summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprCXX.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprCXX.cpp2271
1 files changed, 2271 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprCXX.cpp b/clang/lib/CodeGen/CGExprCXX.cpp
new file mode 100644
index 000000000000..114d806d454b
--- /dev/null
+++ b/clang/lib/CodeGen/CGExprCXX.cpp
@@ -0,0 +1,2271 @@
+//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ expressions
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "ConstantEmitter.h"
+#include "TargetInfo.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+struct MemberCallInfo {
+ RequiredArgs ReqArgs;
+ // Number of prefix arguments for the call. Ignores the `this` pointer.
+ unsigned PrefixSize;
+};
+}
+
+static MemberCallInfo
+commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
+ llvm::Value *This, llvm::Value *ImplicitParam,
+ QualType ImplicitParamTy, const CallExpr *CE,
+ CallArgList &Args, CallArgList *RtlArgs) {
+ assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
+ isa<CXXOperatorCallExpr>(CE));
+ assert(MD->isInstance() &&
+ "Trying to emit a member or operator call expr on a static method!");
+
+ // Push the this ptr.
+ const CXXRecordDecl *RD =
+ CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD);
+ Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
+
+ // If there is an implicit parameter (e.g. VTT), emit it.
+ if (ImplicitParam) {
+ Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
+ }
+
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
+ unsigned PrefixSize = Args.size() - 1;
+
+ // And the rest of the call args.
+ if (RtlArgs) {
+ // Special case: if the caller emitted the arguments right-to-left already
+ // (prior to emitting the *this argument), we're done. This happens for
+ // assignment operators.
+ Args.addFrom(*RtlArgs);
+ } else if (CE) {
+ // Special case: skip first argument of CXXOperatorCall (it is "this").
+ unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
+ CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
+ CE->getDirectCallee());
+ } else {
+ assert(
+ FPT->getNumParams() == 0 &&
+ "No CallExpr specified for function with non-zero number of arguments");
+ }
+ return {required, PrefixSize};
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
+ const CXXMethodDecl *MD, const CGCallee &Callee,
+ ReturnValueSlot ReturnValue,
+ llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
+ const CallExpr *CE, CallArgList *RtlArgs) {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ CallArgList Args;
+ MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
+ *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
+ auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
+ Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
+ return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
+ CE ? CE->getExprLoc() : SourceLocation());
+}
+
+RValue CodeGenFunction::EmitCXXDestructorCall(
+ GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
+ llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
+ const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
+
+ assert(!ThisTy.isNull());
+ assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
+ "Pointer/Object mixup");
+
+ LangAS SrcAS = ThisTy.getAddressSpace();
+ LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
+ if (SrcAS != DstAS) {
+ QualType DstTy = DtorDecl->getThisType();
+ llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
+ This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
+ NewType);
+ }
+
+ CallArgList Args;
+ commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
+ ImplicitParamTy, CE, Args, nullptr);
+ return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
+ ReturnValueSlot(), Args);
+}
+
+RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
+ const CXXPseudoDestructorExpr *E) {
+ QualType DestroyedType = E->getDestroyedType();
+ if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
+ // Automatic Reference Counting:
+ // If the pseudo-expression names a retainable object with weak or
+ // strong lifetime, the object shall be released.
+ Expr *BaseExpr = E->getBase();
+ Address BaseValue = Address::invalid();
+ Qualifiers BaseQuals;
+
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ if (E->isArrow()) {
+ BaseValue = EmitPointerWithAlignment(BaseExpr);
+ const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
+ BaseQuals = PTy->getPointeeType().getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ BaseValue = BaseLV.getAddress();
+ QualType BaseTy = BaseExpr->getType();
+ BaseQuals = BaseTy.getQualifiers();
+ }
+
+ switch (DestroyedType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ EmitARCRelease(Builder.CreateLoad(BaseValue,
+ DestroyedType.isVolatileQualified()),
+ ARCPreciseLifetime);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ EmitARCDestroyWeak(BaseValue);
+ break;
+ }
+ } else {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ EmitIgnoredExpr(E->getBase());
+ }
+
+ return RValue::get(nullptr);
+}
+
+static CXXRecordDecl *getCXXRecord(const Expr *E) {
+ QualType T = E->getType();
+ if (const PointerType *PTy = T->getAs<PointerType>())
+ T = PTy->getPointeeType();
+ const RecordType *Ty = T->castAs<RecordType>();
+ return cast<CXXRecordDecl>(Ty->getDecl());
+}
+
+// Note: This function also emit constructor calls to support a MSVC
+// extensions allowing explicit constructor function call.
+RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
+ ReturnValueSlot ReturnValue) {
+ const Expr *callee = CE->getCallee()->IgnoreParens();
+
+ if (isa<BinaryOperator>(callee))
+ return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
+
+ const MemberExpr *ME = cast<MemberExpr>(callee);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
+
+ if (MD->isStatic()) {
+ // The method is static, emit it as we would a regular call.
+ CGCallee callee =
+ CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
+ return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
+ ReturnValue);
+ }
+
+ bool HasQualifier = ME->hasQualifier();
+ NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
+ bool IsArrow = ME->isArrow();
+ const Expr *Base = ME->getBase();
+
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
+ const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
+ bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
+ const Expr *Base) {
+ assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
+
+ // Compute the object pointer.
+ bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
+
+ const CXXMethodDecl *DevirtualizedMethod = nullptr;
+ if (CanUseVirtualCall &&
+ MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
+ const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
+ DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
+ assert(DevirtualizedMethod);
+ const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
+ const Expr *Inner = Base->ignoreParenBaseCasts();
+ if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
+ MD->getReturnType().getCanonicalType())
+ // If the return types are not the same, this might be a case where more
+ // code needs to run to compensate for it. For example, the derived
+ // method might return a type that inherits form from the return
+ // type of MD and has a prefix.
+ // For now we just avoid devirtualizing these covariant cases.
+ DevirtualizedMethod = nullptr;
+ else if (getCXXRecord(Inner) == DevirtualizedClass)
+ // If the class of the Inner expression is where the dynamic method
+ // is defined, build the this pointer from it.
+ Base = Inner;
+ else if (getCXXRecord(Base) != DevirtualizedClass) {
+ // If the method is defined in a class that is not the best dynamic
+ // one or the one of the full expression, we would have to build
+ // a derived-to-base cast to compute the correct this pointer, but
+ // we don't have support for that yet, so do a virtual call.
+ DevirtualizedMethod = nullptr;
+ }
+ }
+
+ // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
+ // operator before the LHS.
+ CallArgList RtlArgStorage;
+ CallArgList *RtlArgs = nullptr;
+ if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
+ if (OCE->isAssignmentOp()) {
+ RtlArgs = &RtlArgStorage;
+ EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
+ drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
+ /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
+ }
+ }
+
+ LValue This;
+ if (IsArrow) {
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
+ This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
+ } else {
+ This = EmitLValue(Base);
+ }
+
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
+ // constructing a new complete object of type Ctor.
+ assert(!RtlArgs);
+ assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
+ CallArgList Args;
+ commonEmitCXXMemberOrOperatorCall(
+ *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
+ /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
+
+ EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, This.getAddress(), Args,
+ AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
+ /*NewPointerIsChecked=*/false);
+ return RValue::get(nullptr);
+ }
+
+ if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
+ if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
+ if (!MD->getParent()->mayInsertExtraPadding()) {
+ if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
+ // We don't like to generate the trivial copy/move assignment operator
+ // when it isn't necessary; just produce the proper effect here.
+ LValue RHS = isa<CXXOperatorCallExpr>(CE)
+ ? MakeNaturalAlignAddrLValue(
+ (*RtlArgs)[0].getRValue(*this).getScalarVal(),
+ (*(CE->arg_begin() + 1))->getType())
+ : EmitLValue(*CE->arg_begin());
+ EmitAggregateAssign(This, RHS, CE->getType());
+ return RValue::get(This.getPointer());
+ }
+ llvm_unreachable("unknown trivial member function");
+ }
+ }
+
+ // Compute the function type we're calling.
+ const CXXMethodDecl *CalleeDecl =
+ DevirtualizedMethod ? DevirtualizedMethod : MD;
+ const CGFunctionInfo *FInfo = nullptr;
+ if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
+ FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ GlobalDecl(Dtor, Dtor_Complete));
+ else
+ FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
+
+ llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
+
+ // C++11 [class.mfct.non-static]p2:
+ // If a non-static member function of a class X is called for an object that
+ // is not of type X, or of a type derived from X, the behavior is undefined.
+ SourceLocation CallLoc;
+ ASTContext &C = getContext();
+ if (CE)
+ CallLoc = CE->getExprLoc();
+
+ SanitizerSet SkippedChecks;
+ if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
+ auto *IOA = CMCE->getImplicitObjectArgument();
+ bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
+ if (IsImplicitObjectCXXThis)
+ SkippedChecks.set(SanitizerKind::Alignment, true);
+ if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
+ SkippedChecks.set(SanitizerKind::Null, true);
+ }
+ EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
+ C.getRecordType(CalleeDecl->getParent()),
+ /*Alignment=*/CharUnits::Zero(), SkippedChecks);
+
+ // C++ [class.virtual]p12:
+ // Explicit qualification with the scope operator (5.1) suppresses the
+ // virtual call mechanism.
+ //
+ // We also don't emit a virtual call if the base expression has a record type
+ // because then we know what the type is.
+ bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
+
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
+ assert(CE->arg_begin() == CE->arg_end() &&
+ "Destructor shouldn't have explicit parameters");
+ assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
+ if (UseVirtualCall) {
+ CGM.getCXXABI().EmitVirtualDestructorCall(
+ *this, Dtor, Dtor_Complete, This.getAddress(),
+ cast<CXXMemberCallExpr>(CE));
+ } else {
+ GlobalDecl GD(Dtor, Dtor_Complete);
+ CGCallee Callee;
+ if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee =
+ CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
+ else {
+ Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
+ }
+
+ QualType ThisTy =
+ IsArrow ? Base->getType()->getPointeeType() : Base->getType();
+ EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
+ /*ImplicitParam=*/nullptr,
+ /*ImplicitParamTy=*/QualType(), nullptr);
+ }
+ return RValue::get(nullptr);
+ }
+
+ // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
+ // 'CalleeDecl' instead.
+
+ CGCallee Callee;
+ if (UseVirtualCall) {
+ Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
+ } else {
+ if (SanOpts.has(SanitizerKind::CFINVCall) &&
+ MD->getParent()->isDynamicClass()) {
+ llvm::Value *VTable;
+ const CXXRecordDecl *RD;
+ std::tie(VTable, RD) =
+ CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
+ CalleeDecl->getParent());
+ EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
+ }
+
+ if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee =
+ CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
+ else {
+ Callee =
+ CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
+ GlobalDecl(DevirtualizedMethod));
+ }
+ }
+
+ if (MD->isVirtual()) {
+ Address NewThisAddr =
+ CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
+ *this, CalleeDecl, This.getAddress(), UseVirtualCall);
+ This.setAddress(NewThisAddr);
+ }
+
+ return EmitCXXMemberOrOperatorCall(
+ CalleeDecl, Callee, ReturnValue, This.getPointer(),
+ /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
+}
+
+RValue
+CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BinaryOperator *BO =
+ cast<BinaryOperator>(E->getCallee()->IgnoreParens());
+ const Expr *BaseExpr = BO->getLHS();
+ const Expr *MemFnExpr = BO->getRHS();
+
+ const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
+ const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const auto *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
+
+ // Emit the 'this' pointer.
+ Address This = Address::invalid();
+ if (BO->getOpcode() == BO_PtrMemI)
+ This = EmitPointerWithAlignment(BaseExpr);
+ else
+ This = EmitLValue(BaseExpr).getAddress();
+
+ EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
+ QualType(MPT->getClass(), 0));
+
+ // Get the member function pointer.
+ llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
+
+ // Ask the ABI to load the callee. Note that This is modified.
+ llvm::Value *ThisPtrForCall = nullptr;
+ CGCallee Callee =
+ CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
+ ThisPtrForCall, MemFnPtr, MPT);
+
+ CallArgList Args;
+
+ QualType ThisType =
+ getContext().getPointerType(getContext().getTagDeclType(RD));
+
+ // Push the this ptr.
+ Args.add(RValue::get(ThisPtrForCall), ThisType);
+
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, E->arguments());
+ return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
+ /*PrefixSize=*/0),
+ Callee, ReturnValue, Args, nullptr, E->getExprLoc());
+}
+
+RValue
+CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
+ /*IsArrow=*/false, E->getArg(0));
+}
+
+RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
+}
+
+static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
+ Address DestPtr,
+ const CXXRecordDecl *Base) {
+ if (Base->isEmpty())
+ return;
+
+ DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
+
+ const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
+ CharUnits NVSize = Layout.getNonVirtualSize();
+
+ // We cannot simply zero-initialize the entire base sub-object if vbptrs are
+ // present, they are initialized by the most derived class before calling the
+ // constructor.
+ SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
+ Stores.emplace_back(CharUnits::Zero(), NVSize);
+
+ // Each store is split by the existence of a vbptr.
+ CharUnits VBPtrWidth = CGF.getPointerSize();
+ std::vector<CharUnits> VBPtrOffsets =
+ CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
+ for (CharUnits VBPtrOffset : VBPtrOffsets) {
+ // Stop before we hit any virtual base pointers located in virtual bases.
+ if (VBPtrOffset >= NVSize)
+ break;
+ std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
+ CharUnits LastStoreOffset = LastStore.first;
+ CharUnits LastStoreSize = LastStore.second;
+
+ CharUnits SplitBeforeOffset = LastStoreOffset;
+ CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
+ assert(!SplitBeforeSize.isNegative() && "negative store size!");
+ if (!SplitBeforeSize.isZero())
+ Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
+
+ CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
+ CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
+ assert(!SplitAfterSize.isNegative() && "negative store size!");
+ if (!SplitAfterSize.isZero())
+ Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
+ }
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ // TODO: isZeroInitializable can be over-conservative in the case where a
+ // virtual base contains a member pointer.
+ llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
+ if (!NullConstantForBase->isNullValue()) {
+ llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
+ CGF.CGM.getModule(), NullConstantForBase->getType(),
+ /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
+ NullConstantForBase, Twine());
+
+ CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
+ DestPtr.getAlignment());
+ NullVariable->setAlignment(Align.getAsAlign());
+
+ Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ for (std::pair<CharUnits, CharUnits> Store : Stores) {
+ CharUnits StoreOffset = Store.first;
+ CharUnits StoreSize = Store.second;
+ llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
+ CGF.Builder.CreateMemCpy(
+ CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
+ CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
+ StoreSizeVal);
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ } else {
+ for (std::pair<CharUnits, CharUnits> Store : Stores) {
+ CharUnits StoreOffset = Store.first;
+ CharUnits StoreSize = Store.second;
+ llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
+ CGF.Builder.CreateMemSet(
+ CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
+ CGF.Builder.getInt8(0), StoreSizeVal);
+ }
+ }
+}
+
+void
+CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
+ AggValueSlot Dest) {
+ assert(!Dest.isIgnored() && "Must have a destination!");
+ const CXXConstructorDecl *CD = E->getConstructor();
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now, unless destination is
+ // already zeroed.
+ if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ case CXXConstructExpr::CK_Complete:
+ EmitNullInitialization(Dest.getAddress(), E->getType());
+ break;
+ case CXXConstructExpr::CK_VirtualBase:
+ case CXXConstructExpr::CK_NonVirtualBase:
+ EmitNullBaseClassInitialization(*this, Dest.getAddress(),
+ CD->getParent());
+ break;
+ }
+ }
+
+ // If this is a call to a trivial default constructor, do nothing.
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return;
+
+ // Elide the constructor if we're constructing from a temporary.
+ // The temporary check is required because Sema sets this on NRVO
+ // returns.
+ if (getLangOpts().ElideConstructors && E->isElidable()) {
+ assert(getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(0)->getType()));
+ if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
+ EmitAggExpr(E->getArg(0), Dest);
+ return;
+ }
+ }
+
+ if (const ArrayType *arrayType
+ = getContext().getAsArrayType(E->getType())) {
+ EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
+ Dest.isSanitizerChecked());
+ } else {
+ CXXCtorType Type = Ctor_Complete;
+ bool ForVirtualBase = false;
+ bool Delegating = false;
+
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ // We should be emitting a constructor; GlobalDecl will assert this
+ Type = CurGD.getCtorType();
+ Delegating = true;
+ break;
+
+ case CXXConstructExpr::CK_Complete:
+ Type = Ctor_Complete;
+ break;
+
+ case CXXConstructExpr::CK_VirtualBase:
+ ForVirtualBase = true;
+ LLVM_FALLTHROUGH;
+
+ case CXXConstructExpr::CK_NonVirtualBase:
+ Type = Ctor_Base;
+ }
+
+ // Call the constructor.
+ EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
+ }
+}
+
+void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
+ const Expr *Exp) {
+ if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
+ Exp = E->getSubExpr();
+ assert(isa<CXXConstructExpr>(Exp) &&
+ "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
+ const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
+ const CXXConstructorDecl *CD = E->getConstructor();
+ RunCleanupsScope Scope(*this);
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ // FIXME. Do I still need this for a copy ctor synthesis?
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest, E->getType());
+
+ assert(!getContext().getAsConstantArrayType(E->getType())
+ && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
+ EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
+}
+
+static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
+ const CXXNewExpr *E) {
+ if (!E->isArray())
+ return CharUnits::Zero();
+
+ // No cookie is required if the operator new[] being used is the
+ // reserved placement operator new[].
+ if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
+ return CharUnits::Zero();
+
+ return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
+}
+
+static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
+ const CXXNewExpr *e,
+ unsigned minElements,
+ llvm::Value *&numElements,
+ llvm::Value *&sizeWithoutCookie) {
+ QualType type = e->getAllocatedType();
+
+ if (!e->isArray()) {
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ sizeWithoutCookie
+ = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
+ return sizeWithoutCookie;
+ }
+
+ // The width of size_t.
+ unsigned sizeWidth = CGF.SizeTy->getBitWidth();
+
+ // Figure out the cookie size.
+ llvm::APInt cookieSize(sizeWidth,
+ CalculateCookiePadding(CGF, e).getQuantity());
+
+ // Emit the array size expression.
+ // We multiply the size of all dimensions for NumElements.
+ // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
+ numElements =
+ ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
+ if (!numElements)
+ numElements = CGF.EmitScalarExpr(*e->getArraySize());
+ assert(isa<llvm::IntegerType>(numElements->getType()));
+
+ // The number of elements can be have an arbitrary integer type;
+ // essentially, we need to multiply it by a constant factor, add a
+ // cookie size, and verify that the result is representable as a
+ // size_t. That's just a gloss, though, and it's wrong in one
+ // important way: if the count is negative, it's an error even if
+ // the cookie size would bring the total size >= 0.
+ bool isSigned
+ = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
+ llvm::IntegerType *numElementsType
+ = cast<llvm::IntegerType>(numElements->getType());
+ unsigned numElementsWidth = numElementsType->getBitWidth();
+
+ // Compute the constant factor.
+ llvm::APInt arraySizeMultiplier(sizeWidth, 1);
+ while (const ConstantArrayType *CAT
+ = CGF.getContext().getAsConstantArrayType(type)) {
+ type = CAT->getElementType();
+ arraySizeMultiplier *= CAT->getSize();
+ }
+
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
+ typeSizeMultiplier *= arraySizeMultiplier;
+
+ // This will be a size_t.
+ llvm::Value *size;
+
+ // If someone is doing 'new int[42]' there is no need to do a dynamic check.
+ // Don't bloat the -O0 code.
+ if (llvm::ConstantInt *numElementsC =
+ dyn_cast<llvm::ConstantInt>(numElements)) {
+ const llvm::APInt &count = numElementsC->getValue();
+
+ bool hasAnyOverflow = false;
+
+ // If 'count' was a negative number, it's an overflow.
+ if (isSigned && count.isNegative())
+ hasAnyOverflow = true;
+
+ // We want to do all this arithmetic in size_t. If numElements is
+ // wider than that, check whether it's already too big, and if so,
+ // overflow.
+ else if (numElementsWidth > sizeWidth &&
+ numElementsWidth - sizeWidth > count.countLeadingZeros())
+ hasAnyOverflow = true;
+
+ // Okay, compute a count at the right width.
+ llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
+
+ // If there is a brace-initializer, we cannot allocate fewer elements than
+ // there are initializers. If we do, that's treated like an overflow.
+ if (adjustedCount.ult(minElements))
+ hasAnyOverflow = true;
+
+ // Scale numElements by that. This might overflow, but we don't
+ // care because it only overflows if allocationSize does, too, and
+ // if that overflows then we shouldn't use this.
+ numElements = llvm::ConstantInt::get(CGF.SizeTy,
+ adjustedCount * arraySizeMultiplier);
+
+ // Compute the size before cookie, and track whether it overflowed.
+ bool overflow;
+ llvm::APInt allocationSize
+ = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
+ hasAnyOverflow |= overflow;
+
+ // Add in the cookie, and check whether it's overflowed.
+ if (cookieSize != 0) {
+ // Save the current size without a cookie. This shouldn't be
+ // used if there was overflow.
+ sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+
+ allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
+ hasAnyOverflow |= overflow;
+ }
+
+ // On overflow, produce a -1 so operator new will fail.
+ if (hasAnyOverflow) {
+ size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
+ } else {
+ size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+ }
+
+ // Otherwise, we might need to use the overflow intrinsics.
+ } else {
+ // There are up to five conditions we need to test for:
+ // 1) if isSigned, we need to check whether numElements is negative;
+ // 2) if numElementsWidth > sizeWidth, we need to check whether
+ // numElements is larger than something representable in size_t;
+ // 3) if minElements > 0, we need to check whether numElements is smaller
+ // than that.
+ // 4) we need to compute
+ // sizeWithoutCookie := numElements * typeSizeMultiplier
+ // and check whether it overflows; and
+ // 5) if we need a cookie, we need to compute
+ // size := sizeWithoutCookie + cookieSize
+ // and check whether it overflows.
+
+ llvm::Value *hasOverflow = nullptr;
+
+ // If numElementsWidth > sizeWidth, then one way or another, we're
+ // going to have to do a comparison for (2), and this happens to
+ // take care of (1), too.
+ if (numElementsWidth > sizeWidth) {
+ llvm::APInt threshold(numElementsWidth, 1);
+ threshold <<= sizeWidth;
+
+ llvm::Value *thresholdV
+ = llvm::ConstantInt::get(numElementsType, threshold);
+
+ hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
+ numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
+
+ // Otherwise, if we're signed, we want to sext up to size_t.
+ } else if (isSigned) {
+ if (numElementsWidth < sizeWidth)
+ numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
+
+ // If there's a non-1 type size multiplier, then we can do the
+ // signedness check at the same time as we do the multiply
+ // because a negative number times anything will cause an
+ // unsigned overflow. Otherwise, we have to do it here. But at least
+ // in this case, we can subsume the >= minElements check.
+ if (typeSizeMultiplier == 1)
+ hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+
+ // Otherwise, zext up to size_t if necessary.
+ } else if (numElementsWidth < sizeWidth) {
+ numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
+ }
+
+ assert(numElements->getType() == CGF.SizeTy);
+
+ if (minElements) {
+ // Don't allow allocation of fewer elements than we have initializers.
+ if (!hasOverflow) {
+ hasOverflow = CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+ } else if (numElementsWidth > sizeWidth) {
+ // The other existing overflow subsumes this check.
+ // We do an unsigned comparison, since any signed value < -1 is
+ // taken care of either above or below.
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow,
+ CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements)));
+ }
+ }
+
+ size = numElements;
+
+ // Multiply by the type size if necessary. This multiplier
+ // includes all the factors for nested arrays.
+ //
+ // This step also causes numElements to be scaled up by the
+ // nested-array factor if necessary. Overflow on this computation
+ // can be ignored because the result shouldn't be used if
+ // allocation fails.
+ if (typeSizeMultiplier != 1) {
+ llvm::Function *umul_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
+
+ llvm::Value *tsmV =
+ llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+
+ // Also scale up numElements by the array size multiplier.
+ if (arraySizeMultiplier != 1) {
+ // If the base element type size is 1, then we can re-use the
+ // multiply we just did.
+ if (typeSize.isOne()) {
+ assert(arraySizeMultiplier == typeSizeMultiplier);
+ numElements = size;
+
+ // Otherwise we need a separate multiply.
+ } else {
+ llvm::Value *asmV =
+ llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
+ numElements = CGF.Builder.CreateMul(numElements, asmV);
+ }
+ }
+ } else {
+ // numElements doesn't need to be scaled.
+ assert(arraySizeMultiplier == 1);
+ }
+
+ // Add in the cookie size if necessary.
+ if (cookieSize != 0) {
+ sizeWithoutCookie = size;
+
+ llvm::Function *uadd_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
+
+ llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+ }
+
+ // If we had any possibility of dynamic overflow, make a select to
+ // overwrite 'size' with an all-ones value, which should cause
+ // operator new to throw.
+ if (hasOverflow)
+ size = CGF.Builder.CreateSelect(hasOverflow,
+ llvm::Constant::getAllOnesValue(CGF.SizeTy),
+ size);
+ }
+
+ if (cookieSize == 0)
+ sizeWithoutCookie = size;
+ else
+ assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
+
+ return size;
+}
+
+static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
+ QualType AllocType, Address NewPtr,
+ AggValueSlot::Overlap_t MayOverlap) {
+ // FIXME: Refactor with EmitExprAsInit.
+ switch (CGF.getEvaluationKind(AllocType)) {
+ case TEK_Scalar:
+ CGF.EmitScalarInit(Init, nullptr,
+ CGF.MakeAddrLValue(NewPtr, AllocType), false);
+ return;
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
+ /*isInit*/ true);
+ return;
+ case TEK_Aggregate: {
+ AggValueSlot Slot
+ = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ MayOverlap, AggValueSlot::IsNotZeroed,
+ AggValueSlot::IsSanitizerChecked);
+ CGF.EmitAggExpr(Init, Slot);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::EmitNewArrayInitializer(
+ const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
+ Address BeginPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ // If we have a type with trivial initialization and no initializer,
+ // there's nothing to do.
+ if (!E->hasInitializer())
+ return;
+
+ Address CurPtr = BeginPtr;
+
+ unsigned InitListElements = 0;
+
+ const Expr *Init = E->getInitializer();
+ Address EndOfInit = Address::invalid();
+ QualType::DestructionKind DtorKind = ElementType.isDestructedType();
+ EHScopeStack::stable_iterator Cleanup;
+ llvm::Instruction *CleanupDominator = nullptr;
+
+ CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
+ CharUnits ElementAlign =
+ BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
+
+ // Attempt to perform zero-initialization using memset.
+ auto TryMemsetInitialization = [&]() -> bool {
+ // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
+ // we can initialize with a memset to -1.
+ if (!CGM.getTypes().isZeroInitializable(ElementType))
+ return false;
+
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+
+ // Subtract out the size of any elements we've already initialized.
+ auto *RemainingSize = AllocSizeWithoutCookie;
+ if (InitListElements) {
+ // We know this can't overflow; we check this when doing the allocation.
+ auto *InitializedSize = llvm::ConstantInt::get(
+ RemainingSize->getType(),
+ getContext().getTypeSizeInChars(ElementType).getQuantity() *
+ InitListElements);
+ RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
+ }
+
+ // Create the memset.
+ Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
+ return true;
+ };
+
+ // If the initializer is an initializer list, first do the explicit elements.
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ // Initializing from a (braced) string literal is a special case; the init
+ // list element does not initialize a (single) array element.
+ if (ILE->isStringLiteralInit()) {
+ // Initialize the initial portion of length equal to that of the string
+ // literal. The allocation must be for at least this much; we emitted a
+ // check for that earlier.
+ AggValueSlot Slot =
+ AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ AggValueSlot::DoesNotOverlap,
+ AggValueSlot::IsNotZeroed,
+ AggValueSlot::IsSanitizerChecked);
+ EmitAggExpr(ILE->getInit(0), Slot);
+
+ // Move past these elements.
+ InitListElements =
+ cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
+ ->getSize().getZExtValue();
+ CurPtr =
+ Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
+ Builder.getSize(InitListElements),
+ "string.init.end"),
+ CurPtr.getAlignment().alignmentAtOffset(InitListElements *
+ ElementSize));
+
+ // Zero out the rest, if any remain.
+ llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
+ if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
+ bool OK = TryMemsetInitialization();
+ (void)OK;
+ assert(OK && "couldn't memset character type?");
+ }
+ return;
+ }
+
+ InitListElements = ILE->getNumInits();
+
+ // If this is a multi-dimensional array new, we will initialize multiple
+ // elements with each init list element.
+ QualType AllocType = E->getAllocatedType();
+ if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
+ AllocType->getAsArrayTypeUnsafe())) {
+ ElementTy = ConvertTypeForMem(AllocType);
+ CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
+ InitListElements *= getContext().getConstantArrayElementCount(CAT);
+ }
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (needsEHCleanup(DtorKind)) {
+ // In principle we could tell the Cleanup where we are more
+ // directly, but the control flow can get so varied here that it
+ // would actually be quite complex. Therefore we go through an
+ // alloca.
+ EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
+ "array.init.end");
+ CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
+ pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
+ ElementType, ElementAlign,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ }
+
+ CharUnits StartAlign = CurPtr.getAlignment();
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
+ // Tell the cleanup that it needs to destroy up to this
+ // element. TODO: some of these stores can be trivially
+ // observed to be unnecessary.
+ if (EndOfInit.isValid()) {
+ auto FinishedPtr =
+ Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
+ Builder.CreateStore(FinishedPtr, EndOfInit);
+ }
+ // FIXME: If the last initializer is an incomplete initializer list for
+ // an array, and we have an array filler, we can fold together the two
+ // initialization loops.
+ StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
+ ILE->getInit(i)->getType(), CurPtr,
+ AggValueSlot::DoesNotOverlap);
+ CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
+ Builder.getSize(1),
+ "array.exp.next"),
+ StartAlign.alignmentAtOffset((i + 1) * ElementSize));
+ }
+
+ // The remaining elements are filled with the array filler expression.
+ Init = ILE->getArrayFiller();
+
+ // Extract the initializer for the individual array elements by pulling
+ // out the array filler from all the nested initializer lists. This avoids
+ // generating a nested loop for the initialization.
+ while (Init && Init->getType()->isConstantArrayType()) {
+ auto *SubILE = dyn_cast<InitListExpr>(Init);
+ if (!SubILE)
+ break;
+ assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
+ Init = SubILE->getArrayFiller();
+ }
+
+ // Switch back to initializing one base element at a time.
+ CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
+ }
+
+ // If all elements have already been initialized, skip any further
+ // initialization.
+ llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
+ if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
+ // If there was a Cleanup, deactivate it.
+ if (CleanupDominator)
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ return;
+ }
+
+ assert(Init && "have trailing elements to initialize but no initializer");
+
+ // If this is a constructor call, try to optimize it out, and failing that
+ // emit a single loop to initialize all remaining elements.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ CXXConstructorDecl *Ctor = CCE->getConstructor();
+ if (Ctor->isTrivial()) {
+ // If new expression did not specify value-initialization, then there
+ // is no initialization.
+ if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
+ return;
+
+ if (TryMemsetInitialization())
+ return;
+ }
+
+ // Store the new Cleanup position for irregular Cleanups.
+ //
+ // FIXME: Share this cleanup with the constructor call emission rather than
+ // having it create a cleanup of its own.
+ if (EndOfInit.isValid())
+ Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
+
+ // Emit a constructor call loop to initialize the remaining elements.
+ if (InitListElements)
+ NumElements = Builder.CreateSub(
+ NumElements,
+ llvm::ConstantInt::get(NumElements->getType(), InitListElements));
+ EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
+ /*NewPointerIsChecked*/true,
+ CCE->requiresZeroInitialization());
+ return;
+ }
+
+ // If this is value-initialization, we can usually use memset.
+ ImplicitValueInitExpr IVIE(ElementType);
+ if (isa<ImplicitValueInitExpr>(Init)) {
+ if (TryMemsetInitialization())
+ return;
+
+ // Switch to an ImplicitValueInitExpr for the element type. This handles
+ // only one case: multidimensional array new of pointers to members. In
+ // all other cases, we already have an initializer for the array element.
+ Init = &IVIE;
+ }
+
+ // At this point we should have found an initializer for the individual
+ // elements of the array.
+ assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
+ "got wrong type of element to initialize");
+
+ // If we have an empty initializer list, we can usually use memset.
+ if (auto *ILE = dyn_cast<InitListExpr>(Init))
+ if (ILE->getNumInits() == 0 && TryMemsetInitialization())
+ return;
+
+ // If we have a struct whose every field is value-initialized, we can
+ // usually use memset.
+ if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
+ if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
+ if (RType->getDecl()->isStruct()) {
+ unsigned NumElements = 0;
+ if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
+ NumElements = CXXRD->getNumBases();
+ for (auto *Field : RType->getDecl()->fields())
+ if (!Field->isUnnamedBitfield())
+ ++NumElements;
+ // FIXME: Recurse into nested InitListExprs.
+ if (ILE->getNumInits() == NumElements)
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
+ if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
+ --NumElements;
+ if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
+ return;
+ }
+ }
+ }
+
+ // Create the loop blocks.
+ llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
+ llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
+
+ // Find the end of the array, hoisted out of the loop.
+ llvm::Value *EndPtr =
+ Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
+
+ // If the number of elements isn't constant, we have to now check if there is
+ // anything left to initialize.
+ if (!ConstNum) {
+ llvm::Value *IsEmpty =
+ Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
+ Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
+ }
+
+ // Enter the loop.
+ EmitBlock(LoopBB);
+
+ // Set up the current-element phi.
+ llvm::PHINode *CurPtrPhi =
+ Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
+ CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
+
+ CurPtr = Address(CurPtrPhi, ElementAlign);
+
+ // Store the new Cleanup position for irregular Cleanups.
+ if (EndOfInit.isValid())
+ Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (!CleanupDominator && needsEHCleanup(DtorKind)) {
+ pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
+ ElementType, ElementAlign,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ CleanupDominator = Builder.CreateUnreachable();
+ }
+
+ // Emit the initializer into this element.
+ StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
+ AggValueSlot::DoesNotOverlap);
+
+ // Leave the Cleanup if we entered one.
+ if (CleanupDominator) {
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ CleanupDominator->eraseFromParent();
+ }
+
+ // Advance to the next element by adjusting the pointer type as necessary.
+ llvm::Value *NextPtr =
+ Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
+ "array.next");
+
+ // Check whether we've gotten to the end of the array and, if so,
+ // exit the loop.
+ llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
+ Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
+ CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
+
+ EmitBlock(ContBB);
+}
+
+static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
+ QualType ElementType, llvm::Type *ElementTy,
+ Address NewPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ ApplyDebugLocation DL(CGF, E);
+ if (E->isArray())
+ CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
+ AllocSizeWithoutCookie);
+ else if (const Expr *Init = E->getInitializer())
+ StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
+ AggValueSlot::DoesNotOverlap);
+}
+
+/// Emit a call to an operator new or operator delete function, as implicitly
+/// created by new-expressions and delete-expressions.
+static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
+ const FunctionDecl *CalleeDecl,
+ const FunctionProtoType *CalleeType,
+ const CallArgList &Args) {
+ llvm::CallBase *CallOrInvoke;
+ llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
+ CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
+ RValue RV =
+ CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
+ Args, CalleeType, /*ChainCall=*/false),
+ Callee, ReturnValueSlot(), Args, &CallOrInvoke);
+
+ /// C++1y [expr.new]p10:
+ /// [In a new-expression,] an implementation is allowed to omit a call
+ /// to a replaceable global allocation function.
+ ///
+ /// We model such elidable calls with the 'builtin' attribute.
+ llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
+ if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
+ Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
+ CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
+ llvm::Attribute::Builtin);
+ }
+
+ return RV;
+}
+
+RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
+ const CallExpr *TheCall,
+ bool IsDelete) {
+ CallArgList Args;
+ EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
+ // Find the allocation or deallocation function that we're calling.
+ ASTContext &Ctx = getContext();
+ DeclarationName Name = Ctx.DeclarationNames
+ .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
+
+ for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
+ if (auto *FD = dyn_cast<FunctionDecl>(Decl))
+ if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
+ return EmitNewDeleteCall(*this, FD, Type, Args);
+ llvm_unreachable("predeclared global operator new/delete is missing");
+}
+
+namespace {
+/// The parameters to pass to a usual operator delete.
+struct UsualDeleteParams {
+ bool DestroyingDelete = false;
+ bool Size = false;
+ bool Alignment = false;
+};
+}
+
+static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
+ UsualDeleteParams Params;
+
+ const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
+ auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
+
+ // The first argument is always a void*.
+ ++AI;
+
+ // The next parameter may be a std::destroying_delete_t.
+ if (FD->isDestroyingOperatorDelete()) {
+ Params.DestroyingDelete = true;
+ assert(AI != AE);
+ ++AI;
+ }
+
+ // Figure out what other parameters we should be implicitly passing.
+ if (AI != AE && (*AI)->isIntegerType()) {
+ Params.Size = true;
+ ++AI;
+ }
+
+ if (AI != AE && (*AI)->isAlignValT()) {
+ Params.Alignment = true;
+ ++AI;
+ }
+
+ assert(AI == AE && "unexpected usual deallocation function parameter");
+ return Params;
+}
+
+namespace {
+ /// A cleanup to call the given 'operator delete' function upon abnormal
+ /// exit from a new expression. Templated on a traits type that deals with
+ /// ensuring that the arguments dominate the cleanup if necessary.
+ template<typename Traits>
+ class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
+ /// Type used to hold llvm::Value*s.
+ typedef typename Traits::ValueTy ValueTy;
+ /// Type used to hold RValues.
+ typedef typename Traits::RValueTy RValueTy;
+ struct PlacementArg {
+ RValueTy ArgValue;
+ QualType ArgType;
+ };
+
+ unsigned NumPlacementArgs : 31;
+ unsigned PassAlignmentToPlacementDelete : 1;
+ const FunctionDecl *OperatorDelete;
+ ValueTy Ptr;
+ ValueTy AllocSize;
+ CharUnits AllocAlign;
+
+ PlacementArg *getPlacementArgs() {
+ return reinterpret_cast<PlacementArg *>(this + 1);
+ }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(PlacementArg);
+ }
+
+ CallDeleteDuringNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete, ValueTy Ptr,
+ ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
+ CharUnits AllocAlign)
+ : NumPlacementArgs(NumPlacementArgs),
+ PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
+ OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
+ AllocAlign(AllocAlign) {}
+
+ void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = {Arg, Type};
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *FPT =
+ OperatorDelete->getType()->getAs<FunctionProtoType>();
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void* (or C* for a destroying operator
+ // delete for class type C).
+ DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
+
+ // Figure out what other parameters we should be implicitly passing.
+ UsualDeleteParams Params;
+ if (NumPlacementArgs) {
+ // A placement deallocation function is implicitly passed an alignment
+ // if the placement allocation function was, but is never passed a size.
+ Params.Alignment = PassAlignmentToPlacementDelete;
+ } else {
+ // For a non-placement new-expression, 'operator delete' can take a
+ // size and/or an alignment if it has the right parameters.
+ Params = getUsualDeleteParams(OperatorDelete);
+ }
+
+ assert(!Params.DestroyingDelete &&
+ "should not call destroying delete in a new-expression");
+
+ // The second argument can be a std::size_t (for non-placement delete).
+ if (Params.Size)
+ DeleteArgs.add(Traits::get(CGF, AllocSize),
+ CGF.getContext().getSizeType());
+
+ // The next (second or third) argument can be a std::align_val_t, which
+ // is an enum whose underlying type is std::size_t.
+ // FIXME: Use the right type as the parameter type. Note that in a call
+ // to operator delete(size_t, ...), we may not have it available.
+ if (Params.Alignment)
+ DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
+ CGF.SizeTy, AllocAlign.getQuantity())),
+ CGF.getContext().getSizeType());
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I) {
+ auto Arg = getPlacementArgs()[I];
+ DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
+ }
+
+ // Call 'operator delete'.
+ EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
+ }
+ };
+}
+
+/// Enter a cleanup to call 'operator delete' if the initializer in a
+/// new-expression throws.
+static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ Address NewPtr,
+ llvm::Value *AllocSize,
+ CharUnits AllocAlign,
+ const CallArgList &NewArgs) {
+ unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
+
+ // If we're not inside a conditional branch, then the cleanup will
+ // dominate and we can do the easier (and more efficient) thing.
+ if (!CGF.isInConditionalBranch()) {
+ struct DirectCleanupTraits {
+ typedef llvm::Value *ValueTy;
+ typedef RValue RValueTy;
+ static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
+ static RValue get(CodeGenFunction &, RValueTy V) { return V; }
+ };
+
+ typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
+
+ DirectCleanup *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ NewPtr.getPointer(),
+ AllocSize,
+ E->passAlignment(),
+ AllocAlign);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
+ auto &Arg = NewArgs[I + NumNonPlacementArgs];
+ Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
+ }
+
+ return;
+ }
+
+ // Otherwise, we need to save all this stuff.
+ DominatingValue<RValue>::saved_type SavedNewPtr =
+ DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
+ DominatingValue<RValue>::saved_type SavedAllocSize =
+ DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
+
+ struct ConditionalCleanupTraits {
+ typedef DominatingValue<RValue>::saved_type ValueTy;
+ typedef DominatingValue<RValue>::saved_type RValueTy;
+ static RValue get(CodeGenFunction &CGF, ValueTy V) {
+ return V.restore(CGF);
+ }
+ };
+ typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
+
+ ConditionalCleanup *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ SavedNewPtr,
+ SavedAllocSize,
+ E->passAlignment(),
+ AllocAlign);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
+ auto &Arg = NewArgs[I + NumNonPlacementArgs];
+ Cleanup->setPlacementArg(
+ I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
+ }
+
+ CGF.initFullExprCleanup();
+}
+
+llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
+ // The element type being allocated.
+ QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
+
+ // 1. Build a call to the allocation function.
+ FunctionDecl *allocator = E->getOperatorNew();
+
+ // If there is a brace-initializer, cannot allocate fewer elements than inits.
+ unsigned minElements = 0;
+ if (E->isArray() && E->hasInitializer()) {
+ const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
+ if (ILE && ILE->isStringLiteralInit())
+ minElements =
+ cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
+ ->getSize().getZExtValue();
+ else if (ILE)
+ minElements = ILE->getNumInits();
+ }
+
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocSizeWithoutCookie = nullptr;
+ llvm::Value *allocSize =
+ EmitCXXNewAllocSize(*this, E, minElements, numElements,
+ allocSizeWithoutCookie);
+ CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
+
+ // Emit the allocation call. If the allocator is a global placement
+ // operator, just "inline" it directly.
+ Address allocation = Address::invalid();
+ CallArgList allocatorArgs;
+ if (allocator->isReservedGlobalPlacementOperator()) {
+ assert(E->getNumPlacementArgs() == 1);
+ const Expr *arg = *E->placement_arguments().begin();
+
+ LValueBaseInfo BaseInfo;
+ allocation = EmitPointerWithAlignment(arg, &BaseInfo);
+
+ // The pointer expression will, in many cases, be an opaque void*.
+ // In these cases, discard the computed alignment and use the
+ // formal alignment of the allocated type.
+ if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
+ allocation = Address(allocation.getPointer(), allocAlign);
+
+ // Set up allocatorArgs for the call to operator delete if it's not
+ // the reserved global operator.
+ if (E->getOperatorDelete() &&
+ !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
+ allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
+ allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
+ }
+
+ } else {
+ const FunctionProtoType *allocatorType =
+ allocator->getType()->castAs<FunctionProtoType>();
+ unsigned ParamsToSkip = 0;
+
+ // The allocation size is the first argument.
+ QualType sizeType = getContext().getSizeType();
+ allocatorArgs.add(RValue::get(allocSize), sizeType);
+ ++ParamsToSkip;
+
+ if (allocSize != allocSizeWithoutCookie) {
+ CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
+ allocAlign = std::max(allocAlign, cookieAlign);
+ }
+
+ // The allocation alignment may be passed as the second argument.
+ if (E->passAlignment()) {
+ QualType AlignValT = sizeType;
+ if (allocatorType->getNumParams() > 1) {
+ AlignValT = allocatorType->getParamType(1);
+ assert(getContext().hasSameUnqualifiedType(
+ AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
+ sizeType) &&
+ "wrong type for alignment parameter");
+ ++ParamsToSkip;
+ } else {
+ // Corner case, passing alignment to 'operator new(size_t, ...)'.
+ assert(allocator->isVariadic() && "can't pass alignment to allocator");
+ }
+ allocatorArgs.add(
+ RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
+ AlignValT);
+ }
+
+ // FIXME: Why do we not pass a CalleeDecl here?
+ EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
+ /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
+
+ RValue RV =
+ EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
+
+ // If this was a call to a global replaceable allocation function that does
+ // not take an alignment argument, the allocator is known to produce
+ // storage that's suitably aligned for any object that fits, up to a known
+ // threshold. Otherwise assume it's suitably aligned for the allocated type.
+ CharUnits allocationAlign = allocAlign;
+ if (!E->passAlignment() &&
+ allocator->isReplaceableGlobalAllocationFunction()) {
+ unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
+ Target.getNewAlign(), getContext().getTypeSize(allocType)));
+ allocationAlign = std::max(
+ allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
+ }
+
+ allocation = Address(RV.getScalarVal(), allocationAlign);
+ }
+
+ // Emit a null check on the allocation result if the allocation
+ // function is allowed to return null (because it has a non-throwing
+ // exception spec or is the reserved placement new) and we have an
+ // interesting initializer will be running sanitizers on the initialization.
+ bool nullCheck = E->shouldNullCheckAllocation() &&
+ (!allocType.isPODType(getContext()) || E->hasInitializer() ||
+ sanitizePerformTypeCheck());
+
+ llvm::BasicBlock *nullCheckBB = nullptr;
+ llvm::BasicBlock *contBB = nullptr;
+
+ // The null-check means that the initializer is conditionally
+ // evaluated.
+ ConditionalEvaluation conditional(*this);
+
+ if (nullCheck) {
+ conditional.begin(*this);
+
+ nullCheckBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
+ contBB = createBasicBlock("new.cont");
+
+ llvm::Value *isNull =
+ Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
+ Builder.CreateCondBr(isNull, contBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ // If there's an operator delete, enter a cleanup to call it if an
+ // exception is thrown.
+ EHScopeStack::stable_iterator operatorDeleteCleanup;
+ llvm::Instruction *cleanupDominator = nullptr;
+ if (E->getOperatorDelete() &&
+ !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
+ EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
+ allocatorArgs);
+ operatorDeleteCleanup = EHStack.stable_begin();
+ cleanupDominator = Builder.CreateUnreachable();
+ }
+
+ assert((allocSize == allocSizeWithoutCookie) ==
+ CalculateCookiePadding(*this, E).isZero());
+ if (allocSize != allocSizeWithoutCookie) {
+ assert(E->isArray());
+ allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
+ numElements,
+ E, allocType);
+ }
+
+ llvm::Type *elementTy = ConvertTypeForMem(allocType);
+ Address result = Builder.CreateElementBitCast(allocation, elementTy);
+
+ // Passing pointer through launder.invariant.group to avoid propagation of
+ // vptrs information which may be included in previous type.
+ // To not break LTO with different optimizations levels, we do it regardless
+ // of optimization level.
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ allocator->isReservedGlobalPlacementOperator())
+ result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
+ result.getAlignment());
+
+ // Emit sanitizer checks for pointer value now, so that in the case of an
+ // array it was checked only once and not at each constructor call. We may
+ // have already checked that the pointer is non-null.
+ // FIXME: If we have an array cookie and a potentially-throwing allocator,
+ // we'll null check the wrong pointer here.
+ SanitizerSet SkippedChecks;
+ SkippedChecks.set(SanitizerKind::Null, nullCheck);
+ EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall,
+ E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
+ result.getPointer(), allocType, result.getAlignment(),
+ SkippedChecks, numElements);
+
+ EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
+ allocSizeWithoutCookie);
+ if (E->isArray()) {
+ // NewPtr is a pointer to the base element type. If we're
+ // allocating an array of arrays, we'll need to cast back to the
+ // array pointer type.
+ llvm::Type *resultType = ConvertTypeForMem(E->getType());
+ if (result.getType() != resultType)
+ result = Builder.CreateBitCast(result, resultType);
+ }
+
+ // Deactivate the 'operator delete' cleanup if we finished
+ // initialization.
+ if (operatorDeleteCleanup.isValid()) {
+ DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
+ cleanupDominator->eraseFromParent();
+ }
+
+ llvm::Value *resultPtr = result.getPointer();
+ if (nullCheck) {
+ conditional.end(*this);
+
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ EmitBlock(contBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
+ PHI->addIncoming(resultPtr, notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
+ nullCheckBB);
+
+ resultPtr = PHI;
+ }
+
+ return resultPtr;
+}
+
+void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
+ llvm::Value *Ptr, QualType DeleteTy,
+ llvm::Value *NumElements,
+ CharUnits CookieSize) {
+ assert((!NumElements && CookieSize.isZero()) ||
+ DeleteFD->getOverloadedOperator() == OO_Array_Delete);
+
+ const FunctionProtoType *DeleteFTy =
+ DeleteFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList DeleteArgs;
+
+ auto Params = getUsualDeleteParams(DeleteFD);
+ auto ParamTypeIt = DeleteFTy->param_type_begin();
+
+ // Pass the pointer itself.
+ QualType ArgTy = *ParamTypeIt++;
+ llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
+ DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
+
+ // Pass the std::destroying_delete tag if present.
+ if (Params.DestroyingDelete) {
+ QualType DDTag = *ParamTypeIt++;
+ // Just pass an 'undef'. We expect the tag type to be an empty struct.
+ auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
+ DeleteArgs.add(RValue::get(V), DDTag);
+ }
+
+ // Pass the size if the delete function has a size_t parameter.
+ if (Params.Size) {
+ QualType SizeType = *ParamTypeIt++;
+ CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
+ llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
+ DeleteTypeSize.getQuantity());
+
+ // For array new, multiply by the number of elements.
+ if (NumElements)
+ Size = Builder.CreateMul(Size, NumElements);
+
+ // If there is a cookie, add the cookie size.
+ if (!CookieSize.isZero())
+ Size = Builder.CreateAdd(
+ Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
+
+ DeleteArgs.add(RValue::get(Size), SizeType);
+ }
+
+ // Pass the alignment if the delete function has an align_val_t parameter.
+ if (Params.Alignment) {
+ QualType AlignValType = *ParamTypeIt++;
+ CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
+ getContext().getTypeAlignIfKnown(DeleteTy));
+ llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
+ DeleteTypeAlign.getQuantity());
+ DeleteArgs.add(RValue::get(Align), AlignValType);
+ }
+
+ assert(ParamTypeIt == DeleteFTy->param_type_end() &&
+ "unknown parameter to usual delete function");
+
+ // Emit the call to delete.
+ EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
+}
+
+namespace {
+ /// Calls the given 'operator delete' on a single object.
+ struct CallObjectDelete final : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ QualType ElementType;
+
+ CallObjectDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ QualType ElementType)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
+ }
+ };
+}
+
+void
+CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
+ llvm::Value *CompletePtr,
+ QualType ElementType) {
+ EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
+ OperatorDelete, ElementType);
+}
+
+/// Emit the code for deleting a single object with a destroying operator
+/// delete. If the element type has a non-virtual destructor, Ptr has already
+/// been converted to the type of the parameter of 'operator delete'. Otherwise
+/// Ptr points to an object of the static type.
+static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE, Address Ptr,
+ QualType ElementType) {
+ auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
+ if (Dtor && Dtor->isVirtual())
+ CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
+ Dtor);
+ else
+ CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
+}
+
+/// Emit the code for deleting a single object.
+static void EmitObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ Address Ptr,
+ QualType ElementType) {
+ // C++11 [expr.delete]p3:
+ // If the static type of the object to be deleted is different from its
+ // dynamic type, the static type shall be a base class of the dynamic type
+ // of the object to be deleted and the static type shall have a virtual
+ // destructor or the behavior is undefined.
+ CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall,
+ DE->getExprLoc(), Ptr.getPointer(),
+ ElementType);
+
+ const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
+ assert(!OperatorDelete->isDestroyingOperatorDelete());
+
+ // Find the destructor for the type, if applicable. If the
+ // destructor is virtual, we'll just emit the vcall and return.
+ const CXXDestructorDecl *Dtor = nullptr;
+ if (const RecordType *RT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
+ Dtor = RD->getDestructor();
+
+ if (Dtor->isVirtual()) {
+ bool UseVirtualCall = true;
+ const Expr *Base = DE->getArgument();
+ if (auto *DevirtualizedDtor =
+ dyn_cast_or_null<const CXXDestructorDecl>(
+ Dtor->getDevirtualizedMethod(
+ Base, CGF.CGM.getLangOpts().AppleKext))) {
+ UseVirtualCall = false;
+ const CXXRecordDecl *DevirtualizedClass =
+ DevirtualizedDtor->getParent();
+ if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
+ // Devirtualized to the class of the base type (the type of the
+ // whole expression).
+ Dtor = DevirtualizedDtor;
+ } else {
+ // Devirtualized to some other type. Would need to cast the this
+ // pointer to that type but we don't have support for that yet, so
+ // do a virtual call. FIXME: handle the case where it is
+ // devirtualized to the derived type (the type of the inner
+ // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
+ UseVirtualCall = true;
+ }
+ }
+ if (UseVirtualCall) {
+ CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
+ Dtor);
+ return;
+ }
+ }
+ }
+ }
+
+ // Make sure that we call delete even if the dtor throws.
+ // This doesn't have to a conditional cleanup because we're going
+ // to pop it off in a second.
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr.getPointer(),
+ OperatorDelete, ElementType);
+
+ if (Dtor)
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false,
+ Ptr, ElementType);
+ else if (auto Lifetime = ElementType.getObjCLifetime()) {
+ switch (Lifetime) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong:
+ CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCDestroyWeak(Ptr);
+ break;
+ }
+ }
+
+ CGF.PopCleanupBlock();
+}
+
+namespace {
+ /// Calls the given 'operator delete' on an array of objects.
+ struct CallArrayDelete final : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *NumElements;
+ QualType ElementType;
+ CharUnits CookieSize;
+
+ CallArrayDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *NumElements,
+ QualType ElementType,
+ CharUnits CookieSize)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
+ ElementType(ElementType), CookieSize(CookieSize) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
+ CookieSize);
+ }
+ };
+}
+
+/// Emit the code for deleting an array of objects.
+static void EmitArrayDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *E,
+ Address deletedPtr,
+ QualType elementType) {
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocatedPtr = nullptr;
+ CharUnits cookieSize;
+ CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
+ numElements, allocatedPtr, cookieSize);
+
+ assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
+
+ // Make sure that we call delete even if one of the dtors throws.
+ const FunctionDecl *operatorDelete = E->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
+ allocatedPtr, operatorDelete,
+ numElements, elementType,
+ cookieSize);
+
+ // Destroy the elements.
+ if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
+ assert(numElements && "no element count for a type with a destructor!");
+
+ CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
+ CharUnits elementAlign =
+ deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
+
+ llvm::Value *arrayBegin = deletedPtr.getPointer();
+ llvm::Value *arrayEnd =
+ CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
+
+ // Note that it is legal to allocate a zero-length array, and we
+ // can never fold the check away because the length should always
+ // come from a cookie.
+ CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
+ CGF.getDestroyer(dtorKind),
+ /*checkZeroLength*/ true,
+ CGF.needsEHCleanup(dtorKind));
+ }
+
+ // Pop the cleanup block.
+ CGF.PopCleanupBlock();
+}
+
+void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ const Expr *Arg = E->getArgument();
+ Address Ptr = EmitPointerWithAlignment(Arg);
+
+ // Null check the pointer.
+ llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
+ llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
+
+ Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
+ EmitBlock(DeleteNotNull);
+
+ QualType DeleteTy = E->getDestroyedType();
+
+ // A destroying operator delete overrides the entire operation of the
+ // delete expression.
+ if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
+ EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
+ EmitBlock(DeleteEnd);
+ return;
+ }
+
+ // We might be deleting a pointer to array. If so, GEP down to the
+ // first non-array element.
+ // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
+ if (DeleteTy->isConstantArrayType()) {
+ llvm::Value *Zero = Builder.getInt32(0);
+ SmallVector<llvm::Value*,8> GEP;
+
+ GEP.push_back(Zero); // point at the outermost array
+
+ // For each layer of array type we're pointing at:
+ while (const ConstantArrayType *Arr
+ = getContext().getAsConstantArrayType(DeleteTy)) {
+ // 1. Unpeel the array type.
+ DeleteTy = Arr->getElementType();
+
+ // 2. GEP to the first element of the array.
+ GEP.push_back(Zero);
+ }
+
+ Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
+ Ptr.getAlignment());
+ }
+
+ assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
+
+ if (E->isArrayForm()) {
+ EmitArrayDelete(*this, E, Ptr, DeleteTy);
+ } else {
+ EmitObjectDelete(*this, E, Ptr, DeleteTy);
+ }
+
+ EmitBlock(DeleteEnd);
+}
+
+static bool isGLValueFromPointerDeref(const Expr *E) {
+ E = E->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CastExpr>(E)) {
+ if (!CE->getSubExpr()->isGLValue())
+ return false;
+ return isGLValueFromPointerDeref(CE->getSubExpr());
+ }
+
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
+ return isGLValueFromPointerDeref(OVE->getSourceExpr());
+
+ if (const auto *BO = dyn_cast<BinaryOperator>(E))
+ if (BO->getOpcode() == BO_Comma)
+ return isGLValueFromPointerDeref(BO->getRHS());
+
+ if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
+ return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
+ isGLValueFromPointerDeref(ACO->getFalseExpr());
+
+ // C++11 [expr.sub]p1:
+ // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
+ if (isa<ArraySubscriptExpr>(E))
+ return true;
+
+ if (const auto *UO = dyn_cast<UnaryOperator>(E))
+ if (UO->getOpcode() == UO_Deref)
+ return true;
+
+ return false;
+}
+
+static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
+ llvm::Type *StdTypeInfoPtrTy) {
+ // Get the vtable pointer.
+ Address ThisPtr = CGF.EmitLValue(E).getAddress();
+
+ QualType SrcRecordTy = E->getType();
+
+ // C++ [class.cdtor]p4:
+ // If the operand of typeid refers to the object under construction or
+ // destruction and the static type of the operand is neither the constructor
+ // or destructor’s class nor one of its bases, the behavior is undefined.
+ CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(),
+ ThisPtr.getPointer(), SrcRecordTy);
+
+ // C++ [expr.typeid]p2:
+ // If the glvalue expression is obtained by applying the unary * operator to
+ // a pointer and the pointer is a null pointer value, the typeid expression
+ // throws the std::bad_typeid exception.
+ //
+ // However, this paragraph's intent is not clear. We choose a very generous
+ // interpretation which implores us to consider comma operators, conditional
+ // operators, parentheses and other such constructs.
+ if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
+ isGLValueFromPointerDeref(E), SrcRecordTy)) {
+ llvm::BasicBlock *BadTypeidBlock =
+ CGF.createBasicBlock("typeid.bad_typeid");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
+ CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
+
+ CGF.EmitBlock(BadTypeidBlock);
+ CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
+ CGF.EmitBlock(EndBlock);
+ }
+
+ return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
+ StdTypeInfoPtrTy);
+}
+
+llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ llvm::Type *StdTypeInfoPtrTy =
+ ConvertType(E->getType())->getPointerTo();
+
+ if (E->isTypeOperand()) {
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
+ return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
+ }
+
+ // C++ [expr.typeid]p2:
+ // When typeid is applied to a glvalue expression whose type is a
+ // polymorphic class type, the result refers to a std::type_info object
+ // representing the type of the most derived object (that is, the dynamic
+ // type) to which the glvalue refers.
+ if (E->isPotentiallyEvaluated())
+ return EmitTypeidFromVTable(*this, E->getExprOperand(),
+ StdTypeInfoPtrTy);
+
+ QualType OperandTy = E->getExprOperand()->getType();
+ return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
+ StdTypeInfoPtrTy);
+}
+
+static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
+ QualType DestTy) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+ if (DestTy->isPointerType())
+ return llvm::Constant::getNullValue(DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
+ return nullptr;
+
+ CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
+ return llvm::UndefValue::get(DestLTy);
+}
+
+llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
+ const CXXDynamicCastExpr *DCE) {
+ CGM.EmitExplicitCastExprType(DCE, this);
+ QualType DestTy = DCE->getTypeAsWritten();
+
+ QualType SrcTy = DCE->getSubExpr()->getType();
+
+ // C++ [expr.dynamic.cast]p7:
+ // If T is "pointer to cv void," then the result is a pointer to the most
+ // derived object pointed to by v.
+ const PointerType *DestPTy = DestTy->getAs<PointerType>();
+
+ bool isDynamicCastToVoid;
+ QualType SrcRecordTy;
+ QualType DestRecordTy;
+ if (DestPTy) {
+ isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
+ SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
+ DestRecordTy = DestPTy->getPointeeType();
+ } else {
+ isDynamicCastToVoid = false;
+ SrcRecordTy = SrcTy;
+ DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ // C++ [class.cdtor]p5:
+ // If the operand of the dynamic_cast refers to the object under
+ // construction or destruction and the static type of the operand is not a
+ // pointer to or object of the constructor or destructor’s own class or one
+ // of its bases, the dynamic_cast results in undefined behavior.
+ EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
+ SrcRecordTy);
+
+ if (DCE->isAlwaysNull())
+ if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
+ return T;
+
+ assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
+
+ // C++ [expr.dynamic.cast]p4:
+ // If the value of v is a null pointer value in the pointer case, the result
+ // is the null pointer value of type T.
+ bool ShouldNullCheckSrcValue =
+ CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
+ SrcRecordTy);
+
+ llvm::BasicBlock *CastNull = nullptr;
+ llvm::BasicBlock *CastNotNull = nullptr;
+ llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
+
+ if (ShouldNullCheckSrcValue) {
+ CastNull = createBasicBlock("dynamic_cast.null");
+ CastNotNull = createBasicBlock("dynamic_cast.notnull");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ llvm::Value *Value;
+ if (isDynamicCastToVoid) {
+ Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
+ DestTy);
+ } else {
+ assert(DestRecordTy->isRecordType() &&
+ "destination type must be a record type!");
+ Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
+ DestTy, DestRecordTy, CastEnd);
+ CastNotNull = Builder.GetInsertBlock();
+ }
+
+ if (ShouldNullCheckSrcValue) {
+ EmitBranch(CastEnd);
+
+ EmitBlock(CastNull);
+ EmitBranch(CastEnd);
+ }
+
+ EmitBlock(CastEnd);
+
+ if (ShouldNullCheckSrcValue) {
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
+
+ Value = PHI;
+ }
+
+ return Value;
+}