);
+}
+
+/// Collect the visible conversions of a base class.
+///
+/// \param Record a base class of the class we're considering
+/// \param InVirtual whether this base class is a virtual base (or a base
+/// of a virtual base)
+/// \param Access the access along the inheritance path to this base
+/// \param ParentHiddenTypes the conversions provided by the inheritors
+/// of this base
+/// \param Output the set to which to add conversions from non-virtual bases
+/// \param VOutput the set to which to add conversions from virtual bases
+/// \param HiddenVBaseCs the set of conversions which were hidden in a
+/// virtual base along some inheritance path
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ bool InVirtual,
+ AccessSpecifier Access,
+ const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
+ ASTUnresolvedSet &Output,
+ UnresolvedSetImpl &VOutput,
+ llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
+ // The set of types which have conversions in this class or its
+ // subclasses. As an optimization, we don't copy the derived set
+ // unless it might change.
+ const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
+
+ // Collect the direct conversions and figure out which conversions
+ // will be hidden in the subclasses.
+ CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
+ CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
+ if (ConvI != ConvE) {
+ HiddenTypesBuffer = ParentHiddenTypes;
+ HiddenTypes = &HiddenTypesBuffer;
+
+ for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
+ CanQualType ConvType(GetConversionType(Context, I.getDecl()));
+ bool Hidden = ParentHiddenTypes.count(ConvType);
+ if (!Hidden)
+ HiddenTypesBuffer.insert(ConvType);
+
+ // If this conversion is hidden and we're in a virtual base,
+ // remember that it's hidden along some inheritance path.
+ if (Hidden && InVirtual)
+ HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
+
+ // If this conversion isn't hidden, add it to the appropriate output.
+ else if (!Hidden) {
+ AccessSpecifier IAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccess());
+
+ if (InVirtual)
+ VOutput.addDecl(I.getDecl(), IAccess);
+ else
+ Output.addDecl(Context, I.getDecl(), IAccess);
+ }
+ }
+ }
+
+ // Collect information recursively from any base classes.
+ for (const auto &I : Record->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ AccessSpecifier BaseAccess
+ = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
+ bool BaseInVirtual = InVirtual || I.isVirtual();
+
+ auto *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
+ *HiddenTypes, Output, VOutput, HiddenVBaseCs);
+ }
+}
+
+/// Collect the visible conversions of a class.
+///
+/// This would be extremely straightforward if it weren't for virtual
+/// bases. It might be worth special-casing that, really.
+static void CollectVisibleConversions(ASTContext &Context,
+ CXXRecordDecl *Record,
+ ASTUnresolvedSet &Output) {
+ // The collection of all conversions in virtual bases that we've
+ // found. These will be added to the output as long as they don't
+ // appear in the hidden-conversions set.
+ UnresolvedSet<8> VBaseCs;
+
+ // The set of conversions in virtual bases that we've determined to
+ // be hidden.
+ llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
+
+ // The set of types hidden by classes derived from this one.
+ llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
+
+ // Go ahead and collect the direct conversions and add them to the
+ // hidden-types set.
+ CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
+ CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
+ Output.append(Context, ConvI, ConvE);
+ for (; ConvI != ConvE; ++ConvI)
+ HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
+
+ // Recursively collect conversions from base classes.
+ for (const auto &I : Record->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT) continue;
+
+ CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
+ I.isVirtual(), I.getAccessSpecifier(),
+ HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
+ }
+
+ // Add any unhidden conversions provided by virtual bases.
+ for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
+ I != E; ++I) {
+ if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
+ Output.addDecl(Context, I.getDecl(), I.getAccess());
+ }
+}
+
+/// getVisibleConversionFunctions - get all conversion functions visible
+/// in current class; including conversion function templates.
+llvm::iterator_range<CXXRecordDecl::conversion_iterator>
+CXXRecordDecl::getVisibleConversionFunctions() {
+ ASTContext &Ctx = getASTContext();
+
+ ASTUnresolvedSet *Set;
+ if (bases_begin() == bases_end()) {
+ // If root class, all conversions are visible.
+ Set = &data().Conversions.get(Ctx);
+ } else {
+ Set = &data().VisibleConversions.get(Ctx);
+ // If visible conversion list is not evaluated, evaluate it.
+ if (!data().ComputedVisibleConversions) {
+ CollectVisibleConversions(Ctx, this, *Set);
+ data().ComputedVisibleConversions = true;
+ }
+ }
+ return llvm::make_range(Set->begin(), Set->end());
+}
+
+void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
+ // This operation is O(N) but extremely rare. Sema only uses it to
+ // remove UsingShadowDecls in a class that were followed by a direct
+ // declaration, e.g.:
+ // class A : B {
+ // using B::operator int;
+ // operator int();
+ // };
+ // This is uncommon by itself and even more uncommon in conjunction
+ // with sufficiently large numbers of directly-declared conversions
+ // that asymptotic behavior matters.
+
+ ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
+ for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
+ if (Convs[I].getDecl() == ConvDecl) {
+ Convs.erase(I);
+ assert(llvm::find(Convs, ConvDecl) == Convs.end() &&
+ "conversion was found multiple times in unresolved set");
+ return;
+ }
+ }
+
+ llvm_unreachable("conversion not found in set!");
+}
+
+CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
+
+ return nullptr;
+}
+
+MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
+ return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
+}
+
+void
+CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrInstantiation.isNull() &&
+ "Previous template or instantiation?");
+ assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
+ TemplateOrInstantiation
+ = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
+}
+
+ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
+ return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
+}
+
+void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
+ TemplateOrInstantiation = Template;
+}
+
+TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
+ if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
+ if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ return;
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ return;
+ }
+
+ llvm_unreachable("Not a class template or member class specialization");
+}
+
+const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
+ auto GetDefinitionOrSelf =
+ [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
+ if (auto *Def = D->getDefinition())
+ return Def;
+ return D;
+ };
+
+ // If it's a class template specialization, find the template or partial
+ // specialization from which it was instantiated.
+ if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ auto From = TD->getInstantiatedFrom();
+ if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
+ while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
+ if (NewCTD->isMemberSpecialization())
+ break;
+ CTD = NewCTD;
+ }
+ return GetDefinitionOrSelf(CTD->getTemplatedDecl());
+ }
+ if (auto *CTPSD =
+ From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
+ while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
+ if (NewCTPSD->isMemberSpecialization())
+ break;
+ CTPSD = NewCTPSD;
+ }
+ return GetDefinitionOrSelf(CTPSD);
+ }
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
+ const CXXRecordDecl *RD = this;
+ while (auto *NewRD = RD->getInstantiatedFromMemberClass())
+ RD = NewRD;
+ return GetDefinitionOrSelf(RD);
+ }
+ }
+
+ assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
+ "couldn't find pattern for class template instantiation");
+ return nullptr;
+}
+
+CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
+ ASTContext &Context = getASTContext();
+ QualType ClassType = Context.getTypeDeclType(this);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+
+ DeclContext::lookup_result R = lookup(Name);
+
+ return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
+}
+
+bool CXXRecordDecl::isAnyDestructorNoReturn() const {
+ // Destructor is noreturn.
+ if (const CXXDestructorDecl *Destructor = getDestructor())
+ if (Destructor->isNoReturn())
+ return true;
+
+ // Check base classes destructor for noreturn.
+ for (const auto &Base : bases())
+ if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
+ if (RD->isAnyDestructorNoReturn())
+ return true;
+
+ // Check fields for noreturn.
+ for (const auto *Field : fields())
+ if (const CXXRecordDecl *RD =
+ Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
+ if (RD->isAnyDestructorNoReturn())
+ return true;
+
+ // All destructors are not noreturn.
+ return false;
+}
+
+static bool isDeclContextInNamespace(const DeclContext *DC) {
+ while (!DC->isTranslationUnit()) {
+ if (DC->isNamespace())
+ return true;
+ DC = DC->getParent();
+ }
+ return false;
+}
+
+bool CXXRecordDecl::isInterfaceLike() const {
+ assert(hasDefinition() && "checking for interface-like without a definition");
+ // All __interfaces are inheritently interface-like.
+ if (isInterface())
+ return true;
+
+ // Interface-like types cannot have a user declared constructor, destructor,
+ // friends, VBases, conversion functions, or fields. Additionally, lambdas
+ // cannot be interface types.
+ if (isLambda() || hasUserDeclaredConstructor() ||
+ hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
+ getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
+ return false;
+
+ // No interface-like type can have a method with a definition.
+ for (const auto *const Method : methods())
+ if (Method->isDefined() && !Method->isImplicit())
+ return false;
+
+ // Check "Special" types.
+ const auto *Uuid = getAttr<UuidAttr>();
+ // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
+ // extern C++ block directly in the TU. These are only valid if in one
+ // of these two situations.
+ if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
+ !isDeclContextInNamespace(getDeclContext()) &&
+ ((getName() == "IUnknown" &&
+ Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
+ (getName() == "IDispatch" &&
+ Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
+ if (getNumBases() > 0)
+ return false;
+ return true;
+ }
+
+ // FIXME: Any access specifiers is supposed to make this no longer interface
+ // like.
+
+ // If this isn't a 'special' type, it must have a single interface-like base.
+ if (getNumBases() != 1)
+ return false;
+
+ const auto BaseSpec = *bases_begin();
+ if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
+ return false;
+ const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
+ if (Base->isInterface() || !Base->isInterfaceLike())
+ return false;
+ return true;
+}
+
+void CXXRecordDecl::completeDefinition() {
+ completeDefinition(nullptr);
+}
+
+void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
+ RecordDecl::completeDefinition();
+
+ // If the class may be abstract (but hasn't been marked as such), check for
+ // any pure final overriders.
+ if (mayBeAbstract()) {
+ CXXFinalOverriderMap MyFinalOverriders;
+ if (!FinalOverriders) {
+ getFinalOverriders(MyFinalOverriders);
+ FinalOverriders = &MyFinalOverriders;
+ }
+
+ bool Done = false;
+ for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
+ MEnd = FinalOverriders->end();
+ M != MEnd && !Done; ++M) {
+ for (OverridingMethods::iterator SO = M->second.begin(),
+ SOEnd = M->second.end();
+ SO != SOEnd && !Done; ++SO) {
+ assert(SO->second.size() > 0 &&
+ "All virtual functions have overriding virtual functions");
+
+ // C++ [class.abstract]p4:
+ // A class is abstract if it contains or inherits at least one
+ // pure virtual function for which the final overrider is pure
+ // virtual.
+ if (SO->second.front().Method->isPure()) {
+ data().Abstract = true;
+ Done = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // Set access bits correctly on the directly-declared conversions.
+ for (conversion_iterator I = conversion_begin(), E = conversion_end();
+ I != E; ++I)
+ I.setAccess((*I)->getAccess());
+}
+
+bool CXXRecordDecl::mayBeAbstract() const {
+ if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
+ isDependentContext())
+ return false;
+
+ for (const auto &B : bases()) {
+ const auto *BaseDecl =
+ cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
+ if (BaseDecl->isAbstract())
+ return true;
+ }
+
+ return false;
+}
+
+void CXXDeductionGuideDecl::anchor() {}
+
+bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
+ if ((getKind() != Other.getKind() ||
+ getKind() == ExplicitSpecKind::Unresolved)) {
+ if (getKind() == ExplicitSpecKind::Unresolved &&
+ Other.getKind() == ExplicitSpecKind::Unresolved) {
+ ODRHash SelfHash, OtherHash;
+ SelfHash.AddStmt(getExpr());
+ OtherHash.AddStmt(Other.getExpr());
+ return SelfHash.CalculateHash() == OtherHash.CalculateHash();
+ } else
+ return false;
+ }
+ return true;
+}
+
+ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
+ switch (Function->getDeclKind()) {
+ case Decl::Kind::CXXConstructor:
+ return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
+ case Decl::Kind::CXXConversion:
+ return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
+ case Decl::Kind::CXXDeductionGuide:
+ return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
+ default:
+ return {};
+ }
+}
+
+CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
+ ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
+ ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
+ TypeSourceInfo *TInfo, SourceLocation EndLocation) {
+ return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
+ TInfo, EndLocation);
+}
+
+CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) CXXDeductionGuideDecl(
+ C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
+ QualType(), nullptr, SourceLocation());
+}
+
+void CXXMethodDecl::anchor() {}
+
+bool CXXMethodDecl::isStatic() const {
+ const CXXMethodDecl *MD = getCanonicalDecl();
+
+ if (MD->getStorageClass() == SC_Static)
+ return true;
+
+ OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
+ return isStaticOverloadedOperator(OOK);
+}
+
+static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
+ const CXXMethodDecl *BaseMD) {
+ for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
+ if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
+ return true;
+ if (recursivelyOverrides(MD, BaseMD))
+ return true;
+ }
+ return false;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
+ bool MayBeBase) {
+ if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
+ return this;
+
+ // Lookup doesn't work for destructors, so handle them separately.
+ if (isa<CXXDestructorDecl>(this)) {
+ CXXMethodDecl *MD = RD->getDestructor();
+ if (MD) {
+ if (recursivelyOverrides(MD, this))
+ return MD;
+ if (MayBeBase && recursivelyOverrides(this, MD))
+ return MD;
+ }
+ return nullptr;
+ }
+
+ for (auto *ND : RD->lookup(getDeclName())) {
+ auto *MD = dyn_cast<CXXMethodDecl>(ND);
+ if (!MD)
+ continue;
+ if (recursivelyOverrides(MD, this))
+ return MD;
+ if (MayBeBase && recursivelyOverrides(this, MD))
+ return MD;
+ }
+
+ return nullptr;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
+ bool MayBeBase) {
+ if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
+ return MD;
+
+ for (const auto &I : RD->bases()) {
+ const RecordType *RT = I.getType()->getAs<RecordType>();
+ if (!RT)
+ continue;
+ const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
+ CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
+ if (T)
+ return T;
+ }
+
+ return nullptr;
+}
+
+CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC, bool isInline,
+ ConstexprSpecKind ConstexprKind,
+ SourceLocation EndLocation) {
+ return new (C, RD)
+ CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC,
+ isInline, ConstexprKind, EndLocation);
+}
+
+CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) CXXMethodDecl(
+ CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
+ QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation());
+}
+
+CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
+ bool IsAppleKext) {
+ assert(isVirtual() && "this method is expected to be virtual");
+
+ // When building with -fapple-kext, all calls must go through the vtable since
+ // the kernel linker can do runtime patching of vtables.
+ if (IsAppleKext)
+ return nullptr;
+
+ // If the member function is marked 'final', we know that it can't be
+ // overridden and can therefore devirtualize it unless it's pure virtual.
+ if (hasAttr<FinalAttr>())
+ return isPure() ? nullptr : this;
+
+ // If Base is unknown, we cannot devirtualize.
+ if (!Base)
+ return nullptr;
+
+ // If the base expression (after skipping derived-to-base conversions) is a
+ // class prvalue, then we can devirtualize.
+ Base = Base->getBestDynamicClassTypeExpr();
+ if (Base->isRValue() && Base->getType()->isRecordType())
+ return this;
+
+ // If we don't even know what we would call, we can't devirtualize.
+ const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
+ if (!BestDynamicDecl)
+ return nullptr;
+
+ // There may be a method corresponding to MD in a derived class.
+ CXXMethodDecl *DevirtualizedMethod =
+ getCorrespondingMethodInClass(BestDynamicDecl);
+
+ // If that method is pure virtual, we can't devirtualize. If this code is
+ // reached, the result would be UB, not a direct call to the derived class
+ // function, and we can't assume the derived class function is defined.
+ if (DevirtualizedMethod->isPure())
+ return nullptr;
+
+ // If that method is marked final, we can devirtualize it.
+ if (DevirtualizedMethod->hasAttr<FinalAttr>())
+ return DevirtualizedMethod;
+
+ // Similarly, if the class itself or its destructor is marked 'final',
+ // the class can't be derived from and we can therefore devirtualize the
+ // member function call.
+ if (BestDynamicDecl->hasAttr<FinalAttr>())
+ return DevirtualizedMethod;
+ if (const auto *dtor = BestDynamicDecl->getDestructor()) {
+ if (dtor->hasAttr<FinalAttr>())
+ return DevirtualizedMethod;
+ }
+
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
+ if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (VD->getType()->isRecordType())
+ // This is a record decl. We know the type and can devirtualize it.
+ return DevirtualizedMethod;
+
+ return nullptr;
+ }
+
+ // We can devirtualize calls on an object accessed by a class member access
+ // expression, since by C++11 [basic.life]p6 we know that it can't refer to
+ // a derived class object constructed in the same location.
+ if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
+ const ValueDecl *VD = ME->getMemberDecl();
+ return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
+ }
+
+ // Likewise for calls on an object accessed by a (non-reference) pointer to
+ // member access.
+ if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
+ if (BO->isPtrMemOp()) {
+ auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
+ if (MPT->getPointeeType()->isRecordType())
+ return DevirtualizedMethod;
+ }
+ }
+
+ // We can't devirtualize the call.
+ return nullptr;
+}
+
+bool CXXMethodDecl::isUsualDeallocationFunction(
+ SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
+ assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
+ if (getOverloadedOperator() != OO_Delete &&
+ getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // A template instance is never a usual deallocation function,
+ // regardless of its signature.
+ if (getPrimaryTemplate())
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // If a class T has a member deallocation function named operator delete
+ // with exactly one parameter, then that function is a usual (non-placement)
+ // deallocation function. [...]
+ if (getNumParams() == 1)
+ return true;
+ unsigned UsualParams = 1;
+
+ // C++ P0722:
+ // A destroying operator delete is a usual deallocation function if
+ // removing the std::destroying_delete_t parameter and changing the
+ // first parameter type from T* to void* results in the signature of
+ // a usual deallocation function.
+ if (isDestroyingOperatorDelete())
+ ++UsualParams;
+
+ // C++ <=14 [basic.stc.dynamic.deallocation]p2:
+ // [...] If class T does not declare such an operator delete but does
+ // declare a member deallocation function named operator delete with
+ // exactly two parameters, the second of which has type std::size_t (18.1),
+ // then this function is a usual deallocation function.
+ //
+ // C++17 says a usual deallocation function is one with the signature
+ // (void* [, size_t] [, std::align_val_t] [, ...])
+ // and all such functions are usual deallocation functions. It's not clear
+ // that allowing varargs functions was intentional.
+ ASTContext &Context = getASTContext();
+ if (UsualParams < getNumParams() &&
+ Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
+ Context.getSizeType()))
+ ++UsualParams;
+
+ if (UsualParams < getNumParams() &&
+ getParamDecl(UsualParams)->getType()->isAlignValT())
+ ++UsualParams;
+
+ if (UsualParams != getNumParams())
+ return false;
+
+ // In C++17 onwards, all potential usual deallocation functions are actual
+ // usual deallocation functions. Honor this behavior when post-C++14
+ // deallocation functions are offered as extensions too.
+ // FIXME(EricWF): Destrying Delete should be a language option. How do we
+ // handle when destroying delete is used prior to C++17?
+ if (Context.getLangOpts().CPlusPlus17 ||
+ Context.getLangOpts().AlignedAllocation ||
+ isDestroyingOperatorDelete())
+ return true;
+
+ // This function is a usual deallocation function if there are no
+ // single-parameter deallocation functions of the same kind.
+ DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
+ bool Result = true;
+ for (const auto *D : R) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getNumParams() == 1) {
+ PreventedBy.push_back(FD);
+ Result = false;
+ }
+ }
+ }
+ return Result;
+}
+
+bool CXXMethodDecl::isCopyAssignmentOperator() const {
+ // C++0x [class.copy]p17:
+ // A user-declared copy assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of
+ // type X, X&, const X&, volatile X& or const volatile X&.
+ if (/*operator=*/getOverloadedOperator() != OO_Equal ||
+ /*non-static*/ isStatic() ||
+ /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
+ getNumParams() != 1)
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
+ ParamType = Ref->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+bool CXXMethodDecl::isMoveAssignmentOperator() const {
+ // C++0x [class.copy]p19:
+ // A user-declared move assignment operator X::operator= is a non-static
+ // non-template member function of class X with exactly one parameter of type
+ // X&&, const X&&, volatile X&&, or const volatile X&&.
+ if (getOverloadedOperator() != OO_Equal || isStatic() ||
+ getPrimaryTemplate() || getDescribedFunctionTemplate() ||
+ getNumParams() != 1)
+ return false;
+
+ QualType ParamType = getParamDecl(0)->getType();
+ if (!isa<RValueReferenceType>(ParamType))
+ return false;
+ ParamType = ParamType->getPointeeType();
+
+ ASTContext &Context = getASTContext();
+ QualType ClassType
+ = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
+ return Context.hasSameUnqualifiedType(ClassType, ParamType);
+}
+
+void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
+ assert(MD->isCanonicalDecl() && "Method is not canonical!");
+ assert(!MD->getParent()->isDependentContext() &&
+ "Can't add an overridden method to a class template!");
+ assert(MD->isVirtual() && "Method is not virtual!");
+
+ getASTContext().addOverriddenMethod(this, MD);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return nullptr;
+ return getASTContext().overridden_methods_begin(this);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return nullptr;
+ return getASTContext().overridden_methods_end(this);
+}
+
+unsigned CXXMethodDecl::size_overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this)) return 0;
+ return getASTContext().overridden_methods_size(this);
+}
+
+CXXMethodDecl::overridden_method_range
+CXXMethodDecl::overridden_methods() const {
+ if (isa<CXXConstructorDecl>(this))
+ return overridden_method_range(nullptr, nullptr);
+ return getASTContext().overridden_methods(this);
+}
+
+static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
+ const CXXRecordDecl *Decl) {
+ QualType ClassTy = C.getTypeDeclType(Decl);
+ return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
+}
+
+QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
+ const CXXRecordDecl *Decl) {
+ ASTContext &C = Decl->getASTContext();
+ QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
+ return C.getPointerType(ObjectTy);
+}
+
+QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
+ const CXXRecordDecl *Decl) {
+ ASTContext &C = Decl->getASTContext();
+ return ::getThisObjectType(C, FPT, Decl);
+}
+
+QualType CXXMethodDecl::getThisType() const {
+ // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
+ // If the member function is declared const, the type of this is const X*,
+ // if the member function is declared volatile, the type of this is
+ // volatile X*, and if the member function is declared const volatile,
+ // the type of this is const volatile X*.
+ assert(isInstance() && "No 'this' for static methods!");
+
+ return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(),
+ getParent());
+}
+
+QualType CXXMethodDecl::getThisObjectType() const {
+ // Ditto getThisType.
+ assert(isInstance() && "No 'this' for static methods!");
+
+ return CXXMethodDecl::getThisObjectType(getType()->getAs<FunctionProtoType>(),
+ getParent());
+}
+
+bool CXXMethodDecl::hasInlineBody() const {
+ // If this function is a template instantiation, look at the template from
+ // which it was instantiated.
+ const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
+ if (!CheckFn)
+ CheckFn = this;
+
+ const FunctionDecl *fn;
+ return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
+ (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
+}
+
+bool CXXMethodDecl::isLambdaStaticInvoker() const {
+ const CXXRecordDecl *P = getParent();
+ if (P->isLambda()) {
+ if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
+ if (StaticInvoker == this) return true;
+ if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
+ return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
+ }
+ }
+ return false;
+}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo, bool IsVirtual,
+ SourceLocation L, Expr *Init,
+ SourceLocation R,
+ SourceLocation EllipsisLoc)
+ : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
+ IsWritten(false), SourceOrder(0) {}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ FieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrder(0) {}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ IndirectFieldDecl *Member,
+ SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
+ LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
+ IsWritten(false), SourceOrder(0) {}
+
+CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo,
+ SourceLocation L, Expr *Init,
+ SourceLocation R)
+ : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
+ IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
+
+int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
+ return Context.getAllocator()
+ .identifyKnownAlignedObject<CXXCtorInitializer>(this);
+}
+
+TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
+ else
+ return {};
+}
+
+const Type *CXXCtorInitializer::getBaseClass() const {
+ if (isBaseInitializer())
+ return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return nullptr;
+}
+
+SourceLocation CXXCtorInitializer::getSourceLocation() const {
+ if (isInClassMemberInitializer())
+ return getAnyMember()->getLocation();
+
+ if (isAnyMemberInitializer())
+ return getMemberLocation();
+
+ if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
+ return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
+
+ return {};
+}
+
+SourceRange CXXCtorInitializer::getSourceRange() const {
+ if (isInClassMemberInitializer()) {
+ FieldDecl *D = getAnyMember();
+ if (Expr *I = D->getInClassInitializer())
+ return I->getSourceRange();
+ return {};
+ }
+
+ return SourceRange(getSourceLocation(), getRParenLoc());
+}
+
+CXXConstructorDecl::CXXConstructorDecl(
+ ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
+ ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
+ ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited)
+ : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
+ SC_None, isInline, ConstexprKind, SourceLocation()) {
+ setNumCtorInitializers(0);
+ setInheritingConstructor(static_cast<bool>(Inherited));
+ setImplicit(isImplicitlyDeclared);
+ CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
+ if (Inherited)
+ *getTrailingObjects<InheritedConstructor>() = Inherited;
+ setExplicitSpecifier(ES);
+}
+
+void CXXConstructorDecl::anchor() {}
+
+CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID,
+ uint64_t AllocKind) {
+ bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
+ bool isInheritingConstructor =
+ static_cast<bool>(AllocKind & TAKInheritsConstructor);
+ unsigned Extra =
+ additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
+ isInheritingConstructor, hasTraillingExplicit);
+ auto *Result = new (C, ID, Extra)
+ CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
+ QualType(), nullptr, ExplicitSpecifier(), false, false,
+ CSK_unspecified, InheritedConstructor());
+ Result->setInheritingConstructor(isInheritingConstructor);
+ Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
+ hasTraillingExplicit;
+ Result->setExplicitSpecifier(ExplicitSpecifier());
+ return Result;
+}
+
+CXXConstructorDecl *CXXConstructorDecl::Create(
+ ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
+ ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
+ ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConstructorName &&
+ "Name must refer to a constructor");
+ unsigned Extra =
+ additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
+ Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
+ return new (C, RD, Extra)
+ CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline,
+ isImplicitlyDeclared, ConstexprKind, Inherited);
+}
+
+CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
+ return CtorInitializers.get(getASTContext().getExternalSource());
+}
+
+CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
+ assert(isDelegatingConstructor() && "Not a delegating constructor!");
+ Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
+ if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
+ return Construct->getConstructor();
+
+ return nullptr;
+}
+
+bool CXXConstructorDecl::isDefaultConstructor() const {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class
+ // X that can be called without an argument.
+ return (getNumParams() == 0) ||
+ (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
+}
+
+bool
+CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isLValueReferenceType();
+}
+
+bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
+ return isCopyOrMoveConstructor(TypeQuals) &&
+ getParamDecl(0)->getType()->isRValueReferenceType();
+}
+
+/// Determine whether this is a copy or move constructor.
+bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor
+ // if its first parameter is of type X&, const X&, volatile X& or
+ // const volatile X&, and either there are no other parameters
+ // or else all other parameters have default arguments (8.3.6).
+ // C++0x [class.copy]p3:
+ // A non-template constructor for class X is a move constructor if its
+ // first parameter is of type X&&, const X&&, volatile X&&, or
+ // const volatile X&&, and either there are no other parameters or else
+ // all other parameters have default arguments.
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() != nullptr) ||
+ (getDescribedFunctionTemplate() != nullptr))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ // Do we have a reference type?
+ const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
+ if (!ParamRefType)
+ return false;
+
+ // Is it a reference to our class type?
+ ASTContext &Context = getASTContext();
+
+ CanQualType PointeeType
+ = Context.getCanonicalType(ParamRefType->getPointeeType());
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (PointeeType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ // FIXME: other qualifiers?
+
+ // We have a copy or move constructor.
+ TypeQuals = PointeeType.getCVRQualifiers();
+ return true;
+}
+
+bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
+ // C++ [class.conv.ctor]p1:
+ // A constructor declared without the function-specifier explicit
+ // that can be called with a single parameter specifies a
+ // conversion from the type of its first parameter to the type of
+ // its class. Such a constructor is called a converting
+ // constructor.
+ if (isExplicit() && !AllowExplicit)
+ return false;
+
+ return (getNumParams() == 0 &&
+ getType()->castAs<FunctionProtoType>()->isVariadic()) ||
+ (getNumParams() == 1) ||
+ (getNumParams() > 1 &&
+ (getParamDecl(1)->hasDefaultArg() ||
+ getParamDecl(1)->isParameterPack()));
+}
+
+bool CXXConstructorDecl::isSpecializationCopyingObject() const {
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getDescribedFunctionTemplate() != nullptr))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ ASTContext &Context = getASTContext();
+ CanQualType ParamType = Context.getCanonicalType(Param->getType());
+
+ // Is it the same as our class type?
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (ParamType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ return true;
+}
+
+void CXXDestructorDecl::anchor() {}
+
+CXXDestructorDecl *
+CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID)
+ CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
+ QualType(), nullptr, false, false, CSK_unspecified);
+}
+
+CXXDestructorDecl *CXXDestructorDecl::Create(
+ ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXDestructorName &&
+ "Name must refer to a destructor");
+ return new (C, RD)
+ CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline,
+ isImplicitlyDeclared, ConstexprKind);
+}
+
+void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
+ auto *First = cast<CXXDestructorDecl>(getFirstDecl());
+ if (OD && !First->OperatorDelete) {
+ First->OperatorDelete = OD;
+ First->OperatorDeleteThisArg = ThisArg;
+ if (auto *L = getASTMutationListener())
+ L->ResolvedOperatorDelete(First, OD, ThisArg);
+ }
+}
+
+void CXXConversionDecl::anchor() {}
+
+CXXConversionDecl *
+CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) CXXConversionDecl(
+ C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
+ false, ExplicitSpecifier(), CSK_unspecified, SourceLocation());
+}
+
+CXXConversionDecl *CXXConversionDecl::Create(
+ ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
+ const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
+ bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
+ SourceLocation EndLocation) {
+ assert(NameInfo.getName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName &&
+ "Name must refer to a conversion function");
+ return new (C, RD)
+ CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES,
+ ConstexprKind, EndLocation);
+}
+
+bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
+ return isImplicit() && getParent()->isLambda() &&
+ getConversionType()->isBlockPointerType();
+}
+
+LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
+ SourceLocation LangLoc, LanguageIDs lang,
+ bool HasBraces)
+ : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
+ ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
+ setLanguage(lang);
+ LinkageSpecDeclBits.HasBraces = HasBraces;
+}
+
+void LinkageSpecDecl::anchor() {}
+
+LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation ExternLoc,
+ SourceLocation LangLoc,
+ LanguageIDs Lang,
+ bool HasBraces) {
+ return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
+}
+
+LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
+ SourceLocation(), lang_c, false);
+}
+
+void UsingDirectiveDecl::anchor() {}
+
+UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation NamespaceLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Used,
+ DeclContext *CommonAncestor) {
+ if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
+ Used = NS->getOriginalNamespace();
+ return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
+ IdentLoc, Used, CommonAncestor);
+}
+
+UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
+ SourceLocation(),
+ NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
+ if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
+ return NA->getNamespace();
+ return cast_or_null<NamespaceDecl>(NominatedNamespace);
+}
+
+NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
+ SourceLocation StartLoc, SourceLocation IdLoc,
+ IdentifierInfo *Id, NamespaceDecl *PrevDecl)
+ : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
+ redeclarable_base(C), LocStart(StartLoc),
+ AnonOrFirstNamespaceAndInline(nullptr, Inline) {
+ setPreviousDecl(PrevDecl);
+
+ if (PrevDecl)
+ AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
+}
+
+NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
+ bool Inline, SourceLocation StartLoc,
+ SourceLocation IdLoc, IdentifierInfo *Id,
+ NamespaceDecl *PrevDecl) {
+ return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
+ PrevDecl);
+}
+
+NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
+ SourceLocation(), nullptr, nullptr);
+}
+
+NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
+ if (isFirstDecl())
+ return this;
+
+ return AnonOrFirstNamespaceAndInline.getPointer();
+}
+
+const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
+ if (isFirstDecl())
+ return this;
+
+ return AnonOrFirstNamespaceAndInline.getPointer();
+}
+
+bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
+
+NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
+ return getNextRedeclaration();
+}
+
+NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
+ return getPreviousDecl();
+}
+
+NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
+ return getMostRecentDecl();
+}
+
+void NamespaceAliasDecl::anchor() {}
+
+NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
+ return getNextRedeclaration();
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
+ return getPreviousDecl();
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
+ return getMostRecentDecl();
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation IdentLoc,
+ NamedDecl *Namespace) {
+ // FIXME: Preserve the aliased namespace as written.
+ if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
+ Namespace = NS->getOriginalNamespace();
+ return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
+ QualifierLoc, IdentLoc, Namespace);
+}
+
+NamespaceAliasDecl *
+NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
+ SourceLocation(), nullptr,
+ NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr);
+}
+
+void UsingShadowDecl::anchor() {}
+
+UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
+ SourceLocation Loc, UsingDecl *Using,
+ NamedDecl *Target)
+ : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
+ redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
+ if (Target)
+ setTargetDecl(Target);
+ setImplicit();
+}
+
+UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
+ : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
+ redeclarable_base(C) {}
+
+UsingShadowDecl *
+UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
+}
+
+UsingDecl *UsingShadowDecl::getUsingDecl() const {
+ const UsingShadowDecl *Shadow = this;
+ while (const auto *NextShadow =
+ dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
+ Shadow = NextShadow;
+ return cast<UsingDecl>(Shadow->UsingOrNextShadow);
+}
+
+void ConstructorUsingShadowDecl::anchor() {}
+
+ConstructorUsingShadowDecl *
+ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation Loc, UsingDecl *Using,
+ NamedDecl *Target, bool IsVirtual) {
+ return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
+ IsVirtual);
+}
+
+ConstructorUsingShadowDecl *
+ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
+}
+
+CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
+ return getUsingDecl()->getQualifier()->getAsRecordDecl();
+}
+
+void UsingDecl::anchor() {}
+
+void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
+ "declaration already in set");
+ assert(S->getUsingDecl() == this);
+
+ if (FirstUsingShadow.getPointer())
+ S->UsingOrNextShadow = FirstUsingShadow.getPointer();
+ FirstUsingShadow.setPointer(S);
+}
+
+void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
+ assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
+ "declaration not in set");
+ assert(S->getUsingDecl() == this);
+
+ // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
+
+ if (FirstUsingShadow.getPointer() == S) {
+ FirstUsingShadow.setPointer(
+ dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
+ S->UsingOrNextShadow = this;
+ return;
+ }
+
+ UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
+ while (Prev->UsingOrNextShadow != S)
+ Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
+ Prev->UsingOrNextShadow = S->UsingOrNextShadow;
+ S->UsingOrNextShadow = this;
+}
+
+UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool HasTypename) {
+ return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
+}
+
+UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UsingDecl(nullptr, SourceLocation(),
+ NestedNameSpecifierLoc(), DeclarationNameInfo(),
+ false);
+}
+
+SourceRange UsingDecl::getSourceRange() const {
+ SourceLocation Begin = isAccessDeclaration()
+ ? getQualifierLoc().getBeginLoc() : UsingLocation;
+ return SourceRange(Begin, getNameInfo().getEndLoc());
+}
+
+void UsingPackDecl::anchor() {}
+
+UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
+ NamedDecl *InstantiatedFrom,
+ ArrayRef<NamedDecl *> UsingDecls) {
+ size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
+ return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
+}
+
+UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
+ unsigned NumExpansions) {
+ size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
+ auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
+ Result->NumExpansions = NumExpansions;
+ auto *Trail = Result->getTrailingObjects<NamedDecl *>();
+ for (unsigned I = 0; I != NumExpansions; ++I)
+ new (Trail + I) NamedDecl*(nullptr);
+ return Result;
+}
+
+void UnresolvedUsingValueDecl::anchor() {}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const DeclarationNameInfo &NameInfo,
+ SourceLocation EllipsisLoc) {
+ return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
+ QualifierLoc, NameInfo,
+ EllipsisLoc);
+}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
+ SourceLocation(),
+ NestedNameSpecifierLoc(),
+ DeclarationNameInfo(),
+ SourceLocation());
+}
+
+SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
+ SourceLocation Begin = isAccessDeclaration()
+ ? getQualifierLoc().getBeginLoc() : UsingLocation;
+ return SourceRange(Begin, getNameInfo().getEndLoc());
+}
+
+void UnresolvedUsingTypenameDecl::anchor() {}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation TypenameLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName,
+ SourceLocation EllipsisLoc) {
+ return new (C, DC) UnresolvedUsingTypenameDecl(
+ DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
+ TargetName.getAsIdentifierInfo(), EllipsisLoc);
+}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) UnresolvedUsingTypenameDecl(
+ nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
+ SourceLocation(), nullptr, SourceLocation());
+}
+
+void StaticAssertDecl::anchor() {}
+
+StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StaticAssertLoc,
+ Expr *AssertExpr,
+ StringLiteral *Message,
+ SourceLocation RParenLoc,
+ bool Failed) {
+ return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
+ RParenLoc, Failed);
+}
+
+StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
+ nullptr, SourceLocation(), false);
+}
+
+void BindingDecl::anchor() {}
+
+BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation IdLoc, IdentifierInfo *Id) {
+ return new (C, DC) BindingDecl(DC, IdLoc, Id);
+}
+
+BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
+ return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
+}
+
+ValueDecl *BindingDecl::getDecomposedDecl() const {
+ ExternalASTSource *Source =
+ Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr;
+ return cast_or_null<ValueDecl>(Decomp.get(Source));
+}
+
+VarDecl *BindingDecl::getHoldingVar() const {
+ Expr *B = getBinding();
+ if (!B)
+ return nullptr;
+ auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
+ if (!DRE)
+ return nullptr;
+
+ auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
+ assert(VD->isImplicit() && "holding var for binding decl not implicit");
+ return VD;
+}
+
+void DecompositionDecl::anchor() {}
+
+DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation StartLoc,
+ SourceLocation LSquareLoc,
+ QualType T, TypeSourceInfo *TInfo,
+ StorageClass SC,
+ ArrayRef<BindingDecl *> Bindings) {
+ size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
+ return new (C, DC, Extra)
+ DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
+}
+
+DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID,
+ unsigned NumBindings) {
+ size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
+ auto *Result = new (C, ID, Extra)
+ DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
+ QualType(), nullptr, StorageClass(), None);
+ // Set up and clean out the bindings array.
+ Result->NumBindings = NumBindings;
+ auto *Trail = Result->getTrailingObjects<BindingDecl *>();
+ for (unsigned I = 0; I != NumBindings; ++I)
+ new (Trail + I) BindingDecl*(nullptr);
+ return Result;
+}
+
+void DecompositionDecl::printName(llvm::raw_ostream &os) const {
+ os << '[';
+ bool Comma = false;
+ for (const auto *B : bindings()) {
+ if (Comma)
+ os << ", ";
+ B->printName(os);
+ Comma = true;
+ }
+ os << ']';
+}
+
+void MSPropertyDecl::anchor() {}
+
+MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ SourceLocation StartL,
+ IdentifierInfo *Getter,
+ IdentifierInfo *Setter) {
+ return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
+}
+
+MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
+ unsigned ID) {
+ return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
+ DeclarationName(), QualType(), nullptr,
+ SourceLocation(), nullptr, nullptr);
+}
+
+static const char *getAccessName(AccessSpecifier AS) {
+ switch (AS) {
+ case AS_none:
+ llvm_unreachable("Invalid access specifier!");
+ case AS_public:
+ return "public";
+ case AS_private:
+ return "private";
+ case AS_protected:
+ return "protected";
+ }
+ llvm_unreachable("Invalid access specifier!");
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
+
+const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}