diff options
Diffstat (limited to 'clang/lib/Analysis/ThreadSafetyTIL.cpp')
| -rw-r--r-- | clang/lib/Analysis/ThreadSafetyTIL.cpp | 332 | 
1 files changed, 332 insertions, 0 deletions
diff --git a/clang/lib/Analysis/ThreadSafetyTIL.cpp b/clang/lib/Analysis/ThreadSafetyTIL.cpp new file mode 100644 index 000000000000..652f953d2a6d --- /dev/null +++ b/clang/lib/Analysis/ThreadSafetyTIL.cpp @@ -0,0 +1,332 @@ +//===- ThreadSafetyTIL.cpp ------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/Analyses/ThreadSafetyTIL.h" +#include "clang/Basic/LLVM.h" +#include "llvm/Support/Casting.h" +#include <cassert> +#include <cstddef> + +using namespace clang; +using namespace threadSafety; +using namespace til; + +StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) { +  switch (Op) { +    case UOP_Minus:    return "-"; +    case UOP_BitNot:   return "~"; +    case UOP_LogicNot: return "!"; +  } +  return {}; +} + +StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) { +  switch (Op) { +    case BOP_Mul:      return "*"; +    case BOP_Div:      return "/"; +    case BOP_Rem:      return "%"; +    case BOP_Add:      return "+"; +    case BOP_Sub:      return "-"; +    case BOP_Shl:      return "<<"; +    case BOP_Shr:      return ">>"; +    case BOP_BitAnd:   return "&"; +    case BOP_BitXor:   return "^"; +    case BOP_BitOr:    return "|"; +    case BOP_Eq:       return "=="; +    case BOP_Neq:      return "!="; +    case BOP_Lt:       return "<"; +    case BOP_Leq:      return "<="; +    case BOP_Cmp:      return "<=>"; +    case BOP_LogicAnd: return "&&"; +    case BOP_LogicOr:  return "||"; +  } +  return {}; +} + +SExpr* Future::force() { +  Status = FS_evaluating; +  Result = compute(); +  Status = FS_done; +  return Result; +} + +unsigned BasicBlock::addPredecessor(BasicBlock *Pred) { +  unsigned Idx = Predecessors.size(); +  Predecessors.reserveCheck(1, Arena); +  Predecessors.push_back(Pred); +  for (auto *E : Args) { +    if (auto *Ph = dyn_cast<Phi>(E)) { +      Ph->values().reserveCheck(1, Arena); +      Ph->values().push_back(nullptr); +    } +  } +  return Idx; +} + +void BasicBlock::reservePredecessors(unsigned NumPreds) { +  Predecessors.reserve(NumPreds, Arena); +  for (auto *E : Args) { +    if (auto *Ph = dyn_cast<Phi>(E)) { +      Ph->values().reserve(NumPreds, Arena); +    } +  } +} + +// If E is a variable, then trace back through any aliases or redundant +// Phi nodes to find the canonical definition. +const SExpr *til::getCanonicalVal(const SExpr *E) { +  while (true) { +    if (const auto *V = dyn_cast<Variable>(E)) { +      if (V->kind() == Variable::VK_Let) { +        E = V->definition(); +        continue; +      } +    } +    if (const auto *Ph = dyn_cast<Phi>(E)) { +      if (Ph->status() == Phi::PH_SingleVal) { +        E = Ph->values()[0]; +        continue; +      } +    } +    break; +  } +  return E; +} + +// If E is a variable, then trace back through any aliases or redundant +// Phi nodes to find the canonical definition. +// The non-const version will simplify incomplete Phi nodes. +SExpr *til::simplifyToCanonicalVal(SExpr *E) { +  while (true) { +    if (auto *V = dyn_cast<Variable>(E)) { +      if (V->kind() != Variable::VK_Let) +        return V; +      // Eliminate redundant variables, e.g. x = y, or x = 5, +      // but keep anything more complicated. +      if (til::ThreadSafetyTIL::isTrivial(V->definition())) { +        E = V->definition(); +        continue; +      } +      return V; +    } +    if (auto *Ph = dyn_cast<Phi>(E)) { +      if (Ph->status() == Phi::PH_Incomplete) +        simplifyIncompleteArg(Ph); +      // Eliminate redundant Phi nodes. +      if (Ph->status() == Phi::PH_SingleVal) { +        E = Ph->values()[0]; +        continue; +      } +    } +    return E; +  } +} + +// Trace the arguments of an incomplete Phi node to see if they have the same +// canonical definition.  If so, mark the Phi node as redundant. +// getCanonicalVal() will recursively call simplifyIncompletePhi(). +void til::simplifyIncompleteArg(til::Phi *Ph) { +  assert(Ph && Ph->status() == Phi::PH_Incomplete); + +  // eliminate infinite recursion -- assume that this node is not redundant. +  Ph->setStatus(Phi::PH_MultiVal); + +  SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]); +  for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) { +    SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]); +    if (Ei == Ph) +      continue;  // Recursive reference to itself.  Don't count. +    if (Ei != E0) { +      return;    // Status is already set to MultiVal. +    } +  } +  Ph->setStatus(Phi::PH_SingleVal); +} + +// Renumbers the arguments and instructions to have unique, sequential IDs. +unsigned BasicBlock::renumberInstrs(unsigned ID) { +  for (auto *Arg : Args) +    Arg->setID(this, ID++); +  for (auto *Instr : Instrs) +    Instr->setID(this, ID++); +  TermInstr->setID(this, ID++); +  return ID; +} + +// Sorts the CFGs blocks using a reverse post-order depth-first traversal. +// Each block will be written into the Blocks array in order, and its BlockID +// will be set to the index in the array.  Sorting should start from the entry +// block, and ID should be the total number of blocks. +unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks, +                                     unsigned ID) { +  if (Visited) return ID; +  Visited = true; +  for (auto *Block : successors()) +    ID = Block->topologicalSort(Blocks, ID); +  // set ID and update block array in place. +  // We may lose pointers to unreachable blocks. +  assert(ID > 0); +  BlockID = --ID; +  Blocks[BlockID] = this; +  return ID; +} + +// Performs a reverse topological traversal, starting from the exit block and +// following back-edges.  The dominator is serialized before any predecessors, +// which guarantees that all blocks are serialized after their dominator and +// before their post-dominator (because it's a reverse topological traversal). +// ID should be initially set to 0. +// +// This sort assumes that (1) dominators have been computed, (2) there are no +// critical edges, and (3) the entry block is reachable from the exit block +// and no blocks are accessible via traversal of back-edges from the exit that +// weren't accessible via forward edges from the entry. +unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks, +                                          unsigned ID) { +  // Visited is assumed to have been set by the topologicalSort.  This pass +  // assumes !Visited means that we've visited this node before. +  if (!Visited) return ID; +  Visited = false; +  if (DominatorNode.Parent) +    ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID); +  for (auto *Pred : Predecessors) +    ID = Pred->topologicalFinalSort(Blocks, ID); +  assert(static_cast<size_t>(ID) < Blocks.size()); +  BlockID = ID++; +  Blocks[BlockID] = this; +  return ID; +} + +// Computes the immediate dominator of the current block.  Assumes that all of +// its predecessors have already computed their dominators.  This is achieved +// by visiting the nodes in topological order. +void BasicBlock::computeDominator() { +  BasicBlock *Candidate = nullptr; +  // Walk backwards from each predecessor to find the common dominator node. +  for (auto *Pred : Predecessors) { +    // Skip back-edges +    if (Pred->BlockID >= BlockID) continue; +    // If we don't yet have a candidate for dominator yet, take this one. +    if (Candidate == nullptr) { +      Candidate = Pred; +      continue; +    } +    // Walk the alternate and current candidate back to find a common ancestor. +    auto *Alternate = Pred; +    while (Alternate != Candidate) { +      if (Candidate->BlockID > Alternate->BlockID) +        Candidate = Candidate->DominatorNode.Parent; +      else +        Alternate = Alternate->DominatorNode.Parent; +    } +  } +  DominatorNode.Parent = Candidate; +  DominatorNode.SizeOfSubTree = 1; +} + +// Computes the immediate post-dominator of the current block.  Assumes that all +// of its successors have already computed their post-dominators.  This is +// achieved visiting the nodes in reverse topological order. +void BasicBlock::computePostDominator() { +  BasicBlock *Candidate = nullptr; +  // Walk back from each predecessor to find the common post-dominator node. +  for (auto *Succ : successors()) { +    // Skip back-edges +    if (Succ->BlockID <= BlockID) continue; +    // If we don't yet have a candidate for post-dominator yet, take this one. +    if (Candidate == nullptr) { +      Candidate = Succ; +      continue; +    } +    // Walk the alternate and current candidate back to find a common ancestor. +    auto *Alternate = Succ; +    while (Alternate != Candidate) { +      if (Candidate->BlockID < Alternate->BlockID) +        Candidate = Candidate->PostDominatorNode.Parent; +      else +        Alternate = Alternate->PostDominatorNode.Parent; +    } +  } +  PostDominatorNode.Parent = Candidate; +  PostDominatorNode.SizeOfSubTree = 1; +} + +// Renumber instructions in all blocks +void SCFG::renumberInstrs() { +  unsigned InstrID = 0; +  for (auto *Block : Blocks) +    InstrID = Block->renumberInstrs(InstrID); +} + +static inline void computeNodeSize(BasicBlock *B, +                                   BasicBlock::TopologyNode BasicBlock::*TN) { +  BasicBlock::TopologyNode *N = &(B->*TN); +  if (N->Parent) { +    BasicBlock::TopologyNode *P = &(N->Parent->*TN); +    // Initially set ID relative to the (as yet uncomputed) parent ID +    N->NodeID = P->SizeOfSubTree; +    P->SizeOfSubTree += N->SizeOfSubTree; +  } +} + +static inline void computeNodeID(BasicBlock *B, +                                 BasicBlock::TopologyNode BasicBlock::*TN) { +  BasicBlock::TopologyNode *N = &(B->*TN); +  if (N->Parent) { +    BasicBlock::TopologyNode *P = &(N->Parent->*TN); +    N->NodeID += P->NodeID;    // Fix NodeIDs relative to starting node. +  } +} + +// Normalizes a CFG.  Normalization has a few major components: +// 1) Removing unreachable blocks. +// 2) Computing dominators and post-dominators +// 3) Topologically sorting the blocks into the "Blocks" array. +void SCFG::computeNormalForm() { +  // Topologically sort the blocks starting from the entry block. +  unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size()); +  if (NumUnreachableBlocks > 0) { +    // If there were unreachable blocks shift everything down, and delete them. +    for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) { +      unsigned NI = I - NumUnreachableBlocks; +      Blocks[NI] = Blocks[I]; +      Blocks[NI]->BlockID = NI; +      // FIXME: clean up predecessor pointers to unreachable blocks? +    } +    Blocks.drop(NumUnreachableBlocks); +  } + +  // Compute dominators. +  for (auto *Block : Blocks) +    Block->computeDominator(); + +  // Once dominators have been computed, the final sort may be performed. +  unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0); +  assert(static_cast<size_t>(NumBlocks) == Blocks.size()); +  (void) NumBlocks; + +  // Renumber the instructions now that we have a final sort. +  renumberInstrs(); + +  // Compute post-dominators and compute the sizes of each node in the +  // dominator tree. +  for (auto *Block : Blocks.reverse()) { +    Block->computePostDominator(); +    computeNodeSize(Block, &BasicBlock::DominatorNode); +  } +  // Compute the sizes of each node in the post-dominator tree and assign IDs in +  // the dominator tree. +  for (auto *Block : Blocks) { +    computeNodeID(Block, &BasicBlock::DominatorNode); +    computeNodeSize(Block, &BasicBlock::PostDominatorNode); +  } +  // Assign IDs in the post-dominator tree. +  for (auto *Block : Blocks.reverse()) { +    computeNodeID(Block, &BasicBlock::PostDominatorNode); +  } +}  | 
