diff options
Diffstat (limited to 'clang/lib/CodeGen/MicrosoftCXXABI.cpp')
| -rw-r--r-- | clang/lib/CodeGen/MicrosoftCXXABI.cpp | 4299 | 
1 files changed, 4299 insertions, 0 deletions
| diff --git a/clang/lib/CodeGen/MicrosoftCXXABI.cpp b/clang/lib/CodeGen/MicrosoftCXXABI.cpp new file mode 100644 index 000000000000..2d8b538bc2ee --- /dev/null +++ b/clang/lib/CodeGen/MicrosoftCXXABI.cpp @@ -0,0 +1,4299 @@ +//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This provides C++ code generation targeting the Microsoft Visual C++ ABI. +// The class in this file generates structures that follow the Microsoft +// Visual C++ ABI, which is actually not very well documented at all outside +// of Microsoft. +// +//===----------------------------------------------------------------------===// + +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGVTables.h" +#include "CodeGenModule.h" +#include "CodeGenTypes.h" +#include "TargetInfo.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/VTableBuilder.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/IR/Intrinsics.h" + +using namespace clang; +using namespace CodeGen; + +namespace { + +/// Holds all the vbtable globals for a given class. +struct VBTableGlobals { +  const VPtrInfoVector *VBTables; +  SmallVector<llvm::GlobalVariable *, 2> Globals; +}; + +class MicrosoftCXXABI : public CGCXXABI { +public: +  MicrosoftCXXABI(CodeGenModule &CGM) +      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), +        ClassHierarchyDescriptorType(nullptr), +        CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), +        ThrowInfoType(nullptr) {} + +  bool HasThisReturn(GlobalDecl GD) const override; +  bool hasMostDerivedReturn(GlobalDecl GD) const override; + +  bool classifyReturnType(CGFunctionInfo &FI) const override; + +  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; + +  bool isSRetParameterAfterThis() const override { return true; } + +  bool isThisCompleteObject(GlobalDecl GD) const override { +    // The Microsoft ABI doesn't use separate complete-object vs. +    // base-object variants of constructors, but it does of destructors. +    if (isa<CXXDestructorDecl>(GD.getDecl())) { +      switch (GD.getDtorType()) { +      case Dtor_Complete: +      case Dtor_Deleting: +        return true; + +      case Dtor_Base: +        return false; + +      case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); +      } +      llvm_unreachable("bad dtor kind"); +    } + +    // No other kinds. +    return false; +  } + +  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, +                              FunctionArgList &Args) const override { +    assert(Args.size() >= 2 && +           "expected the arglist to have at least two args!"); +    // The 'most_derived' parameter goes second if the ctor is variadic and +    // has v-bases. +    if (CD->getParent()->getNumVBases() > 0 && +        CD->getType()->castAs<FunctionProtoType>()->isVariadic()) +      return 2; +    return 1; +  } + +  std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { +    std::vector<CharUnits> VBPtrOffsets; +    const ASTContext &Context = getContext(); +    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + +    const VBTableGlobals &VBGlobals = enumerateVBTables(RD); +    for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { +      const ASTRecordLayout &SubobjectLayout = +          Context.getASTRecordLayout(VBT->IntroducingObject); +      CharUnits Offs = VBT->NonVirtualOffset; +      Offs += SubobjectLayout.getVBPtrOffset(); +      if (VBT->getVBaseWithVPtr()) +        Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); +      VBPtrOffsets.push_back(Offs); +    } +    llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); +    return VBPtrOffsets; +  } + +  StringRef GetPureVirtualCallName() override { return "_purecall"; } +  StringRef GetDeletedVirtualCallName() override { return "_purecall"; } + +  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, +                               Address Ptr, QualType ElementType, +                               const CXXDestructorDecl *Dtor) override; + +  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; +  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; + +  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; + +  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, +                                                   const VPtrInfo &Info); + +  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; +  CatchTypeInfo +  getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; + +  /// MSVC needs an extra flag to indicate a catchall. +  CatchTypeInfo getCatchAllTypeInfo() override { +    return CatchTypeInfo{nullptr, 0x40}; +  } + +  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; +  void EmitBadTypeidCall(CodeGenFunction &CGF) override; +  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, +                          Address ThisPtr, +                          llvm::Type *StdTypeInfoPtrTy) override; + +  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, +                                          QualType SrcRecordTy) override; + +  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, +                                   QualType SrcRecordTy, QualType DestTy, +                                   QualType DestRecordTy, +                                   llvm::BasicBlock *CastEnd) override; + +  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, +                                     QualType SrcRecordTy, +                                     QualType DestTy) override; + +  bool EmitBadCastCall(CodeGenFunction &CGF) override; +  bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { +    return false; +  } + +  llvm::Value * +  GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, +                            const CXXRecordDecl *ClassDecl, +                            const CXXRecordDecl *BaseClassDecl) override; + +  llvm::BasicBlock * +  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, +                                const CXXRecordDecl *RD) override; + +  llvm::BasicBlock * +  EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); + +  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, +                                              const CXXRecordDecl *RD) override; + +  void EmitCXXConstructors(const CXXConstructorDecl *D) override; + +  // Background on MSVC destructors +  // ============================== +  // +  // Both Itanium and MSVC ABIs have destructor variants.  The variant names +  // roughly correspond in the following way: +  //   Itanium       Microsoft +  //   Base       -> no name, just ~Class +  //   Complete   -> vbase destructor +  //   Deleting   -> scalar deleting destructor +  //                 vector deleting destructor +  // +  // The base and complete destructors are the same as in Itanium, although the +  // complete destructor does not accept a VTT parameter when there are virtual +  // bases.  A separate mechanism involving vtordisps is used to ensure that +  // virtual methods of destroyed subobjects are not called. +  // +  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit +  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this +  // pointer points to an array.  The scalar deleting destructor assumes that +  // bit 2 is zero, and therefore does not contain a loop. +  // +  // For virtual destructors, only one entry is reserved in the vftable, and it +  // always points to the vector deleting destructor.  The vector deleting +  // destructor is the most general, so it can be used to destroy objects in +  // place, delete single heap objects, or delete arrays. +  // +  // A TU defining a non-inline destructor is only guaranteed to emit a base +  // destructor, and all of the other variants are emitted on an as-needed basis +  // in COMDATs.  Because a non-base destructor can be emitted in a TU that +  // lacks a definition for the destructor, non-base destructors must always +  // delegate to or alias the base destructor. + +  AddedStructorArgs +  buildStructorSignature(GlobalDecl GD, +                         SmallVectorImpl<CanQualType> &ArgTys) override; + +  /// Non-base dtors should be emitted as delegating thunks in this ABI. +  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, +                              CXXDtorType DT) const override { +    return DT != Dtor_Base; +  } + +  void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, +                                  const CXXDestructorDecl *Dtor, +                                  CXXDtorType DT) const override; + +  llvm::GlobalValue::LinkageTypes +  getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, +                          CXXDtorType DT) const override; + +  void EmitCXXDestructors(const CXXDestructorDecl *D) override; + +  const CXXRecordDecl * +  getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { +    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { +      MethodVFTableLocation ML = +          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); +      // The vbases might be ordered differently in the final overrider object +      // and the complete object, so the "this" argument may sometimes point to +      // memory that has no particular type (e.g. past the complete object). +      // In this case, we just use a generic pointer type. +      // FIXME: might want to have a more precise type in the non-virtual +      // multiple inheritance case. +      if (ML.VBase || !ML.VFPtrOffset.isZero()) +        return nullptr; +    } +    return MD->getParent(); +  } + +  Address +  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, +                                           Address This, +                                           bool VirtualCall) override; + +  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, +                                 FunctionArgList &Params) override; + +  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; + +  AddedStructorArgs +  addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, +                             CXXCtorType Type, bool ForVirtualBase, +                             bool Delegating, CallArgList &Args) override; + +  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, +                          CXXDtorType Type, bool ForVirtualBase, +                          bool Delegating, Address This, +                          QualType ThisTy) override; + +  void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, +                              llvm::GlobalVariable *VTable); + +  void emitVTableDefinitions(CodeGenVTables &CGVT, +                             const CXXRecordDecl *RD) override; + +  bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, +                                           CodeGenFunction::VPtr Vptr) override; + +  /// Don't initialize vptrs if dynamic class +  /// is marked with with the 'novtable' attribute. +  bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { +    return !VTableClass->hasAttr<MSNoVTableAttr>(); +  } + +  llvm::Constant * +  getVTableAddressPoint(BaseSubobject Base, +                        const CXXRecordDecl *VTableClass) override; + +  llvm::Value *getVTableAddressPointInStructor( +      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, +      BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; + +  llvm::Constant * +  getVTableAddressPointForConstExpr(BaseSubobject Base, +                                    const CXXRecordDecl *VTableClass) override; + +  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, +                                        CharUnits VPtrOffset) override; + +  CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, +                                     Address This, llvm::Type *Ty, +                                     SourceLocation Loc) override; + +  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, +                                         const CXXDestructorDecl *Dtor, +                                         CXXDtorType DtorType, Address This, +                                         DeleteOrMemberCallExpr E) override; + +  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, +                                        CallArgList &CallArgs) override { +    assert(GD.getDtorType() == Dtor_Deleting && +           "Only deleting destructor thunks are available in this ABI"); +    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), +                 getContext().IntTy); +  } + +  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; + +  llvm::GlobalVariable * +  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, +                   llvm::GlobalVariable::LinkageTypes Linkage); + +  llvm::GlobalVariable * +  getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, +                                  const CXXRecordDecl *DstRD) { +    SmallString<256> OutName; +    llvm::raw_svector_ostream Out(OutName); +    getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); +    StringRef MangledName = OutName.str(); + +    if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) +      return VDispMap; + +    MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); +    unsigned NumEntries = 1 + SrcRD->getNumVBases(); +    SmallVector<llvm::Constant *, 4> Map(NumEntries, +                                         llvm::UndefValue::get(CGM.IntTy)); +    Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); +    bool AnyDifferent = false; +    for (const auto &I : SrcRD->vbases()) { +      const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); +      if (!DstRD->isVirtuallyDerivedFrom(VBase)) +        continue; + +      unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); +      unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); +      Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); +      AnyDifferent |= SrcVBIndex != DstVBIndex; +    } +    // This map would be useless, don't use it. +    if (!AnyDifferent) +      return nullptr; + +    llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); +    llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); +    llvm::GlobalValue::LinkageTypes Linkage = +        SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() +            ? llvm::GlobalValue::LinkOnceODRLinkage +            : llvm::GlobalValue::InternalLinkage; +    auto *VDispMap = new llvm::GlobalVariable( +        CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, +        /*Initializer=*/Init, MangledName); +    return VDispMap; +  } + +  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, +                             llvm::GlobalVariable *GV) const; + +  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, +                       GlobalDecl GD, bool ReturnAdjustment) override { +    GVALinkage Linkage = +        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); + +    if (Linkage == GVA_Internal) +      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); +    else if (ReturnAdjustment) +      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); +    else +      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); +  } + +  bool exportThunk() override { return false; } + +  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, +                                     const ThisAdjustment &TA) override; + +  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, +                                       const ReturnAdjustment &RA) override; + +  void EmitThreadLocalInitFuncs( +      CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, +      ArrayRef<llvm::Function *> CXXThreadLocalInits, +      ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; + +  bool usesThreadWrapperFunction(const VarDecl *VD) const override { +    return false; +  } +  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, +                                      QualType LValType) override; + +  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, +                       llvm::GlobalVariable *DeclPtr, +                       bool PerformInit) override; +  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, +                          llvm::FunctionCallee Dtor, +                          llvm::Constant *Addr) override; + +  // ==== Notes on array cookies ========= +  // +  // MSVC seems to only use cookies when the class has a destructor; a +  // two-argument usual array deallocation function isn't sufficient. +  // +  // For example, this code prints "100" and "1": +  //   struct A { +  //     char x; +  //     void *operator new[](size_t sz) { +  //       printf("%u\n", sz); +  //       return malloc(sz); +  //     } +  //     void operator delete[](void *p, size_t sz) { +  //       printf("%u\n", sz); +  //       free(p); +  //     } +  //   }; +  //   int main() { +  //     A *p = new A[100]; +  //     delete[] p; +  //   } +  // Whereas it prints "104" and "104" if you give A a destructor. + +  bool requiresArrayCookie(const CXXDeleteExpr *expr, +                           QualType elementType) override; +  bool requiresArrayCookie(const CXXNewExpr *expr) override; +  CharUnits getArrayCookieSizeImpl(QualType type) override; +  Address InitializeArrayCookie(CodeGenFunction &CGF, +                                Address NewPtr, +                                llvm::Value *NumElements, +                                const CXXNewExpr *expr, +                                QualType ElementType) override; +  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, +                                   Address allocPtr, +                                   CharUnits cookieSize) override; + +  friend struct MSRTTIBuilder; + +  bool isImageRelative() const { +    return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; +  } + +  // 5 routines for constructing the llvm types for MS RTTI structs. +  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { +    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); +    TDTypeName += llvm::utostr(TypeInfoString.size()); +    llvm::StructType *&TypeDescriptorType = +        TypeDescriptorTypeMap[TypeInfoString.size()]; +    if (TypeDescriptorType) +      return TypeDescriptorType; +    llvm::Type *FieldTypes[] = { +        CGM.Int8PtrPtrTy, +        CGM.Int8PtrTy, +        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; +    TypeDescriptorType = +        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); +    return TypeDescriptorType; +  } + +  llvm::Type *getImageRelativeType(llvm::Type *PtrType) { +    if (!isImageRelative()) +      return PtrType; +    return CGM.IntTy; +  } + +  llvm::StructType *getBaseClassDescriptorType() { +    if (BaseClassDescriptorType) +      return BaseClassDescriptorType; +    llvm::Type *FieldTypes[] = { +        getImageRelativeType(CGM.Int8PtrTy), +        CGM.IntTy, +        CGM.IntTy, +        CGM.IntTy, +        CGM.IntTy, +        CGM.IntTy, +        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), +    }; +    BaseClassDescriptorType = llvm::StructType::create( +        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); +    return BaseClassDescriptorType; +  } + +  llvm::StructType *getClassHierarchyDescriptorType() { +    if (ClassHierarchyDescriptorType) +      return ClassHierarchyDescriptorType; +    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. +    ClassHierarchyDescriptorType = llvm::StructType::create( +        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); +    llvm::Type *FieldTypes[] = { +        CGM.IntTy, +        CGM.IntTy, +        CGM.IntTy, +        getImageRelativeType( +            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), +    }; +    ClassHierarchyDescriptorType->setBody(FieldTypes); +    return ClassHierarchyDescriptorType; +  } + +  llvm::StructType *getCompleteObjectLocatorType() { +    if (CompleteObjectLocatorType) +      return CompleteObjectLocatorType; +    CompleteObjectLocatorType = llvm::StructType::create( +        CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); +    llvm::Type *FieldTypes[] = { +        CGM.IntTy, +        CGM.IntTy, +        CGM.IntTy, +        getImageRelativeType(CGM.Int8PtrTy), +        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), +        getImageRelativeType(CompleteObjectLocatorType), +    }; +    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); +    if (!isImageRelative()) +      FieldTypesRef = FieldTypesRef.drop_back(); +    CompleteObjectLocatorType->setBody(FieldTypesRef); +    return CompleteObjectLocatorType; +  } + +  llvm::GlobalVariable *getImageBase() { +    StringRef Name = "__ImageBase"; +    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) +      return GV; + +    auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, +                                        /*isConstant=*/true, +                                        llvm::GlobalValue::ExternalLinkage, +                                        /*Initializer=*/nullptr, Name); +    CGM.setDSOLocal(GV); +    return GV; +  } + +  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { +    if (!isImageRelative()) +      return PtrVal; + +    if (PtrVal->isNullValue()) +      return llvm::Constant::getNullValue(CGM.IntTy); + +    llvm::Constant *ImageBaseAsInt = +        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); +    llvm::Constant *PtrValAsInt = +        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); +    llvm::Constant *Diff = +        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, +                                   /*HasNUW=*/true, /*HasNSW=*/true); +    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); +  } + +private: +  MicrosoftMangleContext &getMangleContext() { +    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); +  } + +  llvm::Constant *getZeroInt() { +    return llvm::ConstantInt::get(CGM.IntTy, 0); +  } + +  llvm::Constant *getAllOnesInt() { +    return  llvm::Constant::getAllOnesValue(CGM.IntTy); +  } + +  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; + +  void +  GetNullMemberPointerFields(const MemberPointerType *MPT, +                             llvm::SmallVectorImpl<llvm::Constant *> &fields); + +  /// Shared code for virtual base adjustment.  Returns the offset from +  /// the vbptr to the virtual base.  Optionally returns the address of the +  /// vbptr itself. +  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, +                                       Address Base, +                                       llvm::Value *VBPtrOffset, +                                       llvm::Value *VBTableOffset, +                                       llvm::Value **VBPtr = nullptr); + +  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, +                                       Address Base, +                                       int32_t VBPtrOffset, +                                       int32_t VBTableOffset, +                                       llvm::Value **VBPtr = nullptr) { +    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); +    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), +                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); +    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); +  } + +  std::tuple<Address, llvm::Value *, const CXXRecordDecl *> +  performBaseAdjustment(CodeGenFunction &CGF, Address Value, +                        QualType SrcRecordTy); + +  /// Performs a full virtual base adjustment.  Used to dereference +  /// pointers to members of virtual bases. +  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, +                                 const CXXRecordDecl *RD, Address Base, +                                 llvm::Value *VirtualBaseAdjustmentOffset, +                                 llvm::Value *VBPtrOffset /* optional */); + +  /// Emits a full member pointer with the fields common to data and +  /// function member pointers. +  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, +                                        bool IsMemberFunction, +                                        const CXXRecordDecl *RD, +                                        CharUnits NonVirtualBaseAdjustment, +                                        unsigned VBTableIndex); + +  bool MemberPointerConstantIsNull(const MemberPointerType *MPT, +                                   llvm::Constant *MP); + +  /// - Initialize all vbptrs of 'this' with RD as the complete type. +  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); + +  /// Caching wrapper around VBTableBuilder::enumerateVBTables(). +  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); + +  /// Generate a thunk for calling a virtual member function MD. +  llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, +                                         const MethodVFTableLocation &ML); + +public: +  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; + +  bool isZeroInitializable(const MemberPointerType *MPT) override; + +  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { +    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +    return RD->hasAttr<MSInheritanceAttr>(); +  } + +  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; + +  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, +                                        CharUnits offset) override; +  llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; +  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; + +  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, +                                           llvm::Value *L, +                                           llvm::Value *R, +                                           const MemberPointerType *MPT, +                                           bool Inequality) override; + +  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, +                                          llvm::Value *MemPtr, +                                          const MemberPointerType *MPT) override; + +  llvm::Value * +  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, +                               Address Base, llvm::Value *MemPtr, +                               const MemberPointerType *MPT) override; + +  llvm::Value *EmitNonNullMemberPointerConversion( +      const MemberPointerType *SrcTy, const MemberPointerType *DstTy, +      CastKind CK, CastExpr::path_const_iterator PathBegin, +      CastExpr::path_const_iterator PathEnd, llvm::Value *Src, +      CGBuilderTy &Builder); + +  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, +                                           const CastExpr *E, +                                           llvm::Value *Src) override; + +  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, +                                              llvm::Constant *Src) override; + +  llvm::Constant *EmitMemberPointerConversion( +      const MemberPointerType *SrcTy, const MemberPointerType *DstTy, +      CastKind CK, CastExpr::path_const_iterator PathBegin, +      CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); + +  CGCallee +  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, +                                  Address This, llvm::Value *&ThisPtrForCall, +                                  llvm::Value *MemPtr, +                                  const MemberPointerType *MPT) override; + +  void emitCXXStructor(GlobalDecl GD) override; + +  llvm::StructType *getCatchableTypeType() { +    if (CatchableTypeType) +      return CatchableTypeType; +    llvm::Type *FieldTypes[] = { +        CGM.IntTy,                           // Flags +        getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor +        CGM.IntTy,                           // NonVirtualAdjustment +        CGM.IntTy,                           // OffsetToVBPtr +        CGM.IntTy,                           // VBTableIndex +        CGM.IntTy,                           // Size +        getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor +    }; +    CatchableTypeType = llvm::StructType::create( +        CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); +    return CatchableTypeType; +  } + +  llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { +    llvm::StructType *&CatchableTypeArrayType = +        CatchableTypeArrayTypeMap[NumEntries]; +    if (CatchableTypeArrayType) +      return CatchableTypeArrayType; + +    llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); +    CTATypeName += llvm::utostr(NumEntries); +    llvm::Type *CTType = +        getImageRelativeType(getCatchableTypeType()->getPointerTo()); +    llvm::Type *FieldTypes[] = { +        CGM.IntTy,                               // NumEntries +        llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes +    }; +    CatchableTypeArrayType = +        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); +    return CatchableTypeArrayType; +  } + +  llvm::StructType *getThrowInfoType() { +    if (ThrowInfoType) +      return ThrowInfoType; +    llvm::Type *FieldTypes[] = { +        CGM.IntTy,                           // Flags +        getImageRelativeType(CGM.Int8PtrTy), // CleanupFn +        getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat +        getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray +    }; +    ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, +                                             "eh.ThrowInfo"); +    return ThrowInfoType; +  } + +  llvm::FunctionCallee getThrowFn() { +    // _CxxThrowException is passed an exception object and a ThrowInfo object +    // which describes the exception. +    llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; +    llvm::FunctionType *FTy = +        llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); +    llvm::FunctionCallee Throw = +        CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); +    // _CxxThrowException is stdcall on 32-bit x86 platforms. +    if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { +      if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) +        Fn->setCallingConv(llvm::CallingConv::X86_StdCall); +    } +    return Throw; +  } + +  llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, +                                          CXXCtorType CT); + +  llvm::Constant *getCatchableType(QualType T, +                                   uint32_t NVOffset = 0, +                                   int32_t VBPtrOffset = -1, +                                   uint32_t VBIndex = 0); + +  llvm::GlobalVariable *getCatchableTypeArray(QualType T); + +  llvm::GlobalVariable *getThrowInfo(QualType T) override; + +  std::pair<llvm::Value *, const CXXRecordDecl *> +  LoadVTablePtr(CodeGenFunction &CGF, Address This, +                const CXXRecordDecl *RD) override; + +private: +  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; +  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; +  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; +  /// All the vftables that have been referenced. +  VFTablesMapTy VFTablesMap; +  VTablesMapTy VTablesMap; + +  /// This set holds the record decls we've deferred vtable emission for. +  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; + + +  /// All the vbtables which have been referenced. +  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; + +  /// Info on the global variable used to guard initialization of static locals. +  /// The BitIndex field is only used for externally invisible declarations. +  struct GuardInfo { +    GuardInfo() : Guard(nullptr), BitIndex(0) {} +    llvm::GlobalVariable *Guard; +    unsigned BitIndex; +  }; + +  /// Map from DeclContext to the current guard variable.  We assume that the +  /// AST is visited in source code order. +  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; +  llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; +  llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; + +  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; +  llvm::StructType *BaseClassDescriptorType; +  llvm::StructType *ClassHierarchyDescriptorType; +  llvm::StructType *CompleteObjectLocatorType; + +  llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; + +  llvm::StructType *CatchableTypeType; +  llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; +  llvm::StructType *ThrowInfoType; +}; + +} + +CGCXXABI::RecordArgABI +MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { +  switch (CGM.getTarget().getTriple().getArch()) { +  default: +    // FIXME: Implement for other architectures. +    return RAA_Default; + +  case llvm::Triple::thumb: +    // Use the simple Itanium rules for now. +    // FIXME: This is incompatible with MSVC for arguments with a dtor and no +    // copy ctor. +    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; + +  case llvm::Triple::x86: +    // All record arguments are passed in memory on x86.  Decide whether to +    // construct the object directly in argument memory, or to construct the +    // argument elsewhere and copy the bytes during the call. + +    // If C++ prohibits us from making a copy, construct the arguments directly +    // into argument memory. +    if (!RD->canPassInRegisters()) +      return RAA_DirectInMemory; + +    // Otherwise, construct the argument into a temporary and copy the bytes +    // into the outgoing argument memory. +    return RAA_Default; + +  case llvm::Triple::x86_64: +  case llvm::Triple::aarch64: +    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default; +  } + +  llvm_unreachable("invalid enum"); +} + +void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, +                                              const CXXDeleteExpr *DE, +                                              Address Ptr, +                                              QualType ElementType, +                                              const CXXDestructorDecl *Dtor) { +  // FIXME: Provide a source location here even though there's no +  // CXXMemberCallExpr for dtor call. +  bool UseGlobalDelete = DE->isGlobalDelete(); +  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; +  llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); +  if (UseGlobalDelete) +    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); +} + +void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { +  llvm::Value *Args[] = { +      llvm::ConstantPointerNull::get(CGM.Int8PtrTy), +      llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; +  llvm::FunctionCallee Fn = getThrowFn(); +  if (isNoReturn) +    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); +  else +    CGF.EmitRuntimeCallOrInvoke(Fn, Args); +} + +void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, +                                     const CXXCatchStmt *S) { +  // In the MS ABI, the runtime handles the copy, and the catch handler is +  // responsible for destruction. +  VarDecl *CatchParam = S->getExceptionDecl(); +  llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); +  llvm::CatchPadInst *CPI = +      cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); +  CGF.CurrentFuncletPad = CPI; + +  // If this is a catch-all or the catch parameter is unnamed, we don't need to +  // emit an alloca to the object. +  if (!CatchParam || !CatchParam->getDeclName()) { +    CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); +    return; +  } + +  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); +  CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); +  CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); +  CGF.EmitAutoVarCleanups(var); +} + +/// We need to perform a generic polymorphic operation (like a typeid +/// or a cast), which requires an object with a vfptr.  Adjust the +/// address to point to an object with a vfptr. +std::tuple<Address, llvm::Value *, const CXXRecordDecl *> +MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, +                                       QualType SrcRecordTy) { +  Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); +  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); +  const ASTContext &Context = getContext(); + +  // If the class itself has a vfptr, great.  This check implicitly +  // covers non-virtual base subobjects: a class with its own virtual +  // functions would be a candidate to be a primary base. +  if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) +    return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), +                           SrcDecl); + +  // Okay, one of the vbases must have a vfptr, or else this isn't +  // actually a polymorphic class. +  const CXXRecordDecl *PolymorphicBase = nullptr; +  for (auto &Base : SrcDecl->vbases()) { +    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); +    if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { +      PolymorphicBase = BaseDecl; +      break; +    } +  } +  assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); + +  llvm::Value *Offset = +    GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); +  llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); +  CharUnits VBaseAlign = +    CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); +  return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase); +} + +bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, +                                                QualType SrcRecordTy) { +  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); +  return IsDeref && +         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); +} + +static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, +                                        llvm::Value *Argument) { +  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; +  llvm::FunctionType *FTy = +      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); +  llvm::Value *Args[] = {Argument}; +  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); +  return CGF.EmitRuntimeCallOrInvoke(Fn, Args); +} + +void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { +  llvm::CallBase *Call = +      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); +  Call->setDoesNotReturn(); +  CGF.Builder.CreateUnreachable(); +} + +llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, +                                         QualType SrcRecordTy, +                                         Address ThisPtr, +                                         llvm::Type *StdTypeInfoPtrTy) { +  std::tie(ThisPtr, std::ignore, std::ignore) = +      performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); +  llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); +  return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); +} + +bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, +                                                         QualType SrcRecordTy) { +  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); +  return SrcIsPtr && +         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); +} + +llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( +    CodeGenFunction &CGF, Address This, QualType SrcRecordTy, +    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { +  llvm::Type *DestLTy = CGF.ConvertType(DestTy); + +  llvm::Value *SrcRTTI = +      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); +  llvm::Value *DestRTTI = +      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); + +  llvm::Value *Offset; +  std::tie(This, Offset, std::ignore) = +      performBaseAdjustment(CGF, This, SrcRecordTy); +  llvm::Value *ThisPtr = This.getPointer(); +  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); + +  // PVOID __RTDynamicCast( +  //   PVOID inptr, +  //   LONG VfDelta, +  //   PVOID SrcType, +  //   PVOID TargetType, +  //   BOOL isReference) +  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, +                            CGF.Int8PtrTy, CGF.Int32Ty}; +  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( +      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), +      "__RTDynamicCast"); +  llvm::Value *Args[] = { +      ThisPtr, Offset, SrcRTTI, DestRTTI, +      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; +  ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); +  return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); +} + +llvm::Value * +MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, +                                       QualType SrcRecordTy, +                                       QualType DestTy) { +  std::tie(Value, std::ignore, std::ignore) = +      performBaseAdjustment(CGF, Value, SrcRecordTy); + +  // PVOID __RTCastToVoid( +  //   PVOID inptr) +  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; +  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( +      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), +      "__RTCastToVoid"); +  llvm::Value *Args[] = {Value.getPointer()}; +  return CGF.EmitRuntimeCall(Function, Args); +} + +bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { +  return false; +} + +llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( +    CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, +    const CXXRecordDecl *BaseClassDecl) { +  const ASTContext &Context = getContext(); +  int64_t VBPtrChars = +      Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); +  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); +  CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); +  CharUnits VBTableChars = +      IntSize * +      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); +  llvm::Value *VBTableOffset = +      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); + +  llvm::Value *VBPtrToNewBase = +      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); +  VBPtrToNewBase = +      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); +  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); +} + +bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { +  return isa<CXXConstructorDecl>(GD.getDecl()); +} + +static bool isDeletingDtor(GlobalDecl GD) { +  return isa<CXXDestructorDecl>(GD.getDecl()) && +         GD.getDtorType() == Dtor_Deleting; +} + +bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { +  return isDeletingDtor(GD); +} + +static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) { +  return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128; +} + +static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) { +  // For AArch64, we use the C++14 definition of an aggregate, so we also +  // check for: +  //   No private or protected non static data members. +  //   No base classes +  //   No virtual functions +  // Additionally, we need to ensure that there is a trivial copy assignment +  // operator, a trivial destructor and no user-provided constructors. +  if (RD->hasProtectedFields() || RD->hasPrivateFields()) +    return true; +  if (RD->getNumBases() > 0) +    return true; +  if (RD->isPolymorphic()) +    return true; +  if (RD->hasNonTrivialCopyAssignment()) +    return true; +  for (const CXXConstructorDecl *Ctor : RD->ctors()) +    if (Ctor->isUserProvided()) +      return true; +  if (RD->hasNonTrivialDestructor()) +    return true; +  return false; +} + +bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { +  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); +  if (!RD) +    return false; + +  bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); +  bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD); +  bool isIndirectReturn = +      isAArch64 ? (!RD->canPassInRegisters() || +                   IsSizeGreaterThan128(RD)) +                : !RD->isPOD(); +  bool isInstanceMethod = FI.isInstanceMethod(); + +  if (isIndirectReturn || !isSimple || isInstanceMethod) { +    CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); +    FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); +    FI.getReturnInfo().setSRetAfterThis(isInstanceMethod); + +    FI.getReturnInfo().setInReg(isAArch64 && +                                !(isSimple && IsSizeGreaterThan128(RD))); + +    return true; +  } + +  // Otherwise, use the C ABI rules. +  return false; +} + +llvm::BasicBlock * +MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, +                                               const CXXRecordDecl *RD) { +  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); +  assert(IsMostDerivedClass && +         "ctor for a class with virtual bases must have an implicit parameter"); +  llvm::Value *IsCompleteObject = +    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); + +  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); +  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); +  CGF.Builder.CreateCondBr(IsCompleteObject, +                           CallVbaseCtorsBB, SkipVbaseCtorsBB); + +  CGF.EmitBlock(CallVbaseCtorsBB); + +  // Fill in the vbtable pointers here. +  EmitVBPtrStores(CGF, RD); + +  // CGF will put the base ctor calls in this basic block for us later. + +  return SkipVbaseCtorsBB; +} + +llvm::BasicBlock * +MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { +  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); +  assert(IsMostDerivedClass && +         "ctor for a class with virtual bases must have an implicit parameter"); +  llvm::Value *IsCompleteObject = +      CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); + +  llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); +  llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); +  CGF.Builder.CreateCondBr(IsCompleteObject, +                           CallVbaseDtorsBB, SkipVbaseDtorsBB); + +  CGF.EmitBlock(CallVbaseDtorsBB); +  // CGF will put the base dtor calls in this basic block for us later. + +  return SkipVbaseDtorsBB; +} + +void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( +    CodeGenFunction &CGF, const CXXRecordDecl *RD) { +  // In most cases, an override for a vbase virtual method can adjust +  // the "this" parameter by applying a constant offset. +  // However, this is not enough while a constructor or a destructor of some +  // class X is being executed if all the following conditions are met: +  //  - X has virtual bases, (1) +  //  - X overrides a virtual method M of a vbase Y, (2) +  //  - X itself is a vbase of the most derived class. +  // +  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X +  // which holds the extra amount of "this" adjustment we must do when we use +  // the X vftables (i.e. during X ctor or dtor). +  // Outside the ctors and dtors, the values of vtorDisps are zero. + +  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); +  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; +  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); +  CGBuilderTy &Builder = CGF.Builder; + +  unsigned AS = getThisAddress(CGF).getAddressSpace(); +  llvm::Value *Int8This = nullptr;  // Initialize lazily. + +  for (const CXXBaseSpecifier &S : RD->vbases()) { +    const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); +    auto I = VBaseMap.find(VBase); +    assert(I != VBaseMap.end()); +    if (!I->second.hasVtorDisp()) +      continue; + +    llvm::Value *VBaseOffset = +        GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); +    uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); + +    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). +    llvm::Value *VtorDispValue = Builder.CreateSub( +        VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), +        "vtordisp.value"); +    VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); + +    if (!Int8This) +      Int8This = Builder.CreateBitCast(getThisValue(CGF), +                                       CGF.Int8Ty->getPointerTo(AS)); +    llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); +    // vtorDisp is always the 32-bits before the vbase in the class layout. +    VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); +    VtorDispPtr = Builder.CreateBitCast( +        VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); + +    Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, +                               CharUnits::fromQuantity(4)); +  } +} + +static bool hasDefaultCXXMethodCC(ASTContext &Context, +                                  const CXXMethodDecl *MD) { +  CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( +      /*IsVariadic=*/false, /*IsCXXMethod=*/true); +  CallingConv ActualCallingConv = +      MD->getType()->castAs<FunctionProtoType>()->getCallConv(); +  return ExpectedCallingConv == ActualCallingConv; +} + +void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { +  // There's only one constructor type in this ABI. +  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); + +  // Exported default constructors either have a simple call-site where they use +  // the typical calling convention and have a single 'this' pointer for an +  // argument -or- they get a wrapper function which appropriately thunks to the +  // real default constructor.  This thunk is the default constructor closure. +  if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor()) +    if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { +      llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); +      Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); +      CGM.setGVProperties(Fn, D); +    } +} + +void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, +                                      const CXXRecordDecl *RD) { +  Address This = getThisAddress(CGF); +  This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); +  const ASTContext &Context = getContext(); +  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + +  const VBTableGlobals &VBGlobals = enumerateVBTables(RD); +  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { +    const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; +    llvm::GlobalVariable *GV = VBGlobals.Globals[I]; +    const ASTRecordLayout &SubobjectLayout = +        Context.getASTRecordLayout(VBT->IntroducingObject); +    CharUnits Offs = VBT->NonVirtualOffset; +    Offs += SubobjectLayout.getVBPtrOffset(); +    if (VBT->getVBaseWithVPtr()) +      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); +    Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); +    llvm::Value *GVPtr = +        CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); +    VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), +                                      "vbptr." + VBT->ObjectWithVPtr->getName()); +    CGF.Builder.CreateStore(GVPtr, VBPtr); +  } +} + +CGCXXABI::AddedStructorArgs +MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, +                                        SmallVectorImpl<CanQualType> &ArgTys) { +  AddedStructorArgs Added; +  // TODO: 'for base' flag +  if (isa<CXXDestructorDecl>(GD.getDecl()) && +      GD.getDtorType() == Dtor_Deleting) { +    // The scalar deleting destructor takes an implicit int parameter. +    ArgTys.push_back(getContext().IntTy); +    ++Added.Suffix; +  } +  auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); +  if (!CD) +    return Added; + +  // All parameters are already in place except is_most_derived, which goes +  // after 'this' if it's variadic and last if it's not. + +  const CXXRecordDecl *Class = CD->getParent(); +  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); +  if (Class->getNumVBases()) { +    if (FPT->isVariadic()) { +      ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); +      ++Added.Prefix; +    } else { +      ArgTys.push_back(getContext().IntTy); +      ++Added.Suffix; +    } +  } + +  return Added; +} + +void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, +                                                 const CXXDestructorDecl *Dtor, +                                                 CXXDtorType DT) const { +  // Deleting destructor variants are never imported or exported. Give them the +  // default storage class. +  if (DT == Dtor_Deleting) { +    GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); +  } else { +    const NamedDecl *ND = Dtor; +    CGM.setDLLImportDLLExport(GV, ND); +  } +} + +llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( +    GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { +  // Internal things are always internal, regardless of attributes. After this, +  // we know the thunk is externally visible. +  if (Linkage == GVA_Internal) +    return llvm::GlobalValue::InternalLinkage; + +  switch (DT) { +  case Dtor_Base: +    // The base destructor most closely tracks the user-declared constructor, so +    // we delegate back to the normal declarator case. +    return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, +                                           /*IsConstantVariable=*/false); +  case Dtor_Complete: +    // The complete destructor is like an inline function, but it may be +    // imported and therefore must be exported as well. This requires changing +    // the linkage if a DLL attribute is present. +    if (Dtor->hasAttr<DLLExportAttr>()) +      return llvm::GlobalValue::WeakODRLinkage; +    if (Dtor->hasAttr<DLLImportAttr>()) +      return llvm::GlobalValue::AvailableExternallyLinkage; +    return llvm::GlobalValue::LinkOnceODRLinkage; +  case Dtor_Deleting: +    // Deleting destructors are like inline functions. They have vague linkage +    // and are emitted everywhere they are used. They are internal if the class +    // is internal. +    return llvm::GlobalValue::LinkOnceODRLinkage; +  case Dtor_Comdat: +    llvm_unreachable("MS C++ ABI does not support comdat dtors"); +  } +  llvm_unreachable("invalid dtor type"); +} + +void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { +  // The TU defining a dtor is only guaranteed to emit a base destructor.  All +  // other destructor variants are delegating thunks. +  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); +} + +CharUnits +MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { +  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); + +  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { +    // Complete destructors take a pointer to the complete object as a +    // parameter, thus don't need this adjustment. +    if (GD.getDtorType() == Dtor_Complete) +      return CharUnits(); + +    // There's no Dtor_Base in vftable but it shares the this adjustment with +    // the deleting one, so look it up instead. +    GD = GlobalDecl(DD, Dtor_Deleting); +  } + +  MethodVFTableLocation ML = +      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); +  CharUnits Adjustment = ML.VFPtrOffset; + +  // Normal virtual instance methods need to adjust from the vfptr that first +  // defined the virtual method to the virtual base subobject, but destructors +  // do not.  The vector deleting destructor thunk applies this adjustment for +  // us if necessary. +  if (isa<CXXDestructorDecl>(MD)) +    Adjustment = CharUnits::Zero(); + +  if (ML.VBase) { +    const ASTRecordLayout &DerivedLayout = +        getContext().getASTRecordLayout(MD->getParent()); +    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); +  } + +  return Adjustment; +} + +Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( +    CodeGenFunction &CGF, GlobalDecl GD, Address This, +    bool VirtualCall) { +  if (!VirtualCall) { +    // If the call of a virtual function is not virtual, we just have to +    // compensate for the adjustment the virtual function does in its prologue. +    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); +    if (Adjustment.isZero()) +      return This; + +    This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); +    assert(Adjustment.isPositive()); +    return CGF.Builder.CreateConstByteGEP(This, Adjustment); +  } + +  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); + +  GlobalDecl LookupGD = GD; +  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { +    // Complete dtors take a pointer to the complete object, +    // thus don't need adjustment. +    if (GD.getDtorType() == Dtor_Complete) +      return This; + +    // There's only Dtor_Deleting in vftable but it shares the this adjustment +    // with the base one, so look up the deleting one instead. +    LookupGD = GlobalDecl(DD, Dtor_Deleting); +  } +  MethodVFTableLocation ML = +      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); + +  CharUnits StaticOffset = ML.VFPtrOffset; + +  // Base destructors expect 'this' to point to the beginning of the base +  // subobject, not the first vfptr that happens to contain the virtual dtor. +  // However, we still need to apply the virtual base adjustment. +  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) +    StaticOffset = CharUnits::Zero(); + +  Address Result = This; +  if (ML.VBase) { +    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); + +    const CXXRecordDecl *Derived = MD->getParent(); +    const CXXRecordDecl *VBase = ML.VBase; +    llvm::Value *VBaseOffset = +      GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); +    llvm::Value *VBasePtr = +      CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); +    CharUnits VBaseAlign = +      CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); +    Result = Address(VBasePtr, VBaseAlign); +  } +  if (!StaticOffset.isZero()) { +    assert(StaticOffset.isPositive()); +    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); +    if (ML.VBase) { +      // Non-virtual adjustment might result in a pointer outside the allocated +      // object, e.g. if the final overrider class is laid out after the virtual +      // base that declares a method in the most derived class. +      // FIXME: Update the code that emits this adjustment in thunks prologues. +      Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); +    } else { +      Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); +    } +  } +  return Result; +} + +void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, +                                                QualType &ResTy, +                                                FunctionArgList &Params) { +  ASTContext &Context = getContext(); +  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); +  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); +  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { +    auto *IsMostDerived = ImplicitParamDecl::Create( +        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), +        &Context.Idents.get("is_most_derived"), Context.IntTy, +        ImplicitParamDecl::Other); +    // The 'most_derived' parameter goes second if the ctor is variadic and last +    // if it's not.  Dtors can't be variadic. +    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); +    if (FPT->isVariadic()) +      Params.insert(Params.begin() + 1, IsMostDerived); +    else +      Params.push_back(IsMostDerived); +    getStructorImplicitParamDecl(CGF) = IsMostDerived; +  } else if (isDeletingDtor(CGF.CurGD)) { +    auto *ShouldDelete = ImplicitParamDecl::Create( +        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), +        &Context.Idents.get("should_call_delete"), Context.IntTy, +        ImplicitParamDecl::Other); +    Params.push_back(ShouldDelete); +    getStructorImplicitParamDecl(CGF) = ShouldDelete; +  } +} + +void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { +  // Naked functions have no prolog. +  if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) +    return; + +  // Overridden virtual methods of non-primary bases need to adjust the incoming +  // 'this' pointer in the prologue. In this hierarchy, C::b will subtract +  // sizeof(void*) to adjust from B* to C*: +  //   struct A { virtual void a(); }; +  //   struct B { virtual void b(); }; +  //   struct C : A, B { virtual void b(); }; +  // +  // Leave the value stored in the 'this' alloca unadjusted, so that the +  // debugger sees the unadjusted value. Microsoft debuggers require this, and +  // will apply the ThisAdjustment in the method type information. +  // FIXME: Do something better for DWARF debuggers, which won't expect this, +  // without making our codegen depend on debug info settings. +  llvm::Value *This = loadIncomingCXXThis(CGF); +  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); +  if (!CGF.CurFuncIsThunk && MD->isVirtual()) { +    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); +    if (!Adjustment.isZero()) { +      unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); +      llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), +                 *thisTy = This->getType(); +      This = CGF.Builder.CreateBitCast(This, charPtrTy); +      assert(Adjustment.isPositive()); +      This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, +                                                    -Adjustment.getQuantity()); +      This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); +    } +  } +  setCXXABIThisValue(CGF, This); + +  // If this is a function that the ABI specifies returns 'this', initialize +  // the return slot to 'this' at the start of the function. +  // +  // Unlike the setting of return types, this is done within the ABI +  // implementation instead of by clients of CGCXXABI because: +  // 1) getThisValue is currently protected +  // 2) in theory, an ABI could implement 'this' returns some other way; +  //    HasThisReturn only specifies a contract, not the implementation +  if (HasThisReturn(CGF.CurGD)) +    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); +  else if (hasMostDerivedReturn(CGF.CurGD)) +    CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), +                            CGF.ReturnValue); + +  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { +    assert(getStructorImplicitParamDecl(CGF) && +           "no implicit parameter for a constructor with virtual bases?"); +    getStructorImplicitParamValue(CGF) +      = CGF.Builder.CreateLoad( +          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), +          "is_most_derived"); +  } + +  if (isDeletingDtor(CGF.CurGD)) { +    assert(getStructorImplicitParamDecl(CGF) && +           "no implicit parameter for a deleting destructor?"); +    getStructorImplicitParamValue(CGF) +      = CGF.Builder.CreateLoad( +          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), +          "should_call_delete"); +  } +} + +CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs( +    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, +    bool ForVirtualBase, bool Delegating, CallArgList &Args) { +  assert(Type == Ctor_Complete || Type == Ctor_Base); + +  // Check if we need a 'most_derived' parameter. +  if (!D->getParent()->getNumVBases()) +    return AddedStructorArgs{}; + +  // Add the 'most_derived' argument second if we are variadic or last if not. +  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); +  llvm::Value *MostDerivedArg; +  if (Delegating) { +    MostDerivedArg = getStructorImplicitParamValue(CGF); +  } else { +    MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); +  } +  RValue RV = RValue::get(MostDerivedArg); +  if (FPT->isVariadic()) { +    Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy)); +    return AddedStructorArgs::prefix(1); +  } +  Args.add(RV, getContext().IntTy); +  return AddedStructorArgs::suffix(1); +} + +void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, +                                         const CXXDestructorDecl *DD, +                                         CXXDtorType Type, bool ForVirtualBase, +                                         bool Delegating, Address This, +                                         QualType ThisTy) { +  // Use the base destructor variant in place of the complete destructor variant +  // if the class has no virtual bases. This effectively implements some of the +  // -mconstructor-aliases optimization, but as part of the MS C++ ABI. +  if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) +    Type = Dtor_Base; + +  GlobalDecl GD(DD, Type); +  CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); + +  if (DD->isVirtual()) { +    assert(Type != CXXDtorType::Dtor_Deleting && +           "The deleting destructor should only be called via a virtual call"); +    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), +                                                    This, false); +  } + +  llvm::BasicBlock *BaseDtorEndBB = nullptr; +  if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { +    BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); +  } + +  CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, +                            /*ImplicitParam=*/nullptr, +                            /*ImplicitParamTy=*/QualType(), nullptr); +  if (BaseDtorEndBB) { +    // Complete object handler should continue to be the remaining +    CGF.Builder.CreateBr(BaseDtorEndBB); +    CGF.EmitBlock(BaseDtorEndBB); +  } +} + +void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, +                                             const CXXRecordDecl *RD, +                                             llvm::GlobalVariable *VTable) { +  if (!CGM.getCodeGenOpts().LTOUnit) +    return; + +  // The location of the first virtual function pointer in the virtual table, +  // aka the "address point" on Itanium. This is at offset 0 if RTTI is +  // disabled, or sizeof(void*) if RTTI is enabled. +  CharUnits AddressPoint = +      getContext().getLangOpts().RTTIData +          ? getContext().toCharUnitsFromBits( +                getContext().getTargetInfo().getPointerWidth(0)) +          : CharUnits::Zero(); + +  if (Info.PathToIntroducingObject.empty()) { +    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); +    return; +  } + +  // Add a bitset entry for the least derived base belonging to this vftable. +  CGM.AddVTableTypeMetadata(VTable, AddressPoint, +                            Info.PathToIntroducingObject.back()); + +  // Add a bitset entry for each derived class that is laid out at the same +  // offset as the least derived base. +  for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { +    const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; +    const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; + +    const ASTRecordLayout &Layout = +        getContext().getASTRecordLayout(DerivedRD); +    CharUnits Offset; +    auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); +    if (VBI == Layout.getVBaseOffsetsMap().end()) +      Offset = Layout.getBaseClassOffset(BaseRD); +    else +      Offset = VBI->second.VBaseOffset; +    if (!Offset.isZero()) +      return; +    CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); +  } + +  // Finally do the same for the most derived class. +  if (Info.FullOffsetInMDC.isZero()) +    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); +} + +void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, +                                            const CXXRecordDecl *RD) { +  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); +  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); + +  for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { +    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); +    if (VTable->hasInitializer()) +      continue; + +    const VTableLayout &VTLayout = +      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); + +    llvm::Constant *RTTI = nullptr; +    if (any_of(VTLayout.vtable_components(), +               [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) +      RTTI = getMSCompleteObjectLocator(RD, *Info); + +    ConstantInitBuilder Builder(CGM); +    auto Components = Builder.beginStruct(); +    CGVT.createVTableInitializer(Components, VTLayout, RTTI); +    Components.finishAndSetAsInitializer(VTable); + +    emitVTableTypeMetadata(*Info, RD, VTable); +  } +} + +bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( +    CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { +  return Vptr.NearestVBase != nullptr; +} + +llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( +    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, +    const CXXRecordDecl *NearestVBase) { +  llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); +  if (!VTableAddressPoint) { +    assert(Base.getBase()->getNumVBases() && +           !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); +  } +  return VTableAddressPoint; +} + +static void mangleVFTableName(MicrosoftMangleContext &MangleContext, +                              const CXXRecordDecl *RD, const VPtrInfo &VFPtr, +                              SmallString<256> &Name) { +  llvm::raw_svector_ostream Out(Name); +  MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); +} + +llvm::Constant * +MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, +                                       const CXXRecordDecl *VTableClass) { +  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); +  VFTableIdTy ID(VTableClass, Base.getBaseOffset()); +  return VFTablesMap[ID]; +} + +llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( +    BaseSubobject Base, const CXXRecordDecl *VTableClass) { +  llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); +  assert(VFTable && "Couldn't find a vftable for the given base?"); +  return VFTable; +} + +llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, +                                                       CharUnits VPtrOffset) { +  // getAddrOfVTable may return 0 if asked to get an address of a vtable which +  // shouldn't be used in the given record type. We want to cache this result in +  // VFTablesMap, thus a simple zero check is not sufficient. + +  VFTableIdTy ID(RD, VPtrOffset); +  VTablesMapTy::iterator I; +  bool Inserted; +  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); +  if (!Inserted) +    return I->second; + +  llvm::GlobalVariable *&VTable = I->second; + +  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); +  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); + +  if (DeferredVFTables.insert(RD).second) { +    // We haven't processed this record type before. +    // Queue up this vtable for possible deferred emission. +    CGM.addDeferredVTable(RD); + +#ifndef NDEBUG +    // Create all the vftables at once in order to make sure each vftable has +    // a unique mangled name. +    llvm::StringSet<> ObservedMangledNames; +    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { +      SmallString<256> Name; +      mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); +      if (!ObservedMangledNames.insert(Name.str()).second) +        llvm_unreachable("Already saw this mangling before?"); +    } +#endif +  } + +  const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if( +      VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) { +        return VPI->FullOffsetInMDC == VPtrOffset; +      }); +  if (VFPtrI == VFPtrs.end()) { +    VFTablesMap[ID] = nullptr; +    return nullptr; +  } +  const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; + +  SmallString<256> VFTableName; +  mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); + +  // Classes marked __declspec(dllimport) need vftables generated on the +  // import-side in order to support features like constexpr.  No other +  // translation unit relies on the emission of the local vftable, translation +  // units are expected to generate them as needed. +  // +  // Because of this unique behavior, we maintain this logic here instead of +  // getVTableLinkage. +  llvm::GlobalValue::LinkageTypes VFTableLinkage = +      RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage +                                   : CGM.getVTableLinkage(RD); +  bool VFTableComesFromAnotherTU = +      llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || +      llvm::GlobalValue::isExternalLinkage(VFTableLinkage); +  bool VTableAliasIsRequred = +      !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; + +  if (llvm::GlobalValue *VFTable = +          CGM.getModule().getNamedGlobal(VFTableName)) { +    VFTablesMap[ID] = VFTable; +    VTable = VTableAliasIsRequred +                 ? cast<llvm::GlobalVariable>( +                       cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) +                 : cast<llvm::GlobalVariable>(VFTable); +    return VTable; +  } + +  const VTableLayout &VTLayout = +      VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); +  llvm::GlobalValue::LinkageTypes VTableLinkage = +      VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; + +  StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); + +  llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); + +  // Create a backing variable for the contents of VTable.  The VTable may +  // or may not include space for a pointer to RTTI data. +  llvm::GlobalValue *VFTable; +  VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, +                                    /*isConstant=*/true, VTableLinkage, +                                    /*Initializer=*/nullptr, VTableName); +  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + +  llvm::Comdat *C = nullptr; +  if (!VFTableComesFromAnotherTU && +      (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || +       (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && +        VTableAliasIsRequred))) +    C = CGM.getModule().getOrInsertComdat(VFTableName.str()); + +  // Only insert a pointer into the VFTable for RTTI data if we are not +  // importing it.  We never reference the RTTI data directly so there is no +  // need to make room for it. +  if (VTableAliasIsRequred) { +    llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), +                                 llvm::ConstantInt::get(CGM.Int32Ty, 0), +                                 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; +    // Create a GEP which points just after the first entry in the VFTable, +    // this should be the location of the first virtual method. +    llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( +        VTable->getValueType(), VTable, GEPIndices); +    if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { +      VFTableLinkage = llvm::GlobalValue::ExternalLinkage; +      if (C) +        C->setSelectionKind(llvm::Comdat::Largest); +    } +    VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, +                                        /*AddressSpace=*/0, VFTableLinkage, +                                        VFTableName.str(), VTableGEP, +                                        &CGM.getModule()); +    VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  } else { +    // We don't need a GlobalAlias to be a symbol for the VTable if we won't +    // be referencing any RTTI data. +    // The GlobalVariable will end up being an appropriate definition of the +    // VFTable. +    VFTable = VTable; +  } +  if (C) +    VTable->setComdat(C); + +  if (RD->hasAttr<DLLExportAttr>()) +    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); + +  VFTablesMap[ID] = VFTable; +  return VTable; +} + +CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, +                                                    GlobalDecl GD, +                                                    Address This, +                                                    llvm::Type *Ty, +                                                    SourceLocation Loc) { +  CGBuilderTy &Builder = CGF.Builder; + +  Ty = Ty->getPointerTo()->getPointerTo(); +  Address VPtr = +      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); + +  auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); +  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); + +  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); +  MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); + +  // Compute the identity of the most derived class whose virtual table is +  // located at the MethodVFTableLocation ML. +  auto getObjectWithVPtr = [&] { +    return llvm::find_if(VFTContext.getVFPtrOffsets( +                             ML.VBase ? ML.VBase : MethodDecl->getParent()), +                         [&](const std::unique_ptr<VPtrInfo> &Info) { +                           return Info->FullOffsetInMDC == ML.VFPtrOffset; +                         }) +        ->get() +        ->ObjectWithVPtr; +  }; + +  llvm::Value *VFunc; +  if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { +    VFunc = CGF.EmitVTableTypeCheckedLoad( +        getObjectWithVPtr(), VTable, +        ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); +  } else { +    if (CGM.getCodeGenOpts().PrepareForLTO) +      CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); + +    llvm::Value *VFuncPtr = +        Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); +    VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); +  } + +  CGCallee Callee(GD, VFunc); +  return Callee; +} + +llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( +    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, +    Address This, DeleteOrMemberCallExpr E) { +  auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); +  auto *D = E.dyn_cast<const CXXDeleteExpr *>(); +  assert((CE != nullptr) ^ (D != nullptr)); +  assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); +  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); + +  // We have only one destructor in the vftable but can get both behaviors +  // by passing an implicit int parameter. +  GlobalDecl GD(Dtor, Dtor_Deleting); +  const CGFunctionInfo *FInfo = +      &CGM.getTypes().arrangeCXXStructorDeclaration(GD); +  llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); +  CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); + +  ASTContext &Context = getContext(); +  llvm::Value *ImplicitParam = llvm::ConstantInt::get( +      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), +      DtorType == Dtor_Deleting); + +  QualType ThisTy; +  if (CE) { +    ThisTy = CE->getObjectType(); +  } else { +    ThisTy = D->getDestroyedType(); +  } + +  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); +  RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, +                                        ImplicitParam, Context.IntTy, CE); +  return RV.getScalarVal(); +} + +const VBTableGlobals & +MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { +  // At this layer, we can key the cache off of a single class, which is much +  // easier than caching each vbtable individually. +  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; +  bool Added; +  std::tie(Entry, Added) = +      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); +  VBTableGlobals &VBGlobals = Entry->second; +  if (!Added) +    return VBGlobals; + +  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); +  VBGlobals.VBTables = &Context.enumerateVBTables(RD); + +  // Cache the globals for all vbtables so we don't have to recompute the +  // mangled names. +  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); +  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), +                                      E = VBGlobals.VBTables->end(); +       I != E; ++I) { +    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); +  } + +  return VBGlobals; +} + +llvm::Function * +MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, +                                        const MethodVFTableLocation &ML) { +  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && +         "can't form pointers to ctors or virtual dtors"); + +  // Calculate the mangled name. +  SmallString<256> ThunkName; +  llvm::raw_svector_ostream Out(ThunkName); +  getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); + +  // If the thunk has been generated previously, just return it. +  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) +    return cast<llvm::Function>(GV); + +  // Create the llvm::Function. +  const CGFunctionInfo &FnInfo = +      CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); +  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); +  llvm::Function *ThunkFn = +      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, +                             ThunkName.str(), &CGM.getModule()); +  assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); + +  ThunkFn->setLinkage(MD->isExternallyVisible() +                          ? llvm::GlobalValue::LinkOnceODRLinkage +                          : llvm::GlobalValue::InternalLinkage); +  if (MD->isExternallyVisible()) +    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); + +  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); +  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); + +  // Add the "thunk" attribute so that LLVM knows that the return type is +  // meaningless. These thunks can be used to call functions with differing +  // return types, and the caller is required to cast the prototype +  // appropriately to extract the correct value. +  ThunkFn->addFnAttr("thunk"); + +  // These thunks can be compared, so they are not unnamed. +  ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); + +  // Start codegen. +  CodeGenFunction CGF(CGM); +  CGF.CurGD = GlobalDecl(MD); +  CGF.CurFuncIsThunk = true; + +  // Build FunctionArgs, but only include the implicit 'this' parameter +  // declaration. +  FunctionArgList FunctionArgs; +  buildThisParam(CGF, FunctionArgs); + +  // Start defining the function. +  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, +                    FunctionArgs, MD->getLocation(), SourceLocation()); +  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); + +  // Load the vfptr and then callee from the vftable.  The callee should have +  // adjusted 'this' so that the vfptr is at offset zero. +  llvm::Value *VTable = CGF.GetVTablePtr( +      getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); + +  llvm::Value *VFuncPtr = +      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); +  llvm::Value *Callee = +    CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); + +  CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); + +  return ThunkFn; +} + +void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { +  const VBTableGlobals &VBGlobals = enumerateVBTables(RD); +  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { +    const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; +    llvm::GlobalVariable *GV = VBGlobals.Globals[I]; +    if (GV->isDeclaration()) +      emitVBTableDefinition(*VBT, RD, GV); +  } +} + +llvm::GlobalVariable * +MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, +                                  llvm::GlobalVariable::LinkageTypes Linkage) { +  SmallString<256> OutName; +  llvm::raw_svector_ostream Out(OutName); +  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); +  StringRef Name = OutName.str(); + +  llvm::ArrayType *VBTableType = +      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); + +  assert(!CGM.getModule().getNamedGlobal(Name) && +         "vbtable with this name already exists: mangling bug?"); +  CharUnits Alignment = +      CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); +  llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( +      Name, VBTableType, Linkage, Alignment.getQuantity()); +  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + +  if (RD->hasAttr<DLLImportAttr>()) +    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); +  else if (RD->hasAttr<DLLExportAttr>()) +    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); + +  if (!GV->hasExternalLinkage()) +    emitVBTableDefinition(VBT, RD, GV); + +  return GV; +} + +void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, +                                            const CXXRecordDecl *RD, +                                            llvm::GlobalVariable *GV) const { +  const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; + +  assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && +         "should only emit vbtables for classes with vbtables"); + +  const ASTRecordLayout &BaseLayout = +      getContext().getASTRecordLayout(VBT.IntroducingObject); +  const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); + +  SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), +                                           nullptr); + +  // The offset from ObjectWithVPtr's vbptr to itself always leads. +  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); +  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); + +  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); +  for (const auto &I : ObjectWithVPtr->vbases()) { +    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); +    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); +    assert(!Offset.isNegative()); + +    // Make it relative to the subobject vbptr. +    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; +    if (VBT.getVBaseWithVPtr()) +      CompleteVBPtrOffset += +          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); +    Offset -= CompleteVBPtrOffset; + +    unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); +    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); +    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); +  } + +  assert(Offsets.size() == +         cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) +                               ->getElementType())->getNumElements()); +  llvm::ArrayType *VBTableType = +    llvm::ArrayType::get(CGM.IntTy, Offsets.size()); +  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); +  GV->setInitializer(Init); + +  if (RD->hasAttr<DLLImportAttr>()) +    GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); +} + +llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, +                                                    Address This, +                                                    const ThisAdjustment &TA) { +  if (TA.isEmpty()) +    return This.getPointer(); + +  This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); + +  llvm::Value *V; +  if (TA.Virtual.isEmpty()) { +    V = This.getPointer(); +  } else { +    assert(TA.Virtual.Microsoft.VtordispOffset < 0); +    // Adjust the this argument based on the vtordisp value. +    Address VtorDispPtr = +        CGF.Builder.CreateConstInBoundsByteGEP(This, +                 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); +    VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); +    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); +    V = CGF.Builder.CreateGEP(This.getPointer(), +                              CGF.Builder.CreateNeg(VtorDisp)); + +    // Unfortunately, having applied the vtordisp means that we no +    // longer really have a known alignment for the vbptr step. +    // We'll assume the vbptr is pointer-aligned. + +    if (TA.Virtual.Microsoft.VBPtrOffset) { +      // If the final overrider is defined in a virtual base other than the one +      // that holds the vfptr, we have to use a vtordispex thunk which looks up +      // the vbtable of the derived class. +      assert(TA.Virtual.Microsoft.VBPtrOffset > 0); +      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); +      llvm::Value *VBPtr; +      llvm::Value *VBaseOffset = +          GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), +                                  -TA.Virtual.Microsoft.VBPtrOffset, +                                  TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); +      V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); +    } +  } + +  if (TA.NonVirtual) { +    // Non-virtual adjustment might result in a pointer outside the allocated +    // object, e.g. if the final overrider class is laid out after the virtual +    // base that declares a method in the most derived class. +    V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); +  } + +  // Don't need to bitcast back, the call CodeGen will handle this. +  return V; +} + +llvm::Value * +MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, +                                         const ReturnAdjustment &RA) { +  if (RA.isEmpty()) +    return Ret.getPointer(); + +  auto OrigTy = Ret.getType(); +  Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); + +  llvm::Value *V = Ret.getPointer(); +  if (RA.Virtual.Microsoft.VBIndex) { +    assert(RA.Virtual.Microsoft.VBIndex > 0); +    int32_t IntSize = CGF.getIntSize().getQuantity(); +    llvm::Value *VBPtr; +    llvm::Value *VBaseOffset = +        GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, +                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); +    V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); +  } + +  if (RA.NonVirtual) +    V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); + +  // Cast back to the original type. +  return CGF.Builder.CreateBitCast(V, OrigTy); +} + +bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, +                                   QualType elementType) { +  // Microsoft seems to completely ignore the possibility of a +  // two-argument usual deallocation function. +  return elementType.isDestructedType(); +} + +bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { +  // Microsoft seems to completely ignore the possibility of a +  // two-argument usual deallocation function. +  return expr->getAllocatedType().isDestructedType(); +} + +CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { +  // The array cookie is always a size_t; we then pad that out to the +  // alignment of the element type. +  ASTContext &Ctx = getContext(); +  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), +                  Ctx.getTypeAlignInChars(type)); +} + +llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, +                                                  Address allocPtr, +                                                  CharUnits cookieSize) { +  Address numElementsPtr = +    CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); +  return CGF.Builder.CreateLoad(numElementsPtr); +} + +Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, +                                               Address newPtr, +                                               llvm::Value *numElements, +                                               const CXXNewExpr *expr, +                                               QualType elementType) { +  assert(requiresArrayCookie(expr)); + +  // The size of the cookie. +  CharUnits cookieSize = getArrayCookieSizeImpl(elementType); + +  // Compute an offset to the cookie. +  Address cookiePtr = newPtr; + +  // Write the number of elements into the appropriate slot. +  Address numElementsPtr +    = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); +  CGF.Builder.CreateStore(numElements, numElementsPtr); + +  // Finally, compute a pointer to the actual data buffer by skipping +  // over the cookie completely. +  return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); +} + +static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, +                                        llvm::FunctionCallee Dtor, +                                        llvm::Constant *Addr) { +  // Create a function which calls the destructor. +  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); + +  // extern "C" int __tlregdtor(void (*f)(void)); +  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( +      CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); + +  llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( +      TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); +  if (llvm::Function *TLRegDtorFn = +          dyn_cast<llvm::Function>(TLRegDtor.getCallee())) +    TLRegDtorFn->setDoesNotThrow(); + +  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); +} + +void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, +                                         llvm::FunctionCallee Dtor, +                                         llvm::Constant *Addr) { +  if (D.isNoDestroy(CGM.getContext())) +    return; + +  if (D.getTLSKind()) +    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); + +  // The default behavior is to use atexit. +  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); +} + +void MicrosoftCXXABI::EmitThreadLocalInitFuncs( +    CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, +    ArrayRef<llvm::Function *> CXXThreadLocalInits, +    ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { +  if (CXXThreadLocalInits.empty()) +    return; + +  CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == +                                  llvm::Triple::x86 +                              ? "/include:___dyn_tls_init@12" +                              : "/include:__dyn_tls_init"); + +  // This will create a GV in the .CRT$XDU section.  It will point to our +  // initialization function.  The CRT will call all of these function +  // pointers at start-up time and, eventually, at thread-creation time. +  auto AddToXDU = [&CGM](llvm::Function *InitFunc) { +    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( +        CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, +        llvm::GlobalVariable::InternalLinkage, InitFunc, +        Twine(InitFunc->getName(), "$initializer$")); +    InitFuncPtr->setSection(".CRT$XDU"); +    // This variable has discardable linkage, we have to add it to @llvm.used to +    // ensure it won't get discarded. +    CGM.addUsedGlobal(InitFuncPtr); +    return InitFuncPtr; +  }; + +  std::vector<llvm::Function *> NonComdatInits; +  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { +    llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( +        CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); +    llvm::Function *F = CXXThreadLocalInits[I]; + +    // If the GV is already in a comdat group, then we have to join it. +    if (llvm::Comdat *C = GV->getComdat()) +      AddToXDU(F)->setComdat(C); +    else +      NonComdatInits.push_back(F); +  } + +  if (!NonComdatInits.empty()) { +    llvm::FunctionType *FTy = +        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); +    llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction( +        FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), +        SourceLocation(), /*TLS=*/true); +    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); + +    AddToXDU(InitFunc); +  } +} + +LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, +                                                     const VarDecl *VD, +                                                     QualType LValType) { +  CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); +  return LValue(); +} + +static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { +  StringRef VarName("_Init_thread_epoch"); +  CharUnits Align = CGM.getIntAlign(); +  if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) +    return ConstantAddress(GV, Align); +  auto *GV = new llvm::GlobalVariable( +      CGM.getModule(), CGM.IntTy, +      /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, +      /*Initializer=*/nullptr, VarName, +      /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); +  GV->setAlignment(Align.getAsAlign()); +  return ConstantAddress(GV, Align); +} + +static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { +  llvm::FunctionType *FTy = +      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), +                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false); +  return CGM.CreateRuntimeFunction( +      FTy, "_Init_thread_header", +      llvm::AttributeList::get(CGM.getLLVMContext(), +                               llvm::AttributeList::FunctionIndex, +                               llvm::Attribute::NoUnwind), +      /*Local=*/true); +} + +static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { +  llvm::FunctionType *FTy = +      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), +                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false); +  return CGM.CreateRuntimeFunction( +      FTy, "_Init_thread_footer", +      llvm::AttributeList::get(CGM.getLLVMContext(), +                               llvm::AttributeList::FunctionIndex, +                               llvm::Attribute::NoUnwind), +      /*Local=*/true); +} + +static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { +  llvm::FunctionType *FTy = +      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), +                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false); +  return CGM.CreateRuntimeFunction( +      FTy, "_Init_thread_abort", +      llvm::AttributeList::get(CGM.getLLVMContext(), +                               llvm::AttributeList::FunctionIndex, +                               llvm::Attribute::NoUnwind), +      /*Local=*/true); +} + +namespace { +struct ResetGuardBit final : EHScopeStack::Cleanup { +  Address Guard; +  unsigned GuardNum; +  ResetGuardBit(Address Guard, unsigned GuardNum) +      : Guard(Guard), GuardNum(GuardNum) {} + +  void Emit(CodeGenFunction &CGF, Flags flags) override { +    // Reset the bit in the mask so that the static variable may be +    // reinitialized. +    CGBuilderTy &Builder = CGF.Builder; +    llvm::LoadInst *LI = Builder.CreateLoad(Guard); +    llvm::ConstantInt *Mask = +        llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); +    Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); +  } +}; + +struct CallInitThreadAbort final : EHScopeStack::Cleanup { +  llvm::Value *Guard; +  CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} + +  void Emit(CodeGenFunction &CGF, Flags flags) override { +    // Calling _Init_thread_abort will reset the guard's state. +    CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); +  } +}; +} + +void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, +                                      llvm::GlobalVariable *GV, +                                      bool PerformInit) { +  // MSVC only uses guards for static locals. +  if (!D.isStaticLocal()) { +    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); +    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. +    llvm::Function *F = CGF.CurFn; +    F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); +    F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); +    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); +    return; +  } + +  bool ThreadlocalStatic = D.getTLSKind(); +  bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; + +  // Thread-safe static variables which aren't thread-specific have a +  // per-variable guard. +  bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; + +  CGBuilderTy &Builder = CGF.Builder; +  llvm::IntegerType *GuardTy = CGF.Int32Ty; +  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); +  CharUnits GuardAlign = CharUnits::fromQuantity(4); + +  // Get the guard variable for this function if we have one already. +  GuardInfo *GI = nullptr; +  if (ThreadlocalStatic) +    GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; +  else if (!ThreadsafeStatic) +    GI = &GuardVariableMap[D.getDeclContext()]; + +  llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; +  unsigned GuardNum; +  if (D.isExternallyVisible()) { +    // Externally visible variables have to be numbered in Sema to properly +    // handle unreachable VarDecls. +    GuardNum = getContext().getStaticLocalNumber(&D); +    assert(GuardNum > 0); +    GuardNum--; +  } else if (HasPerVariableGuard) { +    GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; +  } else { +    // Non-externally visible variables are numbered here in CodeGen. +    GuardNum = GI->BitIndex++; +  } + +  if (!HasPerVariableGuard && GuardNum >= 32) { +    if (D.isExternallyVisible()) +      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); +    GuardNum %= 32; +    GuardVar = nullptr; +  } + +  if (!GuardVar) { +    // Mangle the name for the guard. +    SmallString<256> GuardName; +    { +      llvm::raw_svector_ostream Out(GuardName); +      if (HasPerVariableGuard) +        getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, +                                                               Out); +      else +        getMangleContext().mangleStaticGuardVariable(&D, Out); +    } + +    // Create the guard variable with a zero-initializer. Just absorb linkage, +    // visibility and dll storage class from the guarded variable. +    GuardVar = +        new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, +                                 GV->getLinkage(), Zero, GuardName.str()); +    GuardVar->setVisibility(GV->getVisibility()); +    GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); +    GuardVar->setAlignment(GuardAlign.getAsAlign()); +    if (GuardVar->isWeakForLinker()) +      GuardVar->setComdat( +          CGM.getModule().getOrInsertComdat(GuardVar->getName())); +    if (D.getTLSKind()) +      GuardVar->setThreadLocal(true); +    if (GI && !HasPerVariableGuard) +      GI->Guard = GuardVar; +  } + +  ConstantAddress GuardAddr(GuardVar, GuardAlign); + +  assert(GuardVar->getLinkage() == GV->getLinkage() && +         "static local from the same function had different linkage"); + +  if (!HasPerVariableGuard) { +    // Pseudo code for the test: +    // if (!(GuardVar & MyGuardBit)) { +    //   GuardVar |= MyGuardBit; +    //   ... initialize the object ...; +    // } + +    // Test our bit from the guard variable. +    llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); +    llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); +    llvm::Value *NeedsInit = +        Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); +    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); +    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); +    CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, +                                 CodeGenFunction::GuardKind::VariableGuard, &D); + +    // Set our bit in the guard variable and emit the initializer and add a global +    // destructor if appropriate. +    CGF.EmitBlock(InitBlock); +    Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); +    CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); +    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); +    CGF.PopCleanupBlock(); +    Builder.CreateBr(EndBlock); + +    // Continue. +    CGF.EmitBlock(EndBlock); +  } else { +    // Pseudo code for the test: +    // if (TSS > _Init_thread_epoch) { +    //   _Init_thread_header(&TSS); +    //   if (TSS == -1) { +    //     ... initialize the object ...; +    //     _Init_thread_footer(&TSS); +    //   } +    // } +    // +    // The algorithm is almost identical to what can be found in the appendix +    // found in N2325. + +    // This BasicBLock determines whether or not we have any work to do. +    llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); +    FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); +    llvm::LoadInst *InitThreadEpoch = +        Builder.CreateLoad(getInitThreadEpochPtr(CGM)); +    llvm::Value *IsUninitialized = +        Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); +    llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); +    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); +    CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, +                                 CodeGenFunction::GuardKind::VariableGuard, &D); + +    // This BasicBlock attempts to determine whether or not this thread is +    // responsible for doing the initialization. +    CGF.EmitBlock(AttemptInitBlock); +    CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), +                                GuardAddr.getPointer()); +    llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); +    SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); +    llvm::Value *ShouldDoInit = +        Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); +    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); +    Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); + +    // Ok, we ended up getting selected as the initializing thread. +    CGF.EmitBlock(InitBlock); +    CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); +    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); +    CGF.PopCleanupBlock(); +    CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), +                                GuardAddr.getPointer()); +    Builder.CreateBr(EndBlock); + +    CGF.EmitBlock(EndBlock); +  } +} + +bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { +  // Null-ness for function memptrs only depends on the first field, which is +  // the function pointer.  The rest don't matter, so we can zero initialize. +  if (MPT->isMemberFunctionPointer()) +    return true; + +  // The virtual base adjustment field is always -1 for null, so if we have one +  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a +  // valid field offset. +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); +  return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) && +          RD->nullFieldOffsetIsZero()); +} + +llvm::Type * +MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); +  llvm::SmallVector<llvm::Type *, 4> fields; +  if (MPT->isMemberFunctionPointer()) +    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk +  else +    fields.push_back(CGM.IntTy);  // FieldOffset + +  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), +                                          Inheritance)) +    fields.push_back(CGM.IntTy); +  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) +    fields.push_back(CGM.IntTy); +  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) +    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset + +  if (fields.size() == 1) +    return fields[0]; +  return llvm::StructType::get(CGM.getLLVMContext(), fields); +} + +void MicrosoftCXXABI:: +GetNullMemberPointerFields(const MemberPointerType *MPT, +                           llvm::SmallVectorImpl<llvm::Constant *> &fields) { +  assert(fields.empty()); +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); +  if (MPT->isMemberFunctionPointer()) { +    // FunctionPointerOrVirtualThunk +    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); +  } else { +    if (RD->nullFieldOffsetIsZero()) +      fields.push_back(getZeroInt());  // FieldOffset +    else +      fields.push_back(getAllOnesInt());  // FieldOffset +  } + +  if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), +                                          Inheritance)) +    fields.push_back(getZeroInt()); +  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) +    fields.push_back(getZeroInt()); +  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) +    fields.push_back(getAllOnesInt()); +} + +llvm::Constant * +MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { +  llvm::SmallVector<llvm::Constant *, 4> fields; +  GetNullMemberPointerFields(MPT, fields); +  if (fields.size() == 1) +    return fields[0]; +  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); +  assert(Res->getType() == ConvertMemberPointerType(MPT)); +  return Res; +} + +llvm::Constant * +MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, +                                       bool IsMemberFunction, +                                       const CXXRecordDecl *RD, +                                       CharUnits NonVirtualBaseAdjustment, +                                       unsigned VBTableIndex) { +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); + +  // Single inheritance class member pointer are represented as scalars instead +  // of aggregates. +  if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance)) +    return FirstField; + +  llvm::SmallVector<llvm::Constant *, 4> fields; +  fields.push_back(FirstField); + +  if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance)) +    fields.push_back(llvm::ConstantInt::get( +      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); + +  if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) { +    CharUnits Offs = CharUnits::Zero(); +    if (VBTableIndex) +      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); +    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); +  } + +  // The rest of the fields are adjusted by conversions to a more derived class. +  if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) +    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); + +  return llvm::ConstantStruct::getAnon(fields); +} + +llvm::Constant * +MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, +                                       CharUnits offset) { +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  if (RD->getMSInheritanceModel() == +      MSInheritanceAttr::Keyword_virtual_inheritance) +    offset -= getContext().getOffsetOfBaseWithVBPtr(RD); +  llvm::Constant *FirstField = +    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); +  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, +                               CharUnits::Zero(), /*VBTableIndex=*/0); +} + +llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, +                                                   QualType MPType) { +  const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); +  const ValueDecl *MPD = MP.getMemberPointerDecl(); +  if (!MPD) +    return EmitNullMemberPointer(DstTy); + +  ASTContext &Ctx = getContext(); +  ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); + +  llvm::Constant *C; +  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { +    C = EmitMemberFunctionPointer(MD); +  } else { +    CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); +    C = EmitMemberDataPointer(DstTy, FieldOffset); +  } + +  if (!MemberPointerPath.empty()) { +    const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); +    const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); +    const MemberPointerType *SrcTy = +        Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) +            ->castAs<MemberPointerType>(); + +    bool DerivedMember = MP.isMemberPointerToDerivedMember(); +    SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; +    const CXXRecordDecl *PrevRD = SrcRD; +    for (const CXXRecordDecl *PathElem : MemberPointerPath) { +      const CXXRecordDecl *Base = nullptr; +      const CXXRecordDecl *Derived = nullptr; +      if (DerivedMember) { +        Base = PathElem; +        Derived = PrevRD; +      } else { +        Base = PrevRD; +        Derived = PathElem; +      } +      for (const CXXBaseSpecifier &BS : Derived->bases()) +        if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == +            Base->getCanonicalDecl()) +          DerivedToBasePath.push_back(&BS); +      PrevRD = PathElem; +    } +    assert(DerivedToBasePath.size() == MemberPointerPath.size()); + +    CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer +                                : CK_BaseToDerivedMemberPointer; +    C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), +                                    DerivedToBasePath.end(), C); +  } +  return C; +} + +llvm::Constant * +MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { +  assert(MD->isInstance() && "Member function must not be static!"); + +  CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); +  const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); +  CodeGenTypes &Types = CGM.getTypes(); + +  unsigned VBTableIndex = 0; +  llvm::Constant *FirstField; +  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); +  if (!MD->isVirtual()) { +    llvm::Type *Ty; +    // Check whether the function has a computable LLVM signature. +    if (Types.isFuncTypeConvertible(FPT)) { +      // The function has a computable LLVM signature; use the correct type. +      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); +    } else { +      // Use an arbitrary non-function type to tell GetAddrOfFunction that the +      // function type is incomplete. +      Ty = CGM.PtrDiffTy; +    } +    FirstField = CGM.GetAddrOfFunction(MD, Ty); +  } else { +    auto &VTableContext = CGM.getMicrosoftVTableContext(); +    MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); +    FirstField = EmitVirtualMemPtrThunk(MD, ML); +    // Include the vfptr adjustment if the method is in a non-primary vftable. +    NonVirtualBaseAdjustment += ML.VFPtrOffset; +    if (ML.VBase) +      VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; +  } + +  if (VBTableIndex == 0 && +      RD->getMSInheritanceModel() == +          MSInheritanceAttr::Keyword_virtual_inheritance) +    NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); + +  // The rest of the fields are common with data member pointers. +  FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); +  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, +                               NonVirtualBaseAdjustment, VBTableIndex); +} + +/// Member pointers are the same if they're either bitwise identical *or* both +/// null.  Null-ness for function members is determined by the first field, +/// while for data member pointers we must compare all fields. +llvm::Value * +MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, +                                             llvm::Value *L, +                                             llvm::Value *R, +                                             const MemberPointerType *MPT, +                                             bool Inequality) { +  CGBuilderTy &Builder = CGF.Builder; + +  // Handle != comparisons by switching the sense of all boolean operations. +  llvm::ICmpInst::Predicate Eq; +  llvm::Instruction::BinaryOps And, Or; +  if (Inequality) { +    Eq = llvm::ICmpInst::ICMP_NE; +    And = llvm::Instruction::Or; +    Or = llvm::Instruction::And; +  } else { +    Eq = llvm::ICmpInst::ICMP_EQ; +    And = llvm::Instruction::And; +    Or = llvm::Instruction::Or; +  } + +  // If this is a single field member pointer (single inheritance), this is a +  // single icmp. +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); +  if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(), +                                         Inheritance)) +    return Builder.CreateICmp(Eq, L, R); + +  // Compare the first field. +  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); +  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); +  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); + +  // Compare everything other than the first field. +  llvm::Value *Res = nullptr; +  llvm::StructType *LType = cast<llvm::StructType>(L->getType()); +  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { +    llvm::Value *LF = Builder.CreateExtractValue(L, I); +    llvm::Value *RF = Builder.CreateExtractValue(R, I); +    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); +    if (Res) +      Res = Builder.CreateBinOp(And, Res, Cmp); +    else +      Res = Cmp; +  } + +  // Check if the first field is 0 if this is a function pointer. +  if (MPT->isMemberFunctionPointer()) { +    // (l1 == r1 && ...) || l0 == 0 +    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); +    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); +    Res = Builder.CreateBinOp(Or, Res, IsZero); +  } + +  // Combine the comparison of the first field, which must always be true for +  // this comparison to succeeed. +  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); +} + +llvm::Value * +MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, +                                            llvm::Value *MemPtr, +                                            const MemberPointerType *MPT) { +  CGBuilderTy &Builder = CGF.Builder; +  llvm::SmallVector<llvm::Constant *, 4> fields; +  // We only need one field for member functions. +  if (MPT->isMemberFunctionPointer()) +    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); +  else +    GetNullMemberPointerFields(MPT, fields); +  assert(!fields.empty()); +  llvm::Value *FirstField = MemPtr; +  if (MemPtr->getType()->isStructTy()) +    FirstField = Builder.CreateExtractValue(MemPtr, 0); +  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); + +  // For function member pointers, we only need to test the function pointer +  // field.  The other fields if any can be garbage. +  if (MPT->isMemberFunctionPointer()) +    return Res; + +  // Otherwise, emit a series of compares and combine the results. +  for (int I = 1, E = fields.size(); I < E; ++I) { +    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); +    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); +    Res = Builder.CreateOr(Res, Next, "memptr.tobool"); +  } +  return Res; +} + +bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, +                                                  llvm::Constant *Val) { +  // Function pointers are null if the pointer in the first field is null. +  if (MPT->isMemberFunctionPointer()) { +    llvm::Constant *FirstField = Val->getType()->isStructTy() ? +      Val->getAggregateElement(0U) : Val; +    return FirstField->isNullValue(); +  } + +  // If it's not a function pointer and it's zero initializable, we can easily +  // check zero. +  if (isZeroInitializable(MPT) && Val->isNullValue()) +    return true; + +  // Otherwise, break down all the fields for comparison.  Hopefully these +  // little Constants are reused, while a big null struct might not be. +  llvm::SmallVector<llvm::Constant *, 4> Fields; +  GetNullMemberPointerFields(MPT, Fields); +  if (Fields.size() == 1) { +    assert(Val->getType()->isIntegerTy()); +    return Val == Fields[0]; +  } + +  unsigned I, E; +  for (I = 0, E = Fields.size(); I != E; ++I) { +    if (Val->getAggregateElement(I) != Fields[I]) +      break; +  } +  return I == E; +} + +llvm::Value * +MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, +                                         Address This, +                                         llvm::Value *VBPtrOffset, +                                         llvm::Value *VBTableOffset, +                                         llvm::Value **VBPtrOut) { +  CGBuilderTy &Builder = CGF.Builder; +  // Load the vbtable pointer from the vbptr in the instance. +  This = Builder.CreateElementBitCast(This, CGM.Int8Ty); +  llvm::Value *VBPtr = +    Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); +  if (VBPtrOut) *VBPtrOut = VBPtr; +  VBPtr = Builder.CreateBitCast(VBPtr, +            CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); + +  CharUnits VBPtrAlign; +  if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { +    VBPtrAlign = This.getAlignment().alignmentAtOffset( +                                   CharUnits::fromQuantity(CI->getSExtValue())); +  } else { +    VBPtrAlign = CGF.getPointerAlign(); +  } + +  llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); + +  // Translate from byte offset to table index. It improves analyzability. +  llvm::Value *VBTableIndex = Builder.CreateAShr( +      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), +      "vbtindex", /*isExact=*/true); + +  // Load an i32 offset from the vb-table. +  llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); +  VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); +  return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), +                                   "vbase_offs"); +} + +// Returns an adjusted base cast to i8*, since we do more address arithmetic on +// it. +llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( +    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, +    Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { +  CGBuilderTy &Builder = CGF.Builder; +  Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); +  llvm::BasicBlock *OriginalBB = nullptr; +  llvm::BasicBlock *SkipAdjustBB = nullptr; +  llvm::BasicBlock *VBaseAdjustBB = nullptr; + +  // In the unspecified inheritance model, there might not be a vbtable at all, +  // in which case we need to skip the virtual base lookup.  If there is a +  // vbtable, the first entry is a no-op entry that gives back the original +  // base, so look for a virtual base adjustment offset of zero. +  if (VBPtrOffset) { +    OriginalBB = Builder.GetInsertBlock(); +    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); +    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); +    llvm::Value *IsVirtual = +      Builder.CreateICmpNE(VBTableOffset, getZeroInt(), +                           "memptr.is_vbase"); +    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); +    CGF.EmitBlock(VBaseAdjustBB); +  } + +  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll +  // know the vbptr offset. +  if (!VBPtrOffset) { +    CharUnits offs = CharUnits::Zero(); +    if (!RD->hasDefinition()) { +      DiagnosticsEngine &Diags = CGF.CGM.getDiags(); +      unsigned DiagID = Diags.getCustomDiagID( +          DiagnosticsEngine::Error, +          "member pointer representation requires a " +          "complete class type for %0 to perform this expression"); +      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); +    } else if (RD->getNumVBases()) +      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); +    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); +  } +  llvm::Value *VBPtr = nullptr; +  llvm::Value *VBaseOffs = +    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); +  llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); + +  // Merge control flow with the case where we didn't have to adjust. +  if (VBaseAdjustBB) { +    Builder.CreateBr(SkipAdjustBB); +    CGF.EmitBlock(SkipAdjustBB); +    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); +    Phi->addIncoming(Base.getPointer(), OriginalBB); +    Phi->addIncoming(AdjustedBase, VBaseAdjustBB); +    return Phi; +  } +  return AdjustedBase; +} + +llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( +    CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, +    const MemberPointerType *MPT) { +  assert(MPT->isMemberDataPointer()); +  unsigned AS = Base.getAddressSpace(); +  llvm::Type *PType = +      CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); +  CGBuilderTy &Builder = CGF.Builder; +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); + +  // Extract the fields we need, regardless of model.  We'll apply them if we +  // have them. +  llvm::Value *FieldOffset = MemPtr; +  llvm::Value *VirtualBaseAdjustmentOffset = nullptr; +  llvm::Value *VBPtrOffset = nullptr; +  if (MemPtr->getType()->isStructTy()) { +    // We need to extract values. +    unsigned I = 0; +    FieldOffset = Builder.CreateExtractValue(MemPtr, I++); +    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) +      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); +    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) +      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); +  } + +  llvm::Value *Addr; +  if (VirtualBaseAdjustmentOffset) { +    Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, +                             VBPtrOffset); +  } else { +    Addr = Base.getPointer(); +  } + +  // Cast to char*. +  Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); + +  // Apply the offset, which we assume is non-null. +  Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); + +  // Cast the address to the appropriate pointer type, adopting the address +  // space of the base pointer. +  return Builder.CreateBitCast(Addr, PType); +} + +llvm::Value * +MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, +                                             const CastExpr *E, +                                             llvm::Value *Src) { +  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || +         E->getCastKind() == CK_BaseToDerivedMemberPointer || +         E->getCastKind() == CK_ReinterpretMemberPointer); + +  // Use constant emission if we can. +  if (isa<llvm::Constant>(Src)) +    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); + +  // We may be adding or dropping fields from the member pointer, so we need +  // both types and the inheritance models of both records. +  const MemberPointerType *SrcTy = +    E->getSubExpr()->getType()->castAs<MemberPointerType>(); +  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); +  bool IsFunc = SrcTy->isMemberFunctionPointer(); + +  // If the classes use the same null representation, reinterpret_cast is a nop. +  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; +  if (IsReinterpret && IsFunc) +    return Src; + +  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); +  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); +  if (IsReinterpret && +      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) +    return Src; + +  CGBuilderTy &Builder = CGF.Builder; + +  // Branch past the conversion if Src is null. +  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); +  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); + +  // C++ 5.2.10p9: The null member pointer value is converted to the null member +  //   pointer value of the destination type. +  if (IsReinterpret) { +    // For reinterpret casts, sema ensures that src and dst are both functions +    // or data and have the same size, which means the LLVM types should match. +    assert(Src->getType() == DstNull->getType()); +    return Builder.CreateSelect(IsNotNull, Src, DstNull); +  } + +  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); +  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); +  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); +  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); +  CGF.EmitBlock(ConvertBB); + +  llvm::Value *Dst = EmitNonNullMemberPointerConversion( +      SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, +      Builder); + +  Builder.CreateBr(ContinueBB); + +  // In the continuation, choose between DstNull and Dst. +  CGF.EmitBlock(ContinueBB); +  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); +  Phi->addIncoming(DstNull, OriginalBB); +  Phi->addIncoming(Dst, ConvertBB); +  return Phi; +} + +llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( +    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, +    CastExpr::path_const_iterator PathBegin, +    CastExpr::path_const_iterator PathEnd, llvm::Value *Src, +    CGBuilderTy &Builder) { +  const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); +  const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); +  MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel(); +  MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel(); +  bool IsFunc = SrcTy->isMemberFunctionPointer(); +  bool IsConstant = isa<llvm::Constant>(Src); + +  // Decompose src. +  llvm::Value *FirstField = Src; +  llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); +  llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); +  llvm::Value *VBPtrOffset = getZeroInt(); +  if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { +    // We need to extract values. +    unsigned I = 0; +    FirstField = Builder.CreateExtractValue(Src, I++); +    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) +      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); +    if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) +      VBPtrOffset = Builder.CreateExtractValue(Src, I++); +    if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) +      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); +  } + +  bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); +  const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; +  const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); + +  // For data pointers, we adjust the field offset directly.  For functions, we +  // have a separate field. +  llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; + +  // The virtual inheritance model has a quirk: the virtual base table is always +  // referenced when dereferencing a member pointer even if the member pointer +  // is non-virtual.  This is accounted for by adjusting the non-virtual offset +  // to point backwards to the top of the MDC from the first VBase.  Undo this +  // adjustment to normalize the member pointer. +  llvm::Value *SrcVBIndexEqZero = +      Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); +  if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { +    if (int64_t SrcOffsetToFirstVBase = +            getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { +      llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( +          SrcVBIndexEqZero, +          llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), +          getZeroInt()); +      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); +    } +  } + +  // A non-zero vbindex implies that we are dealing with a source member in a +  // floating virtual base in addition to some non-virtual offset.  If the +  // vbindex is zero, we are dealing with a source that exists in a non-virtual, +  // fixed, base.  The difference between these two cases is that the vbindex + +  // nvoffset *always* point to the member regardless of what context they are +  // evaluated in so long as the vbindex is adjusted.  A member inside a fixed +  // base requires explicit nv adjustment. +  llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( +      CGM.IntTy, +      CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) +          .getQuantity()); + +  llvm::Value *NVDisp; +  if (IsDerivedToBase) +    NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); +  else +    NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); + +  NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); + +  // Update the vbindex to an appropriate value in the destination because +  // SrcRD's vbtable might not be a strict prefix of the one in DstRD. +  llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; +  if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) && +      MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) { +    if (llvm::GlobalVariable *VDispMap = +            getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { +      llvm::Value *VBIndex = Builder.CreateExactUDiv( +          VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); +      if (IsConstant) { +        llvm::Constant *Mapping = VDispMap->getInitializer(); +        VirtualBaseAdjustmentOffset = +            Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); +      } else { +        llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; +        VirtualBaseAdjustmentOffset = +            Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), +                                      CharUnits::fromQuantity(4)); +      } + +      DstVBIndexEqZero = +          Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); +    } +  } + +  // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize +  // it to the offset of the vbptr. +  if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) { +    llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( +        CGM.IntTy, +        getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); +    VBPtrOffset = +        Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); +  } + +  // Likewise, apply a similar adjustment so that dereferencing the member +  // pointer correctly accounts for the distance between the start of the first +  // virtual base and the top of the MDC. +  if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { +    if (int64_t DstOffsetToFirstVBase = +            getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { +      llvm::Value *DoDstAdjustment = Builder.CreateSelect( +          DstVBIndexEqZero, +          llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), +          getZeroInt()); +      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); +    } +  } + +  // Recompose dst from the null struct and the adjusted fields from src. +  llvm::Value *Dst; +  if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) { +    Dst = FirstField; +  } else { +    Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); +    unsigned Idx = 0; +    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); +    if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) +      Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); +    if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) +      Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); +    if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) +      Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); +  } +  return Dst; +} + +llvm::Constant * +MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, +                                             llvm::Constant *Src) { +  const MemberPointerType *SrcTy = +      E->getSubExpr()->getType()->castAs<MemberPointerType>(); +  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); + +  CastKind CK = E->getCastKind(); + +  return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), +                                     E->path_end(), Src); +} + +llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( +    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, +    CastExpr::path_const_iterator PathBegin, +    CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { +  assert(CK == CK_DerivedToBaseMemberPointer || +         CK == CK_BaseToDerivedMemberPointer || +         CK == CK_ReinterpretMemberPointer); +  // If src is null, emit a new null for dst.  We can't return src because dst +  // might have a new representation. +  if (MemberPointerConstantIsNull(SrcTy, Src)) +    return EmitNullMemberPointer(DstTy); + +  // We don't need to do anything for reinterpret_casts of non-null member +  // pointers.  We should only get here when the two type representations have +  // the same size. +  if (CK == CK_ReinterpretMemberPointer) +    return Src; + +  CGBuilderTy Builder(CGM, CGM.getLLVMContext()); +  auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( +      SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); + +  return Dst; +} + +CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( +    CodeGenFunction &CGF, const Expr *E, Address This, +    llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, +    const MemberPointerType *MPT) { +  assert(MPT->isMemberFunctionPointer()); +  const FunctionProtoType *FPT = +    MPT->getPointeeType()->castAs<FunctionProtoType>(); +  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); +  llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( +      CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); +  CGBuilderTy &Builder = CGF.Builder; + +  MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); + +  // Extract the fields we need, regardless of model.  We'll apply them if we +  // have them. +  llvm::Value *FunctionPointer = MemPtr; +  llvm::Value *NonVirtualBaseAdjustment = nullptr; +  llvm::Value *VirtualBaseAdjustmentOffset = nullptr; +  llvm::Value *VBPtrOffset = nullptr; +  if (MemPtr->getType()->isStructTy()) { +    // We need to extract values. +    unsigned I = 0; +    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); +    if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance)) +      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); +    if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) +      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); +    if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) +      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); +  } + +  if (VirtualBaseAdjustmentOffset) { +    ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, +                                   VirtualBaseAdjustmentOffset, VBPtrOffset); +  } else { +    ThisPtrForCall = This.getPointer(); +  } + +  if (NonVirtualBaseAdjustment) { +    // Apply the adjustment and cast back to the original struct type. +    llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); +    Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); +    ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), +                                           "this.adjusted"); +  } + +  FunctionPointer = +    Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); +  CGCallee Callee(FPT, FunctionPointer); +  return Callee; +} + +CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { +  return new MicrosoftCXXABI(CGM); +} + +// MS RTTI Overview: +// The run time type information emitted by cl.exe contains 5 distinct types of +// structures.  Many of them reference each other. +// +// TypeInfo:  Static classes that are returned by typeid. +// +// CompleteObjectLocator:  Referenced by vftables.  They contain information +//   required for dynamic casting, including OffsetFromTop.  They also contain +//   a reference to the TypeInfo for the type and a reference to the +//   CompleteHierarchyDescriptor for the type. +// +// ClassHierarchyDescriptor: Contains information about a class hierarchy. +//   Used during dynamic_cast to walk a class hierarchy.  References a base +//   class array and the size of said array. +// +// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is +//   somewhat of a misnomer because the most derived class is also in the list +//   as well as multiple copies of virtual bases (if they occur multiple times +//   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for +//   every path in the hierarchy, in pre-order depth first order.  Note, we do +//   not declare a specific llvm type for BaseClassArray, it's merely an array +//   of BaseClassDescriptor pointers. +// +// BaseClassDescriptor: Contains information about a class in a class hierarchy. +//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that +//   BaseClassArray is.  It contains information about a class within a +//   hierarchy such as: is this base is ambiguous and what is its offset in the +//   vbtable.  The names of the BaseClassDescriptors have all of their fields +//   mangled into them so they can be aggressively deduplicated by the linker. + +static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { +  StringRef MangledName("??_7type_info@@6B@"); +  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) +    return VTable; +  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, +                                  /*isConstant=*/true, +                                  llvm::GlobalVariable::ExternalLinkage, +                                  /*Initializer=*/nullptr, MangledName); +} + +namespace { + +/// A Helper struct that stores information about a class in a class +/// hierarchy.  The information stored in these structs struct is used during +/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. +// During RTTI creation, MSRTTIClasses are stored in a contiguous array with +// implicit depth first pre-order tree connectivity.  getFirstChild and +// getNextSibling allow us to walk the tree efficiently. +struct MSRTTIClass { +  enum { +    IsPrivateOnPath = 1 | 8, +    IsAmbiguous = 2, +    IsPrivate = 4, +    IsVirtual = 16, +    HasHierarchyDescriptor = 64 +  }; +  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} +  uint32_t initialize(const MSRTTIClass *Parent, +                      const CXXBaseSpecifier *Specifier); + +  MSRTTIClass *getFirstChild() { return this + 1; } +  static MSRTTIClass *getNextChild(MSRTTIClass *Child) { +    return Child + 1 + Child->NumBases; +  } + +  const CXXRecordDecl *RD, *VirtualRoot; +  uint32_t Flags, NumBases, OffsetInVBase; +}; + +/// Recursively initialize the base class array. +uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, +                                 const CXXBaseSpecifier *Specifier) { +  Flags = HasHierarchyDescriptor; +  if (!Parent) { +    VirtualRoot = nullptr; +    OffsetInVBase = 0; +  } else { +    if (Specifier->getAccessSpecifier() != AS_public) +      Flags |= IsPrivate | IsPrivateOnPath; +    if (Specifier->isVirtual()) { +      Flags |= IsVirtual; +      VirtualRoot = RD; +      OffsetInVBase = 0; +    } else { +      if (Parent->Flags & IsPrivateOnPath) +        Flags |= IsPrivateOnPath; +      VirtualRoot = Parent->VirtualRoot; +      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() +          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); +    } +  } +  NumBases = 0; +  MSRTTIClass *Child = getFirstChild(); +  for (const CXXBaseSpecifier &Base : RD->bases()) { +    NumBases += Child->initialize(this, &Base) + 1; +    Child = getNextChild(Child); +  } +  return NumBases; +} + +static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { +  switch (Ty->getLinkage()) { +  case NoLinkage: +  case InternalLinkage: +  case UniqueExternalLinkage: +    return llvm::GlobalValue::InternalLinkage; + +  case VisibleNoLinkage: +  case ModuleInternalLinkage: +  case ModuleLinkage: +  case ExternalLinkage: +    return llvm::GlobalValue::LinkOnceODRLinkage; +  } +  llvm_unreachable("Invalid linkage!"); +} + +/// An ephemeral helper class for building MS RTTI types.  It caches some +/// calls to the module and information about the most derived class in a +/// hierarchy. +struct MSRTTIBuilder { +  enum { +    HasBranchingHierarchy = 1, +    HasVirtualBranchingHierarchy = 2, +    HasAmbiguousBases = 4 +  }; + +  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) +      : CGM(ABI.CGM), Context(CGM.getContext()), +        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), +        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), +        ABI(ABI) {} + +  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); +  llvm::GlobalVariable * +  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); +  llvm::GlobalVariable *getClassHierarchyDescriptor(); +  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); + +  CodeGenModule &CGM; +  ASTContext &Context; +  llvm::LLVMContext &VMContext; +  llvm::Module &Module; +  const CXXRecordDecl *RD; +  llvm::GlobalVariable::LinkageTypes Linkage; +  MicrosoftCXXABI &ABI; +}; + +} // namespace + +/// Recursively serializes a class hierarchy in pre-order depth first +/// order. +static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, +                                    const CXXRecordDecl *RD) { +  Classes.push_back(MSRTTIClass(RD)); +  for (const CXXBaseSpecifier &Base : RD->bases()) +    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); +} + +/// Find ambiguity among base classes. +static void +detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { +  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; +  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; +  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; +  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { +    if ((Class->Flags & MSRTTIClass::IsVirtual) && +        !VirtualBases.insert(Class->RD).second) { +      Class = MSRTTIClass::getNextChild(Class); +      continue; +    } +    if (!UniqueBases.insert(Class->RD).second) +      AmbiguousBases.insert(Class->RD); +    Class++; +  } +  if (AmbiguousBases.empty()) +    return; +  for (MSRTTIClass &Class : Classes) +    if (AmbiguousBases.count(Class.RD)) +      Class.Flags |= MSRTTIClass::IsAmbiguous; +} + +llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); +  } + +  // Check to see if we've already declared this ClassHierarchyDescriptor. +  if (auto CHD = Module.getNamedGlobal(MangledName)) +    return CHD; + +  // Serialize the class hierarchy and initialize the CHD Fields. +  SmallVector<MSRTTIClass, 8> Classes; +  serializeClassHierarchy(Classes, RD); +  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); +  detectAmbiguousBases(Classes); +  int Flags = 0; +  for (auto Class : Classes) { +    if (Class.RD->getNumBases() > 1) +      Flags |= HasBranchingHierarchy; +    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We +    // believe the field isn't actually used. +    if (Class.Flags & MSRTTIClass::IsAmbiguous) +      Flags |= HasAmbiguousBases; +  } +  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) +    Flags |= HasVirtualBranchingHierarchy; +  // These gep indices are used to get the address of the first element of the +  // base class array. +  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), +                               llvm::ConstantInt::get(CGM.IntTy, 0)}; + +  // Forward-declare the class hierarchy descriptor +  auto Type = ABI.getClassHierarchyDescriptorType(); +  auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, +                                      /*Initializer=*/nullptr, +                                      MangledName); +  if (CHD->isWeakForLinker()) +    CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); + +  auto *Bases = getBaseClassArray(Classes); + +  // Initialize the base class ClassHierarchyDescriptor. +  llvm::Constant *Fields[] = { +      llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime +      llvm::ConstantInt::get(CGM.IntTy, Flags), +      llvm::ConstantInt::get(CGM.IntTy, Classes.size()), +      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( +          Bases->getValueType(), Bases, +          llvm::ArrayRef<llvm::Value *>(GEPIndices))), +  }; +  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); +  return CHD; +} + +llvm::GlobalVariable * +MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); +  } + +  // Forward-declare the base class array. +  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit +  // mode) bytes of padding.  We provide a pointer sized amount of padding by +  // adding +1 to Classes.size().  The sections have pointer alignment and are +  // marked pick-any so it shouldn't matter. +  llvm::Type *PtrType = ABI.getImageRelativeType( +      ABI.getBaseClassDescriptorType()->getPointerTo()); +  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); +  auto *BCA = +      new llvm::GlobalVariable(Module, ArrType, +                               /*isConstant=*/true, Linkage, +                               /*Initializer=*/nullptr, MangledName); +  if (BCA->isWeakForLinker()) +    BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); + +  // Initialize the BaseClassArray. +  SmallVector<llvm::Constant *, 8> BaseClassArrayData; +  for (MSRTTIClass &Class : Classes) +    BaseClassArrayData.push_back( +        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); +  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); +  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); +  return BCA; +} + +llvm::GlobalVariable * +MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { +  // Compute the fields for the BaseClassDescriptor.  They are computed up front +  // because they are mangled into the name of the object. +  uint32_t OffsetInVBTable = 0; +  int32_t VBPtrOffset = -1; +  if (Class.VirtualRoot) { +    auto &VTableContext = CGM.getMicrosoftVTableContext(); +    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; +    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); +  } + +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( +        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, +        Class.Flags, Out); +  } + +  // Check to see if we've already declared this object. +  if (auto BCD = Module.getNamedGlobal(MangledName)) +    return BCD; + +  // Forward-declare the base class descriptor. +  auto Type = ABI.getBaseClassDescriptorType(); +  auto BCD = +      new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, +                               /*Initializer=*/nullptr, MangledName); +  if (BCD->isWeakForLinker()) +    BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); + +  // Initialize the BaseClassDescriptor. +  llvm::Constant *Fields[] = { +      ABI.getImageRelativeConstant( +          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), +      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), +      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), +      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), +      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), +      llvm::ConstantInt::get(CGM.IntTy, Class.Flags), +      ABI.getImageRelativeConstant( +          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), +  }; +  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); +  return BCD; +} + +llvm::GlobalVariable * +MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); +  } + +  // Check to see if we've already computed this complete object locator. +  if (auto COL = Module.getNamedGlobal(MangledName)) +    return COL; + +  // Compute the fields of the complete object locator. +  int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); +  int VFPtrOffset = 0; +  // The offset includes the vtordisp if one exists. +  if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) +    if (Context.getASTRecordLayout(RD) +      .getVBaseOffsetsMap() +      .find(VBase) +      ->second.hasVtorDisp()) +      VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; + +  // Forward-declare the complete object locator. +  llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); +  auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, +    /*Initializer=*/nullptr, MangledName); + +  // Initialize the CompleteObjectLocator. +  llvm::Constant *Fields[] = { +      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), +      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), +      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), +      ABI.getImageRelativeConstant( +          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), +      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), +      ABI.getImageRelativeConstant(COL), +  }; +  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); +  if (!ABI.isImageRelative()) +    FieldsRef = FieldsRef.drop_back(); +  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); +  if (COL->isWeakForLinker()) +    COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); +  return COL; +} + +static QualType decomposeTypeForEH(ASTContext &Context, QualType T, +                                   bool &IsConst, bool &IsVolatile, +                                   bool &IsUnaligned) { +  T = Context.getExceptionObjectType(T); + +  // C++14 [except.handle]p3: +  //   A handler is a match for an exception object of type E if [...] +  //     - the handler is of type cv T or const T& where T is a pointer type and +  //       E is a pointer type that can be converted to T by [...] +  //         - a qualification conversion +  IsConst = false; +  IsVolatile = false; +  IsUnaligned = false; +  QualType PointeeType = T->getPointeeType(); +  if (!PointeeType.isNull()) { +    IsConst = PointeeType.isConstQualified(); +    IsVolatile = PointeeType.isVolatileQualified(); +    IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); +  } + +  // Member pointer types like "const int A::*" are represented by having RTTI +  // for "int A::*" and separately storing the const qualifier. +  if (const auto *MPTy = T->getAs<MemberPointerType>()) +    T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), +                                     MPTy->getClass()); + +  // Pointer types like "const int * const *" are represented by having RTTI +  // for "const int **" and separately storing the const qualifier. +  if (T->isPointerType()) +    T = Context.getPointerType(PointeeType.getUnqualifiedType()); + +  return T; +} + +CatchTypeInfo +MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, +                                              QualType CatchHandlerType) { +  // TypeDescriptors for exceptions never have qualified pointer types, +  // qualifiers are stored separately in order to support qualification +  // conversions. +  bool IsConst, IsVolatile, IsUnaligned; +  Type = +      decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); + +  bool IsReference = CatchHandlerType->isReferenceType(); + +  uint32_t Flags = 0; +  if (IsConst) +    Flags |= 1; +  if (IsVolatile) +    Flags |= 2; +  if (IsUnaligned) +    Flags |= 4; +  if (IsReference) +    Flags |= 8; + +  return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), +                       Flags}; +} + +/// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a +/// llvm::GlobalVariable * because different type descriptors have different +/// types, and need to be abstracted.  They are abstracting by casting the +/// address to an Int8PtrTy. +llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    getMangleContext().mangleCXXRTTI(Type, Out); +  } + +  // Check to see if we've already declared this TypeDescriptor. +  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) +    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); + +  // Note for the future: If we would ever like to do deferred emission of +  // RTTI, check if emitting vtables opportunistically need any adjustment. + +  // Compute the fields for the TypeDescriptor. +  SmallString<256> TypeInfoString; +  { +    llvm::raw_svector_ostream Out(TypeInfoString); +    getMangleContext().mangleCXXRTTIName(Type, Out); +  } + +  // Declare and initialize the TypeDescriptor. +  llvm::Constant *Fields[] = { +    getTypeInfoVTable(CGM),                        // VFPtr +    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data +    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; +  llvm::StructType *TypeDescriptorType = +      getTypeDescriptorType(TypeInfoString); +  auto *Var = new llvm::GlobalVariable( +      CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, +      getLinkageForRTTI(Type), +      llvm::ConstantStruct::get(TypeDescriptorType, Fields), +      MangledName); +  if (Var->isWeakForLinker()) +    Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); +  return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); +} + +/// Gets or a creates a Microsoft CompleteObjectLocator. +llvm::GlobalVariable * +MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, +                                            const VPtrInfo &Info) { +  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); +} + +void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { +  if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { +    // There are no constructor variants, always emit the complete destructor. +    llvm::Function *Fn = +        CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); +    CGM.maybeSetTrivialComdat(*ctor, *Fn); +    return; +  } + +  auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); + +  // Emit the base destructor if the base and complete (vbase) destructors are +  // equivalent. This effectively implements -mconstructor-aliases as part of +  // the ABI. +  if (GD.getDtorType() == Dtor_Complete && +      dtor->getParent()->getNumVBases() == 0) +    GD = GD.getWithDtorType(Dtor_Base); + +  // The base destructor is equivalent to the base destructor of its +  // base class if there is exactly one non-virtual base class with a +  // non-trivial destructor, there are no fields with a non-trivial +  // destructor, and the body of the destructor is trivial. +  if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) +    return; + +  llvm::Function *Fn = CGM.codegenCXXStructor(GD); +  if (Fn->isWeakForLinker()) +    Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); +} + +llvm::Function * +MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, +                                         CXXCtorType CT) { +  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); + +  // Calculate the mangled name. +  SmallString<256> ThunkName; +  llvm::raw_svector_ostream Out(ThunkName); +  getMangleContext().mangleCXXCtor(CD, CT, Out); + +  // If the thunk has been generated previously, just return it. +  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) +    return cast<llvm::Function>(GV); + +  // Create the llvm::Function. +  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); +  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); +  const CXXRecordDecl *RD = CD->getParent(); +  QualType RecordTy = getContext().getRecordType(RD); +  llvm::Function *ThunkFn = llvm::Function::Create( +      ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); +  ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( +      FnInfo.getEffectiveCallingConvention())); +  if (ThunkFn->isWeakForLinker()) +    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); +  bool IsCopy = CT == Ctor_CopyingClosure; + +  // Start codegen. +  CodeGenFunction CGF(CGM); +  CGF.CurGD = GlobalDecl(CD, Ctor_Complete); + +  // Build FunctionArgs. +  FunctionArgList FunctionArgs; + +  // A constructor always starts with a 'this' pointer as its first argument. +  buildThisParam(CGF, FunctionArgs); + +  // Following the 'this' pointer is a reference to the source object that we +  // are copying from. +  ImplicitParamDecl SrcParam( +      getContext(), /*DC=*/nullptr, SourceLocation(), +      &getContext().Idents.get("src"), +      getContext().getLValueReferenceType(RecordTy, +                                          /*SpelledAsLValue=*/true), +      ImplicitParamDecl::Other); +  if (IsCopy) +    FunctionArgs.push_back(&SrcParam); + +  // Constructors for classes which utilize virtual bases have an additional +  // parameter which indicates whether or not it is being delegated to by a more +  // derived constructor. +  ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, +                                  SourceLocation(), +                                  &getContext().Idents.get("is_most_derived"), +                                  getContext().IntTy, ImplicitParamDecl::Other); +  // Only add the parameter to the list if the class has virtual bases. +  if (RD->getNumVBases() > 0) +    FunctionArgs.push_back(&IsMostDerived); + +  // Start defining the function. +  auto NL = ApplyDebugLocation::CreateEmpty(CGF); +  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, +                    FunctionArgs, CD->getLocation(), SourceLocation()); +  // Create a scope with an artificial location for the body of this function. +  auto AL = ApplyDebugLocation::CreateArtificial(CGF); +  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); +  llvm::Value *This = getThisValue(CGF); + +  llvm::Value *SrcVal = +      IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") +             : nullptr; + +  CallArgList Args; + +  // Push the this ptr. +  Args.add(RValue::get(This), CD->getThisType()); + +  // Push the src ptr. +  if (SrcVal) +    Args.add(RValue::get(SrcVal), SrcParam.getType()); + +  // Add the rest of the default arguments. +  SmallVector<const Stmt *, 4> ArgVec; +  ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); +  for (const ParmVarDecl *PD : params) { +    assert(PD->hasDefaultArg() && "ctor closure lacks default args"); +    ArgVec.push_back(PD->getDefaultArg()); +  } + +  CodeGenFunction::RunCleanupsScope Cleanups(CGF); + +  const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); +  CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); + +  // Insert any ABI-specific implicit constructor arguments. +  AddedStructorArgs ExtraArgs = +      addImplicitConstructorArgs(CGF, CD, Ctor_Complete, +                                 /*ForVirtualBase=*/false, +                                 /*Delegating=*/false, Args); +  // Call the destructor with our arguments. +  llvm::Constant *CalleePtr = +      CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); +  CGCallee Callee = +      CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); +  const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( +      Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); +  CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); + +  Cleanups.ForceCleanup(); + +  // Emit the ret instruction, remove any temporary instructions created for the +  // aid of CodeGen. +  CGF.FinishFunction(SourceLocation()); + +  return ThunkFn; +} + +llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, +                                                  uint32_t NVOffset, +                                                  int32_t VBPtrOffset, +                                                  uint32_t VBIndex) { +  assert(!T->isReferenceType()); + +  CXXRecordDecl *RD = T->getAsCXXRecordDecl(); +  const CXXConstructorDecl *CD = +      RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; +  CXXCtorType CT = Ctor_Complete; +  if (CD) +    if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) +      CT = Ctor_CopyingClosure; + +  uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, +                                              VBPtrOffset, VBIndex, Out); +  } +  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) +    return getImageRelativeConstant(GV); + +  // The TypeDescriptor is used by the runtime to determine if a catch handler +  // is appropriate for the exception object. +  llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); + +  // The runtime is responsible for calling the copy constructor if the +  // exception is caught by value. +  llvm::Constant *CopyCtor; +  if (CD) { +    if (CT == Ctor_CopyingClosure) +      CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); +    else +      CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); + +    CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); +  } else { +    CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); +  } +  CopyCtor = getImageRelativeConstant(CopyCtor); + +  bool IsScalar = !RD; +  bool HasVirtualBases = false; +  bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. +  QualType PointeeType = T; +  if (T->isPointerType()) +    PointeeType = T->getPointeeType(); +  if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { +    HasVirtualBases = RD->getNumVBases() > 0; +    if (IdentifierInfo *II = RD->getIdentifier()) +      IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); +  } + +  // Encode the relevant CatchableType properties into the Flags bitfield. +  // FIXME: Figure out how bits 2 or 8 can get set. +  uint32_t Flags = 0; +  if (IsScalar) +    Flags |= 1; +  if (HasVirtualBases) +    Flags |= 4; +  if (IsStdBadAlloc) +    Flags |= 16; + +  llvm::Constant *Fields[] = { +      llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags +      TD,                                             // TypeDescriptor +      llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment +      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr +      llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex +      llvm::ConstantInt::get(CGM.IntTy, Size),        // Size +      CopyCtor                                        // CopyCtor +  }; +  llvm::StructType *CTType = getCatchableTypeType(); +  auto *GV = new llvm::GlobalVariable( +      CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), +      llvm::ConstantStruct::get(CTType, Fields), MangledName); +  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  GV->setSection(".xdata"); +  if (GV->isWeakForLinker()) +    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); +  return getImageRelativeConstant(GV); +} + +llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { +  assert(!T->isReferenceType()); + +  // See if we've already generated a CatchableTypeArray for this type before. +  llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; +  if (CTA) +    return CTA; + +  // Ensure that we don't have duplicate entries in our CatchableTypeArray by +  // using a SmallSetVector.  Duplicates may arise due to virtual bases +  // occurring more than once in the hierarchy. +  llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; + +  // C++14 [except.handle]p3: +  //   A handler is a match for an exception object of type E if [...] +  //     - the handler is of type cv T or cv T& and T is an unambiguous public +  //       base class of E, or +  //     - the handler is of type cv T or const T& where T is a pointer type and +  //       E is a pointer type that can be converted to T by [...] +  //         - a standard pointer conversion (4.10) not involving conversions to +  //           pointers to private or protected or ambiguous classes +  const CXXRecordDecl *MostDerivedClass = nullptr; +  bool IsPointer = T->isPointerType(); +  if (IsPointer) +    MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); +  else +    MostDerivedClass = T->getAsCXXRecordDecl(); + +  // Collect all the unambiguous public bases of the MostDerivedClass. +  if (MostDerivedClass) { +    const ASTContext &Context = getContext(); +    const ASTRecordLayout &MostDerivedLayout = +        Context.getASTRecordLayout(MostDerivedClass); +    MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); +    SmallVector<MSRTTIClass, 8> Classes; +    serializeClassHierarchy(Classes, MostDerivedClass); +    Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); +    detectAmbiguousBases(Classes); +    for (const MSRTTIClass &Class : Classes) { +      // Skip any ambiguous or private bases. +      if (Class.Flags & +          (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) +        continue; +      // Write down how to convert from a derived pointer to a base pointer. +      uint32_t OffsetInVBTable = 0; +      int32_t VBPtrOffset = -1; +      if (Class.VirtualRoot) { +        OffsetInVBTable = +          VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; +        VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); +      } + +      // Turn our record back into a pointer if the exception object is a +      // pointer. +      QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); +      if (IsPointer) +        RTTITy = Context.getPointerType(RTTITy); +      CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, +                                             VBPtrOffset, OffsetInVBTable)); +    } +  } + +  // C++14 [except.handle]p3: +  //   A handler is a match for an exception object of type E if +  //     - The handler is of type cv T or cv T& and E and T are the same type +  //       (ignoring the top-level cv-qualifiers) +  CatchableTypes.insert(getCatchableType(T)); + +  // C++14 [except.handle]p3: +  //   A handler is a match for an exception object of type E if +  //     - the handler is of type cv T or const T& where T is a pointer type and +  //       E is a pointer type that can be converted to T by [...] +  //         - a standard pointer conversion (4.10) not involving conversions to +  //           pointers to private or protected or ambiguous classes +  // +  // C++14 [conv.ptr]p2: +  //   A prvalue of type "pointer to cv T," where T is an object type, can be +  //   converted to a prvalue of type "pointer to cv void". +  if (IsPointer && T->getPointeeType()->isObjectType()) +    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); + +  // C++14 [except.handle]p3: +  //   A handler is a match for an exception object of type E if [...] +  //     - the handler is of type cv T or const T& where T is a pointer or +  //       pointer to member type and E is std::nullptr_t. +  // +  // We cannot possibly list all possible pointer types here, making this +  // implementation incompatible with the standard.  However, MSVC includes an +  // entry for pointer-to-void in this case.  Let's do the same. +  if (T->isNullPtrType()) +    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); + +  uint32_t NumEntries = CatchableTypes.size(); +  llvm::Type *CTType = +      getImageRelativeType(getCatchableTypeType()->getPointerTo()); +  llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); +  llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); +  llvm::Constant *Fields[] = { +      llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries +      llvm::ConstantArray::get( +          AT, llvm::makeArrayRef(CatchableTypes.begin(), +                                 CatchableTypes.end())) // CatchableTypes +  }; +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); +  } +  CTA = new llvm::GlobalVariable( +      CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), +      llvm::ConstantStruct::get(CTAType, Fields), MangledName); +  CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  CTA->setSection(".xdata"); +  if (CTA->isWeakForLinker()) +    CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); +  return CTA; +} + +llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { +  bool IsConst, IsVolatile, IsUnaligned; +  T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); + +  // The CatchableTypeArray enumerates the various (CV-unqualified) types that +  // the exception object may be caught as. +  llvm::GlobalVariable *CTA = getCatchableTypeArray(T); +  // The first field in a CatchableTypeArray is the number of CatchableTypes. +  // This is used as a component of the mangled name which means that we need to +  // know what it is in order to see if we have previously generated the +  // ThrowInfo. +  uint32_t NumEntries = +      cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) +          ->getLimitedValue(); + +  SmallString<256> MangledName; +  { +    llvm::raw_svector_ostream Out(MangledName); +    getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, +                                          NumEntries, Out); +  } + +  // Reuse a previously generated ThrowInfo if we have generated an appropriate +  // one before. +  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) +    return GV; + +  // The RTTI TypeDescriptor uses an unqualified type but catch clauses must +  // be at least as CV qualified.  Encode this requirement into the Flags +  // bitfield. +  uint32_t Flags = 0; +  if (IsConst) +    Flags |= 1; +  if (IsVolatile) +    Flags |= 2; +  if (IsUnaligned) +    Flags |= 4; + +  // The cleanup-function (a destructor) must be called when the exception +  // object's lifetime ends. +  llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); +  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) +    if (CXXDestructorDecl *DtorD = RD->getDestructor()) +      if (!DtorD->isTrivial()) +        CleanupFn = llvm::ConstantExpr::getBitCast( +            CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), +            CGM.Int8PtrTy); +  // This is unused as far as we can tell, initialize it to null. +  llvm::Constant *ForwardCompat = +      getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); +  llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( +      llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); +  llvm::StructType *TIType = getThrowInfoType(); +  llvm::Constant *Fields[] = { +      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags +      getImageRelativeConstant(CleanupFn),      // CleanupFn +      ForwardCompat,                            // ForwardCompat +      PointerToCatchableTypes                   // CatchableTypeArray +  }; +  auto *GV = new llvm::GlobalVariable( +      CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), +      llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); +  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  GV->setSection(".xdata"); +  if (GV->isWeakForLinker()) +    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); +  return GV; +} + +void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { +  const Expr *SubExpr = E->getSubExpr(); +  QualType ThrowType = SubExpr->getType(); +  // The exception object lives on the stack and it's address is passed to the +  // runtime function. +  Address AI = CGF.CreateMemTemp(ThrowType); +  CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), +                       /*IsInit=*/true); + +  // The so-called ThrowInfo is used to describe how the exception object may be +  // caught. +  llvm::GlobalVariable *TI = getThrowInfo(ThrowType); + +  // Call into the runtime to throw the exception. +  llvm::Value *Args[] = { +    CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), +    TI +  }; +  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); +} + +std::pair<llvm::Value *, const CXXRecordDecl *> +MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, +                               const CXXRecordDecl *RD) { +  std::tie(This, std::ignore, RD) = +      performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); +  return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; +} | 
