diff options
Diffstat (limited to 'clang/lib/Analysis/ThreadSafety.cpp')
| -rw-r--r-- | clang/lib/Analysis/ThreadSafety.cpp | 2570 | 
1 files changed, 2570 insertions, 0 deletions
| diff --git a/clang/lib/Analysis/ThreadSafety.cpp b/clang/lib/Analysis/ThreadSafety.cpp new file mode 100644 index 000000000000..c60954374ce3 --- /dev/null +++ b/clang/lib/Analysis/ThreadSafety.cpp @@ -0,0 +1,2570 @@ +//===- ThreadSafety.cpp ---------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// A intra-procedural analysis for thread safety (e.g. deadlocks and race +// conditions), based off of an annotation system. +// +// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html +// for more information. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Analyses/ThreadSafety.h" +#include "clang/AST/Attr.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclGroup.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/OperationKinds.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/Type.h" +#include "clang/Analysis/Analyses/PostOrderCFGView.h" +#include "clang/Analysis/Analyses/ThreadSafetyCommon.h" +#include "clang/Analysis/Analyses/ThreadSafetyTIL.h" +#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" +#include "clang/Analysis/Analyses/ThreadSafetyUtil.h" +#include "clang/Analysis/AnalysisDeclContext.h" +#include "clang/Analysis/CFG.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/OperatorKinds.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/Specifiers.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/ImmutableMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <functional> +#include <iterator> +#include <memory> +#include <string> +#include <type_traits> +#include <utility> +#include <vector> + +using namespace clang; +using namespace threadSafety; + +// Key method definition +ThreadSafetyHandler::~ThreadSafetyHandler() = default; + +/// Issue a warning about an invalid lock expression +static void warnInvalidLock(ThreadSafetyHandler &Handler, +                            const Expr *MutexExp, const NamedDecl *D, +                            const Expr *DeclExp, StringRef Kind) { +  SourceLocation Loc; +  if (DeclExp) +    Loc = DeclExp->getExprLoc(); + +  // FIXME: add a note about the attribute location in MutexExp or D +  if (Loc.isValid()) +    Handler.handleInvalidLockExp(Kind, Loc); +} + +namespace { + +/// A set of CapabilityExpr objects, which are compiled from thread safety +/// attributes on a function. +class CapExprSet : public SmallVector<CapabilityExpr, 4> { +public: +  /// Push M onto list, but discard duplicates. +  void push_back_nodup(const CapabilityExpr &CapE) { +    iterator It = std::find_if(begin(), end(), +                               [=](const CapabilityExpr &CapE2) { +      return CapE.equals(CapE2); +    }); +    if (It == end()) +      push_back(CapE); +  } +}; + +class FactManager; +class FactSet; + +/// This is a helper class that stores a fact that is known at a +/// particular point in program execution.  Currently, a fact is a capability, +/// along with additional information, such as where it was acquired, whether +/// it is exclusive or shared, etc. +/// +/// FIXME: this analysis does not currently support re-entrant locking. +class FactEntry : public CapabilityExpr { +private: +  /// Exclusive or shared. +  LockKind LKind; + +  /// Where it was acquired. +  SourceLocation AcquireLoc; + +  /// True if the lock was asserted. +  bool Asserted; + +  /// True if the lock was declared. +  bool Declared; + +public: +  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, +            bool Asrt, bool Declrd = false) +      : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), +        Declared(Declrd) {} +  virtual ~FactEntry() = default; + +  LockKind kind() const { return LKind;      } +  SourceLocation loc() const { return AcquireLoc; } +  bool asserted() const { return Asserted; } +  bool declared() const { return Declared; } + +  void setDeclared(bool D) { Declared = D; } + +  virtual void +  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, +                                SourceLocation JoinLoc, LockErrorKind LEK, +                                ThreadSafetyHandler &Handler) const = 0; +  virtual void handleLock(FactSet &FSet, FactManager &FactMan, +                          const FactEntry &entry, ThreadSafetyHandler &Handler, +                          StringRef DiagKind) const = 0; +  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, +                            const CapabilityExpr &Cp, SourceLocation UnlockLoc, +                            bool FullyRemove, ThreadSafetyHandler &Handler, +                            StringRef DiagKind) const = 0; + +  // Return true if LKind >= LK, where exclusive > shared +  bool isAtLeast(LockKind LK) const { +    return  (LKind == LK_Exclusive) || (LK == LK_Shared); +  } +}; + +using FactID = unsigned short; + +/// FactManager manages the memory for all facts that are created during +/// the analysis of a single routine. +class FactManager { +private: +  std::vector<std::unique_ptr<const FactEntry>> Facts; + +public: +  FactID newFact(std::unique_ptr<FactEntry> Entry) { +    Facts.push_back(std::move(Entry)); +    return static_cast<unsigned short>(Facts.size() - 1); +  } + +  const FactEntry &operator[](FactID F) const { return *Facts[F]; } +}; + +/// A FactSet is the set of facts that are known to be true at a +/// particular program point.  FactSets must be small, because they are +/// frequently copied, and are thus implemented as a set of indices into a +/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2 +/// locks, so we can get away with doing a linear search for lookup.  Note +/// that a hashtable or map is inappropriate in this case, because lookups +/// may involve partial pattern matches, rather than exact matches. +class FactSet { +private: +  using FactVec = SmallVector<FactID, 4>; + +  FactVec FactIDs; + +public: +  using iterator = FactVec::iterator; +  using const_iterator = FactVec::const_iterator; + +  iterator begin() { return FactIDs.begin(); } +  const_iterator begin() const { return FactIDs.begin(); } + +  iterator end() { return FactIDs.end(); } +  const_iterator end() const { return FactIDs.end(); } + +  bool isEmpty() const { return FactIDs.size() == 0; } + +  // Return true if the set contains only negative facts +  bool isEmpty(FactManager &FactMan) const { +    for (const auto FID : *this) { +      if (!FactMan[FID].negative()) +        return false; +    } +    return true; +  } + +  void addLockByID(FactID ID) { FactIDs.push_back(ID); } + +  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { +    FactID F = FM.newFact(std::move(Entry)); +    FactIDs.push_back(F); +    return F; +  } + +  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { +    unsigned n = FactIDs.size(); +    if (n == 0) +      return false; + +    for (unsigned i = 0; i < n-1; ++i) { +      if (FM[FactIDs[i]].matches(CapE)) { +        FactIDs[i] = FactIDs[n-1]; +        FactIDs.pop_back(); +        return true; +      } +    } +    if (FM[FactIDs[n-1]].matches(CapE)) { +      FactIDs.pop_back(); +      return true; +    } +    return false; +  } + +  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { +    return std::find_if(begin(), end(), [&](FactID ID) { +      return FM[ID].matches(CapE); +    }); +  } + +  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { +    auto I = std::find_if(begin(), end(), [&](FactID ID) { +      return FM[ID].matches(CapE); +    }); +    return I != end() ? &FM[*I] : nullptr; +  } + +  const FactEntry *findLockUniv(FactManager &FM, +                                const CapabilityExpr &CapE) const { +    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { +      return FM[ID].matchesUniv(CapE); +    }); +    return I != end() ? &FM[*I] : nullptr; +  } + +  const FactEntry *findPartialMatch(FactManager &FM, +                                    const CapabilityExpr &CapE) const { +    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { +      return FM[ID].partiallyMatches(CapE); +    }); +    return I != end() ? &FM[*I] : nullptr; +  } + +  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { +    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { +      return FM[ID].valueDecl() == Vd; +    }); +    return I != end(); +  } +}; + +class ThreadSafetyAnalyzer; + +} // namespace + +namespace clang { +namespace threadSafety { + +class BeforeSet { +private: +  using BeforeVect = SmallVector<const ValueDecl *, 4>; + +  struct BeforeInfo { +    BeforeVect Vect; +    int Visited = 0; + +    BeforeInfo() = default; +    BeforeInfo(BeforeInfo &&) = default; +  }; + +  using BeforeMap = +      llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; +  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; + +public: +  BeforeSet() = default; + +  BeforeInfo* insertAttrExprs(const ValueDecl* Vd, +                              ThreadSafetyAnalyzer& Analyzer); + +  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, +                                   ThreadSafetyAnalyzer &Analyzer); + +  void checkBeforeAfter(const ValueDecl* Vd, +                        const FactSet& FSet, +                        ThreadSafetyAnalyzer& Analyzer, +                        SourceLocation Loc, StringRef CapKind); + +private: +  BeforeMap BMap; +  CycleMap CycMap; +}; + +} // namespace threadSafety +} // namespace clang + +namespace { + +class LocalVariableMap; + +using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; + +/// A side (entry or exit) of a CFG node. +enum CFGBlockSide { CBS_Entry, CBS_Exit }; + +/// CFGBlockInfo is a struct which contains all the information that is +/// maintained for each block in the CFG.  See LocalVariableMap for more +/// information about the contexts. +struct CFGBlockInfo { +  // Lockset held at entry to block +  FactSet EntrySet; + +  // Lockset held at exit from block +  FactSet ExitSet; + +  // Context held at entry to block +  LocalVarContext EntryContext; + +  // Context held at exit from block +  LocalVarContext ExitContext; + +  // Location of first statement in block +  SourceLocation EntryLoc; + +  // Location of last statement in block. +  SourceLocation ExitLoc; + +  // Used to replay contexts later +  unsigned EntryIndex; + +  // Is this block reachable? +  bool Reachable = false; + +  const FactSet &getSet(CFGBlockSide Side) const { +    return Side == CBS_Entry ? EntrySet : ExitSet; +  } + +  SourceLocation getLocation(CFGBlockSide Side) const { +    return Side == CBS_Entry ? EntryLoc : ExitLoc; +  } + +private: +  CFGBlockInfo(LocalVarContext EmptyCtx) +      : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} + +public: +  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); +}; + +// A LocalVariableMap maintains a map from local variables to their currently +// valid definitions.  It provides SSA-like functionality when traversing the +// CFG.  Like SSA, each definition or assignment to a variable is assigned a +// unique name (an integer), which acts as the SSA name for that definition. +// The total set of names is shared among all CFG basic blocks. +// Unlike SSA, we do not rewrite expressions to replace local variables declrefs +// with their SSA-names.  Instead, we compute a Context for each point in the +// code, which maps local variables to the appropriate SSA-name.  This map +// changes with each assignment. +// +// The map is computed in a single pass over the CFG.  Subsequent analyses can +// then query the map to find the appropriate Context for a statement, and use +// that Context to look up the definitions of variables. +class LocalVariableMap { +public: +  using Context = LocalVarContext; + +  /// A VarDefinition consists of an expression, representing the value of the +  /// variable, along with the context in which that expression should be +  /// interpreted.  A reference VarDefinition does not itself contain this +  /// information, but instead contains a pointer to a previous VarDefinition. +  struct VarDefinition { +  public: +    friend class LocalVariableMap; + +    // The original declaration for this variable. +    const NamedDecl *Dec; + +    // The expression for this variable, OR +    const Expr *Exp = nullptr; + +    // Reference to another VarDefinition +    unsigned Ref = 0; + +    // The map with which Exp should be interpreted. +    Context Ctx; + +    bool isReference() { return !Exp; } + +  private: +    // Create ordinary variable definition +    VarDefinition(const NamedDecl *D, const Expr *E, Context C) +        : Dec(D), Exp(E), Ctx(C) {} + +    // Create reference to previous definition +    VarDefinition(const NamedDecl *D, unsigned R, Context C) +        : Dec(D), Ref(R), Ctx(C) {} +  }; + +private: +  Context::Factory ContextFactory; +  std::vector<VarDefinition> VarDefinitions; +  std::vector<unsigned> CtxIndices; +  std::vector<std::pair<const Stmt *, Context>> SavedContexts; + +public: +  LocalVariableMap() { +    // index 0 is a placeholder for undefined variables (aka phi-nodes). +    VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); +  } + +  /// Look up a definition, within the given context. +  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { +    const unsigned *i = Ctx.lookup(D); +    if (!i) +      return nullptr; +    assert(*i < VarDefinitions.size()); +    return &VarDefinitions[*i]; +  } + +  /// Look up the definition for D within the given context.  Returns +  /// NULL if the expression is not statically known.  If successful, also +  /// modifies Ctx to hold the context of the return Expr. +  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { +    const unsigned *P = Ctx.lookup(D); +    if (!P) +      return nullptr; + +    unsigned i = *P; +    while (i > 0) { +      if (VarDefinitions[i].Exp) { +        Ctx = VarDefinitions[i].Ctx; +        return VarDefinitions[i].Exp; +      } +      i = VarDefinitions[i].Ref; +    } +    return nullptr; +  } + +  Context getEmptyContext() { return ContextFactory.getEmptyMap(); } + +  /// Return the next context after processing S.  This function is used by +  /// clients of the class to get the appropriate context when traversing the +  /// CFG.  It must be called for every assignment or DeclStmt. +  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) { +    if (SavedContexts[CtxIndex+1].first == S) { +      CtxIndex++; +      Context Result = SavedContexts[CtxIndex].second; +      return Result; +    } +    return C; +  } + +  void dumpVarDefinitionName(unsigned i) { +    if (i == 0) { +      llvm::errs() << "Undefined"; +      return; +    } +    const NamedDecl *Dec = VarDefinitions[i].Dec; +    if (!Dec) { +      llvm::errs() << "<<NULL>>"; +      return; +    } +    Dec->printName(llvm::errs()); +    llvm::errs() << "." << i << " " << ((const void*) Dec); +  } + +  /// Dumps an ASCII representation of the variable map to llvm::errs() +  void dump() { +    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { +      const Expr *Exp = VarDefinitions[i].Exp; +      unsigned Ref = VarDefinitions[i].Ref; + +      dumpVarDefinitionName(i); +      llvm::errs() << " = "; +      if (Exp) Exp->dump(); +      else { +        dumpVarDefinitionName(Ref); +        llvm::errs() << "\n"; +      } +    } +  } + +  /// Dumps an ASCII representation of a Context to llvm::errs() +  void dumpContext(Context C) { +    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { +      const NamedDecl *D = I.getKey(); +      D->printName(llvm::errs()); +      const unsigned *i = C.lookup(D); +      llvm::errs() << " -> "; +      dumpVarDefinitionName(*i); +      llvm::errs() << "\n"; +    } +  } + +  /// Builds the variable map. +  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, +                   std::vector<CFGBlockInfo> &BlockInfo); + +protected: +  friend class VarMapBuilder; + +  // Get the current context index +  unsigned getContextIndex() { return SavedContexts.size()-1; } + +  // Save the current context for later replay +  void saveContext(const Stmt *S, Context C) { +    SavedContexts.push_back(std::make_pair(S, C)); +  } + +  // Adds a new definition to the given context, and returns a new context. +  // This method should be called when declaring a new variable. +  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { +    assert(!Ctx.contains(D)); +    unsigned newID = VarDefinitions.size(); +    Context NewCtx = ContextFactory.add(Ctx, D, newID); +    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); +    return NewCtx; +  } + +  // Add a new reference to an existing definition. +  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { +    unsigned newID = VarDefinitions.size(); +    Context NewCtx = ContextFactory.add(Ctx, D, newID); +    VarDefinitions.push_back(VarDefinition(D, i, Ctx)); +    return NewCtx; +  } + +  // Updates a definition only if that definition is already in the map. +  // This method should be called when assigning to an existing variable. +  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { +    if (Ctx.contains(D)) { +      unsigned newID = VarDefinitions.size(); +      Context NewCtx = ContextFactory.remove(Ctx, D); +      NewCtx = ContextFactory.add(NewCtx, D, newID); +      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); +      return NewCtx; +    } +    return Ctx; +  } + +  // Removes a definition from the context, but keeps the variable name +  // as a valid variable.  The index 0 is a placeholder for cleared definitions. +  Context clearDefinition(const NamedDecl *D, Context Ctx) { +    Context NewCtx = Ctx; +    if (NewCtx.contains(D)) { +      NewCtx = ContextFactory.remove(NewCtx, D); +      NewCtx = ContextFactory.add(NewCtx, D, 0); +    } +    return NewCtx; +  } + +  // Remove a definition entirely frmo the context. +  Context removeDefinition(const NamedDecl *D, Context Ctx) { +    Context NewCtx = Ctx; +    if (NewCtx.contains(D)) { +      NewCtx = ContextFactory.remove(NewCtx, D); +    } +    return NewCtx; +  } + +  Context intersectContexts(Context C1, Context C2); +  Context createReferenceContext(Context C); +  void intersectBackEdge(Context C1, Context C2); +}; + +} // namespace + +// This has to be defined after LocalVariableMap. +CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { +  return CFGBlockInfo(M.getEmptyContext()); +} + +namespace { + +/// Visitor which builds a LocalVariableMap +class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> { +public: +  LocalVariableMap* VMap; +  LocalVariableMap::Context Ctx; + +  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) +      : VMap(VM), Ctx(C) {} + +  void VisitDeclStmt(const DeclStmt *S); +  void VisitBinaryOperator(const BinaryOperator *BO); +}; + +} // namespace + +// Add new local variables to the variable map +void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) { +  bool modifiedCtx = false; +  const DeclGroupRef DGrp = S->getDeclGroup(); +  for (const auto *D : DGrp) { +    if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { +      const Expr *E = VD->getInit(); + +      // Add local variables with trivial type to the variable map +      QualType T = VD->getType(); +      if (T.isTrivialType(VD->getASTContext())) { +        Ctx = VMap->addDefinition(VD, E, Ctx); +        modifiedCtx = true; +      } +    } +  } +  if (modifiedCtx) +    VMap->saveContext(S, Ctx); +} + +// Update local variable definitions in variable map +void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) { +  if (!BO->isAssignmentOp()) +    return; + +  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); + +  // Update the variable map and current context. +  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { +    const ValueDecl *VDec = DRE->getDecl(); +    if (Ctx.lookup(VDec)) { +      if (BO->getOpcode() == BO_Assign) +        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); +      else +        // FIXME -- handle compound assignment operators +        Ctx = VMap->clearDefinition(VDec, Ctx); +      VMap->saveContext(BO, Ctx); +    } +  } +} + +// Computes the intersection of two contexts.  The intersection is the +// set of variables which have the same definition in both contexts; +// variables with different definitions are discarded. +LocalVariableMap::Context +LocalVariableMap::intersectContexts(Context C1, Context C2) { +  Context Result = C1; +  for (const auto &P : C1) { +    const NamedDecl *Dec = P.first; +    const unsigned *i2 = C2.lookup(Dec); +    if (!i2)             // variable doesn't exist on second path +      Result = removeDefinition(Dec, Result); +    else if (*i2 != P.second)  // variable exists, but has different definition +      Result = clearDefinition(Dec, Result); +  } +  return Result; +} + +// For every variable in C, create a new variable that refers to the +// definition in C.  Return a new context that contains these new variables. +// (We use this for a naive implementation of SSA on loop back-edges.) +LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { +  Context Result = getEmptyContext(); +  for (const auto &P : C) +    Result = addReference(P.first, P.second, Result); +  return Result; +} + +// This routine also takes the intersection of C1 and C2, but it does so by +// altering the VarDefinitions.  C1 must be the result of an earlier call to +// createReferenceContext. +void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { +  for (const auto &P : C1) { +    unsigned i1 = P.second; +    VarDefinition *VDef = &VarDefinitions[i1]; +    assert(VDef->isReference()); + +    const unsigned *i2 = C2.lookup(P.first); +    if (!i2 || (*i2 != i1)) +      VDef->Ref = 0;    // Mark this variable as undefined +  } +} + +// Traverse the CFG in topological order, so all predecessors of a block +// (excluding back-edges) are visited before the block itself.  At +// each point in the code, we calculate a Context, which holds the set of +// variable definitions which are visible at that point in execution. +// Visible variables are mapped to their definitions using an array that +// contains all definitions. +// +// At join points in the CFG, the set is computed as the intersection of +// the incoming sets along each edge, E.g. +// +//                       { Context                 | VarDefinitions } +//   int x = 0;          { x -> x1                 | x1 = 0 } +//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 } +//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... } +//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... } +//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... } +// +// This is essentially a simpler and more naive version of the standard SSA +// algorithm.  Those definitions that remain in the intersection are from blocks +// that strictly dominate the current block.  We do not bother to insert proper +// phi nodes, because they are not used in our analysis; instead, wherever +// a phi node would be required, we simply remove that definition from the +// context (E.g. x above). +// +// The initial traversal does not capture back-edges, so those need to be +// handled on a separate pass.  Whenever the first pass encounters an +// incoming back edge, it duplicates the context, creating new definitions +// that refer back to the originals.  (These correspond to places where SSA +// might have to insert a phi node.)  On the second pass, these definitions are +// set to NULL if the variable has changed on the back-edge (i.e. a phi +// node was actually required.)  E.g. +// +//                       { Context           | VarDefinitions } +//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 } +//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; } +//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... } +//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... } +void LocalVariableMap::traverseCFG(CFG *CFGraph, +                                   const PostOrderCFGView *SortedGraph, +                                   std::vector<CFGBlockInfo> &BlockInfo) { +  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); + +  CtxIndices.resize(CFGraph->getNumBlockIDs()); + +  for (const auto *CurrBlock : *SortedGraph) { +    unsigned CurrBlockID = CurrBlock->getBlockID(); +    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; + +    VisitedBlocks.insert(CurrBlock); + +    // Calculate the entry context for the current block +    bool HasBackEdges = false; +    bool CtxInit = true; +    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), +         PE  = CurrBlock->pred_end(); PI != PE; ++PI) { +      // if *PI -> CurrBlock is a back edge, so skip it +      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { +        HasBackEdges = true; +        continue; +      } + +      unsigned PrevBlockID = (*PI)->getBlockID(); +      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + +      if (CtxInit) { +        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; +        CtxInit = false; +      } +      else { +        CurrBlockInfo->EntryContext = +          intersectContexts(CurrBlockInfo->EntryContext, +                            PrevBlockInfo->ExitContext); +      } +    } + +    // Duplicate the context if we have back-edges, so we can call +    // intersectBackEdges later. +    if (HasBackEdges) +      CurrBlockInfo->EntryContext = +        createReferenceContext(CurrBlockInfo->EntryContext); + +    // Create a starting context index for the current block +    saveContext(nullptr, CurrBlockInfo->EntryContext); +    CurrBlockInfo->EntryIndex = getContextIndex(); + +    // Visit all the statements in the basic block. +    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); +    for (const auto &BI : *CurrBlock) { +      switch (BI.getKind()) { +        case CFGElement::Statement: { +          CFGStmt CS = BI.castAs<CFGStmt>(); +          VMapBuilder.Visit(CS.getStmt()); +          break; +        } +        default: +          break; +      } +    } +    CurrBlockInfo->ExitContext = VMapBuilder.Ctx; + +    // Mark variables on back edges as "unknown" if they've been changed. +    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), +         SE  = CurrBlock->succ_end(); SI != SE; ++SI) { +      // if CurrBlock -> *SI is *not* a back edge +      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) +        continue; + +      CFGBlock *FirstLoopBlock = *SI; +      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; +      Context LoopEnd   = CurrBlockInfo->ExitContext; +      intersectBackEdge(LoopBegin, LoopEnd); +    } +  } + +  // Put an extra entry at the end of the indexed context array +  unsigned exitID = CFGraph->getExit().getBlockID(); +  saveContext(nullptr, BlockInfo[exitID].ExitContext); +} + +/// Find the appropriate source locations to use when producing diagnostics for +/// each block in the CFG. +static void findBlockLocations(CFG *CFGraph, +                               const PostOrderCFGView *SortedGraph, +                               std::vector<CFGBlockInfo> &BlockInfo) { +  for (const auto *CurrBlock : *SortedGraph) { +    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; + +    // Find the source location of the last statement in the block, if the +    // block is not empty. +    if (const Stmt *S = CurrBlock->getTerminatorStmt()) { +      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc(); +    } else { +      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), +           BE = CurrBlock->rend(); BI != BE; ++BI) { +        // FIXME: Handle other CFGElement kinds. +        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { +          CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc(); +          break; +        } +      } +    } + +    if (CurrBlockInfo->ExitLoc.isValid()) { +      // This block contains at least one statement. Find the source location +      // of the first statement in the block. +      for (const auto &BI : *CurrBlock) { +        // FIXME: Handle other CFGElement kinds. +        if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { +          CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc(); +          break; +        } +      } +    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && +               CurrBlock != &CFGraph->getExit()) { +      // The block is empty, and has a single predecessor. Use its exit +      // location. +      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = +          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; +    } +  } +} + +namespace { + +class LockableFactEntry : public FactEntry { +private: +  /// managed by ScopedLockable object +  bool Managed; + +public: +  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, +                    bool Mng = false, bool Asrt = false) +      : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} + +  void +  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, +                                SourceLocation JoinLoc, LockErrorKind LEK, +                                ThreadSafetyHandler &Handler) const override { +    if (!Managed && !asserted() && !negative() && !isUniversal()) { +      Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, +                                        LEK); +    } +  } + +  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, +                  ThreadSafetyHandler &Handler, +                  StringRef DiagKind) const override { +    Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc()); +  } + +  void handleUnlock(FactSet &FSet, FactManager &FactMan, +                    const CapabilityExpr &Cp, SourceLocation UnlockLoc, +                    bool FullyRemove, ThreadSafetyHandler &Handler, +                    StringRef DiagKind) const override { +    FSet.removeLock(FactMan, Cp); +    if (!Cp.negative()) { +      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( +                                !Cp, LK_Exclusive, UnlockLoc)); +    } +  } +}; + +class ScopedLockableFactEntry : public FactEntry { +private: +  enum UnderlyingCapabilityKind { +    UCK_Acquired,          ///< Any kind of acquired capability. +    UCK_ReleasedShared,    ///< Shared capability that was released. +    UCK_ReleasedExclusive, ///< Exclusive capability that was released. +  }; + +  using UnderlyingCapability = +      llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>; + +  SmallVector<UnderlyingCapability, 4> UnderlyingMutexes; + +public: +  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc) +      : FactEntry(CE, LK_Exclusive, Loc, false) {} + +  void addExclusiveLock(const CapabilityExpr &M) { +    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); +  } + +  void addSharedLock(const CapabilityExpr &M) { +    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired); +  } + +  void addExclusiveUnlock(const CapabilityExpr &M) { +    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive); +  } + +  void addSharedUnlock(const CapabilityExpr &M) { +    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared); +  } + +  void +  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, +                                SourceLocation JoinLoc, LockErrorKind LEK, +                                ThreadSafetyHandler &Handler) const override { +    for (const auto &UnderlyingMutex : UnderlyingMutexes) { +      const auto *Entry = FSet.findLock( +          FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false)); +      if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) || +          (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) { +        // If this scoped lock manages another mutex, and if the underlying +        // mutex is still/not held, then warn about the underlying mutex. +        Handler.handleMutexHeldEndOfScope( +            "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc, +            LEK); +      } +    } +  } + +  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry, +                  ThreadSafetyHandler &Handler, +                  StringRef DiagKind) const override { +    for (const auto &UnderlyingMutex : UnderlyingMutexes) { +      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); + +      if (UnderlyingMutex.getInt() == UCK_Acquired) +        lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler, +             DiagKind); +      else +        unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind); +    } +  } + +  void handleUnlock(FactSet &FSet, FactManager &FactMan, +                    const CapabilityExpr &Cp, SourceLocation UnlockLoc, +                    bool FullyRemove, ThreadSafetyHandler &Handler, +                    StringRef DiagKind) const override { +    assert(!Cp.negative() && "Managing object cannot be negative."); +    for (const auto &UnderlyingMutex : UnderlyingMutexes) { +      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false); + +      // Remove/lock the underlying mutex if it exists/is still unlocked; warn +      // on double unlocking/locking if we're not destroying the scoped object. +      ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler; +      if (UnderlyingMutex.getInt() == UCK_Acquired) { +        unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind); +      } else { +        LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared +                            ? LK_Shared +                            : LK_Exclusive; +        lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind); +      } +    } +    if (FullyRemove) +      FSet.removeLock(FactMan, Cp); +  } + +private: +  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, +            LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler, +            StringRef DiagKind) const { +    if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) { +      if (Handler) +        Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc); +    } else { +      FSet.removeLock(FactMan, !Cp); +      FSet.addLock(FactMan, +                   std::make_unique<LockableFactEntry>(Cp, kind, loc)); +    } +  } + +  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp, +              SourceLocation loc, ThreadSafetyHandler *Handler, +              StringRef DiagKind) const { +    if (FSet.findLock(FactMan, Cp)) { +      FSet.removeLock(FactMan, Cp); +      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>( +                                !Cp, LK_Exclusive, loc)); +    } else if (Handler) { +      Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc); +    } +  } +}; + +/// Class which implements the core thread safety analysis routines. +class ThreadSafetyAnalyzer { +  friend class BuildLockset; +  friend class threadSafety::BeforeSet; + +  llvm::BumpPtrAllocator Bpa; +  threadSafety::til::MemRegionRef Arena; +  threadSafety::SExprBuilder SxBuilder; + +  ThreadSafetyHandler &Handler; +  const CXXMethodDecl *CurrentMethod; +  LocalVariableMap LocalVarMap; +  FactManager FactMan; +  std::vector<CFGBlockInfo> BlockInfo; + +  BeforeSet *GlobalBeforeSet; + +public: +  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) +      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} + +  bool inCurrentScope(const CapabilityExpr &CapE); + +  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, +               StringRef DiagKind, bool ReqAttr = false); +  void removeLock(FactSet &FSet, const CapabilityExpr &CapE, +                  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, +                  StringRef DiagKind); + +  template <typename AttrType> +  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, +                   const NamedDecl *D, VarDecl *SelfDecl = nullptr); + +  template <class AttrType> +  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, +                   const NamedDecl *D, +                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock, +                   Expr *BrE, bool Neg); + +  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, +                                     bool &Negate); + +  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, +                      const CFGBlock* PredBlock, +                      const CFGBlock *CurrBlock); + +  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, +                        SourceLocation JoinLoc, +                        LockErrorKind LEK1, LockErrorKind LEK2, +                        bool Modify=true); + +  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, +                        SourceLocation JoinLoc, LockErrorKind LEK1, +                        bool Modify=true) { +    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); +  } + +  void runAnalysis(AnalysisDeclContext &AC); +}; + +} // namespace + +/// Process acquired_before and acquired_after attributes on Vd. +BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, +    ThreadSafetyAnalyzer& Analyzer) { +  // Create a new entry for Vd. +  BeforeInfo *Info = nullptr; +  { +    // Keep InfoPtr in its own scope in case BMap is modified later and the +    // reference becomes invalid. +    std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; +    if (!InfoPtr) +      InfoPtr.reset(new BeforeInfo()); +    Info = InfoPtr.get(); +  } + +  for (const auto *At : Vd->attrs()) { +    switch (At->getKind()) { +      case attr::AcquiredBefore: { +        const auto *A = cast<AcquiredBeforeAttr>(At); + +        // Read exprs from the attribute, and add them to BeforeVect. +        for (const auto *Arg : A->args()) { +          CapabilityExpr Cp = +            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); +          if (const ValueDecl *Cpvd = Cp.valueDecl()) { +            Info->Vect.push_back(Cpvd); +            const auto It = BMap.find(Cpvd); +            if (It == BMap.end()) +              insertAttrExprs(Cpvd, Analyzer); +          } +        } +        break; +      } +      case attr::AcquiredAfter: { +        const auto *A = cast<AcquiredAfterAttr>(At); + +        // Read exprs from the attribute, and add them to BeforeVect. +        for (const auto *Arg : A->args()) { +          CapabilityExpr Cp = +            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); +          if (const ValueDecl *ArgVd = Cp.valueDecl()) { +            // Get entry for mutex listed in attribute +            BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); +            ArgInfo->Vect.push_back(Vd); +          } +        } +        break; +      } +      default: +        break; +    } +  } + +  return Info; +} + +BeforeSet::BeforeInfo * +BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, +                                ThreadSafetyAnalyzer &Analyzer) { +  auto It = BMap.find(Vd); +  BeforeInfo *Info = nullptr; +  if (It == BMap.end()) +    Info = insertAttrExprs(Vd, Analyzer); +  else +    Info = It->second.get(); +  assert(Info && "BMap contained nullptr?"); +  return Info; +} + +/// Return true if any mutexes in FSet are in the acquired_before set of Vd. +void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, +                                 const FactSet& FSet, +                                 ThreadSafetyAnalyzer& Analyzer, +                                 SourceLocation Loc, StringRef CapKind) { +  SmallVector<BeforeInfo*, 8> InfoVect; + +  // Do a depth-first traversal of Vd. +  // Return true if there are cycles. +  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { +    if (!Vd) +      return false; + +    BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); + +    if (Info->Visited == 1) +      return true; + +    if (Info->Visited == 2) +      return false; + +    if (Info->Vect.empty()) +      return false; + +    InfoVect.push_back(Info); +    Info->Visited = 1; +    for (const auto *Vdb : Info->Vect) { +      // Exclude mutexes in our immediate before set. +      if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { +        StringRef L1 = StartVd->getName(); +        StringRef L2 = Vdb->getName(); +        Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); +      } +      // Transitively search other before sets, and warn on cycles. +      if (traverse(Vdb)) { +        if (CycMap.find(Vd) == CycMap.end()) { +          CycMap.insert(std::make_pair(Vd, true)); +          StringRef L1 = Vd->getName(); +          Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); +        } +      } +    } +    Info->Visited = 2; +    return false; +  }; + +  traverse(StartVd); + +  for (auto *Info : InfoVect) +    Info->Visited = 0; +} + +/// Gets the value decl pointer from DeclRefExprs or MemberExprs. +static const ValueDecl *getValueDecl(const Expr *Exp) { +  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) +    return getValueDecl(CE->getSubExpr()); + +  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) +    return DR->getDecl(); + +  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) +    return ME->getMemberDecl(); + +  return nullptr; +} + +namespace { + +template <typename Ty> +class has_arg_iterator_range { +  using yes = char[1]; +  using no = char[2]; + +  template <typename Inner> +  static yes& test(Inner *I, decltype(I->args()) * = nullptr); + +  template <typename> +  static no& test(...); + +public: +  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); +}; + +} // namespace + +static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { +  return A->getName(); +} + +static StringRef ClassifyDiagnostic(QualType VDT) { +  // We need to look at the declaration of the type of the value to determine +  // which it is. The type should either be a record or a typedef, or a pointer +  // or reference thereof. +  if (const auto *RT = VDT->getAs<RecordType>()) { +    if (const auto *RD = RT->getDecl()) +      if (const auto *CA = RD->getAttr<CapabilityAttr>()) +        return ClassifyDiagnostic(CA); +  } else if (const auto *TT = VDT->getAs<TypedefType>()) { +    if (const auto *TD = TT->getDecl()) +      if (const auto *CA = TD->getAttr<CapabilityAttr>()) +        return ClassifyDiagnostic(CA); +  } else if (VDT->isPointerType() || VDT->isReferenceType()) +    return ClassifyDiagnostic(VDT->getPointeeType()); + +  return "mutex"; +} + +static StringRef ClassifyDiagnostic(const ValueDecl *VD) { +  assert(VD && "No ValueDecl passed"); + +  // The ValueDecl is the declaration of a mutex or role (hopefully). +  return ClassifyDiagnostic(VD->getType()); +} + +template <typename AttrTy> +static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, +                               StringRef>::type +ClassifyDiagnostic(const AttrTy *A) { +  if (const ValueDecl *VD = getValueDecl(A->getArg())) +    return ClassifyDiagnostic(VD); +  return "mutex"; +} + +template <typename AttrTy> +static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, +                               StringRef>::type +ClassifyDiagnostic(const AttrTy *A) { +  for (const auto *Arg : A->args()) { +    if (const ValueDecl *VD = getValueDecl(Arg)) +      return ClassifyDiagnostic(VD); +  } +  return "mutex"; +} + +bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { +  if (!CurrentMethod) +      return false; +  if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { +    const auto *VD = P->clangDecl(); +    if (VD) +      return VD->getDeclContext() == CurrentMethod->getDeclContext(); +  } +  return false; +} + +/// Add a new lock to the lockset, warning if the lock is already there. +/// \param ReqAttr -- true if this is part of an initial Requires attribute. +void ThreadSafetyAnalyzer::addLock(FactSet &FSet, +                                   std::unique_ptr<FactEntry> Entry, +                                   StringRef DiagKind, bool ReqAttr) { +  if (Entry->shouldIgnore()) +    return; + +  if (!ReqAttr && !Entry->negative()) { +    // look for the negative capability, and remove it from the fact set. +    CapabilityExpr NegC = !*Entry; +    const FactEntry *Nen = FSet.findLock(FactMan, NegC); +    if (Nen) { +      FSet.removeLock(FactMan, NegC); +    } +    else { +      if (inCurrentScope(*Entry) && !Entry->asserted()) +        Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), +                                      NegC.toString(), Entry->loc()); +    } +  } + +  // Check before/after constraints +  if (Handler.issueBetaWarnings() && +      !Entry->asserted() && !Entry->declared()) { +    GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, +                                      Entry->loc(), DiagKind); +  } + +  // FIXME: Don't always warn when we have support for reentrant locks. +  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) { +    if (!Entry->asserted()) +      Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind); +  } else { +    FSet.addLock(FactMan, std::move(Entry)); +  } +} + +/// Remove a lock from the lockset, warning if the lock is not there. +/// \param UnlockLoc The source location of the unlock (only used in error msg) +void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, +                                      SourceLocation UnlockLoc, +                                      bool FullyRemove, LockKind ReceivedKind, +                                      StringRef DiagKind) { +  if (Cp.shouldIgnore()) +    return; + +  const FactEntry *LDat = FSet.findLock(FactMan, Cp); +  if (!LDat) { +    Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); +    return; +  } + +  // Generic lock removal doesn't care about lock kind mismatches, but +  // otherwise diagnose when the lock kinds are mismatched. +  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { +    Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(), +                                      ReceivedKind, LDat->loc(), UnlockLoc); +  } + +  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, +                     DiagKind); +} + +/// Extract the list of mutexIDs from the attribute on an expression, +/// and push them onto Mtxs, discarding any duplicates. +template <typename AttrType> +void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, +                                       const Expr *Exp, const NamedDecl *D, +                                       VarDecl *SelfDecl) { +  if (Attr->args_size() == 0) { +    // The mutex held is the "this" object. +    CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); +    if (Cp.isInvalid()) { +       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); +       return; +    } +    //else +    if (!Cp.shouldIgnore()) +      Mtxs.push_back_nodup(Cp); +    return; +  } + +  for (const auto *Arg : Attr->args()) { +    CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); +    if (Cp.isInvalid()) { +       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); +       continue; +    } +    //else +    if (!Cp.shouldIgnore()) +      Mtxs.push_back_nodup(Cp); +  } +} + +/// Extract the list of mutexIDs from a trylock attribute.  If the +/// trylock applies to the given edge, then push them onto Mtxs, discarding +/// any duplicates. +template <class AttrType> +void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, +                                       const Expr *Exp, const NamedDecl *D, +                                       const CFGBlock *PredBlock, +                                       const CFGBlock *CurrBlock, +                                       Expr *BrE, bool Neg) { +  // Find out which branch has the lock +  bool branch = false; +  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) +    branch = BLE->getValue(); +  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) +    branch = ILE->getValue().getBoolValue(); + +  int branchnum = branch ? 0 : 1; +  if (Neg) +    branchnum = !branchnum; + +  // If we've taken the trylock branch, then add the lock +  int i = 0; +  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), +       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { +    if (*SI == CurrBlock && i == branchnum) +      getMutexIDs(Mtxs, Attr, Exp, D); +  } +} + +static bool getStaticBooleanValue(Expr *E, bool &TCond) { +  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { +    TCond = false; +    return true; +  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { +    TCond = BLE->getValue(); +    return true; +  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { +    TCond = ILE->getValue().getBoolValue(); +    return true; +  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) +    return getStaticBooleanValue(CE->getSubExpr(), TCond); +  return false; +} + +// If Cond can be traced back to a function call, return the call expression. +// The negate variable should be called with false, and will be set to true +// if the function call is negated, e.g. if (!mu.tryLock(...)) +const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, +                                                         LocalVarContext C, +                                                         bool &Negate) { +  if (!Cond) +    return nullptr; + +  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) { +    if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect) +      return getTrylockCallExpr(CallExp->getArg(0), C, Negate); +    return CallExp; +  } +  else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) +    return getTrylockCallExpr(PE->getSubExpr(), C, Negate); +  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) +    return getTrylockCallExpr(CE->getSubExpr(), C, Negate); +  else if (const auto *FE = dyn_cast<FullExpr>(Cond)) +    return getTrylockCallExpr(FE->getSubExpr(), C, Negate); +  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { +    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); +    return getTrylockCallExpr(E, C, Negate); +  } +  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { +    if (UOP->getOpcode() == UO_LNot) { +      Negate = !Negate; +      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); +    } +    return nullptr; +  } +  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { +    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { +      if (BOP->getOpcode() == BO_NE) +        Negate = !Negate; + +      bool TCond = false; +      if (getStaticBooleanValue(BOP->getRHS(), TCond)) { +        if (!TCond) Negate = !Negate; +        return getTrylockCallExpr(BOP->getLHS(), C, Negate); +      } +      TCond = false; +      if (getStaticBooleanValue(BOP->getLHS(), TCond)) { +        if (!TCond) Negate = !Negate; +        return getTrylockCallExpr(BOP->getRHS(), C, Negate); +      } +      return nullptr; +    } +    if (BOP->getOpcode() == BO_LAnd) { +      // LHS must have been evaluated in a different block. +      return getTrylockCallExpr(BOP->getRHS(), C, Negate); +    } +    if (BOP->getOpcode() == BO_LOr) +      return getTrylockCallExpr(BOP->getRHS(), C, Negate); +    return nullptr; +  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) { +    bool TCond, FCond; +    if (getStaticBooleanValue(COP->getTrueExpr(), TCond) && +        getStaticBooleanValue(COP->getFalseExpr(), FCond)) { +      if (TCond && !FCond) +        return getTrylockCallExpr(COP->getCond(), C, Negate); +      if (!TCond && FCond) { +        Negate = !Negate; +        return getTrylockCallExpr(COP->getCond(), C, Negate); +      } +    } +  } +  return nullptr; +} + +/// Find the lockset that holds on the edge between PredBlock +/// and CurrBlock.  The edge set is the exit set of PredBlock (passed +/// as the ExitSet parameter) plus any trylocks, which are conditionally held. +void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, +                                          const FactSet &ExitSet, +                                          const CFGBlock *PredBlock, +                                          const CFGBlock *CurrBlock) { +  Result = ExitSet; + +  const Stmt *Cond = PredBlock->getTerminatorCondition(); +  // We don't acquire try-locks on ?: branches, only when its result is used. +  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt())) +    return; + +  bool Negate = false; +  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; +  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; +  StringRef CapDiagKind = "mutex"; + +  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate); +  if (!Exp) +    return; + +  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); +  if(!FunDecl || !FunDecl->hasAttrs()) +    return; + +  CapExprSet ExclusiveLocksToAdd; +  CapExprSet SharedLocksToAdd; + +  // If the condition is a call to a Trylock function, then grab the attributes +  for (const auto *Attr : FunDecl->attrs()) { +    switch (Attr->getKind()) { +      case attr::TryAcquireCapability: { +        auto *A = cast<TryAcquireCapabilityAttr>(Attr); +        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, +                    Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), +                    Negate); +        CapDiagKind = ClassifyDiagnostic(A); +        break; +      }; +      case attr::ExclusiveTrylockFunction: { +        const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); +        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, +                    PredBlock, CurrBlock, A->getSuccessValue(), Negate); +        CapDiagKind = ClassifyDiagnostic(A); +        break; +      } +      case attr::SharedTrylockFunction: { +        const auto *A = cast<SharedTrylockFunctionAttr>(Attr); +        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, +                    PredBlock, CurrBlock, A->getSuccessValue(), Negate); +        CapDiagKind = ClassifyDiagnostic(A); +        break; +      } +      default: +        break; +    } +  } + +  // Add and remove locks. +  SourceLocation Loc = Exp->getExprLoc(); +  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) +    addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd, +                                                         LK_Exclusive, Loc), +            CapDiagKind); +  for (const auto &SharedLockToAdd : SharedLocksToAdd) +    addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd, +                                                         LK_Shared, Loc), +            CapDiagKind); +} + +namespace { + +/// We use this class to visit different types of expressions in +/// CFGBlocks, and build up the lockset. +/// An expression may cause us to add or remove locks from the lockset, or else +/// output error messages related to missing locks. +/// FIXME: In future, we may be able to not inherit from a visitor. +class BuildLockset : public ConstStmtVisitor<BuildLockset> { +  friend class ThreadSafetyAnalyzer; + +  ThreadSafetyAnalyzer *Analyzer; +  FactSet FSet; +  LocalVariableMap::Context LVarCtx; +  unsigned CtxIndex; + +  // helper functions +  void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, +                          Expr *MutexExp, ProtectedOperationKind POK, +                          StringRef DiagKind, SourceLocation Loc); +  void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, +                       StringRef DiagKind); + +  void checkAccess(const Expr *Exp, AccessKind AK, +                   ProtectedOperationKind POK = POK_VarAccess); +  void checkPtAccess(const Expr *Exp, AccessKind AK, +                     ProtectedOperationKind POK = POK_VarAccess); + +  void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); +  void examineArguments(const FunctionDecl *FD, +                        CallExpr::const_arg_iterator ArgBegin, +                        CallExpr::const_arg_iterator ArgEnd, +                        bool SkipFirstParam = false); + +public: +  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) +      : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), +        LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} + +  void VisitUnaryOperator(const UnaryOperator *UO); +  void VisitBinaryOperator(const BinaryOperator *BO); +  void VisitCastExpr(const CastExpr *CE); +  void VisitCallExpr(const CallExpr *Exp); +  void VisitCXXConstructExpr(const CXXConstructExpr *Exp); +  void VisitDeclStmt(const DeclStmt *S); +}; + +} // namespace + +/// Warn if the LSet does not contain a lock sufficient to protect access +/// of at least the passed in AccessKind. +void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, +                                      AccessKind AK, Expr *MutexExp, +                                      ProtectedOperationKind POK, +                                      StringRef DiagKind, SourceLocation Loc) { +  LockKind LK = getLockKindFromAccessKind(AK); + +  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); +  if (Cp.isInvalid()) { +    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); +    return; +  } else if (Cp.shouldIgnore()) { +    return; +  } + +  if (Cp.negative()) { +    // Negative capabilities act like locks excluded +    const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); +    if (LDat) { +      Analyzer->Handler.handleFunExcludesLock( +          DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); +      return; +    } + +    // If this does not refer to a negative capability in the same class, +    // then stop here. +    if (!Analyzer->inCurrentScope(Cp)) +      return; + +    // Otherwise the negative requirement must be propagated to the caller. +    LDat = FSet.findLock(Analyzer->FactMan, Cp); +    if (!LDat) { +      Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), +                                           LK_Shared, Loc); +    } +    return; +  } + +  const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); +  bool NoError = true; +  if (!LDat) { +    // No exact match found.  Look for a partial match. +    LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); +    if (LDat) { +      // Warn that there's no precise match. +      std::string PartMatchStr = LDat->toString(); +      StringRef   PartMatchName(PartMatchStr); +      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), +                                           LK, Loc, &PartMatchName); +    } else { +      // Warn that there's no match at all. +      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), +                                           LK, Loc); +    } +    NoError = false; +  } +  // Make sure the mutex we found is the right kind. +  if (NoError && LDat && !LDat->isAtLeast(LK)) { +    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), +                                         LK, Loc); +  } +} + +/// Warn if the LSet contains the given lock. +void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, +                                   Expr *MutexExp, StringRef DiagKind) { +  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); +  if (Cp.isInvalid()) { +    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); +    return; +  } else if (Cp.shouldIgnore()) { +    return; +  } + +  const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); +  if (LDat) { +    Analyzer->Handler.handleFunExcludesLock( +        DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); +  } +} + +/// Checks guarded_by and pt_guarded_by attributes. +/// Whenever we identify an access (read or write) to a DeclRefExpr that is +/// marked with guarded_by, we must ensure the appropriate mutexes are held. +/// Similarly, we check if the access is to an expression that dereferences +/// a pointer marked with pt_guarded_by. +void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, +                               ProtectedOperationKind POK) { +  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); + +  SourceLocation Loc = Exp->getExprLoc(); + +  // Local variables of reference type cannot be re-assigned; +  // map them to their initializer. +  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { +    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); +    if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { +      if (const auto *E = VD->getInit()) { +        // Guard against self-initialization. e.g., int &i = i; +        if (E == Exp) +          break; +        Exp = E; +        continue; +      } +    } +    break; +  } + +  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { +    // For dereferences +    if (UO->getOpcode() == UO_Deref) +      checkPtAccess(UO->getSubExpr(), AK, POK); +    return; +  } + +  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { +    checkPtAccess(AE->getLHS(), AK, POK); +    return; +  } + +  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { +    if (ME->isArrow()) +      checkPtAccess(ME->getBase(), AK, POK); +    else +      checkAccess(ME->getBase(), AK, POK); +  } + +  const ValueDecl *D = getValueDecl(Exp); +  if (!D || !D->hasAttrs()) +    return; + +  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { +    Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); +  } + +  for (const auto *I : D->specific_attrs<GuardedByAttr>()) +    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, +                       ClassifyDiagnostic(I), Loc); +} + +/// Checks pt_guarded_by and pt_guarded_var attributes. +/// POK is the same  operationKind that was passed to checkAccess. +void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, +                                 ProtectedOperationKind POK) { +  while (true) { +    if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { +      Exp = PE->getSubExpr(); +      continue; +    } +    if (const auto *CE = dyn_cast<CastExpr>(Exp)) { +      if (CE->getCastKind() == CK_ArrayToPointerDecay) { +        // If it's an actual array, and not a pointer, then it's elements +        // are protected by GUARDED_BY, not PT_GUARDED_BY; +        checkAccess(CE->getSubExpr(), AK, POK); +        return; +      } +      Exp = CE->getSubExpr(); +      continue; +    } +    break; +  } + +  // Pass by reference warnings are under a different flag. +  ProtectedOperationKind PtPOK = POK_VarDereference; +  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; + +  const ValueDecl *D = getValueDecl(Exp); +  if (!D || !D->hasAttrs()) +    return; + +  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) +    Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, +                                        Exp->getExprLoc()); + +  for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) +    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, +                       ClassifyDiagnostic(I), Exp->getExprLoc()); +} + +/// Process a function call, method call, constructor call, +/// or destructor call.  This involves looking at the attributes on the +/// corresponding function/method/constructor/destructor, issuing warnings, +/// and updating the locksets accordingly. +/// +/// FIXME: For classes annotated with one of the guarded annotations, we need +/// to treat const method calls as reads and non-const method calls as writes, +/// and check that the appropriate locks are held. Non-const method calls with +/// the same signature as const method calls can be also treated as reads. +/// +void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, +                              VarDecl *VD) { +  SourceLocation Loc = Exp->getExprLoc(); +  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; +  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; +  CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; +  StringRef CapDiagKind = "mutex"; + +  // Figure out if we're constructing an object of scoped lockable class +  bool isScopedVar = false; +  if (VD) { +    if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { +      const CXXRecordDecl* PD = CD->getParent(); +      if (PD && PD->hasAttr<ScopedLockableAttr>()) +        isScopedVar = true; +    } +  } + +  for(const Attr *At : D->attrs()) { +    switch (At->getKind()) { +      // When we encounter a lock function, we need to add the lock to our +      // lockset. +      case attr::AcquireCapability: { +        const auto *A = cast<AcquireCapabilityAttr>(At); +        Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd +                                            : ExclusiveLocksToAdd, +                              A, Exp, D, VD); + +        CapDiagKind = ClassifyDiagnostic(A); +        break; +      } + +      // An assert will add a lock to the lockset, but will not generate +      // a warning if it is already there, and will not generate a warning +      // if it is not removed. +      case attr::AssertExclusiveLock: { +        const auto *A = cast<AssertExclusiveLockAttr>(At); + +        CapExprSet AssertLocks; +        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); +        for (const auto &AssertLock : AssertLocks) +          Analyzer->addLock(FSet, +                            std::make_unique<LockableFactEntry>( +                                AssertLock, LK_Exclusive, Loc, false, true), +                            ClassifyDiagnostic(A)); +        break; +      } +      case attr::AssertSharedLock: { +        const auto *A = cast<AssertSharedLockAttr>(At); + +        CapExprSet AssertLocks; +        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); +        for (const auto &AssertLock : AssertLocks) +          Analyzer->addLock(FSet, +                            std::make_unique<LockableFactEntry>( +                                AssertLock, LK_Shared, Loc, false, true), +                            ClassifyDiagnostic(A)); +        break; +      } + +      case attr::AssertCapability: { +        const auto *A = cast<AssertCapabilityAttr>(At); +        CapExprSet AssertLocks; +        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); +        for (const auto &AssertLock : AssertLocks) +          Analyzer->addLock(FSet, +                            std::make_unique<LockableFactEntry>( +                                AssertLock, +                                A->isShared() ? LK_Shared : LK_Exclusive, Loc, +                                false, true), +                            ClassifyDiagnostic(A)); +        break; +      } + +      // When we encounter an unlock function, we need to remove unlocked +      // mutexes from the lockset, and flag a warning if they are not there. +      case attr::ReleaseCapability: { +        const auto *A = cast<ReleaseCapabilityAttr>(At); +        if (A->isGeneric()) +          Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); +        else if (A->isShared()) +          Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); +        else +          Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); + +        CapDiagKind = ClassifyDiagnostic(A); +        break; +      } + +      case attr::RequiresCapability: { +        const auto *A = cast<RequiresCapabilityAttr>(At); +        for (auto *Arg : A->args()) { +          warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, +                             POK_FunctionCall, ClassifyDiagnostic(A), +                             Exp->getExprLoc()); +          // use for adopting a lock +          if (isScopedVar) { +            Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs +                                                : ScopedExclusiveReqs, +                                  A, Exp, D, VD); +          } +        } +        break; +      } + +      case attr::LocksExcluded: { +        const auto *A = cast<LocksExcludedAttr>(At); +        for (auto *Arg : A->args()) +          warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); +        break; +      } + +      // Ignore attributes unrelated to thread-safety +      default: +        break; +    } +  } + +  // Remove locks first to allow lock upgrading/downgrading. +  // FIXME -- should only fully remove if the attribute refers to 'this'. +  bool Dtor = isa<CXXDestructorDecl>(D); +  for (const auto &M : ExclusiveLocksToRemove) +    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); +  for (const auto &M : SharedLocksToRemove) +    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); +  for (const auto &M : GenericLocksToRemove) +    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); + +  // Add locks. +  for (const auto &M : ExclusiveLocksToAdd) +    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( +                                M, LK_Exclusive, Loc, isScopedVar), +                      CapDiagKind); +  for (const auto &M : SharedLocksToAdd) +    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( +                                M, LK_Shared, Loc, isScopedVar), +                      CapDiagKind); + +  if (isScopedVar) { +    // Add the managing object as a dummy mutex, mapped to the underlying mutex. +    SourceLocation MLoc = VD->getLocation(); +    DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue, +                    VD->getLocation()); +    // FIXME: does this store a pointer to DRE? +    CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); + +    auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc); +    for (const auto &M : ExclusiveLocksToAdd) +      ScopedEntry->addExclusiveLock(M); +    for (const auto &M : ScopedExclusiveReqs) +      ScopedEntry->addExclusiveLock(M); +    for (const auto &M : SharedLocksToAdd) +      ScopedEntry->addSharedLock(M); +    for (const auto &M : ScopedSharedReqs) +      ScopedEntry->addSharedLock(M); +    for (const auto &M : ExclusiveLocksToRemove) +      ScopedEntry->addExclusiveUnlock(M); +    for (const auto &M : SharedLocksToRemove) +      ScopedEntry->addSharedUnlock(M); +    Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind); +  } +} + +/// For unary operations which read and write a variable, we need to +/// check whether we hold any required mutexes. Reads are checked in +/// VisitCastExpr. +void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) { +  switch (UO->getOpcode()) { +    case UO_PostDec: +    case UO_PostInc: +    case UO_PreDec: +    case UO_PreInc: +      checkAccess(UO->getSubExpr(), AK_Written); +      break; +    default: +      break; +  } +} + +/// For binary operations which assign to a variable (writes), we need to check +/// whether we hold any required mutexes. +/// FIXME: Deal with non-primitive types. +void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) { +  if (!BO->isAssignmentOp()) +    return; + +  // adjust the context +  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); + +  checkAccess(BO->getLHS(), AK_Written); +} + +/// Whenever we do an LValue to Rvalue cast, we are reading a variable and +/// need to ensure we hold any required mutexes. +/// FIXME: Deal with non-primitive types. +void BuildLockset::VisitCastExpr(const CastExpr *CE) { +  if (CE->getCastKind() != CK_LValueToRValue) +    return; +  checkAccess(CE->getSubExpr(), AK_Read); +} + +void BuildLockset::examineArguments(const FunctionDecl *FD, +                                    CallExpr::const_arg_iterator ArgBegin, +                                    CallExpr::const_arg_iterator ArgEnd, +                                    bool SkipFirstParam) { +  // Currently we can't do anything if we don't know the function declaration. +  if (!FD) +    return; + +  // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it +  // only turns off checking within the body of a function, but we also +  // use it to turn off checking in arguments to the function.  This +  // could result in some false negatives, but the alternative is to +  // create yet another attribute. +  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>()) +    return; + +  const ArrayRef<ParmVarDecl *> Params = FD->parameters(); +  auto Param = Params.begin(); +  if (SkipFirstParam) +    ++Param; + +  // There can be default arguments, so we stop when one iterator is at end(). +  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd; +       ++Param, ++Arg) { +    QualType Qt = (*Param)->getType(); +    if (Qt->isReferenceType()) +      checkAccess(*Arg, AK_Read, POK_PassByRef); +  } +} + +void BuildLockset::VisitCallExpr(const CallExpr *Exp) { +  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { +    const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); +    // ME can be null when calling a method pointer +    const CXXMethodDecl *MD = CE->getMethodDecl(); + +    if (ME && MD) { +      if (ME->isArrow()) { +        if (MD->isConst()) +          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); +        else // FIXME -- should be AK_Written +          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); +      } else { +        if (MD->isConst()) +          checkAccess(CE->getImplicitObjectArgument(), AK_Read); +        else     // FIXME -- should be AK_Written +          checkAccess(CE->getImplicitObjectArgument(), AK_Read); +      } +    } + +    examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end()); +  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { +    auto OEop = OE->getOperator(); +    switch (OEop) { +      case OO_Equal: { +        const Expr *Target = OE->getArg(0); +        const Expr *Source = OE->getArg(1); +        checkAccess(Target, AK_Written); +        checkAccess(Source, AK_Read); +        break; +      } +      case OO_Star: +      case OO_Arrow: +      case OO_Subscript: +        if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { +          // Grrr.  operator* can be multiplication... +          checkPtAccess(OE->getArg(0), AK_Read); +        } +        LLVM_FALLTHROUGH; +      default: { +        // TODO: get rid of this, and rely on pass-by-ref instead. +        const Expr *Obj = OE->getArg(0); +        checkAccess(Obj, AK_Read); +        // Check the remaining arguments. For method operators, the first +        // argument is the implicit self argument, and doesn't appear in the +        // FunctionDecl, but for non-methods it does. +        const FunctionDecl *FD = OE->getDirectCallee(); +        examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(), +                         /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD)); +        break; +      } +    } +  } else { +    examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end()); +  } + +  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); +  if(!D || !D->hasAttrs()) +    return; +  handleCall(Exp, D); +} + +void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) { +  const CXXConstructorDecl *D = Exp->getConstructor(); +  if (D && D->isCopyConstructor()) { +    const Expr* Source = Exp->getArg(0); +    checkAccess(Source, AK_Read); +  } else { +    examineArguments(D, Exp->arg_begin(), Exp->arg_end()); +  } +} + +static CXXConstructorDecl * +findConstructorForByValueReturn(const CXXRecordDecl *RD) { +  // Prefer a move constructor over a copy constructor. If there's more than +  // one copy constructor or more than one move constructor, we arbitrarily +  // pick the first declared such constructor rather than trying to guess which +  // one is more appropriate. +  CXXConstructorDecl *CopyCtor = nullptr; +  for (auto *Ctor : RD->ctors()) { +    if (Ctor->isDeleted()) +      continue; +    if (Ctor->isMoveConstructor()) +      return Ctor; +    if (!CopyCtor && Ctor->isCopyConstructor()) +      CopyCtor = Ctor; +  } +  return CopyCtor; +} + +static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, +                               SourceLocation Loc) { +  ASTContext &Ctx = CD->getASTContext(); +  return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, +                                  CD, true, Args, false, false, false, false, +                                  CXXConstructExpr::CK_Complete, +                                  SourceRange(Loc, Loc)); +} + +void BuildLockset::VisitDeclStmt(const DeclStmt *S) { +  // adjust the context +  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); + +  for (auto *D : S->getDeclGroup()) { +    if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { +      Expr *E = VD->getInit(); +      if (!E) +        continue; +      E = E->IgnoreParens(); + +      // handle constructors that involve temporaries +      if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) +        E = EWC->getSubExpr(); +      if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) +        E = BTE->getSubExpr(); + +      if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { +        const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); +        if (!CtorD || !CtorD->hasAttrs()) +          continue; +        handleCall(E, CtorD, VD); +      } else if (isa<CallExpr>(E) && E->isRValue()) { +        // If the object is initialized by a function call that returns a +        // scoped lockable by value, use the attributes on the copy or move +        // constructor to figure out what effect that should have on the +        // lockset. +        // FIXME: Is this really the best way to handle this situation? +        auto *RD = E->getType()->getAsCXXRecordDecl(); +        if (!RD || !RD->hasAttr<ScopedLockableAttr>()) +          continue; +        CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); +        if (!CtorD || !CtorD->hasAttrs()) +          continue; +        handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD); +      } +    } +  } +} + +/// Compute the intersection of two locksets and issue warnings for any +/// locks in the symmetric difference. +/// +/// This function is used at a merge point in the CFG when comparing the lockset +/// of each branch being merged. For example, given the following sequence: +/// A; if () then B; else C; D; we need to check that the lockset after B and C +/// are the same. In the event of a difference, we use the intersection of these +/// two locksets at the start of D. +/// +/// \param FSet1 The first lockset. +/// \param FSet2 The second lockset. +/// \param JoinLoc The location of the join point for error reporting +/// \param LEK1 The error message to report if a mutex is missing from LSet1 +/// \param LEK2 The error message to report if a mutex is missing from Lset2 +void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, +                                            const FactSet &FSet2, +                                            SourceLocation JoinLoc, +                                            LockErrorKind LEK1, +                                            LockErrorKind LEK2, +                                            bool Modify) { +  FactSet FSet1Orig = FSet1; + +  // Find locks in FSet2 that conflict or are not in FSet1, and warn. +  for (const auto &Fact : FSet2) { +    const FactEntry *LDat1 = nullptr; +    const FactEntry *LDat2 = &FactMan[Fact]; +    FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2); +    if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; + +    if (LDat1) { +      if (LDat1->kind() != LDat2->kind()) { +        Handler.handleExclusiveAndShared("mutex", LDat2->toString(), +                                         LDat2->loc(), LDat1->loc()); +        if (Modify && LDat1->kind() != LK_Exclusive) { +          // Take the exclusive lock, which is the one in FSet2. +          *Iter1 = Fact; +        } +      } +      else if (Modify && LDat1->asserted() && !LDat2->asserted()) { +        // The non-asserted lock in FSet2 is the one we want to track. +        *Iter1 = Fact; +      } +    } else { +      LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, +                                           Handler); +    } +  } + +  // Find locks in FSet1 that are not in FSet2, and remove them. +  for (const auto &Fact : FSet1Orig) { +    const FactEntry *LDat1 = &FactMan[Fact]; +    const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); + +    if (!LDat2) { +      LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, +                                           Handler); +      if (Modify) +        FSet1.removeLock(FactMan, *LDat1); +    } +  } +} + +// Return true if block B never continues to its successors. +static bool neverReturns(const CFGBlock *B) { +  if (B->hasNoReturnElement()) +    return true; +  if (B->empty()) +    return false; + +  CFGElement Last = B->back(); +  if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { +    if (isa<CXXThrowExpr>(S->getStmt())) +      return true; +  } +  return false; +} + +/// Check a function's CFG for thread-safety violations. +/// +/// We traverse the blocks in the CFG, compute the set of mutexes that are held +/// at the end of each block, and issue warnings for thread safety violations. +/// Each block in the CFG is traversed exactly once. +void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { +  // TODO: this whole function needs be rewritten as a visitor for CFGWalker. +  // For now, we just use the walker to set things up. +  threadSafety::CFGWalker walker; +  if (!walker.init(AC)) +    return; + +  // AC.dumpCFG(true); +  // threadSafety::printSCFG(walker); + +  CFG *CFGraph = walker.getGraph(); +  const NamedDecl *D = walker.getDecl(); +  const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); +  CurrentMethod = dyn_cast<CXXMethodDecl>(D); + +  if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) +    return; + +  // FIXME: Do something a bit more intelligent inside constructor and +  // destructor code.  Constructors and destructors must assume unique access +  // to 'this', so checks on member variable access is disabled, but we should +  // still enable checks on other objects. +  if (isa<CXXConstructorDecl>(D)) +    return;  // Don't check inside constructors. +  if (isa<CXXDestructorDecl>(D)) +    return;  // Don't check inside destructors. + +  Handler.enterFunction(CurrentFunction); + +  BlockInfo.resize(CFGraph->getNumBlockIDs(), +    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); + +  // We need to explore the CFG via a "topological" ordering. +  // That way, we will be guaranteed to have information about required +  // predecessor locksets when exploring a new block. +  const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); +  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); + +  // Mark entry block as reachable +  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; + +  // Compute SSA names for local variables +  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); + +  // Fill in source locations for all CFGBlocks. +  findBlockLocations(CFGraph, SortedGraph, BlockInfo); + +  CapExprSet ExclusiveLocksAcquired; +  CapExprSet SharedLocksAcquired; +  CapExprSet LocksReleased; + +  // Add locks from exclusive_locks_required and shared_locks_required +  // to initial lockset. Also turn off checking for lock and unlock functions. +  // FIXME: is there a more intelligent way to check lock/unlock functions? +  if (!SortedGraph->empty() && D->hasAttrs()) { +    const CFGBlock *FirstBlock = *SortedGraph->begin(); +    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; + +    CapExprSet ExclusiveLocksToAdd; +    CapExprSet SharedLocksToAdd; +    StringRef CapDiagKind = "mutex"; + +    SourceLocation Loc = D->getLocation(); +    for (const auto *Attr : D->attrs()) { +      Loc = Attr->getLocation(); +      if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { +        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, +                    nullptr, D); +        CapDiagKind = ClassifyDiagnostic(A); +      } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { +        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. +        // We must ignore such methods. +        if (A->args_size() == 0) +          return; +        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, +                    nullptr, D); +        getMutexIDs(LocksReleased, A, nullptr, D); +        CapDiagKind = ClassifyDiagnostic(A); +      } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { +        if (A->args_size() == 0) +          return; +        getMutexIDs(A->isShared() ? SharedLocksAcquired +                                  : ExclusiveLocksAcquired, +                    A, nullptr, D); +        CapDiagKind = ClassifyDiagnostic(A); +      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { +        // Don't try to check trylock functions for now. +        return; +      } else if (isa<SharedTrylockFunctionAttr>(Attr)) { +        // Don't try to check trylock functions for now. +        return; +      } else if (isa<TryAcquireCapabilityAttr>(Attr)) { +        // Don't try to check trylock functions for now. +        return; +      } +    } + +    // FIXME -- Loc can be wrong here. +    for (const auto &Mu : ExclusiveLocksToAdd) { +      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); +      Entry->setDeclared(true); +      addLock(InitialLockset, std::move(Entry), CapDiagKind, true); +    } +    for (const auto &Mu : SharedLocksToAdd) { +      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); +      Entry->setDeclared(true); +      addLock(InitialLockset, std::move(Entry), CapDiagKind, true); +    } +  } + +  for (const auto *CurrBlock : *SortedGraph) { +    unsigned CurrBlockID = CurrBlock->getBlockID(); +    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; + +    // Use the default initial lockset in case there are no predecessors. +    VisitedBlocks.insert(CurrBlock); + +    // Iterate through the predecessor blocks and warn if the lockset for all +    // predecessors is not the same. We take the entry lockset of the current +    // block to be the intersection of all previous locksets. +    // FIXME: By keeping the intersection, we may output more errors in future +    // for a lock which is not in the intersection, but was in the union. We +    // may want to also keep the union in future. As an example, let's say +    // the intersection contains Mutex L, and the union contains L and M. +    // Later we unlock M. At this point, we would output an error because we +    // never locked M; although the real error is probably that we forgot to +    // lock M on all code paths. Conversely, let's say that later we lock M. +    // In this case, we should compare against the intersection instead of the +    // union because the real error is probably that we forgot to unlock M on +    // all code paths. +    bool LocksetInitialized = false; +    SmallVector<CFGBlock *, 8> SpecialBlocks; +    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), +         PE  = CurrBlock->pred_end(); PI != PE; ++PI) { +      // if *PI -> CurrBlock is a back edge +      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) +        continue; + +      unsigned PrevBlockID = (*PI)->getBlockID(); +      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + +      // Ignore edges from blocks that can't return. +      if (neverReturns(*PI) || !PrevBlockInfo->Reachable) +        continue; + +      // Okay, we can reach this block from the entry. +      CurrBlockInfo->Reachable = true; + +      // If the previous block ended in a 'continue' or 'break' statement, then +      // a difference in locksets is probably due to a bug in that block, rather +      // than in some other predecessor. In that case, keep the other +      // predecessor's lockset. +      if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) { +        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { +          SpecialBlocks.push_back(*PI); +          continue; +        } +      } + +      FactSet PrevLockset; +      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); + +      if (!LocksetInitialized) { +        CurrBlockInfo->EntrySet = PrevLockset; +        LocksetInitialized = true; +      } else { +        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, +                         CurrBlockInfo->EntryLoc, +                         LEK_LockedSomePredecessors); +      } +    } + +    // Skip rest of block if it's not reachable. +    if (!CurrBlockInfo->Reachable) +      continue; + +    // Process continue and break blocks. Assume that the lockset for the +    // resulting block is unaffected by any discrepancies in them. +    for (const auto *PrevBlock : SpecialBlocks) { +      unsigned PrevBlockID = PrevBlock->getBlockID(); +      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; + +      if (!LocksetInitialized) { +        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; +        LocksetInitialized = true; +      } else { +        // Determine whether this edge is a loop terminator for diagnostic +        // purposes. FIXME: A 'break' statement might be a loop terminator, but +        // it might also be part of a switch. Also, a subsequent destructor +        // might add to the lockset, in which case the real issue might be a +        // double lock on the other path. +        const Stmt *Terminator = PrevBlock->getTerminatorStmt(); +        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); + +        FactSet PrevLockset; +        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, +                       PrevBlock, CurrBlock); + +        // Do not update EntrySet. +        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, +                         PrevBlockInfo->ExitLoc, +                         IsLoop ? LEK_LockedSomeLoopIterations +                                : LEK_LockedSomePredecessors, +                         false); +      } +    } + +    BuildLockset LocksetBuilder(this, *CurrBlockInfo); + +    // Visit all the statements in the basic block. +    for (const auto &BI : *CurrBlock) { +      switch (BI.getKind()) { +        case CFGElement::Statement: { +          CFGStmt CS = BI.castAs<CFGStmt>(); +          LocksetBuilder.Visit(CS.getStmt()); +          break; +        } +        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. +        case CFGElement::AutomaticObjectDtor: { +          CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); +          const auto *DD = AD.getDestructorDecl(AC.getASTContext()); +          if (!DD->hasAttrs()) +            break; + +          // Create a dummy expression, +          auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); +          DeclRefExpr DRE(VD->getASTContext(), VD, false, +                          VD->getType().getNonReferenceType(), VK_LValue, +                          AD.getTriggerStmt()->getEndLoc()); +          LocksetBuilder.handleCall(&DRE, DD); +          break; +        } +        default: +          break; +      } +    } +    CurrBlockInfo->ExitSet = LocksetBuilder.FSet; + +    // For every back edge from CurrBlock (the end of the loop) to another block +    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to +    // the one held at the beginning of FirstLoopBlock. We can look up the +    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. +    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), +         SE  = CurrBlock->succ_end(); SI != SE; ++SI) { +      // if CurrBlock -> *SI is *not* a back edge +      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) +        continue; + +      CFGBlock *FirstLoopBlock = *SI; +      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; +      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; +      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, +                       PreLoop->EntryLoc, +                       LEK_LockedSomeLoopIterations, +                       false); +    } +  } + +  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; +  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()]; + +  // Skip the final check if the exit block is unreachable. +  if (!Final->Reachable) +    return; + +  // By default, we expect all locks held on entry to be held on exit. +  FactSet ExpectedExitSet = Initial->EntrySet; + +  // Adjust the expected exit set by adding or removing locks, as declared +  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then +  // issue the appropriate warning. +  // FIXME: the location here is not quite right. +  for (const auto &Lock : ExclusiveLocksAcquired) +    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( +                                         Lock, LK_Exclusive, D->getLocation())); +  for (const auto &Lock : SharedLocksAcquired) +    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>( +                                         Lock, LK_Shared, D->getLocation())); +  for (const auto &Lock : LocksReleased) +    ExpectedExitSet.removeLock(FactMan, Lock); + +  // FIXME: Should we call this function for all blocks which exit the function? +  intersectAndWarn(ExpectedExitSet, Final->ExitSet, +                   Final->ExitLoc, +                   LEK_LockedAtEndOfFunction, +                   LEK_NotLockedAtEndOfFunction, +                   false); + +  Handler.leaveFunction(CurrentFunction); +} + +/// Check a function's CFG for thread-safety violations. +/// +/// We traverse the blocks in the CFG, compute the set of mutexes that are held +/// at the end of each block, and issue warnings for thread safety violations. +/// Each block in the CFG is traversed exactly once. +void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, +                                           ThreadSafetyHandler &Handler, +                                           BeforeSet **BSet) { +  if (!*BSet) +    *BSet = new BeforeSet; +  ThreadSafetyAnalyzer Analyzer(Handler, *BSet); +  Analyzer.runAnalysis(AC); +} + +void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } + +/// Helper function that returns a LockKind required for the given level +/// of access. +LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { +  switch (AK) { +    case AK_Read : +      return LK_Shared; +    case AK_Written : +      return LK_Exclusive; +  } +  llvm_unreachable("Unknown AccessKind"); +} | 
