diff options
Diffstat (limited to 'clang/lib/AST/DeclCXX.cpp')
| -rw-r--r-- | clang/lib/AST/DeclCXX.cpp | 3097 |
1 files changed, 3097 insertions, 0 deletions
diff --git a/clang/lib/AST/DeclCXX.cpp b/clang/lib/AST/DeclCXX.cpp new file mode 100644 index 000000000000..12ec44fa0279 --- /dev/null +++ b/clang/lib/AST/DeclCXX.cpp @@ -0,0 +1,3097 @@ +//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the C++ related Decl classes. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/DeclCXX.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTLambda.h" +#include "clang/AST/ASTMutationListener.h" +#include "clang/AST/ASTUnresolvedSet.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/DeclBase.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/DeclarationName.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/LambdaCapture.h" +#include "clang/AST/NestedNameSpecifier.h" +#include "clang/AST/ODRHash.h" +#include "clang/AST/Type.h" +#include "clang/AST/TypeLoc.h" +#include "clang/AST/UnresolvedSet.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/IdentifierTable.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/LangOptions.h" +#include "clang/Basic/OperatorKinds.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/Specifiers.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> + +using namespace clang; + +//===----------------------------------------------------------------------===// +// Decl Allocation/Deallocation Method Implementations +//===----------------------------------------------------------------------===// + +void AccessSpecDecl::anchor() {} + +AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) AccessSpecDecl(EmptyShell()); +} + +void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { + ExternalASTSource *Source = C.getExternalSource(); + assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); + assert(Source && "getFromExternalSource with no external source"); + + for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) + I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( + reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); + Impl.Decls.setLazy(false); +} + +CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) + : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), + Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), + Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), + HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), + HasPrivateFields(false), HasProtectedFields(false), + HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), + HasOnlyCMembers(true), HasInClassInitializer(false), + HasUninitializedReferenceMember(false), HasUninitializedFields(false), + HasInheritedConstructor(false), HasInheritedAssignment(false), + NeedOverloadResolutionForCopyConstructor(false), + NeedOverloadResolutionForMoveConstructor(false), + NeedOverloadResolutionForMoveAssignment(false), + NeedOverloadResolutionForDestructor(false), + DefaultedCopyConstructorIsDeleted(false), + DefaultedMoveConstructorIsDeleted(false), + DefaultedMoveAssignmentIsDeleted(false), + DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), + HasTrivialSpecialMembersForCall(SMF_All), + DeclaredNonTrivialSpecialMembers(0), + DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), + HasConstexprNonCopyMoveConstructor(false), + HasDefaultedDefaultConstructor(false), + DefaultedDefaultConstructorIsConstexpr(true), + HasConstexprDefaultConstructor(false), + DefaultedDestructorIsConstexpr(true), + HasNonLiteralTypeFieldsOrBases(false), + UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), + ImplicitCopyConstructorCanHaveConstParamForVBase(true), + ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), + ImplicitCopyAssignmentHasConstParam(true), + HasDeclaredCopyConstructorWithConstParam(false), + HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), + IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), + HasODRHash(false), Definition(D) {} + +CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { + return Bases.get(Definition->getASTContext().getExternalSource()); +} + +CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { + return VBases.get(Definition->getASTContext().getExternalSource()); +} + +CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, + DeclContext *DC, SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + CXXRecordDecl *PrevDecl) + : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), + DefinitionData(PrevDecl ? PrevDecl->DefinitionData + : nullptr) {} + +CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, + DeclContext *DC, SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + CXXRecordDecl *PrevDecl, + bool DelayTypeCreation) { + auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, + PrevDecl); + R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); + + // FIXME: DelayTypeCreation seems like such a hack + if (!DelayTypeCreation) + C.getTypeDeclType(R, PrevDecl); + return R; +} + +CXXRecordDecl * +CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, + TypeSourceInfo *Info, SourceLocation Loc, + bool Dependent, bool IsGeneric, + LambdaCaptureDefault CaptureDefault) { + auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, + nullptr, nullptr); + R->setBeingDefined(true); + R->DefinitionData = + new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, + CaptureDefault); + R->setMayHaveOutOfDateDef(false); + R->setImplicit(true); + C.getTypeDeclType(R, /*PrevDecl=*/nullptr); + return R; +} + +CXXRecordDecl * +CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { + auto *R = new (C, ID) CXXRecordDecl( + CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), + nullptr, nullptr); + R->setMayHaveOutOfDateDef(false); + return R; +} + +/// Determine whether a class has a repeated base class. This is intended for +/// use when determining if a class is standard-layout, so makes no attempt to +/// handle virtual bases. +static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { + llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; + SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; + while (!WorkList.empty()) { + const CXXRecordDecl *RD = WorkList.pop_back_val(); + for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { + if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { + if (!SeenBaseTypes.insert(B).second) + return true; + WorkList.push_back(B); + } + } + } + return false; +} + +void +CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, + unsigned NumBases) { + ASTContext &C = getASTContext(); + + if (!data().Bases.isOffset() && data().NumBases > 0) + C.Deallocate(data().getBases()); + + if (NumBases) { + if (!C.getLangOpts().CPlusPlus17) { + // C++ [dcl.init.aggr]p1: + // An aggregate is [...] a class with [...] no base classes [...]. + data().Aggregate = false; + } + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + } + + // The set of seen virtual base types. + llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; + + // The virtual bases of this class. + SmallVector<const CXXBaseSpecifier *, 8> VBases; + + data().Bases = new(C) CXXBaseSpecifier [NumBases]; + data().NumBases = NumBases; + for (unsigned i = 0; i < NumBases; ++i) { + data().getBases()[i] = *Bases[i]; + // Keep track of inherited vbases for this base class. + const CXXBaseSpecifier *Base = Bases[i]; + QualType BaseType = Base->getType(); + // Skip dependent types; we can't do any checking on them now. + if (BaseType->isDependentType()) + continue; + auto *BaseClassDecl = + cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl()); + + // C++2a [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has all non-static data members and bit-fields in the class and + // its base classes first declared in the same class + if (BaseClassDecl->data().HasBasesWithFields || + !BaseClassDecl->field_empty()) { + if (data().HasBasesWithFields) + // Two bases have members or bit-fields: not standard-layout. + data().IsStandardLayout = false; + data().HasBasesWithFields = true; + } + + // C++11 [class]p7: + // A standard-layout class is a class that: + // -- [...] has [...] at most one base class with non-static data + // members + if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || + BaseClassDecl->hasDirectFields()) { + if (data().HasBasesWithNonStaticDataMembers) + data().IsCXX11StandardLayout = false; + data().HasBasesWithNonStaticDataMembers = true; + } + + if (!BaseClassDecl->isEmpty()) { + // C++14 [meta.unary.prop]p4: + // T is a class type [...] with [...] no base class B for which + // is_empty<B>::value is false. + data().Empty = false; + } + + // C++1z [dcl.init.agg]p1: + // An aggregate is a class with [...] no private or protected base classes + if (Base->getAccessSpecifier() != AS_public) + data().Aggregate = false; + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + if (BaseClassDecl->isPolymorphic()) { + data().Polymorphic = true; + + // An aggregate is a class with [...] no virtual functions. + data().Aggregate = false; + } + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has no non-standard-layout base classes + if (!BaseClassDecl->isStandardLayout()) + data().IsStandardLayout = false; + if (!BaseClassDecl->isCXX11StandardLayout()) + data().IsCXX11StandardLayout = false; + + // Record if this base is the first non-literal field or base. + if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) + data().HasNonLiteralTypeFieldsOrBases = true; + + // Now go through all virtual bases of this base and add them. + for (const auto &VBase : BaseClassDecl->vbases()) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { + VBases.push_back(&VBase); + + // C++11 [class.copy]p8: + // The implicitly-declared copy constructor for a class X will have + // the form 'X::X(const X&)' if each [...] virtual base class B of X + // has a copy constructor whose first parameter is of type + // 'const B&' or 'const volatile B&' [...] + if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) + if (!VBaseDecl->hasCopyConstructorWithConstParam()) + data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; + + // C++1z [dcl.init.agg]p1: + // An aggregate is a class with [...] no virtual base classes + data().Aggregate = false; + } + } + + if (Base->isVirtual()) { + // Add this base if it's not already in the list. + if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) + VBases.push_back(Base); + + // C++14 [meta.unary.prop] is_empty: + // T is a class type, but not a union type, with ... no virtual base + // classes + data().Empty = false; + + // C++1z [dcl.init.agg]p1: + // An aggregate is a class with [...] no virtual base classes + data().Aggregate = false; + + // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: + // A [default constructor, copy/move constructor, or copy/move assignment + // operator for a class X] is trivial [...] if: + // -- class X has [...] no virtual base classes + data().HasTrivialSpecialMembers &= SMF_Destructor; + data().HasTrivialSpecialMembersForCall &= SMF_Destructor; + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has [...] no virtual base classes + data().IsStandardLayout = false; + data().IsCXX11StandardLayout = false; + + // C++20 [dcl.constexpr]p3: + // In the definition of a constexpr function [...] + // -- if the function is a constructor or destructor, + // its class shall not have any virtual base classes + data().DefaultedDefaultConstructorIsConstexpr = false; + data().DefaultedDestructorIsConstexpr = false; + + // C++1z [class.copy]p8: + // The implicitly-declared copy constructor for a class X will have + // the form 'X::X(const X&)' if each potentially constructed subobject + // has a copy constructor whose first parameter is of type + // 'const B&' or 'const volatile B&' [...] + if (!BaseClassDecl->hasCopyConstructorWithConstParam()) + data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; + } else { + // C++ [class.ctor]p5: + // A default constructor is trivial [...] if: + // -- all the direct base classes of its class have trivial default + // constructors. + if (!BaseClassDecl->hasTrivialDefaultConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if [...] + // [...] + // -- the constructor selected to copy/move each direct base class + // subobject is trivial, and + if (!BaseClassDecl->hasTrivialCopyConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; + + if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; + + // If the base class doesn't have a simple move constructor, we'll eagerly + // declare it and perform overload resolution to determine which function + // it actually calls. If it does have a simple move constructor, this + // check is correct. + if (!BaseClassDecl->hasTrivialMoveConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; + + if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if [...] + // [...] + // -- the assignment operator selected to copy/move each direct base + // class subobject is trivial, and + if (!BaseClassDecl->hasTrivialCopyAssignment()) + data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; + // If the base class doesn't have a simple move assignment, we'll eagerly + // declare it and perform overload resolution to determine which function + // it actually calls. If it does have a simple move assignment, this + // check is correct. + if (!BaseClassDecl->hasTrivialMoveAssignment()) + data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; + + // C++11 [class.ctor]p6: + // If that user-written default constructor would satisfy the + // requirements of a constexpr constructor, the implicitly-defined + // default constructor is constexpr. + if (!BaseClassDecl->hasConstexprDefaultConstructor()) + data().DefaultedDefaultConstructorIsConstexpr = false; + + // C++1z [class.copy]p8: + // The implicitly-declared copy constructor for a class X will have + // the form 'X::X(const X&)' if each potentially constructed subobject + // has a copy constructor whose first parameter is of type + // 'const B&' or 'const volatile B&' [...] + if (!BaseClassDecl->hasCopyConstructorWithConstParam()) + data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; + } + + // C++ [class.ctor]p3: + // A destructor is trivial if all the direct base classes of its class + // have trivial destructors. + if (!BaseClassDecl->hasTrivialDestructor()) + data().HasTrivialSpecialMembers &= ~SMF_Destructor; + + if (!BaseClassDecl->hasTrivialDestructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; + + if (!BaseClassDecl->hasIrrelevantDestructor()) + data().HasIrrelevantDestructor = false; + + // C++11 [class.copy]p18: + // The implicitly-declared copy assignment oeprator for a class X will + // have the form 'X& X::operator=(const X&)' if each direct base class B + // of X has a copy assignment operator whose parameter is of type 'const + // B&', 'const volatile B&', or 'B' [...] + if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) + data().ImplicitCopyAssignmentHasConstParam = false; + + // A class has an Objective-C object member if... or any of its bases + // has an Objective-C object member. + if (BaseClassDecl->hasObjectMember()) + setHasObjectMember(true); + + if (BaseClassDecl->hasVolatileMember()) + setHasVolatileMember(true); + + if (BaseClassDecl->getArgPassingRestrictions() == + RecordDecl::APK_CanNeverPassInRegs) + setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); + + // Keep track of the presence of mutable fields. + if (BaseClassDecl->hasMutableFields()) { + data().HasMutableFields = true; + data().NeedOverloadResolutionForCopyConstructor = true; + } + + if (BaseClassDecl->hasUninitializedReferenceMember()) + data().HasUninitializedReferenceMember = true; + + if (!BaseClassDecl->allowConstDefaultInit()) + data().HasUninitializedFields = true; + + addedClassSubobject(BaseClassDecl); + } + + // C++2a [class]p7: + // A class S is a standard-layout class if it: + // -- has at most one base class subobject of any given type + // + // Note that we only need to check this for classes with more than one base + // class. If there's only one base class, and it's standard layout, then + // we know there are no repeated base classes. + if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) + data().IsStandardLayout = false; + + if (VBases.empty()) { + data().IsParsingBaseSpecifiers = false; + return; + } + + // Create base specifier for any direct or indirect virtual bases. + data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; + data().NumVBases = VBases.size(); + for (int I = 0, E = VBases.size(); I != E; ++I) { + QualType Type = VBases[I]->getType(); + if (!Type->isDependentType()) + addedClassSubobject(Type->getAsCXXRecordDecl()); + data().getVBases()[I] = *VBases[I]; + } + + data().IsParsingBaseSpecifiers = false; +} + +unsigned CXXRecordDecl::getODRHash() const { + assert(hasDefinition() && "ODRHash only for records with definitions"); + + // Previously calculated hash is stored in DefinitionData. + if (DefinitionData->HasODRHash) + return DefinitionData->ODRHash; + + // Only calculate hash on first call of getODRHash per record. + ODRHash Hash; + Hash.AddCXXRecordDecl(getDefinition()); + DefinitionData->HasODRHash = true; + DefinitionData->ODRHash = Hash.CalculateHash(); + + return DefinitionData->ODRHash; +} + +void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { + // C++11 [class.copy]p11: + // A defaulted copy/move constructor for a class X is defined as + // deleted if X has: + // -- a direct or virtual base class B that cannot be copied/moved [...] + // -- a non-static data member of class type M (or array thereof) + // that cannot be copied or moved [...] + if (!Subobj->hasSimpleCopyConstructor()) + data().NeedOverloadResolutionForCopyConstructor = true; + if (!Subobj->hasSimpleMoveConstructor()) + data().NeedOverloadResolutionForMoveConstructor = true; + + // C++11 [class.copy]p23: + // A defaulted copy/move assignment operator for a class X is defined as + // deleted if X has: + // -- a direct or virtual base class B that cannot be copied/moved [...] + // -- a non-static data member of class type M (or array thereof) + // that cannot be copied or moved [...] + if (!Subobj->hasSimpleMoveAssignment()) + data().NeedOverloadResolutionForMoveAssignment = true; + + // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: + // A defaulted [ctor or dtor] for a class X is defined as + // deleted if X has: + // -- any direct or virtual base class [...] has a type with a destructor + // that is deleted or inaccessible from the defaulted [ctor or dtor]. + // -- any non-static data member has a type with a destructor + // that is deleted or inaccessible from the defaulted [ctor or dtor]. + if (!Subobj->hasSimpleDestructor()) { + data().NeedOverloadResolutionForCopyConstructor = true; + data().NeedOverloadResolutionForMoveConstructor = true; + data().NeedOverloadResolutionForDestructor = true; + } + + // C++2a [dcl.constexpr]p4: + // The definition of a constexpr destructor [shall] satisfy the + // following requirement: + // -- for every subobject of class type or (possibly multi-dimensional) + // array thereof, that class type shall have a constexpr destructor + if (!Subobj->hasConstexprDestructor()) + data().DefaultedDestructorIsConstexpr = false; +} + +bool CXXRecordDecl::hasConstexprDestructor() const { + auto *Dtor = getDestructor(); + return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); +} + +bool CXXRecordDecl::hasAnyDependentBases() const { + if (!isDependentContext()) + return false; + + return !forallBases([](const CXXRecordDecl *) { return true; }); +} + +bool CXXRecordDecl::isTriviallyCopyable() const { + // C++0x [class]p5: + // A trivially copyable class is a class that: + // -- has no non-trivial copy constructors, + if (hasNonTrivialCopyConstructor()) return false; + // -- has no non-trivial move constructors, + if (hasNonTrivialMoveConstructor()) return false; + // -- has no non-trivial copy assignment operators, + if (hasNonTrivialCopyAssignment()) return false; + // -- has no non-trivial move assignment operators, and + if (hasNonTrivialMoveAssignment()) return false; + // -- has a trivial destructor. + if (!hasTrivialDestructor()) return false; + + return true; +} + +void CXXRecordDecl::markedVirtualFunctionPure() { + // C++ [class.abstract]p2: + // A class is abstract if it has at least one pure virtual function. + data().Abstract = true; +} + +bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( + ASTContext &Ctx, const CXXRecordDecl *XFirst) { + if (!getNumBases()) + return false; + + llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; + llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; + SmallVector<const CXXRecordDecl*, 8> WorkList; + + // Visit a type that we have determined is an element of M(S). + auto Visit = [&](const CXXRecordDecl *RD) -> bool { + RD = RD->getCanonicalDecl(); + + // C++2a [class]p8: + // A class S is a standard-layout class if it [...] has no element of the + // set M(S) of types as a base class. + // + // If we find a subobject of an empty type, it might also be a base class, + // so we'll need to walk the base classes to check. + if (!RD->data().HasBasesWithFields) { + // Walk the bases the first time, stopping if we find the type. Build a + // set of them so we don't need to walk them again. + if (Bases.empty()) { + bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { + Base = Base->getCanonicalDecl(); + if (RD == Base) + return false; + Bases.insert(Base); + return true; + }); + if (RDIsBase) + return true; + } else { + if (Bases.count(RD)) + return true; + } + } + + if (M.insert(RD).second) + WorkList.push_back(RD); + return false; + }; + + if (Visit(XFirst)) + return true; + + while (!WorkList.empty()) { + const CXXRecordDecl *X = WorkList.pop_back_val(); + + // FIXME: We don't check the bases of X. That matches the standard, but + // that sure looks like a wording bug. + + // -- If X is a non-union class type with a non-static data member + // [recurse to each field] that is either of zero size or is the + // first non-static data member of X + // -- If X is a union type, [recurse to union members] + bool IsFirstField = true; + for (auto *FD : X->fields()) { + // FIXME: Should we really care about the type of the first non-static + // data member of a non-union if there are preceding unnamed bit-fields? + if (FD->isUnnamedBitfield()) + continue; + + if (!IsFirstField && !FD->isZeroSize(Ctx)) + continue; + + // -- If X is n array type, [visit the element type] + QualType T = Ctx.getBaseElementType(FD->getType()); + if (auto *RD = T->getAsCXXRecordDecl()) + if (Visit(RD)) + return true; + + if (!X->isUnion()) + IsFirstField = false; + } + } + + return false; +} + +bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { + assert(isLambda() && "not a lambda"); + + // C++2a [expr.prim.lambda.capture]p11: + // The closure type associated with a lambda-expression has no default + // constructor if the lambda-expression has a lambda-capture and a + // defaulted default constructor otherwise. It has a deleted copy + // assignment operator if the lambda-expression has a lambda-capture and + // defaulted copy and move assignment operators otherwise. + // + // C++17 [expr.prim.lambda]p21: + // The closure type associated with a lambda-expression has no default + // constructor and a deleted copy assignment operator. + if (getLambdaCaptureDefault() != LCD_None || + getLambdaData().NumCaptures != 0) + return false; + return getASTContext().getLangOpts().CPlusPlus2a; +} + +void CXXRecordDecl::addedMember(Decl *D) { + if (!D->isImplicit() && + !isa<FieldDecl>(D) && + !isa<IndirectFieldDecl>(D) && + (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || + cast<TagDecl>(D)->getTagKind() == TTK_Interface)) + data().HasOnlyCMembers = false; + + // Ignore friends and invalid declarations. + if (D->getFriendObjectKind() || D->isInvalidDecl()) + return; + + auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); + if (FunTmpl) + D = FunTmpl->getTemplatedDecl(); + + // FIXME: Pass NamedDecl* to addedMember? + Decl *DUnderlying = D; + if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { + DUnderlying = ND->getUnderlyingDecl(); + if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) + DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); + } + + if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isVirtual()) { + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class with [...] no virtual functions. + data().Aggregate = false; + + // C++ [class]p4: + // A POD-struct is an aggregate class... + data().PlainOldData = false; + + // C++14 [meta.unary.prop]p4: + // T is a class type [...] with [...] no virtual member functions... + data().Empty = false; + + // C++ [class.virtual]p1: + // A class that declares or inherits a virtual function is called a + // polymorphic class. + data().Polymorphic = true; + + // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: + // A [default constructor, copy/move constructor, or copy/move + // assignment operator for a class X] is trivial [...] if: + // -- class X has no virtual functions [...] + data().HasTrivialSpecialMembers &= SMF_Destructor; + data().HasTrivialSpecialMembersForCall &= SMF_Destructor; + + // C++0x [class]p7: + // A standard-layout class is a class that: [...] + // -- has no virtual functions + data().IsStandardLayout = false; + data().IsCXX11StandardLayout = false; + } + } + + // Notify the listener if an implicit member was added after the definition + // was completed. + if (!isBeingDefined() && D->isImplicit()) + if (ASTMutationListener *L = getASTMutationListener()) + L->AddedCXXImplicitMember(data().Definition, D); + + // The kind of special member this declaration is, if any. + unsigned SMKind = 0; + + // Handle constructors. + if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + if (!Constructor->isImplicit()) { + // Note that we have a user-declared constructor. + data().UserDeclaredConstructor = true; + + // C++ [class]p4: + // A POD-struct is an aggregate class [...] + // Since the POD bit is meant to be C++03 POD-ness, clear it even if the + // type is technically an aggregate in C++0x since it wouldn't be in 03. + data().PlainOldData = false; + } + + if (Constructor->isDefaultConstructor()) { + SMKind |= SMF_DefaultConstructor; + + if (Constructor->isUserProvided()) + data().UserProvidedDefaultConstructor = true; + if (Constructor->isConstexpr()) + data().HasConstexprDefaultConstructor = true; + if (Constructor->isDefaulted()) + data().HasDefaultedDefaultConstructor = true; + } + + if (!FunTmpl) { + unsigned Quals; + if (Constructor->isCopyConstructor(Quals)) { + SMKind |= SMF_CopyConstructor; + + if (Quals & Qualifiers::Const) + data().HasDeclaredCopyConstructorWithConstParam = true; + } else if (Constructor->isMoveConstructor()) + SMKind |= SMF_MoveConstructor; + } + + // C++11 [dcl.init.aggr]p1: DR1518 + // An aggregate is an array or a class with no user-provided [or] + // explicit [...] constructors + // C++20 [dcl.init.aggr]p1: + // An aggregate is an array or a class with no user-declared [...] + // constructors + if (getASTContext().getLangOpts().CPlusPlus2a + ? !Constructor->isImplicit() + : (Constructor->isUserProvided() || Constructor->isExplicit())) + data().Aggregate = false; + } + + // Handle constructors, including those inherited from base classes. + if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { + // Record if we see any constexpr constructors which are neither copy + // nor move constructors. + // C++1z [basic.types]p10: + // [...] has at least one constexpr constructor or constructor template + // (possibly inherited from a base class) that is not a copy or move + // constructor [...] + if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) + data().HasConstexprNonCopyMoveConstructor = true; + } + + // Handle destructors. + if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { + SMKind |= SMF_Destructor; + + if (DD->isUserProvided()) + data().HasIrrelevantDestructor = false; + // If the destructor is explicitly defaulted and not trivial or not public + // or if the destructor is deleted, we clear HasIrrelevantDestructor in + // finishedDefaultedOrDeletedMember. + + // C++11 [class.dtor]p5: + // A destructor is trivial if [...] the destructor is not virtual. + if (DD->isVirtual()) { + data().HasTrivialSpecialMembers &= ~SMF_Destructor; + data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; + } + } + + // Handle member functions. + if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { + if (Method->isCopyAssignmentOperator()) { + SMKind |= SMF_CopyAssignment; + + const auto *ParamTy = + Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); + if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) + data().HasDeclaredCopyAssignmentWithConstParam = true; + } + + if (Method->isMoveAssignmentOperator()) + SMKind |= SMF_MoveAssignment; + + // Keep the list of conversion functions up-to-date. + if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { + // FIXME: We use the 'unsafe' accessor for the access specifier here, + // because Sema may not have set it yet. That's really just a misdesign + // in Sema. However, LLDB *will* have set the access specifier correctly, + // and adds declarations after the class is technically completed, + // so completeDefinition()'s overriding of the access specifiers doesn't + // work. + AccessSpecifier AS = Conversion->getAccessUnsafe(); + + if (Conversion->getPrimaryTemplate()) { + // We don't record specializations. + } else { + ASTContext &Ctx = getASTContext(); + ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); + NamedDecl *Primary = + FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); + if (Primary->getPreviousDecl()) + Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), + Primary, AS); + else + Conversions.addDecl(Ctx, Primary, AS); + } + } + + if (SMKind) { + // If this is the first declaration of a special member, we no longer have + // an implicit trivial special member. + data().HasTrivialSpecialMembers &= + data().DeclaredSpecialMembers | ~SMKind; + data().HasTrivialSpecialMembersForCall &= + data().DeclaredSpecialMembers | ~SMKind; + + if (!Method->isImplicit() && !Method->isUserProvided()) { + // This method is user-declared but not user-provided. We can't work out + // whether it's trivial yet (not until we get to the end of the class). + // We'll handle this method in finishedDefaultedOrDeletedMember. + } else if (Method->isTrivial()) { + data().HasTrivialSpecialMembers |= SMKind; + data().HasTrivialSpecialMembersForCall |= SMKind; + } else if (Method->isTrivialForCall()) { + data().HasTrivialSpecialMembersForCall |= SMKind; + data().DeclaredNonTrivialSpecialMembers |= SMKind; + } else { + data().DeclaredNonTrivialSpecialMembers |= SMKind; + // If this is a user-provided function, do not set + // DeclaredNonTrivialSpecialMembersForCall here since we don't know + // yet whether the method would be considered non-trivial for the + // purpose of calls (attribute "trivial_abi" can be dropped from the + // class later, which can change the special method's triviality). + if (!Method->isUserProvided()) + data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; + } + + // Note when we have declared a declared special member, and suppress the + // implicit declaration of this special member. + data().DeclaredSpecialMembers |= SMKind; + + if (!Method->isImplicit()) { + data().UserDeclaredSpecialMembers |= SMKind; + + // C++03 [class]p4: + // A POD-struct is an aggregate class that has [...] no user-defined + // copy assignment operator and no user-defined destructor. + // + // Since the POD bit is meant to be C++03 POD-ness, and in C++03, + // aggregates could not have any constructors, clear it even for an + // explicitly defaulted or deleted constructor. + // type is technically an aggregate in C++0x since it wouldn't be in 03. + // + // Also, a user-declared move assignment operator makes a class non-POD. + // This is an extension in C++03. + data().PlainOldData = false; + } + } + + return; + } + + // Handle non-static data members. + if (const auto *Field = dyn_cast<FieldDecl>(D)) { + ASTContext &Context = getASTContext(); + + // C++2a [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has all non-static data members and bit-fields in the class and + // its base classes first declared in the same class + if (data().HasBasesWithFields) + data().IsStandardLayout = false; + + // C++ [class.bit]p2: + // A declaration for a bit-field that omits the identifier declares an + // unnamed bit-field. Unnamed bit-fields are not members and cannot be + // initialized. + if (Field->isUnnamedBitfield()) { + // C++ [meta.unary.prop]p4: [LWG2358] + // T is a class type [...] with [...] no unnamed bit-fields of non-zero + // length + if (data().Empty && !Field->isZeroLengthBitField(Context) && + Context.getLangOpts().getClangABICompat() > + LangOptions::ClangABI::Ver6) + data().Empty = false; + return; + } + + // C++11 [class]p7: + // A standard-layout class is a class that: + // -- either has no non-static data members in the most derived class + // [...] or has no base classes with non-static data members + if (data().HasBasesWithNonStaticDataMembers) + data().IsCXX11StandardLayout = false; + + // C++ [dcl.init.aggr]p1: + // An aggregate is an array or a class (clause 9) with [...] no + // private or protected non-static data members (clause 11). + // + // A POD must be an aggregate. + if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { + data().Aggregate = false; + data().PlainOldData = false; + } + + // Track whether this is the first field. We use this when checking + // whether the class is standard-layout below. + bool IsFirstField = !data().HasPrivateFields && + !data().HasProtectedFields && !data().HasPublicFields; + + // C++0x [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has the same access control for all non-static data members, + switch (D->getAccess()) { + case AS_private: data().HasPrivateFields = true; break; + case AS_protected: data().HasProtectedFields = true; break; + case AS_public: data().HasPublicFields = true; break; + case AS_none: llvm_unreachable("Invalid access specifier"); + }; + if ((data().HasPrivateFields + data().HasProtectedFields + + data().HasPublicFields) > 1) { + data().IsStandardLayout = false; + data().IsCXX11StandardLayout = false; + } + + // Keep track of the presence of mutable fields. + if (Field->isMutable()) { + data().HasMutableFields = true; + data().NeedOverloadResolutionForCopyConstructor = true; + } + + // C++11 [class.union]p8, DR1460: + // If X is a union, a non-static data member of X that is not an anonymous + // union is a variant member of X. + if (isUnion() && !Field->isAnonymousStructOrUnion()) + data().HasVariantMembers = true; + + // C++0x [class]p9: + // A POD struct is a class that is both a trivial class and a + // standard-layout class, and has no non-static data members of type + // non-POD struct, non-POD union (or array of such types). + // + // Automatic Reference Counting: the presence of a member of Objective-C pointer type + // that does not explicitly have no lifetime makes the class a non-POD. + QualType T = Context.getBaseElementType(Field->getType()); + if (T->isObjCRetainableType() || T.isObjCGCStrong()) { + if (T.hasNonTrivialObjCLifetime()) { + // Objective-C Automatic Reference Counting: + // If a class has a non-static data member of Objective-C pointer + // type (or array thereof), it is a non-POD type and its + // default constructor (if any), copy constructor, move constructor, + // copy assignment operator, move assignment operator, and destructor are + // non-trivial. + setHasObjectMember(true); + struct DefinitionData &Data = data(); + Data.PlainOldData = false; + Data.HasTrivialSpecialMembers = 0; + + // __strong or __weak fields do not make special functions non-trivial + // for the purpose of calls. + Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); + if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) + data().HasTrivialSpecialMembersForCall = 0; + + // Structs with __weak fields should never be passed directly. + if (LT == Qualifiers::OCL_Weak) + setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); + + Data.HasIrrelevantDestructor = false; + + if (isUnion()) { + data().DefaultedCopyConstructorIsDeleted = true; + data().DefaultedMoveConstructorIsDeleted = true; + data().DefaultedMoveAssignmentIsDeleted = true; + data().DefaultedDestructorIsDeleted = true; + data().NeedOverloadResolutionForCopyConstructor = true; + data().NeedOverloadResolutionForMoveConstructor = true; + data().NeedOverloadResolutionForMoveAssignment = true; + data().NeedOverloadResolutionForDestructor = true; + } + } else if (!Context.getLangOpts().ObjCAutoRefCount) { + setHasObjectMember(true); + } + } else if (!T.isCXX98PODType(Context)) + data().PlainOldData = false; + + if (T->isReferenceType()) { + if (!Field->hasInClassInitializer()) + data().HasUninitializedReferenceMember = true; + + // C++0x [class]p7: + // A standard-layout class is a class that: + // -- has no non-static data members of type [...] reference, + data().IsStandardLayout = false; + data().IsCXX11StandardLayout = false; + + // C++1z [class.copy.ctor]p10: + // A defaulted copy constructor for a class X is defined as deleted if X has: + // -- a non-static data member of rvalue reference type + if (T->isRValueReferenceType()) + data().DefaultedCopyConstructorIsDeleted = true; + } + + if (!Field->hasInClassInitializer() && !Field->isMutable()) { + if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { + if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) + data().HasUninitializedFields = true; + } else { + data().HasUninitializedFields = true; + } + } + + // Record if this field is the first non-literal or volatile field or base. + if (!T->isLiteralType(Context) || T.isVolatileQualified()) + data().HasNonLiteralTypeFieldsOrBases = true; + + if (Field->hasInClassInitializer() || + (Field->isAnonymousStructOrUnion() && + Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { + data().HasInClassInitializer = true; + + // C++11 [class]p5: + // A default constructor is trivial if [...] no non-static data member + // of its class has a brace-or-equal-initializer. + data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; + + // C++11 [dcl.init.aggr]p1: + // An aggregate is a [...] class with [...] no + // brace-or-equal-initializers for non-static data members. + // + // This rule was removed in C++14. + if (!getASTContext().getLangOpts().CPlusPlus14) + data().Aggregate = false; + + // C++11 [class]p10: + // A POD struct is [...] a trivial class. + data().PlainOldData = false; + } + + // C++11 [class.copy]p23: + // A defaulted copy/move assignment operator for a class X is defined + // as deleted if X has: + // -- a non-static data member of reference type + if (T->isReferenceType()) + data().DefaultedMoveAssignmentIsDeleted = true; + + // Bitfields of length 0 are also zero-sized, but we already bailed out for + // those because they are always unnamed. + bool IsZeroSize = Field->isZeroSize(Context); + + if (const auto *RecordTy = T->getAs<RecordType>()) { + auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); + if (FieldRec->getDefinition()) { + addedClassSubobject(FieldRec); + + // We may need to perform overload resolution to determine whether a + // field can be moved if it's const or volatile qualified. + if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { + // We need to care about 'const' for the copy constructor because an + // implicit copy constructor might be declared with a non-const + // parameter. + data().NeedOverloadResolutionForCopyConstructor = true; + data().NeedOverloadResolutionForMoveConstructor = true; + data().NeedOverloadResolutionForMoveAssignment = true; + } + + // C++11 [class.ctor]p5, C++11 [class.copy]p11: + // A defaulted [special member] for a class X is defined as + // deleted if: + // -- X is a union-like class that has a variant member with a + // non-trivial [corresponding special member] + if (isUnion()) { + if (FieldRec->hasNonTrivialCopyConstructor()) + data().DefaultedCopyConstructorIsDeleted = true; + if (FieldRec->hasNonTrivialMoveConstructor()) + data().DefaultedMoveConstructorIsDeleted = true; + if (FieldRec->hasNonTrivialMoveAssignment()) + data().DefaultedMoveAssignmentIsDeleted = true; + if (FieldRec->hasNonTrivialDestructor()) + data().DefaultedDestructorIsDeleted = true; + } + + // For an anonymous union member, our overload resolution will perform + // overload resolution for its members. + if (Field->isAnonymousStructOrUnion()) { + data().NeedOverloadResolutionForCopyConstructor |= + FieldRec->data().NeedOverloadResolutionForCopyConstructor; + data().NeedOverloadResolutionForMoveConstructor |= + FieldRec->data().NeedOverloadResolutionForMoveConstructor; + data().NeedOverloadResolutionForMoveAssignment |= + FieldRec->data().NeedOverloadResolutionForMoveAssignment; + data().NeedOverloadResolutionForDestructor |= + FieldRec->data().NeedOverloadResolutionForDestructor; + } + + // C++0x [class.ctor]p5: + // A default constructor is trivial [...] if: + // -- for all the non-static data members of its class that are of + // class type (or array thereof), each such class has a trivial + // default constructor. + if (!FieldRec->hasTrivialDefaultConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; + + // C++0x [class.copy]p13: + // A copy/move constructor for class X is trivial if [...] + // [...] + // -- for each non-static data member of X that is of class type (or + // an array thereof), the constructor selected to copy/move that + // member is trivial; + if (!FieldRec->hasTrivialCopyConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; + + if (!FieldRec->hasTrivialCopyConstructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; + + // If the field doesn't have a simple move constructor, we'll eagerly + // declare the move constructor for this class and we'll decide whether + // it's trivial then. + if (!FieldRec->hasTrivialMoveConstructor()) + data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; + + if (!FieldRec->hasTrivialMoveConstructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; + + // C++0x [class.copy]p27: + // A copy/move assignment operator for class X is trivial if [...] + // [...] + // -- for each non-static data member of X that is of class type (or + // an array thereof), the assignment operator selected to + // copy/move that member is trivial; + if (!FieldRec->hasTrivialCopyAssignment()) + data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; + // If the field doesn't have a simple move assignment, we'll eagerly + // declare the move assignment for this class and we'll decide whether + // it's trivial then. + if (!FieldRec->hasTrivialMoveAssignment()) + data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; + + if (!FieldRec->hasTrivialDestructor()) + data().HasTrivialSpecialMembers &= ~SMF_Destructor; + if (!FieldRec->hasTrivialDestructorForCall()) + data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; + if (!FieldRec->hasIrrelevantDestructor()) + data().HasIrrelevantDestructor = false; + if (FieldRec->hasObjectMember()) + setHasObjectMember(true); + if (FieldRec->hasVolatileMember()) + setHasVolatileMember(true); + if (FieldRec->getArgPassingRestrictions() == + RecordDecl::APK_CanNeverPassInRegs) + setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); + + // C++0x [class]p7: + // A standard-layout class is a class that: + // -- has no non-static data members of type non-standard-layout + // class (or array of such types) [...] + if (!FieldRec->isStandardLayout()) + data().IsStandardLayout = false; + if (!FieldRec->isCXX11StandardLayout()) + data().IsCXX11StandardLayout = false; + + // C++2a [class]p7: + // A standard-layout class is a class that: + // [...] + // -- has no element of the set M(S) of types as a base class. + if (data().IsStandardLayout && + (isUnion() || IsFirstField || IsZeroSize) && + hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) + data().IsStandardLayout = false; + + // C++11 [class]p7: + // A standard-layout class is a class that: + // -- has no base classes of the same type as the first non-static + // data member + if (data().IsCXX11StandardLayout && IsFirstField) { + // FIXME: We should check all base classes here, not just direct + // base classes. + for (const auto &BI : bases()) { + if (Context.hasSameUnqualifiedType(BI.getType(), T)) { + data().IsCXX11StandardLayout = false; + break; + } + } + } + + // Keep track of the presence of mutable fields. + if (FieldRec->hasMutableFields()) { + data().HasMutableFields = true; + data().NeedOverloadResolutionForCopyConstructor = true; + } + + // C++11 [class.copy]p13: + // If the implicitly-defined constructor would satisfy the + // requirements of a constexpr constructor, the implicitly-defined + // constructor is constexpr. + // C++11 [dcl.constexpr]p4: + // -- every constructor involved in initializing non-static data + // members [...] shall be a constexpr constructor + if (!Field->hasInClassInitializer() && + !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) + // The standard requires any in-class initializer to be a constant + // expression. We consider this to be a defect. + data().DefaultedDefaultConstructorIsConstexpr = false; + + // C++11 [class.copy]p8: + // The implicitly-declared copy constructor for a class X will have + // the form 'X::X(const X&)' if each potentially constructed subobject + // of a class type M (or array thereof) has a copy constructor whose + // first parameter is of type 'const M&' or 'const volatile M&'. + if (!FieldRec->hasCopyConstructorWithConstParam()) + data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; + + // C++11 [class.copy]p18: + // The implicitly-declared copy assignment oeprator for a class X will + // have the form 'X& X::operator=(const X&)' if [...] for all the + // non-static data members of X that are of a class type M (or array + // thereof), each such class type has a copy assignment operator whose + // parameter is of type 'const M&', 'const volatile M&' or 'M'. + if (!FieldRec->hasCopyAssignmentWithConstParam()) + data().ImplicitCopyAssignmentHasConstParam = false; + + if (FieldRec->hasUninitializedReferenceMember() && + !Field->hasInClassInitializer()) + data().HasUninitializedReferenceMember = true; + + // C++11 [class.union]p8, DR1460: + // a non-static data member of an anonymous union that is a member of + // X is also a variant member of X. + if (FieldRec->hasVariantMembers() && + Field->isAnonymousStructOrUnion()) + data().HasVariantMembers = true; + } + } else { + // Base element type of field is a non-class type. + if (!T->isLiteralType(Context) || + (!Field->hasInClassInitializer() && !isUnion() && + !Context.getLangOpts().CPlusPlus2a)) + data().DefaultedDefaultConstructorIsConstexpr = false; + + // C++11 [class.copy]p23: + // A defaulted copy/move assignment operator for a class X is defined + // as deleted if X has: + // -- a non-static data member of const non-class type (or array + // thereof) + if (T.isConstQualified()) + data().DefaultedMoveAssignmentIsDeleted = true; + } + + // C++14 [meta.unary.prop]p4: + // T is a class type [...] with [...] no non-static data members other + // than subobjects of zero size + if (data().Empty && !IsZeroSize) + data().Empty = false; + } + + // Handle using declarations of conversion functions. + if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { + if (Shadow->getDeclName().getNameKind() + == DeclarationName::CXXConversionFunctionName) { + ASTContext &Ctx = getASTContext(); + data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); + } + } + + if (const auto *Using = dyn_cast<UsingDecl>(D)) { + if (Using->getDeclName().getNameKind() == + DeclarationName::CXXConstructorName) { + data().HasInheritedConstructor = true; + // C++1z [dcl.init.aggr]p1: + // An aggregate is [...] a class [...] with no inherited constructors + data().Aggregate = false; + } + + if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) + data().HasInheritedAssignment = true; + } +} + +void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { + assert(!D->isImplicit() && !D->isUserProvided()); + + // The kind of special member this declaration is, if any. + unsigned SMKind = 0; + + if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + if (Constructor->isDefaultConstructor()) { + SMKind |= SMF_DefaultConstructor; + if (Constructor->isConstexpr()) + data().HasConstexprDefaultConstructor = true; + } + if (Constructor->isCopyConstructor()) + SMKind |= SMF_CopyConstructor; + else if (Constructor->isMoveConstructor()) + SMKind |= SMF_MoveConstructor; + else if (Constructor->isConstexpr()) + // We may now know that the constructor is constexpr. + data().HasConstexprNonCopyMoveConstructor = true; + } else if (isa<CXXDestructorDecl>(D)) { + SMKind |= SMF_Destructor; + if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) + data().HasIrrelevantDestructor = false; + } else if (D->isCopyAssignmentOperator()) + SMKind |= SMF_CopyAssignment; + else if (D->isMoveAssignmentOperator()) + SMKind |= SMF_MoveAssignment; + + // Update which trivial / non-trivial special members we have. + // addedMember will have skipped this step for this member. + if (D->isTrivial()) + data().HasTrivialSpecialMembers |= SMKind; + else + data().DeclaredNonTrivialSpecialMembers |= SMKind; +} + +void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { + unsigned SMKind = 0; + + if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { + if (Constructor->isCopyConstructor()) + SMKind = SMF_CopyConstructor; + else if (Constructor->isMoveConstructor()) + SMKind = SMF_MoveConstructor; + } else if (isa<CXXDestructorDecl>(D)) + SMKind = SMF_Destructor; + + if (D->isTrivialForCall()) + data().HasTrivialSpecialMembersForCall |= SMKind; + else + data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; +} + +bool CXXRecordDecl::isCLike() const { + if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || + !TemplateOrInstantiation.isNull()) + return false; + if (!hasDefinition()) + return true; + + return isPOD() && data().HasOnlyCMembers; +} + +bool CXXRecordDecl::isGenericLambda() const { + if (!isLambda()) return false; + return getLambdaData().IsGenericLambda; +} + +#ifndef NDEBUG +static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { + for (auto *D : R) + if (!declaresSameEntity(D, R.front())) + return false; + return true; +} +#endif + +static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { + if (!RD.isLambda()) return nullptr; + DeclarationName Name = + RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); + DeclContext::lookup_result Calls = RD.lookup(Name); + + assert(!Calls.empty() && "Missing lambda call operator!"); + assert(allLookupResultsAreTheSame(Calls) && + "More than one lambda call operator!"); + return Calls.front(); +} + +FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { + NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); + return dyn_cast_or_null<FunctionTemplateDecl>(CallOp); +} + +CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { + NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); + + if (CallOp == nullptr) + return nullptr; + + if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) + return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); + + return cast<CXXMethodDecl>(CallOp); +} + +CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { + if (!isLambda()) return nullptr; + DeclarationName Name = + &getASTContext().Idents.get(getLambdaStaticInvokerName()); + DeclContext::lookup_result Invoker = lookup(Name); + if (Invoker.empty()) return nullptr; + assert(allLookupResultsAreTheSame(Invoker) && + "More than one static invoker operator!"); + NamedDecl *InvokerFun = Invoker.front(); + if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun)) + return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); + + return cast<CXXMethodDecl>(InvokerFun); +} + +void CXXRecordDecl::getCaptureFields( + llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, + FieldDecl *&ThisCapture) const { + Captures.clear(); + ThisCapture = nullptr; + + LambdaDefinitionData &Lambda = getLambdaData(); + RecordDecl::field_iterator Field = field_begin(); + for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; + C != CEnd; ++C, ++Field) { + if (C->capturesThis()) + ThisCapture = *Field; + else if (C->capturesVariable()) + Captures[C->getCapturedVar()] = *Field; + } + assert(Field == field_end()); +} + +TemplateParameterList * +CXXRecordDecl::getGenericLambdaTemplateParameterList() const { + if (!isGenericLambda()) return nullptr; + CXXMethodDecl *CallOp = getLambdaCallOperator(); + if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) + return Tmpl->getTemplateParameters(); + return nullptr; +} + +ArrayRef<NamedDecl *> +CXXRecordDecl::getLambdaExplicitTemplateParameters() const { + TemplateParameterList *List = getGenericLambdaTemplateParameterList(); + if (!List) + return {}; + + assert(std::is_partitioned(List->begin(), List->end(), + [](const NamedDecl *D) { return !D->isImplicit(); }) + && "Explicit template params should be ordered before implicit ones"); + + const auto ExplicitEnd = llvm::partition_point( + *List, [](const NamedDecl *D) { return !D->isImplicit(); }); + return llvm::makeArrayRef(List->begin(), ExplicitEnd); +} + +Decl *CXXRecordDecl::getLambdaContextDecl() const { + assert(isLambda() && "Not a lambda closure type!"); + ExternalASTSource *Source = getParentASTContext().getExternalSource(); + return getLambdaData().ContextDecl.get(Source); +} + +static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { + QualType T = + cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) + ->getConversionType(); + return Context.getCanonicalType(T); +} + +/// Collect the visible conversions of a base class. +/// +/// \param Record a base class of the class we're considering +/// \param InVirtual whether this base class is a virtual base (or a base +/// of a virtual base) +/// \param Access the access along the inheritance path to this base +/// \param ParentHiddenTypes the conversions provided by the inheritors +/// of this base +/// \param Output the set to which to add conversions from non-virtual bases +/// \param VOutput the set to which to add conversions from virtual bases +/// \param HiddenVBaseCs the set of conversions which were hidden in a +/// virtual base along some inheritance path +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + bool InVirtual, + AccessSpecifier Access, + const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, + ASTUnresolvedSet &Output, + UnresolvedSetImpl &VOutput, + llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { + // The set of types which have conversions in this class or its + // subclasses. As an optimization, we don't copy the derived set + // unless it might change. + const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; + llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; + + // Collect the direct conversions and figure out which conversions + // will be hidden in the subclasses. + CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); + CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); + if (ConvI != ConvE) { + HiddenTypesBuffer = ParentHiddenTypes; + HiddenTypes = &HiddenTypesBuffer; + + for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { + CanQualType ConvType(GetConversionType(Context, I.getDecl())); + bool Hidden = ParentHiddenTypes.count(ConvType); + if (!Hidden) + HiddenTypesBuffer.insert(ConvType); + + // If this conversion is hidden and we're in a virtual base, + // remember that it's hidden along some inheritance path. + if (Hidden && InVirtual) + HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); + + // If this conversion isn't hidden, add it to the appropriate output. + else if (!Hidden) { + AccessSpecifier IAccess + = CXXRecordDecl::MergeAccess(Access, I.getAccess()); + + if (InVirtual) + VOutput.addDecl(I.getDecl(), IAccess); + else + Output.addDecl(Context, I.getDecl(), IAccess); + } + } + } + + // Collect information recursively from any base classes. + for (const auto &I : Record->bases()) { + const RecordType *RT = I.getType()->getAs<RecordType>(); + if (!RT) continue; + + AccessSpecifier BaseAccess + = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); + bool BaseInVirtual = InVirtual || I.isVirtual(); + + auto *Base = cast<CXXRecordDecl>(RT->getDecl()); + CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, + *HiddenTypes, Output, VOutput, HiddenVBaseCs); + } +} + +/// Collect the visible conversions of a class. +/// +/// This would be extremely straightforward if it weren't for virtual +/// bases. It might be worth special-casing that, really. +static void CollectVisibleConversions(ASTContext &Context, + CXXRecordDecl *Record, + ASTUnresolvedSet &Output) { + // The collection of all conversions in virtual bases that we've + // found. These will be added to the output as long as they don't + // appear in the hidden-conversions set. + UnresolvedSet<8> VBaseCs; + + // The set of conversions in virtual bases that we've determined to + // be hidden. + llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; + + // The set of types hidden by classes derived from this one. + llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; + + // Go ahead and collect the direct conversions and add them to the + // hidden-types set. + CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); + CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); + Output.append(Context, ConvI, ConvE); + for (; ConvI != ConvE; ++ConvI) + HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); + + // Recursively collect conversions from base classes. + for (const auto &I : Record->bases()) { + const RecordType *RT = I.getType()->getAs<RecordType>(); + if (!RT) continue; + + CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), + I.isVirtual(), I.getAccessSpecifier(), + HiddenTypes, Output, VBaseCs, HiddenVBaseCs); + } + + // Add any unhidden conversions provided by virtual bases. + for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); + I != E; ++I) { + if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) + Output.addDecl(Context, I.getDecl(), I.getAccess()); + } +} + +/// getVisibleConversionFunctions - get all conversion functions visible +/// in current class; including conversion function templates. +llvm::iterator_range<CXXRecordDecl::conversion_iterator> +CXXRecordDecl::getVisibleConversionFunctions() { + ASTContext &Ctx = getASTContext(); + + ASTUnresolvedSet *Set; + if (bases_begin() == bases_end()) { + // If root class, all conversions are visible. + Set = &data().Conversions.get(Ctx); + } else { + Set = &data().VisibleConversions.get(Ctx); + // If visible conversion list is not evaluated, evaluate it. + if (!data().ComputedVisibleConversions) { + CollectVisibleConversions(Ctx, this, *Set); + data().ComputedVisibleConversions = true; + } + } + return llvm::make_range(Set->begin(), Set->end()); +} + +void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { + // This operation is O(N) but extremely rare. Sema only uses it to + // remove UsingShadowDecls in a class that were followed by a direct + // declaration, e.g.: + // class A : B { + // using B::operator int; + // operator int(); + // }; + // This is uncommon by itself and even more uncommon in conjunction + // with sufficiently large numbers of directly-declared conversions + // that asymptotic behavior matters. + + ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); + for (unsigned I = 0, E = Convs.size(); I != E; ++I) { + if (Convs[I].getDecl() == ConvDecl) { + Convs.erase(I); + assert(llvm::find(Convs, ConvDecl) == Convs.end() && + "conversion was found multiple times in unresolved set"); + return; + } + } + + llvm_unreachable("conversion not found in set!"); +} + +CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); + + return nullptr; +} + +MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { + return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); +} + +void +CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, + TemplateSpecializationKind TSK) { + assert(TemplateOrInstantiation.isNull() && + "Previous template or instantiation?"); + assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); + TemplateOrInstantiation + = new (getASTContext()) MemberSpecializationInfo(RD, TSK); +} + +ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { + return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); +} + +void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { + TemplateOrInstantiation = Template; +} + +TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ + if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) + return Spec->getSpecializationKind(); + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) + return MSInfo->getTemplateSpecializationKind(); + + return TSK_Undeclared; +} + +void +CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { + if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { + Spec->setSpecializationKind(TSK); + return; + } + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { + MSInfo->setTemplateSpecializationKind(TSK); + return; + } + + llvm_unreachable("Not a class template or member class specialization"); +} + +const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { + auto GetDefinitionOrSelf = + [](const CXXRecordDecl *D) -> const CXXRecordDecl * { + if (auto *Def = D->getDefinition()) + return Def; + return D; + }; + + // If it's a class template specialization, find the template or partial + // specialization from which it was instantiated. + if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { + auto From = TD->getInstantiatedFrom(); + if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { + while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { + if (NewCTD->isMemberSpecialization()) + break; + CTD = NewCTD; + } + return GetDefinitionOrSelf(CTD->getTemplatedDecl()); + } + if (auto *CTPSD = + From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { + while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { + if (NewCTPSD->isMemberSpecialization()) + break; + CTPSD = NewCTPSD; + } + return GetDefinitionOrSelf(CTPSD); + } + } + + if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { + if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { + const CXXRecordDecl *RD = this; + while (auto *NewRD = RD->getInstantiatedFromMemberClass()) + RD = NewRD; + return GetDefinitionOrSelf(RD); + } + } + + assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && + "couldn't find pattern for class template instantiation"); + return nullptr; +} + +CXXDestructorDecl *CXXRecordDecl::getDestructor() const { + ASTContext &Context = getASTContext(); + QualType ClassType = Context.getTypeDeclType(this); + + DeclarationName Name + = Context.DeclarationNames.getCXXDestructorName( + Context.getCanonicalType(ClassType)); + + DeclContext::lookup_result R = lookup(Name); + + return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); +} + +bool CXXRecordDecl::isAnyDestructorNoReturn() const { + // Destructor is noreturn. + if (const CXXDestructorDecl *Destructor = getDestructor()) + if (Destructor->isNoReturn()) + return true; + + // Check base classes destructor for noreturn. + for (const auto &Base : bases()) + if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) + if (RD->isAnyDestructorNoReturn()) + return true; + + // Check fields for noreturn. + for (const auto *Field : fields()) + if (const CXXRecordDecl *RD = + Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) + if (RD->isAnyDestructorNoReturn()) + return true; + + // All destructors are not noreturn. + return false; +} + +static bool isDeclContextInNamespace(const DeclContext *DC) { + while (!DC->isTranslationUnit()) { + if (DC->isNamespace()) + return true; + DC = DC->getParent(); + } + return false; +} + +bool CXXRecordDecl::isInterfaceLike() const { + assert(hasDefinition() && "checking for interface-like without a definition"); + // All __interfaces are inheritently interface-like. + if (isInterface()) + return true; + + // Interface-like types cannot have a user declared constructor, destructor, + // friends, VBases, conversion functions, or fields. Additionally, lambdas + // cannot be interface types. + if (isLambda() || hasUserDeclaredConstructor() || + hasUserDeclaredDestructor() || !field_empty() || hasFriends() || + getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) + return false; + + // No interface-like type can have a method with a definition. + for (const auto *const Method : methods()) + if (Method->isDefined() && !Method->isImplicit()) + return false; + + // Check "Special" types. + const auto *Uuid = getAttr<UuidAttr>(); + // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an + // extern C++ block directly in the TU. These are only valid if in one + // of these two situations. + if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && + !isDeclContextInNamespace(getDeclContext()) && + ((getName() == "IUnknown" && + Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || + (getName() == "IDispatch" && + Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { + if (getNumBases() > 0) + return false; + return true; + } + + // FIXME: Any access specifiers is supposed to make this no longer interface + // like. + + // If this isn't a 'special' type, it must have a single interface-like base. + if (getNumBases() != 1) + return false; + + const auto BaseSpec = *bases_begin(); + if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) + return false; + const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); + if (Base->isInterface() || !Base->isInterfaceLike()) + return false; + return true; +} + +void CXXRecordDecl::completeDefinition() { + completeDefinition(nullptr); +} + +void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { + RecordDecl::completeDefinition(); + + // If the class may be abstract (but hasn't been marked as such), check for + // any pure final overriders. + if (mayBeAbstract()) { + CXXFinalOverriderMap MyFinalOverriders; + if (!FinalOverriders) { + getFinalOverriders(MyFinalOverriders); + FinalOverriders = &MyFinalOverriders; + } + + bool Done = false; + for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), + MEnd = FinalOverriders->end(); + M != MEnd && !Done; ++M) { + for (OverridingMethods::iterator SO = M->second.begin(), + SOEnd = M->second.end(); + SO != SOEnd && !Done; ++SO) { + assert(SO->second.size() > 0 && + "All virtual functions have overriding virtual functions"); + + // C++ [class.abstract]p4: + // A class is abstract if it contains or inherits at least one + // pure virtual function for which the final overrider is pure + // virtual. + if (SO->second.front().Method->isPure()) { + data().Abstract = true; + Done = true; + break; + } + } + } + } + + // Set access bits correctly on the directly-declared conversions. + for (conversion_iterator I = conversion_begin(), E = conversion_end(); + I != E; ++I) + I.setAccess((*I)->getAccess()); +} + +bool CXXRecordDecl::mayBeAbstract() const { + if (data().Abstract || isInvalidDecl() || !data().Polymorphic || + isDependentContext()) + return false; + + for (const auto &B : bases()) { + const auto *BaseDecl = + cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); + if (BaseDecl->isAbstract()) + return true; + } + + return false; +} + +void CXXDeductionGuideDecl::anchor() {} + +bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { + if ((getKind() != Other.getKind() || + getKind() == ExplicitSpecKind::Unresolved)) { + if (getKind() == ExplicitSpecKind::Unresolved && + Other.getKind() == ExplicitSpecKind::Unresolved) { + ODRHash SelfHash, OtherHash; + SelfHash.AddStmt(getExpr()); + OtherHash.AddStmt(Other.getExpr()); + return SelfHash.CalculateHash() == OtherHash.CalculateHash(); + } else + return false; + } + return true; +} + +ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { + switch (Function->getDeclKind()) { + case Decl::Kind::CXXConstructor: + return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); + case Decl::Kind::CXXConversion: + return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); + case Decl::Kind::CXXDeductionGuide: + return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); + default: + return {}; + } +} + +CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( + ASTContext &C, DeclContext *DC, SourceLocation StartLoc, + ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, + TypeSourceInfo *TInfo, SourceLocation EndLocation) { + return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, + TInfo, EndLocation); +} + +CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + return new (C, ID) CXXDeductionGuideDecl( + C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), + QualType(), nullptr, SourceLocation()); +} + +void CXXMethodDecl::anchor() {} + +bool CXXMethodDecl::isStatic() const { + const CXXMethodDecl *MD = getCanonicalDecl(); + + if (MD->getStorageClass() == SC_Static) + return true; + + OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); + return isStaticOverloadedOperator(OOK); +} + +static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, + const CXXMethodDecl *BaseMD) { + for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { + if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) + return true; + if (recursivelyOverrides(MD, BaseMD)) + return true; + } + return false; +} + +CXXMethodDecl * +CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, + bool MayBeBase) { + if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) + return this; + + // Lookup doesn't work for destructors, so handle them separately. + if (isa<CXXDestructorDecl>(this)) { + CXXMethodDecl *MD = RD->getDestructor(); + if (MD) { + if (recursivelyOverrides(MD, this)) + return MD; + if (MayBeBase && recursivelyOverrides(this, MD)) + return MD; + } + return nullptr; + } + + for (auto *ND : RD->lookup(getDeclName())) { + auto *MD = dyn_cast<CXXMethodDecl>(ND); + if (!MD) + continue; + if (recursivelyOverrides(MD, this)) + return MD; + if (MayBeBase && recursivelyOverrides(this, MD)) + return MD; + } + + return nullptr; +} + +CXXMethodDecl * +CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, + bool MayBeBase) { + if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) + return MD; + + for (const auto &I : RD->bases()) { + const RecordType *RT = I.getType()->getAs<RecordType>(); + if (!RT) + continue; + const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); + CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base); + if (T) + return T; + } + + return nullptr; +} + +CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, + SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, + QualType T, TypeSourceInfo *TInfo, + StorageClass SC, bool isInline, + ConstexprSpecKind ConstexprKind, + SourceLocation EndLocation) { + return new (C, RD) + CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, + isInline, ConstexprKind, EndLocation); +} + +CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) CXXMethodDecl( + CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), + QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation()); +} + +CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, + bool IsAppleKext) { + assert(isVirtual() && "this method is expected to be virtual"); + + // When building with -fapple-kext, all calls must go through the vtable since + // the kernel linker can do runtime patching of vtables. + if (IsAppleKext) + return nullptr; + + // If the member function is marked 'final', we know that it can't be + // overridden and can therefore devirtualize it unless it's pure virtual. + if (hasAttr<FinalAttr>()) + return isPure() ? nullptr : this; + + // If Base is unknown, we cannot devirtualize. + if (!Base) + return nullptr; + + // If the base expression (after skipping derived-to-base conversions) is a + // class prvalue, then we can devirtualize. + Base = Base->getBestDynamicClassTypeExpr(); + if (Base->isRValue() && Base->getType()->isRecordType()) + return this; + + // If we don't even know what we would call, we can't devirtualize. + const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); + if (!BestDynamicDecl) + return nullptr; + + // There may be a method corresponding to MD in a derived class. + CXXMethodDecl *DevirtualizedMethod = + getCorrespondingMethodInClass(BestDynamicDecl); + + // If that method is pure virtual, we can't devirtualize. If this code is + // reached, the result would be UB, not a direct call to the derived class + // function, and we can't assume the derived class function is defined. + if (DevirtualizedMethod->isPure()) + return nullptr; + + // If that method is marked final, we can devirtualize it. + if (DevirtualizedMethod->hasAttr<FinalAttr>()) + return DevirtualizedMethod; + + // Similarly, if the class itself or its destructor is marked 'final', + // the class can't be derived from and we can therefore devirtualize the + // member function call. + if (BestDynamicDecl->hasAttr<FinalAttr>()) + return DevirtualizedMethod; + if (const auto *dtor = BestDynamicDecl->getDestructor()) { + if (dtor->hasAttr<FinalAttr>()) + return DevirtualizedMethod; + } + + if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { + if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) + if (VD->getType()->isRecordType()) + // This is a record decl. We know the type and can devirtualize it. + return DevirtualizedMethod; + + return nullptr; + } + + // We can devirtualize calls on an object accessed by a class member access + // expression, since by C++11 [basic.life]p6 we know that it can't refer to + // a derived class object constructed in the same location. + if (const auto *ME = dyn_cast<MemberExpr>(Base)) { + const ValueDecl *VD = ME->getMemberDecl(); + return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; + } + + // Likewise for calls on an object accessed by a (non-reference) pointer to + // member access. + if (auto *BO = dyn_cast<BinaryOperator>(Base)) { + if (BO->isPtrMemOp()) { + auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); + if (MPT->getPointeeType()->isRecordType()) + return DevirtualizedMethod; + } + } + + // We can't devirtualize the call. + return nullptr; +} + +bool CXXMethodDecl::isUsualDeallocationFunction( + SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { + assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); + if (getOverloadedOperator() != OO_Delete && + getOverloadedOperator() != OO_Array_Delete) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // A template instance is never a usual deallocation function, + // regardless of its signature. + if (getPrimaryTemplate()) + return false; + + // C++ [basic.stc.dynamic.deallocation]p2: + // If a class T has a member deallocation function named operator delete + // with exactly one parameter, then that function is a usual (non-placement) + // deallocation function. [...] + if (getNumParams() == 1) + return true; + unsigned UsualParams = 1; + + // C++ P0722: + // A destroying operator delete is a usual deallocation function if + // removing the std::destroying_delete_t parameter and changing the + // first parameter type from T* to void* results in the signature of + // a usual deallocation function. + if (isDestroyingOperatorDelete()) + ++UsualParams; + + // C++ <=14 [basic.stc.dynamic.deallocation]p2: + // [...] If class T does not declare such an operator delete but does + // declare a member deallocation function named operator delete with + // exactly two parameters, the second of which has type std::size_t (18.1), + // then this function is a usual deallocation function. + // + // C++17 says a usual deallocation function is one with the signature + // (void* [, size_t] [, std::align_val_t] [, ...]) + // and all such functions are usual deallocation functions. It's not clear + // that allowing varargs functions was intentional. + ASTContext &Context = getASTContext(); + if (UsualParams < getNumParams() && + Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), + Context.getSizeType())) + ++UsualParams; + + if (UsualParams < getNumParams() && + getParamDecl(UsualParams)->getType()->isAlignValT()) + ++UsualParams; + + if (UsualParams != getNumParams()) + return false; + + // In C++17 onwards, all potential usual deallocation functions are actual + // usual deallocation functions. Honor this behavior when post-C++14 + // deallocation functions are offered as extensions too. + // FIXME(EricWF): Destrying Delete should be a language option. How do we + // handle when destroying delete is used prior to C++17? + if (Context.getLangOpts().CPlusPlus17 || + Context.getLangOpts().AlignedAllocation || + isDestroyingOperatorDelete()) + return true; + + // This function is a usual deallocation function if there are no + // single-parameter deallocation functions of the same kind. + DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); + bool Result = true; + for (const auto *D : R) { + if (const auto *FD = dyn_cast<FunctionDecl>(D)) { + if (FD->getNumParams() == 1) { + PreventedBy.push_back(FD); + Result = false; + } + } + } + return Result; +} + +bool CXXMethodDecl::isCopyAssignmentOperator() const { + // C++0x [class.copy]p17: + // A user-declared copy assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of + // type X, X&, const X&, volatile X& or const volatile X&. + if (/*operator=*/getOverloadedOperator() != OO_Equal || + /*non-static*/ isStatic() || + /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || + getNumParams() != 1) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) + ParamType = Ref->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +bool CXXMethodDecl::isMoveAssignmentOperator() const { + // C++0x [class.copy]p19: + // A user-declared move assignment operator X::operator= is a non-static + // non-template member function of class X with exactly one parameter of type + // X&&, const X&&, volatile X&&, or const volatile X&&. + if (getOverloadedOperator() != OO_Equal || isStatic() || + getPrimaryTemplate() || getDescribedFunctionTemplate() || + getNumParams() != 1) + return false; + + QualType ParamType = getParamDecl(0)->getType(); + if (!isa<RValueReferenceType>(ParamType)) + return false; + ParamType = ParamType->getPointeeType(); + + ASTContext &Context = getASTContext(); + QualType ClassType + = Context.getCanonicalType(Context.getTypeDeclType(getParent())); + return Context.hasSameUnqualifiedType(ClassType, ParamType); +} + +void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { + assert(MD->isCanonicalDecl() && "Method is not canonical!"); + assert(!MD->getParent()->isDependentContext() && + "Can't add an overridden method to a class template!"); + assert(MD->isVirtual() && "Method is not virtual!"); + + getASTContext().addOverriddenMethod(this, MD); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return nullptr; + return getASTContext().overridden_methods_begin(this); +} + +CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return nullptr; + return getASTContext().overridden_methods_end(this); +} + +unsigned CXXMethodDecl::size_overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) return 0; + return getASTContext().overridden_methods_size(this); +} + +CXXMethodDecl::overridden_method_range +CXXMethodDecl::overridden_methods() const { + if (isa<CXXConstructorDecl>(this)) + return overridden_method_range(nullptr, nullptr); + return getASTContext().overridden_methods(this); +} + +static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, + const CXXRecordDecl *Decl) { + QualType ClassTy = C.getTypeDeclType(Decl); + return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); +} + +QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, + const CXXRecordDecl *Decl) { + ASTContext &C = Decl->getASTContext(); + QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); + return C.getPointerType(ObjectTy); +} + +QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, + const CXXRecordDecl *Decl) { + ASTContext &C = Decl->getASTContext(); + return ::getThisObjectType(C, FPT, Decl); +} + +QualType CXXMethodDecl::getThisType() const { + // C++ 9.3.2p1: The type of this in a member function of a class X is X*. + // If the member function is declared const, the type of this is const X*, + // if the member function is declared volatile, the type of this is + // volatile X*, and if the member function is declared const volatile, + // the type of this is const volatile X*. + assert(isInstance() && "No 'this' for static methods!"); + + return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(), + getParent()); +} + +QualType CXXMethodDecl::getThisObjectType() const { + // Ditto getThisType. + assert(isInstance() && "No 'this' for static methods!"); + + return CXXMethodDecl::getThisObjectType(getType()->getAs<FunctionProtoType>(), + getParent()); +} + +bool CXXMethodDecl::hasInlineBody() const { + // If this function is a template instantiation, look at the template from + // which it was instantiated. + const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); + if (!CheckFn) + CheckFn = this; + + const FunctionDecl *fn; + return CheckFn->isDefined(fn) && !fn->isOutOfLine() && + (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); +} + +bool CXXMethodDecl::isLambdaStaticInvoker() const { + const CXXRecordDecl *P = getParent(); + if (P->isLambda()) { + if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) { + if (StaticInvoker == this) return true; + if (P->isGenericLambda() && this->isFunctionTemplateSpecialization()) + return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl(); + } + } + return false; +} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, bool IsVirtual, + SourceLocation L, Expr *Init, + SourceLocation R, + SourceLocation EllipsisLoc) + : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), + IsWritten(false), SourceOrder(0) {} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + FieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), + IsWritten(false), SourceOrder(0) {} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + IndirectFieldDecl *Member, + SourceLocation MemberLoc, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), + LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), + IsWritten(false), SourceOrder(0) {} + +CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, + TypeSourceInfo *TInfo, + SourceLocation L, Expr *Init, + SourceLocation R) + : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), + IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} + +int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { + return Context.getAllocator() + .identifyKnownAlignedObject<CXXCtorInitializer>(this); +} + +TypeLoc CXXCtorInitializer::getBaseClassLoc() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); + else + return {}; +} + +const Type *CXXCtorInitializer::getBaseClass() const { + if (isBaseInitializer()) + return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); + else + return nullptr; +} + +SourceLocation CXXCtorInitializer::getSourceLocation() const { + if (isInClassMemberInitializer()) + return getAnyMember()->getLocation(); + + if (isAnyMemberInitializer()) + return getMemberLocation(); + + if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) + return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); + + return {}; +} + +SourceRange CXXCtorInitializer::getSourceRange() const { + if (isInClassMemberInitializer()) { + FieldDecl *D = getAnyMember(); + if (Expr *I = D->getInClassInitializer()) + return I->getSourceRange(); + return {}; + } + + return SourceRange(getSourceLocation(), getRParenLoc()); +} + +CXXConstructorDecl::CXXConstructorDecl( + ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, + ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, + ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) + : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, + SC_None, isInline, ConstexprKind, SourceLocation()) { + setNumCtorInitializers(0); + setInheritingConstructor(static_cast<bool>(Inherited)); + setImplicit(isImplicitlyDeclared); + CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; + if (Inherited) + *getTrailingObjects<InheritedConstructor>() = Inherited; + setExplicitSpecifier(ES); +} + +void CXXConstructorDecl::anchor() {} + +CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, + unsigned ID, + uint64_t AllocKind) { + bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); + bool isInheritingConstructor = + static_cast<bool>(AllocKind & TAKInheritsConstructor); + unsigned Extra = + additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( + isInheritingConstructor, hasTraillingExplicit); + auto *Result = new (C, ID, Extra) + CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), + QualType(), nullptr, ExplicitSpecifier(), false, false, + CSK_unspecified, InheritedConstructor()); + Result->setInheritingConstructor(isInheritingConstructor); + Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = + hasTraillingExplicit; + Result->setExplicitSpecifier(ExplicitSpecifier()); + return Result; +} + +CXXConstructorDecl *CXXConstructorDecl::Create( + ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, + ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, + ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConstructorName && + "Name must refer to a constructor"); + unsigned Extra = + additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( + Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); + return new (C, RD, Extra) + CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline, + isImplicitlyDeclared, ConstexprKind, Inherited); +} + +CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { + return CtorInitializers.get(getASTContext().getExternalSource()); +} + +CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { + assert(isDelegatingConstructor() && "Not a delegating constructor!"); + Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); + if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) + return Construct->getConstructor(); + + return nullptr; +} + +bool CXXConstructorDecl::isDefaultConstructor() const { + // C++ [class.ctor]p5: + // A default constructor for a class X is a constructor of class + // X that can be called without an argument. + return (getNumParams() == 0) || + (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); +} + +bool +CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isLValueReferenceType(); +} + +bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { + return isCopyOrMoveConstructor(TypeQuals) && + getParamDecl(0)->getType()->isRValueReferenceType(); +} + +/// Determine whether this is a copy or move constructor. +bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { + // C++ [class.copy]p2: + // A non-template constructor for class X is a copy constructor + // if its first parameter is of type X&, const X&, volatile X& or + // const volatile X&, and either there are no other parameters + // or else all other parameters have default arguments (8.3.6). + // C++0x [class.copy]p3: + // A non-template constructor for class X is a move constructor if its + // first parameter is of type X&&, const X&&, volatile X&&, or + // const volatile X&&, and either there are no other parameters or else + // all other parameters have default arguments. + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getPrimaryTemplate() != nullptr) || + (getDescribedFunctionTemplate() != nullptr)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + // Do we have a reference type? + const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); + if (!ParamRefType) + return false; + + // Is it a reference to our class type? + ASTContext &Context = getASTContext(); + + CanQualType PointeeType + = Context.getCanonicalType(ParamRefType->getPointeeType()); + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (PointeeType.getUnqualifiedType() != ClassTy) + return false; + + // FIXME: other qualifiers? + + // We have a copy or move constructor. + TypeQuals = PointeeType.getCVRQualifiers(); + return true; +} + +bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { + // C++ [class.conv.ctor]p1: + // A constructor declared without the function-specifier explicit + // that can be called with a single parameter specifies a + // conversion from the type of its first parameter to the type of + // its class. Such a constructor is called a converting + // constructor. + if (isExplicit() && !AllowExplicit) + return false; + + return (getNumParams() == 0 && + getType()->castAs<FunctionProtoType>()->isVariadic()) || + (getNumParams() == 1) || + (getNumParams() > 1 && + (getParamDecl(1)->hasDefaultArg() || + getParamDecl(1)->isParameterPack())); +} + +bool CXXConstructorDecl::isSpecializationCopyingObject() const { + if ((getNumParams() < 1) || + (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || + (getDescribedFunctionTemplate() != nullptr)) + return false; + + const ParmVarDecl *Param = getParamDecl(0); + + ASTContext &Context = getASTContext(); + CanQualType ParamType = Context.getCanonicalType(Param->getType()); + + // Is it the same as our class type? + CanQualType ClassTy + = Context.getCanonicalType(Context.getTagDeclType(getParent())); + if (ParamType.getUnqualifiedType() != ClassTy) + return false; + + return true; +} + +void CXXDestructorDecl::anchor() {} + +CXXDestructorDecl * +CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) + CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), + QualType(), nullptr, false, false, CSK_unspecified); +} + +CXXDestructorDecl *CXXDestructorDecl::Create( + ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, + bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXDestructorName && + "Name must refer to a destructor"); + return new (C, RD) + CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, + isImplicitlyDeclared, ConstexprKind); +} + +void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { + auto *First = cast<CXXDestructorDecl>(getFirstDecl()); + if (OD && !First->OperatorDelete) { + First->OperatorDelete = OD; + First->OperatorDeleteThisArg = ThisArg; + if (auto *L = getASTMutationListener()) + L->ResolvedOperatorDelete(First, OD, ThisArg); + } +} + +void CXXConversionDecl::anchor() {} + +CXXConversionDecl * +CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) CXXConversionDecl( + C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, + false, ExplicitSpecifier(), CSK_unspecified, SourceLocation()); +} + +CXXConversionDecl *CXXConversionDecl::Create( + ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, + const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, + bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, + SourceLocation EndLocation) { + assert(NameInfo.getName().getNameKind() + == DeclarationName::CXXConversionFunctionName && + "Name must refer to a conversion function"); + return new (C, RD) + CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES, + ConstexprKind, EndLocation); +} + +bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { + return isImplicit() && getParent()->isLambda() && + getConversionType()->isBlockPointerType(); +} + +LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, + SourceLocation LangLoc, LanguageIDs lang, + bool HasBraces) + : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), + ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { + setLanguage(lang); + LinkageSpecDeclBits.HasBraces = HasBraces; +} + +void LinkageSpecDecl::anchor() {} + +LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, + DeclContext *DC, + SourceLocation ExternLoc, + SourceLocation LangLoc, + LanguageIDs Lang, + bool HasBraces) { + return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); +} + +LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), + SourceLocation(), lang_c, false); +} + +void UsingDirectiveDecl::anchor() {} + +UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, + SourceLocation NamespaceLoc, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation IdentLoc, + NamedDecl *Used, + DeclContext *CommonAncestor) { + if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) + Used = NS->getOriginalNamespace(); + return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, + IdentLoc, Used, CommonAncestor); +} + +UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), + SourceLocation(), + NestedNameSpecifierLoc(), + SourceLocation(), nullptr, nullptr); +} + +NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { + if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) + return NA->getNamespace(); + return cast_or_null<NamespaceDecl>(NominatedNamespace); +} + +NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, + SourceLocation StartLoc, SourceLocation IdLoc, + IdentifierInfo *Id, NamespaceDecl *PrevDecl) + : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), + redeclarable_base(C), LocStart(StartLoc), + AnonOrFirstNamespaceAndInline(nullptr, Inline) { + setPreviousDecl(PrevDecl); + + if (PrevDecl) + AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); +} + +NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, + bool Inline, SourceLocation StartLoc, + SourceLocation IdLoc, IdentifierInfo *Id, + NamespaceDecl *PrevDecl) { + return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, + PrevDecl); +} + +NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), + SourceLocation(), nullptr, nullptr); +} + +NamespaceDecl *NamespaceDecl::getOriginalNamespace() { + if (isFirstDecl()) + return this; + + return AnonOrFirstNamespaceAndInline.getPointer(); +} + +const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { + if (isFirstDecl()) + return this; + + return AnonOrFirstNamespaceAndInline.getPointer(); +} + +bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } + +NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { + return getNextRedeclaration(); +} + +NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { + return getPreviousDecl(); +} + +NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { + return getMostRecentDecl(); +} + +void NamespaceAliasDecl::anchor() {} + +NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { + return getNextRedeclaration(); +} + +NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { + return getPreviousDecl(); +} + +NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { + return getMostRecentDecl(); +} + +NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation AliasLoc, + IdentifierInfo *Alias, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation IdentLoc, + NamedDecl *Namespace) { + // FIXME: Preserve the aliased namespace as written. + if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) + Namespace = NS->getOriginalNamespace(); + return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, + QualifierLoc, IdentLoc, Namespace); +} + +NamespaceAliasDecl * +NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), + SourceLocation(), nullptr, + NestedNameSpecifierLoc(), + SourceLocation(), nullptr); +} + +void UsingShadowDecl::anchor() {} + +UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, + SourceLocation Loc, UsingDecl *Using, + NamedDecl *Target) + : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()), + redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) { + if (Target) + setTargetDecl(Target); + setImplicit(); +} + +UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) + : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), + redeclarable_base(C) {} + +UsingShadowDecl * +UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); +} + +UsingDecl *UsingShadowDecl::getUsingDecl() const { + const UsingShadowDecl *Shadow = this; + while (const auto *NextShadow = + dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) + Shadow = NextShadow; + return cast<UsingDecl>(Shadow->UsingOrNextShadow); +} + +void ConstructorUsingShadowDecl::anchor() {} + +ConstructorUsingShadowDecl * +ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation Loc, UsingDecl *Using, + NamedDecl *Target, bool IsVirtual) { + return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, + IsVirtual); +} + +ConstructorUsingShadowDecl * +ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); +} + +CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { + return getUsingDecl()->getQualifier()->getAsRecordDecl(); +} + +void UsingDecl::anchor() {} + +void UsingDecl::addShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && + "declaration already in set"); + assert(S->getUsingDecl() == this); + + if (FirstUsingShadow.getPointer()) + S->UsingOrNextShadow = FirstUsingShadow.getPointer(); + FirstUsingShadow.setPointer(S); +} + +void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { + assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && + "declaration not in set"); + assert(S->getUsingDecl() == this); + + // Remove S from the shadow decl chain. This is O(n) but hopefully rare. + + if (FirstUsingShadow.getPointer() == S) { + FirstUsingShadow.setPointer( + dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); + S->UsingOrNextShadow = this; + return; + } + + UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); + while (Prev->UsingOrNextShadow != S) + Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); + Prev->UsingOrNextShadow = S->UsingOrNextShadow; + S->UsingOrNextShadow = this; +} + +UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, + NestedNameSpecifierLoc QualifierLoc, + const DeclarationNameInfo &NameInfo, + bool HasTypename) { + return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); +} + +UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) UsingDecl(nullptr, SourceLocation(), + NestedNameSpecifierLoc(), DeclarationNameInfo(), + false); +} + +SourceRange UsingDecl::getSourceRange() const { + SourceLocation Begin = isAccessDeclaration() + ? getQualifierLoc().getBeginLoc() : UsingLocation; + return SourceRange(Begin, getNameInfo().getEndLoc()); +} + +void UsingPackDecl::anchor() {} + +UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, + NamedDecl *InstantiatedFrom, + ArrayRef<NamedDecl *> UsingDecls) { + size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); + return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); +} + +UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, + unsigned NumExpansions) { + size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); + auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); + Result->NumExpansions = NumExpansions; + auto *Trail = Result->getTrailingObjects<NamedDecl *>(); + for (unsigned I = 0; I != NumExpansions; ++I) + new (Trail + I) NamedDecl*(nullptr); + return Result; +} + +void UnresolvedUsingValueDecl::anchor() {} + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + NestedNameSpecifierLoc QualifierLoc, + const DeclarationNameInfo &NameInfo, + SourceLocation EllipsisLoc) { + return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, + QualifierLoc, NameInfo, + EllipsisLoc); +} + +UnresolvedUsingValueDecl * +UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), + SourceLocation(), + NestedNameSpecifierLoc(), + DeclarationNameInfo(), + SourceLocation()); +} + +SourceRange UnresolvedUsingValueDecl::getSourceRange() const { + SourceLocation Begin = isAccessDeclaration() + ? getQualifierLoc().getBeginLoc() : UsingLocation; + return SourceRange(Begin, getNameInfo().getEndLoc()); +} + +void UnresolvedUsingTypenameDecl::anchor() {} + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation UsingLoc, + SourceLocation TypenameLoc, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation TargetNameLoc, + DeclarationName TargetName, + SourceLocation EllipsisLoc) { + return new (C, DC) UnresolvedUsingTypenameDecl( + DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, + TargetName.getAsIdentifierInfo(), EllipsisLoc); +} + +UnresolvedUsingTypenameDecl * +UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) UnresolvedUsingTypenameDecl( + nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), + SourceLocation(), nullptr, SourceLocation()); +} + +void StaticAssertDecl::anchor() {} + +StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation StaticAssertLoc, + Expr *AssertExpr, + StringLiteral *Message, + SourceLocation RParenLoc, + bool Failed) { + return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, + RParenLoc, Failed); +} + +StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, + nullptr, SourceLocation(), false); +} + +void BindingDecl::anchor() {} + +BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation IdLoc, IdentifierInfo *Id) { + return new (C, DC) BindingDecl(DC, IdLoc, Id); +} + +BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { + return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); +} + +ValueDecl *BindingDecl::getDecomposedDecl() const { + ExternalASTSource *Source = + Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr; + return cast_or_null<ValueDecl>(Decomp.get(Source)); +} + +VarDecl *BindingDecl::getHoldingVar() const { + Expr *B = getBinding(); + if (!B) + return nullptr; + auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); + if (!DRE) + return nullptr; + + auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); + assert(VD->isImplicit() && "holding var for binding decl not implicit"); + return VD; +} + +void DecompositionDecl::anchor() {} + +DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation StartLoc, + SourceLocation LSquareLoc, + QualType T, TypeSourceInfo *TInfo, + StorageClass SC, + ArrayRef<BindingDecl *> Bindings) { + size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); + return new (C, DC, Extra) + DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); +} + +DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, + unsigned ID, + unsigned NumBindings) { + size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); + auto *Result = new (C, ID, Extra) + DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), + QualType(), nullptr, StorageClass(), None); + // Set up and clean out the bindings array. + Result->NumBindings = NumBindings; + auto *Trail = Result->getTrailingObjects<BindingDecl *>(); + for (unsigned I = 0; I != NumBindings; ++I) + new (Trail + I) BindingDecl*(nullptr); + return Result; +} + +void DecompositionDecl::printName(llvm::raw_ostream &os) const { + os << '['; + bool Comma = false; + for (const auto *B : bindings()) { + if (Comma) + os << ", "; + B->printName(os); + Comma = true; + } + os << ']'; +} + +void MSPropertyDecl::anchor() {} + +MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, + SourceLocation L, DeclarationName N, + QualType T, TypeSourceInfo *TInfo, + SourceLocation StartL, + IdentifierInfo *Getter, + IdentifierInfo *Setter) { + return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); +} + +MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, + unsigned ID) { + return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), + DeclarationName(), QualType(), nullptr, + SourceLocation(), nullptr, nullptr); +} + +static const char *getAccessName(AccessSpecifier AS) { + switch (AS) { + case AS_none: + llvm_unreachable("Invalid access specifier!"); + case AS_public: + return "public"; + case AS_private: + return "private"; + case AS_protected: + return "protected"; + } + llvm_unreachable("Invalid access specifier!"); +} + +const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} + +const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, + AccessSpecifier AS) { + return DB << getAccessName(AS); +} |
