summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprScalar.cpp4766
1 files changed, 4766 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGExprScalar.cpp b/clang/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 000000000000..55a413a2a717
--- /dev/null
+++ b/clang/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,4766 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "ConstantEmitter.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/Basic/FixedPoint.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+// Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// Determine whether the given binary operation may overflow.
+/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
+/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
+/// the returned overflow check is precise. The returned value is 'true' for
+/// all other opcodes, to be conservative.
+bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
+ BinaryOperator::Opcode Opcode, bool Signed,
+ llvm::APInt &Result) {
+ // Assume overflow is possible, unless we can prove otherwise.
+ bool Overflow = true;
+ const auto &LHSAP = LHS->getValue();
+ const auto &RHSAP = RHS->getValue();
+ if (Opcode == BO_Add) {
+ if (Signed)
+ Result = LHSAP.sadd_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.uadd_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Sub) {
+ if (Signed)
+ Result = LHSAP.ssub_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.usub_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Mul) {
+ if (Signed)
+ Result = LHSAP.smul_ov(RHSAP, Overflow);
+ else
+ Result = LHSAP.umul_ov(RHSAP, Overflow);
+ } else if (Opcode == BO_Div || Opcode == BO_Rem) {
+ if (Signed && !RHS->isZero())
+ Result = LHSAP.sdiv_ov(RHSAP, Overflow);
+ else
+ return false;
+ }
+ return Overflow;
+}
+
+struct BinOpInfo {
+ Value *LHS;
+ Value *RHS;
+ QualType Ty; // Computation Type.
+ BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
+ FPOptions FPFeatures;
+ const Expr *E; // Entire expr, for error unsupported. May not be binop.
+
+ /// Check if the binop can result in integer overflow.
+ bool mayHaveIntegerOverflow() const {
+ // Without constant input, we can't rule out overflow.
+ auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
+ auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
+ if (!LHSCI || !RHSCI)
+ return true;
+
+ llvm::APInt Result;
+ return ::mayHaveIntegerOverflow(
+ LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
+ }
+
+ /// Check if the binop computes a division or a remainder.
+ bool isDivremOp() const {
+ return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
+ Opcode == BO_RemAssign;
+ }
+
+ /// Check if the binop can result in an integer division by zero.
+ bool mayHaveIntegerDivisionByZero() const {
+ if (isDivremOp())
+ if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
+ return CI->isZero();
+ return true;
+ }
+
+ /// Check if the binop can result in a float division by zero.
+ bool mayHaveFloatDivisionByZero() const {
+ if (isDivremOp())
+ if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
+ return CFP->isZero();
+ return true;
+ }
+
+ /// Check if either operand is a fixed point type or integer type, with at
+ /// least one being a fixed point type. In any case, this
+ /// operation did not follow usual arithmetic conversion and both operands may
+ /// not be the same.
+ bool isFixedPointBinOp() const {
+ // We cannot simply check the result type since comparison operations return
+ // an int.
+ if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
+ QualType LHSType = BinOp->getLHS()->getType();
+ QualType RHSType = BinOp->getRHS()->getType();
+ return LHSType->isFixedPointType() || RHSType->isFixedPointType();
+ }
+ return false;
+ }
+};
+
+static bool MustVisitNullValue(const Expr *E) {
+ // If a null pointer expression's type is the C++0x nullptr_t, then
+ // it's not necessarily a simple constant and it must be evaluated
+ // for its potential side effects.
+ return E->getType()->isNullPtrType();
+}
+
+/// If \p E is a widened promoted integer, get its base (unpromoted) type.
+static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
+ const Expr *E) {
+ const Expr *Base = E->IgnoreImpCasts();
+ if (E == Base)
+ return llvm::None;
+
+ QualType BaseTy = Base->getType();
+ if (!BaseTy->isPromotableIntegerType() ||
+ Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
+ return llvm::None;
+
+ return BaseTy;
+}
+
+/// Check if \p E is a widened promoted integer.
+static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
+ return getUnwidenedIntegerType(Ctx, E).hasValue();
+}
+
+/// Check if we can skip the overflow check for \p Op.
+static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
+ assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
+ "Expected a unary or binary operator");
+
+ // If the binop has constant inputs and we can prove there is no overflow,
+ // we can elide the overflow check.
+ if (!Op.mayHaveIntegerOverflow())
+ return true;
+
+ // If a unary op has a widened operand, the op cannot overflow.
+ if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
+ return !UO->canOverflow();
+
+ // We usually don't need overflow checks for binops with widened operands.
+ // Multiplication with promoted unsigned operands is a special case.
+ const auto *BO = cast<BinaryOperator>(Op.E);
+ auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
+ if (!OptionalLHSTy)
+ return false;
+
+ auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
+ if (!OptionalRHSTy)
+ return false;
+
+ QualType LHSTy = *OptionalLHSTy;
+ QualType RHSTy = *OptionalRHSTy;
+
+ // This is the simple case: binops without unsigned multiplication, and with
+ // widened operands. No overflow check is needed here.
+ if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
+ !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
+ return true;
+
+ // For unsigned multiplication the overflow check can be elided if either one
+ // of the unpromoted types are less than half the size of the promoted type.
+ unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
+ return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
+ (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
+}
+
+/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
+static void updateFastMathFlags(llvm::FastMathFlags &FMF,
+ FPOptions FPFeatures) {
+ FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
+}
+
+/// Propagate fast-math flags from \p Op to the instruction in \p V.
+static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
+ if (auto *I = dyn_cast<llvm::Instruction>(V)) {
+ llvm::FastMathFlags FMF = I->getFastMathFlags();
+ updateFastMathFlags(FMF, Op.FPFeatures);
+ I->setFastMathFlags(FMF);
+ }
+ return V;
+}
+
+class ScalarExprEmitter
+ : public StmtVisitor<ScalarExprEmitter, Value*> {
+ CodeGenFunction &CGF;
+ CGBuilderTy &Builder;
+ bool IgnoreResultAssign;
+ llvm::LLVMContext &VMContext;
+public:
+
+ ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
+ : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
+ VMContext(cgf.getLLVMContext()) {
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Utilities
+ //===--------------------------------------------------------------------===//
+
+ bool TestAndClearIgnoreResultAssign() {
+ bool I = IgnoreResultAssign;
+ IgnoreResultAssign = false;
+ return I;
+ }
+
+ llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+ LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+ LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
+ return CGF.EmitCheckedLValue(E, TCK);
+ }
+
+ void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
+ const BinOpInfo &Info);
+
+ Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
+ return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
+ }
+
+ void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
+ const AlignValueAttr *AVAttr = nullptr;
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const ValueDecl *VD = DRE->getDecl();
+
+ if (VD->getType()->isReferenceType()) {
+ if (const auto *TTy =
+ dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
+ AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
+ } else {
+ // Assumptions for function parameters are emitted at the start of the
+ // function, so there is no need to repeat that here,
+ // unless the alignment-assumption sanitizer is enabled,
+ // then we prefer the assumption over alignment attribute
+ // on IR function param.
+ if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
+ return;
+
+ AVAttr = VD->getAttr<AlignValueAttr>();
+ }
+ }
+
+ if (!AVAttr)
+ if (const auto *TTy =
+ dyn_cast<TypedefType>(E->getType()))
+ AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
+
+ if (!AVAttr)
+ return;
+
+ Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
+ llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
+ CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
+ }
+
+ /// EmitLoadOfLValue - Given an expression with complex type that represents a
+ /// value l-value, this method emits the address of the l-value, then loads
+ /// and returns the result.
+ Value *EmitLoadOfLValue(const Expr *E) {
+ Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
+ E->getExprLoc());
+
+ EmitLValueAlignmentAssumption(E, V);
+ return V;
+ }
+
+ /// EmitConversionToBool - Convert the specified expression value to a
+ /// boolean (i1) truth value. This is equivalent to "Val != 0".
+ Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+ /// Emit a check that a conversion from a floating-point type does not
+ /// overflow.
+ void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
+ Value *Src, QualType SrcType, QualType DstType,
+ llvm::Type *DstTy, SourceLocation Loc);
+
+ /// Known implicit conversion check kinds.
+ /// Keep in sync with the enum of the same name in ubsan_handlers.h
+ enum ImplicitConversionCheckKind : unsigned char {
+ ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
+ ICCK_UnsignedIntegerTruncation = 1,
+ ICCK_SignedIntegerTruncation = 2,
+ ICCK_IntegerSignChange = 3,
+ ICCK_SignedIntegerTruncationOrSignChange = 4,
+ };
+
+ /// Emit a check that an [implicit] truncation of an integer does not
+ /// discard any bits. It is not UB, so we use the value after truncation.
+ void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
+ QualType DstType, SourceLocation Loc);
+
+ /// Emit a check that an [implicit] conversion of an integer does not change
+ /// the sign of the value. It is not UB, so we use the value after conversion.
+ /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
+ void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
+ QualType DstType, SourceLocation Loc);
+
+ /// Emit a conversion from the specified type to the specified destination
+ /// type, both of which are LLVM scalar types.
+ struct ScalarConversionOpts {
+ bool TreatBooleanAsSigned;
+ bool EmitImplicitIntegerTruncationChecks;
+ bool EmitImplicitIntegerSignChangeChecks;
+
+ ScalarConversionOpts()
+ : TreatBooleanAsSigned(false),
+ EmitImplicitIntegerTruncationChecks(false),
+ EmitImplicitIntegerSignChangeChecks(false) {}
+
+ ScalarConversionOpts(clang::SanitizerSet SanOpts)
+ : TreatBooleanAsSigned(false),
+ EmitImplicitIntegerTruncationChecks(
+ SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
+ EmitImplicitIntegerSignChangeChecks(
+ SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
+ };
+ Value *
+ EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
+ SourceLocation Loc,
+ ScalarConversionOpts Opts = ScalarConversionOpts());
+
+ /// Convert between either a fixed point and other fixed point or fixed point
+ /// and an integer.
+ Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
+ SourceLocation Loc);
+ Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
+ FixedPointSemantics &DstFixedSema,
+ SourceLocation Loc,
+ bool DstIsInteger = false);
+
+ /// Emit a conversion from the specified complex type to the specified
+ /// destination type, where the destination type is an LLVM scalar type.
+ Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+ QualType SrcTy, QualType DstTy,
+ SourceLocation Loc);
+
+ /// EmitNullValue - Emit a value that corresponds to null for the given type.
+ Value *EmitNullValue(QualType Ty);
+
+ /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
+ Value *EmitFloatToBoolConversion(Value *V) {
+ // Compare against 0.0 for fp scalars.
+ llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
+ return Builder.CreateFCmpUNE(V, Zero, "tobool");
+ }
+
+ /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
+ Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
+ Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
+
+ return Builder.CreateICmpNE(V, Zero, "tobool");
+ }
+
+ Value *EmitIntToBoolConversion(Value *V) {
+ // Because of the type rules of C, we often end up computing a
+ // logical value, then zero extending it to int, then wanting it
+ // as a logical value again. Optimize this common case.
+ if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
+ if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
+ Value *Result = ZI->getOperand(0);
+ // If there aren't any more uses, zap the instruction to save space.
+ // Note that there can be more uses, for example if this
+ // is the result of an assignment.
+ if (ZI->use_empty())
+ ZI->eraseFromParent();
+ return Result;
+ }
+ }
+
+ return Builder.CreateIsNotNull(V, "tobool");
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Visitor Methods
+ //===--------------------------------------------------------------------===//
+
+ Value *Visit(Expr *E) {
+ ApplyDebugLocation DL(CGF, E);
+ return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
+ }
+
+ Value *VisitStmt(Stmt *S) {
+ S->dump(CGF.getContext().getSourceManager());
+ llvm_unreachable("Stmt can't have complex result type!");
+ }
+ Value *VisitExpr(Expr *S);
+
+ Value *VisitConstantExpr(ConstantExpr *E) {
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitParenExpr(ParenExpr *PE) {
+ return Visit(PE->getSubExpr());
+ }
+ Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
+ return Visit(E->getReplacement());
+ }
+ Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
+ return Visit(GE->getResultExpr());
+ }
+ Value *VisitCoawaitExpr(CoawaitExpr *S) {
+ return CGF.EmitCoawaitExpr(*S).getScalarVal();
+ }
+ Value *VisitCoyieldExpr(CoyieldExpr *S) {
+ return CGF.EmitCoyieldExpr(*S).getScalarVal();
+ }
+ Value *VisitUnaryCoawait(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ // Leaves.
+ Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+ return Builder.getInt(E->getValue());
+ }
+ Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
+ return Builder.getInt(E->getValue());
+ }
+ Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+ return llvm::ConstantFP::get(VMContext, E->getValue());
+ }
+ Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+ Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitGNUNullExpr(const GNUNullExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitOffsetOfExpr(OffsetOfExpr *E);
+ Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
+ Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
+ llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
+ return Builder.CreateBitCast(V, ConvertType(E->getType()));
+ }
+
+ Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
+ }
+
+ Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ return CGF.EmitPseudoObjectRValue(E).getScalarVal();
+ }
+
+ Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
+ if (E->isGLValue())
+ return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
+ E->getExprLoc());
+
+ // Otherwise, assume the mapping is the scalar directly.
+ return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
+ }
+
+ // l-values.
+ Value *VisitDeclRefExpr(DeclRefExpr *E) {
+ if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
+ return CGF.emitScalarConstant(Constant, E);
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+ return CGF.EmitObjCSelectorExpr(E);
+ }
+ Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+ return CGF.EmitObjCProtocolExpr(E);
+ }
+ Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ if (E->getMethodDecl() &&
+ E->getMethodDecl()->getReturnType()->isReferenceType())
+ return EmitLoadOfLValue(E);
+ return CGF.EmitObjCMessageExpr(E).getScalarVal();
+ }
+
+ Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
+ LValue LV = CGF.EmitObjCIsaExpr(E);
+ Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
+ return V;
+ }
+
+ Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
+ VersionTuple Version = E->getVersion();
+
+ // If we're checking for a platform older than our minimum deployment
+ // target, we can fold the check away.
+ if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
+ return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
+
+ Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
+ llvm::Value *Args[] = {
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
+ llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
+ };
+
+ return CGF.EmitBuiltinAvailable(Args);
+ }
+
+ Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
+ Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
+ Value *VisitMemberExpr(MemberExpr *E);
+ Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+
+ Value *VisitInitListExpr(InitListExpr *E);
+
+ Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
+ assert(CGF.getArrayInitIndex() &&
+ "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
+ return CGF.getArrayInitIndex();
+ }
+
+ Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+ Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
+ CGF.CGM.EmitExplicitCastExprType(E, &CGF);
+ return VisitCastExpr(E);
+ }
+ Value *VisitCastExpr(CastExpr *E);
+
+ Value *VisitCallExpr(const CallExpr *E) {
+ if (E->getCallReturnType(CGF.getContext())->isReferenceType())
+ return EmitLoadOfLValue(E);
+
+ Value *V = CGF.EmitCallExpr(E).getScalarVal();
+
+ EmitLValueAlignmentAssumption(E, V);
+ return V;
+ }
+
+ Value *VisitStmtExpr(const StmtExpr *E);
+
+ // Unary Operators.
+ Value *VisitUnaryPostDec(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, false, false);
+ }
+ Value *VisitUnaryPostInc(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, true, false);
+ }
+ Value *VisitUnaryPreDec(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, false, true);
+ }
+ Value *VisitUnaryPreInc(const UnaryOperator *E) {
+ LValue LV = EmitLValue(E->getSubExpr());
+ return EmitScalarPrePostIncDec(E, LV, true, true);
+ }
+
+ llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
+ llvm::Value *InVal,
+ bool IsInc);
+
+ llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre);
+
+
+ Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+ if (isa<MemberPointerType>(E->getType())) // never sugared
+ return CGF.CGM.getMemberPointerConstant(E);
+
+ return EmitLValue(E->getSubExpr()).getPointer();
+ }
+ Value *VisitUnaryDeref(const UnaryOperator *E) {
+ if (E->getType()->isVoidType())
+ return Visit(E->getSubExpr()); // the actual value should be unused
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitUnaryPlus(const UnaryOperator *E) {
+ // This differs from gcc, though, most likely due to a bug in gcc.
+ TestAndClearIgnoreResultAssign();
+ return Visit(E->getSubExpr());
+ }
+ Value *VisitUnaryMinus (const UnaryOperator *E);
+ Value *VisitUnaryNot (const UnaryOperator *E);
+ Value *VisitUnaryLNot (const UnaryOperator *E);
+ Value *VisitUnaryReal (const UnaryOperator *E);
+ Value *VisitUnaryImag (const UnaryOperator *E);
+ Value *VisitUnaryExtension(const UnaryOperator *E) {
+ return Visit(E->getSubExpr());
+ }
+
+ // C++
+ Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
+ return EmitLoadOfLValue(E);
+ }
+ Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
+ auto &Ctx = CGF.getContext();
+ APValue Evaluated =
+ SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
+ return ConstantEmitter(CGF.CGM, &CGF)
+ .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
+ }
+
+ Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+ CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
+ return Visit(DAE->getExpr());
+ }
+ Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
+ CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
+ return Visit(DIE->getExpr());
+ }
+ Value *VisitCXXThisExpr(CXXThisExpr *TE) {
+ return CGF.LoadCXXThis();
+ }
+
+ Value *VisitExprWithCleanups(ExprWithCleanups *E);
+ Value *VisitCXXNewExpr(const CXXNewExpr *E) {
+ return CGF.EmitCXXNewExpr(E);
+ }
+ Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ CGF.EmitCXXDeleteExpr(E);
+ return nullptr;
+ }
+
+ Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
+ return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+ }
+
+ Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
+ return Builder.getInt1(E->isSatisfied());
+ }
+
+ Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
+ return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
+ }
+
+ Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
+ return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
+ }
+
+ Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
+ // C++ [expr.pseudo]p1:
+ // The result shall only be used as the operand for the function call
+ // operator (), and the result of such a call has type void. The only
+ // effect is the evaluation of the postfix-expression before the dot or
+ // arrow.
+ CGF.EmitScalarExpr(E->getBase());
+ return nullptr;
+ }
+
+ Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+ return EmitNullValue(E->getType());
+ }
+
+ Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
+ CGF.EmitCXXThrowExpr(E);
+ return nullptr;
+ }
+
+ Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
+ return Builder.getInt1(E->getValue());
+ }
+
+ // Binary Operators.
+ Value *EmitMul(const BinOpInfo &Ops) {
+ if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
+ LLVM_FALLTHROUGH;
+ case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), Ops))
+ return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
+ return EmitOverflowCheckedBinOp(Ops);
+ }
+ }
+
+ if (Ops.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), Ops))
+ return EmitOverflowCheckedBinOp(Ops);
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
+ Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+ return propagateFMFlags(V, Ops);
+ }
+ return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+ }
+ /// Create a binary op that checks for overflow.
+ /// Currently only supports +, - and *.
+ Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
+
+ // Check for undefined division and modulus behaviors.
+ void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
+ llvm::Value *Zero,bool isDiv);
+ // Common helper for getting how wide LHS of shift is.
+ static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
+ Value *EmitDiv(const BinOpInfo &Ops);
+ Value *EmitRem(const BinOpInfo &Ops);
+ Value *EmitAdd(const BinOpInfo &Ops);
+ Value *EmitSub(const BinOpInfo &Ops);
+ Value *EmitShl(const BinOpInfo &Ops);
+ Value *EmitShr(const BinOpInfo &Ops);
+ Value *EmitAnd(const BinOpInfo &Ops) {
+ return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+ }
+ Value *EmitXor(const BinOpInfo &Ops) {
+ return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+ }
+ Value *EmitOr (const BinOpInfo &Ops) {
+ return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+ }
+
+ // Helper functions for fixed point binary operations.
+ Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
+
+ BinOpInfo EmitBinOps(const BinaryOperator *E);
+ LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
+ Value *&Result);
+
+ Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+ // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+ Value *VisitBin ## OP(const BinaryOperator *E) { \
+ return Emit ## OP(EmitBinOps(E)); \
+ } \
+ Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
+ return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
+ }
+ HANDLEBINOP(Mul)
+ HANDLEBINOP(Div)
+ HANDLEBINOP(Rem)
+ HANDLEBINOP(Add)
+ HANDLEBINOP(Sub)
+ HANDLEBINOP(Shl)
+ HANDLEBINOP(Shr)
+ HANDLEBINOP(And)
+ HANDLEBINOP(Xor)
+ HANDLEBINOP(Or)
+#undef HANDLEBINOP
+
+ // Comparisons.
+ Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
+ llvm::CmpInst::Predicate SICmpOpc,
+ llvm::CmpInst::Predicate FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+ Value *VisitBin##CODE(const BinaryOperator *E) { \
+ return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+ llvm::FCmpInst::FP); }
+ VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
+ VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
+ VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
+ VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
+ VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
+ VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
+#undef VISITCOMP
+
+ Value *VisitBinAssign (const BinaryOperator *E);
+
+ Value *VisitBinLAnd (const BinaryOperator *E);
+ Value *VisitBinLOr (const BinaryOperator *E);
+ Value *VisitBinComma (const BinaryOperator *E);
+
+ Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
+ Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
+
+ Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
+ return Visit(E->getSemanticForm());
+ }
+
+ // Other Operators.
+ Value *VisitBlockExpr(const BlockExpr *BE);
+ Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
+ Value *VisitChooseExpr(ChooseExpr *CE);
+ Value *VisitVAArgExpr(VAArgExpr *VE);
+ Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+ return CGF.EmitObjCStringLiteral(E);
+ }
+ Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
+ return CGF.EmitObjCBoxedExpr(E);
+ }
+ Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
+ return CGF.EmitObjCArrayLiteral(E);
+ }
+ Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
+ return CGF.EmitObjCDictionaryLiteral(E);
+ }
+ Value *VisitAsTypeExpr(AsTypeExpr *CE);
+ Value *VisitAtomicExpr(AtomicExpr *AE);
+};
+} // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+// Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value. This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+ assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
+
+ if (SrcType->isRealFloatingType())
+ return EmitFloatToBoolConversion(Src);
+
+ if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
+ return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
+
+ assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
+ "Unknown scalar type to convert");
+
+ if (isa<llvm::IntegerType>(Src->getType()))
+ return EmitIntToBoolConversion(Src);
+
+ assert(isa<llvm::PointerType>(Src->getType()));
+ return EmitPointerToBoolConversion(Src, SrcType);
+}
+
+void ScalarExprEmitter::EmitFloatConversionCheck(
+ Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
+ QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
+ assert(SrcType->isFloatingType() && "not a conversion from floating point");
+ if (!isa<llvm::IntegerType>(DstTy))
+ return;
+
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ using llvm::APFloat;
+ using llvm::APSInt;
+
+ llvm::Value *Check = nullptr;
+ const llvm::fltSemantics &SrcSema =
+ CGF.getContext().getFloatTypeSemantics(OrigSrcType);
+
+ // Floating-point to integer. This has undefined behavior if the source is
+ // +-Inf, NaN, or doesn't fit into the destination type (after truncation
+ // to an integer).
+ unsigned Width = CGF.getContext().getIntWidth(DstType);
+ bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
+
+ APSInt Min = APSInt::getMinValue(Width, Unsigned);
+ APFloat MinSrc(SrcSema, APFloat::uninitialized);
+ if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
+ APFloat::opOverflow)
+ // Don't need an overflow check for lower bound. Just check for
+ // -Inf/NaN.
+ MinSrc = APFloat::getInf(SrcSema, true);
+ else
+ // Find the largest value which is too small to represent (before
+ // truncation toward zero).
+ MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
+
+ APSInt Max = APSInt::getMaxValue(Width, Unsigned);
+ APFloat MaxSrc(SrcSema, APFloat::uninitialized);
+ if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
+ APFloat::opOverflow)
+ // Don't need an overflow check for upper bound. Just check for
+ // +Inf/NaN.
+ MaxSrc = APFloat::getInf(SrcSema, false);
+ else
+ // Find the smallest value which is too large to represent (before
+ // truncation toward zero).
+ MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
+
+ // If we're converting from __half, convert the range to float to match
+ // the type of src.
+ if (OrigSrcType->isHalfType()) {
+ const llvm::fltSemantics &Sema =
+ CGF.getContext().getFloatTypeSemantics(SrcType);
+ bool IsInexact;
+ MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
+ MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
+ }
+
+ llvm::Value *GE =
+ Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
+ llvm::Value *LE =
+ Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
+ Check = Builder.CreateAnd(GE, LE);
+
+ llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
+ CGF.EmitCheckTypeDescriptor(OrigSrcType),
+ CGF.EmitCheckTypeDescriptor(DstType)};
+ CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
+ SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
+}
+
+// Should be called within CodeGenFunction::SanitizerScope RAII scope.
+// Returns 'i1 false' when the truncation Src -> Dst was lossy.
+static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
+ std::pair<llvm::Value *, SanitizerMask>>
+EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
+ QualType DstType, CGBuilderTy &Builder) {
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = Dst->getType();
+ (void)DstTy; // Only used in assert()
+
+ // This should be truncation of integral types.
+ assert(Src != Dst);
+ assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
+ assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
+ "non-integer llvm type");
+
+ bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
+ bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
+
+ // If both (src and dst) types are unsigned, then it's an unsigned truncation.
+ // Else, it is a signed truncation.
+ ScalarExprEmitter::ImplicitConversionCheckKind Kind;
+ SanitizerMask Mask;
+ if (!SrcSigned && !DstSigned) {
+ Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
+ Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
+ } else {
+ Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
+ Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
+ }
+
+ llvm::Value *Check = nullptr;
+ // 1. Extend the truncated value back to the same width as the Src.
+ Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
+ // 2. Equality-compare with the original source value
+ Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
+ // If the comparison result is 'i1 false', then the truncation was lossy.
+ return std::make_pair(Kind, std::make_pair(Check, Mask));
+}
+
+void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
+ Value *Dst, QualType DstType,
+ SourceLocation Loc) {
+ if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
+ return;
+
+ // We only care about int->int conversions here.
+ // We ignore conversions to/from pointer and/or bool.
+ if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
+ return;
+
+ unsigned SrcBits = Src->getType()->getScalarSizeInBits();
+ unsigned DstBits = Dst->getType()->getScalarSizeInBits();
+ // This must be truncation. Else we do not care.
+ if (SrcBits <= DstBits)
+ return;
+
+ assert(!DstType->isBooleanType() && "we should not get here with booleans.");
+
+ // If the integer sign change sanitizer is enabled,
+ // and we are truncating from larger unsigned type to smaller signed type,
+ // let that next sanitizer deal with it.
+ bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
+ bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
+ if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
+ (!SrcSigned && DstSigned))
+ return;
+
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+
+ std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
+ std::pair<llvm::Value *, SanitizerMask>>
+ Check =
+ EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
+ // If the comparison result is 'i1 false', then the truncation was lossy.
+
+ // Do we care about this type of truncation?
+ if (!CGF.SanOpts.has(Check.second.second))
+ return;
+
+ llvm::Constant *StaticArgs[] = {
+ CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
+ CGF.EmitCheckTypeDescriptor(DstType),
+ llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
+ CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
+ {Src, Dst});
+}
+
+// Should be called within CodeGenFunction::SanitizerScope RAII scope.
+// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
+static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
+ std::pair<llvm::Value *, SanitizerMask>>
+EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
+ QualType DstType, CGBuilderTy &Builder) {
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = Dst->getType();
+
+ assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
+ "non-integer llvm type");
+
+ bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
+ bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
+ (void)SrcSigned; // Only used in assert()
+ (void)DstSigned; // Only used in assert()
+ unsigned SrcBits = SrcTy->getScalarSizeInBits();
+ unsigned DstBits = DstTy->getScalarSizeInBits();
+ (void)SrcBits; // Only used in assert()
+ (void)DstBits; // Only used in assert()
+
+ assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
+ "either the widths should be different, or the signednesses.");
+
+ // NOTE: zero value is considered to be non-negative.
+ auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
+ const char *Name) -> Value * {
+ // Is this value a signed type?
+ bool VSigned = VType->isSignedIntegerOrEnumerationType();
+ llvm::Type *VTy = V->getType();
+ if (!VSigned) {
+ // If the value is unsigned, then it is never negative.
+ // FIXME: can we encounter non-scalar VTy here?
+ return llvm::ConstantInt::getFalse(VTy->getContext());
+ }
+ // Get the zero of the same type with which we will be comparing.
+ llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
+ // %V.isnegative = icmp slt %V, 0
+ // I.e is %V *strictly* less than zero, does it have negative value?
+ return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
+ llvm::Twine(Name) + "." + V->getName() +
+ ".negativitycheck");
+ };
+
+ // 1. Was the old Value negative?
+ llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
+ // 2. Is the new Value negative?
+ llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
+ // 3. Now, was the 'negativity status' preserved during the conversion?
+ // NOTE: conversion from negative to zero is considered to change the sign.
+ // (We want to get 'false' when the conversion changed the sign)
+ // So we should just equality-compare the negativity statuses.
+ llvm::Value *Check = nullptr;
+ Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
+ // If the comparison result is 'false', then the conversion changed the sign.
+ return std::make_pair(
+ ScalarExprEmitter::ICCK_IntegerSignChange,
+ std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
+}
+
+void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
+ Value *Dst, QualType DstType,
+ SourceLocation Loc) {
+ if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
+ return;
+
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = Dst->getType();
+
+ // We only care about int->int conversions here.
+ // We ignore conversions to/from pointer and/or bool.
+ if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
+ return;
+
+ bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
+ bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
+ unsigned SrcBits = SrcTy->getScalarSizeInBits();
+ unsigned DstBits = DstTy->getScalarSizeInBits();
+
+ // Now, we do not need to emit the check in *all* of the cases.
+ // We can avoid emitting it in some obvious cases where it would have been
+ // dropped by the opt passes (instcombine) always anyways.
+ // If it's a cast between effectively the same type, no check.
+ // NOTE: this is *not* equivalent to checking the canonical types.
+ if (SrcSigned == DstSigned && SrcBits == DstBits)
+ return;
+ // At least one of the values needs to have signed type.
+ // If both are unsigned, then obviously, neither of them can be negative.
+ if (!SrcSigned && !DstSigned)
+ return;
+ // If the conversion is to *larger* *signed* type, then no check is needed.
+ // Because either sign-extension happens (so the sign will remain),
+ // or zero-extension will happen (the sign bit will be zero.)
+ if ((DstBits > SrcBits) && DstSigned)
+ return;
+ if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
+ (SrcBits > DstBits) && SrcSigned) {
+ // If the signed integer truncation sanitizer is enabled,
+ // and this is a truncation from signed type, then no check is needed.
+ // Because here sign change check is interchangeable with truncation check.
+ return;
+ }
+ // That's it. We can't rule out any more cases with the data we have.
+
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+
+ std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
+ std::pair<llvm::Value *, SanitizerMask>>
+ Check;
+
+ // Each of these checks needs to return 'false' when an issue was detected.
+ ImplicitConversionCheckKind CheckKind;
+ llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
+ // So we can 'and' all the checks together, and still get 'false',
+ // if at least one of the checks detected an issue.
+
+ Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
+ CheckKind = Check.first;
+ Checks.emplace_back(Check.second);
+
+ if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
+ (SrcBits > DstBits) && !SrcSigned && DstSigned) {
+ // If the signed integer truncation sanitizer was enabled,
+ // and we are truncating from larger unsigned type to smaller signed type,
+ // let's handle the case we skipped in that check.
+ Check =
+ EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
+ CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
+ Checks.emplace_back(Check.second);
+ // If the comparison result is 'i1 false', then the truncation was lossy.
+ }
+
+ llvm::Constant *StaticArgs[] = {
+ CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
+ CGF.EmitCheckTypeDescriptor(DstType),
+ llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
+ // EmitCheck() will 'and' all the checks together.
+ CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
+ {Src, Dst});
+}
+
+/// Emit a conversion from the specified type to the specified destination type,
+/// both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+ QualType DstType,
+ SourceLocation Loc,
+ ScalarConversionOpts Opts) {
+ // All conversions involving fixed point types should be handled by the
+ // EmitFixedPoint family functions. This is done to prevent bloating up this
+ // function more, and although fixed point numbers are represented by
+ // integers, we do not want to follow any logic that assumes they should be
+ // treated as integers.
+ // TODO(leonardchan): When necessary, add another if statement checking for
+ // conversions to fixed point types from other types.
+ if (SrcType->isFixedPointType()) {
+ if (DstType->isBooleanType())
+ // It is important that we check this before checking if the dest type is
+ // an integer because booleans are technically integer types.
+ // We do not need to check the padding bit on unsigned types if unsigned
+ // padding is enabled because overflow into this bit is undefined
+ // behavior.
+ return Builder.CreateIsNotNull(Src, "tobool");
+ if (DstType->isFixedPointType() || DstType->isIntegerType())
+ return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
+
+ llvm_unreachable(
+ "Unhandled scalar conversion from a fixed point type to another type.");
+ } else if (DstType->isFixedPointType()) {
+ if (SrcType->isIntegerType())
+ // This also includes converting booleans and enums to fixed point types.
+ return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
+
+ llvm_unreachable(
+ "Unhandled scalar conversion to a fixed point type from another type.");
+ }
+
+ QualType NoncanonicalSrcType = SrcType;
+ QualType NoncanonicalDstType = DstType;
+
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ if (DstType->isVoidType()) return nullptr;
+
+ llvm::Value *OrigSrc = Src;
+ QualType OrigSrcType = SrcType;
+ llvm::Type *SrcTy = Src->getType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstType->isBooleanType())
+ return EmitConversionToBool(Src, SrcType);
+
+ llvm::Type *DstTy = ConvertType(DstType);
+
+ // Cast from half through float if half isn't a native type.
+ if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Cast to FP using the intrinsic if the half type itself isn't supported.
+ if (DstTy->isFloatingPointTy()) {
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
+ return Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
+ Src);
+ } else {
+ // Cast to other types through float, using either the intrinsic or FPExt,
+ // depending on whether the half type itself is supported
+ // (as opposed to operations on half, available with NativeHalfType).
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
+ Src = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
+ CGF.CGM.FloatTy),
+ Src);
+ } else {
+ Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
+ }
+ SrcType = CGF.getContext().FloatTy;
+ SrcTy = CGF.FloatTy;
+ }
+ }
+
+ // Ignore conversions like int -> uint.
+ if (SrcTy == DstTy) {
+ if (Opts.EmitImplicitIntegerSignChangeChecks)
+ EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
+ NoncanonicalDstType, Loc);
+
+ return Src;
+ }
+
+ // Handle pointer conversions next: pointers can only be converted to/from
+ // other pointers and integers. Check for pointer types in terms of LLVM, as
+ // some native types (like Obj-C id) may map to a pointer type.
+ if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
+ // The source value may be an integer, or a pointer.
+ if (isa<llvm::PointerType>(SrcTy))
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
+ bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+ // Then, cast to pointer.
+ return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
+ }
+
+ if (isa<llvm::PointerType>(SrcTy)) {
+ // Must be an ptr to int cast.
+ assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+ return Builder.CreatePtrToInt(Src, DstTy, "conv");
+ }
+
+ // A scalar can be splatted to an extended vector of the same element type
+ if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
+ // Sema should add casts to make sure that the source expression's type is
+ // the same as the vector's element type (sans qualifiers)
+ assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
+ SrcType.getTypePtr() &&
+ "Splatted expr doesn't match with vector element type?");
+
+ // Splat the element across to all elements
+ unsigned NumElements = DstTy->getVectorNumElements();
+ return Builder.CreateVectorSplat(NumElements, Src, "splat");
+ }
+
+ if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
+ // Allow bitcast from vector to integer/fp of the same size.
+ unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+ unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+ if (SrcSize == DstSize)
+ return Builder.CreateBitCast(Src, DstTy, "conv");
+
+ // Conversions between vectors of different sizes are not allowed except
+ // when vectors of half are involved. Operations on storage-only half
+ // vectors require promoting half vector operands to float vectors and
+ // truncating the result, which is either an int or float vector, to a
+ // short or half vector.
+
+ // Source and destination are both expected to be vectors.
+ llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
+ llvm::Type *DstElementTy = DstTy->getVectorElementType();
+ (void)DstElementTy;
+
+ assert(((SrcElementTy->isIntegerTy() &&
+ DstElementTy->isIntegerTy()) ||
+ (SrcElementTy->isFloatingPointTy() &&
+ DstElementTy->isFloatingPointTy())) &&
+ "unexpected conversion between a floating-point vector and an "
+ "integer vector");
+
+ // Truncate an i32 vector to an i16 vector.
+ if (SrcElementTy->isIntegerTy())
+ return Builder.CreateIntCast(Src, DstTy, false, "conv");
+
+ // Truncate a float vector to a half vector.
+ if (SrcSize > DstSize)
+ return Builder.CreateFPTrunc(Src, DstTy, "conv");
+
+ // Promote a half vector to a float vector.
+ return Builder.CreateFPExt(Src, DstTy, "conv");
+ }
+
+ // Finally, we have the arithmetic types: real int/float.
+ Value *Res = nullptr;
+ llvm::Type *ResTy = DstTy;
+
+ // An overflowing conversion has undefined behavior if either the source type
+ // or the destination type is a floating-point type. However, we consider the
+ // range of representable values for all floating-point types to be
+ // [-inf,+inf], so no overflow can ever happen when the destination type is a
+ // floating-point type.
+ if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
+ OrigSrcType->isFloatingType())
+ EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
+ Loc);
+
+ // Cast to half through float if half isn't a native type.
+ if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Make sure we cast in a single step if from another FP type.
+ if (SrcTy->isFloatingPointTy()) {
+ // Use the intrinsic if the half type itself isn't supported
+ // (as opposed to operations on half, available with NativeHalfType).
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
+ return Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
+ // If the half type is supported, just use an fptrunc.
+ return Builder.CreateFPTrunc(Src, DstTy);
+ }
+ DstTy = CGF.FloatTy;
+ }
+
+ if (isa<llvm::IntegerType>(SrcTy)) {
+ bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
+ if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
+ InputSigned = true;
+ }
+ if (isa<llvm::IntegerType>(DstTy))
+ Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ Res = Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateUIToFP(Src, DstTy, "conv");
+ } else if (isa<llvm::IntegerType>(DstTy)) {
+ assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
+ if (DstType->isSignedIntegerOrEnumerationType())
+ Res = Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPToUI(Src, DstTy, "conv");
+ } else {
+ assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
+ "Unknown real conversion");
+ if (DstTy->getTypeID() < SrcTy->getTypeID())
+ Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPExt(Src, DstTy, "conv");
+ }
+
+ if (DstTy != ResTy) {
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
+ assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
+ Res = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
+ Res);
+ } else {
+ Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
+ }
+ }
+
+ if (Opts.EmitImplicitIntegerTruncationChecks)
+ EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
+ NoncanonicalDstType, Loc);
+
+ if (Opts.EmitImplicitIntegerSignChangeChecks)
+ EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
+ NoncanonicalDstType, Loc);
+
+ return Res;
+}
+
+Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
+ QualType DstTy,
+ SourceLocation Loc) {
+ FixedPointSemantics SrcFPSema =
+ CGF.getContext().getFixedPointSemantics(SrcTy);
+ FixedPointSemantics DstFPSema =
+ CGF.getContext().getFixedPointSemantics(DstTy);
+ return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
+ DstTy->isIntegerType());
+}
+
+Value *ScalarExprEmitter::EmitFixedPointConversion(
+ Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
+ SourceLocation Loc, bool DstIsInteger) {
+ using llvm::APInt;
+ using llvm::ConstantInt;
+ using llvm::Value;
+
+ unsigned SrcWidth = SrcFPSema.getWidth();
+ unsigned DstWidth = DstFPSema.getWidth();
+ unsigned SrcScale = SrcFPSema.getScale();
+ unsigned DstScale = DstFPSema.getScale();
+ bool SrcIsSigned = SrcFPSema.isSigned();
+ bool DstIsSigned = DstFPSema.isSigned();
+
+ llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
+
+ Value *Result = Src;
+ unsigned ResultWidth = SrcWidth;
+
+ // Downscale.
+ if (DstScale < SrcScale) {
+ // When converting to integers, we round towards zero. For negative numbers,
+ // right shifting rounds towards negative infinity. In this case, we can
+ // just round up before shifting.
+ if (DstIsInteger && SrcIsSigned) {
+ Value *Zero = llvm::Constant::getNullValue(Result->getType());
+ Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
+ Value *LowBits = ConstantInt::get(
+ CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
+ Value *Rounded = Builder.CreateAdd(Result, LowBits);
+ Result = Builder.CreateSelect(IsNegative, Rounded, Result);
+ }
+
+ Result = SrcIsSigned
+ ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
+ : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
+ }
+
+ if (!DstFPSema.isSaturated()) {
+ // Resize.
+ Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
+
+ // Upscale.
+ if (DstScale > SrcScale)
+ Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
+ } else {
+ // Adjust the number of fractional bits.
+ if (DstScale > SrcScale) {
+ // Compare to DstWidth to prevent resizing twice.
+ ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
+ llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
+ Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
+ Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
+ }
+
+ // Handle saturation.
+ bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
+ if (LessIntBits) {
+ Value *Max = ConstantInt::get(
+ CGF.getLLVMContext(),
+ APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
+ Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
+ : Builder.CreateICmpUGT(Result, Max);
+ Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
+ }
+ // Cannot overflow min to dest type if src is unsigned since all fixed
+ // point types can cover the unsigned min of 0.
+ if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
+ Value *Min = ConstantInt::get(
+ CGF.getLLVMContext(),
+ APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
+ Value *TooLow = Builder.CreateICmpSLT(Result, Min);
+ Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
+ }
+
+ // Resize the integer part to get the final destination size.
+ if (ResultWidth != DstWidth)
+ Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
+ }
+ return Result;
+}
+
+/// Emit a conversion from the specified complex type to the specified
+/// destination type, where the destination type is an LLVM scalar type.
+Value *ScalarExprEmitter::EmitComplexToScalarConversion(
+ CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
+ SourceLocation Loc) {
+ // Get the source element type.
+ SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
+
+ // Handle conversions to bool first, they are special: comparisons against 0.
+ if (DstTy->isBooleanType()) {
+ // Complex != 0 -> (Real != 0) | (Imag != 0)
+ Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
+ Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
+ return Builder.CreateOr(Src.first, Src.second, "tobool");
+ }
+
+ // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+ // the imaginary part of the complex value is discarded and the value of the
+ // real part is converted according to the conversion rules for the
+ // corresponding real type.
+ return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
+}
+
+Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
+ return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
+}
+
+/// Emit a sanitization check for the given "binary" operation (which
+/// might actually be a unary increment which has been lowered to a binary
+/// operation). The check passes if all values in \p Checks (which are \c i1),
+/// are \c true.
+void ScalarExprEmitter::EmitBinOpCheck(
+ ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
+ assert(CGF.IsSanitizerScope);
+ SanitizerHandler Check;
+ SmallVector<llvm::Constant *, 4> StaticData;
+ SmallVector<llvm::Value *, 2> DynamicData;
+
+ BinaryOperatorKind Opcode = Info.Opcode;
+ if (BinaryOperator::isCompoundAssignmentOp(Opcode))
+ Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
+
+ StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
+ const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
+ if (UO && UO->getOpcode() == UO_Minus) {
+ Check = SanitizerHandler::NegateOverflow;
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
+ DynamicData.push_back(Info.RHS);
+ } else {
+ if (BinaryOperator::isShiftOp(Opcode)) {
+ // Shift LHS negative or too large, or RHS out of bounds.
+ Check = SanitizerHandler::ShiftOutOfBounds;
+ const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
+ StaticData.push_back(
+ CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
+ StaticData.push_back(
+ CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
+ } else if (Opcode == BO_Div || Opcode == BO_Rem) {
+ // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
+ Check = SanitizerHandler::DivremOverflow;
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
+ } else {
+ // Arithmetic overflow (+, -, *).
+ switch (Opcode) {
+ case BO_Add: Check = SanitizerHandler::AddOverflow; break;
+ case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
+ case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
+ default: llvm_unreachable("unexpected opcode for bin op check");
+ }
+ StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
+ }
+ DynamicData.push_back(Info.LHS);
+ DynamicData.push_back(Info.RHS);
+ }
+
+ CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
+}
+
+//===----------------------------------------------------------------------===//
+// Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+ CGF.ErrorUnsupported(E, "scalar expression");
+ if (E->getType()->isVoidType())
+ return nullptr;
+ return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+ // Vector Mask Case
+ if (E->getNumSubExprs() == 2) {
+ Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
+ Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
+ Value *Mask;
+
+ llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
+ unsigned LHSElts = LTy->getNumElements();
+
+ Mask = RHS;
+
+ llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
+
+ // Mask off the high bits of each shuffle index.
+ Value *MaskBits =
+ llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
+ Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
+
+ // newv = undef
+ // mask = mask & maskbits
+ // for each elt
+ // n = extract mask i
+ // x = extract val n
+ // newv = insert newv, x, i
+ llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
+ MTy->getNumElements());
+ Value* NewV = llvm::UndefValue::get(RTy);
+ for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
+ Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
+ Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
+
+ Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
+ NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
+ }
+ return NewV;
+ }
+
+ Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
+ Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
+
+ SmallVector<llvm::Constant*, 32> indices;
+ for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
+ llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
+ // Check for -1 and output it as undef in the IR.
+ if (Idx.isSigned() && Idx.isAllOnesValue())
+ indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
+ else
+ indices.push_back(Builder.getInt32(Idx.getZExtValue()));
+ }
+
+ Value *SV = llvm::ConstantVector::get(indices);
+ return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+}
+
+Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
+ QualType SrcType = E->getSrcExpr()->getType(),
+ DstType = E->getType();
+
+ Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
+
+ SrcType = CGF.getContext().getCanonicalType(SrcType);
+ DstType = CGF.getContext().getCanonicalType(DstType);
+ if (SrcType == DstType) return Src;
+
+ assert(SrcType->isVectorType() &&
+ "ConvertVector source type must be a vector");
+ assert(DstType->isVectorType() &&
+ "ConvertVector destination type must be a vector");
+
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = ConvertType(DstType);
+
+ // Ignore conversions like int -> uint.
+ if (SrcTy == DstTy)
+ return Src;
+
+ QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
+ DstEltType = DstType->castAs<VectorType>()->getElementType();
+
+ assert(SrcTy->isVectorTy() &&
+ "ConvertVector source IR type must be a vector");
+ assert(DstTy->isVectorTy() &&
+ "ConvertVector destination IR type must be a vector");
+
+ llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
+ *DstEltTy = DstTy->getVectorElementType();
+
+ if (DstEltType->isBooleanType()) {
+ assert((SrcEltTy->isFloatingPointTy() ||
+ isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
+
+ llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
+ if (SrcEltTy->isFloatingPointTy()) {
+ return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+ } else {
+ return Builder.CreateICmpNE(Src, Zero, "tobool");
+ }
+ }
+
+ // We have the arithmetic types: real int/float.
+ Value *Res = nullptr;
+
+ if (isa<llvm::IntegerType>(SrcEltTy)) {
+ bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
+ if (isa<llvm::IntegerType>(DstEltTy))
+ Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+ else if (InputSigned)
+ Res = Builder.CreateSIToFP(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateUIToFP(Src, DstTy, "conv");
+ } else if (isa<llvm::IntegerType>(DstEltTy)) {
+ assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
+ if (DstEltType->isSignedIntegerOrEnumerationType())
+ Res = Builder.CreateFPToSI(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPToUI(Src, DstTy, "conv");
+ } else {
+ assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
+ "Unknown real conversion");
+ if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
+ Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
+ else
+ Res = Builder.CreateFPExt(Src, DstTy, "conv");
+ }
+
+ return Res;
+}
+
+Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
+ if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
+ CGF.EmitIgnoredExpr(E->getBase());
+ return CGF.emitScalarConstant(Constant, E);
+ } else {
+ Expr::EvalResult Result;
+ if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
+ llvm::APSInt Value = Result.Val.getInt();
+ CGF.EmitIgnoredExpr(E->getBase());
+ return Builder.getInt(Value);
+ }
+ }
+
+ return EmitLoadOfLValue(E);
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Emit subscript expressions in rvalue context's. For most cases, this just
+ // loads the lvalue formed by the subscript expr. However, we have to be
+ // careful, because the base of a vector subscript is occasionally an rvalue,
+ // so we can't get it as an lvalue.
+ if (!E->getBase()->getType()->isVectorType())
+ return EmitLoadOfLValue(E);
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *Base = Visit(E->getBase());
+ Value *Idx = Visit(E->getIdx());
+ QualType IdxTy = E->getIdx()->getType();
+
+ if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
+ CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
+
+ return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
+ unsigned Off, llvm::Type *I32Ty) {
+ int MV = SVI->getMaskValue(Idx);
+ if (MV == -1)
+ return llvm::UndefValue::get(I32Ty);
+ return llvm::ConstantInt::get(I32Ty, Off+MV);
+}
+
+static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
+ if (C->getBitWidth() != 32) {
+ assert(llvm::ConstantInt::isValueValidForType(I32Ty,
+ C->getZExtValue()) &&
+ "Index operand too large for shufflevector mask!");
+ return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
+ }
+ return C;
+}
+
+Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ (void)Ignore;
+ assert (Ignore == false && "init list ignored");
+ unsigned NumInitElements = E->getNumInits();
+
+ if (E->hadArrayRangeDesignator())
+ CGF.ErrorUnsupported(E, "GNU array range designator extension");
+
+ llvm::VectorType *VType =
+ dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+
+ if (!VType) {
+ if (NumInitElements == 0) {
+ // C++11 value-initialization for the scalar.
+ return EmitNullValue(E->getType());
+ }
+ // We have a scalar in braces. Just use the first element.
+ return Visit(E->getInit(0));
+ }
+
+ unsigned ResElts = VType->getNumElements();
+
+ // Loop over initializers collecting the Value for each, and remembering
+ // whether the source was swizzle (ExtVectorElementExpr). This will allow
+ // us to fold the shuffle for the swizzle into the shuffle for the vector
+ // initializer, since LLVM optimizers generally do not want to touch
+ // shuffles.
+ unsigned CurIdx = 0;
+ bool VIsUndefShuffle = false;
+ llvm::Value *V = llvm::UndefValue::get(VType);
+ for (unsigned i = 0; i != NumInitElements; ++i) {
+ Expr *IE = E->getInit(i);
+ Value *Init = Visit(IE);
+ SmallVector<llvm::Constant*, 16> Args;
+
+ llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
+
+ // Handle scalar elements. If the scalar initializer is actually one
+ // element of a different vector of the same width, use shuffle instead of
+ // extract+insert.
+ if (!VVT) {
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
+
+ if (EI->getVectorOperandType()->getNumElements() == ResElts) {
+ llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
+ Value *LHS = nullptr, *RHS = nullptr;
+ if (CurIdx == 0) {
+ // insert into undef -> shuffle (src, undef)
+ // shufflemask must use an i32
+ Args.push_back(getAsInt32(C, CGF.Int32Ty));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ LHS = EI->getVectorOperand();
+ RHS = V;
+ VIsUndefShuffle = true;
+ } else if (VIsUndefShuffle) {
+ // insert into undefshuffle && size match -> shuffle (v, src)
+ llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
+ Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+ RHS = EI->getVectorOperand();
+ VIsUndefShuffle = false;
+ }
+ if (!Args.empty()) {
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ V = Builder.CreateShuffleVector(LHS, RHS, Mask);
+ ++CurIdx;
+ continue;
+ }
+ }
+ }
+ V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
+ "vecinit");
+ VIsUndefShuffle = false;
+ ++CurIdx;
+ continue;
+ }
+
+ unsigned InitElts = VVT->getNumElements();
+
+ // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
+ // input is the same width as the vector being constructed, generate an
+ // optimized shuffle of the swizzle input into the result.
+ unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
+ if (isa<ExtVectorElementExpr>(IE)) {
+ llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
+ Value *SVOp = SVI->getOperand(0);
+ llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
+
+ if (OpTy->getNumElements() == ResElts) {
+ for (unsigned j = 0; j != CurIdx; ++j) {
+ // If the current vector initializer is a shuffle with undef, merge
+ // this shuffle directly into it.
+ if (VIsUndefShuffle) {
+ Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
+ CGF.Int32Ty));
+ } else {
+ Args.push_back(Builder.getInt32(j));
+ }
+ }
+ for (unsigned j = 0, je = InitElts; j != je; ++j)
+ Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+
+ if (VIsUndefShuffle)
+ V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+
+ Init = SVOp;
+ }
+ }
+
+ // Extend init to result vector length, and then shuffle its contribution
+ // to the vector initializer into V.
+ if (Args.empty()) {
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(Builder.getInt32(j));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
+ Mask, "vext");
+
+ Args.clear();
+ for (unsigned j = 0; j != CurIdx; ++j)
+ Args.push_back(Builder.getInt32(j));
+ for (unsigned j = 0; j != InitElts; ++j)
+ Args.push_back(Builder.getInt32(j+Offset));
+ Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ }
+
+ // If V is undef, make sure it ends up on the RHS of the shuffle to aid
+ // merging subsequent shuffles into this one.
+ if (CurIdx == 0)
+ std::swap(V, Init);
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
+ VIsUndefShuffle = isa<llvm::UndefValue>(Init);
+ CurIdx += InitElts;
+ }
+
+ // FIXME: evaluate codegen vs. shuffling against constant null vector.
+ // Emit remaining default initializers.
+ llvm::Type *EltTy = VType->getElementType();
+
+ // Emit remaining default initializers
+ for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
+ Value *Idx = Builder.getInt32(CurIdx);
+ llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
+ V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+ }
+ return V;
+}
+
+bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
+ const Expr *E = CE->getSubExpr();
+
+ if (CE->getCastKind() == CK_UncheckedDerivedToBase)
+ return false;
+
+ if (isa<CXXThisExpr>(E->IgnoreParens())) {
+ // We always assume that 'this' is never null.
+ return false;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+ // And that glvalue casts are never null.
+ if (ICE->getValueKind() != VK_RValue)
+ return false;
+ }
+
+ return true;
+}
+
+// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
+ Expr *E = CE->getSubExpr();
+ QualType DestTy = CE->getType();
+ CastKind Kind = CE->getCastKind();
+
+ // These cases are generally not written to ignore the result of
+ // evaluating their sub-expressions, so we clear this now.
+ bool Ignored = TestAndClearIgnoreResultAssign();
+
+ // Since almost all cast kinds apply to scalars, this switch doesn't have
+ // a default case, so the compiler will warn on a missing case. The cases
+ // are in the same order as in the CastKind enum.
+ switch (Kind) {
+ case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ case CK_LValueBitCast:
+ case CK_ObjCObjectLValueCast: {
+ Address Addr = EmitLValue(E).getAddress();
+ Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
+ LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
+ return EmitLoadOfLValue(LV, CE->getExprLoc());
+ }
+
+ case CK_LValueToRValueBitCast: {
+ LValue SourceLVal = CGF.EmitLValue(E);
+ Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
+ CGF.ConvertTypeForMem(DestTy));
+ LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
+ DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
+ return EmitLoadOfLValue(DestLV, CE->getExprLoc());
+ }
+
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_BitCast: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+ llvm::Type *SrcTy = Src->getType();
+ llvm::Type *DstTy = ConvertType(DestTy);
+ if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
+ SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
+ llvm_unreachable("wrong cast for pointers in different address spaces"
+ "(must be an address space cast)!");
+ }
+
+ if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
+ if (auto PT = DestTy->getAs<PointerType>())
+ CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
+ /*MayBeNull=*/true,
+ CodeGenFunction::CFITCK_UnrelatedCast,
+ CE->getBeginLoc());
+ }
+
+ if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
+ const QualType SrcType = E->getType();
+
+ if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
+ // Casting to pointer that could carry dynamic information (provided by
+ // invariant.group) requires launder.
+ Src = Builder.CreateLaunderInvariantGroup(Src);
+ } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
+ // Casting to pointer that does not carry dynamic information (provided
+ // by invariant.group) requires stripping it. Note that we don't do it
+ // if the source could not be dynamic type and destination could be
+ // dynamic because dynamic information is already laundered. It is
+ // because launder(strip(src)) == launder(src), so there is no need to
+ // add extra strip before launder.
+ Src = Builder.CreateStripInvariantGroup(Src);
+ }
+ }
+
+ // Update heapallocsite metadata when there is an explicit cast.
+ if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
+ if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
+ CGF.getDebugInfo()->
+ addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
+
+ return Builder.CreateBitCast(Src, DstTy);
+ }
+ case CK_AddressSpaceConversion: {
+ Expr::EvalResult Result;
+ if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
+ Result.Val.isNullPointer()) {
+ // If E has side effect, it is emitted even if its final result is a
+ // null pointer. In that case, a DCE pass should be able to
+ // eliminate the useless instructions emitted during translating E.
+ if (Result.HasSideEffects)
+ Visit(E);
+ return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
+ ConvertType(DestTy)), DestTy);
+ }
+ // Since target may map different address spaces in AST to the same address
+ // space, an address space conversion may end up as a bitcast.
+ return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
+ CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
+ DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
+ }
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ case CK_NoOp:
+ case CK_UserDefinedConversion:
+ return Visit(const_cast<Expr*>(E));
+
+ case CK_BaseToDerived: {
+ const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
+ assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
+
+ Address Base = CGF.EmitPointerWithAlignment(E);
+ Address Derived =
+ CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
+ CE->path_begin(), CE->path_end(),
+ CGF.ShouldNullCheckClassCastValue(CE));
+
+ // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
+ // performed and the object is not of the derived type.
+ if (CGF.sanitizePerformTypeCheck())
+ CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
+ Derived.getPointer(), DestTy->getPointeeType());
+
+ if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
+ CGF.EmitVTablePtrCheckForCast(
+ DestTy->getPointeeType(), Derived.getPointer(),
+ /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
+ CE->getBeginLoc());
+
+ return Derived.getPointer();
+ }
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ // The EmitPointerWithAlignment path does this fine; just discard
+ // the alignment.
+ return CGF.EmitPointerWithAlignment(CE).getPointer();
+ }
+
+ case CK_Dynamic: {
+ Address V = CGF.EmitPointerWithAlignment(E);
+ const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
+ return CGF.EmitDynamicCast(V, DCE);
+ }
+
+ case CK_ArrayToPointerDecay:
+ return CGF.EmitArrayToPointerDecay(E).getPointer();
+ case CK_FunctionToPointerDecay:
+ return EmitLValue(E).getPointer();
+
+ case CK_NullToPointer:
+ if (MustVisitNullValue(E))
+ CGF.EmitIgnoredExpr(E);
+
+ return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
+ DestTy);
+
+ case CK_NullToMemberPointer: {
+ if (MustVisitNullValue(E))
+ CGF.EmitIgnoredExpr(E);
+
+ const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
+ return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
+ }
+
+ case CK_ReinterpretMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_DerivedToBaseMemberPointer: {
+ Value *Src = Visit(E);
+
+ // Note that the AST doesn't distinguish between checked and
+ // unchecked member pointer conversions, so we always have to
+ // implement checked conversions here. This is inefficient when
+ // actual control flow may be required in order to perform the
+ // check, which it is for data member pointers (but not member
+ // function pointers on Itanium and ARM).
+ return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
+ }
+
+ case CK_ARCProduceObject:
+ return CGF.EmitARCRetainScalarExpr(E);
+ case CK_ARCConsumeObject:
+ return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
+ case CK_ARCReclaimReturnedObject:
+ return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
+ case CK_ARCExtendBlockObject:
+ return CGF.EmitARCExtendBlockObject(E);
+
+ case CK_CopyAndAutoreleaseBlockObject:
+ return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
+
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexCast:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_ConstructorConversion:
+ case CK_ToUnion:
+ llvm_unreachable("scalar cast to non-scalar value");
+
+ case CK_LValueToRValue:
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
+ assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
+ return Visit(const_cast<Expr*>(E));
+
+ case CK_IntegralToPointer: {
+ Value *Src = Visit(const_cast<Expr*>(E));
+
+ // First, convert to the correct width so that we control the kind of
+ // extension.
+ auto DestLLVMTy = ConvertType(DestTy);
+ llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
+ bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
+ llvm::Value* IntResult =
+ Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+
+ auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
+
+ if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
+ // Going from integer to pointer that could be dynamic requires reloading
+ // dynamic information from invariant.group.
+ if (DestTy.mayBeDynamicClass())
+ IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
+ }
+ return IntToPtr;
+ }
+ case CK_PointerToIntegral: {
+ assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
+ auto *PtrExpr = Visit(E);
+
+ if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
+ const QualType SrcType = E->getType();
+
+ // Casting to integer requires stripping dynamic information as it does
+ // not carries it.
+ if (SrcType.mayBeDynamicClass())
+ PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
+ }
+
+ return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
+ }
+ case CK_ToVoid: {
+ CGF.EmitIgnoredExpr(E);
+ return nullptr;
+ }
+ case CK_VectorSplat: {
+ llvm::Type *DstTy = ConvertType(DestTy);
+ Value *Elt = Visit(const_cast<Expr*>(E));
+ // Splat the element across to all elements
+ unsigned NumElements = DstTy->getVectorNumElements();
+ return Builder.CreateVectorSplat(NumElements, Elt, "splat");
+ }
+
+ case CK_FixedPointCast:
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc());
+
+ case CK_FixedPointToBoolean:
+ assert(E->getType()->isFixedPointType() &&
+ "Expected src type to be fixed point type");
+ assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc());
+
+ case CK_FixedPointToIntegral:
+ assert(E->getType()->isFixedPointType() &&
+ "Expected src type to be fixed point type");
+ assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc());
+
+ case CK_IntegralToFixedPoint:
+ assert(E->getType()->isIntegerType() &&
+ "Expected src type to be an integer");
+ assert(DestTy->isFixedPointType() &&
+ "Expected dest type to be fixed point type");
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc());
+
+ case CK_IntegralCast: {
+ ScalarConversionOpts Opts;
+ if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+ if (!ICE->isPartOfExplicitCast())
+ Opts = ScalarConversionOpts(CGF.SanOpts);
+ }
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc(), Opts);
+ }
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingCast:
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc());
+ case CK_BooleanToSignedIntegral: {
+ ScalarConversionOpts Opts;
+ Opts.TreatBooleanAsSigned = true;
+ return EmitScalarConversion(Visit(E), E->getType(), DestTy,
+ CE->getExprLoc(), Opts);
+ }
+ case CK_IntegralToBoolean:
+ return EmitIntToBoolConversion(Visit(E));
+ case CK_PointerToBoolean:
+ return EmitPointerToBoolConversion(Visit(E), E->getType());
+ case CK_FloatingToBoolean:
+ return EmitFloatToBoolConversion(Visit(E));
+ case CK_MemberPointerToBoolean: {
+ llvm::Value *MemPtr = Visit(E);
+ const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
+ return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
+ }
+
+ case CK_FloatingComplexToReal:
+ case CK_IntegralComplexToReal:
+ return CGF.EmitComplexExpr(E, false, true).first;
+
+ case CK_FloatingComplexToBoolean:
+ case CK_IntegralComplexToBoolean: {
+ CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
+
+ // TODO: kill this function off, inline appropriate case here
+ return EmitComplexToScalarConversion(V, E->getType(), DestTy,
+ CE->getExprLoc());
+ }
+
+ case CK_ZeroToOCLOpaqueType: {
+ assert((DestTy->isEventT() || DestTy->isQueueT() ||
+ DestTy->isOCLIntelSubgroupAVCType()) &&
+ "CK_ZeroToOCLEvent cast on non-event type");
+ return llvm::Constant::getNullValue(ConvertType(DestTy));
+ }
+
+ case CK_IntToOCLSampler:
+ return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
+
+ } // end of switch
+
+ llvm_unreachable("unknown scalar cast");
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+ CodeGenFunction::StmtExprEvaluation eval(CGF);
+ Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
+ !E->getType()->isVoidType());
+ if (!RetAlloca.isValid())
+ return nullptr;
+ return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
+ E->getExprLoc());
+}
+
+Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
+ CGF.enterFullExpression(E);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ Value *V = Visit(E->getSubExpr());
+ // Defend against dominance problems caused by jumps out of expression
+ // evaluation through the shared cleanup block.
+ Scope.ForceCleanup({&V});
+ return V;
+}
+
+//===----------------------------------------------------------------------===//
+// Unary Operators
+//===----------------------------------------------------------------------===//
+
+static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
+ llvm::Value *InVal, bool IsInc) {
+ BinOpInfo BinOp;
+ BinOp.LHS = InVal;
+ BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
+ BinOp.Ty = E->getType();
+ BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
+ // FIXME: once UnaryOperator carries FPFeatures, copy it here.
+ BinOp.E = E;
+ return BinOp;
+}
+
+llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
+ const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
+ llvm::Value *Amount =
+ llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
+ StringRef Name = IsInc ? "inc" : "dec";
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateAdd(InVal, Amount, Name);
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWAdd(InVal, Amount, Name);
+ LLVM_FALLTHROUGH;
+ case LangOptions::SOB_Trapping:
+ if (!E->canOverflow())
+ return Builder.CreateNSWAdd(InVal, Amount, Name);
+ return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
+ }
+ llvm_unreachable("Unknown SignedOverflowBehaviorTy");
+}
+
+llvm::Value *
+ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+
+ QualType type = E->getSubExpr()->getType();
+ llvm::PHINode *atomicPHI = nullptr;
+ llvm::Value *value;
+ llvm::Value *input;
+
+ int amount = (isInc ? 1 : -1);
+ bool isSubtraction = !isInc;
+
+ if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
+ type = atomicTy->getValueType();
+ if (isInc && type->isBooleanType()) {
+ llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
+ if (isPre) {
+ Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
+ ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
+ return Builder.getTrue();
+ }
+ // For atomic bool increment, we just store true and return it for
+ // preincrement, do an atomic swap with true for postincrement
+ return Builder.CreateAtomicRMW(
+ llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
+ llvm::AtomicOrdering::SequentiallyConsistent);
+ }
+ // Special case for atomic increment / decrement on integers, emit
+ // atomicrmw instructions. We skip this if we want to be doing overflow
+ // checking, and fall into the slow path with the atomic cmpxchg loop.
+ if (!type->isBooleanType() && type->isIntegerType() &&
+ !(type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
+ CGF.getLangOpts().getSignedOverflowBehavior() !=
+ LangOptions::SOB_Trapping) {
+ llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
+ llvm::AtomicRMWInst::Sub;
+ llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
+ llvm::Instruction::Sub;
+ llvm::Value *amt = CGF.EmitToMemory(
+ llvm::ConstantInt::get(ConvertType(type), 1, true), type);
+ llvm::Value *old = Builder.CreateAtomicRMW(aop,
+ LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
+ return isPre ? Builder.CreateBinOp(op, old, amt) : old;
+ }
+ value = EmitLoadOfLValue(LV, E->getExprLoc());
+ input = value;
+ // For every other atomic operation, we need to emit a load-op-cmpxchg loop
+ llvm::BasicBlock *startBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
+ value = CGF.EmitToMemory(value, type);
+ Builder.CreateBr(opBB);
+ Builder.SetInsertPoint(opBB);
+ atomicPHI = Builder.CreatePHI(value->getType(), 2);
+ atomicPHI->addIncoming(value, startBB);
+ value = atomicPHI;
+ } else {
+ value = EmitLoadOfLValue(LV, E->getExprLoc());
+ input = value;
+ }
+
+ // Special case of integer increment that we have to check first: bool++.
+ // Due to promotion rules, we get:
+ // bool++ -> bool = bool + 1
+ // -> bool = (int)bool + 1
+ // -> bool = ((int)bool + 1 != 0)
+ // An interesting aspect of this is that increment is always true.
+ // Decrement does not have this property.
+ if (isInc && type->isBooleanType()) {
+ value = Builder.getTrue();
+
+ // Most common case by far: integer increment.
+ } else if (type->isIntegerType()) {
+ // Note that signed integer inc/dec with width less than int can't
+ // overflow because of promotion rules; we're just eliding a few steps here.
+ if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
+ value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
+ } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
+ value =
+ EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
+ } else {
+ llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
+ value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
+ }
+
+ // Next most common: pointer increment.
+ } else if (const PointerType *ptr = type->getAs<PointerType>()) {
+ QualType type = ptr->getPointeeType();
+
+ // VLA types don't have constant size.
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(type)) {
+ llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
+ if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, numElts, "vla.inc");
+ else
+ value = CGF.EmitCheckedInBoundsGEP(
+ value, numElts, /*SignedIndices=*/false, isSubtraction,
+ E->getExprLoc(), "vla.inc");
+
+ // Arithmetic on function pointers (!) is just +-1.
+ } else if (type->isFunctionType()) {
+ llvm::Value *amt = Builder.getInt32(amount);
+
+ value = CGF.EmitCastToVoidPtr(value);
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, amt, "incdec.funcptr");
+ else
+ value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
+ isSubtraction, E->getExprLoc(),
+ "incdec.funcptr");
+ value = Builder.CreateBitCast(value, input->getType());
+
+ // For everything else, we can just do a simple increment.
+ } else {
+ llvm::Value *amt = Builder.getInt32(amount);
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, amt, "incdec.ptr");
+ else
+ value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
+ isSubtraction, E->getExprLoc(),
+ "incdec.ptr");
+ }
+
+ // Vector increment/decrement.
+ } else if (type->isVectorType()) {
+ if (type->hasIntegerRepresentation()) {
+ llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
+
+ value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
+ } else {
+ value = Builder.CreateFAdd(
+ value,
+ llvm::ConstantFP::get(value->getType(), amount),
+ isInc ? "inc" : "dec");
+ }
+
+ // Floating point.
+ } else if (type->isRealFloatingType()) {
+ // Add the inc/dec to the real part.
+ llvm::Value *amt;
+
+ if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ // Another special case: half FP increment should be done via float
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
+ value = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
+ CGF.CGM.FloatTy),
+ input, "incdec.conv");
+ } else {
+ value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
+ }
+ }
+
+ if (value->getType()->isFloatTy())
+ amt = llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<float>(amount)));
+ else if (value->getType()->isDoubleTy())
+ amt = llvm::ConstantFP::get(VMContext,
+ llvm::APFloat(static_cast<double>(amount)));
+ else {
+ // Remaining types are Half, LongDouble or __float128. Convert from float.
+ llvm::APFloat F(static_cast<float>(amount));
+ bool ignored;
+ const llvm::fltSemantics *FS;
+ // Don't use getFloatTypeSemantics because Half isn't
+ // necessarily represented using the "half" LLVM type.
+ if (value->getType()->isFP128Ty())
+ FS = &CGF.getTarget().getFloat128Format();
+ else if (value->getType()->isHalfTy())
+ FS = &CGF.getTarget().getHalfFormat();
+ else
+ FS = &CGF.getTarget().getLongDoubleFormat();
+ F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
+ amt = llvm::ConstantFP::get(VMContext, F);
+ }
+ value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
+
+ if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
+ if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
+ value = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
+ CGF.CGM.FloatTy),
+ value, "incdec.conv");
+ } else {
+ value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
+ }
+ }
+
+ // Objective-C pointer types.
+ } else {
+ const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
+ value = CGF.EmitCastToVoidPtr(value);
+
+ CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
+ if (!isInc) size = -size;
+ llvm::Value *sizeValue =
+ llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
+
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
+ else
+ value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
+ /*SignedIndices=*/false, isSubtraction,
+ E->getExprLoc(), "incdec.objptr");
+ value = Builder.CreateBitCast(value, input->getType());
+ }
+
+ if (atomicPHI) {
+ llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
+ auto Pair = CGF.EmitAtomicCompareExchange(
+ LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
+ llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
+ llvm::Value *success = Pair.second;
+ atomicPHI->addIncoming(old, curBlock);
+ Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
+ Builder.SetInsertPoint(contBB);
+ return isPre ? value : input;
+ }
+
+ // Store the updated result through the lvalue.
+ if (LV.isBitField())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(value), LV);
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? value : input;
+}
+
+
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+
+ // Generate a unary FNeg for FP ops.
+ if (Op->getType()->isFPOrFPVectorTy())
+ return Builder.CreateFNeg(Op, "fneg");
+
+ // Emit unary minus with EmitSub so we handle overflow cases etc.
+ BinOpInfo BinOp;
+ BinOp.RHS = Op;
+ BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
+ BinOp.Ty = E->getType();
+ BinOp.Opcode = BO_Sub;
+ // FIXME: once UnaryOperator carries FPFeatures, copy it here.
+ BinOp.E = E;
+ return EmitSub(BinOp);
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ Value *Op = Visit(E->getSubExpr());
+ return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+ // Perform vector logical not on comparison with zero vector.
+ if (E->getType()->isExtVectorType()) {
+ Value *Oper = Visit(E->getSubExpr());
+ Value *Zero = llvm::Constant::getNullValue(Oper->getType());
+ Value *Result;
+ if (Oper->getType()->isFPOrFPVectorTy())
+ Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
+ else
+ Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+ }
+
+ // Compare operand to zero.
+ Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+ // Invert value.
+ // TODO: Could dynamically modify easy computations here. For example, if
+ // the operand is an icmp ne, turn into icmp eq.
+ BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+ // ZExt result to the expr type.
+ return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
+}
+
+Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
+ // Try folding the offsetof to a constant.
+ Expr::EvalResult EVResult;
+ if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
+ llvm::APSInt Value = EVResult.Val.getInt();
+ return Builder.getInt(Value);
+ }
+
+ // Loop over the components of the offsetof to compute the value.
+ unsigned n = E->getNumComponents();
+ llvm::Type* ResultType = ConvertType(E->getType());
+ llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
+ QualType CurrentType = E->getTypeSourceInfo()->getType();
+ for (unsigned i = 0; i != n; ++i) {
+ OffsetOfNode ON = E->getComponent(i);
+ llvm::Value *Offset = nullptr;
+ switch (ON.getKind()) {
+ case OffsetOfNode::Array: {
+ // Compute the index
+ Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
+ llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
+ bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
+ Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
+
+ // Save the element type
+ CurrentType =
+ CGF.getContext().getAsArrayType(CurrentType)->getElementType();
+
+ // Compute the element size
+ llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
+ CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
+
+ // Multiply out to compute the result
+ Offset = Builder.CreateMul(Idx, ElemSize);
+ break;
+ }
+
+ case OffsetOfNode::Field: {
+ FieldDecl *MemberDecl = ON.getField();
+ RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
+ const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
+
+ // Compute the index of the field in its parent.
+ unsigned i = 0;
+ // FIXME: It would be nice if we didn't have to loop here!
+ for (RecordDecl::field_iterator Field = RD->field_begin(),
+ FieldEnd = RD->field_end();
+ Field != FieldEnd; ++Field, ++i) {
+ if (*Field == MemberDecl)
+ break;
+ }
+ assert(i < RL.getFieldCount() && "offsetof field in wrong type");
+
+ // Compute the offset to the field
+ int64_t OffsetInt = RL.getFieldOffset(i) /
+ CGF.getContext().getCharWidth();
+ Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
+
+ // Save the element type.
+ CurrentType = MemberDecl->getType();
+ break;
+ }
+
+ case OffsetOfNode::Identifier:
+ llvm_unreachable("dependent __builtin_offsetof");
+
+ case OffsetOfNode::Base: {
+ if (ON.getBase()->isVirtual()) {
+ CGF.ErrorUnsupported(E, "virtual base in offsetof");
+ continue;
+ }
+
+ RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
+ const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
+
+ // Save the element type.
+ CurrentType = ON.getBase()->getType();
+
+ // Compute the offset to the base.
+ const RecordType *BaseRT = CurrentType->getAs<RecordType>();
+ CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
+ CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
+ Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
+ break;
+ }
+ }
+ Result = Builder.CreateAdd(Result, Offset);
+ }
+ return Result;
+}
+
+/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
+/// argument of the sizeof expression as an integer.
+Value *
+ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
+ const UnaryExprOrTypeTraitExpr *E) {
+ QualType TypeToSize = E->getTypeOfArgument();
+ if (E->getKind() == UETT_SizeOf) {
+ if (const VariableArrayType *VAT =
+ CGF.getContext().getAsVariableArrayType(TypeToSize)) {
+ if (E->isArgumentType()) {
+ // sizeof(type) - make sure to emit the VLA size.
+ CGF.EmitVariablyModifiedType(TypeToSize);
+ } else {
+ // C99 6.5.3.4p2: If the argument is an expression of type
+ // VLA, it is evaluated.
+ CGF.EmitIgnoredExpr(E->getArgumentExpr());
+ }
+
+ auto VlaSize = CGF.getVLASize(VAT);
+ llvm::Value *size = VlaSize.NumElts;
+
+ // Scale the number of non-VLA elements by the non-VLA element size.
+ CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
+ if (!eltSize.isOne())
+ size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
+
+ return size;
+ }
+ } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
+ auto Alignment =
+ CGF.getContext()
+ .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
+ E->getTypeOfArgument()->getPointeeType()))
+ .getQuantity();
+ return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
+ }
+
+ // If this isn't sizeof(vla), the result must be constant; use the constant
+ // folding logic so we don't have to duplicate it here.
+ return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType()) {
+ // If it's an l-value, load through the appropriate subobject l-value.
+ // Note that we have to ask E because Op might be an l-value that
+ // this won't work for, e.g. an Obj-C property.
+ if (E->isGLValue())
+ return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
+ E->getExprLoc()).getScalarVal();
+
+ // Otherwise, calculate and project.
+ return CGF.EmitComplexExpr(Op, false, true).first;
+ }
+
+ return Visit(Op);
+}
+
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+ Expr *Op = E->getSubExpr();
+ if (Op->getType()->isAnyComplexType()) {
+ // If it's an l-value, load through the appropriate subobject l-value.
+ // Note that we have to ask E because Op might be an l-value that
+ // this won't work for, e.g. an Obj-C property.
+ if (Op->isGLValue())
+ return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
+ E->getExprLoc()).getScalarVal();
+
+ // Otherwise, calculate and project.
+ return CGF.EmitComplexExpr(Op, true, false).second;
+ }
+
+ // __imag on a scalar returns zero. Emit the subexpr to ensure side
+ // effects are evaluated, but not the actual value.
+ if (Op->isGLValue())
+ CGF.EmitLValue(Op);
+ else
+ CGF.EmitScalarExpr(Op, true);
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+ TestAndClearIgnoreResultAssign();
+ BinOpInfo Result;
+ Result.LHS = Visit(E->getLHS());
+ Result.RHS = Visit(E->getRHS());
+ Result.Ty = E->getType();
+ Result.Opcode = E->getOpcode();
+ Result.FPFeatures = E->getFPFeatures();
+ Result.E = E;
+ return Result;
+}
+
+LValue ScalarExprEmitter::EmitCompoundAssignLValue(
+ const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
+ Value *&Result) {
+ QualType LHSTy = E->getLHS()->getType();
+ BinOpInfo OpInfo;
+
+ if (E->getComputationResultType()->isAnyComplexType())
+ return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
+
+ // Emit the RHS first. __block variables need to have the rhs evaluated
+ // first, plus this should improve codegen a little.
+ OpInfo.RHS = Visit(E->getRHS());
+ OpInfo.Ty = E->getComputationResultType();
+ OpInfo.Opcode = E->getOpcode();
+ OpInfo.FPFeatures = E->getFPFeatures();
+ OpInfo.E = E;
+ // Load/convert the LHS.
+ LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+
+ llvm::PHINode *atomicPHI = nullptr;
+ if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
+ QualType type = atomicTy->getValueType();
+ if (!type->isBooleanType() && type->isIntegerType() &&
+ !(type->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
+ CGF.getLangOpts().getSignedOverflowBehavior() !=
+ LangOptions::SOB_Trapping) {
+ llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
+ switch (OpInfo.Opcode) {
+ // We don't have atomicrmw operands for *, %, /, <<, >>
+ case BO_MulAssign: case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ break;
+ case BO_AddAssign:
+ aop = llvm::AtomicRMWInst::Add;
+ break;
+ case BO_SubAssign:
+ aop = llvm::AtomicRMWInst::Sub;
+ break;
+ case BO_AndAssign:
+ aop = llvm::AtomicRMWInst::And;
+ break;
+ case BO_XorAssign:
+ aop = llvm::AtomicRMWInst::Xor;
+ break;
+ case BO_OrAssign:
+ aop = llvm::AtomicRMWInst::Or;
+ break;
+ default:
+ llvm_unreachable("Invalid compound assignment type");
+ }
+ if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
+ llvm::Value *amt = CGF.EmitToMemory(
+ EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
+ E->getExprLoc()),
+ LHSTy);
+ Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
+ llvm::AtomicOrdering::SequentiallyConsistent);
+ return LHSLV;
+ }
+ }
+ // FIXME: For floating point types, we should be saving and restoring the
+ // floating point environment in the loop.
+ llvm::BasicBlock *startBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
+ OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
+ Builder.CreateBr(opBB);
+ Builder.SetInsertPoint(opBB);
+ atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
+ atomicPHI->addIncoming(OpInfo.LHS, startBB);
+ OpInfo.LHS = atomicPHI;
+ }
+ else
+ OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
+
+ SourceLocation Loc = E->getExprLoc();
+ OpInfo.LHS =
+ EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
+
+ // Expand the binary operator.
+ Result = (this->*Func)(OpInfo);
+
+ // Convert the result back to the LHS type,
+ // potentially with Implicit Conversion sanitizer check.
+ Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
+ Loc, ScalarConversionOpts(CGF.SanOpts));
+
+ if (atomicPHI) {
+ llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
+ llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
+ auto Pair = CGF.EmitAtomicCompareExchange(
+ LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
+ llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
+ llvm::Value *success = Pair.second;
+ atomicPHI->addIncoming(old, curBlock);
+ Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
+ Builder.SetInsertPoint(contBB);
+ return LHSLV;
+ }
+
+ // Store the result value into the LHS lvalue. Bit-fields are handled
+ // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after the
+ // assignment...'.
+ if (LHSLV.isBitField())
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
+ else
+ CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
+
+ return LHSLV;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+ Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+ Value *RHS = nullptr;
+ LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
+
+ // If the result is clearly ignored, return now.
+ if (Ignore)
+ return nullptr;
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return RHS;
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LHS.isVolatileQualified())
+ return RHS;
+
+ // Otherwise, reload the value.
+ return EmitLoadOfLValue(LHS, E->getExprLoc());
+}
+
+void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
+ const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
+ SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
+
+ if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
+ Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
+ SanitizerKind::IntegerDivideByZero));
+ }
+
+ const auto *BO = cast<BinaryOperator>(Ops.E);
+ if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
+ Ops.Ty->hasSignedIntegerRepresentation() &&
+ !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
+ Ops.mayHaveIntegerOverflow()) {
+ llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
+
+ llvm::Value *IntMin =
+ Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
+ llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
+
+ llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
+ llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
+ llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
+ Checks.push_back(
+ std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
+ }
+
+ if (Checks.size() > 0)
+ EmitBinOpCheck(Checks, Ops);
+}
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+ {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
+ CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
+ Ops.Ty->isIntegerType() &&
+ (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+ EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
+ } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
+ Ops.Ty->isRealFloatingType() &&
+ Ops.mayHaveFloatDivisionByZero()) {
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+ llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
+ EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
+ Ops);
+ }
+ }
+
+ if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
+ llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ if (CGF.getLangOpts().OpenCL &&
+ !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
+ // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
+ // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
+ // build option allows an application to specify that single precision
+ // floating-point divide (x/y and 1/x) and sqrt used in the program
+ // source are correctly rounded.
+ llvm::Type *ValTy = Val->getType();
+ if (ValTy->isFloatTy() ||
+ (isa<llvm::VectorType>(ValTy) &&
+ cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
+ CGF.SetFPAccuracy(Val, 2.5);
+ }
+ return Val;
+ }
+ else if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+ else
+ return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+ // Rem in C can't be a floating point type: C99 6.5.5p2.
+ if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
+ CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
+ Ops.Ty->isIntegerType() &&
+ (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
+ EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
+ }
+
+ if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+ else
+ return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
+ unsigned IID;
+ unsigned OpID = 0;
+
+ bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
+ switch (Ops.Opcode) {
+ case BO_Add:
+ case BO_AddAssign:
+ OpID = 1;
+ IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
+ llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case BO_Sub:
+ case BO_SubAssign:
+ OpID = 2;
+ IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
+ llvm::Intrinsic::usub_with_overflow;
+ break;
+ case BO_Mul:
+ case BO_MulAssign:
+ OpID = 3;
+ IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
+ llvm::Intrinsic::umul_with_overflow;
+ break;
+ default:
+ llvm_unreachable("Unsupported operation for overflow detection");
+ }
+ OpID <<= 1;
+ if (isSigned)
+ OpID |= 1;
+
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
+
+ llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
+
+ Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
+ Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
+ Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
+
+ // Handle overflow with llvm.trap if no custom handler has been specified.
+ const std::string *handlerName =
+ &CGF.getLangOpts().OverflowHandler;
+ if (handlerName->empty()) {
+ // If the signed-integer-overflow sanitizer is enabled, emit a call to its
+ // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
+ if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
+ llvm::Value *NotOverflow = Builder.CreateNot(overflow);
+ SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
+ : SanitizerKind::UnsignedIntegerOverflow;
+ EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
+ } else
+ CGF.EmitTrapCheck(Builder.CreateNot(overflow));
+ return result;
+ }
+
+ // Branch in case of overflow.
+ llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *continueBB =
+ CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
+ llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
+
+ Builder.CreateCondBr(overflow, overflowBB, continueBB);
+
+ // If an overflow handler is set, then we want to call it and then use its
+ // result, if it returns.
+ Builder.SetInsertPoint(overflowBB);
+
+ // Get the overflow handler.
+ llvm::Type *Int8Ty = CGF.Int8Ty;
+ llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
+ llvm::FunctionType *handlerTy =
+ llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
+ llvm::FunctionCallee handler =
+ CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
+
+ // Sign extend the args to 64-bit, so that we can use the same handler for
+ // all types of overflow.
+ llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
+ llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
+
+ // Call the handler with the two arguments, the operation, and the size of
+ // the result.
+ llvm::Value *handlerArgs[] = {
+ lhs,
+ rhs,
+ Builder.getInt8(OpID),
+ Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
+ };
+ llvm::Value *handlerResult =
+ CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
+
+ // Truncate the result back to the desired size.
+ handlerResult = Builder.CreateTrunc(handlerResult, opTy);
+ Builder.CreateBr(continueBB);
+
+ Builder.SetInsertPoint(continueBB);
+ llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
+ phi->addIncoming(result, initialBB);
+ phi->addIncoming(handlerResult, overflowBB);
+
+ return phi;
+}
+
+/// Emit pointer + index arithmetic.
+static Value *emitPointerArithmetic(CodeGenFunction &CGF,
+ const BinOpInfo &op,
+ bool isSubtraction) {
+ // Must have binary (not unary) expr here. Unary pointer
+ // increment/decrement doesn't use this path.
+ const BinaryOperator *expr = cast<BinaryOperator>(op.E);
+
+ Value *pointer = op.LHS;
+ Expr *pointerOperand = expr->getLHS();
+ Value *index = op.RHS;
+ Expr *indexOperand = expr->getRHS();
+
+ // In a subtraction, the LHS is always the pointer.
+ if (!isSubtraction && !pointer->getType()->isPointerTy()) {
+ std::swap(pointer, index);
+ std::swap(pointerOperand, indexOperand);
+ }
+
+ bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
+
+ unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
+ auto &DL = CGF.CGM.getDataLayout();
+ auto PtrTy = cast<llvm::PointerType>(pointer->getType());
+
+ // Some versions of glibc and gcc use idioms (particularly in their malloc
+ // routines) that add a pointer-sized integer (known to be a pointer value)
+ // to a null pointer in order to cast the value back to an integer or as
+ // part of a pointer alignment algorithm. This is undefined behavior, but
+ // we'd like to be able to compile programs that use it.
+ //
+ // Normally, we'd generate a GEP with a null-pointer base here in response
+ // to that code, but it's also UB to dereference a pointer created that
+ // way. Instead (as an acknowledged hack to tolerate the idiom) we will
+ // generate a direct cast of the integer value to a pointer.
+ //
+ // The idiom (p = nullptr + N) is not met if any of the following are true:
+ //
+ // The operation is subtraction.
+ // The index is not pointer-sized.
+ // The pointer type is not byte-sized.
+ //
+ if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
+ op.Opcode,
+ expr->getLHS(),
+ expr->getRHS()))
+ return CGF.Builder.CreateIntToPtr(index, pointer->getType());
+
+ if (width != DL.getTypeSizeInBits(PtrTy)) {
+ // Zero-extend or sign-extend the pointer value according to
+ // whether the index is signed or not.
+ index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
+ "idx.ext");
+ }
+
+ // If this is subtraction, negate the index.
+ if (isSubtraction)
+ index = CGF.Builder.CreateNeg(index, "idx.neg");
+
+ if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
+ CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
+ /*Accessed*/ false);
+
+ const PointerType *pointerType
+ = pointerOperand->getType()->getAs<PointerType>();
+ if (!pointerType) {
+ QualType objectType = pointerOperand->getType()
+ ->castAs<ObjCObjectPointerType>()
+ ->getPointeeType();
+ llvm::Value *objectSize
+ = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
+
+ index = CGF.Builder.CreateMul(index, objectSize);
+
+ Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
+ result = CGF.Builder.CreateGEP(result, index, "add.ptr");
+ return CGF.Builder.CreateBitCast(result, pointer->getType());
+ }
+
+ QualType elementType = pointerType->getPointeeType();
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(elementType)) {
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (CGF.getLangOpts().isSignedOverflowDefined()) {
+ index = CGF.Builder.CreateMul(index, numElements, "vla.index");
+ pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
+ } else {
+ index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
+ pointer =
+ CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
+ op.E->getExprLoc(), "add.ptr");
+ }
+ return pointer;
+ }
+
+ // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+ // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+ // future proof.
+ if (elementType->isVoidType() || elementType->isFunctionType()) {
+ Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
+ result = CGF.Builder.CreateGEP(result, index, "add.ptr");
+ return CGF.Builder.CreateBitCast(result, pointer->getType());
+ }
+
+ if (CGF.getLangOpts().isSignedOverflowDefined())
+ return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
+
+ return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
+ op.E->getExprLoc(), "add.ptr");
+}
+
+// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
+// Addend. Use negMul and negAdd to negate the first operand of the Mul or
+// the add operand respectively. This allows fmuladd to represent a*b-c, or
+// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
+// efficient operations.
+static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
+ const CodeGenFunction &CGF, CGBuilderTy &Builder,
+ bool negMul, bool negAdd) {
+ assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
+
+ Value *MulOp0 = MulOp->getOperand(0);
+ Value *MulOp1 = MulOp->getOperand(1);
+ if (negMul) {
+ MulOp0 =
+ Builder.CreateFSub(
+ llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
+ "neg");
+ } else if (negAdd) {
+ Addend =
+ Builder.CreateFSub(
+ llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
+ "neg");
+ }
+
+ Value *FMulAdd = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
+ {MulOp0, MulOp1, Addend});
+ MulOp->eraseFromParent();
+
+ return FMulAdd;
+}
+
+// Check whether it would be legal to emit an fmuladd intrinsic call to
+// represent op and if so, build the fmuladd.
+//
+// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
+// Does NOT check the type of the operation - it's assumed that this function
+// will be called from contexts where it's known that the type is contractable.
+static Value* tryEmitFMulAdd(const BinOpInfo &op,
+ const CodeGenFunction &CGF, CGBuilderTy &Builder,
+ bool isSub=false) {
+
+ assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
+ op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
+ "Only fadd/fsub can be the root of an fmuladd.");
+
+ // Check whether this op is marked as fusable.
+ if (!op.FPFeatures.allowFPContractWithinStatement())
+ return nullptr;
+
+ // We have a potentially fusable op. Look for a mul on one of the operands.
+ // Also, make sure that the mul result isn't used directly. In that case,
+ // there's no point creating a muladd operation.
+ if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
+ if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
+ LHSBinOp->use_empty())
+ return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
+ }
+ if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
+ if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
+ RHSBinOp->use_empty())
+ return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
+ }
+
+ return nullptr;
+}
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
+ if (op.LHS->getType()->isPointerTy() ||
+ op.RHS->getType()->isPointerTy())
+ return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
+
+ if (op.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateAdd(op.LHS, op.RHS, "add");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
+ LLVM_FALLTHROUGH;
+ case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), op))
+ return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
+ return EmitOverflowCheckedBinOp(op);
+ }
+ }
+
+ if (op.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), op))
+ return EmitOverflowCheckedBinOp(op);
+
+ if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ // Try to form an fmuladd.
+ if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
+ return FMulAdd;
+
+ Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
+ return propagateFMFlags(V, op);
+ }
+
+ if (op.isFixedPointBinOp())
+ return EmitFixedPointBinOp(op);
+
+ return Builder.CreateAdd(op.LHS, op.RHS, "add");
+}
+
+/// The resulting value must be calculated with exact precision, so the operands
+/// may not be the same type.
+Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
+ using llvm::APSInt;
+ using llvm::ConstantInt;
+
+ const auto *BinOp = cast<BinaryOperator>(op.E);
+
+ // The result is a fixed point type and at least one of the operands is fixed
+ // point while the other is either fixed point or an int. This resulting type
+ // should be determined by Sema::handleFixedPointConversions().
+ QualType ResultTy = op.Ty;
+ QualType LHSTy = BinOp->getLHS()->getType();
+ QualType RHSTy = BinOp->getRHS()->getType();
+ ASTContext &Ctx = CGF.getContext();
+ Value *LHS = op.LHS;
+ Value *RHS = op.RHS;
+
+ auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
+ auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
+ auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
+ auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
+
+ // Convert the operands to the full precision type.
+ Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
+ BinOp->getExprLoc());
+ Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
+ BinOp->getExprLoc());
+
+ // Perform the actual addition.
+ Value *Result;
+ switch (BinOp->getOpcode()) {
+ case BO_Add: {
+ if (ResultFixedSema.isSaturated()) {
+ llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
+ ? llvm::Intrinsic::sadd_sat
+ : llvm::Intrinsic::uadd_sat;
+ Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
+ } else {
+ Result = Builder.CreateAdd(FullLHS, FullRHS);
+ }
+ break;
+ }
+ case BO_Sub: {
+ if (ResultFixedSema.isSaturated()) {
+ llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
+ ? llvm::Intrinsic::ssub_sat
+ : llvm::Intrinsic::usub_sat;
+ Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
+ } else {
+ Result = Builder.CreateSub(FullLHS, FullRHS);
+ }
+ break;
+ }
+ case BO_LT:
+ return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
+ : Builder.CreateICmpULT(FullLHS, FullRHS);
+ case BO_GT:
+ return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
+ : Builder.CreateICmpUGT(FullLHS, FullRHS);
+ case BO_LE:
+ return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
+ : Builder.CreateICmpULE(FullLHS, FullRHS);
+ case BO_GE:
+ return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
+ : Builder.CreateICmpUGE(FullLHS, FullRHS);
+ case BO_EQ:
+ // For equality operations, we assume any padding bits on unsigned types are
+ // zero'd out. They could be overwritten through non-saturating operations
+ // that cause overflow, but this leads to undefined behavior.
+ return Builder.CreateICmpEQ(FullLHS, FullRHS);
+ case BO_NE:
+ return Builder.CreateICmpNE(FullLHS, FullRHS);
+ case BO_Mul:
+ case BO_Div:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_Cmp:
+ case BO_LAnd:
+ case BO_LOr:
+ case BO_MulAssign:
+ case BO_DivAssign:
+ case BO_AddAssign:
+ case BO_SubAssign:
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ llvm_unreachable("Found unimplemented fixed point binary operation");
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Rem:
+ case BO_Xor:
+ case BO_And:
+ case BO_Or:
+ case BO_Assign:
+ case BO_RemAssign:
+ case BO_AndAssign:
+ case BO_XorAssign:
+ case BO_OrAssign:
+ case BO_Comma:
+ llvm_unreachable("Found unsupported binary operation for fixed point types.");
+ }
+
+ // Convert to the result type.
+ return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
+ BinOp->getExprLoc());
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
+ // The LHS is always a pointer if either side is.
+ if (!op.LHS->getType()->isPointerTy()) {
+ if (op.Ty->isSignedIntegerOrEnumerationType()) {
+ switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
+ case LangOptions::SOB_Defined:
+ return Builder.CreateSub(op.LHS, op.RHS, "sub");
+ case LangOptions::SOB_Undefined:
+ if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
+ return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
+ LLVM_FALLTHROUGH;
+ case LangOptions::SOB_Trapping:
+ if (CanElideOverflowCheck(CGF.getContext(), op))
+ return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
+ return EmitOverflowCheckedBinOp(op);
+ }
+ }
+
+ if (op.Ty->isUnsignedIntegerType() &&
+ CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
+ !CanElideOverflowCheck(CGF.getContext(), op))
+ return EmitOverflowCheckedBinOp(op);
+
+ if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ // Try to form an fmuladd.
+ if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
+ return FMulAdd;
+ Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
+ return propagateFMFlags(V, op);
+ }
+
+ if (op.isFixedPointBinOp())
+ return EmitFixedPointBinOp(op);
+
+ return Builder.CreateSub(op.LHS, op.RHS, "sub");
+ }
+
+ // If the RHS is not a pointer, then we have normal pointer
+ // arithmetic.
+ if (!op.RHS->getType()->isPointerTy())
+ return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
+
+ // Otherwise, this is a pointer subtraction.
+
+ // Do the raw subtraction part.
+ llvm::Value *LHS
+ = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
+ llvm::Value *RHS
+ = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
+ Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+ // Okay, figure out the element size.
+ const BinaryOperator *expr = cast<BinaryOperator>(op.E);
+ QualType elementType = expr->getLHS()->getType()->getPointeeType();
+
+ llvm::Value *divisor = nullptr;
+
+ // For a variable-length array, this is going to be non-constant.
+ if (const VariableArrayType *vla
+ = CGF.getContext().getAsVariableArrayType(elementType)) {
+ auto VlaSize = CGF.getVLASize(vla);
+ elementType = VlaSize.Type;
+ divisor = VlaSize.NumElts;
+
+ // Scale the number of non-VLA elements by the non-VLA element size.
+ CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
+ if (!eltSize.isOne())
+ divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
+
+ // For everything elese, we can just compute it, safe in the
+ // assumption that Sema won't let anything through that we can't
+ // safely compute the size of.
+ } else {
+ CharUnits elementSize;
+ // Handle GCC extension for pointer arithmetic on void* and
+ // function pointer types.
+ if (elementType->isVoidType() || elementType->isFunctionType())
+ elementSize = CharUnits::One();
+ else
+ elementSize = CGF.getContext().getTypeSizeInChars(elementType);
+
+ // Don't even emit the divide for element size of 1.
+ if (elementSize.isOne())
+ return diffInChars;
+
+ divisor = CGF.CGM.getSize(elementSize);
+ }
+
+ // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
+ // pointer difference in C is only defined in the case where both operands
+ // are pointing to elements of an array.
+ return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
+}
+
+Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
+ llvm::IntegerType *Ty;
+ if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
+ Ty = cast<llvm::IntegerType>(VT->getElementType());
+ else
+ Ty = cast<llvm::IntegerType>(LHS->getType());
+ return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
+}
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
+ Ops.Ty->hasSignedIntegerRepresentation() &&
+ !CGF.getLangOpts().isSignedOverflowDefined() &&
+ !CGF.getLangOpts().CPlusPlus2a;
+ bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ if (CGF.getLangOpts().OpenCL)
+ RHS =
+ Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
+ else if ((SanitizeBase || SanitizeExponent) &&
+ isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
+ llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
+ llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
+
+ if (SanitizeExponent) {
+ Checks.push_back(
+ std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
+ }
+
+ if (SanitizeBase) {
+ // Check whether we are shifting any non-zero bits off the top of the
+ // integer. We only emit this check if exponent is valid - otherwise
+ // instructions below will have undefined behavior themselves.
+ llvm::BasicBlock *Orig = Builder.GetInsertBlock();
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+ llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
+ Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
+ llvm::Value *PromotedWidthMinusOne =
+ (RHS == Ops.RHS) ? WidthMinusOne
+ : GetWidthMinusOneValue(Ops.LHS, RHS);
+ CGF.EmitBlock(CheckShiftBase);
+ llvm::Value *BitsShiftedOff = Builder.CreateLShr(
+ Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
+ /*NUW*/ true, /*NSW*/ true),
+ "shl.check");
+ if (CGF.getLangOpts().CPlusPlus) {
+ // In C99, we are not permitted to shift a 1 bit into the sign bit.
+ // Under C++11's rules, shifting a 1 bit into the sign bit is
+ // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
+ // define signed left shifts, so we use the C99 and C++11 rules there).
+ llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
+ BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
+ }
+ llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
+ llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
+ CGF.EmitBlock(Cont);
+ llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
+ BaseCheck->addIncoming(Builder.getTrue(), Orig);
+ BaseCheck->addIncoming(ValidBase, CheckShiftBase);
+ Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
+ }
+
+ assert(!Checks.empty());
+ EmitBinOpCheck(Checks, Ops);
+ }
+
+ return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+ // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+ // RHS to the same size as the LHS.
+ Value *RHS = Ops.RHS;
+ if (Ops.LHS->getType() != RHS->getType())
+ RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+ // OpenCL 6.3j: shift values are effectively % word size of LHS.
+ if (CGF.getLangOpts().OpenCL)
+ RHS =
+ Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
+ else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
+ isa<llvm::IntegerType>(Ops.LHS->getType())) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ llvm::Value *Valid =
+ Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
+ EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
+ }
+
+ if (Ops.Ty->hasUnsignedIntegerRepresentation())
+ return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+ return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+enum IntrinsicType { VCMPEQ, VCMPGT };
+// return corresponding comparison intrinsic for given vector type
+static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
+ BuiltinType::Kind ElemKind) {
+ switch (ElemKind) {
+ default: llvm_unreachable("unexpected element type");
+ case BuiltinType::Char_U:
+ case BuiltinType::UChar:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
+ case BuiltinType::Char_S:
+ case BuiltinType::SChar:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
+ case BuiltinType::UShort:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
+ case BuiltinType::Short:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
+ case BuiltinType::UInt:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
+ case BuiltinType::Int:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
+ case BuiltinType::ULong:
+ case BuiltinType::ULongLong:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
+ case BuiltinType::Long:
+ case BuiltinType::LongLong:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
+ case BuiltinType::Float:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
+ llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
+ case BuiltinType::Double:
+ return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
+ llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
+ }
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
+ llvm::CmpInst::Predicate UICmpOpc,
+ llvm::CmpInst::Predicate SICmpOpc,
+ llvm::CmpInst::Predicate FCmpOpc) {
+ TestAndClearIgnoreResultAssign();
+ Value *Result;
+ QualType LHSTy = E->getLHS()->getType();
+ QualType RHSTy = E->getRHS()->getType();
+ if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
+ assert(E->getOpcode() == BO_EQ ||
+ E->getOpcode() == BO_NE);
+ Value *LHS = CGF.EmitScalarExpr(E->getLHS());
+ Value *RHS = CGF.EmitScalarExpr(E->getRHS());
+ Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
+ CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
+ } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
+ BinOpInfo BOInfo = EmitBinOps(E);
+ Value *LHS = BOInfo.LHS;
+ Value *RHS = BOInfo.RHS;
+
+ // If AltiVec, the comparison results in a numeric type, so we use
+ // intrinsics comparing vectors and giving 0 or 1 as a result
+ if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
+ // constants for mapping CR6 register bits to predicate result
+ enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
+
+ llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
+
+ // in several cases vector arguments order will be reversed
+ Value *FirstVecArg = LHS,
+ *SecondVecArg = RHS;
+
+ QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
+ const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
+ BuiltinType::Kind ElementKind = BTy->getKind();
+
+ switch(E->getOpcode()) {
+ default: llvm_unreachable("is not a comparison operation");
+ case BO_EQ:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPEQ, ElementKind);
+ break;
+ case BO_NE:
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPEQ, ElementKind);
+ break;
+ case BO_LT:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ std::swap(FirstVecArg, SecondVecArg);
+ break;
+ case BO_GT:
+ CR6 = CR6_LT;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ break;
+ case BO_LE:
+ if (ElementKind == BuiltinType::Float) {
+ CR6 = CR6_LT;
+ ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
+ std::swap(FirstVecArg, SecondVecArg);
+ }
+ else {
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ }
+ break;
+ case BO_GE:
+ if (ElementKind == BuiltinType::Float) {
+ CR6 = CR6_LT;
+ ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
+ }
+ else {
+ CR6 = CR6_EQ;
+ ID = GetIntrinsic(VCMPGT, ElementKind);
+ std::swap(FirstVecArg, SecondVecArg);
+ }
+ break;
+ }
+
+ Value *CR6Param = Builder.getInt32(CR6);
+ llvm::Function *F = CGF.CGM.getIntrinsic(ID);
+ Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
+
+ // The result type of intrinsic may not be same as E->getType().
+ // If E->getType() is not BoolTy, EmitScalarConversion will do the
+ // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
+ // do nothing, if ResultTy is not i1 at the same time, it will cause
+ // crash later.
+ llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
+ if (ResultTy->getBitWidth() > 1 &&
+ E->getType() == CGF.getContext().BoolTy)
+ Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
+ E->getExprLoc());
+ }
+
+ if (BOInfo.isFixedPointBinOp()) {
+ Result = EmitFixedPointBinOp(BOInfo);
+ } else if (LHS->getType()->isFPOrFPVectorTy()) {
+ Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
+ } else if (LHSTy->hasSignedIntegerRepresentation()) {
+ Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
+ } else {
+ // Unsigned integers and pointers.
+
+ if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
+ !isa<llvm::ConstantPointerNull>(LHS) &&
+ !isa<llvm::ConstantPointerNull>(RHS)) {
+
+ // Dynamic information is required to be stripped for comparisons,
+ // because it could leak the dynamic information. Based on comparisons
+ // of pointers to dynamic objects, the optimizer can replace one pointer
+ // with another, which might be incorrect in presence of invariant
+ // groups. Comparison with null is safe because null does not carry any
+ // dynamic information.
+ if (LHSTy.mayBeDynamicClass())
+ LHS = Builder.CreateStripInvariantGroup(LHS);
+ if (RHSTy.mayBeDynamicClass())
+ RHS = Builder.CreateStripInvariantGroup(RHS);
+ }
+
+ Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
+ }
+
+ // If this is a vector comparison, sign extend the result to the appropriate
+ // vector integer type and return it (don't convert to bool).
+ if (LHSTy->isVectorType())
+ return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+
+ } else {
+ // Complex Comparison: can only be an equality comparison.
+ CodeGenFunction::ComplexPairTy LHS, RHS;
+ QualType CETy;
+ if (auto *CTy = LHSTy->getAs<ComplexType>()) {
+ LHS = CGF.EmitComplexExpr(E->getLHS());
+ CETy = CTy->getElementType();
+ } else {
+ LHS.first = Visit(E->getLHS());
+ LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
+ CETy = LHSTy;
+ }
+ if (auto *CTy = RHSTy->getAs<ComplexType>()) {
+ RHS = CGF.EmitComplexExpr(E->getRHS());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy,
+ CTy->getElementType()) &&
+ "The element types must always match.");
+ (void)CTy;
+ } else {
+ RHS.first = Visit(E->getRHS());
+ RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
+ assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
+ "The element types must always match.");
+ }
+
+ Value *ResultR, *ResultI;
+ if (CETy->isRealFloatingType()) {
+ ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
+ } else {
+ // Complex comparisons can only be equality comparisons. As such, signed
+ // and unsigned opcodes are the same.
+ ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
+ ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
+ }
+
+ if (E->getOpcode() == BO_EQ) {
+ Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+ } else {
+ assert(E->getOpcode() == BO_NE &&
+ "Complex comparison other than == or != ?");
+ Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+ }
+ }
+
+ return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
+ E->getExprLoc());
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+ bool Ignore = TestAndClearIgnoreResultAssign();
+
+ Value *RHS;
+ LValue LHS;
+
+ switch (E->getLHS()->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
+ break;
+
+ case Qualifiers::OCL_ExplicitNone:
+ std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
+ break;
+
+ case Qualifiers::OCL_Weak:
+ RHS = Visit(E->getRHS());
+ LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+ RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
+ break;
+
+ case Qualifiers::OCL_None:
+ // __block variables need to have the rhs evaluated first, plus
+ // this should improve codegen just a little.
+ RHS = Visit(E->getRHS());
+ LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
+
+ // Store the value into the LHS. Bit-fields are handled specially
+ // because the result is altered by the store, i.e., [C99 6.5.16p1]
+ // 'An assignment expression has the value of the left operand after
+ // the assignment...'.
+ if (LHS.isBitField()) {
+ CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
+ } else {
+ CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
+ CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
+ }
+ }
+
+ // If the result is clearly ignored, return now.
+ if (Ignore)
+ return nullptr;
+
+ // The result of an assignment in C is the assigned r-value.
+ if (!CGF.getLangOpts().CPlusPlus)
+ return RHS;
+
+ // If the lvalue is non-volatile, return the computed value of the assignment.
+ if (!LHS.isVolatileQualified())
+ return RHS;
+
+ // Otherwise, reload the value.
+ return EmitLoadOfLValue(LHS, E->getExprLoc());
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+ // Perform vector logical and on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
+ RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
+ } else {
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ }
+ Value *And = Builder.CreateAnd(LHS, RHS);
+ return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
+ }
+
+ llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
+ // If we have 1 && X, just emit X without inserting the control flow.
+ bool LHSCondVal;
+ if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
+ if (LHSCondVal) { // If we have 1 && X, just emit X.
+ CGF.incrementProfileCounter(E);
+
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
+ }
+
+ // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::Constant::getNullValue(ResTy);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+
+ // Branch on the LHS first. If it is false, go to the failure (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
+ CGF.getProfileCount(E->getRHS()));
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be false. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
+ "", ContBlock);
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
+
+ eval.begin(CGF);
+ CGF.EmitBlock(RHSBlock);
+ CGF.incrementProfileCounter(E);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ eval.end(CGF);
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock.
+ {
+ // There is no need to emit line number for unconditional branch.
+ auto NL = ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ContBlock);
+ }
+ // Insert an entry into the phi node for the edge with the value of RHSCond.
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // Artificial location to preserve the scope information
+ {
+ auto NL = ApplyDebugLocation::CreateArtificial(CGF);
+ PN->setDebugLoc(Builder.getCurrentDebugLocation());
+ }
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+ // Perform vector logical or on comparisons with zero vectors.
+ if (E->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ Value *LHS = Visit(E->getLHS());
+ Value *RHS = Visit(E->getRHS());
+ Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
+ if (LHS->getType()->isFPOrFPVectorTy()) {
+ LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
+ RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
+ } else {
+ LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
+ RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
+ }
+ Value *Or = Builder.CreateOr(LHS, RHS);
+ return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
+ }
+
+ llvm::Type *ResTy = ConvertType(E->getType());
+
+ // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
+ // If we have 0 || X, just emit X without inserting the control flow.
+ bool LHSCondVal;
+ if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
+ if (!LHSCondVal) { // If we have 0 || X, just emit X.
+ CGF.incrementProfileCounter(E);
+
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+ // ZExt result to int or bool.
+ return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
+ }
+
+ // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
+ if (!CGF.ContainsLabel(E->getRHS()))
+ return llvm::ConstantInt::get(ResTy, 1);
+ }
+
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+
+ // Branch on the LHS first. If it is true, go to the success (cont) block.
+ CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
+ CGF.getCurrentProfileCount() -
+ CGF.getProfileCount(E->getRHS()));
+
+ // Any edges into the ContBlock are now from an (indeterminate number of)
+ // edges from this first condition. All of these values will be true. Start
+ // setting up the PHI node in the Cont Block for this.
+ llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
+ "", ContBlock);
+ for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+ PI != PE; ++PI)
+ PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
+
+ eval.begin(CGF);
+
+ // Emit the RHS condition as a bool value.
+ CGF.EmitBlock(RHSBlock);
+ CGF.incrementProfileCounter(E);
+ Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+ eval.end(CGF);
+
+ // Reaquire the RHS block, as there may be subblocks inserted.
+ RHSBlock = Builder.GetInsertBlock();
+
+ // Emit an unconditional branch from this block to ContBlock. Insert an entry
+ // into the phi node for the edge with the value of RHSCond.
+ CGF.EmitBlock(ContBlock);
+ PN->addIncoming(RHSCond, RHSBlock);
+
+ // ZExt result to int.
+ return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+ CGF.EmitIgnoredExpr(E->getLHS());
+ CGF.EnsureInsertPoint();
+ return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+// Other Operators
+//===----------------------------------------------------------------------===//
+
+/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
+/// expression is cheap enough and side-effect-free enough to evaluate
+/// unconditionally instead of conditionally. This is used to convert control
+/// flow into selects in some cases.
+static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
+ CodeGenFunction &CGF) {
+ // Anything that is an integer or floating point constant is fine.
+ return E->IgnoreParens()->isEvaluatable(CGF.getContext());
+
+ // Even non-volatile automatic variables can't be evaluated unconditionally.
+ // Referencing a thread_local may cause non-trivial initialization work to
+ // occur. If we're inside a lambda and one of the variables is from the scope
+ // outside the lambda, that function may have returned already. Reading its
+ // locals is a bad idea. Also, these reads may introduce races there didn't
+ // exist in the source-level program.
+}
+
+
+Value *ScalarExprEmitter::
+VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Bind the common expression if necessary.
+ CodeGenFunction::OpaqueValueMapping binding(CGF, E);
+
+ Expr *condExpr = E->getCond();
+ Expr *lhsExpr = E->getTrueExpr();
+ Expr *rhsExpr = E->getFalseExpr();
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm.
+ bool CondExprBool;
+ if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
+ Expr *live = lhsExpr, *dead = rhsExpr;
+ if (!CondExprBool) std::swap(live, dead);
+
+ // If the dead side doesn't have labels we need, just emit the Live part.
+ if (!CGF.ContainsLabel(dead)) {
+ if (CondExprBool)
+ CGF.incrementProfileCounter(E);
+ Value *Result = Visit(live);
+
+ // If the live part is a throw expression, it acts like it has a void
+ // type, so evaluating it returns a null Value*. However, a conditional
+ // with non-void type must return a non-null Value*.
+ if (!Result && !E->getType()->isVoidType())
+ Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+
+ return Result;
+ }
+ }
+
+ // OpenCL: If the condition is a vector, we can treat this condition like
+ // the select function.
+ if (CGF.getLangOpts().OpenCL
+ && condExpr->getType()->isVectorType()) {
+ CGF.incrementProfileCounter(E);
+
+ llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
+ llvm::Value *LHS = Visit(lhsExpr);
+ llvm::Value *RHS = Visit(rhsExpr);
+
+ llvm::Type *condType = ConvertType(condExpr->getType());
+ llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
+
+ unsigned numElem = vecTy->getNumElements();
+ llvm::Type *elemType = vecTy->getElementType();
+
+ llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
+ llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
+ llvm::Value *tmp = Builder.CreateSExt(TestMSB,
+ llvm::VectorType::get(elemType,
+ numElem),
+ "sext");
+ llvm::Value *tmp2 = Builder.CreateNot(tmp);
+
+ // Cast float to int to perform ANDs if necessary.
+ llvm::Value *RHSTmp = RHS;
+ llvm::Value *LHSTmp = LHS;
+ bool wasCast = false;
+ llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
+ if (rhsVTy->getElementType()->isFloatingPointTy()) {
+ RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
+ LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
+ wasCast = true;
+ }
+
+ llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
+ llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
+ llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
+ if (wasCast)
+ tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
+
+ return tmp5;
+ }
+
+ // If this is a really simple expression (like x ? 4 : 5), emit this as a
+ // select instead of as control flow. We can only do this if it is cheap and
+ // safe to evaluate the LHS and RHS unconditionally.
+ if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
+ isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
+ llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
+ llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
+
+ CGF.incrementProfileCounter(E, StepV);
+
+ llvm::Value *LHS = Visit(lhsExpr);
+ llvm::Value *RHS = Visit(rhsExpr);
+ if (!LHS) {
+ // If the conditional has void type, make sure we return a null Value*.
+ assert(!RHS && "LHS and RHS types must match");
+ return nullptr;
+ }
+ return Builder.CreateSelect(CondV, LHS, RHS, "cond");
+ }
+
+ llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+ llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+
+ CodeGenFunction::ConditionalEvaluation eval(CGF);
+ CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
+ CGF.getProfileCount(lhsExpr));
+
+ CGF.EmitBlock(LHSBlock);
+ CGF.incrementProfileCounter(E);
+ eval.begin(CGF);
+ Value *LHS = Visit(lhsExpr);
+ eval.end(CGF);
+
+ LHSBlock = Builder.GetInsertBlock();
+ Builder.CreateBr(ContBlock);
+
+ CGF.EmitBlock(RHSBlock);
+ eval.begin(CGF);
+ Value *RHS = Visit(rhsExpr);
+ eval.end(CGF);
+
+ RHSBlock = Builder.GetInsertBlock();
+ CGF.EmitBlock(ContBlock);
+
+ // If the LHS or RHS is a throw expression, it will be legitimately null.
+ if (!LHS)
+ return RHS;
+ if (!RHS)
+ return LHS;
+
+ // Create a PHI node for the real part.
+ llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
+ PN->addIncoming(LHS, LHSBlock);
+ PN->addIncoming(RHS, RHSBlock);
+ return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+ return Visit(E->getChosenSubExpr());
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+ QualType Ty = VE->getType();
+
+ if (Ty->isVariablyModifiedType())
+ CGF.EmitVariablyModifiedType(Ty);
+
+ Address ArgValue = Address::invalid();
+ Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
+
+ llvm::Type *ArgTy = ConvertType(VE->getType());
+
+ // If EmitVAArg fails, emit an error.
+ if (!ArgPtr.isValid()) {
+ CGF.ErrorUnsupported(VE, "va_arg expression");
+ return llvm::UndefValue::get(ArgTy);
+ }
+
+ // FIXME Volatility.
+ llvm::Value *Val = Builder.CreateLoad(ArgPtr);
+
+ // If EmitVAArg promoted the type, we must truncate it.
+ if (ArgTy != Val->getType()) {
+ if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
+ Val = Builder.CreateIntToPtr(Val, ArgTy);
+ else
+ Val = Builder.CreateTrunc(Val, ArgTy);
+ }
+
+ return Val;
+}
+
+Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
+ return CGF.EmitBlockLiteral(block);
+}
+
+// Convert a vec3 to vec4, or vice versa.
+static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
+ Value *Src, unsigned NumElementsDst) {
+ llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
+ SmallVector<llvm::Constant*, 4> Args;
+ Args.push_back(Builder.getInt32(0));
+ Args.push_back(Builder.getInt32(1));
+ Args.push_back(Builder.getInt32(2));
+ if (NumElementsDst == 4)
+ Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
+ llvm::Constant *Mask = llvm::ConstantVector::get(Args);
+ return Builder.CreateShuffleVector(Src, UnV, Mask);
+}
+
+// Create cast instructions for converting LLVM value \p Src to LLVM type \p
+// DstTy. \p Src has the same size as \p DstTy. Both are single value types
+// but could be scalar or vectors of different lengths, and either can be
+// pointer.
+// There are 4 cases:
+// 1. non-pointer -> non-pointer : needs 1 bitcast
+// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
+// 3. pointer -> non-pointer
+// a) pointer -> intptr_t : needs 1 ptrtoint
+// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
+// 4. non-pointer -> pointer
+// a) intptr_t -> pointer : needs 1 inttoptr
+// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
+// Note: for cases 3b and 4b two casts are required since LLVM casts do not
+// allow casting directly between pointer types and non-integer non-pointer
+// types.
+static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
+ const llvm::DataLayout &DL,
+ Value *Src, llvm::Type *DstTy,
+ StringRef Name = "") {
+ auto SrcTy = Src->getType();
+
+ // Case 1.
+ if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
+ return Builder.CreateBitCast(Src, DstTy, Name);
+
+ // Case 2.
+ if (SrcTy->isPointerTy() && DstTy->isPointerTy())
+ return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
+
+ // Case 3.
+ if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
+ // Case 3b.
+ if (!DstTy->isIntegerTy())
+ Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
+ // Cases 3a and 3b.
+ return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
+ }
+
+ // Case 4b.
+ if (!SrcTy->isIntegerTy())
+ Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
+ // Cases 4a and 4b.
+ return Builder.CreateIntToPtr(Src, DstTy, Name);
+}
+
+Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
+ Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
+ llvm::Type *DstTy = ConvertType(E->getType());
+
+ llvm::Type *SrcTy = Src->getType();
+ unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
+ cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
+ unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
+ cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
+
+ // Going from vec3 to non-vec3 is a special case and requires a shuffle
+ // vector to get a vec4, then a bitcast if the target type is different.
+ if (NumElementsSrc == 3 && NumElementsDst != 3) {
+ Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
+
+ if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
+ Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
+ DstTy);
+ }
+
+ Src->setName("astype");
+ return Src;
+ }
+
+ // Going from non-vec3 to vec3 is a special case and requires a bitcast
+ // to vec4 if the original type is not vec4, then a shuffle vector to
+ // get a vec3.
+ if (NumElementsSrc != 3 && NumElementsDst == 3) {
+ if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
+ auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
+ Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
+ Vec4Ty);
+ }
+
+ Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
+ Src->setName("astype");
+ return Src;
+ }
+
+ return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
+ Src, DstTy, "astype");
+}
+
+Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
+ return CGF.EmitAtomicExpr(E).getScalarVal();
+}
+
+//===----------------------------------------------------------------------===//
+// Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// Emit the computation of the specified expression of scalar type, ignoring
+/// the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
+ assert(E && hasScalarEvaluationKind(E->getType()) &&
+ "Invalid scalar expression to emit");
+
+ return ScalarExprEmitter(*this, IgnoreResultAssign)
+ .Visit(const_cast<Expr *>(E));
+}
+
+/// Emit a conversion from the specified type to the specified destination type,
+/// both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+ QualType DstTy,
+ SourceLocation Loc) {
+ assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
+ "Invalid scalar expression to emit");
+ return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
+}
+
+/// Emit a conversion from the specified complex type to the specified
+/// destination type, where the destination type is an LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+ QualType SrcTy,
+ QualType DstTy,
+ SourceLocation Loc) {
+ assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
+ "Invalid complex -> scalar conversion");
+ return ScalarExprEmitter(*this)
+ .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
+}
+
+
+llvm::Value *CodeGenFunction::
+EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+ return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
+}
+
+LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
+ // object->isa or (*object).isa
+ // Generate code as for: *(Class*)object
+
+ Expr *BaseExpr = E->getBase();
+ Address Addr = Address::invalid();
+ if (BaseExpr->isRValue()) {
+ Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
+ } else {
+ Addr = EmitLValue(BaseExpr).getAddress();
+ }
+
+ // Cast the address to Class*.
+ Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
+ return MakeAddrLValue(Addr, E->getType());
+}
+
+
+LValue CodeGenFunction::EmitCompoundAssignmentLValue(
+ const CompoundAssignOperator *E) {
+ ScalarExprEmitter Scalar(*this);
+ Value *Result = nullptr;
+ switch (E->getOpcode()) {
+#define COMPOUND_OP(Op) \
+ case BO_##Op##Assign: \
+ return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
+ Result)
+ COMPOUND_OP(Mul);
+ COMPOUND_OP(Div);
+ COMPOUND_OP(Rem);
+ COMPOUND_OP(Add);
+ COMPOUND_OP(Sub);
+ COMPOUND_OP(Shl);
+ COMPOUND_OP(Shr);
+ COMPOUND_OP(And);
+ COMPOUND_OP(Xor);
+ COMPOUND_OP(Or);
+#undef COMPOUND_OP
+
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Add:
+ case BO_Sub:
+ case BO_Shl:
+ case BO_Shr:
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_Cmp:
+ case BO_And:
+ case BO_Xor:
+ case BO_Or:
+ case BO_LAnd:
+ case BO_LOr:
+ case BO_Assign:
+ case BO_Comma:
+ llvm_unreachable("Not valid compound assignment operators");
+ }
+
+ llvm_unreachable("Unhandled compound assignment operator");
+}
+
+struct GEPOffsetAndOverflow {
+ // The total (signed) byte offset for the GEP.
+ llvm::Value *TotalOffset;
+ // The offset overflow flag - true if the total offset overflows.
+ llvm::Value *OffsetOverflows;
+};
+
+/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
+/// and compute the total offset it applies from it's base pointer BasePtr.
+/// Returns offset in bytes and a boolean flag whether an overflow happened
+/// during evaluation.
+static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
+ llvm::LLVMContext &VMContext,
+ CodeGenModule &CGM,
+ CGBuilderTy Builder) {
+ const auto &DL = CGM.getDataLayout();
+
+ // The total (signed) byte offset for the GEP.
+ llvm::Value *TotalOffset = nullptr;
+
+ // Was the GEP already reduced to a constant?
+ if (isa<llvm::Constant>(GEPVal)) {
+ // Compute the offset by casting both pointers to integers and subtracting:
+ // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
+ Value *BasePtr_int =
+ Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
+ Value *GEPVal_int =
+ Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
+ TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
+ return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
+ }
+
+ auto *GEP = cast<llvm::GEPOperator>(GEPVal);
+ assert(GEP->getPointerOperand() == BasePtr &&
+ "BasePtr must be the the base of the GEP.");
+ assert(GEP->isInBounds() && "Expected inbounds GEP");
+
+ auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
+
+ // Grab references to the signed add/mul overflow intrinsics for intptr_t.
+ auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
+ auto *SAddIntrinsic =
+ CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
+ auto *SMulIntrinsic =
+ CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
+
+ // The offset overflow flag - true if the total offset overflows.
+ llvm::Value *OffsetOverflows = Builder.getFalse();
+
+ /// Return the result of the given binary operation.
+ auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
+ llvm::Value *RHS) -> llvm::Value * {
+ assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
+
+ // If the operands are constants, return a constant result.
+ if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
+ if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
+ llvm::APInt N;
+ bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
+ /*Signed=*/true, N);
+ if (HasOverflow)
+ OffsetOverflows = Builder.getTrue();
+ return llvm::ConstantInt::get(VMContext, N);
+ }
+ }
+
+ // Otherwise, compute the result with checked arithmetic.
+ auto *ResultAndOverflow = Builder.CreateCall(
+ (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
+ OffsetOverflows = Builder.CreateOr(
+ Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
+ return Builder.CreateExtractValue(ResultAndOverflow, 0);
+ };
+
+ // Determine the total byte offset by looking at each GEP operand.
+ for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ llvm::Value *LocalOffset;
+ auto *Index = GTI.getOperand();
+ // Compute the local offset contributed by this indexing step:
+ if (auto *STy = GTI.getStructTypeOrNull()) {
+ // For struct indexing, the local offset is the byte position of the
+ // specified field.
+ unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
+ LocalOffset = llvm::ConstantInt::get(
+ IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
+ } else {
+ // Otherwise this is array-like indexing. The local offset is the index
+ // multiplied by the element size.
+ auto *ElementSize = llvm::ConstantInt::get(
+ IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
+ auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
+ LocalOffset = eval(BO_Mul, ElementSize, IndexS);
+ }
+
+ // If this is the first offset, set it as the total offset. Otherwise, add
+ // the local offset into the running total.
+ if (!TotalOffset || TotalOffset == Zero)
+ TotalOffset = LocalOffset;
+ else
+ TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
+ }
+
+ return {TotalOffset, OffsetOverflows};
+}
+
+Value *
+CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
+ bool SignedIndices, bool IsSubtraction,
+ SourceLocation Loc, const Twine &Name) {
+ Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
+
+ // If the pointer overflow sanitizer isn't enabled, do nothing.
+ if (!SanOpts.has(SanitizerKind::PointerOverflow))
+ return GEPVal;
+
+ llvm::Type *PtrTy = Ptr->getType();
+
+ // Perform nullptr-and-offset check unless the nullptr is defined.
+ bool PerformNullCheck = !NullPointerIsDefined(
+ Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
+ // Check for overflows unless the GEP got constant-folded,
+ // and only in the default address space
+ bool PerformOverflowCheck =
+ !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
+
+ if (!(PerformNullCheck || PerformOverflowCheck))
+ return GEPVal;
+
+ const auto &DL = CGM.getDataLayout();
+
+ SanitizerScope SanScope(this);
+ llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
+
+ GEPOffsetAndOverflow EvaluatedGEP =
+ EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
+
+ assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
+ EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
+ "If the offset got constant-folded, we don't expect that there was an "
+ "overflow.");
+
+ auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
+
+ // Common case: if the total offset is zero, and we are using C++ semantics,
+ // where nullptr+0 is defined, don't emit a check.
+ if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
+ return GEPVal;
+
+ // Now that we've computed the total offset, add it to the base pointer (with
+ // wrapping semantics).
+ auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
+ auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
+
+ llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
+
+ if (PerformNullCheck) {
+ // In C++, if the base pointer evaluates to a null pointer value,
+ // the only valid pointer this inbounds GEP can produce is also
+ // a null pointer, so the offset must also evaluate to zero.
+ // Likewise, if we have non-zero base pointer, we can not get null pointer
+ // as a result, so the offset can not be -intptr_t(BasePtr).
+ // In other words, both pointers are either null, or both are non-null,
+ // or the behaviour is undefined.
+ //
+ // C, however, is more strict in this regard, and gives more
+ // optimization opportunities: in C, additionally, nullptr+0 is undefined.
+ // So both the input to the 'gep inbounds' AND the output must not be null.
+ auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
+ auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
+ auto *Valid =
+ CGM.getLangOpts().CPlusPlus
+ ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
+ : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
+ Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
+ }
+
+ if (PerformOverflowCheck) {
+ // The GEP is valid if:
+ // 1) The total offset doesn't overflow, and
+ // 2) The sign of the difference between the computed address and the base
+ // pointer matches the sign of the total offset.
+ llvm::Value *ValidGEP;
+ auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
+ if (SignedIndices) {
+ // GEP is computed as `unsigned base + signed offset`, therefore:
+ // * If offset was positive, then the computed pointer can not be
+ // [unsigned] less than the base pointer, unless it overflowed.
+ // * If offset was negative, then the computed pointer can not be
+ // [unsigned] greater than the bas pointere, unless it overflowed.
+ auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
+ auto *PosOrZeroOffset =
+ Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
+ llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
+ ValidGEP =
+ Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
+ } else if (!IsSubtraction) {
+ // GEP is computed as `unsigned base + unsigned offset`, therefore the
+ // computed pointer can not be [unsigned] less than base pointer,
+ // unless there was an overflow.
+ // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
+ ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
+ } else {
+ // GEP is computed as `unsigned base - unsigned offset`, therefore the
+ // computed pointer can not be [unsigned] greater than base pointer,
+ // unless there was an overflow.
+ // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
+ ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
+ }
+ ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
+ Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
+ }
+
+ assert(!Checks.empty() && "Should have produced some checks.");
+
+ llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
+ // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
+ llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
+ EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
+
+ return GEPVal;
+}