diff options
Diffstat (limited to 'clang/lib/CodeGen/CGStmt.cpp')
| -rw-r--r-- | clang/lib/CodeGen/CGStmt.cpp | 2413 | 
1 files changed, 2413 insertions, 0 deletions
| diff --git a/clang/lib/CodeGen/CGStmt.cpp b/clang/lib/CodeGen/CGStmt.cpp new file mode 100644 index 000000000000..40ab79509f98 --- /dev/null +++ b/clang/lib/CodeGen/CGStmt.cpp @@ -0,0 +1,2413 @@ +//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Stmt nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGDebugInfo.h" +#include "CodeGenModule.h" +#include "TargetInfo.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/PrettyStackTrace.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" + +using namespace clang; +using namespace CodeGen; + +//===----------------------------------------------------------------------===// +//                              Statement Emission +//===----------------------------------------------------------------------===// + +void CodeGenFunction::EmitStopPoint(const Stmt *S) { +  if (CGDebugInfo *DI = getDebugInfo()) { +    SourceLocation Loc; +    Loc = S->getBeginLoc(); +    DI->EmitLocation(Builder, Loc); + +    LastStopPoint = Loc; +  } +} + +void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { +  assert(S && "Null statement?"); +  PGO.setCurrentStmt(S); + +  // These statements have their own debug info handling. +  if (EmitSimpleStmt(S)) +    return; + +  // Check if we are generating unreachable code. +  if (!HaveInsertPoint()) { +    // If so, and the statement doesn't contain a label, then we do not need to +    // generate actual code. This is safe because (1) the current point is +    // unreachable, so we don't need to execute the code, and (2) we've already +    // handled the statements which update internal data structures (like the +    // local variable map) which could be used by subsequent statements. +    if (!ContainsLabel(S)) { +      // Verify that any decl statements were handled as simple, they may be in +      // scope of subsequent reachable statements. +      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); +      return; +    } + +    // Otherwise, make a new block to hold the code. +    EnsureInsertPoint(); +  } + +  // Generate a stoppoint if we are emitting debug info. +  EmitStopPoint(S); + +  // Ignore all OpenMP directives except for simd if OpenMP with Simd is +  // enabled. +  if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { +    if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { +      EmitSimpleOMPExecutableDirective(*D); +      return; +    } +  } + +  switch (S->getStmtClass()) { +  case Stmt::NoStmtClass: +  case Stmt::CXXCatchStmtClass: +  case Stmt::SEHExceptStmtClass: +  case Stmt::SEHFinallyStmtClass: +  case Stmt::MSDependentExistsStmtClass: +    llvm_unreachable("invalid statement class to emit generically"); +  case Stmt::NullStmtClass: +  case Stmt::CompoundStmtClass: +  case Stmt::DeclStmtClass: +  case Stmt::LabelStmtClass: +  case Stmt::AttributedStmtClass: +  case Stmt::GotoStmtClass: +  case Stmt::BreakStmtClass: +  case Stmt::ContinueStmtClass: +  case Stmt::DefaultStmtClass: +  case Stmt::CaseStmtClass: +  case Stmt::SEHLeaveStmtClass: +    llvm_unreachable("should have emitted these statements as simple"); + +#define STMT(Type, Base) +#define ABSTRACT_STMT(Op) +#define EXPR(Type, Base) \ +  case Stmt::Type##Class: +#include "clang/AST/StmtNodes.inc" +  { +    // Remember the block we came in on. +    llvm::BasicBlock *incoming = Builder.GetInsertBlock(); +    assert(incoming && "expression emission must have an insertion point"); + +    EmitIgnoredExpr(cast<Expr>(S)); + +    llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); +    assert(outgoing && "expression emission cleared block!"); + +    // The expression emitters assume (reasonably!) that the insertion +    // point is always set.  To maintain that, the call-emission code +    // for noreturn functions has to enter a new block with no +    // predecessors.  We want to kill that block and mark the current +    // insertion point unreachable in the common case of a call like +    // "exit();".  Since expression emission doesn't otherwise create +    // blocks with no predecessors, we can just test for that. +    // However, we must be careful not to do this to our incoming +    // block, because *statement* emission does sometimes create +    // reachable blocks which will have no predecessors until later in +    // the function.  This occurs with, e.g., labels that are not +    // reachable by fallthrough. +    if (incoming != outgoing && outgoing->use_empty()) { +      outgoing->eraseFromParent(); +      Builder.ClearInsertionPoint(); +    } +    break; +  } + +  case Stmt::IndirectGotoStmtClass: +    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; + +  case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break; +  case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; +  case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break; +  case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break; + +  case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break; + +  case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break; +  case Stmt::GCCAsmStmtClass:  // Intentional fall-through. +  case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break; +  case Stmt::CoroutineBodyStmtClass: +    EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); +    break; +  case Stmt::CoreturnStmtClass: +    EmitCoreturnStmt(cast<CoreturnStmt>(*S)); +    break; +  case Stmt::CapturedStmtClass: { +    const CapturedStmt *CS = cast<CapturedStmt>(S); +    EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); +    } +    break; +  case Stmt::ObjCAtTryStmtClass: +    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); +    break; +  case Stmt::ObjCAtCatchStmtClass: +    llvm_unreachable( +                    "@catch statements should be handled by EmitObjCAtTryStmt"); +  case Stmt::ObjCAtFinallyStmtClass: +    llvm_unreachable( +                  "@finally statements should be handled by EmitObjCAtTryStmt"); +  case Stmt::ObjCAtThrowStmtClass: +    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); +    break; +  case Stmt::ObjCAtSynchronizedStmtClass: +    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); +    break; +  case Stmt::ObjCForCollectionStmtClass: +    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); +    break; +  case Stmt::ObjCAutoreleasePoolStmtClass: +    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); +    break; + +  case Stmt::CXXTryStmtClass: +    EmitCXXTryStmt(cast<CXXTryStmt>(*S)); +    break; +  case Stmt::CXXForRangeStmtClass: +    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); +    break; +  case Stmt::SEHTryStmtClass: +    EmitSEHTryStmt(cast<SEHTryStmt>(*S)); +    break; +  case Stmt::OMPParallelDirectiveClass: +    EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); +    break; +  case Stmt::OMPSimdDirectiveClass: +    EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); +    break; +  case Stmt::OMPForDirectiveClass: +    EmitOMPForDirective(cast<OMPForDirective>(*S)); +    break; +  case Stmt::OMPForSimdDirectiveClass: +    EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); +    break; +  case Stmt::OMPSectionsDirectiveClass: +    EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); +    break; +  case Stmt::OMPSectionDirectiveClass: +    EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); +    break; +  case Stmt::OMPSingleDirectiveClass: +    EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); +    break; +  case Stmt::OMPMasterDirectiveClass: +    EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); +    break; +  case Stmt::OMPCriticalDirectiveClass: +    EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); +    break; +  case Stmt::OMPParallelForDirectiveClass: +    EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); +    break; +  case Stmt::OMPParallelForSimdDirectiveClass: +    EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); +    break; +  case Stmt::OMPParallelSectionsDirectiveClass: +    EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); +    break; +  case Stmt::OMPTaskDirectiveClass: +    EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); +    break; +  case Stmt::OMPTaskyieldDirectiveClass: +    EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); +    break; +  case Stmt::OMPBarrierDirectiveClass: +    EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); +    break; +  case Stmt::OMPTaskwaitDirectiveClass: +    EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); +    break; +  case Stmt::OMPTaskgroupDirectiveClass: +    EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); +    break; +  case Stmt::OMPFlushDirectiveClass: +    EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); +    break; +  case Stmt::OMPOrderedDirectiveClass: +    EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); +    break; +  case Stmt::OMPAtomicDirectiveClass: +    EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); +    break; +  case Stmt::OMPTargetDirectiveClass: +    EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); +    break; +  case Stmt::OMPTeamsDirectiveClass: +    EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); +    break; +  case Stmt::OMPCancellationPointDirectiveClass: +    EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); +    break; +  case Stmt::OMPCancelDirectiveClass: +    EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); +    break; +  case Stmt::OMPTargetDataDirectiveClass: +    EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); +    break; +  case Stmt::OMPTargetEnterDataDirectiveClass: +    EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); +    break; +  case Stmt::OMPTargetExitDataDirectiveClass: +    EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); +    break; +  case Stmt::OMPTargetParallelDirectiveClass: +    EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); +    break; +  case Stmt::OMPTargetParallelForDirectiveClass: +    EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); +    break; +  case Stmt::OMPTaskLoopDirectiveClass: +    EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); +    break; +  case Stmt::OMPTaskLoopSimdDirectiveClass: +    EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); +    break; +  case Stmt::OMPDistributeDirectiveClass: +    EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); +    break; +  case Stmt::OMPTargetUpdateDirectiveClass: +    EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); +    break; +  case Stmt::OMPDistributeParallelForDirectiveClass: +    EmitOMPDistributeParallelForDirective( +        cast<OMPDistributeParallelForDirective>(*S)); +    break; +  case Stmt::OMPDistributeParallelForSimdDirectiveClass: +    EmitOMPDistributeParallelForSimdDirective( +        cast<OMPDistributeParallelForSimdDirective>(*S)); +    break; +  case Stmt::OMPDistributeSimdDirectiveClass: +    EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); +    break; +  case Stmt::OMPTargetParallelForSimdDirectiveClass: +    EmitOMPTargetParallelForSimdDirective( +        cast<OMPTargetParallelForSimdDirective>(*S)); +    break; +  case Stmt::OMPTargetSimdDirectiveClass: +    EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); +    break; +  case Stmt::OMPTeamsDistributeDirectiveClass: +    EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); +    break; +  case Stmt::OMPTeamsDistributeSimdDirectiveClass: +    EmitOMPTeamsDistributeSimdDirective( +        cast<OMPTeamsDistributeSimdDirective>(*S)); +    break; +  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: +    EmitOMPTeamsDistributeParallelForSimdDirective( +        cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); +    break; +  case Stmt::OMPTeamsDistributeParallelForDirectiveClass: +    EmitOMPTeamsDistributeParallelForDirective( +        cast<OMPTeamsDistributeParallelForDirective>(*S)); +    break; +  case Stmt::OMPTargetTeamsDirectiveClass: +    EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); +    break; +  case Stmt::OMPTargetTeamsDistributeDirectiveClass: +    EmitOMPTargetTeamsDistributeDirective( +        cast<OMPTargetTeamsDistributeDirective>(*S)); +    break; +  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: +    EmitOMPTargetTeamsDistributeParallelForDirective( +        cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); +    break; +  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: +    EmitOMPTargetTeamsDistributeParallelForSimdDirective( +        cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); +    break; +  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: +    EmitOMPTargetTeamsDistributeSimdDirective( +        cast<OMPTargetTeamsDistributeSimdDirective>(*S)); +    break; +  } +} + +bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { +  switch (S->getStmtClass()) { +  default: return false; +  case Stmt::NullStmtClass: break; +  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; +  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break; +  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break; +  case Stmt::AttributedStmtClass: +                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break; +  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break; +  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break; +  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; +  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break; +  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break; +  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; +  } + +  return true; +} + +/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true, +/// this captures the expression result of the last sub-statement and returns it +/// (for use by the statement expression extension). +Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, +                                          AggValueSlot AggSlot) { +  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), +                             "LLVM IR generation of compound statement ('{}')"); + +  // Keep track of the current cleanup stack depth, including debug scopes. +  LexicalScope Scope(*this, S.getSourceRange()); + +  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); +} + +Address +CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, +                                              bool GetLast, +                                              AggValueSlot AggSlot) { + +  const Stmt *ExprResult = S.getStmtExprResult(); +  assert((!GetLast || (GetLast && ExprResult)) && +         "If GetLast is true then the CompoundStmt must have a StmtExprResult"); + +  Address RetAlloca = Address::invalid(); + +  for (auto *CurStmt : S.body()) { +    if (GetLast && ExprResult == CurStmt) { +      // We have to special case labels here.  They are statements, but when put +      // at the end of a statement expression, they yield the value of their +      // subexpression.  Handle this by walking through all labels we encounter, +      // emitting them before we evaluate the subexpr. +      // Similar issues arise for attributed statements. +      while (!isa<Expr>(ExprResult)) { +        if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { +          EmitLabel(LS->getDecl()); +          ExprResult = LS->getSubStmt(); +        } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { +          // FIXME: Update this if we ever have attributes that affect the +          // semantics of an expression. +          ExprResult = AS->getSubStmt(); +        } else { +          llvm_unreachable("unknown value statement"); +        } +      } + +      EnsureInsertPoint(); + +      const Expr *E = cast<Expr>(ExprResult); +      QualType ExprTy = E->getType(); +      if (hasAggregateEvaluationKind(ExprTy)) { +        EmitAggExpr(E, AggSlot); +      } else { +        // We can't return an RValue here because there might be cleanups at +        // the end of the StmtExpr.  Because of that, we have to emit the result +        // here into a temporary alloca. +        RetAlloca = CreateMemTemp(ExprTy); +        EmitAnyExprToMem(E, RetAlloca, Qualifiers(), +                         /*IsInit*/ false); +      } +    } else { +      EmitStmt(CurStmt); +    } +  } + +  return RetAlloca; +} + +void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { +  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); + +  // If there is a cleanup stack, then we it isn't worth trying to +  // simplify this block (we would need to remove it from the scope map +  // and cleanup entry). +  if (!EHStack.empty()) +    return; + +  // Can only simplify direct branches. +  if (!BI || !BI->isUnconditional()) +    return; + +  // Can only simplify empty blocks. +  if (BI->getIterator() != BB->begin()) +    return; + +  BB->replaceAllUsesWith(BI->getSuccessor(0)); +  BI->eraseFromParent(); +  BB->eraseFromParent(); +} + +void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { +  llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + +  // Fall out of the current block (if necessary). +  EmitBranch(BB); + +  if (IsFinished && BB->use_empty()) { +    delete BB; +    return; +  } + +  // Place the block after the current block, if possible, or else at +  // the end of the function. +  if (CurBB && CurBB->getParent()) +    CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); +  else +    CurFn->getBasicBlockList().push_back(BB); +  Builder.SetInsertPoint(BB); +} + +void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { +  // Emit a branch from the current block to the target one if this +  // was a real block.  If this was just a fall-through block after a +  // terminator, don't emit it. +  llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + +  if (!CurBB || CurBB->getTerminator()) { +    // If there is no insert point or the previous block is already +    // terminated, don't touch it. +  } else { +    // Otherwise, create a fall-through branch. +    Builder.CreateBr(Target); +  } + +  Builder.ClearInsertionPoint(); +} + +void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { +  bool inserted = false; +  for (llvm::User *u : block->users()) { +    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { +      CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), +                                             block); +      inserted = true; +      break; +    } +  } + +  if (!inserted) +    CurFn->getBasicBlockList().push_back(block); + +  Builder.SetInsertPoint(block); +} + +CodeGenFunction::JumpDest +CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { +  JumpDest &Dest = LabelMap[D]; +  if (Dest.isValid()) return Dest; + +  // Create, but don't insert, the new block. +  Dest = JumpDest(createBasicBlock(D->getName()), +                  EHScopeStack::stable_iterator::invalid(), +                  NextCleanupDestIndex++); +  return Dest; +} + +void CodeGenFunction::EmitLabel(const LabelDecl *D) { +  // Add this label to the current lexical scope if we're within any +  // normal cleanups.  Jumps "in" to this label --- when permitted by +  // the language --- may need to be routed around such cleanups. +  if (EHStack.hasNormalCleanups() && CurLexicalScope) +    CurLexicalScope->addLabel(D); + +  JumpDest &Dest = LabelMap[D]; + +  // If we didn't need a forward reference to this label, just go +  // ahead and create a destination at the current scope. +  if (!Dest.isValid()) { +    Dest = getJumpDestInCurrentScope(D->getName()); + +  // Otherwise, we need to give this label a target depth and remove +  // it from the branch-fixups list. +  } else { +    assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); +    Dest.setScopeDepth(EHStack.stable_begin()); +    ResolveBranchFixups(Dest.getBlock()); +  } + +  EmitBlock(Dest.getBlock()); + +  // Emit debug info for labels. +  if (CGDebugInfo *DI = getDebugInfo()) { +    if (CGM.getCodeGenOpts().getDebugInfo() >= +        codegenoptions::LimitedDebugInfo) { +      DI->setLocation(D->getLocation()); +      DI->EmitLabel(D, Builder); +    } +  } + +  incrementProfileCounter(D->getStmt()); +} + +/// Change the cleanup scope of the labels in this lexical scope to +/// match the scope of the enclosing context. +void CodeGenFunction::LexicalScope::rescopeLabels() { +  assert(!Labels.empty()); +  EHScopeStack::stable_iterator innermostScope +    = CGF.EHStack.getInnermostNormalCleanup(); + +  // Change the scope depth of all the labels. +  for (SmallVectorImpl<const LabelDecl*>::const_iterator +         i = Labels.begin(), e = Labels.end(); i != e; ++i) { +    assert(CGF.LabelMap.count(*i)); +    JumpDest &dest = CGF.LabelMap.find(*i)->second; +    assert(dest.getScopeDepth().isValid()); +    assert(innermostScope.encloses(dest.getScopeDepth())); +    dest.setScopeDepth(innermostScope); +  } + +  // Reparent the labels if the new scope also has cleanups. +  if (innermostScope != EHScopeStack::stable_end() && ParentScope) { +    ParentScope->Labels.append(Labels.begin(), Labels.end()); +  } +} + + +void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { +  EmitLabel(S.getDecl()); +  EmitStmt(S.getSubStmt()); +} + +void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { +  EmitStmt(S.getSubStmt(), S.getAttrs()); +} + +void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { +  // If this code is reachable then emit a stop point (if generating +  // debug info). We have to do this ourselves because we are on the +  // "simple" statement path. +  if (HaveInsertPoint()) +    EmitStopPoint(&S); + +  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); +} + + +void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { +  if (const LabelDecl *Target = S.getConstantTarget()) { +    EmitBranchThroughCleanup(getJumpDestForLabel(Target)); +    return; +  } + +  // Ensure that we have an i8* for our PHI node. +  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), +                                         Int8PtrTy, "addr"); +  llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + +  // Get the basic block for the indirect goto. +  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); + +  // The first instruction in the block has to be the PHI for the switch dest, +  // add an entry for this branch. +  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); + +  EmitBranch(IndGotoBB); +} + +void CodeGenFunction::EmitIfStmt(const IfStmt &S) { +  // C99 6.8.4.1: The first substatement is executed if the expression compares +  // unequal to 0.  The condition must be a scalar type. +  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); + +  if (S.getInit()) +    EmitStmt(S.getInit()); + +  if (S.getConditionVariable()) +    EmitDecl(*S.getConditionVariable()); + +  // If the condition constant folds and can be elided, try to avoid emitting +  // the condition and the dead arm of the if/else. +  bool CondConstant; +  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, +                                   S.isConstexpr())) { +    // Figure out which block (then or else) is executed. +    const Stmt *Executed = S.getThen(); +    const Stmt *Skipped  = S.getElse(); +    if (!CondConstant)  // Condition false? +      std::swap(Executed, Skipped); + +    // If the skipped block has no labels in it, just emit the executed block. +    // This avoids emitting dead code and simplifies the CFG substantially. +    if (S.isConstexpr() || !ContainsLabel(Skipped)) { +      if (CondConstant) +        incrementProfileCounter(&S); +      if (Executed) { +        RunCleanupsScope ExecutedScope(*this); +        EmitStmt(Executed); +      } +      return; +    } +  } + +  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit +  // the conditional branch. +  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); +  llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); +  llvm::BasicBlock *ElseBlock = ContBlock; +  if (S.getElse()) +    ElseBlock = createBasicBlock("if.else"); + +  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, +                       getProfileCount(S.getThen())); + +  // Emit the 'then' code. +  EmitBlock(ThenBlock); +  incrementProfileCounter(&S); +  { +    RunCleanupsScope ThenScope(*this); +    EmitStmt(S.getThen()); +  } +  EmitBranch(ContBlock); + +  // Emit the 'else' code if present. +  if (const Stmt *Else = S.getElse()) { +    { +      // There is no need to emit line number for an unconditional branch. +      auto NL = ApplyDebugLocation::CreateEmpty(*this); +      EmitBlock(ElseBlock); +    } +    { +      RunCleanupsScope ElseScope(*this); +      EmitStmt(Else); +    } +    { +      // There is no need to emit line number for an unconditional branch. +      auto NL = ApplyDebugLocation::CreateEmpty(*this); +      EmitBranch(ContBlock); +    } +  } + +  // Emit the continuation block for code after the if. +  EmitBlock(ContBlock, true); +} + +void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, +                                    ArrayRef<const Attr *> WhileAttrs) { +  // Emit the header for the loop, which will also become +  // the continue target. +  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); +  EmitBlock(LoopHeader.getBlock()); + +  const SourceRange &R = S.getSourceRange(); +  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, +                 SourceLocToDebugLoc(R.getBegin()), +                 SourceLocToDebugLoc(R.getEnd())); + +  // Create an exit block for when the condition fails, which will +  // also become the break target. +  JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); + +  // Store the blocks to use for break and continue. +  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); + +  // C++ [stmt.while]p2: +  //   When the condition of a while statement is a declaration, the +  //   scope of the variable that is declared extends from its point +  //   of declaration (3.3.2) to the end of the while statement. +  //   [...] +  //   The object created in a condition is destroyed and created +  //   with each iteration of the loop. +  RunCleanupsScope ConditionScope(*this); + +  if (S.getConditionVariable()) +    EmitDecl(*S.getConditionVariable()); + +  // Evaluate the conditional in the while header.  C99 6.8.5.1: The +  // evaluation of the controlling expression takes place before each +  // execution of the loop body. +  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + +  // while(1) is common, avoid extra exit blocks.  Be sure +  // to correctly handle break/continue though. +  bool EmitBoolCondBranch = true; +  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) +    if (C->isOne()) +      EmitBoolCondBranch = false; + +  // As long as the condition is true, go to the loop body. +  llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); +  if (EmitBoolCondBranch) { +    llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); +    if (ConditionScope.requiresCleanups()) +      ExitBlock = createBasicBlock("while.exit"); +    Builder.CreateCondBr( +        BoolCondVal, LoopBody, ExitBlock, +        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); + +    if (ExitBlock != LoopExit.getBlock()) { +      EmitBlock(ExitBlock); +      EmitBranchThroughCleanup(LoopExit); +    } +  } + +  // Emit the loop body.  We have to emit this in a cleanup scope +  // because it might be a singleton DeclStmt. +  { +    RunCleanupsScope BodyScope(*this); +    EmitBlock(LoopBody); +    incrementProfileCounter(&S); +    EmitStmt(S.getBody()); +  } + +  BreakContinueStack.pop_back(); + +  // Immediately force cleanup. +  ConditionScope.ForceCleanup(); + +  EmitStopPoint(&S); +  // Branch to the loop header again. +  EmitBranch(LoopHeader.getBlock()); + +  LoopStack.pop(); + +  // Emit the exit block. +  EmitBlock(LoopExit.getBlock(), true); + +  // The LoopHeader typically is just a branch if we skipped emitting +  // a branch, try to erase it. +  if (!EmitBoolCondBranch) +    SimplifyForwardingBlocks(LoopHeader.getBlock()); +} + +void CodeGenFunction::EmitDoStmt(const DoStmt &S, +                                 ArrayRef<const Attr *> DoAttrs) { +  JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); +  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); + +  uint64_t ParentCount = getCurrentProfileCount(); + +  // Store the blocks to use for break and continue. +  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); + +  // Emit the body of the loop. +  llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); + +  EmitBlockWithFallThrough(LoopBody, &S); +  { +    RunCleanupsScope BodyScope(*this); +    EmitStmt(S.getBody()); +  } + +  EmitBlock(LoopCond.getBlock()); + +  const SourceRange &R = S.getSourceRange(); +  LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, +                 SourceLocToDebugLoc(R.getBegin()), +                 SourceLocToDebugLoc(R.getEnd())); + +  // C99 6.8.5.2: "The evaluation of the controlling expression takes place +  // after each execution of the loop body." + +  // Evaluate the conditional in the while header. +  // C99 6.8.5p2/p4: The first substatement is executed if the expression +  // compares unequal to 0.  The condition must be a scalar type. +  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + +  BreakContinueStack.pop_back(); + +  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure +  // to correctly handle break/continue though. +  bool EmitBoolCondBranch = true; +  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) +    if (C->isZero()) +      EmitBoolCondBranch = false; + +  // As long as the condition is true, iterate the loop. +  if (EmitBoolCondBranch) { +    uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; +    Builder.CreateCondBr( +        BoolCondVal, LoopBody, LoopExit.getBlock(), +        createProfileWeightsForLoop(S.getCond(), BackedgeCount)); +  } + +  LoopStack.pop(); + +  // Emit the exit block. +  EmitBlock(LoopExit.getBlock()); + +  // The DoCond block typically is just a branch if we skipped +  // emitting a branch, try to erase it. +  if (!EmitBoolCondBranch) +    SimplifyForwardingBlocks(LoopCond.getBlock()); +} + +void CodeGenFunction::EmitForStmt(const ForStmt &S, +                                  ArrayRef<const Attr *> ForAttrs) { +  JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); + +  LexicalScope ForScope(*this, S.getSourceRange()); + +  // Evaluate the first part before the loop. +  if (S.getInit()) +    EmitStmt(S.getInit()); + +  // Start the loop with a block that tests the condition. +  // If there's an increment, the continue scope will be overwritten +  // later. +  JumpDest Continue = getJumpDestInCurrentScope("for.cond"); +  llvm::BasicBlock *CondBlock = Continue.getBlock(); +  EmitBlock(CondBlock); + +  const SourceRange &R = S.getSourceRange(); +  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, +                 SourceLocToDebugLoc(R.getBegin()), +                 SourceLocToDebugLoc(R.getEnd())); + +  // If the for loop doesn't have an increment we can just use the +  // condition as the continue block.  Otherwise we'll need to create +  // a block for it (in the current scope, i.e. in the scope of the +  // condition), and that we will become our continue block. +  if (S.getInc()) +    Continue = getJumpDestInCurrentScope("for.inc"); + +  // Store the blocks to use for break and continue. +  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); + +  // Create a cleanup scope for the condition variable cleanups. +  LexicalScope ConditionScope(*this, S.getSourceRange()); + +  if (S.getCond()) { +    // If the for statement has a condition scope, emit the local variable +    // declaration. +    if (S.getConditionVariable()) { +      EmitDecl(*S.getConditionVariable()); +    } + +    llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); +    // If there are any cleanups between here and the loop-exit scope, +    // create a block to stage a loop exit along. +    if (ForScope.requiresCleanups()) +      ExitBlock = createBasicBlock("for.cond.cleanup"); + +    // As long as the condition is true, iterate the loop. +    llvm::BasicBlock *ForBody = createBasicBlock("for.body"); + +    // C99 6.8.5p2/p4: The first substatement is executed if the expression +    // compares unequal to 0.  The condition must be a scalar type. +    llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); +    Builder.CreateCondBr( +        BoolCondVal, ForBody, ExitBlock, +        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); + +    if (ExitBlock != LoopExit.getBlock()) { +      EmitBlock(ExitBlock); +      EmitBranchThroughCleanup(LoopExit); +    } + +    EmitBlock(ForBody); +  } else { +    // Treat it as a non-zero constant.  Don't even create a new block for the +    // body, just fall into it. +  } +  incrementProfileCounter(&S); + +  { +    // Create a separate cleanup scope for the body, in case it is not +    // a compound statement. +    RunCleanupsScope BodyScope(*this); +    EmitStmt(S.getBody()); +  } + +  // If there is an increment, emit it next. +  if (S.getInc()) { +    EmitBlock(Continue.getBlock()); +    EmitStmt(S.getInc()); +  } + +  BreakContinueStack.pop_back(); + +  ConditionScope.ForceCleanup(); + +  EmitStopPoint(&S); +  EmitBranch(CondBlock); + +  ForScope.ForceCleanup(); + +  LoopStack.pop(); + +  // Emit the fall-through block. +  EmitBlock(LoopExit.getBlock(), true); +} + +void +CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, +                                     ArrayRef<const Attr *> ForAttrs) { +  JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); + +  LexicalScope ForScope(*this, S.getSourceRange()); + +  // Evaluate the first pieces before the loop. +  if (S.getInit()) +    EmitStmt(S.getInit()); +  EmitStmt(S.getRangeStmt()); +  EmitStmt(S.getBeginStmt()); +  EmitStmt(S.getEndStmt()); + +  // Start the loop with a block that tests the condition. +  // If there's an increment, the continue scope will be overwritten +  // later. +  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); +  EmitBlock(CondBlock); + +  const SourceRange &R = S.getSourceRange(); +  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, +                 SourceLocToDebugLoc(R.getBegin()), +                 SourceLocToDebugLoc(R.getEnd())); + +  // If there are any cleanups between here and the loop-exit scope, +  // create a block to stage a loop exit along. +  llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); +  if (ForScope.requiresCleanups()) +    ExitBlock = createBasicBlock("for.cond.cleanup"); + +  // The loop body, consisting of the specified body and the loop variable. +  llvm::BasicBlock *ForBody = createBasicBlock("for.body"); + +  // The body is executed if the expression, contextually converted +  // to bool, is true. +  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); +  Builder.CreateCondBr( +      BoolCondVal, ForBody, ExitBlock, +      createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); + +  if (ExitBlock != LoopExit.getBlock()) { +    EmitBlock(ExitBlock); +    EmitBranchThroughCleanup(LoopExit); +  } + +  EmitBlock(ForBody); +  incrementProfileCounter(&S); + +  // Create a block for the increment. In case of a 'continue', we jump there. +  JumpDest Continue = getJumpDestInCurrentScope("for.inc"); + +  // Store the blocks to use for break and continue. +  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); + +  { +    // Create a separate cleanup scope for the loop variable and body. +    LexicalScope BodyScope(*this, S.getSourceRange()); +    EmitStmt(S.getLoopVarStmt()); +    EmitStmt(S.getBody()); +  } + +  EmitStopPoint(&S); +  // If there is an increment, emit it next. +  EmitBlock(Continue.getBlock()); +  EmitStmt(S.getInc()); + +  BreakContinueStack.pop_back(); + +  EmitBranch(CondBlock); + +  ForScope.ForceCleanup(); + +  LoopStack.pop(); + +  // Emit the fall-through block. +  EmitBlock(LoopExit.getBlock(), true); +} + +void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { +  if (RV.isScalar()) { +    Builder.CreateStore(RV.getScalarVal(), ReturnValue); +  } else if (RV.isAggregate()) { +    LValue Dest = MakeAddrLValue(ReturnValue, Ty); +    LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); +    EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); +  } else { +    EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), +                       /*init*/ true); +  } +  EmitBranchThroughCleanup(ReturnBlock); +} + +/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand +/// if the function returns void, or may be missing one if the function returns +/// non-void.  Fun stuff :). +void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { +  if (requiresReturnValueCheck()) { +    llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); +    auto *SLocPtr = +        new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, +                                 llvm::GlobalVariable::PrivateLinkage, SLoc); +    SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); +    assert(ReturnLocation.isValid() && "No valid return location"); +    Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), +                        ReturnLocation); +  } + +  // Returning from an outlined SEH helper is UB, and we already warn on it. +  if (IsOutlinedSEHHelper) { +    Builder.CreateUnreachable(); +    Builder.ClearInsertionPoint(); +  } + +  // Emit the result value, even if unused, to evaluate the side effects. +  const Expr *RV = S.getRetValue(); + +  // Treat block literals in a return expression as if they appeared +  // in their own scope.  This permits a small, easily-implemented +  // exception to our over-conservative rules about not jumping to +  // statements following block literals with non-trivial cleanups. +  RunCleanupsScope cleanupScope(*this); +  if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { +    enterFullExpression(fe); +    RV = fe->getSubExpr(); +  } + +  // FIXME: Clean this up by using an LValue for ReturnTemp, +  // EmitStoreThroughLValue, and EmitAnyExpr. +  if (getLangOpts().ElideConstructors && +      S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { +    // Apply the named return value optimization for this return statement, +    // which means doing nothing: the appropriate result has already been +    // constructed into the NRVO variable. + +    // If there is an NRVO flag for this variable, set it to 1 into indicate +    // that the cleanup code should not destroy the variable. +    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) +      Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); +  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { +    // Make sure not to return anything, but evaluate the expression +    // for side effects. +    if (RV) +      EmitAnyExpr(RV); +  } else if (!RV) { +    // Do nothing (return value is left uninitialized) +  } else if (FnRetTy->isReferenceType()) { +    // If this function returns a reference, take the address of the expression +    // rather than the value. +    RValue Result = EmitReferenceBindingToExpr(RV); +    Builder.CreateStore(Result.getScalarVal(), ReturnValue); +  } else { +    switch (getEvaluationKind(RV->getType())) { +    case TEK_Scalar: +      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); +      break; +    case TEK_Complex: +      EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), +                                /*isInit*/ true); +      break; +    case TEK_Aggregate: +      EmitAggExpr(RV, AggValueSlot::forAddr( +                          ReturnValue, Qualifiers(), +                          AggValueSlot::IsDestructed, +                          AggValueSlot::DoesNotNeedGCBarriers, +                          AggValueSlot::IsNotAliased, +                          getOverlapForReturnValue())); +      break; +    } +  } + +  ++NumReturnExprs; +  if (!RV || RV->isEvaluatable(getContext())) +    ++NumSimpleReturnExprs; + +  cleanupScope.ForceCleanup(); +  EmitBranchThroughCleanup(ReturnBlock); +} + +void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { +  // As long as debug info is modeled with instructions, we have to ensure we +  // have a place to insert here and write the stop point here. +  if (HaveInsertPoint()) +    EmitStopPoint(&S); + +  for (const auto *I : S.decls()) +    EmitDecl(*I); +} + +void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { +  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); + +  // If this code is reachable then emit a stop point (if generating +  // debug info). We have to do this ourselves because we are on the +  // "simple" statement path. +  if (HaveInsertPoint()) +    EmitStopPoint(&S); + +  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); +} + +void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { +  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); + +  // If this code is reachable then emit a stop point (if generating +  // debug info). We have to do this ourselves because we are on the +  // "simple" statement path. +  if (HaveInsertPoint()) +    EmitStopPoint(&S); + +  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); +} + +/// EmitCaseStmtRange - If case statement range is not too big then +/// add multiple cases to switch instruction, one for each value within +/// the range. If range is too big then emit "if" condition check. +void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { +  assert(S.getRHS() && "Expected RHS value in CaseStmt"); + +  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); +  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); + +  // Emit the code for this case. We do this first to make sure it is +  // properly chained from our predecessor before generating the +  // switch machinery to enter this block. +  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); +  EmitBlockWithFallThrough(CaseDest, &S); +  EmitStmt(S.getSubStmt()); + +  // If range is empty, do nothing. +  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) +    return; + +  llvm::APInt Range = RHS - LHS; +  // FIXME: parameters such as this should not be hardcoded. +  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { +    // Range is small enough to add multiple switch instruction cases. +    uint64_t Total = getProfileCount(&S); +    unsigned NCases = Range.getZExtValue() + 1; +    // We only have one region counter for the entire set of cases here, so we +    // need to divide the weights evenly between the generated cases, ensuring +    // that the total weight is preserved. E.g., a weight of 5 over three cases +    // will be distributed as weights of 2, 2, and 1. +    uint64_t Weight = Total / NCases, Rem = Total % NCases; +    for (unsigned I = 0; I != NCases; ++I) { +      if (SwitchWeights) +        SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); +      if (Rem) +        Rem--; +      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); +      ++LHS; +    } +    return; +  } + +  // The range is too big. Emit "if" condition into a new block, +  // making sure to save and restore the current insertion point. +  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); + +  // Push this test onto the chain of range checks (which terminates +  // in the default basic block). The switch's default will be changed +  // to the top of this chain after switch emission is complete. +  llvm::BasicBlock *FalseDest = CaseRangeBlock; +  CaseRangeBlock = createBasicBlock("sw.caserange"); + +  CurFn->getBasicBlockList().push_back(CaseRangeBlock); +  Builder.SetInsertPoint(CaseRangeBlock); + +  // Emit range check. +  llvm::Value *Diff = +    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); +  llvm::Value *Cond = +    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); + +  llvm::MDNode *Weights = nullptr; +  if (SwitchWeights) { +    uint64_t ThisCount = getProfileCount(&S); +    uint64_t DefaultCount = (*SwitchWeights)[0]; +    Weights = createProfileWeights(ThisCount, DefaultCount); + +    // Since we're chaining the switch default through each large case range, we +    // need to update the weight for the default, ie, the first case, to include +    // this case. +    (*SwitchWeights)[0] += ThisCount; +  } +  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); + +  // Restore the appropriate insertion point. +  if (RestoreBB) +    Builder.SetInsertPoint(RestoreBB); +  else +    Builder.ClearInsertionPoint(); +} + +void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { +  // If there is no enclosing switch instance that we're aware of, then this +  // case statement and its block can be elided.  This situation only happens +  // when we've constant-folded the switch, are emitting the constant case, +  // and part of the constant case includes another case statement.  For +  // instance: switch (4) { case 4: do { case 5: } while (1); } +  if (!SwitchInsn) { +    EmitStmt(S.getSubStmt()); +    return; +  } + +  // Handle case ranges. +  if (S.getRHS()) { +    EmitCaseStmtRange(S); +    return; +  } + +  llvm::ConstantInt *CaseVal = +    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); + +  // If the body of the case is just a 'break', try to not emit an empty block. +  // If we're profiling or we're not optimizing, leave the block in for better +  // debug and coverage analysis. +  if (!CGM.getCodeGenOpts().hasProfileClangInstr() && +      CGM.getCodeGenOpts().OptimizationLevel > 0 && +      isa<BreakStmt>(S.getSubStmt())) { +    JumpDest Block = BreakContinueStack.back().BreakBlock; + +    // Only do this optimization if there are no cleanups that need emitting. +    if (isObviouslyBranchWithoutCleanups(Block)) { +      if (SwitchWeights) +        SwitchWeights->push_back(getProfileCount(&S)); +      SwitchInsn->addCase(CaseVal, Block.getBlock()); + +      // If there was a fallthrough into this case, make sure to redirect it to +      // the end of the switch as well. +      if (Builder.GetInsertBlock()) { +        Builder.CreateBr(Block.getBlock()); +        Builder.ClearInsertionPoint(); +      } +      return; +    } +  } + +  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); +  EmitBlockWithFallThrough(CaseDest, &S); +  if (SwitchWeights) +    SwitchWeights->push_back(getProfileCount(&S)); +  SwitchInsn->addCase(CaseVal, CaseDest); + +  // Recursively emitting the statement is acceptable, but is not wonderful for +  // code where we have many case statements nested together, i.e.: +  //  case 1: +  //    case 2: +  //      case 3: etc. +  // Handling this recursively will create a new block for each case statement +  // that falls through to the next case which is IR intensive.  It also causes +  // deep recursion which can run into stack depth limitations.  Handle +  // sequential non-range case statements specially. +  const CaseStmt *CurCase = &S; +  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); + +  // Otherwise, iteratively add consecutive cases to this switch stmt. +  while (NextCase && NextCase->getRHS() == nullptr) { +    CurCase = NextCase; +    llvm::ConstantInt *CaseVal = +      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); + +    if (SwitchWeights) +      SwitchWeights->push_back(getProfileCount(NextCase)); +    if (CGM.getCodeGenOpts().hasProfileClangInstr()) { +      CaseDest = createBasicBlock("sw.bb"); +      EmitBlockWithFallThrough(CaseDest, &S); +    } + +    SwitchInsn->addCase(CaseVal, CaseDest); +    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); +  } + +  // Normal default recursion for non-cases. +  EmitStmt(CurCase->getSubStmt()); +} + +void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { +  // If there is no enclosing switch instance that we're aware of, then this +  // default statement can be elided. This situation only happens when we've +  // constant-folded the switch. +  if (!SwitchInsn) { +    EmitStmt(S.getSubStmt()); +    return; +  } + +  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); +  assert(DefaultBlock->empty() && +         "EmitDefaultStmt: Default block already defined?"); + +  EmitBlockWithFallThrough(DefaultBlock, &S); + +  EmitStmt(S.getSubStmt()); +} + +/// CollectStatementsForCase - Given the body of a 'switch' statement and a +/// constant value that is being switched on, see if we can dead code eliminate +/// the body of the switch to a simple series of statements to emit.  Basically, +/// on a switch (5) we want to find these statements: +///    case 5: +///      printf(...);    <-- +///      ++i;            <-- +///      break; +/// +/// and add them to the ResultStmts vector.  If it is unsafe to do this +/// transformation (for example, one of the elided statements contains a label +/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S' +/// should include statements after it (e.g. the printf() line is a substmt of +/// the case) then return CSFC_FallThrough.  If we handled it and found a break +/// statement, then return CSFC_Success. +/// +/// If Case is non-null, then we are looking for the specified case, checking +/// that nothing we jump over contains labels.  If Case is null, then we found +/// the case and are looking for the break. +/// +/// If the recursive walk actually finds our Case, then we set FoundCase to +/// true. +/// +enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; +static CSFC_Result CollectStatementsForCase(const Stmt *S, +                                            const SwitchCase *Case, +                                            bool &FoundCase, +                              SmallVectorImpl<const Stmt*> &ResultStmts) { +  // If this is a null statement, just succeed. +  if (!S) +    return Case ? CSFC_Success : CSFC_FallThrough; + +  // If this is the switchcase (case 4: or default) that we're looking for, then +  // we're in business.  Just add the substatement. +  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { +    if (S == Case) { +      FoundCase = true; +      return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, +                                      ResultStmts); +    } + +    // Otherwise, this is some other case or default statement, just ignore it. +    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, +                                    ResultStmts); +  } + +  // If we are in the live part of the code and we found our break statement, +  // return a success! +  if (!Case && isa<BreakStmt>(S)) +    return CSFC_Success; + +  // If this is a switch statement, then it might contain the SwitchCase, the +  // break, or neither. +  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { +    // Handle this as two cases: we might be looking for the SwitchCase (if so +    // the skipped statements must be skippable) or we might already have it. +    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); +    bool StartedInLiveCode = FoundCase; +    unsigned StartSize = ResultStmts.size(); + +    // If we've not found the case yet, scan through looking for it. +    if (Case) { +      // Keep track of whether we see a skipped declaration.  The code could be +      // using the declaration even if it is skipped, so we can't optimize out +      // the decl if the kept statements might refer to it. +      bool HadSkippedDecl = false; + +      // If we're looking for the case, just see if we can skip each of the +      // substatements. +      for (; Case && I != E; ++I) { +        HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); + +        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { +        case CSFC_Failure: return CSFC_Failure; +        case CSFC_Success: +          // A successful result means that either 1) that the statement doesn't +          // have the case and is skippable, or 2) does contain the case value +          // and also contains the break to exit the switch.  In the later case, +          // we just verify the rest of the statements are elidable. +          if (FoundCase) { +            // If we found the case and skipped declarations, we can't do the +            // optimization. +            if (HadSkippedDecl) +              return CSFC_Failure; + +            for (++I; I != E; ++I) +              if (CodeGenFunction::ContainsLabel(*I, true)) +                return CSFC_Failure; +            return CSFC_Success; +          } +          break; +        case CSFC_FallThrough: +          // If we have a fallthrough condition, then we must have found the +          // case started to include statements.  Consider the rest of the +          // statements in the compound statement as candidates for inclusion. +          assert(FoundCase && "Didn't find case but returned fallthrough?"); +          // We recursively found Case, so we're not looking for it anymore. +          Case = nullptr; + +          // If we found the case and skipped declarations, we can't do the +          // optimization. +          if (HadSkippedDecl) +            return CSFC_Failure; +          break; +        } +      } + +      if (!FoundCase) +        return CSFC_Success; + +      assert(!HadSkippedDecl && "fallthrough after skipping decl"); +    } + +    // If we have statements in our range, then we know that the statements are +    // live and need to be added to the set of statements we're tracking. +    bool AnyDecls = false; +    for (; I != E; ++I) { +      AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); + +      switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { +      case CSFC_Failure: return CSFC_Failure; +      case CSFC_FallThrough: +        // A fallthrough result means that the statement was simple and just +        // included in ResultStmt, keep adding them afterwards. +        break; +      case CSFC_Success: +        // A successful result means that we found the break statement and +        // stopped statement inclusion.  We just ensure that any leftover stmts +        // are skippable and return success ourselves. +        for (++I; I != E; ++I) +          if (CodeGenFunction::ContainsLabel(*I, true)) +            return CSFC_Failure; +        return CSFC_Success; +      } +    } + +    // If we're about to fall out of a scope without hitting a 'break;', we +    // can't perform the optimization if there were any decls in that scope +    // (we'd lose their end-of-lifetime). +    if (AnyDecls) { +      // If the entire compound statement was live, there's one more thing we +      // can try before giving up: emit the whole thing as a single statement. +      // We can do that unless the statement contains a 'break;'. +      // FIXME: Such a break must be at the end of a construct within this one. +      // We could emit this by just ignoring the BreakStmts entirely. +      if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { +        ResultStmts.resize(StartSize); +        ResultStmts.push_back(S); +      } else { +        return CSFC_Failure; +      } +    } + +    return CSFC_FallThrough; +  } + +  // Okay, this is some other statement that we don't handle explicitly, like a +  // for statement or increment etc.  If we are skipping over this statement, +  // just verify it doesn't have labels, which would make it invalid to elide. +  if (Case) { +    if (CodeGenFunction::ContainsLabel(S, true)) +      return CSFC_Failure; +    return CSFC_Success; +  } + +  // Otherwise, we want to include this statement.  Everything is cool with that +  // so long as it doesn't contain a break out of the switch we're in. +  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; + +  // Otherwise, everything is great.  Include the statement and tell the caller +  // that we fall through and include the next statement as well. +  ResultStmts.push_back(S); +  return CSFC_FallThrough; +} + +/// FindCaseStatementsForValue - Find the case statement being jumped to and +/// then invoke CollectStatementsForCase to find the list of statements to emit +/// for a switch on constant.  See the comment above CollectStatementsForCase +/// for more details. +static bool FindCaseStatementsForValue(const SwitchStmt &S, +                                       const llvm::APSInt &ConstantCondValue, +                                SmallVectorImpl<const Stmt*> &ResultStmts, +                                       ASTContext &C, +                                       const SwitchCase *&ResultCase) { +  // First step, find the switch case that is being branched to.  We can do this +  // efficiently by scanning the SwitchCase list. +  const SwitchCase *Case = S.getSwitchCaseList(); +  const DefaultStmt *DefaultCase = nullptr; + +  for (; Case; Case = Case->getNextSwitchCase()) { +    // It's either a default or case.  Just remember the default statement in +    // case we're not jumping to any numbered cases. +    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { +      DefaultCase = DS; +      continue; +    } + +    // Check to see if this case is the one we're looking for. +    const CaseStmt *CS = cast<CaseStmt>(Case); +    // Don't handle case ranges yet. +    if (CS->getRHS()) return false; + +    // If we found our case, remember it as 'case'. +    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) +      break; +  } + +  // If we didn't find a matching case, we use a default if it exists, or we +  // elide the whole switch body! +  if (!Case) { +    // It is safe to elide the body of the switch if it doesn't contain labels +    // etc.  If it is safe, return successfully with an empty ResultStmts list. +    if (!DefaultCase) +      return !CodeGenFunction::ContainsLabel(&S); +    Case = DefaultCase; +  } + +  // Ok, we know which case is being jumped to, try to collect all the +  // statements that follow it.  This can fail for a variety of reasons.  Also, +  // check to see that the recursive walk actually found our case statement. +  // Insane cases like this can fail to find it in the recursive walk since we +  // don't handle every stmt kind: +  // switch (4) { +  //   while (1) { +  //     case 4: ... +  bool FoundCase = false; +  ResultCase = Case; +  return CollectStatementsForCase(S.getBody(), Case, FoundCase, +                                  ResultStmts) != CSFC_Failure && +         FoundCase; +} + +void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { +  // Handle nested switch statements. +  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; +  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; +  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; + +  // See if we can constant fold the condition of the switch and therefore only +  // emit the live case statement (if any) of the switch. +  llvm::APSInt ConstantCondValue; +  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { +    SmallVector<const Stmt*, 4> CaseStmts; +    const SwitchCase *Case = nullptr; +    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, +                                   getContext(), Case)) { +      if (Case) +        incrementProfileCounter(Case); +      RunCleanupsScope ExecutedScope(*this); + +      if (S.getInit()) +        EmitStmt(S.getInit()); + +      // Emit the condition variable if needed inside the entire cleanup scope +      // used by this special case for constant folded switches. +      if (S.getConditionVariable()) +        EmitDecl(*S.getConditionVariable()); + +      // At this point, we are no longer "within" a switch instance, so +      // we can temporarily enforce this to ensure that any embedded case +      // statements are not emitted. +      SwitchInsn = nullptr; + +      // Okay, we can dead code eliminate everything except this case.  Emit the +      // specified series of statements and we're good. +      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) +        EmitStmt(CaseStmts[i]); +      incrementProfileCounter(&S); + +      // Now we want to restore the saved switch instance so that nested +      // switches continue to function properly +      SwitchInsn = SavedSwitchInsn; + +      return; +    } +  } + +  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); + +  RunCleanupsScope ConditionScope(*this); + +  if (S.getInit()) +    EmitStmt(S.getInit()); + +  if (S.getConditionVariable()) +    EmitDecl(*S.getConditionVariable()); +  llvm::Value *CondV = EmitScalarExpr(S.getCond()); + +  // Create basic block to hold stuff that comes after switch +  // statement. We also need to create a default block now so that +  // explicit case ranges tests can have a place to jump to on +  // failure. +  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); +  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); +  if (PGO.haveRegionCounts()) { +    // Walk the SwitchCase list to find how many there are. +    uint64_t DefaultCount = 0; +    unsigned NumCases = 0; +    for (const SwitchCase *Case = S.getSwitchCaseList(); +         Case; +         Case = Case->getNextSwitchCase()) { +      if (isa<DefaultStmt>(Case)) +        DefaultCount = getProfileCount(Case); +      NumCases += 1; +    } +    SwitchWeights = new SmallVector<uint64_t, 16>(); +    SwitchWeights->reserve(NumCases); +    // The default needs to be first. We store the edge count, so we already +    // know the right weight. +    SwitchWeights->push_back(DefaultCount); +  } +  CaseRangeBlock = DefaultBlock; + +  // Clear the insertion point to indicate we are in unreachable code. +  Builder.ClearInsertionPoint(); + +  // All break statements jump to NextBlock. If BreakContinueStack is non-empty +  // then reuse last ContinueBlock. +  JumpDest OuterContinue; +  if (!BreakContinueStack.empty()) +    OuterContinue = BreakContinueStack.back().ContinueBlock; + +  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); + +  // Emit switch body. +  EmitStmt(S.getBody()); + +  BreakContinueStack.pop_back(); + +  // Update the default block in case explicit case range tests have +  // been chained on top. +  SwitchInsn->setDefaultDest(CaseRangeBlock); + +  // If a default was never emitted: +  if (!DefaultBlock->getParent()) { +    // If we have cleanups, emit the default block so that there's a +    // place to jump through the cleanups from. +    if (ConditionScope.requiresCleanups()) { +      EmitBlock(DefaultBlock); + +    // Otherwise, just forward the default block to the switch end. +    } else { +      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); +      delete DefaultBlock; +    } +  } + +  ConditionScope.ForceCleanup(); + +  // Emit continuation. +  EmitBlock(SwitchExit.getBlock(), true); +  incrementProfileCounter(&S); + +  // If the switch has a condition wrapped by __builtin_unpredictable, +  // create metadata that specifies that the switch is unpredictable. +  // Don't bother if not optimizing because that metadata would not be used. +  auto *Call = dyn_cast<CallExpr>(S.getCond()); +  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { +    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); +    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { +      llvm::MDBuilder MDHelper(getLLVMContext()); +      SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, +                              MDHelper.createUnpredictable()); +    } +  } + +  if (SwitchWeights) { +    assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && +           "switch weights do not match switch cases"); +    // If there's only one jump destination there's no sense weighting it. +    if (SwitchWeights->size() > 1) +      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, +                              createProfileWeights(*SwitchWeights)); +    delete SwitchWeights; +  } +  SwitchInsn = SavedSwitchInsn; +  SwitchWeights = SavedSwitchWeights; +  CaseRangeBlock = SavedCRBlock; +} + +static std::string +SimplifyConstraint(const char *Constraint, const TargetInfo &Target, +                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { +  std::string Result; + +  while (*Constraint) { +    switch (*Constraint) { +    default: +      Result += Target.convertConstraint(Constraint); +      break; +    // Ignore these +    case '*': +    case '?': +    case '!': +    case '=': // Will see this and the following in mult-alt constraints. +    case '+': +      break; +    case '#': // Ignore the rest of the constraint alternative. +      while (Constraint[1] && Constraint[1] != ',') +        Constraint++; +      break; +    case '&': +    case '%': +      Result += *Constraint; +      while (Constraint[1] && Constraint[1] == *Constraint) +        Constraint++; +      break; +    case ',': +      Result += "|"; +      break; +    case 'g': +      Result += "imr"; +      break; +    case '[': { +      assert(OutCons && +             "Must pass output names to constraints with a symbolic name"); +      unsigned Index; +      bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); +      assert(result && "Could not resolve symbolic name"); (void)result; +      Result += llvm::utostr(Index); +      break; +    } +    } + +    Constraint++; +  } + +  return Result; +} + +/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared +/// as using a particular register add that as a constraint that will be used +/// in this asm stmt. +static std::string +AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, +                       const TargetInfo &Target, CodeGenModule &CGM, +                       const AsmStmt &Stmt, const bool EarlyClobber) { +  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); +  if (!AsmDeclRef) +    return Constraint; +  const ValueDecl &Value = *AsmDeclRef->getDecl(); +  const VarDecl *Variable = dyn_cast<VarDecl>(&Value); +  if (!Variable) +    return Constraint; +  if (Variable->getStorageClass() != SC_Register) +    return Constraint; +  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); +  if (!Attr) +    return Constraint; +  StringRef Register = Attr->getLabel(); +  assert(Target.isValidGCCRegisterName(Register)); +  // We're using validateOutputConstraint here because we only care if +  // this is a register constraint. +  TargetInfo::ConstraintInfo Info(Constraint, ""); +  if (Target.validateOutputConstraint(Info) && +      !Info.allowsRegister()) { +    CGM.ErrorUnsupported(&Stmt, "__asm__"); +    return Constraint; +  } +  // Canonicalize the register here before returning it. +  Register = Target.getNormalizedGCCRegisterName(Register); +  return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; +} + +llvm::Value* +CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, +                                    LValue InputValue, QualType InputType, +                                    std::string &ConstraintStr, +                                    SourceLocation Loc) { +  llvm::Value *Arg; +  if (Info.allowsRegister() || !Info.allowsMemory()) { +    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { +      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); +    } else { +      llvm::Type *Ty = ConvertType(InputType); +      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); +      if (Size <= 64 && llvm::isPowerOf2_64(Size)) { +        Ty = llvm::IntegerType::get(getLLVMContext(), Size); +        Ty = llvm::PointerType::getUnqual(Ty); + +        Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), +                                                       Ty)); +      } else { +        Arg = InputValue.getPointer(); +        ConstraintStr += '*'; +      } +    } +  } else { +    Arg = InputValue.getPointer(); +    ConstraintStr += '*'; +  } + +  return Arg; +} + +llvm::Value* CodeGenFunction::EmitAsmInput( +                                         const TargetInfo::ConstraintInfo &Info, +                                           const Expr *InputExpr, +                                           std::string &ConstraintStr) { +  // If this can't be a register or memory, i.e., has to be a constant +  // (immediate or symbolic), try to emit it as such. +  if (!Info.allowsRegister() && !Info.allowsMemory()) { +    if (Info.requiresImmediateConstant()) { +      Expr::EvalResult EVResult; +      InputExpr->EvaluateAsRValue(EVResult, getContext(), true); + +      llvm::APSInt IntResult; +      if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), +                                          getContext())) +        return llvm::ConstantInt::get(getLLVMContext(), IntResult); +    } + +    Expr::EvalResult Result; +    if (InputExpr->EvaluateAsInt(Result, getContext())) +      return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); +  } + +  if (Info.allowsRegister() || !Info.allowsMemory()) +    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) +      return EmitScalarExpr(InputExpr); +  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) +    return EmitScalarExpr(InputExpr); +  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); +  LValue Dest = EmitLValue(InputExpr); +  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, +                            InputExpr->getExprLoc()); +} + +/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline +/// asm call instruction.  The !srcloc MDNode contains a list of constant +/// integers which are the source locations of the start of each line in the +/// asm. +static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, +                                      CodeGenFunction &CGF) { +  SmallVector<llvm::Metadata *, 8> Locs; +  // Add the location of the first line to the MDNode. +  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +      CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); +  StringRef StrVal = Str->getString(); +  if (!StrVal.empty()) { +    const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); +    const LangOptions &LangOpts = CGF.CGM.getLangOpts(); +    unsigned StartToken = 0; +    unsigned ByteOffset = 0; + +    // Add the location of the start of each subsequent line of the asm to the +    // MDNode. +    for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { +      if (StrVal[i] != '\n') continue; +      SourceLocation LineLoc = Str->getLocationOfByte( +          i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); +      Locs.push_back(llvm::ConstantAsMetadata::get( +          llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); +    } +  } + +  return llvm::MDNode::get(CGF.getLLVMContext(), Locs); +} + +static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, +                              bool ReadOnly, bool ReadNone, const AsmStmt &S, +                              const std::vector<llvm::Type *> &ResultRegTypes, +                              CodeGenFunction &CGF, +                              std::vector<llvm::Value *> &RegResults) { +  Result.addAttribute(llvm::AttributeList::FunctionIndex, +                      llvm::Attribute::NoUnwind); +  // Attach readnone and readonly attributes. +  if (!HasSideEffect) { +    if (ReadNone) +      Result.addAttribute(llvm::AttributeList::FunctionIndex, +                          llvm::Attribute::ReadNone); +    else if (ReadOnly) +      Result.addAttribute(llvm::AttributeList::FunctionIndex, +                          llvm::Attribute::ReadOnly); +  } + +  // Slap the source location of the inline asm into a !srcloc metadata on the +  // call. +  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) +    Result.setMetadata("srcloc", +                       getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); +  else { +    // At least put the line number on MS inline asm blobs. +    llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, +                                        S.getAsmLoc().getRawEncoding()); +    Result.setMetadata("srcloc", +                       llvm::MDNode::get(CGF.getLLVMContext(), +                                         llvm::ConstantAsMetadata::get(Loc))); +  } + +  if (CGF.getLangOpts().assumeFunctionsAreConvergent()) +    // Conservatively, mark all inline asm blocks in CUDA or OpenCL as +    // convergent (meaning, they may call an intrinsically convergent op, such +    // as bar.sync, and so can't have certain optimizations applied around +    // them). +    Result.addAttribute(llvm::AttributeList::FunctionIndex, +                        llvm::Attribute::Convergent); +  // Extract all of the register value results from the asm. +  if (ResultRegTypes.size() == 1) { +    RegResults.push_back(&Result); +  } else { +    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { +      llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); +      RegResults.push_back(Tmp); +    } +  } +} + +void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { +  // Assemble the final asm string. +  std::string AsmString = S.generateAsmString(getContext()); + +  // Get all the output and input constraints together. +  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; +  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; + +  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { +    StringRef Name; +    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) +      Name = GAS->getOutputName(i); +    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); +    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; +    assert(IsValid && "Failed to parse output constraint"); +    OutputConstraintInfos.push_back(Info); +  } + +  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { +    StringRef Name; +    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) +      Name = GAS->getInputName(i); +    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); +    bool IsValid = +      getTarget().validateInputConstraint(OutputConstraintInfos, Info); +    assert(IsValid && "Failed to parse input constraint"); (void)IsValid; +    InputConstraintInfos.push_back(Info); +  } + +  std::string Constraints; + +  std::vector<LValue> ResultRegDests; +  std::vector<QualType> ResultRegQualTys; +  std::vector<llvm::Type *> ResultRegTypes; +  std::vector<llvm::Type *> ResultTruncRegTypes; +  std::vector<llvm::Type *> ArgTypes; +  std::vector<llvm::Value*> Args; + +  // Keep track of inout constraints. +  std::string InOutConstraints; +  std::vector<llvm::Value*> InOutArgs; +  std::vector<llvm::Type*> InOutArgTypes; + +  // Keep track of out constraints for tied input operand. +  std::vector<std::string> OutputConstraints; + +  // An inline asm can be marked readonly if it meets the following conditions: +  //  - it doesn't have any sideeffects +  //  - it doesn't clobber memory +  //  - it doesn't return a value by-reference +  // It can be marked readnone if it doesn't have any input memory constraints +  // in addition to meeting the conditions listed above. +  bool ReadOnly = true, ReadNone = true; + +  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { +    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; + +    // Simplify the output constraint. +    std::string OutputConstraint(S.getOutputConstraint(i)); +    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, +                                          getTarget(), &OutputConstraintInfos); + +    const Expr *OutExpr = S.getOutputExpr(i); +    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); + +    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, +                                              getTarget(), CGM, S, +                                              Info.earlyClobber()); +    OutputConstraints.push_back(OutputConstraint); +    LValue Dest = EmitLValue(OutExpr); +    if (!Constraints.empty()) +      Constraints += ','; + +    // If this is a register output, then make the inline asm return it +    // by-value.  If this is a memory result, return the value by-reference. +    if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { +      Constraints += "=" + OutputConstraint; +      ResultRegQualTys.push_back(OutExpr->getType()); +      ResultRegDests.push_back(Dest); +      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); +      ResultTruncRegTypes.push_back(ResultRegTypes.back()); + +      // If this output is tied to an input, and if the input is larger, then +      // we need to set the actual result type of the inline asm node to be the +      // same as the input type. +      if (Info.hasMatchingInput()) { +        unsigned InputNo; +        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { +          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; +          if (Input.hasTiedOperand() && Input.getTiedOperand() == i) +            break; +        } +        assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); + +        QualType InputTy = S.getInputExpr(InputNo)->getType(); +        QualType OutputType = OutExpr->getType(); + +        uint64_t InputSize = getContext().getTypeSize(InputTy); +        if (getContext().getTypeSize(OutputType) < InputSize) { +          // Form the asm to return the value as a larger integer or fp type. +          ResultRegTypes.back() = ConvertType(InputTy); +        } +      } +      if (llvm::Type* AdjTy = +            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, +                                                 ResultRegTypes.back())) +        ResultRegTypes.back() = AdjTy; +      else { +        CGM.getDiags().Report(S.getAsmLoc(), +                              diag::err_asm_invalid_type_in_input) +            << OutExpr->getType() << OutputConstraint; +      } + +      // Update largest vector width for any vector types. +      if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) +        LargestVectorWidth = std::max(LargestVectorWidth, +                                      VT->getPrimitiveSizeInBits()); +    } else { +      ArgTypes.push_back(Dest.getAddress().getType()); +      Args.push_back(Dest.getPointer()); +      Constraints += "=*"; +      Constraints += OutputConstraint; +      ReadOnly = ReadNone = false; +    } + +    if (Info.isReadWrite()) { +      InOutConstraints += ','; + +      const Expr *InputExpr = S.getOutputExpr(i); +      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), +                                            InOutConstraints, +                                            InputExpr->getExprLoc()); + +      if (llvm::Type* AdjTy = +          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, +                                               Arg->getType())) +        Arg = Builder.CreateBitCast(Arg, AdjTy); + +      // Update largest vector width for any vector types. +      if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) +        LargestVectorWidth = std::max(LargestVectorWidth, +                                      VT->getPrimitiveSizeInBits()); +      if (Info.allowsRegister()) +        InOutConstraints += llvm::utostr(i); +      else +        InOutConstraints += OutputConstraint; + +      InOutArgTypes.push_back(Arg->getType()); +      InOutArgs.push_back(Arg); +    } +  } + +  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) +  // to the return value slot. Only do this when returning in registers. +  if (isa<MSAsmStmt>(&S)) { +    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); +    if (RetAI.isDirect() || RetAI.isExtend()) { +      // Make a fake lvalue for the return value slot. +      LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); +      CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( +          *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, +          ResultRegDests, AsmString, S.getNumOutputs()); +      SawAsmBlock = true; +    } +  } + +  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { +    const Expr *InputExpr = S.getInputExpr(i); + +    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; + +    if (Info.allowsMemory()) +      ReadNone = false; + +    if (!Constraints.empty()) +      Constraints += ','; + +    // Simplify the input constraint. +    std::string InputConstraint(S.getInputConstraint(i)); +    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), +                                         &OutputConstraintInfos); + +    InputConstraint = AddVariableConstraints( +        InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), +        getTarget(), CGM, S, false /* No EarlyClobber */); + +    std::string ReplaceConstraint (InputConstraint); +    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); + +    // If this input argument is tied to a larger output result, extend the +    // input to be the same size as the output.  The LLVM backend wants to see +    // the input and output of a matching constraint be the same size.  Note +    // that GCC does not define what the top bits are here.  We use zext because +    // that is usually cheaper, but LLVM IR should really get an anyext someday. +    if (Info.hasTiedOperand()) { +      unsigned Output = Info.getTiedOperand(); +      QualType OutputType = S.getOutputExpr(Output)->getType(); +      QualType InputTy = InputExpr->getType(); + +      if (getContext().getTypeSize(OutputType) > +          getContext().getTypeSize(InputTy)) { +        // Use ptrtoint as appropriate so that we can do our extension. +        if (isa<llvm::PointerType>(Arg->getType())) +          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); +        llvm::Type *OutputTy = ConvertType(OutputType); +        if (isa<llvm::IntegerType>(OutputTy)) +          Arg = Builder.CreateZExt(Arg, OutputTy); +        else if (isa<llvm::PointerType>(OutputTy)) +          Arg = Builder.CreateZExt(Arg, IntPtrTy); +        else { +          assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); +          Arg = Builder.CreateFPExt(Arg, OutputTy); +        } +      } +      // Deal with the tied operands' constraint code in adjustInlineAsmType. +      ReplaceConstraint = OutputConstraints[Output]; +    } +    if (llvm::Type* AdjTy = +          getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, +                                                   Arg->getType())) +      Arg = Builder.CreateBitCast(Arg, AdjTy); +    else +      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) +          << InputExpr->getType() << InputConstraint; + +    // Update largest vector width for any vector types. +    if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) +      LargestVectorWidth = std::max(LargestVectorWidth, +                                    VT->getPrimitiveSizeInBits()); + +    ArgTypes.push_back(Arg->getType()); +    Args.push_back(Arg); +    Constraints += InputConstraint; +  } + +  // Append the "input" part of inout constraints last. +  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { +    ArgTypes.push_back(InOutArgTypes[i]); +    Args.push_back(InOutArgs[i]); +  } +  Constraints += InOutConstraints; + +  // Labels +  SmallVector<llvm::BasicBlock *, 16> Transfer; +  llvm::BasicBlock *Fallthrough = nullptr; +  bool IsGCCAsmGoto = false; +  if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) { +    IsGCCAsmGoto = GS->isAsmGoto(); +    if (IsGCCAsmGoto) { +      for (auto *E : GS->labels()) { +        JumpDest Dest = getJumpDestForLabel(E->getLabel()); +        Transfer.push_back(Dest.getBlock()); +        llvm::BlockAddress *BA = +            llvm::BlockAddress::get(CurFn, Dest.getBlock()); +        Args.push_back(BA); +        ArgTypes.push_back(BA->getType()); +        if (!Constraints.empty()) +          Constraints += ','; +        Constraints += 'X'; +      } +      StringRef Name = "asm.fallthrough"; +      Fallthrough = createBasicBlock(Name); +    } +  } + +  // Clobbers +  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { +    StringRef Clobber = S.getClobber(i); + +    if (Clobber == "memory") +      ReadOnly = ReadNone = false; +    else if (Clobber != "cc") +      Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); + +    if (!Constraints.empty()) +      Constraints += ','; + +    Constraints += "~{"; +    Constraints += Clobber; +    Constraints += '}'; +  } + +  // Add machine specific clobbers +  std::string MachineClobbers = getTarget().getClobbers(); +  if (!MachineClobbers.empty()) { +    if (!Constraints.empty()) +      Constraints += ','; +    Constraints += MachineClobbers; +  } + +  llvm::Type *ResultType; +  if (ResultRegTypes.empty()) +    ResultType = VoidTy; +  else if (ResultRegTypes.size() == 1) +    ResultType = ResultRegTypes[0]; +  else +    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); + +  llvm::FunctionType *FTy = +    llvm::FunctionType::get(ResultType, ArgTypes, false); + +  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; +  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? +    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; +  llvm::InlineAsm *IA = +    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, +                         /* IsAlignStack */ false, AsmDialect); +  std::vector<llvm::Value*> RegResults; +  if (IsGCCAsmGoto) { +    llvm::CallBrInst *Result = +        Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); +    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, +                      ReadNone, S, ResultRegTypes, *this, RegResults); +    EmitBlock(Fallthrough); +  } else { +    llvm::CallInst *Result = +        Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); +    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, +                      ReadNone, S, ResultRegTypes, *this, RegResults); +  } + +  assert(RegResults.size() == ResultRegTypes.size()); +  assert(RegResults.size() == ResultTruncRegTypes.size()); +  assert(RegResults.size() == ResultRegDests.size()); +  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { +    llvm::Value *Tmp = RegResults[i]; + +    // If the result type of the LLVM IR asm doesn't match the result type of +    // the expression, do the conversion. +    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { +      llvm::Type *TruncTy = ResultTruncRegTypes[i]; + +      // Truncate the integer result to the right size, note that TruncTy can be +      // a pointer. +      if (TruncTy->isFloatingPointTy()) +        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); +      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { +        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); +        Tmp = Builder.CreateTrunc(Tmp, +                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); +        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); +      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { +        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); +        Tmp = Builder.CreatePtrToInt(Tmp, +                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); +        Tmp = Builder.CreateTrunc(Tmp, TruncTy); +      } else if (TruncTy->isIntegerTy()) { +        Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); +      } else if (TruncTy->isVectorTy()) { +        Tmp = Builder.CreateBitCast(Tmp, TruncTy); +      } +    } + +    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); +  } +} + +LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { +  const RecordDecl *RD = S.getCapturedRecordDecl(); +  QualType RecordTy = getContext().getRecordType(RD); + +  // Initialize the captured struct. +  LValue SlotLV = +    MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); + +  RecordDecl::field_iterator CurField = RD->field_begin(); +  for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), +                                                 E = S.capture_init_end(); +       I != E; ++I, ++CurField) { +    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); +    if (CurField->hasCapturedVLAType()) { +      auto VAT = CurField->getCapturedVLAType(); +      EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); +    } else { +      EmitInitializerForField(*CurField, LV, *I); +    } +  } + +  return SlotLV; +} + +/// Generate an outlined function for the body of a CapturedStmt, store any +/// captured variables into the captured struct, and call the outlined function. +llvm::Function * +CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { +  LValue CapStruct = InitCapturedStruct(S); + +  // Emit the CapturedDecl +  CodeGenFunction CGF(CGM, true); +  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); +  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); +  delete CGF.CapturedStmtInfo; + +  // Emit call to the helper function. +  EmitCallOrInvoke(F, CapStruct.getPointer()); + +  return F; +} + +Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { +  LValue CapStruct = InitCapturedStruct(S); +  return CapStruct.getAddress(); +} + +/// Creates the outlined function for a CapturedStmt. +llvm::Function * +CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { +  assert(CapturedStmtInfo && +    "CapturedStmtInfo should be set when generating the captured function"); +  const CapturedDecl *CD = S.getCapturedDecl(); +  const RecordDecl *RD = S.getCapturedRecordDecl(); +  SourceLocation Loc = S.getBeginLoc(); +  assert(CD->hasBody() && "missing CapturedDecl body"); + +  // Build the argument list. +  ASTContext &Ctx = CGM.getContext(); +  FunctionArgList Args; +  Args.append(CD->param_begin(), CD->param_end()); + +  // Create the function declaration. +  const CGFunctionInfo &FuncInfo = +    CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); +  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); + +  llvm::Function *F = +    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, +                           CapturedStmtInfo->getHelperName(), &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); +  if (CD->isNothrow()) +    F->addFnAttr(llvm::Attribute::NoUnwind); + +  // Generate the function. +  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), +                CD->getBody()->getBeginLoc()); +  // Set the context parameter in CapturedStmtInfo. +  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); +  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); + +  // Initialize variable-length arrays. +  LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), +                                           Ctx.getTagDeclType(RD)); +  for (auto *FD : RD->fields()) { +    if (FD->hasCapturedVLAType()) { +      auto *ExprArg = +          EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) +              .getScalarVal(); +      auto VAT = FD->getCapturedVLAType(); +      VLASizeMap[VAT->getSizeExpr()] = ExprArg; +    } +  } + +  // If 'this' is captured, load it into CXXThisValue. +  if (CapturedStmtInfo->isCXXThisExprCaptured()) { +    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); +    LValue ThisLValue = EmitLValueForField(Base, FD); +    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); +  } + +  PGO.assignRegionCounters(GlobalDecl(CD), F); +  CapturedStmtInfo->EmitBody(*this, CD->getBody()); +  FinishFunction(CD->getBodyRBrace()); + +  return F; +} | 
