summaryrefslogtreecommitdiff
path: root/clang/lib/CodeGen/CGExprScalar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r--clang/lib/CodeGen/CGExprScalar.cpp449
1 files changed, 303 insertions, 146 deletions
diff --git a/clang/lib/CodeGen/CGExprScalar.cpp b/clang/lib/CodeGen/CGExprScalar.cpp
index 3f23fe11e4f5..6131f97995dc 100644
--- a/clang/lib/CodeGen/CGExprScalar.cpp
+++ b/clang/lib/CodeGen/CGExprScalar.cpp
@@ -37,6 +37,7 @@
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
+#include "llvm/IR/MatrixBuilder.h"
#include "llvm/IR/Module.h"
#include <cstdarg>
@@ -129,11 +130,10 @@ struct BinOpInfo {
return true;
}
- /// Check if either operand is a fixed point type or integer type, with at
- /// least one being a fixed point type. In any case, this
- /// operation did not follow usual arithmetic conversion and both operands may
- /// not be the same.
- bool isFixedPointBinOp() const {
+ /// Check if at least one operand is a fixed point type. In such cases, this
+ /// operation did not follow usual arithmetic conversion and both operands
+ /// might not be of the same type.
+ bool isFixedPointOp() const {
// We cannot simply check the result type since comparison operations return
// an int.
if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
@@ -141,6 +141,8 @@ struct BinOpInfo {
QualType RHSType = BinOp->getRHS()->getType();
return LHSType->isFixedPointType() || RHSType->isFixedPointType();
}
+ if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
+ return UnOp->getSubExpr()->getType()->isFixedPointType();
return false;
}
};
@@ -213,22 +215,6 @@ static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
(2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
}
-/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
-static void updateFastMathFlags(llvm::FastMathFlags &FMF,
- FPOptions FPFeatures) {
- FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
-}
-
-/// Propagate fast-math flags from \p Op to the instruction in \p V.
-static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
- if (auto *I = dyn_cast<llvm::Instruction>(V)) {
- llvm::FastMathFlags FMF = I->getFastMathFlags();
- updateFastMathFlags(FMF, Op.FPFeatures);
- I->setFastMathFlags(FMF);
- }
- return V;
-}
-
class ScalarExprEmitter
: public StmtVisitor<ScalarExprEmitter, Value*> {
CodeGenFunction &CGF;
@@ -297,7 +283,7 @@ public:
Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
- CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
+ CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
}
/// EmitLoadOfLValue - Given an expression with complex type that represents a
@@ -427,12 +413,18 @@ public:
}
Value *VisitStmt(Stmt *S) {
- S->dump(CGF.getContext().getSourceManager());
+ S->dump(llvm::errs(), CGF.getContext());
llvm_unreachable("Stmt can't have complex result type!");
}
Value *VisitExpr(Expr *S);
Value *VisitConstantExpr(ConstantExpr *E) {
+ if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
+ if (E->isGLValue())
+ return CGF.Builder.CreateLoad(Address(
+ Result, CGF.getContext().getTypeAlignInChars(E->getType())));
+ return Result;
+ }
return Visit(E->getSubExpr());
}
Value *VisitParenExpr(ParenExpr *PE) {
@@ -551,11 +543,17 @@ public:
}
Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+ Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
Value *VisitMemberExpr(MemberExpr *E);
Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+ // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
+ // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
+ // literals aren't l-values in C++. We do so simply because that's the
+ // cleanest way to handle compound literals in C++.
+ // See the discussion here: https://reviews.llvm.org/D64464
return EmitLoadOfLValue(E);
}
@@ -680,6 +678,10 @@ public:
return Builder.getInt1(E->isSatisfied());
}
+ Value *VisitRequiresExpr(const RequiresExpr *E) {
+ return Builder.getInt1(E->isSatisfied());
+ }
+
Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
}
@@ -728,15 +730,34 @@ public:
}
}
+ if (Ops.Ty->isConstantMatrixType()) {
+ llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
+ // We need to check the types of the operands of the operator to get the
+ // correct matrix dimensions.
+ auto *BO = cast<BinaryOperator>(Ops.E);
+ auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
+ BO->getLHS()->getType().getCanonicalType());
+ auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
+ BO->getRHS()->getType().getCanonicalType());
+ if (LHSMatTy && RHSMatTy)
+ return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
+ LHSMatTy->getNumColumns(),
+ RHSMatTy->getNumColumns());
+ return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
+ }
+
if (Ops.Ty->isUnsignedIntegerType() &&
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
!CanElideOverflowCheck(CGF.getContext(), Ops))
return EmitOverflowCheckedBinOp(Ops);
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
- Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
- return propagateFMFlags(V, Ops);
+ // Preserve the old values
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
+ return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
}
+ if (Ops.isFixedPointOp())
+ return EmitFixedPointBinOp(Ops);
return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
}
/// Create a binary op that checks for overflow.
@@ -748,6 +769,11 @@ public:
llvm::Value *Zero,bool isDiv);
// Common helper for getting how wide LHS of shift is.
static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
+
+ // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
+ // non powers of two.
+ Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);
+
Value *EmitDiv(const BinOpInfo &Ops);
Value *EmitRem(const BinOpInfo &Ops);
Value *EmitAdd(const BinOpInfo &Ops);
@@ -1297,7 +1323,7 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
"Splatted expr doesn't match with vector element type?");
// Splat the element across to all elements
- unsigned NumElements = DstTy->getVectorNumElements();
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
return Builder.CreateVectorSplat(NumElements, Src, "splat");
}
@@ -1315,8 +1341,8 @@ Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
// short or half vector.
// Source and destination are both expected to be vectors.
- llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
- llvm::Type *DstElementTy = DstTy->getVectorElementType();
+ llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
+ llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
(void)DstElementTy;
assert(((SrcElementTy->isIntegerTy() &&
@@ -1622,8 +1648,8 @@ Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
// n = extract mask i
// x = extract val n
// newv = insert newv, x, i
- llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
- MTy->getNumElements());
+ auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
+ MTy->getNumElements());
Value* NewV = llvm::UndefValue::get(RTy);
for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
@@ -1638,18 +1664,17 @@ Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
- SmallVector<llvm::Constant*, 32> indices;
+ SmallVector<int, 32> Indices;
for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
// Check for -1 and output it as undef in the IR.
if (Idx.isSigned() && Idx.isAllOnesValue())
- indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
+ Indices.push_back(-1);
else
- indices.push_back(Builder.getInt32(Idx.getZExtValue()));
+ Indices.push_back(Idx.getZExtValue());
}
- Value *SV = llvm::ConstantVector::get(indices);
- return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+ return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
}
Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
@@ -1682,8 +1707,8 @@ Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
assert(DstTy->isVectorTy() &&
"ConvertVector destination IR type must be a vector");
- llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
- *DstEltTy = DstTy->getVectorElementType();
+ llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
+ *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();
if (DstEltType->isBooleanType()) {
assert((SrcEltTy->isFloatingPointTy() ||
@@ -1764,22 +1789,34 @@ Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
return Builder.CreateExtractElement(Base, Idx, "vecext");
}
-static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
- unsigned Off, llvm::Type *I32Ty) {
+Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
+ TestAndClearIgnoreResultAssign();
+
+ // Handle the vector case. The base must be a vector, the index must be an
+ // integer value.
+ Value *RowIdx = Visit(E->getRowIdx());
+ Value *ColumnIdx = Visit(E->getColumnIdx());
+ Value *Matrix = Visit(E->getBase());
+
+ // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
+ llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
+ return MB.CreateExtractElement(
+ Matrix, RowIdx, ColumnIdx,
+ E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
+}
+
+static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
+ unsigned Off) {
int MV = SVI->getMaskValue(Idx);
if (MV == -1)
- return llvm::UndefValue::get(I32Ty);
- return llvm::ConstantInt::get(I32Ty, Off+MV);
+ return -1;
+ return Off + MV;
}
-static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
- if (C->getBitWidth() != 32) {
- assert(llvm::ConstantInt::isValueValidForType(I32Ty,
- C->getZExtValue()) &&
- "Index operand too large for shufflevector mask!");
- return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
- }
- return C;
+static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
+ assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
+ "Index operand too large for shufflevector mask!");
+ return C->getZExtValue();
}
Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
@@ -1816,7 +1853,7 @@ Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
for (unsigned i = 0; i != NumInitElements; ++i) {
Expr *IE = E->getInit(i);
Value *Init = Visit(IE);
- SmallVector<llvm::Constant*, 16> Args;
+ SmallVector<int, 16> Args;
llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
@@ -1834,7 +1871,7 @@ Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
// insert into undef -> shuffle (src, undef)
// shufflemask must use an i32
Args.push_back(getAsInt32(C, CGF.Int32Ty));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ Args.resize(ResElts, -1);
LHS = EI->getVectorOperand();
RHS = V;
@@ -1843,17 +1880,16 @@ Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
// insert into undefshuffle && size match -> shuffle (v, src)
llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
- Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ Args.push_back(getMaskElt(SVV, j, 0));
+ Args.push_back(ResElts + C->getZExtValue());
+ Args.resize(ResElts, -1);
LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
RHS = EI->getVectorOperand();
VIsUndefShuffle = false;
}
if (!Args.empty()) {
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- V = Builder.CreateShuffleVector(LHS, RHS, Mask);
+ V = Builder.CreateShuffleVector(LHS, RHS, Args);
++CurIdx;
continue;
}
@@ -1882,15 +1918,14 @@ Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
// If the current vector initializer is a shuffle with undef, merge
// this shuffle directly into it.
if (VIsUndefShuffle) {
- Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
- CGF.Int32Ty));
+ Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
} else {
- Args.push_back(Builder.getInt32(j));
+ Args.push_back(j);
}
}
for (unsigned j = 0, je = InitElts; j != je; ++j)
- Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ Args.push_back(getMaskElt(SVI, j, Offset));
+ Args.resize(ResElts, -1);
if (VIsUndefShuffle)
V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
@@ -1903,26 +1938,24 @@ Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
// to the vector initializer into V.
if (Args.empty()) {
for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(Builder.getInt32(j));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
- Mask, "vext");
+ Args.push_back(j);
+ Args.resize(ResElts, -1);
+ Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
+ "vext");
Args.clear();
for (unsigned j = 0; j != CurIdx; ++j)
- Args.push_back(Builder.getInt32(j));
+ Args.push_back(j);
for (unsigned j = 0; j != InitElts; ++j)
- Args.push_back(Builder.getInt32(j+Offset));
- Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
+ Args.push_back(j + Offset);
+ Args.resize(ResElts, -1);
}
// If V is undef, make sure it ends up on the RHS of the shuffle to aid
// merging subsequent shuffles into this one.
if (CurIdx == 0)
std::swap(V, Init);
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
+ V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
VIsUndefShuffle = isa<llvm::UndefValue>(Init);
CurIdx += InitElts;
}
@@ -2036,11 +2069,15 @@ Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
}
}
- // Update heapallocsite metadata when there is an explicit cast.
- if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
- if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
- CGF.getDebugInfo()->
- addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
+ // Update heapallocsite metadata when there is an explicit pointer cast.
+ if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
+ if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
+ QualType PointeeType = DestTy->getPointeeType();
+ if (!PointeeType.isNull())
+ CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
+ CE->getExprLoc());
+ }
+ }
return Builder.CreateBitCast(Src, DstTy);
}
@@ -2210,7 +2247,7 @@ Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
llvm::Type *DstTy = ConvertType(DestTy);
Value *Elt = Visit(const_cast<Expr*>(E));
// Splat the element across to all elements
- unsigned NumElements = DstTy->getVectorNumElements();
+ unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
return Builder.CreateVectorSplat(NumElements, Elt, "splat");
}
@@ -2311,7 +2348,6 @@ Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
}
Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
- CGF.enterFullExpression(E);
CodeGenFunction::RunCleanupsScope Scope(CGF);
Value *V = Visit(E->getSubExpr());
// Defend against dominance problems caused by jumps out of expression
@@ -2325,13 +2361,14 @@ Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
//===----------------------------------------------------------------------===//
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
- llvm::Value *InVal, bool IsInc) {
+ llvm::Value *InVal, bool IsInc,
+ FPOptions FPFeatures) {
BinOpInfo BinOp;
BinOp.LHS = InVal;
BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
BinOp.Ty = E->getType();
BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
- // FIXME: once UnaryOperator carries FPFeatures, copy it here.
+ BinOp.FPFeatures = FPFeatures;
BinOp.E = E;
return BinOp;
}
@@ -2351,7 +2388,8 @@ llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
case LangOptions::SOB_Trapping:
if (!E->canOverflow())
return Builder.CreateNSWAdd(InVal, Amount, Name);
- return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
+ return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
+ E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
}
llvm_unreachable("Unknown SignedOverflowBehaviorTy");
}
@@ -2497,8 +2535,8 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
} else if (E->canOverflow() && type->isUnsignedIntegerType() &&
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
- value =
- EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
+ value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
+ E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
} else {
llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
@@ -2609,6 +2647,36 @@ ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
}
}
+ // Fixed-point types.
+ } else if (type->isFixedPointType()) {
+ // Fixed-point types are tricky. In some cases, it isn't possible to
+ // represent a 1 or a -1 in the type at all. Piggyback off of
+ // EmitFixedPointBinOp to avoid having to reimplement saturation.
+ BinOpInfo Info;
+ Info.E = E;
+ Info.Ty = E->getType();
+ Info.Opcode = isInc ? BO_Add : BO_Sub;
+ Info.LHS = value;
+ Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
+ // If the type is signed, it's better to represent this as +(-1) or -(-1),
+ // since -1 is guaranteed to be representable.
+ if (type->isSignedFixedPointType()) {
+ Info.Opcode = isInc ? BO_Sub : BO_Add;
+ Info.RHS = Builder.CreateNeg(Info.RHS);
+ }
+ // Now, convert from our invented integer literal to the type of the unary
+ // op. This will upscale and saturate if necessary. This value can become
+ // undef in some cases.
+ FixedPointSemantics SrcSema =
+ FixedPointSemantics::GetIntegerSemantics(value->getType()
+ ->getScalarSizeInBits(),
+ /*IsSigned=*/true);
+ FixedPointSemantics DstSema =
+ CGF.getContext().getFixedPointSemantics(Info.Ty);
+ Info.RHS = EmitFixedPointConversion(Info.RHS, SrcSema, DstSema,
+ E->getExprLoc());
+ value = EmitFixedPointBinOp(Info);
+
// Objective-C pointer types.
} else {
const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
@@ -2668,7 +2736,7 @@ Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
BinOp.Ty = E->getType();
BinOp.Opcode = BO_Sub;
- // FIXME: once UnaryOperator carries FPFeatures, copy it here.
+ BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
BinOp.E = E;
return EmitSub(BinOp);
}
@@ -2681,13 +2749,17 @@ Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
// Perform vector logical not on comparison with zero vector.
- if (E->getType()->isExtVectorType()) {
+ if (E->getType()->isVectorType() &&
+ E->getType()->castAs<VectorType>()->getVectorKind() ==
+ VectorType::GenericVector) {
Value *Oper = Visit(E->getSubExpr());
Value *Zero = llvm::Constant::getNullValue(Oper->getType());
Value *Result;
- if (Oper->getType()->isFPOrFPVectorTy())
+ if (Oper->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
+ CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
- else
+ } else
Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
}
@@ -2888,7 +2960,7 @@ BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
Result.RHS = Visit(E->getRHS());
Result.Ty = E->getType();
Result.Opcode = E->getOpcode();
- Result.FPFeatures = E->getFPFeatures();
+ Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
Result.E = E;
return Result;
}
@@ -2908,7 +2980,7 @@ LValue ScalarExprEmitter::EmitCompoundAssignLValue(
OpInfo.RHS = Visit(E->getRHS());
OpInfo.Ty = E->getComputationResultType();
OpInfo.Opcode = E->getOpcode();
- OpInfo.FPFeatures = E->getFPFeatures();
+ OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
OpInfo.E = E;
// Load/convert the LHS.
LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
@@ -3096,7 +3168,9 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
}
if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
- llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+ llvm::Value *Val;
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
+ Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
if (CGF.getLangOpts().OpenCL &&
!CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
// OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
@@ -3112,6 +3186,8 @@ Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
}
return Val;
}
+ else if (Ops.isFixedPointOp())
+ return EmitFixedPointBinOp(Ops);
else if (Ops.Ty->hasUnsignedIntegerRepresentation())
return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
else
@@ -3361,7 +3437,7 @@ static Value *emitPointerArithmetic(CodeGenFunction &CGF,
// the add operand respectively. This allows fmuladd to represent a*b-c, or
// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
// efficient operations.
-static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
+static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
const CodeGenFunction &CGF, CGBuilderTy &Builder,
bool negMul, bool negAdd) {
assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
@@ -3373,12 +3449,23 @@ static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
if (negAdd)
Addend = Builder.CreateFNeg(Addend, "neg");
- Value *FMulAdd = Builder.CreateCall(
- CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
- {MulOp0, MulOp1, Addend});
- MulOp->eraseFromParent();
+ Value *FMulAdd = nullptr;
+ if (Builder.getIsFPConstrained()) {
+ assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
+ "Only constrained operation should be created when Builder is in FP "
+ "constrained mode");
+ FMulAdd = Builder.CreateConstrainedFPCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
+ Addend->getType()),
+ {MulOp0, MulOp1, Addend});
+ } else {
+ FMulAdd = Builder.CreateCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
+ {MulOp0, MulOp1, Addend});
+ }
+ MulOp->eraseFromParent();
- return FMulAdd;
+ return FMulAdd;
}
// Check whether it would be legal to emit an fmuladd intrinsic call to
@@ -3413,6 +3500,19 @@ static Value* tryEmitFMulAdd(const BinOpInfo &op,
return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
}
+ if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
+ if (LHSBinOp->getIntrinsicID() ==
+ llvm::Intrinsic::experimental_constrained_fmul &&
+ LHSBinOp->use_empty())
+ return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
+ }
+ if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
+ if (RHSBinOp->getIntrinsicID() ==
+ llvm::Intrinsic::experimental_constrained_fmul &&
+ RHSBinOp->use_empty())
+ return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
+ }
+
return nullptr;
}
@@ -3436,21 +3536,26 @@ Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
}
}
+ if (op.Ty->isConstantMatrixType()) {
+ llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
+ return MB.CreateAdd(op.LHS, op.RHS);
+ }
+
if (op.Ty->isUnsignedIntegerType() &&
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
!CanElideOverflowCheck(CGF.getContext(), op))
return EmitOverflowCheckedBinOp(op);
if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
// Try to form an fmuladd.
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
return FMulAdd;
- Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
- return propagateFMFlags(V, op);
+ return Builder.CreateFAdd(op.LHS, op.RHS, "add");
}
- if (op.isFixedPointBinOp())
+ if (op.isFixedPointOp())
return EmitFixedPointBinOp(op);
return Builder.CreateAdd(op.LHS, op.RHS, "add");
@@ -3462,14 +3567,27 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
using llvm::APSInt;
using llvm::ConstantInt;
- const auto *BinOp = cast<BinaryOperator>(op.E);
-
- // The result is a fixed point type and at least one of the operands is fixed
- // point while the other is either fixed point or an int. This resulting type
- // should be determined by Sema::handleFixedPointConversions().
+ // This is either a binary operation where at least one of the operands is
+ // a fixed-point type, or a unary operation where the operand is a fixed-point
+ // type. The result type of a binary operation is determined by
+ // Sema::handleFixedPointConversions().
QualType ResultTy = op.Ty;
- QualType LHSTy = BinOp->getLHS()->getType();
- QualType RHSTy = BinOp->getRHS()->getType();
+ QualType LHSTy, RHSTy;
+ if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
+ RHSTy = BinOp->getRHS()->getType();
+ if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
+ // For compound assignment, the effective type of the LHS at this point
+ // is the computation LHS type, not the actual LHS type, and the final
+ // result type is not the type of the expression but rather the
+ // computation result type.
+ LHSTy = CAO->getComputationLHSType();
+ ResultTy = CAO->getComputationResultType();
+ } else
+ LHSTy = BinOp->getLHS()->getType();
+ } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
+ LHSTy = UnOp->getSubExpr()->getType();
+ RHSTy = UnOp->getSubExpr()->getType();
+ }
ASTContext &Ctx = CGF.getContext();
Value *LHS = op.LHS;
Value *RHS = op.RHS;
@@ -3481,16 +3599,17 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
// Convert the operands to the full precision type.
Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
- BinOp->getExprLoc());
+ op.E->getExprLoc());
Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
- BinOp->getExprLoc());
+ op.E->getExprLoc());
- // Perform the actual addition.
+ // Perform the actual operation.
Value *Result;
- switch (BinOp->getOpcode()) {
+ switch (op.Opcode) {
+ case BO_AddAssign:
case BO_Add: {
- if (ResultFixedSema.isSaturated()) {
- llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
+ if (CommonFixedSema.isSaturated()) {
+ llvm::Intrinsic::ID IID = CommonFixedSema.isSigned()
? llvm::Intrinsic::sadd_sat
: llvm::Intrinsic::uadd_sat;
Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
@@ -3499,9 +3618,10 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
}
break;
}
+ case BO_SubAssign:
case BO_Sub: {
- if (ResultFixedSema.isSaturated()) {
- llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
+ if (CommonFixedSema.isSaturated()) {
+ llvm::Intrinsic::ID IID = CommonFixedSema.isSigned()
? llvm::Intrinsic::ssub_sat
: llvm::Intrinsic::usub_sat;
Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
@@ -3510,6 +3630,32 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
}
break;
}
+ case BO_MulAssign:
+ case BO_Mul: {
+ llvm::Intrinsic::ID IID;
+ if (CommonFixedSema.isSaturated())
+ IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix_sat
+ : llvm::Intrinsic::umul_fix_sat;
+ else
+ IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::smul_fix
+ : llvm::Intrinsic::umul_fix;
+ Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
+ {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
+ break;
+ }
+ case BO_DivAssign:
+ case BO_Div: {
+ llvm::Intrinsic::ID IID;
+ if (CommonFixedSema.isSaturated())
+ IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix_sat
+ : llvm::Intrinsic::udiv_fix_sat;
+ else
+ IID = CommonFixedSema.isSigned() ? llvm::Intrinsic::sdiv_fix
+ : llvm::Intrinsic::udiv_fix;
+ Result = Builder.CreateIntrinsic(IID, {FullLHS->getType()},
+ {FullLHS, FullRHS, Builder.getInt32(CommonFixedSema.getScale())});
+ break;
+ }
case BO_LT:
return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
: Builder.CreateICmpULT(FullLHS, FullRHS);
@@ -3529,17 +3675,11 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
return Builder.CreateICmpEQ(FullLHS, FullRHS);
case BO_NE:
return Builder.CreateICmpNE(FullLHS, FullRHS);
- case BO_Mul:
- case BO_Div:
case BO_Shl:
case BO_Shr:
case BO_Cmp:
case BO_LAnd:
case BO_LOr:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_AddAssign:
- case BO_SubAssign:
case BO_ShlAssign:
case BO_ShrAssign:
llvm_unreachable("Found unimplemented fixed point binary operation");
@@ -3560,7 +3700,7 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
// Convert to the result type.
return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
- BinOp->getExprLoc());
+ op.E->getExprLoc());
}
Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
@@ -3581,20 +3721,25 @@ Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
}
}
+ if (op.Ty->isConstantMatrixType()) {
+ llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
+ return MB.CreateSub(op.LHS, op.RHS);
+ }
+
if (op.Ty->isUnsignedIntegerType() &&
CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
!CanElideOverflowCheck(CGF.getContext(), op))
return EmitOverflowCheckedBinOp(op);
if (op.LHS->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
// Try to form an fmuladd.
if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
return FMulAdd;
- Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
- return propagateFMFlags(V, op);
+ return Builder.CreateFSub(op.LHS, op.RHS, "sub");
}
- if (op.isFixedPointBinOp())
+ if (op.isFixedPointOp())
return EmitFixedPointBinOp(op);
return Builder.CreateSub(op.LHS, op.RHS, "sub");
@@ -3666,6 +3811,21 @@ Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
}
+Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
+ const Twine &Name) {
+ llvm::IntegerType *Ty;
+ if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
+ Ty = cast<llvm::IntegerType>(VT->getElementType());
+ else
+ Ty = cast<llvm::IntegerType>(LHS->getType());
+
+ if (llvm::isPowerOf2_64(Ty->getBitWidth()))
+ return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);
+
+ return Builder.CreateURem(
+ RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
+}
+
Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
// RHS to the same size as the LHS.
@@ -3676,12 +3836,11 @@ Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
Ops.Ty->hasSignedIntegerRepresentation() &&
!CGF.getLangOpts().isSignedOverflowDefined() &&
- !CGF.getLangOpts().CPlusPlus2a;
+ !CGF.getLangOpts().CPlusPlus20;
bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
// OpenCL 6.3j: shift values are effectively % word size of LHS.
if (CGF.getLangOpts().OpenCL)
- RHS =
- Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
+ RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
else if ((SanitizeBase || SanitizeExponent) &&
isa<llvm::IntegerType>(Ops.LHS->getType())) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
@@ -3743,8 +3902,7 @@ Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
// OpenCL 6.3j: shift values are effectively % word size of LHS.
if (CGF.getLangOpts().OpenCL)
- RHS =
- Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
+ RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
isa<llvm::IntegerType>(Ops.LHS->getType())) {
CodeGenFunction::SanitizerScope SanScope(&CGF);
@@ -3897,9 +4055,10 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
E->getExprLoc());
}
- if (BOInfo.isFixedPointBinOp()) {
+ if (BOInfo.isFixedPointOp()) {
Result = EmitFixedPointBinOp(BOInfo);
} else if (LHS->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
if (!IsSignaling)
Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
else
@@ -4052,6 +4211,8 @@ Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Value *RHS = Visit(E->getRHS());
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
if (LHS->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
+ CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
} else {
@@ -4136,6 +4297,8 @@ Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Value *RHS = Visit(E->getRHS());
Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
if (LHS->getType()->isFPOrFPVectorTy()) {
+ CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
+ CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
} else {
@@ -4269,8 +4432,8 @@ VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
// OpenCL: If the condition is a vector, we can treat this condition like
// the select function.
- if (CGF.getLangOpts().OpenCL
- && condExpr->getType()->isVectorType()) {
+ if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
+ condExpr->getType()->isExtVectorType()) {
CGF.incrementProfileCounter(E);
llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
@@ -4285,10 +4448,8 @@ VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
- llvm::Value *tmp = Builder.CreateSExt(TestMSB,
- llvm::VectorType::get(elemType,
- numElem),
- "sext");
+ llvm::Value *tmp = Builder.CreateSExt(
+ TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
llvm::Value *tmp2 = Builder.CreateNot(tmp);
// Cast float to int to perform ANDs if necessary.
@@ -4427,14 +4588,9 @@ Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
Value *Src, unsigned NumElementsDst) {
llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
- SmallVector<llvm::Constant*, 4> Args;
- Args.push_back(Builder.getInt32(0));
- Args.push_back(Builder.getInt32(1));
- Args.push_back(Builder.getInt32(2));
- if (NumElementsDst == 4)
- Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
- llvm::Constant *Mask = llvm::ConstantVector::get(Args);
- return Builder.CreateShuffleVector(Src, UnV, Mask);
+ static constexpr int Mask[] = {0, 1, 2, -1};
+ return Builder.CreateShuffleVector(Src, UnV,
+ llvm::makeArrayRef(Mask, NumElementsDst));
}
// Create cast instructions for converting LLVM value \p Src to LLVM type \p
@@ -4512,7 +4668,8 @@ Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
// get a vec3.
if (NumElementsSrc != 3 && NumElementsDst == 3) {
if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
- auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
+ auto *Vec4Ty = llvm::FixedVectorType::get(
+ cast<llvm::VectorType>(DstTy)->getElementType(), 4);
Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
Vec4Ty);
}
@@ -4655,7 +4812,7 @@ struct GEPOffsetAndOverflow {
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
llvm::LLVMContext &VMContext,
CodeGenModule &CGM,
- CGBuilderTy Builder) {
+ CGBuilderTy &Builder) {
const auto &DL = CGM.getDataLayout();
// The total (signed) byte offset for the GEP.