diff options
Diffstat (limited to 'clang/lib/CodeGen/CGGPUBuiltin.cpp')
| -rw-r--r-- | clang/lib/CodeGen/CGGPUBuiltin.cpp | 122 | 
1 files changed, 122 insertions, 0 deletions
diff --git a/clang/lib/CodeGen/CGGPUBuiltin.cpp b/clang/lib/CodeGen/CGGPUBuiltin.cpp new file mode 100644 index 000000000000..d7e267630762 --- /dev/null +++ b/clang/lib/CodeGen/CGGPUBuiltin.cpp @@ -0,0 +1,122 @@ +//===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Generates code for built-in GPU calls which are not runtime-specific. +// (Runtime-specific codegen lives in programming model specific files.) +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "clang/Basic/Builtins.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Instruction.h" +#include "llvm/Support/MathExtras.h" + +using namespace clang; +using namespace CodeGen; + +static llvm::Function *GetVprintfDeclaration(llvm::Module &M) { +  llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), +                            llvm::Type::getInt8PtrTy(M.getContext())}; +  llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( +      llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); + +  if (auto* F = M.getFunction("vprintf")) { +    // Our CUDA system header declares vprintf with the right signature, so +    // nobody else should have been able to declare vprintf with a bogus +    // signature. +    assert(F->getFunctionType() == VprintfFuncType); +    return F; +  } + +  // vprintf doesn't already exist; create a declaration and insert it into the +  // module. +  return llvm::Function::Create( +      VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M); +} + +// Transforms a call to printf into a call to the NVPTX vprintf syscall (which +// isn't particularly special; it's invoked just like a regular function). +// vprintf takes two args: A format string, and a pointer to a buffer containing +// the varargs. +// +// For example, the call +// +//   printf("format string", arg1, arg2, arg3); +// +// is converted into something resembling +// +//   struct Tmp { +//     Arg1 a1; +//     Arg2 a2; +//     Arg3 a3; +//   }; +//   char* buf = alloca(sizeof(Tmp)); +//   *(Tmp*)buf = {a1, a2, a3}; +//   vprintf("format string", buf); +// +// buf is aligned to the max of {alignof(Arg1), ...}.  Furthermore, each of the +// args is itself aligned to its preferred alignment. +// +// Note that by the time this function runs, E's args have already undergone the +// standard C vararg promotion (short -> int, float -> double, etc.). +RValue +CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, +                                               ReturnValueSlot ReturnValue) { +  assert(getTarget().getTriple().isNVPTX()); +  assert(E->getBuiltinCallee() == Builtin::BIprintf); +  assert(E->getNumArgs() >= 1); // printf always has at least one arg. + +  const llvm::DataLayout &DL = CGM.getDataLayout(); +  llvm::LLVMContext &Ctx = CGM.getLLVMContext(); + +  CallArgList Args; +  EmitCallArgs(Args, +               E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), +               E->arguments(), E->getDirectCallee(), +               /* ParamsToSkip = */ 0); + +  // We don't know how to emit non-scalar varargs. +  if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) { +        return !A.getRValue(*this).isScalar(); +      })) { +    CGM.ErrorUnsupported(E, "non-scalar arg to printf"); +    return RValue::get(llvm::ConstantInt::get(IntTy, 0)); +  } + +  // Construct and fill the args buffer that we'll pass to vprintf. +  llvm::Value *BufferPtr; +  if (Args.size() <= 1) { +    // If there are no args, pass a null pointer to vprintf. +    BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx)); +  } else { +    llvm::SmallVector<llvm::Type *, 8> ArgTypes; +    for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) +      ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType()); + +    // Using llvm::StructType is correct only because printf doesn't accept +    // aggregates.  If we had to handle aggregates here, we'd have to manually +    // compute the offsets within the alloca -- we wouldn't be able to assume +    // that the alignment of the llvm type was the same as the alignment of the +    // clang type. +    llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args"); +    llvm::Value *Alloca = CreateTempAlloca(AllocaTy); + +    for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { +      llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1); +      llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal(); +      Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlignment(Arg->getType())); +    } +    BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx)); +  } + +  // Invoke vprintf and return. +  llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule()); +  return RValue::get(Builder.CreateCall( +      VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr})); +}  | 
