diff options
Diffstat (limited to 'clang/lib/AST/Expr.cpp')
| -rw-r--r-- | clang/lib/AST/Expr.cpp | 4675 |
1 files changed, 4675 insertions, 0 deletions
diff --git a/clang/lib/AST/Expr.cpp b/clang/lib/AST/Expr.cpp new file mode 100644 index 000000000000..3438c3aadc6b --- /dev/null +++ b/clang/lib/AST/Expr.cpp @@ -0,0 +1,4675 @@ +//===--- Expr.cpp - Expression AST Node Implementation --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Expr class and subclasses. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/Expr.h" +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/EvaluatedExprVisitor.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/Mangle.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/CharInfo.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/Lexer.h" +#include "clang/Lex/LiteralSupport.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstring> +using namespace clang; + +const Expr *Expr::getBestDynamicClassTypeExpr() const { + const Expr *E = this; + while (true) { + E = E->ignoreParenBaseCasts(); + + // Follow the RHS of a comma operator. + if (auto *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Comma) { + E = BO->getRHS(); + continue; + } + } + + // Step into initializer for materialized temporaries. + if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { + E = MTE->GetTemporaryExpr(); + continue; + } + + break; + } + + return E; +} + +const CXXRecordDecl *Expr::getBestDynamicClassType() const { + const Expr *E = getBestDynamicClassTypeExpr(); + QualType DerivedType = E->getType(); + if (const PointerType *PTy = DerivedType->getAs<PointerType>()) + DerivedType = PTy->getPointeeType(); + + if (DerivedType->isDependentType()) + return nullptr; + + const RecordType *Ty = DerivedType->castAs<RecordType>(); + Decl *D = Ty->getDecl(); + return cast<CXXRecordDecl>(D); +} + +const Expr *Expr::skipRValueSubobjectAdjustments( + SmallVectorImpl<const Expr *> &CommaLHSs, + SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { + const Expr *E = this; + while (true) { + E = E->IgnoreParens(); + + if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { + if ((CE->getCastKind() == CK_DerivedToBase || + CE->getCastKind() == CK_UncheckedDerivedToBase) && + E->getType()->isRecordType()) { + E = CE->getSubExpr(); + auto *Derived = + cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl()); + Adjustments.push_back(SubobjectAdjustment(CE, Derived)); + continue; + } + + if (CE->getCastKind() == CK_NoOp) { + E = CE->getSubExpr(); + continue; + } + } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { + if (!ME->isArrow()) { + assert(ME->getBase()->getType()->isRecordType()); + if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { + if (!Field->isBitField() && !Field->getType()->isReferenceType()) { + E = ME->getBase(); + Adjustments.push_back(SubobjectAdjustment(Field)); + continue; + } + } + } + } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_PtrMemD) { + assert(BO->getRHS()->isRValue()); + E = BO->getLHS(); + const MemberPointerType *MPT = + BO->getRHS()->getType()->getAs<MemberPointerType>(); + Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); + continue; + } else if (BO->getOpcode() == BO_Comma) { + CommaLHSs.push_back(BO->getLHS()); + E = BO->getRHS(); + continue; + } + } + + // Nothing changed. + break; + } + return E; +} + +/// isKnownToHaveBooleanValue - Return true if this is an integer expression +/// that is known to return 0 or 1. This happens for _Bool/bool expressions +/// but also int expressions which are produced by things like comparisons in +/// C. +bool Expr::isKnownToHaveBooleanValue() const { + const Expr *E = IgnoreParens(); + + // If this value has _Bool type, it is obvious 0/1. + if (E->getType()->isBooleanType()) return true; + // If this is a non-scalar-integer type, we don't care enough to try. + if (!E->getType()->isIntegralOrEnumerationType()) return false; + + if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { + switch (UO->getOpcode()) { + case UO_Plus: + return UO->getSubExpr()->isKnownToHaveBooleanValue(); + case UO_LNot: + return true; + default: + return false; + } + } + + // Only look through implicit casts. If the user writes + // '(int) (a && b)' treat it as an arbitrary int. + if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) + return CE->getSubExpr()->isKnownToHaveBooleanValue(); + + if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + switch (BO->getOpcode()) { + default: return false; + case BO_LT: // Relational operators. + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: // Equality operators. + case BO_NE: + case BO_LAnd: // AND operator. + case BO_LOr: // Logical OR operator. + return true; + + case BO_And: // Bitwise AND operator. + case BO_Xor: // Bitwise XOR operator. + case BO_Or: // Bitwise OR operator. + // Handle things like (x==2)|(y==12). + return BO->getLHS()->isKnownToHaveBooleanValue() && + BO->getRHS()->isKnownToHaveBooleanValue(); + + case BO_Comma: + case BO_Assign: + return BO->getRHS()->isKnownToHaveBooleanValue(); + } + } + + if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) + return CO->getTrueExpr()->isKnownToHaveBooleanValue() && + CO->getFalseExpr()->isKnownToHaveBooleanValue(); + + if (isa<ObjCBoolLiteralExpr>(E)) + return true; + + if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) + return OVE->getSourceExpr()->isKnownToHaveBooleanValue(); + + return false; +} + +// Amusing macro metaprogramming hack: check whether a class provides +// a more specific implementation of getExprLoc(). +// +// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. +namespace { + /// This implementation is used when a class provides a custom + /// implementation of getExprLoc. + template <class E, class T> + SourceLocation getExprLocImpl(const Expr *expr, + SourceLocation (T::*v)() const) { + return static_cast<const E*>(expr)->getExprLoc(); + } + + /// This implementation is used when a class doesn't provide + /// a custom implementation of getExprLoc. Overload resolution + /// should pick it over the implementation above because it's + /// more specialized according to function template partial ordering. + template <class E> + SourceLocation getExprLocImpl(const Expr *expr, + SourceLocation (Expr::*v)() const) { + return static_cast<const E *>(expr)->getBeginLoc(); + } +} + +SourceLocation Expr::getExprLoc() const { + switch (getStmtClass()) { + case Stmt::NoStmtClass: llvm_unreachable("statement without class"); +#define ABSTRACT_STMT(type) +#define STMT(type, base) \ + case Stmt::type##Class: break; +#define EXPR(type, base) \ + case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); +#include "clang/AST/StmtNodes.inc" + } + llvm_unreachable("unknown expression kind"); +} + +//===----------------------------------------------------------------------===// +// Primary Expressions. +//===----------------------------------------------------------------------===// + +static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { + assert((Kind == ConstantExpr::RSK_APValue || + Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && + "Invalid StorageKind Value"); +} + +ConstantExpr::ResultStorageKind +ConstantExpr::getStorageKind(const APValue &Value) { + switch (Value.getKind()) { + case APValue::None: + case APValue::Indeterminate: + return ConstantExpr::RSK_None; + case APValue::Int: + if (!Value.getInt().needsCleanup()) + return ConstantExpr::RSK_Int64; + LLVM_FALLTHROUGH; + default: + return ConstantExpr::RSK_APValue; + } +} + +ConstantExpr::ResultStorageKind +ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { + if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) + return ConstantExpr::RSK_Int64; + return ConstantExpr::RSK_APValue; +} + +void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) { + ConstantExprBits.ResultKind = StorageKind; + ConstantExprBits.APValueKind = APValue::None; + ConstantExprBits.HasCleanup = false; + if (StorageKind == ConstantExpr::RSK_APValue) + ::new (getTrailingObjects<APValue>()) APValue(); +} + +ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind) + : FullExpr(ConstantExprClass, subexpr) { + DefaultInit(StorageKind); +} + +ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, + ResultStorageKind StorageKind) { + assert(!isa<ConstantExpr>(E)); + AssertResultStorageKind(StorageKind); + unsigned Size = totalSizeToAlloc<APValue, uint64_t>( + StorageKind == ConstantExpr::RSK_APValue, + StorageKind == ConstantExpr::RSK_Int64); + void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); + ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind); + return Self; +} + +ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, + const APValue &Result) { + ResultStorageKind StorageKind = getStorageKind(Result); + ConstantExpr *Self = Create(Context, E, StorageKind); + Self->SetResult(Result, Context); + return Self; +} + +ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty) + : FullExpr(ConstantExprClass, Empty) { + DefaultInit(StorageKind); +} + +ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, + ResultStorageKind StorageKind, + EmptyShell Empty) { + AssertResultStorageKind(StorageKind); + unsigned Size = totalSizeToAlloc<APValue, uint64_t>( + StorageKind == ConstantExpr::RSK_APValue, + StorageKind == ConstantExpr::RSK_Int64); + void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); + ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty); + return Self; +} + +void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { + assert(getStorageKind(Value) == ConstantExprBits.ResultKind && + "Invalid storage for this value kind"); + ConstantExprBits.APValueKind = Value.getKind(); + switch (ConstantExprBits.ResultKind) { + case RSK_None: + return; + case RSK_Int64: + Int64Result() = *Value.getInt().getRawData(); + ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); + ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); + return; + case RSK_APValue: + if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { + ConstantExprBits.HasCleanup = true; + Context.addDestruction(&APValueResult()); + } + APValueResult() = std::move(Value); + return; + } + llvm_unreachable("Invalid ResultKind Bits"); +} + +llvm::APSInt ConstantExpr::getResultAsAPSInt() const { + switch (ConstantExprBits.ResultKind) { + case ConstantExpr::RSK_APValue: + return APValueResult().getInt(); + case ConstantExpr::RSK_Int64: + return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), + ConstantExprBits.IsUnsigned); + default: + llvm_unreachable("invalid Accessor"); + } +} + +APValue ConstantExpr::getAPValueResult() const { + switch (ConstantExprBits.ResultKind) { + case ConstantExpr::RSK_APValue: + return APValueResult(); + case ConstantExpr::RSK_Int64: + return APValue( + llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), + ConstantExprBits.IsUnsigned)); + case ConstantExpr::RSK_None: + return APValue(); + } + llvm_unreachable("invalid ResultKind"); +} + +/// Compute the type-, value-, and instantiation-dependence of a +/// declaration reference +/// based on the declaration being referenced. +static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, + QualType T, bool &TypeDependent, + bool &ValueDependent, + bool &InstantiationDependent) { + TypeDependent = false; + ValueDependent = false; + InstantiationDependent = false; + + // (TD) C++ [temp.dep.expr]p3: + // An id-expression is type-dependent if it contains: + // + // and + // + // (VD) C++ [temp.dep.constexpr]p2: + // An identifier is value-dependent if it is: + + // (TD) - an identifier that was declared with dependent type + // (VD) - a name declared with a dependent type, + if (T->isDependentType()) { + TypeDependent = true; + ValueDependent = true; + InstantiationDependent = true; + return; + } else if (T->isInstantiationDependentType()) { + InstantiationDependent = true; + } + + // (TD) - a conversion-function-id that specifies a dependent type + if (D->getDeclName().getNameKind() + == DeclarationName::CXXConversionFunctionName) { + QualType T = D->getDeclName().getCXXNameType(); + if (T->isDependentType()) { + TypeDependent = true; + ValueDependent = true; + InstantiationDependent = true; + return; + } + + if (T->isInstantiationDependentType()) + InstantiationDependent = true; + } + + // (VD) - the name of a non-type template parameter, + if (isa<NonTypeTemplateParmDecl>(D)) { + ValueDependent = true; + InstantiationDependent = true; + return; + } + + // (VD) - a constant with integral or enumeration type and is + // initialized with an expression that is value-dependent. + // (VD) - a constant with literal type and is initialized with an + // expression that is value-dependent [C++11]. + // (VD) - FIXME: Missing from the standard: + // - an entity with reference type and is initialized with an + // expression that is value-dependent [C++11] + if (VarDecl *Var = dyn_cast<VarDecl>(D)) { + if ((Ctx.getLangOpts().CPlusPlus11 ? + Var->getType()->isLiteralType(Ctx) : + Var->getType()->isIntegralOrEnumerationType()) && + (Var->getType().isConstQualified() || + Var->getType()->isReferenceType())) { + if (const Expr *Init = Var->getAnyInitializer()) + if (Init->isValueDependent()) { + ValueDependent = true; + InstantiationDependent = true; + } + } + + // (VD) - FIXME: Missing from the standard: + // - a member function or a static data member of the current + // instantiation + if (Var->isStaticDataMember() && + Var->getDeclContext()->isDependentContext()) { + ValueDependent = true; + InstantiationDependent = true; + TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo(); + if (TInfo->getType()->isIncompleteArrayType()) + TypeDependent = true; + } + + return; + } + + // (VD) - FIXME: Missing from the standard: + // - a member function or a static data member of the current + // instantiation + if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) { + ValueDependent = true; + InstantiationDependent = true; + } +} + +void DeclRefExpr::computeDependence(const ASTContext &Ctx) { + bool TypeDependent = false; + bool ValueDependent = false; + bool InstantiationDependent = false; + computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent, + ValueDependent, InstantiationDependent); + + ExprBits.TypeDependent |= TypeDependent; + ExprBits.ValueDependent |= ValueDependent; + ExprBits.InstantiationDependent |= InstantiationDependent; + + // Is the declaration a parameter pack? + if (getDecl()->isParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; +} + +DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, + bool RefersToEnclosingVariableOrCapture, QualType T, + ExprValueKind VK, SourceLocation L, + const DeclarationNameLoc &LocInfo, + NonOdrUseReason NOUR) + : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), + D(D), DNLoc(LocInfo) { + DeclRefExprBits.HasQualifier = false; + DeclRefExprBits.HasTemplateKWAndArgsInfo = false; + DeclRefExprBits.HasFoundDecl = false; + DeclRefExprBits.HadMultipleCandidates = false; + DeclRefExprBits.RefersToEnclosingVariableOrCapture = + RefersToEnclosingVariableOrCapture; + DeclRefExprBits.NonOdrUseReason = NOUR; + DeclRefExprBits.Loc = L; + computeDependence(Ctx); +} + +DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation TemplateKWLoc, ValueDecl *D, + bool RefersToEnclosingVariableOrCapture, + const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, + const TemplateArgumentListInfo *TemplateArgs, + QualType T, ExprValueKind VK, NonOdrUseReason NOUR) + : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false), + D(D), DNLoc(NameInfo.getInfo()) { + DeclRefExprBits.Loc = NameInfo.getLoc(); + DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; + if (QualifierLoc) { + new (getTrailingObjects<NestedNameSpecifierLoc>()) + NestedNameSpecifierLoc(QualifierLoc); + auto *NNS = QualifierLoc.getNestedNameSpecifier(); + if (NNS->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (NNS->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + } + DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; + if (FoundD) + *getTrailingObjects<NamedDecl *>() = FoundD; + DeclRefExprBits.HasTemplateKWAndArgsInfo + = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; + DeclRefExprBits.RefersToEnclosingVariableOrCapture = + RefersToEnclosingVariableOrCapture; + DeclRefExprBits.NonOdrUseReason = NOUR; + if (TemplateArgs) { + bool Dependent = false; + bool InstantiationDependent = false; + bool ContainsUnexpandedParameterPack = false; + getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( + TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(), + Dependent, InstantiationDependent, ContainsUnexpandedParameterPack); + assert(!Dependent && "built a DeclRefExpr with dependent template args"); + ExprBits.InstantiationDependent |= InstantiationDependent; + ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack; + } else if (TemplateKWLoc.isValid()) { + getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( + TemplateKWLoc); + } + DeclRefExprBits.HadMultipleCandidates = 0; + + computeDependence(Ctx); +} + +DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation TemplateKWLoc, ValueDecl *D, + bool RefersToEnclosingVariableOrCapture, + SourceLocation NameLoc, QualType T, + ExprValueKind VK, NamedDecl *FoundD, + const TemplateArgumentListInfo *TemplateArgs, + NonOdrUseReason NOUR) { + return Create(Context, QualifierLoc, TemplateKWLoc, D, + RefersToEnclosingVariableOrCapture, + DeclarationNameInfo(D->getDeclName(), NameLoc), + T, VK, FoundD, TemplateArgs, NOUR); +} + +DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, + NestedNameSpecifierLoc QualifierLoc, + SourceLocation TemplateKWLoc, ValueDecl *D, + bool RefersToEnclosingVariableOrCapture, + const DeclarationNameInfo &NameInfo, + QualType T, ExprValueKind VK, + NamedDecl *FoundD, + const TemplateArgumentListInfo *TemplateArgs, + NonOdrUseReason NOUR) { + // Filter out cases where the found Decl is the same as the value refenenced. + if (D == FoundD) + FoundD = nullptr; + + bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); + std::size_t Size = + totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, + ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( + QualifierLoc ? 1 : 0, FoundD ? 1 : 0, + HasTemplateKWAndArgsInfo ? 1 : 0, + TemplateArgs ? TemplateArgs->size() : 0); + + void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); + return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, + RefersToEnclosingVariableOrCapture, NameInfo, + FoundD, TemplateArgs, T, VK, NOUR); +} + +DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, + bool HasQualifier, + bool HasFoundDecl, + bool HasTemplateKWAndArgsInfo, + unsigned NumTemplateArgs) { + assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); + std::size_t Size = + totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, + ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( + HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, + NumTemplateArgs); + void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); + return new (Mem) DeclRefExpr(EmptyShell()); +} + +SourceLocation DeclRefExpr::getBeginLoc() const { + if (hasQualifier()) + return getQualifierLoc().getBeginLoc(); + return getNameInfo().getBeginLoc(); +} +SourceLocation DeclRefExpr::getEndLoc() const { + if (hasExplicitTemplateArgs()) + return getRAngleLoc(); + return getNameInfo().getEndLoc(); +} + +PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, + StringLiteral *SL) + : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary, + FNTy->isDependentType(), FNTy->isDependentType(), + FNTy->isInstantiationDependentType(), + /*ContainsUnexpandedParameterPack=*/false) { + PredefinedExprBits.Kind = IK; + assert((getIdentKind() == IK) && + "IdentKind do not fit in PredefinedExprBitfields!"); + bool HasFunctionName = SL != nullptr; + PredefinedExprBits.HasFunctionName = HasFunctionName; + PredefinedExprBits.Loc = L; + if (HasFunctionName) + setFunctionName(SL); +} + +PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) + : Expr(PredefinedExprClass, Empty) { + PredefinedExprBits.HasFunctionName = HasFunctionName; +} + +PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, + QualType FNTy, IdentKind IK, + StringLiteral *SL) { + bool HasFunctionName = SL != nullptr; + void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), + alignof(PredefinedExpr)); + return new (Mem) PredefinedExpr(L, FNTy, IK, SL); +} + +PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, + bool HasFunctionName) { + void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName), + alignof(PredefinedExpr)); + return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); +} + +StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { + switch (IK) { + case Func: + return "__func__"; + case Function: + return "__FUNCTION__"; + case FuncDName: + return "__FUNCDNAME__"; + case LFunction: + return "L__FUNCTION__"; + case PrettyFunction: + return "__PRETTY_FUNCTION__"; + case FuncSig: + return "__FUNCSIG__"; + case LFuncSig: + return "L__FUNCSIG__"; + case PrettyFunctionNoVirtual: + break; + } + llvm_unreachable("Unknown ident kind for PredefinedExpr"); +} + +// FIXME: Maybe this should use DeclPrinter with a special "print predefined +// expr" policy instead. +std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { + ASTContext &Context = CurrentDecl->getASTContext(); + + if (IK == PredefinedExpr::FuncDName) { + if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) { + std::unique_ptr<MangleContext> MC; + MC.reset(Context.createMangleContext()); + + if (MC->shouldMangleDeclName(ND)) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND)) + MC->mangleCXXCtor(CD, Ctor_Base, Out); + else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND)) + MC->mangleCXXDtor(DD, Dtor_Base, Out); + else + MC->mangleName(ND, Out); + + if (!Buffer.empty() && Buffer.front() == '\01') + return Buffer.substr(1); + return Buffer.str(); + } else + return ND->getIdentifier()->getName(); + } + return ""; + } + if (isa<BlockDecl>(CurrentDecl)) { + // For blocks we only emit something if it is enclosed in a function + // For top-level block we'd like to include the name of variable, but we + // don't have it at this point. + auto DC = CurrentDecl->getDeclContext(); + if (DC->isFileContext()) + return ""; + + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + if (auto *DCBlock = dyn_cast<BlockDecl>(DC)) + // For nested blocks, propagate up to the parent. + Out << ComputeName(IK, DCBlock); + else if (auto *DCDecl = dyn_cast<Decl>(DC)) + Out << ComputeName(IK, DCDecl) << "_block_invoke"; + return Out.str(); + } + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) { + if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && + IK != FuncSig && IK != LFuncSig) + return FD->getNameAsString(); + + SmallString<256> Name; + llvm::raw_svector_ostream Out(Name); + + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { + if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) + Out << "virtual "; + if (MD->isStatic()) + Out << "static "; + } + + PrintingPolicy Policy(Context.getLangOpts()); + std::string Proto; + llvm::raw_string_ostream POut(Proto); + + const FunctionDecl *Decl = FD; + if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) + Decl = Pattern; + const FunctionType *AFT = Decl->getType()->getAs<FunctionType>(); + const FunctionProtoType *FT = nullptr; + if (FD->hasWrittenPrototype()) + FT = dyn_cast<FunctionProtoType>(AFT); + + if (IK == FuncSig || IK == LFuncSig) { + switch (AFT->getCallConv()) { + case CC_C: POut << "__cdecl "; break; + case CC_X86StdCall: POut << "__stdcall "; break; + case CC_X86FastCall: POut << "__fastcall "; break; + case CC_X86ThisCall: POut << "__thiscall "; break; + case CC_X86VectorCall: POut << "__vectorcall "; break; + case CC_X86RegCall: POut << "__regcall "; break; + // Only bother printing the conventions that MSVC knows about. + default: break; + } + } + + FD->printQualifiedName(POut, Policy); + + POut << "("; + if (FT) { + for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { + if (i) POut << ", "; + POut << Decl->getParamDecl(i)->getType().stream(Policy); + } + + if (FT->isVariadic()) { + if (FD->getNumParams()) POut << ", "; + POut << "..."; + } else if ((IK == FuncSig || IK == LFuncSig || + !Context.getLangOpts().CPlusPlus) && + !Decl->getNumParams()) { + POut << "void"; + } + } + POut << ")"; + + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { + assert(FT && "We must have a written prototype in this case."); + if (FT->isConst()) + POut << " const"; + if (FT->isVolatile()) + POut << " volatile"; + RefQualifierKind Ref = MD->getRefQualifier(); + if (Ref == RQ_LValue) + POut << " &"; + else if (Ref == RQ_RValue) + POut << " &&"; + } + + typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; + SpecsTy Specs; + const DeclContext *Ctx = FD->getDeclContext(); + while (Ctx && isa<NamedDecl>(Ctx)) { + const ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Ctx); + if (Spec && !Spec->isExplicitSpecialization()) + Specs.push_back(Spec); + Ctx = Ctx->getParent(); + } + + std::string TemplateParams; + llvm::raw_string_ostream TOut(TemplateParams); + for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); + I != E; ++I) { + const TemplateParameterList *Params + = (*I)->getSpecializedTemplate()->getTemplateParameters(); + const TemplateArgumentList &Args = (*I)->getTemplateArgs(); + assert(Params->size() == Args.size()); + for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { + StringRef Param = Params->getParam(i)->getName(); + if (Param.empty()) continue; + TOut << Param << " = "; + Args.get(i).print(Policy, TOut); + TOut << ", "; + } + } + + FunctionTemplateSpecializationInfo *FSI + = FD->getTemplateSpecializationInfo(); + if (FSI && !FSI->isExplicitSpecialization()) { + const TemplateParameterList* Params + = FSI->getTemplate()->getTemplateParameters(); + const TemplateArgumentList* Args = FSI->TemplateArguments; + assert(Params->size() == Args->size()); + for (unsigned i = 0, e = Params->size(); i != e; ++i) { + StringRef Param = Params->getParam(i)->getName(); + if (Param.empty()) continue; + TOut << Param << " = "; + Args->get(i).print(Policy, TOut); + TOut << ", "; + } + } + + TOut.flush(); + if (!TemplateParams.empty()) { + // remove the trailing comma and space + TemplateParams.resize(TemplateParams.size() - 2); + POut << " [" << TemplateParams << "]"; + } + + POut.flush(); + + // Print "auto" for all deduced return types. This includes C++1y return + // type deduction and lambdas. For trailing return types resolve the + // decltype expression. Otherwise print the real type when this is + // not a constructor or destructor. + if (isa<CXXMethodDecl>(FD) && + cast<CXXMethodDecl>(FD)->getParent()->isLambda()) + Proto = "auto " + Proto; + else if (FT && FT->getReturnType()->getAs<DecltypeType>()) + FT->getReturnType() + ->getAs<DecltypeType>() + ->getUnderlyingType() + .getAsStringInternal(Proto, Policy); + else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD)) + AFT->getReturnType().getAsStringInternal(Proto, Policy); + + Out << Proto; + + return Name.str().str(); + } + if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) { + for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) + // Skip to its enclosing function or method, but not its enclosing + // CapturedDecl. + if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { + const Decl *D = Decl::castFromDeclContext(DC); + return ComputeName(IK, D); + } + llvm_unreachable("CapturedDecl not inside a function or method"); + } + if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) { + SmallString<256> Name; + llvm::raw_svector_ostream Out(Name); + Out << (MD->isInstanceMethod() ? '-' : '+'); + Out << '['; + + // For incorrect code, there might not be an ObjCInterfaceDecl. Do + // a null check to avoid a crash. + if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) + Out << *ID; + + if (const ObjCCategoryImplDecl *CID = + dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) + Out << '(' << *CID << ')'; + + Out << ' '; + MD->getSelector().print(Out); + Out << ']'; + + return Name.str().str(); + } + if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) { + // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. + return "top level"; + } + return ""; +} + +void APNumericStorage::setIntValue(const ASTContext &C, + const llvm::APInt &Val) { + if (hasAllocation()) + C.Deallocate(pVal); + + BitWidth = Val.getBitWidth(); + unsigned NumWords = Val.getNumWords(); + const uint64_t* Words = Val.getRawData(); + if (NumWords > 1) { + pVal = new (C) uint64_t[NumWords]; + std::copy(Words, Words + NumWords, pVal); + } else if (NumWords == 1) + VAL = Words[0]; + else + VAL = 0; +} + +IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, + QualType type, SourceLocation l) + : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false, + false, false), + Loc(l) { + assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); + assert(V.getBitWidth() == C.getIntWidth(type) && + "Integer type is not the correct size for constant."); + setValue(C, V); +} + +IntegerLiteral * +IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, + QualType type, SourceLocation l) { + return new (C) IntegerLiteral(C, V, type, l); +} + +IntegerLiteral * +IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { + return new (C) IntegerLiteral(Empty); +} + +FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, + QualType type, SourceLocation l, + unsigned Scale) + : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false, + false, false), + Loc(l), Scale(Scale) { + assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); + assert(V.getBitWidth() == C.getTypeInfo(type).Width && + "Fixed point type is not the correct size for constant."); + setValue(C, V); +} + +FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, + const llvm::APInt &V, + QualType type, + SourceLocation l, + unsigned Scale) { + return new (C) FixedPointLiteral(C, V, type, l, Scale); +} + +std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { + // Currently the longest decimal number that can be printed is the max for an + // unsigned long _Accum: 4294967295.99999999976716935634613037109375 + // which is 43 characters. + SmallString<64> S; + FixedPointValueToString( + S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); + return S.str(); +} + +FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, + bool isexact, QualType Type, SourceLocation L) + : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false, + false, false), Loc(L) { + setSemantics(V.getSemantics()); + FloatingLiteralBits.IsExact = isexact; + setValue(C, V); +} + +FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) + : Expr(FloatingLiteralClass, Empty) { + setRawSemantics(llvm::APFloatBase::S_IEEEhalf); + FloatingLiteralBits.IsExact = false; +} + +FloatingLiteral * +FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, + bool isexact, QualType Type, SourceLocation L) { + return new (C) FloatingLiteral(C, V, isexact, Type, L); +} + +FloatingLiteral * +FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { + return new (C) FloatingLiteral(C, Empty); +} + +/// getValueAsApproximateDouble - This returns the value as an inaccurate +/// double. Note that this may cause loss of precision, but is useful for +/// debugging dumps, etc. +double FloatingLiteral::getValueAsApproximateDouble() const { + llvm::APFloat V = getValue(); + bool ignored; + V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, + &ignored); + return V.convertToDouble(); +} + +unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, + StringKind SK) { + unsigned CharByteWidth = 0; + switch (SK) { + case Ascii: + case UTF8: + CharByteWidth = Target.getCharWidth(); + break; + case Wide: + CharByteWidth = Target.getWCharWidth(); + break; + case UTF16: + CharByteWidth = Target.getChar16Width(); + break; + case UTF32: + CharByteWidth = Target.getChar32Width(); + break; + } + assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); + CharByteWidth /= 8; + assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && + "The only supported character byte widths are 1,2 and 4!"); + return CharByteWidth; +} + +StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, + StringKind Kind, bool Pascal, QualType Ty, + const SourceLocation *Loc, + unsigned NumConcatenated) + : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false, + false) { + assert(Ctx.getAsConstantArrayType(Ty) && + "StringLiteral must be of constant array type!"); + unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); + unsigned ByteLength = Str.size(); + assert((ByteLength % CharByteWidth == 0) && + "The size of the data must be a multiple of CharByteWidth!"); + + // Avoid the expensive division. The compiler should be able to figure it + // out by itself. However as of clang 7, even with the appropriate + // llvm_unreachable added just here, it is not able to do so. + unsigned Length; + switch (CharByteWidth) { + case 1: + Length = ByteLength; + break; + case 2: + Length = ByteLength / 2; + break; + case 4: + Length = ByteLength / 4; + break; + default: + llvm_unreachable("Unsupported character width!"); + } + + StringLiteralBits.Kind = Kind; + StringLiteralBits.CharByteWidth = CharByteWidth; + StringLiteralBits.IsPascal = Pascal; + StringLiteralBits.NumConcatenated = NumConcatenated; + *getTrailingObjects<unsigned>() = Length; + + // Initialize the trailing array of SourceLocation. + // This is safe since SourceLocation is POD-like. + std::memcpy(getTrailingObjects<SourceLocation>(), Loc, + NumConcatenated * sizeof(SourceLocation)); + + // Initialize the trailing array of char holding the string data. + std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength); +} + +StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, + unsigned Length, unsigned CharByteWidth) + : Expr(StringLiteralClass, Empty) { + StringLiteralBits.CharByteWidth = CharByteWidth; + StringLiteralBits.NumConcatenated = NumConcatenated; + *getTrailingObjects<unsigned>() = Length; +} + +StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, + StringKind Kind, bool Pascal, QualType Ty, + const SourceLocation *Loc, + unsigned NumConcatenated) { + void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( + 1, NumConcatenated, Str.size()), + alignof(StringLiteral)); + return new (Mem) + StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); +} + +StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, + unsigned NumConcatenated, + unsigned Length, + unsigned CharByteWidth) { + void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>( + 1, NumConcatenated, Length * CharByteWidth), + alignof(StringLiteral)); + return new (Mem) + StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); +} + +void StringLiteral::outputString(raw_ostream &OS) const { + switch (getKind()) { + case Ascii: break; // no prefix. + case Wide: OS << 'L'; break; + case UTF8: OS << "u8"; break; + case UTF16: OS << 'u'; break; + case UTF32: OS << 'U'; break; + } + OS << '"'; + static const char Hex[] = "0123456789ABCDEF"; + + unsigned LastSlashX = getLength(); + for (unsigned I = 0, N = getLength(); I != N; ++I) { + switch (uint32_t Char = getCodeUnit(I)) { + default: + // FIXME: Convert UTF-8 back to codepoints before rendering. + + // Convert UTF-16 surrogate pairs back to codepoints before rendering. + // Leave invalid surrogates alone; we'll use \x for those. + if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && + Char <= 0xdbff) { + uint32_t Trail = getCodeUnit(I + 1); + if (Trail >= 0xdc00 && Trail <= 0xdfff) { + Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); + ++I; + } + } + + if (Char > 0xff) { + // If this is a wide string, output characters over 0xff using \x + // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a + // codepoint: use \x escapes for invalid codepoints. + if (getKind() == Wide || + (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { + // FIXME: Is this the best way to print wchar_t? + OS << "\\x"; + int Shift = 28; + while ((Char >> Shift) == 0) + Shift -= 4; + for (/**/; Shift >= 0; Shift -= 4) + OS << Hex[(Char >> Shift) & 15]; + LastSlashX = I; + break; + } + + if (Char > 0xffff) + OS << "\\U00" + << Hex[(Char >> 20) & 15] + << Hex[(Char >> 16) & 15]; + else + OS << "\\u"; + OS << Hex[(Char >> 12) & 15] + << Hex[(Char >> 8) & 15] + << Hex[(Char >> 4) & 15] + << Hex[(Char >> 0) & 15]; + break; + } + + // If we used \x... for the previous character, and this character is a + // hexadecimal digit, prevent it being slurped as part of the \x. + if (LastSlashX + 1 == I) { + switch (Char) { + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': + case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': + case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': + OS << "\"\""; + } + } + + assert(Char <= 0xff && + "Characters above 0xff should already have been handled."); + + if (isPrintable(Char)) + OS << (char)Char; + else // Output anything hard as an octal escape. + OS << '\\' + << (char)('0' + ((Char >> 6) & 7)) + << (char)('0' + ((Char >> 3) & 7)) + << (char)('0' + ((Char >> 0) & 7)); + break; + // Handle some common non-printable cases to make dumps prettier. + case '\\': OS << "\\\\"; break; + case '"': OS << "\\\""; break; + case '\a': OS << "\\a"; break; + case '\b': OS << "\\b"; break; + case '\f': OS << "\\f"; break; + case '\n': OS << "\\n"; break; + case '\r': OS << "\\r"; break; + case '\t': OS << "\\t"; break; + case '\v': OS << "\\v"; break; + } + } + OS << '"'; +} + +/// getLocationOfByte - Return a source location that points to the specified +/// byte of this string literal. +/// +/// Strings are amazingly complex. They can be formed from multiple tokens and +/// can have escape sequences in them in addition to the usual trigraph and +/// escaped newline business. This routine handles this complexity. +/// +/// The *StartToken sets the first token to be searched in this function and +/// the *StartTokenByteOffset is the byte offset of the first token. Before +/// returning, it updates the *StartToken to the TokNo of the token being found +/// and sets *StartTokenByteOffset to the byte offset of the token in the +/// string. +/// Using these two parameters can reduce the time complexity from O(n^2) to +/// O(n) if one wants to get the location of byte for all the tokens in a +/// string. +/// +SourceLocation +StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, + const LangOptions &Features, + const TargetInfo &Target, unsigned *StartToken, + unsigned *StartTokenByteOffset) const { + assert((getKind() == StringLiteral::Ascii || + getKind() == StringLiteral::UTF8) && + "Only narrow string literals are currently supported"); + + // Loop over all of the tokens in this string until we find the one that + // contains the byte we're looking for. + unsigned TokNo = 0; + unsigned StringOffset = 0; + if (StartToken) + TokNo = *StartToken; + if (StartTokenByteOffset) { + StringOffset = *StartTokenByteOffset; + ByteNo -= StringOffset; + } + while (1) { + assert(TokNo < getNumConcatenated() && "Invalid byte number!"); + SourceLocation StrTokLoc = getStrTokenLoc(TokNo); + + // Get the spelling of the string so that we can get the data that makes up + // the string literal, not the identifier for the macro it is potentially + // expanded through. + SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); + + // Re-lex the token to get its length and original spelling. + std::pair<FileID, unsigned> LocInfo = + SM.getDecomposedLoc(StrTokSpellingLoc); + bool Invalid = false; + StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); + if (Invalid) { + if (StartTokenByteOffset != nullptr) + *StartTokenByteOffset = StringOffset; + if (StartToken != nullptr) + *StartToken = TokNo; + return StrTokSpellingLoc; + } + + const char *StrData = Buffer.data()+LocInfo.second; + + // Create a lexer starting at the beginning of this token. + Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, + Buffer.begin(), StrData, Buffer.end()); + Token TheTok; + TheLexer.LexFromRawLexer(TheTok); + + // Use the StringLiteralParser to compute the length of the string in bytes. + StringLiteralParser SLP(TheTok, SM, Features, Target); + unsigned TokNumBytes = SLP.GetStringLength(); + + // If the byte is in this token, return the location of the byte. + if (ByteNo < TokNumBytes || + (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { + unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); + + // Now that we know the offset of the token in the spelling, use the + // preprocessor to get the offset in the original source. + if (StartTokenByteOffset != nullptr) + *StartTokenByteOffset = StringOffset; + if (StartToken != nullptr) + *StartToken = TokNo; + return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); + } + + // Move to the next string token. + StringOffset += TokNumBytes; + ++TokNo; + ByteNo -= TokNumBytes; + } +} + +/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it +/// corresponds to, e.g. "sizeof" or "[pre]++". +StringRef UnaryOperator::getOpcodeStr(Opcode Op) { + switch (Op) { +#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; +#include "clang/AST/OperationKinds.def" + } + llvm_unreachable("Unknown unary operator"); +} + +UnaryOperatorKind +UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { + switch (OO) { + default: llvm_unreachable("No unary operator for overloaded function"); + case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; + case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; + case OO_Amp: return UO_AddrOf; + case OO_Star: return UO_Deref; + case OO_Plus: return UO_Plus; + case OO_Minus: return UO_Minus; + case OO_Tilde: return UO_Not; + case OO_Exclaim: return UO_LNot; + case OO_Coawait: return UO_Coawait; + } +} + +OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { + switch (Opc) { + case UO_PostInc: case UO_PreInc: return OO_PlusPlus; + case UO_PostDec: case UO_PreDec: return OO_MinusMinus; + case UO_AddrOf: return OO_Amp; + case UO_Deref: return OO_Star; + case UO_Plus: return OO_Plus; + case UO_Minus: return OO_Minus; + case UO_Not: return OO_Tilde; + case UO_LNot: return OO_Exclaim; + case UO_Coawait: return OO_Coawait; + default: return OO_None; + } +} + + +//===----------------------------------------------------------------------===// +// Postfix Operators. +//===----------------------------------------------------------------------===// + +CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, + ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, + SourceLocation RParenLoc, unsigned MinNumArgs, + ADLCallKind UsesADL) + : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(), + Fn->isValueDependent(), Fn->isInstantiationDependent(), + Fn->containsUnexpandedParameterPack()), + RParenLoc(RParenLoc) { + NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); + unsigned NumPreArgs = PreArgs.size(); + CallExprBits.NumPreArgs = NumPreArgs; + assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); + + unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); + CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; + assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && + "OffsetToTrailingObjects overflow!"); + + CallExprBits.UsesADL = static_cast<bool>(UsesADL); + + setCallee(Fn); + for (unsigned I = 0; I != NumPreArgs; ++I) { + updateDependenciesFromArg(PreArgs[I]); + setPreArg(I, PreArgs[I]); + } + for (unsigned I = 0; I != Args.size(); ++I) { + updateDependenciesFromArg(Args[I]); + setArg(I, Args[I]); + } + for (unsigned I = Args.size(); I != NumArgs; ++I) { + setArg(I, nullptr); + } +} + +CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, + EmptyShell Empty) + : Expr(SC, Empty), NumArgs(NumArgs) { + CallExprBits.NumPreArgs = NumPreArgs; + assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); + + unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); + CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; + assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && + "OffsetToTrailingObjects overflow!"); +} + +CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, + ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, + SourceLocation RParenLoc, unsigned MinNumArgs, + ADLCallKind UsesADL) { + unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs); + unsigned SizeOfTrailingObjects = + CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); + void *Mem = + Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); + return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, + RParenLoc, MinNumArgs, UsesADL); +} + +CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, + ExprValueKind VK, SourceLocation RParenLoc, + ADLCallKind UsesADL) { + assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) && + "Misaligned memory in CallExpr::CreateTemporary!"); + return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, + VK, RParenLoc, /*MinNumArgs=*/0, UsesADL); +} + +CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, + EmptyShell Empty) { + unsigned SizeOfTrailingObjects = + CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); + void *Mem = + Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); + return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty); +} + +unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { + switch (SC) { + case CallExprClass: + return sizeof(CallExpr); + case CXXOperatorCallExprClass: + return sizeof(CXXOperatorCallExpr); + case CXXMemberCallExprClass: + return sizeof(CXXMemberCallExpr); + case UserDefinedLiteralClass: + return sizeof(UserDefinedLiteral); + case CUDAKernelCallExprClass: + return sizeof(CUDAKernelCallExpr); + default: + llvm_unreachable("unexpected class deriving from CallExpr!"); + } +} + +void CallExpr::updateDependenciesFromArg(Expr *Arg) { + if (Arg->isTypeDependent()) + ExprBits.TypeDependent = true; + if (Arg->isValueDependent()) + ExprBits.ValueDependent = true; + if (Arg->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (Arg->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; +} + +Decl *Expr::getReferencedDeclOfCallee() { + Expr *CEE = IgnoreParenImpCasts(); + + while (SubstNonTypeTemplateParmExpr *NTTP + = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) { + CEE = NTTP->getReplacement()->IgnoreParenCasts(); + } + + // If we're calling a dereference, look at the pointer instead. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) { + if (BO->isPtrMemOp()) + CEE = BO->getRHS()->IgnoreParenCasts(); + } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) { + if (UO->getOpcode() == UO_Deref) + CEE = UO->getSubExpr()->IgnoreParenCasts(); + } + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) + return DRE->getDecl(); + if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE)) + return ME->getMemberDecl(); + if (auto *BE = dyn_cast<BlockExpr>(CEE)) + return BE->getBlockDecl(); + + return nullptr; +} + +/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If +/// not, return 0. +unsigned CallExpr::getBuiltinCallee() const { + // All simple function calls (e.g. func()) are implicitly cast to pointer to + // function. As a result, we try and obtain the DeclRefExpr from the + // ImplicitCastExpr. + const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); + if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). + return 0; + + const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); + if (!DRE) + return 0; + + const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()); + if (!FDecl) + return 0; + + if (!FDecl->getIdentifier()) + return 0; + + return FDecl->getBuiltinID(); +} + +bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { + if (unsigned BI = getBuiltinCallee()) + return Ctx.BuiltinInfo.isUnevaluated(BI); + return false; +} + +QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { + const Expr *Callee = getCallee(); + QualType CalleeType = Callee->getType(); + if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { + CalleeType = FnTypePtr->getPointeeType(); + } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { + CalleeType = BPT->getPointeeType(); + } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { + if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens())) + return Ctx.VoidTy; + + // This should never be overloaded and so should never return null. + CalleeType = Expr::findBoundMemberType(Callee); + } + + const FunctionType *FnType = CalleeType->castAs<FunctionType>(); + return FnType->getReturnType(); +} + +const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { + // If the return type is a struct, union, or enum that is marked nodiscard, + // then return the return type attribute. + if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) + if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) + return A; + + // Otherwise, see if the callee is marked nodiscard and return that attribute + // instead. + const Decl *D = getCalleeDecl(); + return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr; +} + +SourceLocation CallExpr::getBeginLoc() const { + if (isa<CXXOperatorCallExpr>(this)) + return cast<CXXOperatorCallExpr>(this)->getBeginLoc(); + + SourceLocation begin = getCallee()->getBeginLoc(); + if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) + begin = getArg(0)->getBeginLoc(); + return begin; +} +SourceLocation CallExpr::getEndLoc() const { + if (isa<CXXOperatorCallExpr>(this)) + return cast<CXXOperatorCallExpr>(this)->getEndLoc(); + + SourceLocation end = getRParenLoc(); + if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) + end = getArg(getNumArgs() - 1)->getEndLoc(); + return end; +} + +OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, + SourceLocation OperatorLoc, + TypeSourceInfo *tsi, + ArrayRef<OffsetOfNode> comps, + ArrayRef<Expr*> exprs, + SourceLocation RParenLoc) { + void *Mem = C.Allocate( + totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size())); + + return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, + RParenLoc); +} + +OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, + unsigned numComps, unsigned numExprs) { + void *Mem = + C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs)); + return new (Mem) OffsetOfExpr(numComps, numExprs); +} + +OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, + SourceLocation OperatorLoc, TypeSourceInfo *tsi, + ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs, + SourceLocation RParenLoc) + : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary, + /*TypeDependent=*/false, + /*ValueDependent=*/tsi->getType()->isDependentType(), + tsi->getType()->isInstantiationDependentType(), + tsi->getType()->containsUnexpandedParameterPack()), + OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), + NumComps(comps.size()), NumExprs(exprs.size()) +{ + for (unsigned i = 0; i != comps.size(); ++i) { + setComponent(i, comps[i]); + } + + for (unsigned i = 0; i != exprs.size(); ++i) { + if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent()) + ExprBits.ValueDependent = true; + if (exprs[i]->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + setIndexExpr(i, exprs[i]); + } +} + +IdentifierInfo *OffsetOfNode::getFieldName() const { + assert(getKind() == Field || getKind() == Identifier); + if (getKind() == Field) + return getField()->getIdentifier(); + + return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); +} + +UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( + UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, + SourceLocation op, SourceLocation rp) + : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary, + false, // Never type-dependent (C++ [temp.dep.expr]p3). + // Value-dependent if the argument is type-dependent. + E->isTypeDependent(), E->isInstantiationDependent(), + E->containsUnexpandedParameterPack()), + OpLoc(op), RParenLoc(rp) { + UnaryExprOrTypeTraitExprBits.Kind = ExprKind; + UnaryExprOrTypeTraitExprBits.IsType = false; + Argument.Ex = E; + + // Check to see if we are in the situation where alignof(decl) should be + // dependent because decl's alignment is dependent. + if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { + if (!isValueDependent() || !isInstantiationDependent()) { + E = E->IgnoreParens(); + + const ValueDecl *D = nullptr; + if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) + D = DRE->getDecl(); + else if (const auto *ME = dyn_cast<MemberExpr>(E)) + D = ME->getMemberDecl(); + + if (D) { + for (const auto *I : D->specific_attrs<AlignedAttr>()) { + if (I->isAlignmentDependent()) { + setValueDependent(true); + setInstantiationDependent(true); + break; + } + } + } + } + } +} + +MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, + ValueDecl *MemberDecl, + const DeclarationNameInfo &NameInfo, QualType T, + ExprValueKind VK, ExprObjectKind OK, + NonOdrUseReason NOUR) + : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(), + Base->isValueDependent(), Base->isInstantiationDependent(), + Base->containsUnexpandedParameterPack()), + Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()), + MemberLoc(NameInfo.getLoc()) { + assert(!NameInfo.getName() || + MemberDecl->getDeclName() == NameInfo.getName()); + MemberExprBits.IsArrow = IsArrow; + MemberExprBits.HasQualifierOrFoundDecl = false; + MemberExprBits.HasTemplateKWAndArgsInfo = false; + MemberExprBits.HadMultipleCandidates = false; + MemberExprBits.NonOdrUseReason = NOUR; + MemberExprBits.OperatorLoc = OperatorLoc; +} + +MemberExpr *MemberExpr::Create( + const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, + NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, + ValueDecl *MemberDecl, DeclAccessPair FoundDecl, + DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, + QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { + bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || + FoundDecl.getAccess() != MemberDecl->getAccess(); + bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); + std::size_t Size = + totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, + TemplateArgumentLoc>( + HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, + TemplateArgs ? TemplateArgs->size() : 0); + + void *Mem = C.Allocate(Size, alignof(MemberExpr)); + MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, + NameInfo, T, VK, OK, NOUR); + + if (HasQualOrFound) { + // FIXME: Wrong. We should be looking at the member declaration we found. + if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) { + E->setValueDependent(true); + E->setTypeDependent(true); + E->setInstantiationDependent(true); + } + else if (QualifierLoc && + QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) + E->setInstantiationDependent(true); + + E->MemberExprBits.HasQualifierOrFoundDecl = true; + + MemberExprNameQualifier *NQ = + E->getTrailingObjects<MemberExprNameQualifier>(); + NQ->QualifierLoc = QualifierLoc; + NQ->FoundDecl = FoundDecl; + } + + E->MemberExprBits.HasTemplateKWAndArgsInfo = + TemplateArgs || TemplateKWLoc.isValid(); + + if (TemplateArgs) { + bool Dependent = false; + bool InstantiationDependent = false; + bool ContainsUnexpandedParameterPack = false; + E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( + TemplateKWLoc, *TemplateArgs, + E->getTrailingObjects<TemplateArgumentLoc>(), Dependent, + InstantiationDependent, ContainsUnexpandedParameterPack); + if (InstantiationDependent) + E->setInstantiationDependent(true); + } else if (TemplateKWLoc.isValid()) { + E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( + TemplateKWLoc); + } + + return E; +} + +MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, + bool HasQualifier, bool HasFoundDecl, + bool HasTemplateKWAndArgsInfo, + unsigned NumTemplateArgs) { + assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && + "template args but no template arg info?"); + bool HasQualOrFound = HasQualifier || HasFoundDecl; + std::size_t Size = + totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo, + TemplateArgumentLoc>(HasQualOrFound ? 1 : 0, + HasTemplateKWAndArgsInfo ? 1 : 0, + NumTemplateArgs); + void *Mem = Context.Allocate(Size, alignof(MemberExpr)); + return new (Mem) MemberExpr(EmptyShell()); +} + +SourceLocation MemberExpr::getBeginLoc() const { + if (isImplicitAccess()) { + if (hasQualifier()) + return getQualifierLoc().getBeginLoc(); + return MemberLoc; + } + + // FIXME: We don't want this to happen. Rather, we should be able to + // detect all kinds of implicit accesses more cleanly. + SourceLocation BaseStartLoc = getBase()->getBeginLoc(); + if (BaseStartLoc.isValid()) + return BaseStartLoc; + return MemberLoc; +} +SourceLocation MemberExpr::getEndLoc() const { + SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); + if (hasExplicitTemplateArgs()) + EndLoc = getRAngleLoc(); + else if (EndLoc.isInvalid()) + EndLoc = getBase()->getEndLoc(); + return EndLoc; +} + +bool CastExpr::CastConsistency() const { + switch (getCastKind()) { + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + case CK_DerivedToBaseMemberPointer: + case CK_BaseToDerived: + case CK_BaseToDerivedMemberPointer: + assert(!path_empty() && "Cast kind should have a base path!"); + break; + + case CK_CPointerToObjCPointerCast: + assert(getType()->isObjCObjectPointerType()); + assert(getSubExpr()->getType()->isPointerType()); + goto CheckNoBasePath; + + case CK_BlockPointerToObjCPointerCast: + assert(getType()->isObjCObjectPointerType()); + assert(getSubExpr()->getType()->isBlockPointerType()); + goto CheckNoBasePath; + + case CK_ReinterpretMemberPointer: + assert(getType()->isMemberPointerType()); + assert(getSubExpr()->getType()->isMemberPointerType()); + goto CheckNoBasePath; + + case CK_BitCast: + // Arbitrary casts to C pointer types count as bitcasts. + // Otherwise, we should only have block and ObjC pointer casts + // here if they stay within the type kind. + if (!getType()->isPointerType()) { + assert(getType()->isObjCObjectPointerType() == + getSubExpr()->getType()->isObjCObjectPointerType()); + assert(getType()->isBlockPointerType() == + getSubExpr()->getType()->isBlockPointerType()); + } + goto CheckNoBasePath; + + case CK_AnyPointerToBlockPointerCast: + assert(getType()->isBlockPointerType()); + assert(getSubExpr()->getType()->isAnyPointerType() && + !getSubExpr()->getType()->isBlockPointerType()); + goto CheckNoBasePath; + + case CK_CopyAndAutoreleaseBlockObject: + assert(getType()->isBlockPointerType()); + assert(getSubExpr()->getType()->isBlockPointerType()); + goto CheckNoBasePath; + + case CK_FunctionToPointerDecay: + assert(getType()->isPointerType()); + assert(getSubExpr()->getType()->isFunctionType()); + goto CheckNoBasePath; + + case CK_AddressSpaceConversion: { + auto Ty = getType(); + auto SETy = getSubExpr()->getType(); + assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); + if (/*isRValue()*/ !Ty->getPointeeType().isNull()) { + Ty = Ty->getPointeeType(); + SETy = SETy->getPointeeType(); + } + assert(!Ty.isNull() && !SETy.isNull() && + Ty.getAddressSpace() != SETy.getAddressSpace()); + goto CheckNoBasePath; + } + // These should not have an inheritance path. + case CK_Dynamic: + case CK_ToUnion: + case CK_ArrayToPointerDecay: + case CK_NullToMemberPointer: + case CK_NullToPointer: + case CK_ConstructorConversion: + case CK_IntegralToPointer: + case CK_PointerToIntegral: + case CK_ToVoid: + case CK_VectorSplat: + case CK_IntegralCast: + case CK_BooleanToSignedIntegral: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingCast: + case CK_ObjCObjectLValueCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexToReal: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_ARCProduceObject: + case CK_ARCConsumeObject: + case CK_ARCReclaimReturnedObject: + case CK_ARCExtendBlockObject: + case CK_ZeroToOCLOpaqueType: + case CK_IntToOCLSampler: + case CK_FixedPointCast: + case CK_FixedPointToIntegral: + case CK_IntegralToFixedPoint: + assert(!getType()->isBooleanType() && "unheralded conversion to bool"); + goto CheckNoBasePath; + + case CK_Dependent: + case CK_LValueToRValue: + case CK_NoOp: + case CK_AtomicToNonAtomic: + case CK_NonAtomicToAtomic: + case CK_PointerToBoolean: + case CK_IntegralToBoolean: + case CK_FloatingToBoolean: + case CK_MemberPointerToBoolean: + case CK_FloatingComplexToBoolean: + case CK_IntegralComplexToBoolean: + case CK_LValueBitCast: // -> bool& + case CK_LValueToRValueBitCast: + case CK_UserDefinedConversion: // operator bool() + case CK_BuiltinFnToFnPtr: + case CK_FixedPointToBoolean: + CheckNoBasePath: + assert(path_empty() && "Cast kind should not have a base path!"); + break; + } + return true; +} + +const char *CastExpr::getCastKindName(CastKind CK) { + switch (CK) { +#define CAST_OPERATION(Name) case CK_##Name: return #Name; +#include "clang/AST/OperationKinds.def" + } + llvm_unreachable("Unhandled cast kind!"); +} + +namespace { + const Expr *skipImplicitTemporary(const Expr *E) { + // Skip through reference binding to temporary. + if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E)) + E = Materialize->GetTemporaryExpr(); + + // Skip any temporary bindings; they're implicit. + if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) + E = Binder->getSubExpr(); + + return E; + } +} + +Expr *CastExpr::getSubExprAsWritten() { + const Expr *SubExpr = nullptr; + const CastExpr *E = this; + do { + SubExpr = skipImplicitTemporary(E->getSubExpr()); + + // Conversions by constructor and conversion functions have a + // subexpression describing the call; strip it off. + if (E->getCastKind() == CK_ConstructorConversion) + SubExpr = + skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0)); + else if (E->getCastKind() == CK_UserDefinedConversion) { + assert((isa<CXXMemberCallExpr>(SubExpr) || + isa<BlockExpr>(SubExpr)) && + "Unexpected SubExpr for CK_UserDefinedConversion."); + if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) + SubExpr = MCE->getImplicitObjectArgument(); + } + + // If the subexpression we're left with is an implicit cast, look + // through that, too. + } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr))); + + return const_cast<Expr*>(SubExpr); +} + +NamedDecl *CastExpr::getConversionFunction() const { + const Expr *SubExpr = nullptr; + + for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) { + SubExpr = skipImplicitTemporary(E->getSubExpr()); + + if (E->getCastKind() == CK_ConstructorConversion) + return cast<CXXConstructExpr>(SubExpr)->getConstructor(); + + if (E->getCastKind() == CK_UserDefinedConversion) { + if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr)) + return MCE->getMethodDecl(); + } + } + + return nullptr; +} + +CXXBaseSpecifier **CastExpr::path_buffer() { + switch (getStmtClass()) { +#define ABSTRACT_STMT(x) +#define CASTEXPR(Type, Base) \ + case Stmt::Type##Class: \ + return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>(); +#define STMT(Type, Base) +#include "clang/AST/StmtNodes.inc" + default: + llvm_unreachable("non-cast expressions not possible here"); + } +} + +const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, + QualType opType) { + auto RD = unionType->castAs<RecordType>()->getDecl(); + return getTargetFieldForToUnionCast(RD, opType); +} + +const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, + QualType OpType) { + auto &Ctx = RD->getASTContext(); + RecordDecl::field_iterator Field, FieldEnd; + for (Field = RD->field_begin(), FieldEnd = RD->field_end(); + Field != FieldEnd; ++Field) { + if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && + !Field->isUnnamedBitfield()) { + return *Field; + } + } + return nullptr; +} + +ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, + CastKind Kind, Expr *Operand, + const CXXCastPath *BasePath, + ExprValueKind VK) { + unsigned PathSize = (BasePath ? BasePath->size() : 0); + void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); + // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and + // std::nullptr_t have special semantics not captured by CK_LValueToRValue. + assert((Kind != CK_LValueToRValue || + !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && + "invalid type for lvalue-to-rvalue conversion"); + ImplicitCastExpr *E = + new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); + if (PathSize) + std::uninitialized_copy_n(BasePath->data(), BasePath->size(), + E->getTrailingObjects<CXXBaseSpecifier *>()); + return E; +} + +ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, + unsigned PathSize) { + void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); + return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); +} + + +CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, + ExprValueKind VK, CastKind K, Expr *Op, + const CXXCastPath *BasePath, + TypeSourceInfo *WrittenTy, + SourceLocation L, SourceLocation R) { + unsigned PathSize = (BasePath ? BasePath->size() : 0); + void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); + CStyleCastExpr *E = + new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); + if (PathSize) + std::uninitialized_copy_n(BasePath->data(), BasePath->size(), + E->getTrailingObjects<CXXBaseSpecifier *>()); + return E; +} + +CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, + unsigned PathSize) { + void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize)); + return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); +} + +/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it +/// corresponds to, e.g. "<<=". +StringRef BinaryOperator::getOpcodeStr(Opcode Op) { + switch (Op) { +#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; +#include "clang/AST/OperationKinds.def" + } + llvm_unreachable("Invalid OpCode!"); +} + +BinaryOperatorKind +BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { + switch (OO) { + default: llvm_unreachable("Not an overloadable binary operator"); + case OO_Plus: return BO_Add; + case OO_Minus: return BO_Sub; + case OO_Star: return BO_Mul; + case OO_Slash: return BO_Div; + case OO_Percent: return BO_Rem; + case OO_Caret: return BO_Xor; + case OO_Amp: return BO_And; + case OO_Pipe: return BO_Or; + case OO_Equal: return BO_Assign; + case OO_Spaceship: return BO_Cmp; + case OO_Less: return BO_LT; + case OO_Greater: return BO_GT; + case OO_PlusEqual: return BO_AddAssign; + case OO_MinusEqual: return BO_SubAssign; + case OO_StarEqual: return BO_MulAssign; + case OO_SlashEqual: return BO_DivAssign; + case OO_PercentEqual: return BO_RemAssign; + case OO_CaretEqual: return BO_XorAssign; + case OO_AmpEqual: return BO_AndAssign; + case OO_PipeEqual: return BO_OrAssign; + case OO_LessLess: return BO_Shl; + case OO_GreaterGreater: return BO_Shr; + case OO_LessLessEqual: return BO_ShlAssign; + case OO_GreaterGreaterEqual: return BO_ShrAssign; + case OO_EqualEqual: return BO_EQ; + case OO_ExclaimEqual: return BO_NE; + case OO_LessEqual: return BO_LE; + case OO_GreaterEqual: return BO_GE; + case OO_AmpAmp: return BO_LAnd; + case OO_PipePipe: return BO_LOr; + case OO_Comma: return BO_Comma; + case OO_ArrowStar: return BO_PtrMemI; + } +} + +OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { + static const OverloadedOperatorKind OverOps[] = { + /* .* Cannot be overloaded */OO_None, OO_ArrowStar, + OO_Star, OO_Slash, OO_Percent, + OO_Plus, OO_Minus, + OO_LessLess, OO_GreaterGreater, + OO_Spaceship, + OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, + OO_EqualEqual, OO_ExclaimEqual, + OO_Amp, + OO_Caret, + OO_Pipe, + OO_AmpAmp, + OO_PipePipe, + OO_Equal, OO_StarEqual, + OO_SlashEqual, OO_PercentEqual, + OO_PlusEqual, OO_MinusEqual, + OO_LessLessEqual, OO_GreaterGreaterEqual, + OO_AmpEqual, OO_CaretEqual, + OO_PipeEqual, + OO_Comma + }; + return OverOps[Opc]; +} + +bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, + Opcode Opc, + Expr *LHS, Expr *RHS) { + if (Opc != BO_Add) + return false; + + // Check that we have one pointer and one integer operand. + Expr *PExp; + if (LHS->getType()->isPointerType()) { + if (!RHS->getType()->isIntegerType()) + return false; + PExp = LHS; + } else if (RHS->getType()->isPointerType()) { + if (!LHS->getType()->isIntegerType()) + return false; + PExp = RHS; + } else { + return false; + } + + // Check that the pointer is a nullptr. + if (!PExp->IgnoreParenCasts() + ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) + return false; + + // Check that the pointee type is char-sized. + const PointerType *PTy = PExp->getType()->getAs<PointerType>(); + if (!PTy || !PTy->getPointeeType()->isCharType()) + return false; + + return true; +} + +static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, + SourceLocExpr::IdentKind Kind) { + switch (Kind) { + case SourceLocExpr::File: + case SourceLocExpr::Function: { + QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); + return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); + } + case SourceLocExpr::Line: + case SourceLocExpr::Column: + return Ctx.UnsignedIntTy; + } + llvm_unreachable("unhandled case"); +} + +SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, + SourceLocation BLoc, SourceLocation RParenLoc, + DeclContext *ParentContext) + : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), + VK_RValue, OK_Ordinary, false, false, false, false), + BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { + SourceLocExprBits.Kind = Kind; +} + +StringRef SourceLocExpr::getBuiltinStr() const { + switch (getIdentKind()) { + case File: + return "__builtin_FILE"; + case Function: + return "__builtin_FUNCTION"; + case Line: + return "__builtin_LINE"; + case Column: + return "__builtin_COLUMN"; + } + llvm_unreachable("unexpected IdentKind!"); +} + +APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, + const Expr *DefaultExpr) const { + SourceLocation Loc; + const DeclContext *Context; + + std::tie(Loc, + Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> { + if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr)) + return {DIE->getUsedLocation(), DIE->getUsedContext()}; + if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr)) + return {DAE->getUsedLocation(), DAE->getUsedContext()}; + return {this->getLocation(), this->getParentContext()}; + }(); + + PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( + Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); + + auto MakeStringLiteral = [&](StringRef Tmp) { + using LValuePathEntry = APValue::LValuePathEntry; + StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); + // Decay the string to a pointer to the first character. + LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; + return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); + }; + + switch (getIdentKind()) { + case SourceLocExpr::File: + return MakeStringLiteral(PLoc.getFilename()); + case SourceLocExpr::Function: { + const Decl *CurDecl = dyn_cast_or_null<Decl>(Context); + return MakeStringLiteral( + CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) + : std::string("")); + } + case SourceLocExpr::Line: + case SourceLocExpr::Column: { + llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), + /*isUnsigned=*/true); + IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() + : PLoc.getColumn(); + return APValue(IntVal); + } + } + llvm_unreachable("unhandled case"); +} + +InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, + ArrayRef<Expr*> initExprs, SourceLocation rbraceloc) + : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, + false, false), + InitExprs(C, initExprs.size()), + LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) +{ + sawArrayRangeDesignator(false); + for (unsigned I = 0; I != initExprs.size(); ++I) { + if (initExprs[I]->isTypeDependent()) + ExprBits.TypeDependent = true; + if (initExprs[I]->isValueDependent()) + ExprBits.ValueDependent = true; + if (initExprs[I]->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (initExprs[I]->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + } + + InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); +} + +void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { + if (NumInits > InitExprs.size()) + InitExprs.reserve(C, NumInits); +} + +void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { + InitExprs.resize(C, NumInits, nullptr); +} + +Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { + if (Init >= InitExprs.size()) { + InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); + setInit(Init, expr); + return nullptr; + } + + Expr *Result = cast_or_null<Expr>(InitExprs[Init]); + setInit(Init, expr); + return Result; +} + +void InitListExpr::setArrayFiller(Expr *filler) { + assert(!hasArrayFiller() && "Filler already set!"); + ArrayFillerOrUnionFieldInit = filler; + // Fill out any "holes" in the array due to designated initializers. + Expr **inits = getInits(); + for (unsigned i = 0, e = getNumInits(); i != e; ++i) + if (inits[i] == nullptr) + inits[i] = filler; +} + +bool InitListExpr::isStringLiteralInit() const { + if (getNumInits() != 1) + return false; + const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); + if (!AT || !AT->getElementType()->isIntegerType()) + return false; + // It is possible for getInit() to return null. + const Expr *Init = getInit(0); + if (!Init) + return false; + Init = Init->IgnoreParens(); + return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init); +} + +bool InitListExpr::isTransparent() const { + assert(isSemanticForm() && "syntactic form never semantically transparent"); + + // A glvalue InitListExpr is always just sugar. + if (isGLValue()) { + assert(getNumInits() == 1 && "multiple inits in glvalue init list"); + return true; + } + + // Otherwise, we're sugar if and only if we have exactly one initializer that + // is of the same type. + if (getNumInits() != 1 || !getInit(0)) + return false; + + // Don't confuse aggregate initialization of a struct X { X &x; }; with a + // transparent struct copy. + if (!getInit(0)->isRValue() && getType()->isRecordType()) + return false; + + return getType().getCanonicalType() == + getInit(0)->getType().getCanonicalType(); +} + +bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { + assert(isSyntacticForm() && "only test syntactic form as zero initializer"); + + if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { + return false; + } + + const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit()); + return Lit && Lit->getValue() == 0; +} + +SourceLocation InitListExpr::getBeginLoc() const { + if (InitListExpr *SyntacticForm = getSyntacticForm()) + return SyntacticForm->getBeginLoc(); + SourceLocation Beg = LBraceLoc; + if (Beg.isInvalid()) { + // Find the first non-null initializer. + for (InitExprsTy::const_iterator I = InitExprs.begin(), + E = InitExprs.end(); + I != E; ++I) { + if (Stmt *S = *I) { + Beg = S->getBeginLoc(); + break; + } + } + } + return Beg; +} + +SourceLocation InitListExpr::getEndLoc() const { + if (InitListExpr *SyntacticForm = getSyntacticForm()) + return SyntacticForm->getEndLoc(); + SourceLocation End = RBraceLoc; + if (End.isInvalid()) { + // Find the first non-null initializer from the end. + for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), + E = InitExprs.rend(); + I != E; ++I) { + if (Stmt *S = *I) { + End = S->getEndLoc(); + break; + } + } + } + return End; +} + +/// getFunctionType - Return the underlying function type for this block. +/// +const FunctionProtoType *BlockExpr::getFunctionType() const { + // The block pointer is never sugared, but the function type might be. + return cast<BlockPointerType>(getType()) + ->getPointeeType()->castAs<FunctionProtoType>(); +} + +SourceLocation BlockExpr::getCaretLocation() const { + return TheBlock->getCaretLocation(); +} +const Stmt *BlockExpr::getBody() const { + return TheBlock->getBody(); +} +Stmt *BlockExpr::getBody() { + return TheBlock->getBody(); +} + + +//===----------------------------------------------------------------------===// +// Generic Expression Routines +//===----------------------------------------------------------------------===// + +/// isUnusedResultAWarning - Return true if this immediate expression should +/// be warned about if the result is unused. If so, fill in Loc and Ranges +/// with location to warn on and the source range[s] to report with the +/// warning. +bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, + SourceRange &R1, SourceRange &R2, + ASTContext &Ctx) const { + // Don't warn if the expr is type dependent. The type could end up + // instantiating to void. + if (isTypeDependent()) + return false; + + switch (getStmtClass()) { + default: + if (getType()->isVoidType()) + return false; + WarnE = this; + Loc = getExprLoc(); + R1 = getSourceRange(); + return true; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr()-> + isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case GenericSelectionExprClass: + return cast<GenericSelectionExpr>(this)->getResultExpr()-> + isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case CoawaitExprClass: + case CoyieldExprClass: + return cast<CoroutineSuspendExpr>(this)->getResumeExpr()-> + isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case ChooseExprClass: + return cast<ChooseExpr>(this)->getChosenSubExpr()-> + isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case UnaryOperatorClass: { + const UnaryOperator *UO = cast<UnaryOperator>(this); + + switch (UO->getOpcode()) { + case UO_Plus: + case UO_Minus: + case UO_AddrOf: + case UO_Not: + case UO_LNot: + case UO_Deref: + break; + case UO_Coawait: + // This is just the 'operator co_await' call inside the guts of a + // dependent co_await call. + case UO_PostInc: + case UO_PostDec: + case UO_PreInc: + case UO_PreDec: // ++/-- + return false; // Not a warning. + case UO_Real: + case UO_Imag: + // accessing a piece of a volatile complex is a side-effect. + if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) + .isVolatileQualified()) + return false; + break; + case UO_Extension: + return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } + WarnE = this; + Loc = UO->getOperatorLoc(); + R1 = UO->getSubExpr()->getSourceRange(); + return true; + } + case BinaryOperatorClass: { + const BinaryOperator *BO = cast<BinaryOperator>(this); + switch (BO->getOpcode()) { + default: + break; + // Consider the RHS of comma for side effects. LHS was checked by + // Sema::CheckCommaOperands. + case BO_Comma: + // ((foo = <blah>), 0) is an idiom for hiding the result (and + // lvalue-ness) of an assignment written in a macro. + if (IntegerLiteral *IE = + dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens())) + if (IE->getValue() == 0) + return false; + return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + // Consider '||', '&&' to have side effects if the LHS or RHS does. + case BO_LAnd: + case BO_LOr: + if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || + !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) + return false; + break; + } + if (BO->isAssignmentOp()) + return false; + WarnE = this; + Loc = BO->getOperatorLoc(); + R1 = BO->getLHS()->getSourceRange(); + R2 = BO->getRHS()->getSourceRange(); + return true; + } + case CompoundAssignOperatorClass: + case VAArgExprClass: + case AtomicExprClass: + return false; + + case ConditionalOperatorClass: { + // If only one of the LHS or RHS is a warning, the operator might + // be being used for control flow. Only warn if both the LHS and + // RHS are warnings. + const auto *Exp = cast<ConditionalOperator>(this); + return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && + Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } + case BinaryConditionalOperatorClass: { + const auto *Exp = cast<BinaryConditionalOperator>(this); + return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } + + case MemberExprClass: + WarnE = this; + Loc = cast<MemberExpr>(this)->getMemberLoc(); + R1 = SourceRange(Loc, Loc); + R2 = cast<MemberExpr>(this)->getBase()->getSourceRange(); + return true; + + case ArraySubscriptExprClass: + WarnE = this; + Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc(); + R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange(); + R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange(); + return true; + + case CXXOperatorCallExprClass: { + // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator + // overloads as there is no reasonable way to define these such that they + // have non-trivial, desirable side-effects. See the -Wunused-comparison + // warning: operators == and != are commonly typo'ed, and so warning on them + // provides additional value as well. If this list is updated, + // DiagnoseUnusedComparison should be as well. + const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this); + switch (Op->getOperator()) { + default: + break; + case OO_EqualEqual: + case OO_ExclaimEqual: + case OO_Less: + case OO_Greater: + case OO_GreaterEqual: + case OO_LessEqual: + if (Op->getCallReturnType(Ctx)->isReferenceType() || + Op->getCallReturnType(Ctx)->isVoidType()) + break; + WarnE = this; + Loc = Op->getOperatorLoc(); + R1 = Op->getSourceRange(); + return true; + } + + // Fallthrough for generic call handling. + LLVM_FALLTHROUGH; + } + case CallExprClass: + case CXXMemberCallExprClass: + case UserDefinedLiteralClass: { + // If this is a direct call, get the callee. + const CallExpr *CE = cast<CallExpr>(this); + if (const Decl *FD = CE->getCalleeDecl()) { + // If the callee has attribute pure, const, or warn_unused_result, warn + // about it. void foo() { strlen("bar"); } should warn. + // + // Note: If new cases are added here, DiagnoseUnusedExprResult should be + // updated to match for QoI. + if (CE->hasUnusedResultAttr(Ctx) || + FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { + WarnE = this; + Loc = CE->getCallee()->getBeginLoc(); + R1 = CE->getCallee()->getSourceRange(); + + if (unsigned NumArgs = CE->getNumArgs()) + R2 = SourceRange(CE->getArg(0)->getBeginLoc(), + CE->getArg(NumArgs - 1)->getEndLoc()); + return true; + } + } + return false; + } + + // If we don't know precisely what we're looking at, let's not warn. + case UnresolvedLookupExprClass: + case CXXUnresolvedConstructExprClass: + return false; + + case CXXTemporaryObjectExprClass: + case CXXConstructExprClass: { + if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { + const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); + if (Type->hasAttr<WarnUnusedAttr>() || + (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { + WarnE = this; + Loc = getBeginLoc(); + R1 = getSourceRange(); + return true; + } + } + + const auto *CE = cast<CXXConstructExpr>(this); + if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { + const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); + if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { + WarnE = this; + Loc = getBeginLoc(); + R1 = getSourceRange(); + + if (unsigned NumArgs = CE->getNumArgs()) + R2 = SourceRange(CE->getArg(0)->getBeginLoc(), + CE->getArg(NumArgs - 1)->getEndLoc()); + return true; + } + } + + return false; + } + + case ObjCMessageExprClass: { + const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this); + if (Ctx.getLangOpts().ObjCAutoRefCount && + ME->isInstanceMessage() && + !ME->getType()->isVoidType() && + ME->getMethodFamily() == OMF_init) { + WarnE = this; + Loc = getExprLoc(); + R1 = ME->getSourceRange(); + return true; + } + + if (const ObjCMethodDecl *MD = ME->getMethodDecl()) + if (MD->hasAttr<WarnUnusedResultAttr>()) { + WarnE = this; + Loc = getExprLoc(); + return true; + } + + return false; + } + + case ObjCPropertyRefExprClass: + WarnE = this; + Loc = getExprLoc(); + R1 = getSourceRange(); + return true; + + case PseudoObjectExprClass: { + const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); + + // Only complain about things that have the form of a getter. + if (isa<UnaryOperator>(PO->getSyntacticForm()) || + isa<BinaryOperator>(PO->getSyntacticForm())) + return false; + + WarnE = this; + Loc = getExprLoc(); + R1 = getSourceRange(); + return true; + } + + case StmtExprClass: { + // Statement exprs don't logically have side effects themselves, but are + // sometimes used in macros in ways that give them a type that is unused. + // For example ({ blah; foo(); }) will end up with a type if foo has a type. + // however, if the result of the stmt expr is dead, we don't want to emit a + // warning. + const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt(); + if (!CS->body_empty()) { + if (const Expr *E = dyn_cast<Expr>(CS->body_back())) + return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back())) + if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt())) + return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } + + if (getType()->isVoidType()) + return false; + WarnE = this; + Loc = cast<StmtExpr>(this)->getLParenLoc(); + R1 = getSourceRange(); + return true; + } + case CXXFunctionalCastExprClass: + case CStyleCastExprClass: { + // Ignore an explicit cast to void unless the operand is a non-trivial + // volatile lvalue. + const CastExpr *CE = cast<CastExpr>(this); + if (CE->getCastKind() == CK_ToVoid) { + if (CE->getSubExpr()->isGLValue() && + CE->getSubExpr()->getType().isVolatileQualified()) { + const DeclRefExpr *DRE = + dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens()); + if (!(DRE && isa<VarDecl>(DRE->getDecl()) && + cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) && + !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) { + return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, + R1, R2, Ctx); + } + } + return false; + } + + // If this is a cast to a constructor conversion, check the operand. + // Otherwise, the result of the cast is unused. + if (CE->getCastKind() == CK_ConstructorConversion) + return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + + WarnE = this; + if (const CXXFunctionalCastExpr *CXXCE = + dyn_cast<CXXFunctionalCastExpr>(this)) { + Loc = CXXCE->getBeginLoc(); + R1 = CXXCE->getSubExpr()->getSourceRange(); + } else { + const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this); + Loc = CStyleCE->getLParenLoc(); + R1 = CStyleCE->getSubExpr()->getSourceRange(); + } + return true; + } + case ImplicitCastExprClass: { + const CastExpr *ICE = cast<ImplicitCastExpr>(this); + + // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. + if (ICE->getCastKind() == CK_LValueToRValue && + ICE->getSubExpr()->getType().isVolatileQualified()) + return false; + + return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } + case CXXDefaultArgExprClass: + return (cast<CXXDefaultArgExpr>(this) + ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); + case CXXDefaultInitExprClass: + return (cast<CXXDefaultInitExpr>(this) + ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); + + case CXXNewExprClass: + // FIXME: In theory, there might be new expressions that don't have side + // effects (e.g. a placement new with an uninitialized POD). + case CXXDeleteExprClass: + return false; + case MaterializeTemporaryExprClass: + return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() + ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case CXXBindTemporaryExprClass: + return cast<CXXBindTemporaryExpr>(this)->getSubExpr() + ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + case ExprWithCleanupsClass: + return cast<ExprWithCleanups>(this)->getSubExpr() + ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); + } +} + +/// isOBJCGCCandidate - Check if an expression is objc gc'able. +/// returns true, if it is; false otherwise. +bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { + const Expr *E = IgnoreParens(); + switch (E->getStmtClass()) { + default: + return false; + case ObjCIvarRefExprClass: + return true; + case Expr::UnaryOperatorClass: + return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); + case ImplicitCastExprClass: + return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); + case MaterializeTemporaryExprClass: + return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr() + ->isOBJCGCCandidate(Ctx); + case CStyleCastExprClass: + return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx); + case DeclRefExprClass: { + const Decl *D = cast<DeclRefExpr>(E)->getDecl(); + + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { + if (VD->hasGlobalStorage()) + return true; + QualType T = VD->getType(); + // dereferencing to a pointer is always a gc'able candidate, + // unless it is __weak. + return T->isPointerType() && + (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); + } + return false; + } + case MemberExprClass: { + const MemberExpr *M = cast<MemberExpr>(E); + return M->getBase()->isOBJCGCCandidate(Ctx); + } + case ArraySubscriptExprClass: + return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx); + } +} + +bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { + if (isTypeDependent()) + return false; + return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; +} + +QualType Expr::findBoundMemberType(const Expr *expr) { + assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); + + // Bound member expressions are always one of these possibilities: + // x->m x.m x->*y x.*y + // (possibly parenthesized) + + expr = expr->IgnoreParens(); + if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) { + assert(isa<CXXMethodDecl>(mem->getMemberDecl())); + return mem->getMemberDecl()->getType(); + } + + if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) { + QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() + ->getPointeeType(); + assert(type->isFunctionType()); + return type; + } + + assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); + return QualType(); +} + +static Expr *IgnoreImpCastsSingleStep(Expr *E) { + if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) + return ICE->getSubExpr(); + + if (auto *FE = dyn_cast<FullExpr>(E)) + return FE->getSubExpr(); + + return E; +} + +static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) { + // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in + // addition to what IgnoreImpCasts() skips to account for the current + // behaviour of IgnoreParenImpCasts(). + Expr *SubE = IgnoreImpCastsSingleStep(E); + if (SubE != E) + return SubE; + + if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) + return MTE->GetTemporaryExpr(); + + if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) + return NTTP->getReplacement(); + + return E; +} + +static Expr *IgnoreCastsSingleStep(Expr *E) { + if (auto *CE = dyn_cast<CastExpr>(E)) + return CE->getSubExpr(); + + if (auto *FE = dyn_cast<FullExpr>(E)) + return FE->getSubExpr(); + + if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) + return MTE->GetTemporaryExpr(); + + if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) + return NTTP->getReplacement(); + + return E; +} + +static Expr *IgnoreLValueCastsSingleStep(Expr *E) { + // Skip what IgnoreCastsSingleStep skips, except that only + // lvalue-to-rvalue casts are skipped. + if (auto *CE = dyn_cast<CastExpr>(E)) + if (CE->getCastKind() != CK_LValueToRValue) + return E; + + return IgnoreCastsSingleStep(E); +} + +static Expr *IgnoreBaseCastsSingleStep(Expr *E) { + if (auto *CE = dyn_cast<CastExpr>(E)) + if (CE->getCastKind() == CK_DerivedToBase || + CE->getCastKind() == CK_UncheckedDerivedToBase || + CE->getCastKind() == CK_NoOp) + return CE->getSubExpr(); + + return E; +} + +static Expr *IgnoreImplicitSingleStep(Expr *E) { + Expr *SubE = IgnoreImpCastsSingleStep(E); + if (SubE != E) + return SubE; + + if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) + return MTE->GetTemporaryExpr(); + + if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) + return BTE->getSubExpr(); + + return E; +} + +static Expr *IgnoreParensSingleStep(Expr *E) { + if (auto *PE = dyn_cast<ParenExpr>(E)) + return PE->getSubExpr(); + + if (auto *UO = dyn_cast<UnaryOperator>(E)) { + if (UO->getOpcode() == UO_Extension) + return UO->getSubExpr(); + } + + else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { + if (!GSE->isResultDependent()) + return GSE->getResultExpr(); + } + + else if (auto *CE = dyn_cast<ChooseExpr>(E)) { + if (!CE->isConditionDependent()) + return CE->getChosenSubExpr(); + } + + else if (auto *CE = dyn_cast<ConstantExpr>(E)) + return CE->getSubExpr(); + + return E; +} + +static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) { + if (auto *CE = dyn_cast<CastExpr>(E)) { + // We ignore integer <-> casts that are of the same width, ptr<->ptr and + // ptr<->int casts of the same width. We also ignore all identity casts. + Expr *SubExpr = CE->getSubExpr(); + bool IsIdentityCast = + Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); + bool IsSameWidthCast = + (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && + (SubExpr->getType()->isPointerType() || + SubExpr->getType()->isIntegralType(Ctx)) && + (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType())); + + if (IsIdentityCast || IsSameWidthCast) + return SubExpr; + } + + else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) + return NTTP->getReplacement(); + + return E; +} + +static Expr *IgnoreExprNodesImpl(Expr *E) { return E; } +template <typename FnTy, typename... FnTys> +static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) { + return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...); +} + +/// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, +/// Recursively apply each of the functions to E until reaching a fixed point. +/// Note that a null E is valid; in this case nothing is done. +template <typename... FnTys> +static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) { + Expr *LastE = nullptr; + while (E != LastE) { + LastE = E; + E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...); + } + return E; +} + +Expr *Expr::IgnoreImpCasts() { + return IgnoreExprNodes(this, IgnoreImpCastsSingleStep); +} + +Expr *Expr::IgnoreCasts() { + return IgnoreExprNodes(this, IgnoreCastsSingleStep); +} + +Expr *Expr::IgnoreImplicit() { + return IgnoreExprNodes(this, IgnoreImplicitSingleStep); +} + +Expr *Expr::IgnoreParens() { + return IgnoreExprNodes(this, IgnoreParensSingleStep); +} + +Expr *Expr::IgnoreParenImpCasts() { + return IgnoreExprNodes(this, IgnoreParensSingleStep, + IgnoreImpCastsExtraSingleStep); +} + +Expr *Expr::IgnoreParenCasts() { + return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); +} + +Expr *Expr::IgnoreConversionOperator() { + if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) { + if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl())) + return MCE->getImplicitObjectArgument(); + } + return this; +} + +Expr *Expr::IgnoreParenLValueCasts() { + return IgnoreExprNodes(this, IgnoreParensSingleStep, + IgnoreLValueCastsSingleStep); +} + +Expr *Expr::ignoreParenBaseCasts() { + return IgnoreExprNodes(this, IgnoreParensSingleStep, + IgnoreBaseCastsSingleStep); +} + +Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { + return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) { + return IgnoreNoopCastsSingleStep(Ctx, E); + }); +} + +bool Expr::isDefaultArgument() const { + const Expr *E = this; + if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) + E = M->GetTemporaryExpr(); + + while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) + E = ICE->getSubExprAsWritten(); + + return isa<CXXDefaultArgExpr>(E); +} + +/// Skip over any no-op casts and any temporary-binding +/// expressions. +static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { + if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E)) + E = M->GetTemporaryExpr(); + + while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getCastKind() == CK_NoOp) + E = ICE->getSubExpr(); + else + break; + } + + while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E)) + E = BE->getSubExpr(); + + while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getCastKind() == CK_NoOp) + E = ICE->getSubExpr(); + else + break; + } + + return E->IgnoreParens(); +} + +/// isTemporaryObject - Determines if this expression produces a +/// temporary of the given class type. +bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { + if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) + return false; + + const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); + + // Temporaries are by definition pr-values of class type. + if (!E->Classify(C).isPRValue()) { + // In this context, property reference is a message call and is pr-value. + if (!isa<ObjCPropertyRefExpr>(E)) + return false; + } + + // Black-list a few cases which yield pr-values of class type that don't + // refer to temporaries of that type: + + // - implicit derived-to-base conversions + if (isa<ImplicitCastExpr>(E)) { + switch (cast<ImplicitCastExpr>(E)->getCastKind()) { + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: + return false; + default: + break; + } + } + + // - member expressions (all) + if (isa<MemberExpr>(E)) + return false; + + if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) + if (BO->isPtrMemOp()) + return false; + + // - opaque values (all) + if (isa<OpaqueValueExpr>(E)) + return false; + + return true; +} + +bool Expr::isImplicitCXXThis() const { + const Expr *E = this; + + // Strip away parentheses and casts we don't care about. + while (true) { + if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) { + E = Paren->getSubExpr(); + continue; + } + + if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getCastKind() == CK_NoOp || + ICE->getCastKind() == CK_LValueToRValue || + ICE->getCastKind() == CK_DerivedToBase || + ICE->getCastKind() == CK_UncheckedDerivedToBase) { + E = ICE->getSubExpr(); + continue; + } + } + + if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) { + if (UnOp->getOpcode() == UO_Extension) { + E = UnOp->getSubExpr(); + continue; + } + } + + if (const MaterializeTemporaryExpr *M + = dyn_cast<MaterializeTemporaryExpr>(E)) { + E = M->GetTemporaryExpr(); + continue; + } + + break; + } + + if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E)) + return This->isImplicit(); + + return false; +} + +/// hasAnyTypeDependentArguments - Determines if any of the expressions +/// in Exprs is type-dependent. +bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { + for (unsigned I = 0; I < Exprs.size(); ++I) + if (Exprs[I]->isTypeDependent()) + return true; + + return false; +} + +bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, + const Expr **Culprit) const { + assert(!isValueDependent() && + "Expression evaluator can't be called on a dependent expression."); + + // This function is attempting whether an expression is an initializer + // which can be evaluated at compile-time. It very closely parallels + // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it + // will lead to unexpected results. Like ConstExprEmitter, it falls back + // to isEvaluatable most of the time. + // + // If we ever capture reference-binding directly in the AST, we can + // kill the second parameter. + + if (IsForRef) { + EvalResult Result; + if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) + return true; + if (Culprit) + *Culprit = this; + return false; + } + + switch (getStmtClass()) { + default: break; + case StringLiteralClass: + case ObjCEncodeExprClass: + return true; + case CXXTemporaryObjectExprClass: + case CXXConstructExprClass: { + const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); + + if (CE->getConstructor()->isTrivial() && + CE->getConstructor()->getParent()->hasTrivialDestructor()) { + // Trivial default constructor + if (!CE->getNumArgs()) return true; + + // Trivial copy constructor + assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); + return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); + } + + break; + } + case ConstantExprClass: { + // FIXME: We should be able to return "true" here, but it can lead to extra + // error messages. E.g. in Sema/array-init.c. + const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr(); + return Exp->isConstantInitializer(Ctx, false, Culprit); + } + case CompoundLiteralExprClass: { + // This handles gcc's extension that allows global initializers like + // "struct x {int x;} x = (struct x) {};". + // FIXME: This accepts other cases it shouldn't! + const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer(); + return Exp->isConstantInitializer(Ctx, false, Culprit); + } + case DesignatedInitUpdateExprClass: { + const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this); + return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && + DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); + } + case InitListExprClass: { + const InitListExpr *ILE = cast<InitListExpr>(this); + assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); + if (ILE->getType()->isArrayType()) { + unsigned numInits = ILE->getNumInits(); + for (unsigned i = 0; i < numInits; i++) { + if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) + return false; + } + return true; + } + + if (ILE->getType()->isRecordType()) { + unsigned ElementNo = 0; + RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); + for (const auto *Field : RD->fields()) { + // If this is a union, skip all the fields that aren't being initialized. + if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) + continue; + + // Don't emit anonymous bitfields, they just affect layout. + if (Field->isUnnamedBitfield()) + continue; + + if (ElementNo < ILE->getNumInits()) { + const Expr *Elt = ILE->getInit(ElementNo++); + if (Field->isBitField()) { + // Bitfields have to evaluate to an integer. + EvalResult Result; + if (!Elt->EvaluateAsInt(Result, Ctx)) { + if (Culprit) + *Culprit = Elt; + return false; + } + } else { + bool RefType = Field->getType()->isReferenceType(); + if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) + return false; + } + } + } + return true; + } + + break; + } + case ImplicitValueInitExprClass: + case NoInitExprClass: + return true; + case ParenExprClass: + return cast<ParenExpr>(this)->getSubExpr() + ->isConstantInitializer(Ctx, IsForRef, Culprit); + case GenericSelectionExprClass: + return cast<GenericSelectionExpr>(this)->getResultExpr() + ->isConstantInitializer(Ctx, IsForRef, Culprit); + case ChooseExprClass: + if (cast<ChooseExpr>(this)->isConditionDependent()) { + if (Culprit) + *Culprit = this; + return false; + } + return cast<ChooseExpr>(this)->getChosenSubExpr() + ->isConstantInitializer(Ctx, IsForRef, Culprit); + case UnaryOperatorClass: { + const UnaryOperator* Exp = cast<UnaryOperator>(this); + if (Exp->getOpcode() == UO_Extension) + return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); + break; + } + case CXXFunctionalCastExprClass: + case CXXStaticCastExprClass: + case ImplicitCastExprClass: + case CStyleCastExprClass: + case ObjCBridgedCastExprClass: + case CXXDynamicCastExprClass: + case CXXReinterpretCastExprClass: + case CXXConstCastExprClass: { + const CastExpr *CE = cast<CastExpr>(this); + + // Handle misc casts we want to ignore. + if (CE->getCastKind() == CK_NoOp || + CE->getCastKind() == CK_LValueToRValue || + CE->getCastKind() == CK_ToUnion || + CE->getCastKind() == CK_ConstructorConversion || + CE->getCastKind() == CK_NonAtomicToAtomic || + CE->getCastKind() == CK_AtomicToNonAtomic || + CE->getCastKind() == CK_IntToOCLSampler) + return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); + + break; + } + case MaterializeTemporaryExprClass: + return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr() + ->isConstantInitializer(Ctx, false, Culprit); + + case SubstNonTypeTemplateParmExprClass: + return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement() + ->isConstantInitializer(Ctx, false, Culprit); + case CXXDefaultArgExprClass: + return cast<CXXDefaultArgExpr>(this)->getExpr() + ->isConstantInitializer(Ctx, false, Culprit); + case CXXDefaultInitExprClass: + return cast<CXXDefaultInitExpr>(this)->getExpr() + ->isConstantInitializer(Ctx, false, Culprit); + } + // Allow certain forms of UB in constant initializers: signed integer + // overflow and floating-point division by zero. We'll give a warning on + // these, but they're common enough that we have to accept them. + if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) + return true; + if (Culprit) + *Culprit = this; + return false; +} + +bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { + const FunctionDecl* FD = getDirectCallee(); + if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && + FD->getBuiltinID() != Builtin::BI__builtin_assume)) + return false; + + const Expr* Arg = getArg(0); + bool ArgVal; + return !Arg->isValueDependent() && + Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; +} + +namespace { + /// Look for any side effects within a Stmt. + class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { + typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; + const bool IncludePossibleEffects; + bool HasSideEffects; + + public: + explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) + : Inherited(Context), + IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } + + bool hasSideEffects() const { return HasSideEffects; } + + void VisitExpr(const Expr *E) { + if (!HasSideEffects && + E->HasSideEffects(Context, IncludePossibleEffects)) + HasSideEffects = true; + } + }; +} + +bool Expr::HasSideEffects(const ASTContext &Ctx, + bool IncludePossibleEffects) const { + // In circumstances where we care about definite side effects instead of + // potential side effects, we want to ignore expressions that are part of a + // macro expansion as a potential side effect. + if (!IncludePossibleEffects && getExprLoc().isMacroID()) + return false; + + if (isInstantiationDependent()) + return IncludePossibleEffects; + + switch (getStmtClass()) { + case NoStmtClass: + #define ABSTRACT_STMT(Type) + #define STMT(Type, Base) case Type##Class: + #define EXPR(Type, Base) + #include "clang/AST/StmtNodes.inc" + llvm_unreachable("unexpected Expr kind"); + + case DependentScopeDeclRefExprClass: + case CXXUnresolvedConstructExprClass: + case CXXDependentScopeMemberExprClass: + case UnresolvedLookupExprClass: + case UnresolvedMemberExprClass: + case PackExpansionExprClass: + case SubstNonTypeTemplateParmPackExprClass: + case FunctionParmPackExprClass: + case TypoExprClass: + case CXXFoldExprClass: + llvm_unreachable("shouldn't see dependent / unresolved nodes here"); + + case DeclRefExprClass: + case ObjCIvarRefExprClass: + case PredefinedExprClass: + case IntegerLiteralClass: + case FixedPointLiteralClass: + case FloatingLiteralClass: + case ImaginaryLiteralClass: + case StringLiteralClass: + case CharacterLiteralClass: + case OffsetOfExprClass: + case ImplicitValueInitExprClass: + case UnaryExprOrTypeTraitExprClass: + case AddrLabelExprClass: + case GNUNullExprClass: + case ArrayInitIndexExprClass: + case NoInitExprClass: + case CXXBoolLiteralExprClass: + case CXXNullPtrLiteralExprClass: + case CXXThisExprClass: + case CXXScalarValueInitExprClass: + case TypeTraitExprClass: + case ArrayTypeTraitExprClass: + case ExpressionTraitExprClass: + case CXXNoexceptExprClass: + case SizeOfPackExprClass: + case ObjCStringLiteralClass: + case ObjCEncodeExprClass: + case ObjCBoolLiteralExprClass: + case ObjCAvailabilityCheckExprClass: + case CXXUuidofExprClass: + case OpaqueValueExprClass: + case SourceLocExprClass: + case ConceptSpecializationExprClass: + // These never have a side-effect. + return false; + + case ConstantExprClass: + // FIXME: Move this into the "return false;" block above. + return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects( + Ctx, IncludePossibleEffects); + + case CallExprClass: + case CXXOperatorCallExprClass: + case CXXMemberCallExprClass: + case CUDAKernelCallExprClass: + case UserDefinedLiteralClass: { + // We don't know a call definitely has side effects, except for calls + // to pure/const functions that definitely don't. + // If the call itself is considered side-effect free, check the operands. + const Decl *FD = cast<CallExpr>(this)->getCalleeDecl(); + bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); + if (IsPure || !IncludePossibleEffects) + break; + return true; + } + + case BlockExprClass: + case CXXBindTemporaryExprClass: + if (!IncludePossibleEffects) + break; + return true; + + case MSPropertyRefExprClass: + case MSPropertySubscriptExprClass: + case CompoundAssignOperatorClass: + case VAArgExprClass: + case AtomicExprClass: + case CXXThrowExprClass: + case CXXNewExprClass: + case CXXDeleteExprClass: + case CoawaitExprClass: + case DependentCoawaitExprClass: + case CoyieldExprClass: + // These always have a side-effect. + return true; + + case StmtExprClass: { + // StmtExprs have a side-effect if any substatement does. + SideEffectFinder Finder(Ctx, IncludePossibleEffects); + Finder.Visit(cast<StmtExpr>(this)->getSubStmt()); + return Finder.hasSideEffects(); + } + + case ExprWithCleanupsClass: + if (IncludePossibleEffects) + if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects()) + return true; + break; + + case ParenExprClass: + case ArraySubscriptExprClass: + case OMPArraySectionExprClass: + case MemberExprClass: + case ConditionalOperatorClass: + case BinaryConditionalOperatorClass: + case CompoundLiteralExprClass: + case ExtVectorElementExprClass: + case DesignatedInitExprClass: + case DesignatedInitUpdateExprClass: + case ArrayInitLoopExprClass: + case ParenListExprClass: + case CXXPseudoDestructorExprClass: + case CXXRewrittenBinaryOperatorClass: + case CXXStdInitializerListExprClass: + case SubstNonTypeTemplateParmExprClass: + case MaterializeTemporaryExprClass: + case ShuffleVectorExprClass: + case ConvertVectorExprClass: + case AsTypeExprClass: + // These have a side-effect if any subexpression does. + break; + + case UnaryOperatorClass: + if (cast<UnaryOperator>(this)->isIncrementDecrementOp()) + return true; + break; + + case BinaryOperatorClass: + if (cast<BinaryOperator>(this)->isAssignmentOp()) + return true; + break; + + case InitListExprClass: + // FIXME: The children for an InitListExpr doesn't include the array filler. + if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller()) + if (E->HasSideEffects(Ctx, IncludePossibleEffects)) + return true; + break; + + case GenericSelectionExprClass: + return cast<GenericSelectionExpr>(this)->getResultExpr()-> + HasSideEffects(Ctx, IncludePossibleEffects); + + case ChooseExprClass: + return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects( + Ctx, IncludePossibleEffects); + + case CXXDefaultArgExprClass: + return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects( + Ctx, IncludePossibleEffects); + + case CXXDefaultInitExprClass: { + const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField(); + if (const Expr *E = FD->getInClassInitializer()) + return E->HasSideEffects(Ctx, IncludePossibleEffects); + // If we've not yet parsed the initializer, assume it has side-effects. + return true; + } + + case CXXDynamicCastExprClass: { + // A dynamic_cast expression has side-effects if it can throw. + const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this); + if (DCE->getTypeAsWritten()->isReferenceType() && + DCE->getCastKind() == CK_Dynamic) + return true; + } + LLVM_FALLTHROUGH; + case ImplicitCastExprClass: + case CStyleCastExprClass: + case CXXStaticCastExprClass: + case CXXReinterpretCastExprClass: + case CXXConstCastExprClass: + case CXXFunctionalCastExprClass: + case BuiltinBitCastExprClass: { + // While volatile reads are side-effecting in both C and C++, we treat them + // as having possible (not definite) side-effects. This allows idiomatic + // code to behave without warning, such as sizeof(*v) for a volatile- + // qualified pointer. + if (!IncludePossibleEffects) + break; + + const CastExpr *CE = cast<CastExpr>(this); + if (CE->getCastKind() == CK_LValueToRValue && + CE->getSubExpr()->getType().isVolatileQualified()) + return true; + break; + } + + case CXXTypeidExprClass: + // typeid might throw if its subexpression is potentially-evaluated, so has + // side-effects in that case whether or not its subexpression does. + return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated(); + + case CXXConstructExprClass: + case CXXTemporaryObjectExprClass: { + const CXXConstructExpr *CE = cast<CXXConstructExpr>(this); + if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) + return true; + // A trivial constructor does not add any side-effects of its own. Just look + // at its arguments. + break; + } + + case CXXInheritedCtorInitExprClass: { + const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this); + if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) + return true; + break; + } + + case LambdaExprClass: { + const LambdaExpr *LE = cast<LambdaExpr>(this); + for (Expr *E : LE->capture_inits()) + if (E->HasSideEffects(Ctx, IncludePossibleEffects)) + return true; + return false; + } + + case PseudoObjectExprClass: { + // Only look for side-effects in the semantic form, and look past + // OpaqueValueExpr bindings in that form. + const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this); + for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), + E = PO->semantics_end(); + I != E; ++I) { + const Expr *Subexpr = *I; + if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr)) + Subexpr = OVE->getSourceExpr(); + if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) + return true; + } + return false; + } + + case ObjCBoxedExprClass: + case ObjCArrayLiteralClass: + case ObjCDictionaryLiteralClass: + case ObjCSelectorExprClass: + case ObjCProtocolExprClass: + case ObjCIsaExprClass: + case ObjCIndirectCopyRestoreExprClass: + case ObjCSubscriptRefExprClass: + case ObjCBridgedCastExprClass: + case ObjCMessageExprClass: + case ObjCPropertyRefExprClass: + // FIXME: Classify these cases better. + if (IncludePossibleEffects) + return true; + break; + } + + // Recurse to children. + for (const Stmt *SubStmt : children()) + if (SubStmt && + cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) + return true; + + return false; +} + +namespace { + /// Look for a call to a non-trivial function within an expression. + class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> + { + typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; + + bool NonTrivial; + + public: + explicit NonTrivialCallFinder(const ASTContext &Context) + : Inherited(Context), NonTrivial(false) { } + + bool hasNonTrivialCall() const { return NonTrivial; } + + void VisitCallExpr(const CallExpr *E) { + if (const CXXMethodDecl *Method + = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) { + if (Method->isTrivial()) { + // Recurse to children of the call. + Inherited::VisitStmt(E); + return; + } + } + + NonTrivial = true; + } + + void VisitCXXConstructExpr(const CXXConstructExpr *E) { + if (E->getConstructor()->isTrivial()) { + // Recurse to children of the call. + Inherited::VisitStmt(E); + return; + } + + NonTrivial = true; + } + + void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { + if (E->getTemporary()->getDestructor()->isTrivial()) { + Inherited::VisitStmt(E); + return; + } + + NonTrivial = true; + } + }; +} + +bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { + NonTrivialCallFinder Finder(Ctx); + Finder.Visit(this); + return Finder.hasNonTrivialCall(); +} + +/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null +/// pointer constant or not, as well as the specific kind of constant detected. +/// Null pointer constants can be integer constant expressions with the +/// value zero, casts of zero to void*, nullptr (C++0X), or __null +/// (a GNU extension). +Expr::NullPointerConstantKind +Expr::isNullPointerConstant(ASTContext &Ctx, + NullPointerConstantValueDependence NPC) const { + if (isValueDependent() && + (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { + switch (NPC) { + case NPC_NeverValueDependent: + llvm_unreachable("Unexpected value dependent expression!"); + case NPC_ValueDependentIsNull: + if (isTypeDependent() || getType()->isIntegralType(Ctx)) + return NPCK_ZeroExpression; + else + return NPCK_NotNull; + + case NPC_ValueDependentIsNotNull: + return NPCK_NotNull; + } + } + + // Strip off a cast to void*, if it exists. Except in C++. + if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) { + if (!Ctx.getLangOpts().CPlusPlus) { + // Check that it is a cast to void*. + if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { + QualType Pointee = PT->getPointeeType(); + Qualifiers Qs = Pointee.getQualifiers(); + // Only (void*)0 or equivalent are treated as nullptr. If pointee type + // has non-default address space it is not treated as nullptr. + // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr + // since it cannot be assigned to a pointer to constant address space. + if ((Ctx.getLangOpts().OpenCLVersion >= 200 && + Pointee.getAddressSpace() == LangAS::opencl_generic) || + (Ctx.getLangOpts().OpenCL && + Ctx.getLangOpts().OpenCLVersion < 200 && + Pointee.getAddressSpace() == LangAS::opencl_private)) + Qs.removeAddressSpace(); + + if (Pointee->isVoidType() && Qs.empty() && // to void* + CE->getSubExpr()->getType()->isIntegerType()) // from int + return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); + } + } + } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { + // Ignore the ImplicitCastExpr type entirely. + return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { + // Accept ((void*)0) as a null pointer constant, as many other + // implementations do. + return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const GenericSelectionExpr *GE = + dyn_cast<GenericSelectionExpr>(this)) { + if (GE->isResultDependent()) + return NPCK_NotNull; + return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) { + if (CE->isConditionDependent()) + return NPCK_NotNull; + return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const CXXDefaultArgExpr *DefaultArg + = dyn_cast<CXXDefaultArgExpr>(this)) { + // See through default argument expressions. + return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const CXXDefaultInitExpr *DefaultInit + = dyn_cast<CXXDefaultInitExpr>(this)) { + // See through default initializer expressions. + return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); + } else if (isa<GNUNullExpr>(this)) { + // The GNU __null extension is always a null pointer constant. + return NPCK_GNUNull; + } else if (const MaterializeTemporaryExpr *M + = dyn_cast<MaterializeTemporaryExpr>(this)) { + return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC); + } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) { + if (const Expr *Source = OVE->getSourceExpr()) + return Source->isNullPointerConstant(Ctx, NPC); + } + + // C++11 nullptr_t is always a null pointer constant. + if (getType()->isNullPtrType()) + return NPCK_CXX11_nullptr; + + if (const RecordType *UT = getType()->getAsUnionType()) + if (!Ctx.getLangOpts().CPlusPlus11 && + UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) + if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){ + const Expr *InitExpr = CLE->getInitializer(); + if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr)) + return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); + } + // This expression must be an integer type. + if (!getType()->isIntegerType() || + (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) + return NPCK_NotNull; + + if (Ctx.getLangOpts().CPlusPlus11) { + // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with + // value zero or a prvalue of type std::nullptr_t. + // Microsoft mode permits C++98 rules reflecting MSVC behavior. + const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this); + if (Lit && !Lit->getValue()) + return NPCK_ZeroLiteral; + else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) + return NPCK_NotNull; + } else { + // If we have an integer constant expression, we need to *evaluate* it and + // test for the value 0. + if (!isIntegerConstantExpr(Ctx)) + return NPCK_NotNull; + } + + if (EvaluateKnownConstInt(Ctx) != 0) + return NPCK_NotNull; + + if (isa<IntegerLiteral>(this)) + return NPCK_ZeroLiteral; + return NPCK_ZeroExpression; +} + +/// If this expression is an l-value for an Objective C +/// property, find the underlying property reference expression. +const ObjCPropertyRefExpr *Expr::getObjCProperty() const { + const Expr *E = this; + while (true) { + assert((E->getValueKind() == VK_LValue && + E->getObjectKind() == OK_ObjCProperty) && + "expression is not a property reference"); + E = E->IgnoreParenCasts(); + if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Comma) { + E = BO->getRHS(); + continue; + } + } + + break; + } + + return cast<ObjCPropertyRefExpr>(E); +} + +bool Expr::isObjCSelfExpr() const { + const Expr *E = IgnoreParenImpCasts(); + + const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); + if (!DRE) + return false; + + const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl()); + if (!Param) + return false; + + const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext()); + if (!M) + return false; + + return M->getSelfDecl() == Param; +} + +FieldDecl *Expr::getSourceBitField() { + Expr *E = this->IgnoreParens(); + + while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getCastKind() == CK_LValueToRValue || + (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) + E = ICE->getSubExpr()->IgnoreParens(); + else + break; + } + + if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E)) + if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) + if (Field->isBitField()) + return Field; + + if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) { + FieldDecl *Ivar = IvarRef->getDecl(); + if (Ivar->isBitField()) + return Ivar; + } + + if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) { + if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl())) + if (Field->isBitField()) + return Field; + + if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl())) + if (Expr *E = BD->getBinding()) + return E->getSourceBitField(); + } + + if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) { + if (BinOp->isAssignmentOp() && BinOp->getLHS()) + return BinOp->getLHS()->getSourceBitField(); + + if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) + return BinOp->getRHS()->getSourceBitField(); + } + + if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) + if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) + return UnOp->getSubExpr()->getSourceBitField(); + + return nullptr; +} + +bool Expr::refersToVectorElement() const { + // FIXME: Why do we not just look at the ObjectKind here? + const Expr *E = this->IgnoreParens(); + + while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getValueKind() != VK_RValue && + ICE->getCastKind() == CK_NoOp) + E = ICE->getSubExpr()->IgnoreParens(); + else + break; + } + + if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) + return ASE->getBase()->getType()->isVectorType(); + + if (isa<ExtVectorElementExpr>(E)) + return true; + + if (auto *DRE = dyn_cast<DeclRefExpr>(E)) + if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl())) + if (auto *E = BD->getBinding()) + return E->refersToVectorElement(); + + return false; +} + +bool Expr::refersToGlobalRegisterVar() const { + const Expr *E = this->IgnoreParenImpCasts(); + + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) + if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) + if (VD->getStorageClass() == SC_Register && + VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) + return true; + + return false; +} + +bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { + E1 = E1->IgnoreParens(); + E2 = E2->IgnoreParens(); + + if (E1->getStmtClass() != E2->getStmtClass()) + return false; + + switch (E1->getStmtClass()) { + default: + return false; + case CXXThisExprClass: + return true; + case DeclRefExprClass: { + // DeclRefExpr without an ImplicitCastExpr can happen for integral + // template parameters. + const auto *DRE1 = cast<DeclRefExpr>(E1); + const auto *DRE2 = cast<DeclRefExpr>(E2); + return DRE1->isRValue() && DRE2->isRValue() && + DRE1->getDecl() == DRE2->getDecl(); + } + case ImplicitCastExprClass: { + // Peel off implicit casts. + while (true) { + const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1); + const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2); + if (!ICE1 || !ICE2) + return false; + if (ICE1->getCastKind() != ICE2->getCastKind()) + return false; + E1 = ICE1->getSubExpr()->IgnoreParens(); + E2 = ICE2->getSubExpr()->IgnoreParens(); + // The final cast must be one of these types. + if (ICE1->getCastKind() == CK_LValueToRValue || + ICE1->getCastKind() == CK_ArrayToPointerDecay || + ICE1->getCastKind() == CK_FunctionToPointerDecay) { + break; + } + } + + const auto *DRE1 = dyn_cast<DeclRefExpr>(E1); + const auto *DRE2 = dyn_cast<DeclRefExpr>(E2); + if (DRE1 && DRE2) + return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); + + const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1); + const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2); + if (Ivar1 && Ivar2) { + return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && + declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); + } + + const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1); + const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2); + if (Array1 && Array2) { + if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) + return false; + + auto Idx1 = Array1->getIdx(); + auto Idx2 = Array2->getIdx(); + const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1); + const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2); + if (Integer1 && Integer2) { + if (!llvm::APInt::isSameValue(Integer1->getValue(), + Integer2->getValue())) + return false; + } else { + if (!isSameComparisonOperand(Idx1, Idx2)) + return false; + } + + return true; + } + + // Walk the MemberExpr chain. + while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) { + const auto *ME1 = cast<MemberExpr>(E1); + const auto *ME2 = cast<MemberExpr>(E2); + if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) + return false; + if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl())) + if (D->isStaticDataMember()) + return true; + E1 = ME1->getBase()->IgnoreParenImpCasts(); + E2 = ME2->getBase()->IgnoreParenImpCasts(); + } + + if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2)) + return true; + + // A static member variable can end the MemberExpr chain with either + // a MemberExpr or a DeclRefExpr. + auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { + if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) + return DRE->getDecl(); + if (const auto *ME = dyn_cast<MemberExpr>(E)) + return ME->getMemberDecl(); + return nullptr; + }; + + const ValueDecl *VD1 = getAnyDecl(E1); + const ValueDecl *VD2 = getAnyDecl(E2); + return declaresSameEntity(VD1, VD2); + } + } +} + +/// isArrow - Return true if the base expression is a pointer to vector, +/// return false if the base expression is a vector. +bool ExtVectorElementExpr::isArrow() const { + return getBase()->getType()->isPointerType(); +} + +unsigned ExtVectorElementExpr::getNumElements() const { + if (const VectorType *VT = getType()->getAs<VectorType>()) + return VT->getNumElements(); + return 1; +} + +/// containsDuplicateElements - Return true if any element access is repeated. +bool ExtVectorElementExpr::containsDuplicateElements() const { + // FIXME: Refactor this code to an accessor on the AST node which returns the + // "type" of component access, and share with code below and in Sema. + StringRef Comp = Accessor->getName(); + + // Halving swizzles do not contain duplicate elements. + if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") + return false; + + // Advance past s-char prefix on hex swizzles. + if (Comp[0] == 's' || Comp[0] == 'S') + Comp = Comp.substr(1); + + for (unsigned i = 0, e = Comp.size(); i != e; ++i) + if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) + return true; + + return false; +} + +/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. +void ExtVectorElementExpr::getEncodedElementAccess( + SmallVectorImpl<uint32_t> &Elts) const { + StringRef Comp = Accessor->getName(); + bool isNumericAccessor = false; + if (Comp[0] == 's' || Comp[0] == 'S') { + Comp = Comp.substr(1); + isNumericAccessor = true; + } + + bool isHi = Comp == "hi"; + bool isLo = Comp == "lo"; + bool isEven = Comp == "even"; + bool isOdd = Comp == "odd"; + + for (unsigned i = 0, e = getNumElements(); i != e; ++i) { + uint64_t Index; + + if (isHi) + Index = e + i; + else if (isLo) + Index = i; + else if (isEven) + Index = 2 * i; + else if (isOdd) + Index = 2 * i + 1; + else + Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); + + Elts.push_back(Index); + } +} + +ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, + QualType Type, SourceLocation BLoc, + SourceLocation RP) + : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary, + Type->isDependentType(), Type->isDependentType(), + Type->isInstantiationDependentType(), + Type->containsUnexpandedParameterPack()), + BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) +{ + SubExprs = new (C) Stmt*[args.size()]; + for (unsigned i = 0; i != args.size(); i++) { + if (args[i]->isTypeDependent()) + ExprBits.TypeDependent = true; + if (args[i]->isValueDependent()) + ExprBits.ValueDependent = true; + if (args[i]->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (args[i]->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + SubExprs[i] = args[i]; + } +} + +void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { + if (SubExprs) C.Deallocate(SubExprs); + + this->NumExprs = Exprs.size(); + SubExprs = new (C) Stmt*[NumExprs]; + memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); +} + +GenericSelectionExpr::GenericSelectionExpr( + const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, + ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, + SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool ContainsUnexpandedParameterPack, unsigned ResultIndex) + : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), + AssocExprs[ResultIndex]->getValueKind(), + AssocExprs[ResultIndex]->getObjectKind(), + AssocExprs[ResultIndex]->isTypeDependent(), + AssocExprs[ResultIndex]->isValueDependent(), + AssocExprs[ResultIndex]->isInstantiationDependent(), + ContainsUnexpandedParameterPack), + NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), + DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { + assert(AssocTypes.size() == AssocExprs.size() && + "Must have the same number of association expressions" + " and TypeSourceInfo!"); + assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); + + GenericSelectionExprBits.GenericLoc = GenericLoc; + getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; + std::copy(AssocExprs.begin(), AssocExprs.end(), + getTrailingObjects<Stmt *>() + AssocExprStartIndex); + std::copy(AssocTypes.begin(), AssocTypes.end(), + getTrailingObjects<TypeSourceInfo *>()); +} + +GenericSelectionExpr::GenericSelectionExpr( + const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, + ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, + SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool ContainsUnexpandedParameterPack) + : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, + OK_Ordinary, + /*isTypeDependent=*/true, + /*isValueDependent=*/true, + /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack), + NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), + DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { + assert(AssocTypes.size() == AssocExprs.size() && + "Must have the same number of association expressions" + " and TypeSourceInfo!"); + + GenericSelectionExprBits.GenericLoc = GenericLoc; + getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr; + std::copy(AssocExprs.begin(), AssocExprs.end(), + getTrailingObjects<Stmt *>() + AssocExprStartIndex); + std::copy(AssocTypes.begin(), AssocTypes.end(), + getTrailingObjects<TypeSourceInfo *>()); +} + +GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) + : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} + +GenericSelectionExpr *GenericSelectionExpr::Create( + const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, + ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, + SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { + unsigned NumAssocs = AssocExprs.size(); + void *Mem = Context.Allocate( + totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), + alignof(GenericSelectionExpr)); + return new (Mem) GenericSelectionExpr( + Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, + RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); +} + +GenericSelectionExpr *GenericSelectionExpr::Create( + const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, + ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, + SourceLocation DefaultLoc, SourceLocation RParenLoc, + bool ContainsUnexpandedParameterPack) { + unsigned NumAssocs = AssocExprs.size(); + void *Mem = Context.Allocate( + totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), + alignof(GenericSelectionExpr)); + return new (Mem) GenericSelectionExpr( + Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, + RParenLoc, ContainsUnexpandedParameterPack); +} + +GenericSelectionExpr * +GenericSelectionExpr::CreateEmpty(const ASTContext &Context, + unsigned NumAssocs) { + void *Mem = Context.Allocate( + totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs), + alignof(GenericSelectionExpr)); + return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); +} + +//===----------------------------------------------------------------------===// +// DesignatedInitExpr +//===----------------------------------------------------------------------===// + +IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { + assert(Kind == FieldDesignator && "Only valid on a field designator"); + if (Field.NameOrField & 0x01) + return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01); + else + return getField()->getIdentifier(); +} + +DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, + llvm::ArrayRef<Designator> Designators, + SourceLocation EqualOrColonLoc, + bool GNUSyntax, + ArrayRef<Expr*> IndexExprs, + Expr *Init) + : Expr(DesignatedInitExprClass, Ty, + Init->getValueKind(), Init->getObjectKind(), + Init->isTypeDependent(), Init->isValueDependent(), + Init->isInstantiationDependent(), + Init->containsUnexpandedParameterPack()), + EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), + NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { + this->Designators = new (C) Designator[NumDesignators]; + + // Record the initializer itself. + child_iterator Child = child_begin(); + *Child++ = Init; + + // Copy the designators and their subexpressions, computing + // value-dependence along the way. + unsigned IndexIdx = 0; + for (unsigned I = 0; I != NumDesignators; ++I) { + this->Designators[I] = Designators[I]; + + if (this->Designators[I].isArrayDesignator()) { + // Compute type- and value-dependence. + Expr *Index = IndexExprs[IndexIdx]; + if (Index->isTypeDependent() || Index->isValueDependent()) + ExprBits.TypeDependent = ExprBits.ValueDependent = true; + if (Index->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + // Propagate unexpanded parameter packs. + if (Index->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + // Copy the index expressions into permanent storage. + *Child++ = IndexExprs[IndexIdx++]; + } else if (this->Designators[I].isArrayRangeDesignator()) { + // Compute type- and value-dependence. + Expr *Start = IndexExprs[IndexIdx]; + Expr *End = IndexExprs[IndexIdx + 1]; + if (Start->isTypeDependent() || Start->isValueDependent() || + End->isTypeDependent() || End->isValueDependent()) { + ExprBits.TypeDependent = ExprBits.ValueDependent = true; + ExprBits.InstantiationDependent = true; + } else if (Start->isInstantiationDependent() || + End->isInstantiationDependent()) { + ExprBits.InstantiationDependent = true; + } + + // Propagate unexpanded parameter packs. + if (Start->containsUnexpandedParameterPack() || + End->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + // Copy the start/end expressions into permanent storage. + *Child++ = IndexExprs[IndexIdx++]; + *Child++ = IndexExprs[IndexIdx++]; + } + } + + assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); +} + +DesignatedInitExpr * +DesignatedInitExpr::Create(const ASTContext &C, + llvm::ArrayRef<Designator> Designators, + ArrayRef<Expr*> IndexExprs, + SourceLocation ColonOrEqualLoc, + bool UsesColonSyntax, Expr *Init) { + void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1), + alignof(DesignatedInitExpr)); + return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, + ColonOrEqualLoc, UsesColonSyntax, + IndexExprs, Init); +} + +DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, + unsigned NumIndexExprs) { + void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1), + alignof(DesignatedInitExpr)); + return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); +} + +void DesignatedInitExpr::setDesignators(const ASTContext &C, + const Designator *Desigs, + unsigned NumDesigs) { + Designators = new (C) Designator[NumDesigs]; + NumDesignators = NumDesigs; + for (unsigned I = 0; I != NumDesigs; ++I) + Designators[I] = Desigs[I]; +} + +SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { + DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); + if (size() == 1) + return DIE->getDesignator(0)->getSourceRange(); + return SourceRange(DIE->getDesignator(0)->getBeginLoc(), + DIE->getDesignator(size() - 1)->getEndLoc()); +} + +SourceLocation DesignatedInitExpr::getBeginLoc() const { + SourceLocation StartLoc; + auto *DIE = const_cast<DesignatedInitExpr *>(this); + Designator &First = *DIE->getDesignator(0); + if (First.isFieldDesignator()) { + if (GNUSyntax) + StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); + else + StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); + } else + StartLoc = + SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); + return StartLoc; +} + +SourceLocation DesignatedInitExpr::getEndLoc() const { + return getInit()->getEndLoc(); +} + +Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { + assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); + return getSubExpr(D.ArrayOrRange.Index + 1); +} + +Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { + assert(D.Kind == Designator::ArrayRangeDesignator && + "Requires array range designator"); + return getSubExpr(D.ArrayOrRange.Index + 1); +} + +Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { + assert(D.Kind == Designator::ArrayRangeDesignator && + "Requires array range designator"); + return getSubExpr(D.ArrayOrRange.Index + 2); +} + +/// Replaces the designator at index @p Idx with the series +/// of designators in [First, Last). +void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, + const Designator *First, + const Designator *Last) { + unsigned NumNewDesignators = Last - First; + if (NumNewDesignators == 0) { + std::copy_backward(Designators + Idx + 1, + Designators + NumDesignators, + Designators + Idx); + --NumNewDesignators; + return; + } else if (NumNewDesignators == 1) { + Designators[Idx] = *First; + return; + } + + Designator *NewDesignators + = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; + std::copy(Designators, Designators + Idx, NewDesignators); + std::copy(First, Last, NewDesignators + Idx); + std::copy(Designators + Idx + 1, Designators + NumDesignators, + NewDesignators + Idx + NumNewDesignators); + Designators = NewDesignators; + NumDesignators = NumDesignators - 1 + NumNewDesignators; +} + +DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, + SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) + : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, + OK_Ordinary, false, false, false, false) { + BaseAndUpdaterExprs[0] = baseExpr; + + InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); + ILE->setType(baseExpr->getType()); + BaseAndUpdaterExprs[1] = ILE; +} + +SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { + return getBase()->getBeginLoc(); +} + +SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { + return getBase()->getEndLoc(); +} + +ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, + SourceLocation RParenLoc) + : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false, + false, false), + LParenLoc(LParenLoc), RParenLoc(RParenLoc) { + ParenListExprBits.NumExprs = Exprs.size(); + + for (unsigned I = 0, N = Exprs.size(); I != N; ++I) { + if (Exprs[I]->isTypeDependent()) + ExprBits.TypeDependent = true; + if (Exprs[I]->isValueDependent()) + ExprBits.ValueDependent = true; + if (Exprs[I]->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (Exprs[I]->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + getTrailingObjects<Stmt *>()[I] = Exprs[I]; + } +} + +ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) + : Expr(ParenListExprClass, Empty) { + ParenListExprBits.NumExprs = NumExprs; +} + +ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, + SourceLocation LParenLoc, + ArrayRef<Expr *> Exprs, + SourceLocation RParenLoc) { + void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()), + alignof(ParenListExpr)); + return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); +} + +ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, + unsigned NumExprs) { + void *Mem = + Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr)); + return new (Mem) ParenListExpr(EmptyShell(), NumExprs); +} + +const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { + if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e)) + e = ewc->getSubExpr(); + if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e)) + e = m->GetTemporaryExpr(); + e = cast<CXXConstructExpr>(e)->getArg(0); + while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) + e = ice->getSubExpr(); + return cast<OpaqueValueExpr>(e); +} + +PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, + EmptyShell sh, + unsigned numSemanticExprs) { + void *buffer = + Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs), + alignof(PseudoObjectExpr)); + return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); +} + +PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) + : Expr(PseudoObjectExprClass, shell) { + PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; +} + +PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, + ArrayRef<Expr*> semantics, + unsigned resultIndex) { + assert(syntax && "no syntactic expression!"); + assert(semantics.size() && "no semantic expressions!"); + + QualType type; + ExprValueKind VK; + if (resultIndex == NoResult) { + type = C.VoidTy; + VK = VK_RValue; + } else { + assert(resultIndex < semantics.size()); + type = semantics[resultIndex]->getType(); + VK = semantics[resultIndex]->getValueKind(); + assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); + } + + void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1), + alignof(PseudoObjectExpr)); + return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, + resultIndex); +} + +PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, + Expr *syntax, ArrayRef<Expr*> semantics, + unsigned resultIndex) + : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary, + /*filled in at end of ctor*/ false, false, false, false) { + PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; + PseudoObjectExprBits.ResultIndex = resultIndex + 1; + + for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { + Expr *E = (i == 0 ? syntax : semantics[i-1]); + getSubExprsBuffer()[i] = E; + + if (E->isTypeDependent()) + ExprBits.TypeDependent = true; + if (E->isValueDependent()) + ExprBits.ValueDependent = true; + if (E->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (E->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + if (isa<OpaqueValueExpr>(E)) + assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr && + "opaque-value semantic expressions for pseudo-object " + "operations must have sources"); + } +} + +//===----------------------------------------------------------------------===// +// Child Iterators for iterating over subexpressions/substatements +//===----------------------------------------------------------------------===// + +// UnaryExprOrTypeTraitExpr +Stmt::child_range UnaryExprOrTypeTraitExpr::children() { + const_child_range CCR = + const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); + return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); +} + +Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { + // If this is of a type and the type is a VLA type (and not a typedef), the + // size expression of the VLA needs to be treated as an executable expression. + // Why isn't this weirdness documented better in StmtIterator? + if (isArgumentType()) { + if (const VariableArrayType *T = + dyn_cast<VariableArrayType>(getArgumentType().getTypePtr())) + return const_child_range(const_child_iterator(T), const_child_iterator()); + return const_child_range(const_child_iterator(), const_child_iterator()); + } + return const_child_range(&Argument.Ex, &Argument.Ex + 1); +} + +AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, + QualType t, AtomicOp op, SourceLocation RP) + : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary, + false, false, false, false), + NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) +{ + assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); + for (unsigned i = 0; i != args.size(); i++) { + if (args[i]->isTypeDependent()) + ExprBits.TypeDependent = true; + if (args[i]->isValueDependent()) + ExprBits.ValueDependent = true; + if (args[i]->isInstantiationDependent()) + ExprBits.InstantiationDependent = true; + if (args[i]->containsUnexpandedParameterPack()) + ExprBits.ContainsUnexpandedParameterPack = true; + + SubExprs[i] = args[i]; + } +} + +unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { + switch (Op) { + case AO__c11_atomic_init: + case AO__opencl_atomic_init: + case AO__c11_atomic_load: + case AO__atomic_load_n: + return 2; + + case AO__opencl_atomic_load: + case AO__c11_atomic_store: + case AO__c11_atomic_exchange: + case AO__atomic_load: + case AO__atomic_store: + case AO__atomic_store_n: + case AO__atomic_exchange_n: + case AO__c11_atomic_fetch_add: + case AO__c11_atomic_fetch_sub: + case AO__c11_atomic_fetch_and: + case AO__c11_atomic_fetch_or: + case AO__c11_atomic_fetch_xor: + case AO__atomic_fetch_add: + case AO__atomic_fetch_sub: + case AO__atomic_fetch_and: + case AO__atomic_fetch_or: + case AO__atomic_fetch_xor: + case AO__atomic_fetch_nand: + case AO__atomic_add_fetch: + case AO__atomic_sub_fetch: + case AO__atomic_and_fetch: + case AO__atomic_or_fetch: + case AO__atomic_xor_fetch: + case AO__atomic_nand_fetch: + case AO__atomic_fetch_min: + case AO__atomic_fetch_max: + return 3; + + case AO__opencl_atomic_store: + case AO__opencl_atomic_exchange: + case AO__opencl_atomic_fetch_add: + case AO__opencl_atomic_fetch_sub: + case AO__opencl_atomic_fetch_and: + case AO__opencl_atomic_fetch_or: + case AO__opencl_atomic_fetch_xor: + case AO__opencl_atomic_fetch_min: + case AO__opencl_atomic_fetch_max: + case AO__atomic_exchange: + return 4; + + case AO__c11_atomic_compare_exchange_strong: + case AO__c11_atomic_compare_exchange_weak: + return 5; + + case AO__opencl_atomic_compare_exchange_strong: + case AO__opencl_atomic_compare_exchange_weak: + case AO__atomic_compare_exchange: + case AO__atomic_compare_exchange_n: + return 6; + } + llvm_unreachable("unknown atomic op"); +} + +QualType AtomicExpr::getValueType() const { + auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); + if (auto AT = T->getAs<AtomicType>()) + return AT->getValueType(); + return T; +} + +QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { + unsigned ArraySectionCount = 0; + while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) { + Base = OASE->getBase(); + ++ArraySectionCount; + } + while (auto *ASE = + dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) { + Base = ASE->getBase(); + ++ArraySectionCount; + } + Base = Base->IgnoreParenImpCasts(); + auto OriginalTy = Base->getType(); + if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) + if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) + OriginalTy = PVD->getOriginalType().getNonReferenceType(); + + for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { + if (OriginalTy->isAnyPointerType()) + OriginalTy = OriginalTy->getPointeeType(); + else { + assert (OriginalTy->isArrayType()); + OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); + } + } + return OriginalTy; +} |
