summaryrefslogtreecommitdiff
path: root/clang/lib/AST/Expr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/AST/Expr.cpp')
-rw-r--r--clang/lib/AST/Expr.cpp4675
1 files changed, 4675 insertions, 0 deletions
diff --git a/clang/lib/AST/Expr.cpp b/clang/lib/AST/Expr.cpp
new file mode 100644
index 000000000000..3438c3aadc6b
--- /dev/null
+++ b/clang/lib/AST/Expr.cpp
@@ -0,0 +1,4675 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstring>
+using namespace clang;
+
+const Expr *Expr::getBestDynamicClassTypeExpr() const {
+ const Expr *E = this;
+ while (true) {
+ E = E->ignoreParenBaseCasts();
+
+ // Follow the RHS of a comma operator.
+ if (auto *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ // Step into initializer for materialized temporaries.
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = MTE->GetTemporaryExpr();
+ continue;
+ }
+
+ break;
+ }
+
+ return E;
+}
+
+const CXXRecordDecl *Expr::getBestDynamicClassType() const {
+ const Expr *E = getBestDynamicClassTypeExpr();
+ QualType DerivedType = E->getType();
+ if (const PointerType *PTy = DerivedType->getAs<PointerType>())
+ DerivedType = PTy->getPointeeType();
+
+ if (DerivedType->isDependentType())
+ return nullptr;
+
+ const RecordType *Ty = DerivedType->castAs<RecordType>();
+ Decl *D = Ty->getDecl();
+ return cast<CXXRecordDecl>(D);
+}
+
+const Expr *Expr::skipRValueSubobjectAdjustments(
+ SmallVectorImpl<const Expr *> &CommaLHSs,
+ SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
+ const Expr *E = this;
+ while (true) {
+ E = E->IgnoreParens();
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if ((CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase) &&
+ E->getType()->isRecordType()) {
+ E = CE->getSubExpr();
+ auto *Derived =
+ cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
+ Adjustments.push_back(SubobjectAdjustment(CE, Derived));
+ continue;
+ }
+
+ if (CE->getCastKind() == CK_NoOp) {
+ E = CE->getSubExpr();
+ continue;
+ }
+ } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ if (!ME->isArrow()) {
+ assert(ME->getBase()->getType()->isRecordType());
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
+ E = ME->getBase();
+ Adjustments.push_back(SubobjectAdjustment(Field));
+ continue;
+ }
+ }
+ }
+ } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_PtrMemD) {
+ assert(BO->getRHS()->isRValue());
+ E = BO->getLHS();
+ const MemberPointerType *MPT =
+ BO->getRHS()->getType()->getAs<MemberPointerType>();
+ Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
+ continue;
+ } else if (BO->getOpcode() == BO_Comma) {
+ CommaLHSs.push_back(BO->getLHS());
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ // Nothing changed.
+ break;
+ }
+ return E;
+}
+
+/// isKnownToHaveBooleanValue - Return true if this is an integer expression
+/// that is known to return 0 or 1. This happens for _Bool/bool expressions
+/// but also int expressions which are produced by things like comparisons in
+/// C.
+bool Expr::isKnownToHaveBooleanValue() const {
+ const Expr *E = IgnoreParens();
+
+ // If this value has _Bool type, it is obvious 0/1.
+ if (E->getType()->isBooleanType()) return true;
+ // If this is a non-scalar-integer type, we don't care enough to try.
+ if (!E->getType()->isIntegralOrEnumerationType()) return false;
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ switch (UO->getOpcode()) {
+ case UO_Plus:
+ return UO->getSubExpr()->isKnownToHaveBooleanValue();
+ case UO_LNot:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ // Only look through implicit casts. If the user writes
+ // '(int) (a && b)' treat it as an arbitrary int.
+ if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
+ return CE->getSubExpr()->isKnownToHaveBooleanValue();
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+ default: return false;
+ case BO_LT: // Relational operators.
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ: // Equality operators.
+ case BO_NE:
+ case BO_LAnd: // AND operator.
+ case BO_LOr: // Logical OR operator.
+ return true;
+
+ case BO_And: // Bitwise AND operator.
+ case BO_Xor: // Bitwise XOR operator.
+ case BO_Or: // Bitwise OR operator.
+ // Handle things like (x==2)|(y==12).
+ return BO->getLHS()->isKnownToHaveBooleanValue() &&
+ BO->getRHS()->isKnownToHaveBooleanValue();
+
+ case BO_Comma:
+ case BO_Assign:
+ return BO->getRHS()->isKnownToHaveBooleanValue();
+ }
+ }
+
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
+ return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
+ CO->getFalseExpr()->isKnownToHaveBooleanValue();
+
+ if (isa<ObjCBoolLiteralExpr>(E))
+ return true;
+
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
+ return OVE->getSourceExpr()->isKnownToHaveBooleanValue();
+
+ return false;
+}
+
+// Amusing macro metaprogramming hack: check whether a class provides
+// a more specific implementation of getExprLoc().
+//
+// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
+namespace {
+ /// This implementation is used when a class provides a custom
+ /// implementation of getExprLoc.
+ template <class E, class T>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (T::*v)() const) {
+ return static_cast<const E*>(expr)->getExprLoc();
+ }
+
+ /// This implementation is used when a class doesn't provide
+ /// a custom implementation of getExprLoc. Overload resolution
+ /// should pick it over the implementation above because it's
+ /// more specialized according to function template partial ordering.
+ template <class E>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (Expr::*v)() const) {
+ return static_cast<const E *>(expr)->getBeginLoc();
+ }
+}
+
+SourceLocation Expr::getExprLoc() const {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: break;
+#define EXPR(type, base) \
+ case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown expression kind");
+}
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
+ assert((Kind == ConstantExpr::RSK_APValue ||
+ Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
+ "Invalid StorageKind Value");
+}
+
+ConstantExpr::ResultStorageKind
+ConstantExpr::getStorageKind(const APValue &Value) {
+ switch (Value.getKind()) {
+ case APValue::None:
+ case APValue::Indeterminate:
+ return ConstantExpr::RSK_None;
+ case APValue::Int:
+ if (!Value.getInt().needsCleanup())
+ return ConstantExpr::RSK_Int64;
+ LLVM_FALLTHROUGH;
+ default:
+ return ConstantExpr::RSK_APValue;
+ }
+}
+
+ConstantExpr::ResultStorageKind
+ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
+ if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
+ return ConstantExpr::RSK_Int64;
+ return ConstantExpr::RSK_APValue;
+}
+
+void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
+ ConstantExprBits.ResultKind = StorageKind;
+ ConstantExprBits.APValueKind = APValue::None;
+ ConstantExprBits.HasCleanup = false;
+ if (StorageKind == ConstantExpr::RSK_APValue)
+ ::new (getTrailingObjects<APValue>()) APValue();
+}
+
+ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
+ : FullExpr(ConstantExprClass, subexpr) {
+ DefaultInit(StorageKind);
+}
+
+ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
+ ResultStorageKind StorageKind) {
+ assert(!isa<ConstantExpr>(E));
+ AssertResultStorageKind(StorageKind);
+ unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
+ StorageKind == ConstantExpr::RSK_APValue,
+ StorageKind == ConstantExpr::RSK_Int64);
+ void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
+ ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
+ return Self;
+}
+
+ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
+ const APValue &Result) {
+ ResultStorageKind StorageKind = getStorageKind(Result);
+ ConstantExpr *Self = Create(Context, E, StorageKind);
+ Self->SetResult(Result, Context);
+ return Self;
+}
+
+ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
+ : FullExpr(ConstantExprClass, Empty) {
+ DefaultInit(StorageKind);
+}
+
+ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
+ ResultStorageKind StorageKind,
+ EmptyShell Empty) {
+ AssertResultStorageKind(StorageKind);
+ unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
+ StorageKind == ConstantExpr::RSK_APValue,
+ StorageKind == ConstantExpr::RSK_Int64);
+ void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
+ ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
+ return Self;
+}
+
+void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
+ assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
+ "Invalid storage for this value kind");
+ ConstantExprBits.APValueKind = Value.getKind();
+ switch (ConstantExprBits.ResultKind) {
+ case RSK_None:
+ return;
+ case RSK_Int64:
+ Int64Result() = *Value.getInt().getRawData();
+ ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
+ ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
+ return;
+ case RSK_APValue:
+ if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
+ ConstantExprBits.HasCleanup = true;
+ Context.addDestruction(&APValueResult());
+ }
+ APValueResult() = std::move(Value);
+ return;
+ }
+ llvm_unreachable("Invalid ResultKind Bits");
+}
+
+llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
+ switch (ConstantExprBits.ResultKind) {
+ case ConstantExpr::RSK_APValue:
+ return APValueResult().getInt();
+ case ConstantExpr::RSK_Int64:
+ return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
+ ConstantExprBits.IsUnsigned);
+ default:
+ llvm_unreachable("invalid Accessor");
+ }
+}
+
+APValue ConstantExpr::getAPValueResult() const {
+ switch (ConstantExprBits.ResultKind) {
+ case ConstantExpr::RSK_APValue:
+ return APValueResult();
+ case ConstantExpr::RSK_Int64:
+ return APValue(
+ llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
+ ConstantExprBits.IsUnsigned));
+ case ConstantExpr::RSK_None:
+ return APValue();
+ }
+ llvm_unreachable("invalid ResultKind");
+}
+
+/// Compute the type-, value-, and instantiation-dependence of a
+/// declaration reference
+/// based on the declaration being referenced.
+static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
+ QualType T, bool &TypeDependent,
+ bool &ValueDependent,
+ bool &InstantiationDependent) {
+ TypeDependent = false;
+ ValueDependent = false;
+ InstantiationDependent = false;
+
+ // (TD) C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ //
+ // and
+ //
+ // (VD) C++ [temp.dep.constexpr]p2:
+ // An identifier is value-dependent if it is:
+
+ // (TD) - an identifier that was declared with dependent type
+ // (VD) - a name declared with a dependent type,
+ if (T->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ } else if (T->isInstantiationDependentType()) {
+ InstantiationDependent = true;
+ }
+
+ // (TD) - a conversion-function-id that specifies a dependent type
+ if (D->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName) {
+ QualType T = D->getDeclName().getCXXNameType();
+ if (T->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ }
+
+ if (T->isInstantiationDependentType())
+ InstantiationDependent = true;
+ }
+
+ // (VD) - the name of a non-type template parameter,
+ if (isa<NonTypeTemplateParmDecl>(D)) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ return;
+ }
+
+ // (VD) - a constant with integral or enumeration type and is
+ // initialized with an expression that is value-dependent.
+ // (VD) - a constant with literal type and is initialized with an
+ // expression that is value-dependent [C++11].
+ // (VD) - FIXME: Missing from the standard:
+ // - an entity with reference type and is initialized with an
+ // expression that is value-dependent [C++11]
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ if ((Ctx.getLangOpts().CPlusPlus11 ?
+ Var->getType()->isLiteralType(Ctx) :
+ Var->getType()->isIntegralOrEnumerationType()) &&
+ (Var->getType().isConstQualified() ||
+ Var->getType()->isReferenceType())) {
+ if (const Expr *Init = Var->getAnyInitializer())
+ if (Init->isValueDependent()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ }
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ if (Var->isStaticDataMember() &&
+ Var->getDeclContext()->isDependentContext()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
+ if (TInfo->getType()->isIncompleteArrayType())
+ TypeDependent = true;
+ }
+
+ return;
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
+ ValueDependent = true;
+ InstantiationDependent = true;
+ }
+}
+
+void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
+ bool TypeDependent = false;
+ bool ValueDependent = false;
+ bool InstantiationDependent = false;
+ computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
+ ValueDependent, InstantiationDependent);
+
+ ExprBits.TypeDependent |= TypeDependent;
+ ExprBits.ValueDependent |= ValueDependent;
+ ExprBits.InstantiationDependent |= InstantiationDependent;
+
+ // Is the declaration a parameter pack?
+ if (getDecl()->isParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+}
+
+DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture, QualType T,
+ ExprValueKind VK, SourceLocation L,
+ const DeclarationNameLoc &LocInfo,
+ NonOdrUseReason NOUR)
+ : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
+ D(D), DNLoc(LocInfo) {
+ DeclRefExprBits.HasQualifier = false;
+ DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
+ DeclRefExprBits.HasFoundDecl = false;
+ DeclRefExprBits.HadMultipleCandidates = false;
+ DeclRefExprBits.RefersToEnclosingVariableOrCapture =
+ RefersToEnclosingVariableOrCapture;
+ DeclRefExprBits.NonOdrUseReason = NOUR;
+ DeclRefExprBits.Loc = L;
+ computeDependence(Ctx);
+}
+
+DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc, ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture,
+ const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs,
+ QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
+ : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
+ D(D), DNLoc(NameInfo.getInfo()) {
+ DeclRefExprBits.Loc = NameInfo.getLoc();
+ DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
+ if (QualifierLoc) {
+ new (getTrailingObjects<NestedNameSpecifierLoc>())
+ NestedNameSpecifierLoc(QualifierLoc);
+ auto *NNS = QualifierLoc.getNestedNameSpecifier();
+ if (NNS->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (NNS->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ }
+ DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
+ if (FoundD)
+ *getTrailingObjects<NamedDecl *>() = FoundD;
+ DeclRefExprBits.HasTemplateKWAndArgsInfo
+ = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
+ DeclRefExprBits.RefersToEnclosingVariableOrCapture =
+ RefersToEnclosingVariableOrCapture;
+ DeclRefExprBits.NonOdrUseReason = NOUR;
+ if (TemplateArgs) {
+ bool Dependent = false;
+ bool InstantiationDependent = false;
+ bool ContainsUnexpandedParameterPack = false;
+ getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
+ TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
+ Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
+ assert(!Dependent && "built a DeclRefExpr with dependent template args");
+ ExprBits.InstantiationDependent |= InstantiationDependent;
+ ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
+ } else if (TemplateKWLoc.isValid()) {
+ getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
+ TemplateKWLoc);
+ }
+ DeclRefExprBits.HadMultipleCandidates = 0;
+
+ computeDependence(Ctx);
+}
+
+DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc, ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture,
+ SourceLocation NameLoc, QualType T,
+ ExprValueKind VK, NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs,
+ NonOdrUseReason NOUR) {
+ return Create(Context, QualifierLoc, TemplateKWLoc, D,
+ RefersToEnclosingVariableOrCapture,
+ DeclarationNameInfo(D->getDeclName(), NameLoc),
+ T, VK, FoundD, TemplateArgs, NOUR);
+}
+
+DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ SourceLocation TemplateKWLoc, ValueDecl *D,
+ bool RefersToEnclosingVariableOrCapture,
+ const DeclarationNameInfo &NameInfo,
+ QualType T, ExprValueKind VK,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs,
+ NonOdrUseReason NOUR) {
+ // Filter out cases where the found Decl is the same as the value refenenced.
+ if (D == FoundD)
+ FoundD = nullptr;
+
+ bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
+ std::size_t Size =
+ totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
+ ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
+ QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
+ HasTemplateKWAndArgsInfo ? 1 : 0,
+ TemplateArgs ? TemplateArgs->size() : 0);
+
+ void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
+ return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
+ RefersToEnclosingVariableOrCapture, NameInfo,
+ FoundD, TemplateArgs, T, VK, NOUR);
+}
+
+DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
+ bool HasQualifier,
+ bool HasFoundDecl,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
+ std::size_t Size =
+ totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
+ ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
+ HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
+ NumTemplateArgs);
+ void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
+ return new (Mem) DeclRefExpr(EmptyShell());
+}
+
+SourceLocation DeclRefExpr::getBeginLoc() const {
+ if (hasQualifier())
+ return getQualifierLoc().getBeginLoc();
+ return getNameInfo().getBeginLoc();
+}
+SourceLocation DeclRefExpr::getEndLoc() const {
+ if (hasExplicitTemplateArgs())
+ return getRAngleLoc();
+ return getNameInfo().getEndLoc();
+}
+
+PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
+ StringLiteral *SL)
+ : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
+ FNTy->isDependentType(), FNTy->isDependentType(),
+ FNTy->isInstantiationDependentType(),
+ /*ContainsUnexpandedParameterPack=*/false) {
+ PredefinedExprBits.Kind = IK;
+ assert((getIdentKind() == IK) &&
+ "IdentKind do not fit in PredefinedExprBitfields!");
+ bool HasFunctionName = SL != nullptr;
+ PredefinedExprBits.HasFunctionName = HasFunctionName;
+ PredefinedExprBits.Loc = L;
+ if (HasFunctionName)
+ setFunctionName(SL);
+}
+
+PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
+ : Expr(PredefinedExprClass, Empty) {
+ PredefinedExprBits.HasFunctionName = HasFunctionName;
+}
+
+PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
+ QualType FNTy, IdentKind IK,
+ StringLiteral *SL) {
+ bool HasFunctionName = SL != nullptr;
+ void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
+ alignof(PredefinedExpr));
+ return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
+}
+
+PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
+ bool HasFunctionName) {
+ void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
+ alignof(PredefinedExpr));
+ return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
+}
+
+StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
+ switch (IK) {
+ case Func:
+ return "__func__";
+ case Function:
+ return "__FUNCTION__";
+ case FuncDName:
+ return "__FUNCDNAME__";
+ case LFunction:
+ return "L__FUNCTION__";
+ case PrettyFunction:
+ return "__PRETTY_FUNCTION__";
+ case FuncSig:
+ return "__FUNCSIG__";
+ case LFuncSig:
+ return "L__FUNCSIG__";
+ case PrettyFunctionNoVirtual:
+ break;
+ }
+ llvm_unreachable("Unknown ident kind for PredefinedExpr");
+}
+
+// FIXME: Maybe this should use DeclPrinter with a special "print predefined
+// expr" policy instead.
+std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
+ ASTContext &Context = CurrentDecl->getASTContext();
+
+ if (IK == PredefinedExpr::FuncDName) {
+ if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
+ std::unique_ptr<MangleContext> MC;
+ MC.reset(Context.createMangleContext());
+
+ if (MC->shouldMangleDeclName(ND)) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
+ MC->mangleCXXCtor(CD, Ctor_Base, Out);
+ else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
+ MC->mangleCXXDtor(DD, Dtor_Base, Out);
+ else
+ MC->mangleName(ND, Out);
+
+ if (!Buffer.empty() && Buffer.front() == '\01')
+ return Buffer.substr(1);
+ return Buffer.str();
+ } else
+ return ND->getIdentifier()->getName();
+ }
+ return "";
+ }
+ if (isa<BlockDecl>(CurrentDecl)) {
+ // For blocks we only emit something if it is enclosed in a function
+ // For top-level block we'd like to include the name of variable, but we
+ // don't have it at this point.
+ auto DC = CurrentDecl->getDeclContext();
+ if (DC->isFileContext())
+ return "";
+
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
+ // For nested blocks, propagate up to the parent.
+ Out << ComputeName(IK, DCBlock);
+ else if (auto *DCDecl = dyn_cast<Decl>(DC))
+ Out << ComputeName(IK, DCDecl) << "_block_invoke";
+ return Out.str();
+ }
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
+ if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
+ IK != FuncSig && IK != LFuncSig)
+ return FD->getNameAsString();
+
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
+ Out << "virtual ";
+ if (MD->isStatic())
+ Out << "static ";
+ }
+
+ PrintingPolicy Policy(Context.getLangOpts());
+ std::string Proto;
+ llvm::raw_string_ostream POut(Proto);
+
+ const FunctionDecl *Decl = FD;
+ if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
+ Decl = Pattern;
+ const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
+ const FunctionProtoType *FT = nullptr;
+ if (FD->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(AFT);
+
+ if (IK == FuncSig || IK == LFuncSig) {
+ switch (AFT->getCallConv()) {
+ case CC_C: POut << "__cdecl "; break;
+ case CC_X86StdCall: POut << "__stdcall "; break;
+ case CC_X86FastCall: POut << "__fastcall "; break;
+ case CC_X86ThisCall: POut << "__thiscall "; break;
+ case CC_X86VectorCall: POut << "__vectorcall "; break;
+ case CC_X86RegCall: POut << "__regcall "; break;
+ // Only bother printing the conventions that MSVC knows about.
+ default: break;
+ }
+ }
+
+ FD->printQualifiedName(POut, Policy);
+
+ POut << "(";
+ if (FT) {
+ for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
+ if (i) POut << ", ";
+ POut << Decl->getParamDecl(i)->getType().stream(Policy);
+ }
+
+ if (FT->isVariadic()) {
+ if (FD->getNumParams()) POut << ", ";
+ POut << "...";
+ } else if ((IK == FuncSig || IK == LFuncSig ||
+ !Context.getLangOpts().CPlusPlus) &&
+ !Decl->getNumParams()) {
+ POut << "void";
+ }
+ }
+ POut << ")";
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ assert(FT && "We must have a written prototype in this case.");
+ if (FT->isConst())
+ POut << " const";
+ if (FT->isVolatile())
+ POut << " volatile";
+ RefQualifierKind Ref = MD->getRefQualifier();
+ if (Ref == RQ_LValue)
+ POut << " &";
+ else if (Ref == RQ_RValue)
+ POut << " &&";
+ }
+
+ typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
+ SpecsTy Specs;
+ const DeclContext *Ctx = FD->getDeclContext();
+ while (Ctx && isa<NamedDecl>(Ctx)) {
+ const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
+ if (Spec && !Spec->isExplicitSpecialization())
+ Specs.push_back(Spec);
+ Ctx = Ctx->getParent();
+ }
+
+ std::string TemplateParams;
+ llvm::raw_string_ostream TOut(TemplateParams);
+ for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
+ I != E; ++I) {
+ const TemplateParameterList *Params
+ = (*I)->getSpecializedTemplate()->getTemplateParameters();
+ const TemplateArgumentList &Args = (*I)->getTemplateArgs();
+ assert(Params->size() == Args.size());
+ for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
+ StringRef Param = Params->getParam(i)->getName();
+ if (Param.empty()) continue;
+ TOut << Param << " = ";
+ Args.get(i).print(Policy, TOut);
+ TOut << ", ";
+ }
+ }
+
+ FunctionTemplateSpecializationInfo *FSI
+ = FD->getTemplateSpecializationInfo();
+ if (FSI && !FSI->isExplicitSpecialization()) {
+ const TemplateParameterList* Params
+ = FSI->getTemplate()->getTemplateParameters();
+ const TemplateArgumentList* Args = FSI->TemplateArguments;
+ assert(Params->size() == Args->size());
+ for (unsigned i = 0, e = Params->size(); i != e; ++i) {
+ StringRef Param = Params->getParam(i)->getName();
+ if (Param.empty()) continue;
+ TOut << Param << " = ";
+ Args->get(i).print(Policy, TOut);
+ TOut << ", ";
+ }
+ }
+
+ TOut.flush();
+ if (!TemplateParams.empty()) {
+ // remove the trailing comma and space
+ TemplateParams.resize(TemplateParams.size() - 2);
+ POut << " [" << TemplateParams << "]";
+ }
+
+ POut.flush();
+
+ // Print "auto" for all deduced return types. This includes C++1y return
+ // type deduction and lambdas. For trailing return types resolve the
+ // decltype expression. Otherwise print the real type when this is
+ // not a constructor or destructor.
+ if (isa<CXXMethodDecl>(FD) &&
+ cast<CXXMethodDecl>(FD)->getParent()->isLambda())
+ Proto = "auto " + Proto;
+ else if (FT && FT->getReturnType()->getAs<DecltypeType>())
+ FT->getReturnType()
+ ->getAs<DecltypeType>()
+ ->getUnderlyingType()
+ .getAsStringInternal(Proto, Policy);
+ else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
+ AFT->getReturnType().getAsStringInternal(Proto, Policy);
+
+ Out << Proto;
+
+ return Name.str().str();
+ }
+ if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
+ for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
+ // Skip to its enclosing function or method, but not its enclosing
+ // CapturedDecl.
+ if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
+ const Decl *D = Decl::castFromDeclContext(DC);
+ return ComputeName(IK, D);
+ }
+ llvm_unreachable("CapturedDecl not inside a function or method");
+ }
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ Out << (MD->isInstanceMethod() ? '-' : '+');
+ Out << '[';
+
+ // For incorrect code, there might not be an ObjCInterfaceDecl. Do
+ // a null check to avoid a crash.
+ if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
+ Out << *ID;
+
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
+ Out << '(' << *CID << ')';
+
+ Out << ' ';
+ MD->getSelector().print(Out);
+ Out << ']';
+
+ return Name.str().str();
+ }
+ if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
+ // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
+ return "top level";
+ }
+ return "";
+}
+
+void APNumericStorage::setIntValue(const ASTContext &C,
+ const llvm::APInt &Val) {
+ if (hasAllocation())
+ C.Deallocate(pVal);
+
+ BitWidth = Val.getBitWidth();
+ unsigned NumWords = Val.getNumWords();
+ const uint64_t* Words = Val.getRawData();
+ if (NumWords > 1) {
+ pVal = new (C) uint64_t[NumWords];
+ std::copy(Words, Words + NumWords, pVal);
+ } else if (NumWords == 1)
+ VAL = Words[0];
+ else
+ VAL = 0;
+}
+
+IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l)
+ : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ Loc(l) {
+ assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
+ assert(V.getBitWidth() == C.getIntWidth(type) &&
+ "Integer type is not the correct size for constant.");
+ setValue(C, V);
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l) {
+ return new (C) IntegerLiteral(C, V, type, l);
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
+ return new (C) IntegerLiteral(Empty);
+}
+
+FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l,
+ unsigned Scale)
+ : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ Loc(l), Scale(Scale) {
+ assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
+ assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
+ "Fixed point type is not the correct size for constant.");
+ setValue(C, V);
+}
+
+FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
+ const llvm::APInt &V,
+ QualType type,
+ SourceLocation l,
+ unsigned Scale) {
+ return new (C) FixedPointLiteral(C, V, type, l, Scale);
+}
+
+std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
+ // Currently the longest decimal number that can be printed is the max for an
+ // unsigned long _Accum: 4294967295.99999999976716935634613037109375
+ // which is 43 characters.
+ SmallString<64> S;
+ FixedPointValueToString(
+ S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
+ return S.str();
+}
+
+FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
+ bool isexact, QualType Type, SourceLocation L)
+ : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
+ false, false), Loc(L) {
+ setSemantics(V.getSemantics());
+ FloatingLiteralBits.IsExact = isexact;
+ setValue(C, V);
+}
+
+FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
+ : Expr(FloatingLiteralClass, Empty) {
+ setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
+ FloatingLiteralBits.IsExact = false;
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
+ bool isexact, QualType Type, SourceLocation L) {
+ return new (C) FloatingLiteral(C, V, isexact, Type, L);
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
+ return new (C) FloatingLiteral(C, Empty);
+}
+
+/// getValueAsApproximateDouble - This returns the value as an inaccurate
+/// double. Note that this may cause loss of precision, but is useful for
+/// debugging dumps, etc.
+double FloatingLiteral::getValueAsApproximateDouble() const {
+ llvm::APFloat V = getValue();
+ bool ignored;
+ V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
+ &ignored);
+ return V.convertToDouble();
+}
+
+unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
+ StringKind SK) {
+ unsigned CharByteWidth = 0;
+ switch (SK) {
+ case Ascii:
+ case UTF8:
+ CharByteWidth = Target.getCharWidth();
+ break;
+ case Wide:
+ CharByteWidth = Target.getWCharWidth();
+ break;
+ case UTF16:
+ CharByteWidth = Target.getChar16Width();
+ break;
+ case UTF32:
+ CharByteWidth = Target.getChar32Width();
+ break;
+ }
+ assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
+ CharByteWidth /= 8;
+ assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
+ "The only supported character byte widths are 1,2 and 4!");
+ return CharByteWidth;
+}
+
+StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
+ StringKind Kind, bool Pascal, QualType Ty,
+ const SourceLocation *Loc,
+ unsigned NumConcatenated)
+ : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
+ false) {
+ assert(Ctx.getAsConstantArrayType(Ty) &&
+ "StringLiteral must be of constant array type!");
+ unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
+ unsigned ByteLength = Str.size();
+ assert((ByteLength % CharByteWidth == 0) &&
+ "The size of the data must be a multiple of CharByteWidth!");
+
+ // Avoid the expensive division. The compiler should be able to figure it
+ // out by itself. However as of clang 7, even with the appropriate
+ // llvm_unreachable added just here, it is not able to do so.
+ unsigned Length;
+ switch (CharByteWidth) {
+ case 1:
+ Length = ByteLength;
+ break;
+ case 2:
+ Length = ByteLength / 2;
+ break;
+ case 4:
+ Length = ByteLength / 4;
+ break;
+ default:
+ llvm_unreachable("Unsupported character width!");
+ }
+
+ StringLiteralBits.Kind = Kind;
+ StringLiteralBits.CharByteWidth = CharByteWidth;
+ StringLiteralBits.IsPascal = Pascal;
+ StringLiteralBits.NumConcatenated = NumConcatenated;
+ *getTrailingObjects<unsigned>() = Length;
+
+ // Initialize the trailing array of SourceLocation.
+ // This is safe since SourceLocation is POD-like.
+ std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
+ NumConcatenated * sizeof(SourceLocation));
+
+ // Initialize the trailing array of char holding the string data.
+ std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
+}
+
+StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
+ unsigned Length, unsigned CharByteWidth)
+ : Expr(StringLiteralClass, Empty) {
+ StringLiteralBits.CharByteWidth = CharByteWidth;
+ StringLiteralBits.NumConcatenated = NumConcatenated;
+ *getTrailingObjects<unsigned>() = Length;
+}
+
+StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
+ StringKind Kind, bool Pascal, QualType Ty,
+ const SourceLocation *Loc,
+ unsigned NumConcatenated) {
+ void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
+ 1, NumConcatenated, Str.size()),
+ alignof(StringLiteral));
+ return new (Mem)
+ StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
+}
+
+StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
+ unsigned NumConcatenated,
+ unsigned Length,
+ unsigned CharByteWidth) {
+ void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
+ 1, NumConcatenated, Length * CharByteWidth),
+ alignof(StringLiteral));
+ return new (Mem)
+ StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
+}
+
+void StringLiteral::outputString(raw_ostream &OS) const {
+ switch (getKind()) {
+ case Ascii: break; // no prefix.
+ case Wide: OS << 'L'; break;
+ case UTF8: OS << "u8"; break;
+ case UTF16: OS << 'u'; break;
+ case UTF32: OS << 'U'; break;
+ }
+ OS << '"';
+ static const char Hex[] = "0123456789ABCDEF";
+
+ unsigned LastSlashX = getLength();
+ for (unsigned I = 0, N = getLength(); I != N; ++I) {
+ switch (uint32_t Char = getCodeUnit(I)) {
+ default:
+ // FIXME: Convert UTF-8 back to codepoints before rendering.
+
+ // Convert UTF-16 surrogate pairs back to codepoints before rendering.
+ // Leave invalid surrogates alone; we'll use \x for those.
+ if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
+ Char <= 0xdbff) {
+ uint32_t Trail = getCodeUnit(I + 1);
+ if (Trail >= 0xdc00 && Trail <= 0xdfff) {
+ Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
+ ++I;
+ }
+ }
+
+ if (Char > 0xff) {
+ // If this is a wide string, output characters over 0xff using \x
+ // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
+ // codepoint: use \x escapes for invalid codepoints.
+ if (getKind() == Wide ||
+ (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
+ // FIXME: Is this the best way to print wchar_t?
+ OS << "\\x";
+ int Shift = 28;
+ while ((Char >> Shift) == 0)
+ Shift -= 4;
+ for (/**/; Shift >= 0; Shift -= 4)
+ OS << Hex[(Char >> Shift) & 15];
+ LastSlashX = I;
+ break;
+ }
+
+ if (Char > 0xffff)
+ OS << "\\U00"
+ << Hex[(Char >> 20) & 15]
+ << Hex[(Char >> 16) & 15];
+ else
+ OS << "\\u";
+ OS << Hex[(Char >> 12) & 15]
+ << Hex[(Char >> 8) & 15]
+ << Hex[(Char >> 4) & 15]
+ << Hex[(Char >> 0) & 15];
+ break;
+ }
+
+ // If we used \x... for the previous character, and this character is a
+ // hexadecimal digit, prevent it being slurped as part of the \x.
+ if (LastSlashX + 1 == I) {
+ switch (Char) {
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
+ OS << "\"\"";
+ }
+ }
+
+ assert(Char <= 0xff &&
+ "Characters above 0xff should already have been handled.");
+
+ if (isPrintable(Char))
+ OS << (char)Char;
+ else // Output anything hard as an octal escape.
+ OS << '\\'
+ << (char)('0' + ((Char >> 6) & 7))
+ << (char)('0' + ((Char >> 3) & 7))
+ << (char)('0' + ((Char >> 0) & 7));
+ break;
+ // Handle some common non-printable cases to make dumps prettier.
+ case '\\': OS << "\\\\"; break;
+ case '"': OS << "\\\""; break;
+ case '\a': OS << "\\a"; break;
+ case '\b': OS << "\\b"; break;
+ case '\f': OS << "\\f"; break;
+ case '\n': OS << "\\n"; break;
+ case '\r': OS << "\\r"; break;
+ case '\t': OS << "\\t"; break;
+ case '\v': OS << "\\v"; break;
+ }
+ }
+ OS << '"';
+}
+
+/// getLocationOfByte - Return a source location that points to the specified
+/// byte of this string literal.
+///
+/// Strings are amazingly complex. They can be formed from multiple tokens and
+/// can have escape sequences in them in addition to the usual trigraph and
+/// escaped newline business. This routine handles this complexity.
+///
+/// The *StartToken sets the first token to be searched in this function and
+/// the *StartTokenByteOffset is the byte offset of the first token. Before
+/// returning, it updates the *StartToken to the TokNo of the token being found
+/// and sets *StartTokenByteOffset to the byte offset of the token in the
+/// string.
+/// Using these two parameters can reduce the time complexity from O(n^2) to
+/// O(n) if one wants to get the location of byte for all the tokens in a
+/// string.
+///
+SourceLocation
+StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
+ const LangOptions &Features,
+ const TargetInfo &Target, unsigned *StartToken,
+ unsigned *StartTokenByteOffset) const {
+ assert((getKind() == StringLiteral::Ascii ||
+ getKind() == StringLiteral::UTF8) &&
+ "Only narrow string literals are currently supported");
+
+ // Loop over all of the tokens in this string until we find the one that
+ // contains the byte we're looking for.
+ unsigned TokNo = 0;
+ unsigned StringOffset = 0;
+ if (StartToken)
+ TokNo = *StartToken;
+ if (StartTokenByteOffset) {
+ StringOffset = *StartTokenByteOffset;
+ ByteNo -= StringOffset;
+ }
+ while (1) {
+ assert(TokNo < getNumConcatenated() && "Invalid byte number!");
+ SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
+
+ // Get the spelling of the string so that we can get the data that makes up
+ // the string literal, not the identifier for the macro it is potentially
+ // expanded through.
+ SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
+
+ // Re-lex the token to get its length and original spelling.
+ std::pair<FileID, unsigned> LocInfo =
+ SM.getDecomposedLoc(StrTokSpellingLoc);
+ bool Invalid = false;
+ StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid) {
+ if (StartTokenByteOffset != nullptr)
+ *StartTokenByteOffset = StringOffset;
+ if (StartToken != nullptr)
+ *StartToken = TokNo;
+ return StrTokSpellingLoc;
+ }
+
+ const char *StrData = Buffer.data()+LocInfo.second;
+
+ // Create a lexer starting at the beginning of this token.
+ Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
+ Buffer.begin(), StrData, Buffer.end());
+ Token TheTok;
+ TheLexer.LexFromRawLexer(TheTok);
+
+ // Use the StringLiteralParser to compute the length of the string in bytes.
+ StringLiteralParser SLP(TheTok, SM, Features, Target);
+ unsigned TokNumBytes = SLP.GetStringLength();
+
+ // If the byte is in this token, return the location of the byte.
+ if (ByteNo < TokNumBytes ||
+ (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
+ unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
+
+ // Now that we know the offset of the token in the spelling, use the
+ // preprocessor to get the offset in the original source.
+ if (StartTokenByteOffset != nullptr)
+ *StartTokenByteOffset = StringOffset;
+ if (StartToken != nullptr)
+ *StartToken = TokNo;
+ return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
+ }
+
+ // Move to the next string token.
+ StringOffset += TokNumBytes;
+ ++TokNo;
+ ByteNo -= TokNumBytes;
+ }
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
+#include "clang/AST/OperationKinds.def"
+ }
+ llvm_unreachable("Unknown unary operator");
+}
+
+UnaryOperatorKind
+UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
+ switch (OO) {
+ default: llvm_unreachable("No unary operator for overloaded function");
+ case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
+ case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
+ case OO_Amp: return UO_AddrOf;
+ case OO_Star: return UO_Deref;
+ case OO_Plus: return UO_Plus;
+ case OO_Minus: return UO_Minus;
+ case OO_Tilde: return UO_Not;
+ case OO_Exclaim: return UO_LNot;
+ case OO_Coawait: return UO_Coawait;
+ }
+}
+
+OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
+ switch (Opc) {
+ case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
+ case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
+ case UO_AddrOf: return OO_Amp;
+ case UO_Deref: return OO_Star;
+ case UO_Plus: return OO_Plus;
+ case UO_Minus: return OO_Minus;
+ case UO_Not: return OO_Tilde;
+ case UO_LNot: return OO_Exclaim;
+ case UO_Coawait: return OO_Coawait;
+ default: return OO_None;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
+ ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
+ SourceLocation RParenLoc, unsigned MinNumArgs,
+ ADLCallKind UsesADL)
+ : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
+ Fn->isValueDependent(), Fn->isInstantiationDependent(),
+ Fn->containsUnexpandedParameterPack()),
+ RParenLoc(RParenLoc) {
+ NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
+ unsigned NumPreArgs = PreArgs.size();
+ CallExprBits.NumPreArgs = NumPreArgs;
+ assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
+
+ unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
+ CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
+ assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
+ "OffsetToTrailingObjects overflow!");
+
+ CallExprBits.UsesADL = static_cast<bool>(UsesADL);
+
+ setCallee(Fn);
+ for (unsigned I = 0; I != NumPreArgs; ++I) {
+ updateDependenciesFromArg(PreArgs[I]);
+ setPreArg(I, PreArgs[I]);
+ }
+ for (unsigned I = 0; I != Args.size(); ++I) {
+ updateDependenciesFromArg(Args[I]);
+ setArg(I, Args[I]);
+ }
+ for (unsigned I = Args.size(); I != NumArgs; ++I) {
+ setArg(I, nullptr);
+ }
+}
+
+CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
+ EmptyShell Empty)
+ : Expr(SC, Empty), NumArgs(NumArgs) {
+ CallExprBits.NumPreArgs = NumPreArgs;
+ assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
+
+ unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
+ CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
+ assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
+ "OffsetToTrailingObjects overflow!");
+}
+
+CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
+ ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
+ SourceLocation RParenLoc, unsigned MinNumArgs,
+ ADLCallKind UsesADL) {
+ unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
+ unsigned SizeOfTrailingObjects =
+ CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
+ void *Mem =
+ Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
+ return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
+ RParenLoc, MinNumArgs, UsesADL);
+}
+
+CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
+ ExprValueKind VK, SourceLocation RParenLoc,
+ ADLCallKind UsesADL) {
+ assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
+ "Misaligned memory in CallExpr::CreateTemporary!");
+ return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
+ VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
+}
+
+CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
+ EmptyShell Empty) {
+ unsigned SizeOfTrailingObjects =
+ CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
+ void *Mem =
+ Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
+ return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
+}
+
+unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
+ switch (SC) {
+ case CallExprClass:
+ return sizeof(CallExpr);
+ case CXXOperatorCallExprClass:
+ return sizeof(CXXOperatorCallExpr);
+ case CXXMemberCallExprClass:
+ return sizeof(CXXMemberCallExpr);
+ case UserDefinedLiteralClass:
+ return sizeof(UserDefinedLiteral);
+ case CUDAKernelCallExprClass:
+ return sizeof(CUDAKernelCallExpr);
+ default:
+ llvm_unreachable("unexpected class deriving from CallExpr!");
+ }
+}
+
+void CallExpr::updateDependenciesFromArg(Expr *Arg) {
+ if (Arg->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (Arg->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Arg->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (Arg->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+}
+
+Decl *Expr::getReferencedDeclOfCallee() {
+ Expr *CEE = IgnoreParenImpCasts();
+
+ while (SubstNonTypeTemplateParmExpr *NTTP
+ = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
+ CEE = NTTP->getReplacement()->IgnoreParenCasts();
+ }
+
+ // If we're calling a dereference, look at the pointer instead.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
+ if (BO->isPtrMemOp())
+ CEE = BO->getRHS()->IgnoreParenCasts();
+ } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
+ if (UO->getOpcode() == UO_Deref)
+ CEE = UO->getSubExpr()->IgnoreParenCasts();
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
+ return DRE->getDecl();
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
+ return ME->getMemberDecl();
+ if (auto *BE = dyn_cast<BlockExpr>(CEE))
+ return BE->getBlockDecl();
+
+ return nullptr;
+}
+
+/// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
+/// not, return 0.
+unsigned CallExpr::getBuiltinCallee() const {
+ // All simple function calls (e.g. func()) are implicitly cast to pointer to
+ // function. As a result, we try and obtain the DeclRefExpr from the
+ // ImplicitCastExpr.
+ const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+ if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+ return 0;
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+ if (!DRE)
+ return 0;
+
+ const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (!FDecl)
+ return 0;
+
+ if (!FDecl->getIdentifier())
+ return 0;
+
+ return FDecl->getBuiltinID();
+}
+
+bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
+ if (unsigned BI = getBuiltinCallee())
+ return Ctx.BuiltinInfo.isUnevaluated(BI);
+ return false;
+}
+
+QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
+ const Expr *Callee = getCallee();
+ QualType CalleeType = Callee->getType();
+ if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
+ CalleeType = FnTypePtr->getPointeeType();
+ } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
+ CalleeType = BPT->getPointeeType();
+ } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
+ if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
+ return Ctx.VoidTy;
+
+ // This should never be overloaded and so should never return null.
+ CalleeType = Expr::findBoundMemberType(Callee);
+ }
+
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+ return FnType->getReturnType();
+}
+
+const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
+ // If the return type is a struct, union, or enum that is marked nodiscard,
+ // then return the return type attribute.
+ if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
+ if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
+ return A;
+
+ // Otherwise, see if the callee is marked nodiscard and return that attribute
+ // instead.
+ const Decl *D = getCalleeDecl();
+ return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
+}
+
+SourceLocation CallExpr::getBeginLoc() const {
+ if (isa<CXXOperatorCallExpr>(this))
+ return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
+
+ SourceLocation begin = getCallee()->getBeginLoc();
+ if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
+ begin = getArg(0)->getBeginLoc();
+ return begin;
+}
+SourceLocation CallExpr::getEndLoc() const {
+ if (isa<CXXOperatorCallExpr>(this))
+ return cast<CXXOperatorCallExpr>(this)->getEndLoc();
+
+ SourceLocation end = getRParenLoc();
+ if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
+ end = getArg(getNumArgs() - 1)->getEndLoc();
+ return end;
+}
+
+OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
+ SourceLocation OperatorLoc,
+ TypeSourceInfo *tsi,
+ ArrayRef<OffsetOfNode> comps,
+ ArrayRef<Expr*> exprs,
+ SourceLocation RParenLoc) {
+ void *Mem = C.Allocate(
+ totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
+
+ return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
+ RParenLoc);
+}
+
+OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
+ unsigned numComps, unsigned numExprs) {
+ void *Mem =
+ C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
+ return new (Mem) OffsetOfExpr(numComps, numExprs);
+}
+
+OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
+ SourceLocation OperatorLoc, TypeSourceInfo *tsi,
+ ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
+ SourceLocation RParenLoc)
+ : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
+ /*TypeDependent=*/false,
+ /*ValueDependent=*/tsi->getType()->isDependentType(),
+ tsi->getType()->isInstantiationDependentType(),
+ tsi->getType()->containsUnexpandedParameterPack()),
+ OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
+ NumComps(comps.size()), NumExprs(exprs.size())
+{
+ for (unsigned i = 0; i != comps.size(); ++i) {
+ setComponent(i, comps[i]);
+ }
+
+ for (unsigned i = 0; i != exprs.size(); ++i) {
+ if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (exprs[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ setIndexExpr(i, exprs[i]);
+ }
+}
+
+IdentifierInfo *OffsetOfNode::getFieldName() const {
+ assert(getKind() == Field || getKind() == Identifier);
+ if (getKind() == Field)
+ return getField()->getIdentifier();
+
+ return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
+}
+
+UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
+ UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
+ SourceLocation op, SourceLocation rp)
+ : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
+ false, // Never type-dependent (C++ [temp.dep.expr]p3).
+ // Value-dependent if the argument is type-dependent.
+ E->isTypeDependent(), E->isInstantiationDependent(),
+ E->containsUnexpandedParameterPack()),
+ OpLoc(op), RParenLoc(rp) {
+ UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
+ UnaryExprOrTypeTraitExprBits.IsType = false;
+ Argument.Ex = E;
+
+ // Check to see if we are in the situation where alignof(decl) should be
+ // dependent because decl's alignment is dependent.
+ if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
+ if (!isValueDependent() || !isInstantiationDependent()) {
+ E = E->IgnoreParens();
+
+ const ValueDecl *D = nullptr;
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
+ D = DRE->getDecl();
+ else if (const auto *ME = dyn_cast<MemberExpr>(E))
+ D = ME->getMemberDecl();
+
+ if (D) {
+ for (const auto *I : D->specific_attrs<AlignedAttr>()) {
+ if (I->isAlignmentDependent()) {
+ setValueDependent(true);
+ setInstantiationDependent(true);
+ break;
+ }
+ }
+ }
+ }
+ }
+}
+
+MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
+ ValueDecl *MemberDecl,
+ const DeclarationNameInfo &NameInfo, QualType T,
+ ExprValueKind VK, ExprObjectKind OK,
+ NonOdrUseReason NOUR)
+ : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
+ Base->isValueDependent(), Base->isInstantiationDependent(),
+ Base->containsUnexpandedParameterPack()),
+ Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
+ MemberLoc(NameInfo.getLoc()) {
+ assert(!NameInfo.getName() ||
+ MemberDecl->getDeclName() == NameInfo.getName());
+ MemberExprBits.IsArrow = IsArrow;
+ MemberExprBits.HasQualifierOrFoundDecl = false;
+ MemberExprBits.HasTemplateKWAndArgsInfo = false;
+ MemberExprBits.HadMultipleCandidates = false;
+ MemberExprBits.NonOdrUseReason = NOUR;
+ MemberExprBits.OperatorLoc = OperatorLoc;
+}
+
+MemberExpr *MemberExpr::Create(
+ const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
+ NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
+ ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
+ DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
+ QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
+ bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
+ FoundDecl.getAccess() != MemberDecl->getAccess();
+ bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
+ std::size_t Size =
+ totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
+ TemplateArgumentLoc>(
+ HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
+ TemplateArgs ? TemplateArgs->size() : 0);
+
+ void *Mem = C.Allocate(Size, alignof(MemberExpr));
+ MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
+ NameInfo, T, VK, OK, NOUR);
+
+ if (HasQualOrFound) {
+ // FIXME: Wrong. We should be looking at the member declaration we found.
+ if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
+ E->setValueDependent(true);
+ E->setTypeDependent(true);
+ E->setInstantiationDependent(true);
+ }
+ else if (QualifierLoc &&
+ QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
+ E->setInstantiationDependent(true);
+
+ E->MemberExprBits.HasQualifierOrFoundDecl = true;
+
+ MemberExprNameQualifier *NQ =
+ E->getTrailingObjects<MemberExprNameQualifier>();
+ NQ->QualifierLoc = QualifierLoc;
+ NQ->FoundDecl = FoundDecl;
+ }
+
+ E->MemberExprBits.HasTemplateKWAndArgsInfo =
+ TemplateArgs || TemplateKWLoc.isValid();
+
+ if (TemplateArgs) {
+ bool Dependent = false;
+ bool InstantiationDependent = false;
+ bool ContainsUnexpandedParameterPack = false;
+ E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
+ TemplateKWLoc, *TemplateArgs,
+ E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
+ InstantiationDependent, ContainsUnexpandedParameterPack);
+ if (InstantiationDependent)
+ E->setInstantiationDependent(true);
+ } else if (TemplateKWLoc.isValid()) {
+ E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
+ TemplateKWLoc);
+ }
+
+ return E;
+}
+
+MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
+ bool HasQualifier, bool HasFoundDecl,
+ bool HasTemplateKWAndArgsInfo,
+ unsigned NumTemplateArgs) {
+ assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
+ "template args but no template arg info?");
+ bool HasQualOrFound = HasQualifier || HasFoundDecl;
+ std::size_t Size =
+ totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
+ TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
+ HasTemplateKWAndArgsInfo ? 1 : 0,
+ NumTemplateArgs);
+ void *Mem = Context.Allocate(Size, alignof(MemberExpr));
+ return new (Mem) MemberExpr(EmptyShell());
+}
+
+SourceLocation MemberExpr::getBeginLoc() const {
+ if (isImplicitAccess()) {
+ if (hasQualifier())
+ return getQualifierLoc().getBeginLoc();
+ return MemberLoc;
+ }
+
+ // FIXME: We don't want this to happen. Rather, we should be able to
+ // detect all kinds of implicit accesses more cleanly.
+ SourceLocation BaseStartLoc = getBase()->getBeginLoc();
+ if (BaseStartLoc.isValid())
+ return BaseStartLoc;
+ return MemberLoc;
+}
+SourceLocation MemberExpr::getEndLoc() const {
+ SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
+ if (hasExplicitTemplateArgs())
+ EndLoc = getRAngleLoc();
+ else if (EndLoc.isInvalid())
+ EndLoc = getBase()->getEndLoc();
+ return EndLoc;
+}
+
+bool CastExpr::CastConsistency() const {
+ switch (getCastKind()) {
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerived:
+ case CK_BaseToDerivedMemberPointer:
+ assert(!path_empty() && "Cast kind should have a base path!");
+ break;
+
+ case CK_CPointerToObjCPointerCast:
+ assert(getType()->isObjCObjectPointerType());
+ assert(getSubExpr()->getType()->isPointerType());
+ goto CheckNoBasePath;
+
+ case CK_BlockPointerToObjCPointerCast:
+ assert(getType()->isObjCObjectPointerType());
+ assert(getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_ReinterpretMemberPointer:
+ assert(getType()->isMemberPointerType());
+ assert(getSubExpr()->getType()->isMemberPointerType());
+ goto CheckNoBasePath;
+
+ case CK_BitCast:
+ // Arbitrary casts to C pointer types count as bitcasts.
+ // Otherwise, we should only have block and ObjC pointer casts
+ // here if they stay within the type kind.
+ if (!getType()->isPointerType()) {
+ assert(getType()->isObjCObjectPointerType() ==
+ getSubExpr()->getType()->isObjCObjectPointerType());
+ assert(getType()->isBlockPointerType() ==
+ getSubExpr()->getType()->isBlockPointerType());
+ }
+ goto CheckNoBasePath;
+
+ case CK_AnyPointerToBlockPointerCast:
+ assert(getType()->isBlockPointerType());
+ assert(getSubExpr()->getType()->isAnyPointerType() &&
+ !getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_CopyAndAutoreleaseBlockObject:
+ assert(getType()->isBlockPointerType());
+ assert(getSubExpr()->getType()->isBlockPointerType());
+ goto CheckNoBasePath;
+
+ case CK_FunctionToPointerDecay:
+ assert(getType()->isPointerType());
+ assert(getSubExpr()->getType()->isFunctionType());
+ goto CheckNoBasePath;
+
+ case CK_AddressSpaceConversion: {
+ auto Ty = getType();
+ auto SETy = getSubExpr()->getType();
+ assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
+ if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
+ Ty = Ty->getPointeeType();
+ SETy = SETy->getPointeeType();
+ }
+ assert(!Ty.isNull() && !SETy.isNull() &&
+ Ty.getAddressSpace() != SETy.getAddressSpace());
+ goto CheckNoBasePath;
+ }
+ // These should not have an inheritance path.
+ case CK_Dynamic:
+ case CK_ToUnion:
+ case CK_ArrayToPointerDecay:
+ case CK_NullToMemberPointer:
+ case CK_NullToPointer:
+ case CK_ConstructorConversion:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_ToVoid:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_ZeroToOCLOpaqueType:
+ case CK_IntToOCLSampler:
+ case CK_FixedPointCast:
+ case CK_FixedPointToIntegral:
+ case CK_IntegralToFixedPoint:
+ assert(!getType()->isBooleanType() && "unheralded conversion to bool");
+ goto CheckNoBasePath;
+
+ case CK_Dependent:
+ case CK_LValueToRValue:
+ case CK_NoOp:
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_PointerToBoolean:
+ case CK_IntegralToBoolean:
+ case CK_FloatingToBoolean:
+ case CK_MemberPointerToBoolean:
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean:
+ case CK_LValueBitCast: // -> bool&
+ case CK_LValueToRValueBitCast:
+ case CK_UserDefinedConversion: // operator bool()
+ case CK_BuiltinFnToFnPtr:
+ case CK_FixedPointToBoolean:
+ CheckNoBasePath:
+ assert(path_empty() && "Cast kind should not have a base path!");
+ break;
+ }
+ return true;
+}
+
+const char *CastExpr::getCastKindName(CastKind CK) {
+ switch (CK) {
+#define CAST_OPERATION(Name) case CK_##Name: return #Name;
+#include "clang/AST/OperationKinds.def"
+ }
+ llvm_unreachable("Unhandled cast kind!");
+}
+
+namespace {
+ const Expr *skipImplicitTemporary(const Expr *E) {
+ // Skip through reference binding to temporary.
+ if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = Materialize->GetTemporaryExpr();
+
+ // Skip any temporary bindings; they're implicit.
+ if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
+ E = Binder->getSubExpr();
+
+ return E;
+ }
+}
+
+Expr *CastExpr::getSubExprAsWritten() {
+ const Expr *SubExpr = nullptr;
+ const CastExpr *E = this;
+ do {
+ SubExpr = skipImplicitTemporary(E->getSubExpr());
+
+ // Conversions by constructor and conversion functions have a
+ // subexpression describing the call; strip it off.
+ if (E->getCastKind() == CK_ConstructorConversion)
+ SubExpr =
+ skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
+ else if (E->getCastKind() == CK_UserDefinedConversion) {
+ assert((isa<CXXMemberCallExpr>(SubExpr) ||
+ isa<BlockExpr>(SubExpr)) &&
+ "Unexpected SubExpr for CK_UserDefinedConversion.");
+ if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
+ SubExpr = MCE->getImplicitObjectArgument();
+ }
+
+ // If the subexpression we're left with is an implicit cast, look
+ // through that, too.
+ } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
+
+ return const_cast<Expr*>(SubExpr);
+}
+
+NamedDecl *CastExpr::getConversionFunction() const {
+ const Expr *SubExpr = nullptr;
+
+ for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
+ SubExpr = skipImplicitTemporary(E->getSubExpr());
+
+ if (E->getCastKind() == CK_ConstructorConversion)
+ return cast<CXXConstructExpr>(SubExpr)->getConstructor();
+
+ if (E->getCastKind() == CK_UserDefinedConversion) {
+ if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
+ return MCE->getMethodDecl();
+ }
+ }
+
+ return nullptr;
+}
+
+CXXBaseSpecifier **CastExpr::path_buffer() {
+ switch (getStmtClass()) {
+#define ABSTRACT_STMT(x)
+#define CASTEXPR(Type, Base) \
+ case Stmt::Type##Class: \
+ return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
+#define STMT(Type, Base)
+#include "clang/AST/StmtNodes.inc"
+ default:
+ llvm_unreachable("non-cast expressions not possible here");
+ }
+}
+
+const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
+ QualType opType) {
+ auto RD = unionType->castAs<RecordType>()->getDecl();
+ return getTargetFieldForToUnionCast(RD, opType);
+}
+
+const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
+ QualType OpType) {
+ auto &Ctx = RD->getASTContext();
+ RecordDecl::field_iterator Field, FieldEnd;
+ for (Field = RD->field_begin(), FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field) {
+ if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
+ !Field->isUnnamedBitfield()) {
+ return *Field;
+ }
+ }
+ return nullptr;
+}
+
+ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
+ CastKind Kind, Expr *Operand,
+ const CXXCastPath *BasePath,
+ ExprValueKind VK) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
+ // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
+ // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
+ assert((Kind != CK_LValueToRValue ||
+ !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
+ "invalid type for lvalue-to-rvalue conversion");
+ ImplicitCastExpr *E =
+ new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
+ if (PathSize)
+ std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
+ E->getTrailingObjects<CXXBaseSpecifier *>());
+ return E;
+}
+
+ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
+ return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
+}
+
+
+CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
+ ExprValueKind VK, CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L, SourceLocation R) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
+ CStyleCastExpr *E =
+ new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
+ if (PathSize)
+ std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
+ E->getTrailingObjects<CXXBaseSpecifier *>());
+ return E;
+}
+
+CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
+ return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
+#include "clang/AST/OperationKinds.def"
+ }
+ llvm_unreachable("Invalid OpCode!");
+}
+
+BinaryOperatorKind
+BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
+ switch (OO) {
+ default: llvm_unreachable("Not an overloadable binary operator");
+ case OO_Plus: return BO_Add;
+ case OO_Minus: return BO_Sub;
+ case OO_Star: return BO_Mul;
+ case OO_Slash: return BO_Div;
+ case OO_Percent: return BO_Rem;
+ case OO_Caret: return BO_Xor;
+ case OO_Amp: return BO_And;
+ case OO_Pipe: return BO_Or;
+ case OO_Equal: return BO_Assign;
+ case OO_Spaceship: return BO_Cmp;
+ case OO_Less: return BO_LT;
+ case OO_Greater: return BO_GT;
+ case OO_PlusEqual: return BO_AddAssign;
+ case OO_MinusEqual: return BO_SubAssign;
+ case OO_StarEqual: return BO_MulAssign;
+ case OO_SlashEqual: return BO_DivAssign;
+ case OO_PercentEqual: return BO_RemAssign;
+ case OO_CaretEqual: return BO_XorAssign;
+ case OO_AmpEqual: return BO_AndAssign;
+ case OO_PipeEqual: return BO_OrAssign;
+ case OO_LessLess: return BO_Shl;
+ case OO_GreaterGreater: return BO_Shr;
+ case OO_LessLessEqual: return BO_ShlAssign;
+ case OO_GreaterGreaterEqual: return BO_ShrAssign;
+ case OO_EqualEqual: return BO_EQ;
+ case OO_ExclaimEqual: return BO_NE;
+ case OO_LessEqual: return BO_LE;
+ case OO_GreaterEqual: return BO_GE;
+ case OO_AmpAmp: return BO_LAnd;
+ case OO_PipePipe: return BO_LOr;
+ case OO_Comma: return BO_Comma;
+ case OO_ArrowStar: return BO_PtrMemI;
+ }
+}
+
+OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
+ static const OverloadedOperatorKind OverOps[] = {
+ /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
+ OO_Star, OO_Slash, OO_Percent,
+ OO_Plus, OO_Minus,
+ OO_LessLess, OO_GreaterGreater,
+ OO_Spaceship,
+ OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
+ OO_EqualEqual, OO_ExclaimEqual,
+ OO_Amp,
+ OO_Caret,
+ OO_Pipe,
+ OO_AmpAmp,
+ OO_PipePipe,
+ OO_Equal, OO_StarEqual,
+ OO_SlashEqual, OO_PercentEqual,
+ OO_PlusEqual, OO_MinusEqual,
+ OO_LessLessEqual, OO_GreaterGreaterEqual,
+ OO_AmpEqual, OO_CaretEqual,
+ OO_PipeEqual,
+ OO_Comma
+ };
+ return OverOps[Opc];
+}
+
+bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
+ Opcode Opc,
+ Expr *LHS, Expr *RHS) {
+ if (Opc != BO_Add)
+ return false;
+
+ // Check that we have one pointer and one integer operand.
+ Expr *PExp;
+ if (LHS->getType()->isPointerType()) {
+ if (!RHS->getType()->isIntegerType())
+ return false;
+ PExp = LHS;
+ } else if (RHS->getType()->isPointerType()) {
+ if (!LHS->getType()->isIntegerType())
+ return false;
+ PExp = RHS;
+ } else {
+ return false;
+ }
+
+ // Check that the pointer is a nullptr.
+ if (!PExp->IgnoreParenCasts()
+ ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
+ return false;
+
+ // Check that the pointee type is char-sized.
+ const PointerType *PTy = PExp->getType()->getAs<PointerType>();
+ if (!PTy || !PTy->getPointeeType()->isCharType())
+ return false;
+
+ return true;
+}
+
+static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
+ SourceLocExpr::IdentKind Kind) {
+ switch (Kind) {
+ case SourceLocExpr::File:
+ case SourceLocExpr::Function: {
+ QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
+ return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
+ }
+ case SourceLocExpr::Line:
+ case SourceLocExpr::Column:
+ return Ctx.UnsignedIntTy;
+ }
+ llvm_unreachable("unhandled case");
+}
+
+SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
+ SourceLocation BLoc, SourceLocation RParenLoc,
+ DeclContext *ParentContext)
+ : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
+ VK_RValue, OK_Ordinary, false, false, false, false),
+ BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
+ SourceLocExprBits.Kind = Kind;
+}
+
+StringRef SourceLocExpr::getBuiltinStr() const {
+ switch (getIdentKind()) {
+ case File:
+ return "__builtin_FILE";
+ case Function:
+ return "__builtin_FUNCTION";
+ case Line:
+ return "__builtin_LINE";
+ case Column:
+ return "__builtin_COLUMN";
+ }
+ llvm_unreachable("unexpected IdentKind!");
+}
+
+APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
+ const Expr *DefaultExpr) const {
+ SourceLocation Loc;
+ const DeclContext *Context;
+
+ std::tie(Loc,
+ Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
+ if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
+ return {DIE->getUsedLocation(), DIE->getUsedContext()};
+ if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
+ return {DAE->getUsedLocation(), DAE->getUsedContext()};
+ return {this->getLocation(), this->getParentContext()};
+ }();
+
+ PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
+ Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
+
+ auto MakeStringLiteral = [&](StringRef Tmp) {
+ using LValuePathEntry = APValue::LValuePathEntry;
+ StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
+ // Decay the string to a pointer to the first character.
+ LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
+ return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
+ };
+
+ switch (getIdentKind()) {
+ case SourceLocExpr::File:
+ return MakeStringLiteral(PLoc.getFilename());
+ case SourceLocExpr::Function: {
+ const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
+ return MakeStringLiteral(
+ CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
+ : std::string(""));
+ }
+ case SourceLocExpr::Line:
+ case SourceLocExpr::Column: {
+ llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
+ /*isUnsigned=*/true);
+ IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
+ : PLoc.getColumn();
+ return APValue(IntVal);
+ }
+ }
+ llvm_unreachable("unhandled case");
+}
+
+InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
+ ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
+ : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ InitExprs(C, initExprs.size()),
+ LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
+{
+ sawArrayRangeDesignator(false);
+ for (unsigned I = 0; I != initExprs.size(); ++I) {
+ if (initExprs[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (initExprs[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (initExprs[I]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (initExprs[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ }
+
+ InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
+}
+
+void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
+ if (NumInits > InitExprs.size())
+ InitExprs.reserve(C, NumInits);
+}
+
+void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
+ InitExprs.resize(C, NumInits, nullptr);
+}
+
+Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
+ if (Init >= InitExprs.size()) {
+ InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
+ setInit(Init, expr);
+ return nullptr;
+ }
+
+ Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
+ setInit(Init, expr);
+ return Result;
+}
+
+void InitListExpr::setArrayFiller(Expr *filler) {
+ assert(!hasArrayFiller() && "Filler already set!");
+ ArrayFillerOrUnionFieldInit = filler;
+ // Fill out any "holes" in the array due to designated initializers.
+ Expr **inits = getInits();
+ for (unsigned i = 0, e = getNumInits(); i != e; ++i)
+ if (inits[i] == nullptr)
+ inits[i] = filler;
+}
+
+bool InitListExpr::isStringLiteralInit() const {
+ if (getNumInits() != 1)
+ return false;
+ const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
+ if (!AT || !AT->getElementType()->isIntegerType())
+ return false;
+ // It is possible for getInit() to return null.
+ const Expr *Init = getInit(0);
+ if (!Init)
+ return false;
+ Init = Init->IgnoreParens();
+ return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
+}
+
+bool InitListExpr::isTransparent() const {
+ assert(isSemanticForm() && "syntactic form never semantically transparent");
+
+ // A glvalue InitListExpr is always just sugar.
+ if (isGLValue()) {
+ assert(getNumInits() == 1 && "multiple inits in glvalue init list");
+ return true;
+ }
+
+ // Otherwise, we're sugar if and only if we have exactly one initializer that
+ // is of the same type.
+ if (getNumInits() != 1 || !getInit(0))
+ return false;
+
+ // Don't confuse aggregate initialization of a struct X { X &x; }; with a
+ // transparent struct copy.
+ if (!getInit(0)->isRValue() && getType()->isRecordType())
+ return false;
+
+ return getType().getCanonicalType() ==
+ getInit(0)->getType().getCanonicalType();
+}
+
+bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
+ assert(isSyntacticForm() && "only test syntactic form as zero initializer");
+
+ if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
+ return false;
+ }
+
+ const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
+ return Lit && Lit->getValue() == 0;
+}
+
+SourceLocation InitListExpr::getBeginLoc() const {
+ if (InitListExpr *SyntacticForm = getSyntacticForm())
+ return SyntacticForm->getBeginLoc();
+ SourceLocation Beg = LBraceLoc;
+ if (Beg.isInvalid()) {
+ // Find the first non-null initializer.
+ for (InitExprsTy::const_iterator I = InitExprs.begin(),
+ E = InitExprs.end();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ Beg = S->getBeginLoc();
+ break;
+ }
+ }
+ }
+ return Beg;
+}
+
+SourceLocation InitListExpr::getEndLoc() const {
+ if (InitListExpr *SyntacticForm = getSyntacticForm())
+ return SyntacticForm->getEndLoc();
+ SourceLocation End = RBraceLoc;
+ if (End.isInvalid()) {
+ // Find the first non-null initializer from the end.
+ for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
+ E = InitExprs.rend();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ End = S->getEndLoc();
+ break;
+ }
+ }
+ }
+ return End;
+}
+
+/// getFunctionType - Return the underlying function type for this block.
+///
+const FunctionProtoType *BlockExpr::getFunctionType() const {
+ // The block pointer is never sugared, but the function type might be.
+ return cast<BlockPointerType>(getType())
+ ->getPointeeType()->castAs<FunctionProtoType>();
+}
+
+SourceLocation BlockExpr::getCaretLocation() const {
+ return TheBlock->getCaretLocation();
+}
+const Stmt *BlockExpr::getBody() const {
+ return TheBlock->getBody();
+}
+Stmt *BlockExpr::getBody() {
+ return TheBlock->getBody();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// isUnusedResultAWarning - Return true if this immediate expression should
+/// be warned about if the result is unused. If so, fill in Loc and Ranges
+/// with location to warn on and the source range[s] to report with the
+/// warning.
+bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
+ SourceRange &R1, SourceRange &R2,
+ ASTContext &Ctx) const {
+ // Don't warn if the expr is type dependent. The type could end up
+ // instantiating to void.
+ if (isTypeDependent())
+ return false;
+
+ switch (getStmtClass()) {
+ default:
+ if (getType()->isVoidType())
+ return false;
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case CoawaitExprClass:
+ case CoyieldExprClass:
+ return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case ChooseExprClass:
+ return cast<ChooseExpr>(this)->getChosenSubExpr()->
+ isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(this);
+
+ switch (UO->getOpcode()) {
+ case UO_Plus:
+ case UO_Minus:
+ case UO_AddrOf:
+ case UO_Not:
+ case UO_LNot:
+ case UO_Deref:
+ break;
+ case UO_Coawait:
+ // This is just the 'operator co_await' call inside the guts of a
+ // dependent co_await call.
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec: // ++/--
+ return false; // Not a warning.
+ case UO_Real:
+ case UO_Imag:
+ // accessing a piece of a volatile complex is a side-effect.
+ if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
+ .isVolatileQualified())
+ return false;
+ break;
+ case UO_Extension:
+ return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+ WarnE = this;
+ Loc = UO->getOperatorLoc();
+ R1 = UO->getSubExpr()->getSourceRange();
+ return true;
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(this);
+ switch (BO->getOpcode()) {
+ default:
+ break;
+ // Consider the RHS of comma for side effects. LHS was checked by
+ // Sema::CheckCommaOperands.
+ case BO_Comma:
+ // ((foo = <blah>), 0) is an idiom for hiding the result (and
+ // lvalue-ness) of an assignment written in a macro.
+ if (IntegerLiteral *IE =
+ dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
+ if (IE->getValue() == 0)
+ return false;
+ return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ // Consider '||', '&&' to have side effects if the LHS or RHS does.
+ case BO_LAnd:
+ case BO_LOr:
+ if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
+ !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
+ return false;
+ break;
+ }
+ if (BO->isAssignmentOp())
+ return false;
+ WarnE = this;
+ Loc = BO->getOperatorLoc();
+ R1 = BO->getLHS()->getSourceRange();
+ R2 = BO->getRHS()->getSourceRange();
+ return true;
+ }
+ case CompoundAssignOperatorClass:
+ case VAArgExprClass:
+ case AtomicExprClass:
+ return false;
+
+ case ConditionalOperatorClass: {
+ // If only one of the LHS or RHS is a warning, the operator might
+ // be being used for control flow. Only warn if both the LHS and
+ // RHS are warnings.
+ const auto *Exp = cast<ConditionalOperator>(this);
+ return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
+ Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+ case BinaryConditionalOperatorClass: {
+ const auto *Exp = cast<BinaryConditionalOperator>(this);
+ return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+
+ case MemberExprClass:
+ WarnE = this;
+ Loc = cast<MemberExpr>(this)->getMemberLoc();
+ R1 = SourceRange(Loc, Loc);
+ R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
+ return true;
+
+ case ArraySubscriptExprClass:
+ WarnE = this;
+ Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
+ R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
+ R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
+ return true;
+
+ case CXXOperatorCallExprClass: {
+ // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
+ // overloads as there is no reasonable way to define these such that they
+ // have non-trivial, desirable side-effects. See the -Wunused-comparison
+ // warning: operators == and != are commonly typo'ed, and so warning on them
+ // provides additional value as well. If this list is updated,
+ // DiagnoseUnusedComparison should be as well.
+ const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
+ switch (Op->getOperator()) {
+ default:
+ break;
+ case OO_EqualEqual:
+ case OO_ExclaimEqual:
+ case OO_Less:
+ case OO_Greater:
+ case OO_GreaterEqual:
+ case OO_LessEqual:
+ if (Op->getCallReturnType(Ctx)->isReferenceType() ||
+ Op->getCallReturnType(Ctx)->isVoidType())
+ break;
+ WarnE = this;
+ Loc = Op->getOperatorLoc();
+ R1 = Op->getSourceRange();
+ return true;
+ }
+
+ // Fallthrough for generic call handling.
+ LLVM_FALLTHROUGH;
+ }
+ case CallExprClass:
+ case CXXMemberCallExprClass:
+ case UserDefinedLiteralClass: {
+ // If this is a direct call, get the callee.
+ const CallExpr *CE = cast<CallExpr>(this);
+ if (const Decl *FD = CE->getCalleeDecl()) {
+ // If the callee has attribute pure, const, or warn_unused_result, warn
+ // about it. void foo() { strlen("bar"); } should warn.
+ //
+ // Note: If new cases are added here, DiagnoseUnusedExprResult should be
+ // updated to match for QoI.
+ if (CE->hasUnusedResultAttr(Ctx) ||
+ FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
+ WarnE = this;
+ Loc = CE->getCallee()->getBeginLoc();
+ R1 = CE->getCallee()->getSourceRange();
+
+ if (unsigned NumArgs = CE->getNumArgs())
+ R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
+ CE->getArg(NumArgs - 1)->getEndLoc());
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // If we don't know precisely what we're looking at, let's not warn.
+ case UnresolvedLookupExprClass:
+ case CXXUnresolvedConstructExprClass:
+ return false;
+
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass: {
+ if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
+ const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
+ if (Type->hasAttr<WarnUnusedAttr>() ||
+ (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
+ WarnE = this;
+ Loc = getBeginLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+ }
+
+ const auto *CE = cast<CXXConstructExpr>(this);
+ if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
+ const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
+ if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
+ WarnE = this;
+ Loc = getBeginLoc();
+ R1 = getSourceRange();
+
+ if (unsigned NumArgs = CE->getNumArgs())
+ R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
+ CE->getArg(NumArgs - 1)->getEndLoc());
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ case ObjCMessageExprClass: {
+ const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
+ if (Ctx.getLangOpts().ObjCAutoRefCount &&
+ ME->isInstanceMessage() &&
+ !ME->getType()->isVoidType() &&
+ ME->getMethodFamily() == OMF_init) {
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = ME->getSourceRange();
+ return true;
+ }
+
+ if (const ObjCMethodDecl *MD = ME->getMethodDecl())
+ if (MD->hasAttr<WarnUnusedResultAttr>()) {
+ WarnE = this;
+ Loc = getExprLoc();
+ return true;
+ }
+
+ return false;
+ }
+
+ case ObjCPropertyRefExprClass:
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+
+ case PseudoObjectExprClass: {
+ const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
+
+ // Only complain about things that have the form of a getter.
+ if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
+ isa<BinaryOperator>(PO->getSyntacticForm()))
+ return false;
+
+ WarnE = this;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+
+ case StmtExprClass: {
+ // Statement exprs don't logically have side effects themselves, but are
+ // sometimes used in macros in ways that give them a type that is unused.
+ // For example ({ blah; foo(); }) will end up with a type if foo has a type.
+ // however, if the result of the stmt expr is dead, we don't want to emit a
+ // warning.
+ const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
+ if (!CS->body_empty()) {
+ if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
+ return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
+ if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
+ return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+
+ if (getType()->isVoidType())
+ return false;
+ WarnE = this;
+ Loc = cast<StmtExpr>(this)->getLParenLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+ case CXXFunctionalCastExprClass:
+ case CStyleCastExprClass: {
+ // Ignore an explicit cast to void unless the operand is a non-trivial
+ // volatile lvalue.
+ const CastExpr *CE = cast<CastExpr>(this);
+ if (CE->getCastKind() == CK_ToVoid) {
+ if (CE->getSubExpr()->isGLValue() &&
+ CE->getSubExpr()->getType().isVolatileQualified()) {
+ const DeclRefExpr *DRE =
+ dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
+ if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
+ cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
+ !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
+ return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
+ R1, R2, Ctx);
+ }
+ }
+ return false;
+ }
+
+ // If this is a cast to a constructor conversion, check the operand.
+ // Otherwise, the result of the cast is unused.
+ if (CE->getCastKind() == CK_ConstructorConversion)
+ return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+
+ WarnE = this;
+ if (const CXXFunctionalCastExpr *CXXCE =
+ dyn_cast<CXXFunctionalCastExpr>(this)) {
+ Loc = CXXCE->getBeginLoc();
+ R1 = CXXCE->getSubExpr()->getSourceRange();
+ } else {
+ const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
+ Loc = CStyleCE->getLParenLoc();
+ R1 = CStyleCE->getSubExpr()->getSourceRange();
+ }
+ return true;
+ }
+ case ImplicitCastExprClass: {
+ const CastExpr *ICE = cast<ImplicitCastExpr>(this);
+
+ // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
+ if (ICE->getCastKind() == CK_LValueToRValue &&
+ ICE->getSubExpr()->getType().isVolatileQualified())
+ return false;
+
+ return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+ case CXXDefaultArgExprClass:
+ return (cast<CXXDefaultArgExpr>(this)
+ ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+ case CXXDefaultInitExprClass:
+ return (cast<CXXDefaultInitExpr>(this)
+ ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
+
+ case CXXNewExprClass:
+ // FIXME: In theory, there might be new expressions that don't have side
+ // effects (e.g. a placement new with an uninitialized POD).
+ case CXXDeleteExprClass:
+ return false;
+ case MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
+ ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case CXXBindTemporaryExprClass:
+ return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
+ ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ case ExprWithCleanupsClass:
+ return cast<ExprWithCleanups>(this)->getSubExpr()
+ ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
+ }
+}
+
+/// isOBJCGCCandidate - Check if an expression is objc gc'able.
+/// returns true, if it is; false otherwise.
+bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
+ const Expr *E = IgnoreParens();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case ObjCIvarRefExprClass:
+ return true;
+ case Expr::UnaryOperatorClass:
+ return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case ImplicitCastExprClass:
+ return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
+ ->isOBJCGCCandidate(Ctx);
+ case CStyleCastExprClass:
+ return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case DeclRefExprClass: {
+ const Decl *D = cast<DeclRefExpr>(E)->getDecl();
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasGlobalStorage())
+ return true;
+ QualType T = VD->getType();
+ // dereferencing to a pointer is always a gc'able candidate,
+ // unless it is __weak.
+ return T->isPointerType() &&
+ (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
+ }
+ return false;
+ }
+ case MemberExprClass: {
+ const MemberExpr *M = cast<MemberExpr>(E);
+ return M->getBase()->isOBJCGCCandidate(Ctx);
+ }
+ case ArraySubscriptExprClass:
+ return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
+ }
+}
+
+bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
+ if (isTypeDependent())
+ return false;
+ return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
+}
+
+QualType Expr::findBoundMemberType(const Expr *expr) {
+ assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
+
+ // Bound member expressions are always one of these possibilities:
+ // x->m x.m x->*y x.*y
+ // (possibly parenthesized)
+
+ expr = expr->IgnoreParens();
+ if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
+ assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
+ return mem->getMemberDecl()->getType();
+ }
+
+ if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
+ QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
+ ->getPointeeType();
+ assert(type->isFunctionType());
+ return type;
+ }
+
+ assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
+ return QualType();
+}
+
+static Expr *IgnoreImpCastsSingleStep(Expr *E) {
+ if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
+ return ICE->getSubExpr();
+
+ if (auto *FE = dyn_cast<FullExpr>(E))
+ return FE->getSubExpr();
+
+ return E;
+}
+
+static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
+ // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
+ // addition to what IgnoreImpCasts() skips to account for the current
+ // behaviour of IgnoreParenImpCasts().
+ Expr *SubE = IgnoreImpCastsSingleStep(E);
+ if (SubE != E)
+ return SubE;
+
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
+ return MTE->GetTemporaryExpr();
+
+ if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ return NTTP->getReplacement();
+
+ return E;
+}
+
+static Expr *IgnoreCastsSingleStep(Expr *E) {
+ if (auto *CE = dyn_cast<CastExpr>(E))
+ return CE->getSubExpr();
+
+ if (auto *FE = dyn_cast<FullExpr>(E))
+ return FE->getSubExpr();
+
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
+ return MTE->GetTemporaryExpr();
+
+ if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ return NTTP->getReplacement();
+
+ return E;
+}
+
+static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
+ // Skip what IgnoreCastsSingleStep skips, except that only
+ // lvalue-to-rvalue casts are skipped.
+ if (auto *CE = dyn_cast<CastExpr>(E))
+ if (CE->getCastKind() != CK_LValueToRValue)
+ return E;
+
+ return IgnoreCastsSingleStep(E);
+}
+
+static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
+ if (auto *CE = dyn_cast<CastExpr>(E))
+ if (CE->getCastKind() == CK_DerivedToBase ||
+ CE->getCastKind() == CK_UncheckedDerivedToBase ||
+ CE->getCastKind() == CK_NoOp)
+ return CE->getSubExpr();
+
+ return E;
+}
+
+static Expr *IgnoreImplicitSingleStep(Expr *E) {
+ Expr *SubE = IgnoreImpCastsSingleStep(E);
+ if (SubE != E)
+ return SubE;
+
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
+ return MTE->GetTemporaryExpr();
+
+ if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
+ return BTE->getSubExpr();
+
+ return E;
+}
+
+static Expr *IgnoreParensSingleStep(Expr *E) {
+ if (auto *PE = dyn_cast<ParenExpr>(E))
+ return PE->getSubExpr();
+
+ if (auto *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_Extension)
+ return UO->getSubExpr();
+ }
+
+ else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!GSE->isResultDependent())
+ return GSE->getResultExpr();
+ }
+
+ else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
+ if (!CE->isConditionDependent())
+ return CE->getChosenSubExpr();
+ }
+
+ else if (auto *CE = dyn_cast<ConstantExpr>(E))
+ return CE->getSubExpr();
+
+ return E;
+}
+
+static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
+ if (auto *CE = dyn_cast<CastExpr>(E)) {
+ // We ignore integer <-> casts that are of the same width, ptr<->ptr and
+ // ptr<->int casts of the same width. We also ignore all identity casts.
+ Expr *SubExpr = CE->getSubExpr();
+ bool IsIdentityCast =
+ Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
+ bool IsSameWidthCast =
+ (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
+ (SubExpr->getType()->isPointerType() ||
+ SubExpr->getType()->isIntegralType(Ctx)) &&
+ (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
+
+ if (IsIdentityCast || IsSameWidthCast)
+ return SubExpr;
+ }
+
+ else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ return NTTP->getReplacement();
+
+ return E;
+}
+
+static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
+template <typename FnTy, typename... FnTys>
+static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
+ return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
+}
+
+/// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
+/// Recursively apply each of the functions to E until reaching a fixed point.
+/// Note that a null E is valid; in this case nothing is done.
+template <typename... FnTys>
+static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
+ Expr *LastE = nullptr;
+ while (E != LastE) {
+ LastE = E;
+ E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
+ }
+ return E;
+}
+
+Expr *Expr::IgnoreImpCasts() {
+ return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
+}
+
+Expr *Expr::IgnoreCasts() {
+ return IgnoreExprNodes(this, IgnoreCastsSingleStep);
+}
+
+Expr *Expr::IgnoreImplicit() {
+ return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
+}
+
+Expr *Expr::IgnoreParens() {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep);
+}
+
+Expr *Expr::IgnoreParenImpCasts() {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep,
+ IgnoreImpCastsExtraSingleStep);
+}
+
+Expr *Expr::IgnoreParenCasts() {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
+}
+
+Expr *Expr::IgnoreConversionOperator() {
+ if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
+ if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
+ return MCE->getImplicitObjectArgument();
+ }
+ return this;
+}
+
+Expr *Expr::IgnoreParenLValueCasts() {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep,
+ IgnoreLValueCastsSingleStep);
+}
+
+Expr *Expr::ignoreParenBaseCasts() {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep,
+ IgnoreBaseCastsSingleStep);
+}
+
+Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
+ return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
+ return IgnoreNoopCastsSingleStep(Ctx, E);
+ });
+}
+
+bool Expr::isDefaultArgument() const {
+ const Expr *E = this;
+ if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = M->GetTemporaryExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExprAsWritten();
+
+ return isa<CXXDefaultArgExpr>(E);
+}
+
+/// Skip over any no-op casts and any temporary-binding
+/// expressions.
+static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
+ if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = M->GetTemporaryExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
+ E = BE->getSubExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ return E->IgnoreParens();
+}
+
+/// isTemporaryObject - Determines if this expression produces a
+/// temporary of the given class type.
+bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
+ if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
+ return false;
+
+ const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
+
+ // Temporaries are by definition pr-values of class type.
+ if (!E->Classify(C).isPRValue()) {
+ // In this context, property reference is a message call and is pr-value.
+ if (!isa<ObjCPropertyRefExpr>(E))
+ return false;
+ }
+
+ // Black-list a few cases which yield pr-values of class type that don't
+ // refer to temporaries of that type:
+
+ // - implicit derived-to-base conversions
+ if (isa<ImplicitCastExpr>(E)) {
+ switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ return false;
+ default:
+ break;
+ }
+ }
+
+ // - member expressions (all)
+ if (isa<MemberExpr>(E))
+ return false;
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
+ if (BO->isPtrMemOp())
+ return false;
+
+ // - opaque values (all)
+ if (isa<OpaqueValueExpr>(E))
+ return false;
+
+ return true;
+}
+
+bool Expr::isImplicitCXXThis() const {
+ const Expr *E = this;
+
+ // Strip away parentheses and casts we don't care about.
+ while (true) {
+ if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
+ E = Paren->getSubExpr();
+ continue;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp ||
+ ICE->getCastKind() == CK_LValueToRValue ||
+ ICE->getCastKind() == CK_DerivedToBase ||
+ ICE->getCastKind() == CK_UncheckedDerivedToBase) {
+ E = ICE->getSubExpr();
+ continue;
+ }
+ }
+
+ if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
+ if (UnOp->getOpcode() == UO_Extension) {
+ E = UnOp->getSubExpr();
+ continue;
+ }
+ }
+
+ if (const MaterializeTemporaryExpr *M
+ = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = M->GetTemporaryExpr();
+ continue;
+ }
+
+ break;
+ }
+
+ if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
+ return This->isImplicit();
+
+ return false;
+}
+
+/// hasAnyTypeDependentArguments - Determines if any of the expressions
+/// in Exprs is type-dependent.
+bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
+ for (unsigned I = 0; I < Exprs.size(); ++I)
+ if (Exprs[I]->isTypeDependent())
+ return true;
+
+ return false;
+}
+
+bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
+ const Expr **Culprit) const {
+ assert(!isValueDependent() &&
+ "Expression evaluator can't be called on a dependent expression.");
+
+ // This function is attempting whether an expression is an initializer
+ // which can be evaluated at compile-time. It very closely parallels
+ // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
+ // will lead to unexpected results. Like ConstExprEmitter, it falls back
+ // to isEvaluatable most of the time.
+ //
+ // If we ever capture reference-binding directly in the AST, we can
+ // kill the second parameter.
+
+ if (IsForRef) {
+ EvalResult Result;
+ if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
+ return true;
+ if (Culprit)
+ *Culprit = this;
+ return false;
+ }
+
+ switch (getStmtClass()) {
+ default: break;
+ case StringLiteralClass:
+ case ObjCEncodeExprClass:
+ return true;
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
+
+ if (CE->getConstructor()->isTrivial() &&
+ CE->getConstructor()->getParent()->hasTrivialDestructor()) {
+ // Trivial default constructor
+ if (!CE->getNumArgs()) return true;
+
+ // Trivial copy constructor
+ assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
+ return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
+ }
+
+ break;
+ }
+ case ConstantExprClass: {
+ // FIXME: We should be able to return "true" here, but it can lead to extra
+ // error messages. E.g. in Sema/array-init.c.
+ const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
+ return Exp->isConstantInitializer(Ctx, false, Culprit);
+ }
+ case CompoundLiteralExprClass: {
+ // This handles gcc's extension that allows global initializers like
+ // "struct x {int x;} x = (struct x) {};".
+ // FIXME: This accepts other cases it shouldn't!
+ const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
+ return Exp->isConstantInitializer(Ctx, false, Culprit);
+ }
+ case DesignatedInitUpdateExprClass: {
+ const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
+ return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
+ DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
+ }
+ case InitListExprClass: {
+ const InitListExpr *ILE = cast<InitListExpr>(this);
+ assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
+ if (ILE->getType()->isArrayType()) {
+ unsigned numInits = ILE->getNumInits();
+ for (unsigned i = 0; i < numInits; i++) {
+ if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
+ return false;
+ }
+ return true;
+ }
+
+ if (ILE->getType()->isRecordType()) {
+ unsigned ElementNo = 0;
+ RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
+ for (const auto *Field : RD->fields()) {
+ // If this is a union, skip all the fields that aren't being initialized.
+ if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
+ continue;
+
+ // Don't emit anonymous bitfields, they just affect layout.
+ if (Field->isUnnamedBitfield())
+ continue;
+
+ if (ElementNo < ILE->getNumInits()) {
+ const Expr *Elt = ILE->getInit(ElementNo++);
+ if (Field->isBitField()) {
+ // Bitfields have to evaluate to an integer.
+ EvalResult Result;
+ if (!Elt->EvaluateAsInt(Result, Ctx)) {
+ if (Culprit)
+ *Culprit = Elt;
+ return false;
+ }
+ } else {
+ bool RefType = Field->getType()->isReferenceType();
+ if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ break;
+ }
+ case ImplicitValueInitExprClass:
+ case NoInitExprClass:
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case ChooseExprClass:
+ if (cast<ChooseExpr>(this)->isConditionDependent()) {
+ if (Culprit)
+ *Culprit = this;
+ return false;
+ }
+ return cast<ChooseExpr>(this)->getChosenSubExpr()
+ ->isConstantInitializer(Ctx, IsForRef, Culprit);
+ case UnaryOperatorClass: {
+ const UnaryOperator* Exp = cast<UnaryOperator>(this);
+ if (Exp->getOpcode() == UO_Extension)
+ return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
+ break;
+ }
+ case CXXFunctionalCastExprClass:
+ case CXXStaticCastExprClass:
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ case ObjCBridgedCastExprClass:
+ case CXXDynamicCastExprClass:
+ case CXXReinterpretCastExprClass:
+ case CXXConstCastExprClass: {
+ const CastExpr *CE = cast<CastExpr>(this);
+
+ // Handle misc casts we want to ignore.
+ if (CE->getCastKind() == CK_NoOp ||
+ CE->getCastKind() == CK_LValueToRValue ||
+ CE->getCastKind() == CK_ToUnion ||
+ CE->getCastKind() == CK_ConstructorConversion ||
+ CE->getCastKind() == CK_NonAtomicToAtomic ||
+ CE->getCastKind() == CK_AtomicToNonAtomic ||
+ CE->getCastKind() == CK_IntToOCLSampler)
+ return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
+
+ break;
+ }
+ case MaterializeTemporaryExprClass:
+ return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+
+ case SubstNonTypeTemplateParmExprClass:
+ return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ case CXXDefaultArgExprClass:
+ return cast<CXXDefaultArgExpr>(this)->getExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ case CXXDefaultInitExprClass:
+ return cast<CXXDefaultInitExpr>(this)->getExpr()
+ ->isConstantInitializer(Ctx, false, Culprit);
+ }
+ // Allow certain forms of UB in constant initializers: signed integer
+ // overflow and floating-point division by zero. We'll give a warning on
+ // these, but they're common enough that we have to accept them.
+ if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
+ return true;
+ if (Culprit)
+ *Culprit = this;
+ return false;
+}
+
+bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
+ const FunctionDecl* FD = getDirectCallee();
+ if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
+ FD->getBuiltinID() != Builtin::BI__builtin_assume))
+ return false;
+
+ const Expr* Arg = getArg(0);
+ bool ArgVal;
+ return !Arg->isValueDependent() &&
+ Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
+}
+
+namespace {
+ /// Look for any side effects within a Stmt.
+ class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
+ typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
+ const bool IncludePossibleEffects;
+ bool HasSideEffects;
+
+ public:
+ explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
+ : Inherited(Context),
+ IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
+
+ bool hasSideEffects() const { return HasSideEffects; }
+
+ void VisitExpr(const Expr *E) {
+ if (!HasSideEffects &&
+ E->HasSideEffects(Context, IncludePossibleEffects))
+ HasSideEffects = true;
+ }
+ };
+}
+
+bool Expr::HasSideEffects(const ASTContext &Ctx,
+ bool IncludePossibleEffects) const {
+ // In circumstances where we care about definite side effects instead of
+ // potential side effects, we want to ignore expressions that are part of a
+ // macro expansion as a potential side effect.
+ if (!IncludePossibleEffects && getExprLoc().isMacroID())
+ return false;
+
+ if (isInstantiationDependent())
+ return IncludePossibleEffects;
+
+ switch (getStmtClass()) {
+ case NoStmtClass:
+ #define ABSTRACT_STMT(Type)
+ #define STMT(Type, Base) case Type##Class:
+ #define EXPR(Type, Base)
+ #include "clang/AST/StmtNodes.inc"
+ llvm_unreachable("unexpected Expr kind");
+
+ case DependentScopeDeclRefExprClass:
+ case CXXUnresolvedConstructExprClass:
+ case CXXDependentScopeMemberExprClass:
+ case UnresolvedLookupExprClass:
+ case UnresolvedMemberExprClass:
+ case PackExpansionExprClass:
+ case SubstNonTypeTemplateParmPackExprClass:
+ case FunctionParmPackExprClass:
+ case TypoExprClass:
+ case CXXFoldExprClass:
+ llvm_unreachable("shouldn't see dependent / unresolved nodes here");
+
+ case DeclRefExprClass:
+ case ObjCIvarRefExprClass:
+ case PredefinedExprClass:
+ case IntegerLiteralClass:
+ case FixedPointLiteralClass:
+ case FloatingLiteralClass:
+ case ImaginaryLiteralClass:
+ case StringLiteralClass:
+ case CharacterLiteralClass:
+ case OffsetOfExprClass:
+ case ImplicitValueInitExprClass:
+ case UnaryExprOrTypeTraitExprClass:
+ case AddrLabelExprClass:
+ case GNUNullExprClass:
+ case ArrayInitIndexExprClass:
+ case NoInitExprClass:
+ case CXXBoolLiteralExprClass:
+ case CXXNullPtrLiteralExprClass:
+ case CXXThisExprClass:
+ case CXXScalarValueInitExprClass:
+ case TypeTraitExprClass:
+ case ArrayTypeTraitExprClass:
+ case ExpressionTraitExprClass:
+ case CXXNoexceptExprClass:
+ case SizeOfPackExprClass:
+ case ObjCStringLiteralClass:
+ case ObjCEncodeExprClass:
+ case ObjCBoolLiteralExprClass:
+ case ObjCAvailabilityCheckExprClass:
+ case CXXUuidofExprClass:
+ case OpaqueValueExprClass:
+ case SourceLocExprClass:
+ case ConceptSpecializationExprClass:
+ // These never have a side-effect.
+ return false;
+
+ case ConstantExprClass:
+ // FIXME: Move this into the "return false;" block above.
+ return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
+ Ctx, IncludePossibleEffects);
+
+ case CallExprClass:
+ case CXXOperatorCallExprClass:
+ case CXXMemberCallExprClass:
+ case CUDAKernelCallExprClass:
+ case UserDefinedLiteralClass: {
+ // We don't know a call definitely has side effects, except for calls
+ // to pure/const functions that definitely don't.
+ // If the call itself is considered side-effect free, check the operands.
+ const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
+ bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
+ if (IsPure || !IncludePossibleEffects)
+ break;
+ return true;
+ }
+
+ case BlockExprClass:
+ case CXXBindTemporaryExprClass:
+ if (!IncludePossibleEffects)
+ break;
+ return true;
+
+ case MSPropertyRefExprClass:
+ case MSPropertySubscriptExprClass:
+ case CompoundAssignOperatorClass:
+ case VAArgExprClass:
+ case AtomicExprClass:
+ case CXXThrowExprClass:
+ case CXXNewExprClass:
+ case CXXDeleteExprClass:
+ case CoawaitExprClass:
+ case DependentCoawaitExprClass:
+ case CoyieldExprClass:
+ // These always have a side-effect.
+ return true;
+
+ case StmtExprClass: {
+ // StmtExprs have a side-effect if any substatement does.
+ SideEffectFinder Finder(Ctx, IncludePossibleEffects);
+ Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
+ return Finder.hasSideEffects();
+ }
+
+ case ExprWithCleanupsClass:
+ if (IncludePossibleEffects)
+ if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
+ return true;
+ break;
+
+ case ParenExprClass:
+ case ArraySubscriptExprClass:
+ case OMPArraySectionExprClass:
+ case MemberExprClass:
+ case ConditionalOperatorClass:
+ case BinaryConditionalOperatorClass:
+ case CompoundLiteralExprClass:
+ case ExtVectorElementExprClass:
+ case DesignatedInitExprClass:
+ case DesignatedInitUpdateExprClass:
+ case ArrayInitLoopExprClass:
+ case ParenListExprClass:
+ case CXXPseudoDestructorExprClass:
+ case CXXRewrittenBinaryOperatorClass:
+ case CXXStdInitializerListExprClass:
+ case SubstNonTypeTemplateParmExprClass:
+ case MaterializeTemporaryExprClass:
+ case ShuffleVectorExprClass:
+ case ConvertVectorExprClass:
+ case AsTypeExprClass:
+ // These have a side-effect if any subexpression does.
+ break;
+
+ case UnaryOperatorClass:
+ if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
+ return true;
+ break;
+
+ case BinaryOperatorClass:
+ if (cast<BinaryOperator>(this)->isAssignmentOp())
+ return true;
+ break;
+
+ case InitListExprClass:
+ // FIXME: The children for an InitListExpr doesn't include the array filler.
+ if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
+ if (E->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+ break;
+
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->
+ HasSideEffects(Ctx, IncludePossibleEffects);
+
+ case ChooseExprClass:
+ return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
+ Ctx, IncludePossibleEffects);
+
+ case CXXDefaultArgExprClass:
+ return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
+ Ctx, IncludePossibleEffects);
+
+ case CXXDefaultInitExprClass: {
+ const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
+ if (const Expr *E = FD->getInClassInitializer())
+ return E->HasSideEffects(Ctx, IncludePossibleEffects);
+ // If we've not yet parsed the initializer, assume it has side-effects.
+ return true;
+ }
+
+ case CXXDynamicCastExprClass: {
+ // A dynamic_cast expression has side-effects if it can throw.
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
+ if (DCE->getTypeAsWritten()->isReferenceType() &&
+ DCE->getCastKind() == CK_Dynamic)
+ return true;
+ }
+ LLVM_FALLTHROUGH;
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ case CXXStaticCastExprClass:
+ case CXXReinterpretCastExprClass:
+ case CXXConstCastExprClass:
+ case CXXFunctionalCastExprClass:
+ case BuiltinBitCastExprClass: {
+ // While volatile reads are side-effecting in both C and C++, we treat them
+ // as having possible (not definite) side-effects. This allows idiomatic
+ // code to behave without warning, such as sizeof(*v) for a volatile-
+ // qualified pointer.
+ if (!IncludePossibleEffects)
+ break;
+
+ const CastExpr *CE = cast<CastExpr>(this);
+ if (CE->getCastKind() == CK_LValueToRValue &&
+ CE->getSubExpr()->getType().isVolatileQualified())
+ return true;
+ break;
+ }
+
+ case CXXTypeidExprClass:
+ // typeid might throw if its subexpression is potentially-evaluated, so has
+ // side-effects in that case whether or not its subexpression does.
+ return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
+
+ case CXXConstructExprClass:
+ case CXXTemporaryObjectExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
+ if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
+ return true;
+ // A trivial constructor does not add any side-effects of its own. Just look
+ // at its arguments.
+ break;
+ }
+
+ case CXXInheritedCtorInitExprClass: {
+ const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
+ if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
+ return true;
+ break;
+ }
+
+ case LambdaExprClass: {
+ const LambdaExpr *LE = cast<LambdaExpr>(this);
+ for (Expr *E : LE->capture_inits())
+ if (E->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+ return false;
+ }
+
+ case PseudoObjectExprClass: {
+ // Only look for side-effects in the semantic form, and look past
+ // OpaqueValueExpr bindings in that form.
+ const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
+ for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
+ E = PO->semantics_end();
+ I != E; ++I) {
+ const Expr *Subexpr = *I;
+ if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
+ Subexpr = OVE->getSourceExpr();
+ if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+ }
+ return false;
+ }
+
+ case ObjCBoxedExprClass:
+ case ObjCArrayLiteralClass:
+ case ObjCDictionaryLiteralClass:
+ case ObjCSelectorExprClass:
+ case ObjCProtocolExprClass:
+ case ObjCIsaExprClass:
+ case ObjCIndirectCopyRestoreExprClass:
+ case ObjCSubscriptRefExprClass:
+ case ObjCBridgedCastExprClass:
+ case ObjCMessageExprClass:
+ case ObjCPropertyRefExprClass:
+ // FIXME: Classify these cases better.
+ if (IncludePossibleEffects)
+ return true;
+ break;
+ }
+
+ // Recurse to children.
+ for (const Stmt *SubStmt : children())
+ if (SubStmt &&
+ cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
+ return true;
+
+ return false;
+}
+
+namespace {
+ /// Look for a call to a non-trivial function within an expression.
+ class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
+ {
+ typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
+
+ bool NonTrivial;
+
+ public:
+ explicit NonTrivialCallFinder(const ASTContext &Context)
+ : Inherited(Context), NonTrivial(false) { }
+
+ bool hasNonTrivialCall() const { return NonTrivial; }
+
+ void VisitCallExpr(const CallExpr *E) {
+ if (const CXXMethodDecl *Method
+ = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
+ if (Method->isTrivial()) {
+ // Recurse to children of the call.
+ Inherited::VisitStmt(E);
+ return;
+ }
+ }
+
+ NonTrivial = true;
+ }
+
+ void VisitCXXConstructExpr(const CXXConstructExpr *E) {
+ if (E->getConstructor()->isTrivial()) {
+ // Recurse to children of the call.
+ Inherited::VisitStmt(E);
+ return;
+ }
+
+ NonTrivial = true;
+ }
+
+ void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
+ if (E->getTemporary()->getDestructor()->isTrivial()) {
+ Inherited::VisitStmt(E);
+ return;
+ }
+
+ NonTrivial = true;
+ }
+ };
+}
+
+bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
+ NonTrivialCallFinder Finder(Ctx);
+ Finder.Visit(this);
+ return Finder.hasNonTrivialCall();
+}
+
+/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
+/// pointer constant or not, as well as the specific kind of constant detected.
+/// Null pointer constants can be integer constant expressions with the
+/// value zero, casts of zero to void*, nullptr (C++0X), or __null
+/// (a GNU extension).
+Expr::NullPointerConstantKind
+Expr::isNullPointerConstant(ASTContext &Ctx,
+ NullPointerConstantValueDependence NPC) const {
+ if (isValueDependent() &&
+ (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
+ switch (NPC) {
+ case NPC_NeverValueDependent:
+ llvm_unreachable("Unexpected value dependent expression!");
+ case NPC_ValueDependentIsNull:
+ if (isTypeDependent() || getType()->isIntegralType(Ctx))
+ return NPCK_ZeroExpression;
+ else
+ return NPCK_NotNull;
+
+ case NPC_ValueDependentIsNotNull:
+ return NPCK_NotNull;
+ }
+ }
+
+ // Strip off a cast to void*, if it exists. Except in C++.
+ if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
+ if (!Ctx.getLangOpts().CPlusPlus) {
+ // Check that it is a cast to void*.
+ if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
+ QualType Pointee = PT->getPointeeType();
+ Qualifiers Qs = Pointee.getQualifiers();
+ // Only (void*)0 or equivalent are treated as nullptr. If pointee type
+ // has non-default address space it is not treated as nullptr.
+ // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
+ // since it cannot be assigned to a pointer to constant address space.
+ if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
+ Pointee.getAddressSpace() == LangAS::opencl_generic) ||
+ (Ctx.getLangOpts().OpenCL &&
+ Ctx.getLangOpts().OpenCLVersion < 200 &&
+ Pointee.getAddressSpace() == LangAS::opencl_private))
+ Qs.removeAddressSpace();
+
+ if (Pointee->isVoidType() && Qs.empty() && // to void*
+ CE->getSubExpr()->getType()->isIntegerType()) // from int
+ return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ }
+ }
+ } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
+ // Ignore the ImplicitCastExpr type entirely.
+ return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+ // Accept ((void*)0) as a null pointer constant, as many other
+ // implementations do.
+ return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const GenericSelectionExpr *GE =
+ dyn_cast<GenericSelectionExpr>(this)) {
+ if (GE->isResultDependent())
+ return NPCK_NotNull;
+ return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
+ if (CE->isConditionDependent())
+ return NPCK_NotNull;
+ return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const CXXDefaultArgExpr *DefaultArg
+ = dyn_cast<CXXDefaultArgExpr>(this)) {
+ // See through default argument expressions.
+ return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const CXXDefaultInitExpr *DefaultInit
+ = dyn_cast<CXXDefaultInitExpr>(this)) {
+ // See through default initializer expressions.
+ return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (isa<GNUNullExpr>(this)) {
+ // The GNU __null extension is always a null pointer constant.
+ return NPCK_GNUNull;
+ } else if (const MaterializeTemporaryExpr *M
+ = dyn_cast<MaterializeTemporaryExpr>(this)) {
+ return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
+ if (const Expr *Source = OVE->getSourceExpr())
+ return Source->isNullPointerConstant(Ctx, NPC);
+ }
+
+ // C++11 nullptr_t is always a null pointer constant.
+ if (getType()->isNullPtrType())
+ return NPCK_CXX11_nullptr;
+
+ if (const RecordType *UT = getType()->getAsUnionType())
+ if (!Ctx.getLangOpts().CPlusPlus11 &&
+ UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
+ const Expr *InitExpr = CLE->getInitializer();
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
+ return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
+ }
+ // This expression must be an integer type.
+ if (!getType()->isIntegerType() ||
+ (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
+ return NPCK_NotNull;
+
+ if (Ctx.getLangOpts().CPlusPlus11) {
+ // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
+ // value zero or a prvalue of type std::nullptr_t.
+ // Microsoft mode permits C++98 rules reflecting MSVC behavior.
+ const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
+ if (Lit && !Lit->getValue())
+ return NPCK_ZeroLiteral;
+ else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
+ return NPCK_NotNull;
+ } else {
+ // If we have an integer constant expression, we need to *evaluate* it and
+ // test for the value 0.
+ if (!isIntegerConstantExpr(Ctx))
+ return NPCK_NotNull;
+ }
+
+ if (EvaluateKnownConstInt(Ctx) != 0)
+ return NPCK_NotNull;
+
+ if (isa<IntegerLiteral>(this))
+ return NPCK_ZeroLiteral;
+ return NPCK_ZeroExpression;
+}
+
+/// If this expression is an l-value for an Objective C
+/// property, find the underlying property reference expression.
+const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
+ const Expr *E = this;
+ while (true) {
+ assert((E->getValueKind() == VK_LValue &&
+ E->getObjectKind() == OK_ObjCProperty) &&
+ "expression is not a property reference");
+ E = E->IgnoreParenCasts();
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ return cast<ObjCPropertyRefExpr>(E);
+}
+
+bool Expr::isObjCSelfExpr() const {
+ const Expr *E = IgnoreParenImpCasts();
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return false;
+
+ const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
+ if (!Param)
+ return false;
+
+ const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
+ if (!M)
+ return false;
+
+ return M->getSelfDecl() == Param;
+}
+
+FieldDecl *Expr::getSourceBitField() {
+ Expr *E = this->IgnoreParens();
+
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_LValueToRValue ||
+ (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
+ FieldDecl *Ivar = IvarRef->getDecl();
+ if (Ivar->isBitField())
+ return Ivar;
+ }
+
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
+ if (Expr *E = BD->getBinding())
+ return E->getSourceBitField();
+ }
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
+ if (BinOp->isAssignmentOp() && BinOp->getLHS())
+ return BinOp->getLHS()->getSourceBitField();
+
+ if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
+ return BinOp->getRHS()->getSourceBitField();
+ }
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
+ if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
+ return UnOp->getSubExpr()->getSourceBitField();
+
+ return nullptr;
+}
+
+bool Expr::refersToVectorElement() const {
+ // FIXME: Why do we not just look at the ObjectKind here?
+ const Expr *E = this->IgnoreParens();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getValueKind() != VK_RValue &&
+ ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
+ return ASE->getBase()->getType()->isVectorType();
+
+ if (isa<ExtVectorElementExpr>(E))
+ return true;
+
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E))
+ if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
+ if (auto *E = BD->getBinding())
+ return E->refersToVectorElement();
+
+ return false;
+}
+
+bool Expr::refersToGlobalRegisterVar() const {
+ const Expr *E = this->IgnoreParenImpCasts();
+
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (VD->getStorageClass() == SC_Register &&
+ VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
+ return true;
+
+ return false;
+}
+
+bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
+ E1 = E1->IgnoreParens();
+ E2 = E2->IgnoreParens();
+
+ if (E1->getStmtClass() != E2->getStmtClass())
+ return false;
+
+ switch (E1->getStmtClass()) {
+ default:
+ return false;
+ case CXXThisExprClass:
+ return true;
+ case DeclRefExprClass: {
+ // DeclRefExpr without an ImplicitCastExpr can happen for integral
+ // template parameters.
+ const auto *DRE1 = cast<DeclRefExpr>(E1);
+ const auto *DRE2 = cast<DeclRefExpr>(E2);
+ return DRE1->isRValue() && DRE2->isRValue() &&
+ DRE1->getDecl() == DRE2->getDecl();
+ }
+ case ImplicitCastExprClass: {
+ // Peel off implicit casts.
+ while (true) {
+ const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
+ const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
+ if (!ICE1 || !ICE2)
+ return false;
+ if (ICE1->getCastKind() != ICE2->getCastKind())
+ return false;
+ E1 = ICE1->getSubExpr()->IgnoreParens();
+ E2 = ICE2->getSubExpr()->IgnoreParens();
+ // The final cast must be one of these types.
+ if (ICE1->getCastKind() == CK_LValueToRValue ||
+ ICE1->getCastKind() == CK_ArrayToPointerDecay ||
+ ICE1->getCastKind() == CK_FunctionToPointerDecay) {
+ break;
+ }
+ }
+
+ const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
+ const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
+ if (DRE1 && DRE2)
+ return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
+
+ const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
+ const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
+ if (Ivar1 && Ivar2) {
+ return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
+ declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
+ }
+
+ const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
+ const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
+ if (Array1 && Array2) {
+ if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
+ return false;
+
+ auto Idx1 = Array1->getIdx();
+ auto Idx2 = Array2->getIdx();
+ const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
+ const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
+ if (Integer1 && Integer2) {
+ if (!llvm::APInt::isSameValue(Integer1->getValue(),
+ Integer2->getValue()))
+ return false;
+ } else {
+ if (!isSameComparisonOperand(Idx1, Idx2))
+ return false;
+ }
+
+ return true;
+ }
+
+ // Walk the MemberExpr chain.
+ while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
+ const auto *ME1 = cast<MemberExpr>(E1);
+ const auto *ME2 = cast<MemberExpr>(E2);
+ if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
+ return false;
+ if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
+ if (D->isStaticDataMember())
+ return true;
+ E1 = ME1->getBase()->IgnoreParenImpCasts();
+ E2 = ME2->getBase()->IgnoreParenImpCasts();
+ }
+
+ if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
+ return true;
+
+ // A static member variable can end the MemberExpr chain with either
+ // a MemberExpr or a DeclRefExpr.
+ auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl();
+ if (const auto *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl();
+ return nullptr;
+ };
+
+ const ValueDecl *VD1 = getAnyDecl(E1);
+ const ValueDecl *VD2 = getAnyDecl(E2);
+ return declaresSameEntity(VD1, VD2);
+ }
+ }
+}
+
+/// isArrow - Return true if the base expression is a pointer to vector,
+/// return false if the base expression is a vector.
+bool ExtVectorElementExpr::isArrow() const {
+ return getBase()->getType()->isPointerType();
+}
+
+unsigned ExtVectorElementExpr::getNumElements() const {
+ if (const VectorType *VT = getType()->getAs<VectorType>())
+ return VT->getNumElements();
+ return 1;
+}
+
+/// containsDuplicateElements - Return true if any element access is repeated.
+bool ExtVectorElementExpr::containsDuplicateElements() const {
+ // FIXME: Refactor this code to an accessor on the AST node which returns the
+ // "type" of component access, and share with code below and in Sema.
+ StringRef Comp = Accessor->getName();
+
+ // Halving swizzles do not contain duplicate elements.
+ if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
+ return false;
+
+ // Advance past s-char prefix on hex swizzles.
+ if (Comp[0] == 's' || Comp[0] == 'S')
+ Comp = Comp.substr(1);
+
+ for (unsigned i = 0, e = Comp.size(); i != e; ++i)
+ if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
+ return true;
+
+ return false;
+}
+
+/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
+void ExtVectorElementExpr::getEncodedElementAccess(
+ SmallVectorImpl<uint32_t> &Elts) const {
+ StringRef Comp = Accessor->getName();
+ bool isNumericAccessor = false;
+ if (Comp[0] == 's' || Comp[0] == 'S') {
+ Comp = Comp.substr(1);
+ isNumericAccessor = true;
+ }
+
+ bool isHi = Comp == "hi";
+ bool isLo = Comp == "lo";
+ bool isEven = Comp == "even";
+ bool isOdd = Comp == "odd";
+
+ for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
+ uint64_t Index;
+
+ if (isHi)
+ Index = e + i;
+ else if (isLo)
+ Index = i;
+ else if (isEven)
+ Index = 2 * i;
+ else if (isOdd)
+ Index = 2 * i + 1;
+ else
+ Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
+
+ Elts.push_back(Index);
+ }
+}
+
+ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
+ QualType Type, SourceLocation BLoc,
+ SourceLocation RP)
+ : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
+ Type->isDependentType(), Type->isDependentType(),
+ Type->isInstantiationDependentType(),
+ Type->containsUnexpandedParameterPack()),
+ BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
+{
+ SubExprs = new (C) Stmt*[args.size()];
+ for (unsigned i = 0; i != args.size(); i++) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i] = args[i];
+ }
+}
+
+void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
+ if (SubExprs) C.Deallocate(SubExprs);
+
+ this->NumExprs = Exprs.size();
+ SubExprs = new (C) Stmt*[NumExprs];
+ memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
+}
+
+GenericSelectionExpr::GenericSelectionExpr(
+ const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
+ SourceLocation DefaultLoc, SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
+ : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
+ AssocExprs[ResultIndex]->getValueKind(),
+ AssocExprs[ResultIndex]->getObjectKind(),
+ AssocExprs[ResultIndex]->isTypeDependent(),
+ AssocExprs[ResultIndex]->isValueDependent(),
+ AssocExprs[ResultIndex]->isInstantiationDependent(),
+ ContainsUnexpandedParameterPack),
+ NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
+ DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
+ assert(AssocTypes.size() == AssocExprs.size() &&
+ "Must have the same number of association expressions"
+ " and TypeSourceInfo!");
+ assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
+
+ GenericSelectionExprBits.GenericLoc = GenericLoc;
+ getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
+ std::copy(AssocExprs.begin(), AssocExprs.end(),
+ getTrailingObjects<Stmt *>() + AssocExprStartIndex);
+ std::copy(AssocTypes.begin(), AssocTypes.end(),
+ getTrailingObjects<TypeSourceInfo *>());
+}
+
+GenericSelectionExpr::GenericSelectionExpr(
+ const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
+ SourceLocation DefaultLoc, SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack)
+ : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
+ OK_Ordinary,
+ /*isTypeDependent=*/true,
+ /*isValueDependent=*/true,
+ /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
+ NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
+ DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
+ assert(AssocTypes.size() == AssocExprs.size() &&
+ "Must have the same number of association expressions"
+ " and TypeSourceInfo!");
+
+ GenericSelectionExprBits.GenericLoc = GenericLoc;
+ getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
+ std::copy(AssocExprs.begin(), AssocExprs.end(),
+ getTrailingObjects<Stmt *>() + AssocExprStartIndex);
+ std::copy(AssocTypes.begin(), AssocTypes.end(),
+ getTrailingObjects<TypeSourceInfo *>());
+}
+
+GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
+ : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
+
+GenericSelectionExpr *GenericSelectionExpr::Create(
+ const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
+ SourceLocation DefaultLoc, SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
+ unsigned NumAssocs = AssocExprs.size();
+ void *Mem = Context.Allocate(
+ totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
+ alignof(GenericSelectionExpr));
+ return new (Mem) GenericSelectionExpr(
+ Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
+}
+
+GenericSelectionExpr *GenericSelectionExpr::Create(
+ const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
+ SourceLocation DefaultLoc, SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack) {
+ unsigned NumAssocs = AssocExprs.size();
+ void *Mem = Context.Allocate(
+ totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
+ alignof(GenericSelectionExpr));
+ return new (Mem) GenericSelectionExpr(
+ Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
+ RParenLoc, ContainsUnexpandedParameterPack);
+}
+
+GenericSelectionExpr *
+GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
+ unsigned NumAssocs) {
+ void *Mem = Context.Allocate(
+ totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
+ alignof(GenericSelectionExpr));
+ return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
+}
+
+//===----------------------------------------------------------------------===//
+// DesignatedInitExpr
+//===----------------------------------------------------------------------===//
+
+IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ if (Field.NameOrField & 0x01)
+ return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
+ else
+ return getField()->getIdentifier();
+}
+
+DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
+ llvm::ArrayRef<Designator> Designators,
+ SourceLocation EqualOrColonLoc,
+ bool GNUSyntax,
+ ArrayRef<Expr*> IndexExprs,
+ Expr *Init)
+ : Expr(DesignatedInitExprClass, Ty,
+ Init->getValueKind(), Init->getObjectKind(),
+ Init->isTypeDependent(), Init->isValueDependent(),
+ Init->isInstantiationDependent(),
+ Init->containsUnexpandedParameterPack()),
+ EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
+ NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
+ this->Designators = new (C) Designator[NumDesignators];
+
+ // Record the initializer itself.
+ child_iterator Child = child_begin();
+ *Child++ = Init;
+
+ // Copy the designators and their subexpressions, computing
+ // value-dependence along the way.
+ unsigned IndexIdx = 0;
+ for (unsigned I = 0; I != NumDesignators; ++I) {
+ this->Designators[I] = Designators[I];
+
+ if (this->Designators[I].isArrayDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Index = IndexExprs[IndexIdx];
+ if (Index->isTypeDependent() || Index->isValueDependent())
+ ExprBits.TypeDependent = ExprBits.ValueDependent = true;
+ if (Index->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ // Propagate unexpanded parameter packs.
+ if (Index->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the index expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ } else if (this->Designators[I].isArrayRangeDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Start = IndexExprs[IndexIdx];
+ Expr *End = IndexExprs[IndexIdx + 1];
+ if (Start->isTypeDependent() || Start->isValueDependent() ||
+ End->isTypeDependent() || End->isValueDependent()) {
+ ExprBits.TypeDependent = ExprBits.ValueDependent = true;
+ ExprBits.InstantiationDependent = true;
+ } else if (Start->isInstantiationDependent() ||
+ End->isInstantiationDependent()) {
+ ExprBits.InstantiationDependent = true;
+ }
+
+ // Propagate unexpanded parameter packs.
+ if (Start->containsUnexpandedParameterPack() ||
+ End->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the start/end expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ *Child++ = IndexExprs[IndexIdx++];
+ }
+ }
+
+ assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
+}
+
+DesignatedInitExpr *
+DesignatedInitExpr::Create(const ASTContext &C,
+ llvm::ArrayRef<Designator> Designators,
+ ArrayRef<Expr*> IndexExprs,
+ SourceLocation ColonOrEqualLoc,
+ bool UsesColonSyntax, Expr *Init) {
+ void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
+ alignof(DesignatedInitExpr));
+ return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
+ ColonOrEqualLoc, UsesColonSyntax,
+ IndexExprs, Init);
+}
+
+DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
+ unsigned NumIndexExprs) {
+ void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
+ alignof(DesignatedInitExpr));
+ return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
+}
+
+void DesignatedInitExpr::setDesignators(const ASTContext &C,
+ const Designator *Desigs,
+ unsigned NumDesigs) {
+ Designators = new (C) Designator[NumDesigs];
+ NumDesignators = NumDesigs;
+ for (unsigned I = 0; I != NumDesigs; ++I)
+ Designators[I] = Desigs[I];
+}
+
+SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
+ DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
+ if (size() == 1)
+ return DIE->getDesignator(0)->getSourceRange();
+ return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
+ DIE->getDesignator(size() - 1)->getEndLoc());
+}
+
+SourceLocation DesignatedInitExpr::getBeginLoc() const {
+ SourceLocation StartLoc;
+ auto *DIE = const_cast<DesignatedInitExpr *>(this);
+ Designator &First = *DIE->getDesignator(0);
+ if (First.isFieldDesignator()) {
+ if (GNUSyntax)
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
+ else
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
+ } else
+ StartLoc =
+ SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
+ return StartLoc;
+}
+
+SourceLocation DesignatedInitExpr::getEndLoc() const {
+ return getInit()->getEndLoc();
+}
+
+Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
+ assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
+ return getSubExpr(D.ArrayOrRange.Index + 1);
+}
+
+Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ return getSubExpr(D.ArrayOrRange.Index + 1);
+}
+
+Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ return getSubExpr(D.ArrayOrRange.Index + 2);
+}
+
+/// Replaces the designator at index @p Idx with the series
+/// of designators in [First, Last).
+void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
+ const Designator *First,
+ const Designator *Last) {
+ unsigned NumNewDesignators = Last - First;
+ if (NumNewDesignators == 0) {
+ std::copy_backward(Designators + Idx + 1,
+ Designators + NumDesignators,
+ Designators + Idx);
+ --NumNewDesignators;
+ return;
+ } else if (NumNewDesignators == 1) {
+ Designators[Idx] = *First;
+ return;
+ }
+
+ Designator *NewDesignators
+ = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
+ std::copy(Designators, Designators + Idx, NewDesignators);
+ std::copy(First, Last, NewDesignators + Idx);
+ std::copy(Designators + Idx + 1, Designators + NumDesignators,
+ NewDesignators + Idx + NumNewDesignators);
+ Designators = NewDesignators;
+ NumDesignators = NumDesignators - 1 + NumNewDesignators;
+}
+
+DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
+ SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
+ : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
+ OK_Ordinary, false, false, false, false) {
+ BaseAndUpdaterExprs[0] = baseExpr;
+
+ InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
+ ILE->setType(baseExpr->getType());
+ BaseAndUpdaterExprs[1] = ILE;
+}
+
+SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
+ return getBase()->getBeginLoc();
+}
+
+SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
+ return getBase()->getEndLoc();
+}
+
+ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
+ SourceLocation RParenLoc)
+ : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
+ false, false),
+ LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
+ ParenListExprBits.NumExprs = Exprs.size();
+
+ for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
+ if (Exprs[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (Exprs[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Exprs[I]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (Exprs[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ getTrailingObjects<Stmt *>()[I] = Exprs[I];
+ }
+}
+
+ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
+ : Expr(ParenListExprClass, Empty) {
+ ParenListExprBits.NumExprs = NumExprs;
+}
+
+ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr *> Exprs,
+ SourceLocation RParenLoc) {
+ void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
+ alignof(ParenListExpr));
+ return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
+}
+
+ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
+ unsigned NumExprs) {
+ void *Mem =
+ Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
+ return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
+}
+
+const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
+ if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
+ e = ewc->getSubExpr();
+ if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
+ e = m->GetTemporaryExpr();
+ e = cast<CXXConstructExpr>(e)->getArg(0);
+ while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
+ e = ice->getSubExpr();
+ return cast<OpaqueValueExpr>(e);
+}
+
+PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
+ EmptyShell sh,
+ unsigned numSemanticExprs) {
+ void *buffer =
+ Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
+ alignof(PseudoObjectExpr));
+ return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
+ : Expr(PseudoObjectExprClass, shell) {
+ PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
+}
+
+PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
+ ArrayRef<Expr*> semantics,
+ unsigned resultIndex) {
+ assert(syntax && "no syntactic expression!");
+ assert(semantics.size() && "no semantic expressions!");
+
+ QualType type;
+ ExprValueKind VK;
+ if (resultIndex == NoResult) {
+ type = C.VoidTy;
+ VK = VK_RValue;
+ } else {
+ assert(resultIndex < semantics.size());
+ type = semantics[resultIndex]->getType();
+ VK = semantics[resultIndex]->getValueKind();
+ assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
+ }
+
+ void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
+ alignof(PseudoObjectExpr));
+ return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
+ resultIndex);
+}
+
+PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
+ Expr *syntax, ArrayRef<Expr*> semantics,
+ unsigned resultIndex)
+ : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
+ /*filled in at end of ctor*/ false, false, false, false) {
+ PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
+ PseudoObjectExprBits.ResultIndex = resultIndex + 1;
+
+ for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
+ Expr *E = (i == 0 ? syntax : semantics[i-1]);
+ getSubExprsBuffer()[i] = E;
+
+ if (E->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (E->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (E->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (E->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ if (isa<OpaqueValueExpr>(E))
+ assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
+ "opaque-value semantic expressions for pseudo-object "
+ "operations must have sources");
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+// UnaryExprOrTypeTraitExpr
+Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
+ const_child_range CCR =
+ const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
+ return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
+}
+
+Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
+ // If this is of a type and the type is a VLA type (and not a typedef), the
+ // size expression of the VLA needs to be treated as an executable expression.
+ // Why isn't this weirdness documented better in StmtIterator?
+ if (isArgumentType()) {
+ if (const VariableArrayType *T =
+ dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
+ return const_child_range(const_child_iterator(T), const_child_iterator());
+ return const_child_range(const_child_iterator(), const_child_iterator());
+ }
+ return const_child_range(&Argument.Ex, &Argument.Ex + 1);
+}
+
+AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
+ QualType t, AtomicOp op, SourceLocation RP)
+ : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
+ false, false, false, false),
+ NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
+{
+ assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
+ for (unsigned i = 0; i != args.size(); i++) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->isInstantiationDependent())
+ ExprBits.InstantiationDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i] = args[i];
+ }
+}
+
+unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
+ switch (Op) {
+ case AO__c11_atomic_init:
+ case AO__opencl_atomic_init:
+ case AO__c11_atomic_load:
+ case AO__atomic_load_n:
+ return 2;
+
+ case AO__opencl_atomic_load:
+ case AO__c11_atomic_store:
+ case AO__c11_atomic_exchange:
+ case AO__atomic_load:
+ case AO__atomic_store:
+ case AO__atomic_store_n:
+ case AO__atomic_exchange_n:
+ case AO__c11_atomic_fetch_add:
+ case AO__c11_atomic_fetch_sub:
+ case AO__c11_atomic_fetch_and:
+ case AO__c11_atomic_fetch_or:
+ case AO__c11_atomic_fetch_xor:
+ case AO__atomic_fetch_add:
+ case AO__atomic_fetch_sub:
+ case AO__atomic_fetch_and:
+ case AO__atomic_fetch_or:
+ case AO__atomic_fetch_xor:
+ case AO__atomic_fetch_nand:
+ case AO__atomic_add_fetch:
+ case AO__atomic_sub_fetch:
+ case AO__atomic_and_fetch:
+ case AO__atomic_or_fetch:
+ case AO__atomic_xor_fetch:
+ case AO__atomic_nand_fetch:
+ case AO__atomic_fetch_min:
+ case AO__atomic_fetch_max:
+ return 3;
+
+ case AO__opencl_atomic_store:
+ case AO__opencl_atomic_exchange:
+ case AO__opencl_atomic_fetch_add:
+ case AO__opencl_atomic_fetch_sub:
+ case AO__opencl_atomic_fetch_and:
+ case AO__opencl_atomic_fetch_or:
+ case AO__opencl_atomic_fetch_xor:
+ case AO__opencl_atomic_fetch_min:
+ case AO__opencl_atomic_fetch_max:
+ case AO__atomic_exchange:
+ return 4;
+
+ case AO__c11_atomic_compare_exchange_strong:
+ case AO__c11_atomic_compare_exchange_weak:
+ return 5;
+
+ case AO__opencl_atomic_compare_exchange_strong:
+ case AO__opencl_atomic_compare_exchange_weak:
+ case AO__atomic_compare_exchange:
+ case AO__atomic_compare_exchange_n:
+ return 6;
+ }
+ llvm_unreachable("unknown atomic op");
+}
+
+QualType AtomicExpr::getValueType() const {
+ auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
+ if (auto AT = T->getAs<AtomicType>())
+ return AT->getValueType();
+ return T;
+}
+
+QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
+ unsigned ArraySectionCount = 0;
+ while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
+ Base = OASE->getBase();
+ ++ArraySectionCount;
+ }
+ while (auto *ASE =
+ dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
+ Base = ASE->getBase();
+ ++ArraySectionCount;
+ }
+ Base = Base->IgnoreParenImpCasts();
+ auto OriginalTy = Base->getType();
+ if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
+ if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
+ OriginalTy = PVD->getOriginalType().getNonReferenceType();
+
+ for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
+ if (OriginalTy->isAnyPointerType())
+ OriginalTy = OriginalTy->getPointeeType();
+ else {
+ assert (OriginalTy->isArrayType());
+ OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
+ }
+ }
+ return OriginalTy;
+}