summaryrefslogtreecommitdiff
path: root/clang/lib/Lex/LiteralSupport.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Lex/LiteralSupport.cpp')
-rw-r--r--clang/lib/Lex/LiteralSupport.cpp1896
1 files changed, 1896 insertions, 0 deletions
diff --git a/clang/lib/Lex/LiteralSupport.cpp b/clang/lib/Lex/LiteralSupport.cpp
new file mode 100644
index 000000000000..2108408377fb
--- /dev/null
+++ b/clang/lib/Lex/LiteralSupport.cpp
@@ -0,0 +1,1896 @@
+//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the NumericLiteralParser, CharLiteralParser, and
+// StringLiteralParser interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LexDiagnostic.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/Token.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <string>
+
+using namespace clang;
+
+static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
+ switch (kind) {
+ default: llvm_unreachable("Unknown token type!");
+ case tok::char_constant:
+ case tok::string_literal:
+ case tok::utf8_char_constant:
+ case tok::utf8_string_literal:
+ return Target.getCharWidth();
+ case tok::wide_char_constant:
+ case tok::wide_string_literal:
+ return Target.getWCharWidth();
+ case tok::utf16_char_constant:
+ case tok::utf16_string_literal:
+ return Target.getChar16Width();
+ case tok::utf32_char_constant:
+ case tok::utf32_string_literal:
+ return Target.getChar32Width();
+ }
+}
+
+static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
+ FullSourceLoc TokLoc,
+ const char *TokBegin,
+ const char *TokRangeBegin,
+ const char *TokRangeEnd) {
+ SourceLocation Begin =
+ Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
+ TokLoc.getManager(), Features);
+ SourceLocation End =
+ Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
+ TokLoc.getManager(), Features);
+ return CharSourceRange::getCharRange(Begin, End);
+}
+
+/// Produce a diagnostic highlighting some portion of a literal.
+///
+/// Emits the diagnostic \p DiagID, highlighting the range of characters from
+/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
+/// a substring of a spelling buffer for the token beginning at \p TokBegin.
+static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
+ const LangOptions &Features, FullSourceLoc TokLoc,
+ const char *TokBegin, const char *TokRangeBegin,
+ const char *TokRangeEnd, unsigned DiagID) {
+ SourceLocation Begin =
+ Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
+ TokLoc.getManager(), Features);
+ return Diags->Report(Begin, DiagID) <<
+ MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
+}
+
+/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
+/// either a character or a string literal.
+static unsigned ProcessCharEscape(const char *ThisTokBegin,
+ const char *&ThisTokBuf,
+ const char *ThisTokEnd, bool &HadError,
+ FullSourceLoc Loc, unsigned CharWidth,
+ DiagnosticsEngine *Diags,
+ const LangOptions &Features) {
+ const char *EscapeBegin = ThisTokBuf;
+
+ // Skip the '\' char.
+ ++ThisTokBuf;
+
+ // We know that this character can't be off the end of the buffer, because
+ // that would have been \", which would not have been the end of string.
+ unsigned ResultChar = *ThisTokBuf++;
+ switch (ResultChar) {
+ // These map to themselves.
+ case '\\': case '\'': case '"': case '?': break;
+
+ // These have fixed mappings.
+ case 'a':
+ // TODO: K&R: the meaning of '\\a' is different in traditional C
+ ResultChar = 7;
+ break;
+ case 'b':
+ ResultChar = 8;
+ break;
+ case 'e':
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape) << "e";
+ ResultChar = 27;
+ break;
+ case 'E':
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape) << "E";
+ ResultChar = 27;
+ break;
+ case 'f':
+ ResultChar = 12;
+ break;
+ case 'n':
+ ResultChar = 10;
+ break;
+ case 'r':
+ ResultChar = 13;
+ break;
+ case 't':
+ ResultChar = 9;
+ break;
+ case 'v':
+ ResultChar = 11;
+ break;
+ case 'x': { // Hex escape.
+ ResultChar = 0;
+ if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_hex_escape_no_digits) << "x";
+ HadError = true;
+ break;
+ }
+
+ // Hex escapes are a maximal series of hex digits.
+ bool Overflow = false;
+ for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
+ int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
+ if (CharVal == -1) break;
+ // About to shift out a digit?
+ if (ResultChar & 0xF0000000)
+ Overflow = true;
+ ResultChar <<= 4;
+ ResultChar |= CharVal;
+ }
+
+ // See if any bits will be truncated when evaluated as a character.
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ Overflow = true;
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+
+ // Check for overflow.
+ if (Overflow && Diags) // Too many digits to fit in
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_escape_too_large) << 0;
+ break;
+ }
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7': {
+ // Octal escapes.
+ --ThisTokBuf;
+ ResultChar = 0;
+
+ // Octal escapes are a series of octal digits with maximum length 3.
+ // "\0123" is a two digit sequence equal to "\012" "3".
+ unsigned NumDigits = 0;
+ do {
+ ResultChar <<= 3;
+ ResultChar |= *ThisTokBuf++ - '0';
+ ++NumDigits;
+ } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
+ ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
+
+ // Check for overflow. Reject '\777', but not L'\777'.
+ if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::err_escape_too_large) << 1;
+ ResultChar &= ~0U >> (32-CharWidth);
+ }
+ break;
+ }
+
+ // Otherwise, these are not valid escapes.
+ case '(': case '{': case '[': case '%':
+ // GCC accepts these as extensions. We warn about them as such though.
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_nonstandard_escape)
+ << std::string(1, ResultChar);
+ break;
+ default:
+ if (!Diags)
+ break;
+
+ if (isPrintable(ResultChar))
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_unknown_escape)
+ << std::string(1, ResultChar);
+ else
+ Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
+ diag::ext_unknown_escape)
+ << "x" + llvm::utohexstr(ResultChar);
+ break;
+ }
+
+ return ResultChar;
+}
+
+static void appendCodePoint(unsigned Codepoint,
+ llvm::SmallVectorImpl<char> &Str) {
+ char ResultBuf[4];
+ char *ResultPtr = ResultBuf;
+ bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
+ (void)Res;
+ assert(Res && "Unexpected conversion failure");
+ Str.append(ResultBuf, ResultPtr);
+}
+
+void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
+ for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
+ if (*I != '\\') {
+ Buf.push_back(*I);
+ continue;
+ }
+
+ ++I;
+ assert(*I == 'u' || *I == 'U');
+
+ unsigned NumHexDigits;
+ if (*I == 'u')
+ NumHexDigits = 4;
+ else
+ NumHexDigits = 8;
+
+ assert(I + NumHexDigits <= E);
+
+ uint32_t CodePoint = 0;
+ for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
+ unsigned Value = llvm::hexDigitValue(*I);
+ assert(Value != -1U);
+
+ CodePoint <<= 4;
+ CodePoint += Value;
+ }
+
+ appendCodePoint(CodePoint, Buf);
+ --I;
+ }
+}
+
+/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
+/// return the UTF32.
+static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd,
+ uint32_t &UcnVal, unsigned short &UcnLen,
+ FullSourceLoc Loc, DiagnosticsEngine *Diags,
+ const LangOptions &Features,
+ bool in_char_string_literal = false) {
+ const char *UcnBegin = ThisTokBuf;
+
+ // Skip the '\u' char's.
+ ThisTokBuf += 2;
+
+ if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
+ return false;
+ }
+ UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
+ unsigned short UcnLenSave = UcnLen;
+ for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
+ int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
+ if (CharVal == -1) break;
+ UcnVal <<= 4;
+ UcnVal |= CharVal;
+ }
+ // If we didn't consume the proper number of digits, there is a problem.
+ if (UcnLenSave) {
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_ucn_escape_incomplete);
+ return false;
+ }
+
+ // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
+ if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
+ UcnVal > 0x10FFFF) { // maximum legal UTF32 value
+ if (Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::err_ucn_escape_invalid);
+ return false;
+ }
+
+ // C++11 allows UCNs that refer to control characters and basic source
+ // characters inside character and string literals
+ if (UcnVal < 0xa0 &&
+ (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
+ bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
+ if (Diags) {
+ char BasicSCSChar = UcnVal;
+ if (UcnVal >= 0x20 && UcnVal < 0x7f)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ IsError ? diag::err_ucn_escape_basic_scs :
+ diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
+ << StringRef(&BasicSCSChar, 1);
+ else
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ IsError ? diag::err_ucn_control_character :
+ diag::warn_cxx98_compat_literal_ucn_control_character);
+ }
+ if (IsError)
+ return false;
+ }
+
+ if (!Features.CPlusPlus && !Features.C99 && Diags)
+ Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
+ diag::warn_ucn_not_valid_in_c89_literal);
+
+ return true;
+}
+
+/// MeasureUCNEscape - Determine the number of bytes within the resulting string
+/// which this UCN will occupy.
+static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd, unsigned CharByteWidth,
+ const LangOptions &Features, bool &HadError) {
+ // UTF-32: 4 bytes per escape.
+ if (CharByteWidth == 4)
+ return 4;
+
+ uint32_t UcnVal = 0;
+ unsigned short UcnLen = 0;
+ FullSourceLoc Loc;
+
+ if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
+ UcnLen, Loc, nullptr, Features, true)) {
+ HadError = true;
+ return 0;
+ }
+
+ // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
+ if (CharByteWidth == 2)
+ return UcnVal <= 0xFFFF ? 2 : 4;
+
+ // UTF-8.
+ if (UcnVal < 0x80)
+ return 1;
+ if (UcnVal < 0x800)
+ return 2;
+ if (UcnVal < 0x10000)
+ return 3;
+ return 4;
+}
+
+/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
+/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
+/// StringLiteralParser. When we decide to implement UCN's for identifiers,
+/// we will likely rework our support for UCN's.
+static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
+ const char *ThisTokEnd,
+ char *&ResultBuf, bool &HadError,
+ FullSourceLoc Loc, unsigned CharByteWidth,
+ DiagnosticsEngine *Diags,
+ const LangOptions &Features) {
+ typedef uint32_t UTF32;
+ UTF32 UcnVal = 0;
+ unsigned short UcnLen = 0;
+ if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
+ Loc, Diags, Features, true)) {
+ HadError = true;
+ return;
+ }
+
+ assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
+ "only character widths of 1, 2, or 4 bytes supported");
+
+ (void)UcnLen;
+ assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
+
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
+ *ResultPtr = UcnVal;
+ ResultBuf += 4;
+ return;
+ }
+
+ if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
+
+ if (UcnVal <= (UTF32)0xFFFF) {
+ *ResultPtr = UcnVal;
+ ResultBuf += 2;
+ return;
+ }
+
+ // Convert to UTF16.
+ UcnVal -= 0x10000;
+ *ResultPtr = 0xD800 + (UcnVal >> 10);
+ *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
+ ResultBuf += 4;
+ return;
+ }
+
+ assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
+
+ // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
+ // The conversion below was inspired by:
+ // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
+ // First, we determine how many bytes the result will require.
+ typedef uint8_t UTF8;
+
+ unsigned short bytesToWrite = 0;
+ if (UcnVal < (UTF32)0x80)
+ bytesToWrite = 1;
+ else if (UcnVal < (UTF32)0x800)
+ bytesToWrite = 2;
+ else if (UcnVal < (UTF32)0x10000)
+ bytesToWrite = 3;
+ else
+ bytesToWrite = 4;
+
+ const unsigned byteMask = 0xBF;
+ const unsigned byteMark = 0x80;
+
+ // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
+ // into the first byte, depending on how many bytes follow.
+ static const UTF8 firstByteMark[5] = {
+ 0x00, 0x00, 0xC0, 0xE0, 0xF0
+ };
+ // Finally, we write the bytes into ResultBuf.
+ ResultBuf += bytesToWrite;
+ switch (bytesToWrite) { // note: everything falls through.
+ case 4:
+ *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ LLVM_FALLTHROUGH;
+ case 3:
+ *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ LLVM_FALLTHROUGH;
+ case 2:
+ *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
+ LLVM_FALLTHROUGH;
+ case 1:
+ *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
+ }
+ // Update the buffer.
+ ResultBuf += bytesToWrite;
+}
+
+/// integer-constant: [C99 6.4.4.1]
+/// decimal-constant integer-suffix
+/// octal-constant integer-suffix
+/// hexadecimal-constant integer-suffix
+/// binary-literal integer-suffix [GNU, C++1y]
+/// user-defined-integer-literal: [C++11 lex.ext]
+/// decimal-literal ud-suffix
+/// octal-literal ud-suffix
+/// hexadecimal-literal ud-suffix
+/// binary-literal ud-suffix [GNU, C++1y]
+/// decimal-constant:
+/// nonzero-digit
+/// decimal-constant digit
+/// octal-constant:
+/// 0
+/// octal-constant octal-digit
+/// hexadecimal-constant:
+/// hexadecimal-prefix hexadecimal-digit
+/// hexadecimal-constant hexadecimal-digit
+/// hexadecimal-prefix: one of
+/// 0x 0X
+/// binary-literal:
+/// 0b binary-digit
+/// 0B binary-digit
+/// binary-literal binary-digit
+/// integer-suffix:
+/// unsigned-suffix [long-suffix]
+/// unsigned-suffix [long-long-suffix]
+/// long-suffix [unsigned-suffix]
+/// long-long-suffix [unsigned-sufix]
+/// nonzero-digit:
+/// 1 2 3 4 5 6 7 8 9
+/// octal-digit:
+/// 0 1 2 3 4 5 6 7
+/// hexadecimal-digit:
+/// 0 1 2 3 4 5 6 7 8 9
+/// a b c d e f
+/// A B C D E F
+/// binary-digit:
+/// 0
+/// 1
+/// unsigned-suffix: one of
+/// u U
+/// long-suffix: one of
+/// l L
+/// long-long-suffix: one of
+/// ll LL
+///
+/// floating-constant: [C99 6.4.4.2]
+/// TODO: add rules...
+///
+NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
+ SourceLocation TokLoc,
+ Preprocessor &PP)
+ : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
+
+ // This routine assumes that the range begin/end matches the regex for integer
+ // and FP constants (specifically, the 'pp-number' regex), and assumes that
+ // the byte at "*end" is both valid and not part of the regex. Because of
+ // this, it doesn't have to check for 'overscan' in various places.
+ assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
+
+ s = DigitsBegin = ThisTokBegin;
+ saw_exponent = false;
+ saw_period = false;
+ saw_ud_suffix = false;
+ saw_fixed_point_suffix = false;
+ isLong = false;
+ isUnsigned = false;
+ isLongLong = false;
+ isHalf = false;
+ isFloat = false;
+ isImaginary = false;
+ isFloat16 = false;
+ isFloat128 = false;
+ MicrosoftInteger = 0;
+ isFract = false;
+ isAccum = false;
+ hadError = false;
+
+ if (*s == '0') { // parse radix
+ ParseNumberStartingWithZero(TokLoc);
+ if (hadError)
+ return;
+ } else { // the first digit is non-zero
+ radix = 10;
+ s = SkipDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else {
+ ParseDecimalOrOctalCommon(TokLoc);
+ if (hadError)
+ return;
+ }
+ }
+
+ SuffixBegin = s;
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+
+ // Initial scan to lookahead for fixed point suffix.
+ if (PP.getLangOpts().FixedPoint) {
+ for (const char *c = s; c != ThisTokEnd; ++c) {
+ if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
+ saw_fixed_point_suffix = true;
+ break;
+ }
+ }
+ }
+
+ // Parse the suffix. At this point we can classify whether we have an FP or
+ // integer constant.
+ bool isFPConstant = isFloatingLiteral();
+
+ // Loop over all of the characters of the suffix. If we see something bad,
+ // we break out of the loop.
+ for (; s != ThisTokEnd; ++s) {
+ switch (*s) {
+ case 'R':
+ case 'r':
+ if (!PP.getLangOpts().FixedPoint) break;
+ if (isFract || isAccum) break;
+ if (!(saw_period || saw_exponent)) break;
+ isFract = true;
+ continue;
+ case 'K':
+ case 'k':
+ if (!PP.getLangOpts().FixedPoint) break;
+ if (isFract || isAccum) break;
+ if (!(saw_period || saw_exponent)) break;
+ isAccum = true;
+ continue;
+ case 'h': // FP Suffix for "half".
+ case 'H':
+ // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
+ if (!(PP.getLangOpts().Half || PP.getLangOpts().FixedPoint)) break;
+ if (isIntegerLiteral()) break; // Error for integer constant.
+ if (isHalf || isFloat || isLong) break; // HH, FH, LH invalid.
+ isHalf = true;
+ continue; // Success.
+ case 'f': // FP Suffix for "float"
+ case 'F':
+ if (!isFPConstant) break; // Error for integer constant.
+ if (isHalf || isFloat || isLong || isFloat128)
+ break; // HF, FF, LF, QF invalid.
+
+ // CUDA host and device may have different _Float16 support, therefore
+ // allows f16 literals to avoid false alarm.
+ // ToDo: more precise check for CUDA.
+ if ((PP.getTargetInfo().hasFloat16Type() || PP.getLangOpts().CUDA) &&
+ s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
+ s += 2; // success, eat up 2 characters.
+ isFloat16 = true;
+ continue;
+ }
+
+ isFloat = true;
+ continue; // Success.
+ case 'q': // FP Suffix for "__float128"
+ case 'Q':
+ if (!isFPConstant) break; // Error for integer constant.
+ if (isHalf || isFloat || isLong || isFloat128)
+ break; // HQ, FQ, LQ, QQ invalid.
+ isFloat128 = true;
+ continue; // Success.
+ case 'u':
+ case 'U':
+ if (isFPConstant) break; // Error for floating constant.
+ if (isUnsigned) break; // Cannot be repeated.
+ isUnsigned = true;
+ continue; // Success.
+ case 'l':
+ case 'L':
+ if (isLong || isLongLong) break; // Cannot be repeated.
+ if (isHalf || isFloat || isFloat128) break; // LH, LF, LQ invalid.
+
+ // Check for long long. The L's need to be adjacent and the same case.
+ if (s[1] == s[0]) {
+ assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
+ if (isFPConstant) break; // long long invalid for floats.
+ isLongLong = true;
+ ++s; // Eat both of them.
+ } else {
+ isLong = true;
+ }
+ continue; // Success.
+ case 'i':
+ case 'I':
+ if (PP.getLangOpts().MicrosoftExt) {
+ if (isLong || isLongLong || MicrosoftInteger)
+ break;
+
+ if (!isFPConstant) {
+ // Allow i8, i16, i32, and i64.
+ switch (s[1]) {
+ case '8':
+ s += 2; // i8 suffix
+ MicrosoftInteger = 8;
+ break;
+ case '1':
+ if (s[2] == '6') {
+ s += 3; // i16 suffix
+ MicrosoftInteger = 16;
+ }
+ break;
+ case '3':
+ if (s[2] == '2') {
+ s += 3; // i32 suffix
+ MicrosoftInteger = 32;
+ }
+ break;
+ case '6':
+ if (s[2] == '4') {
+ s += 3; // i64 suffix
+ MicrosoftInteger = 64;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ if (MicrosoftInteger) {
+ assert(s <= ThisTokEnd && "didn't maximally munch?");
+ break;
+ }
+ }
+ LLVM_FALLTHROUGH;
+ case 'j':
+ case 'J':
+ if (isImaginary) break; // Cannot be repeated.
+ isImaginary = true;
+ continue; // Success.
+ }
+ // If we reached here, there was an error or a ud-suffix.
+ break;
+ }
+
+ // "i", "if", and "il" are user-defined suffixes in C++1y.
+ if (s != ThisTokEnd || isImaginary) {
+ // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
+ expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
+ if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
+ if (!isImaginary) {
+ // Any suffix pieces we might have parsed are actually part of the
+ // ud-suffix.
+ isLong = false;
+ isUnsigned = false;
+ isLongLong = false;
+ isFloat = false;
+ isFloat16 = false;
+ isHalf = false;
+ isImaginary = false;
+ MicrosoftInteger = 0;
+ saw_fixed_point_suffix = false;
+ isFract = false;
+ isAccum = false;
+ }
+
+ saw_ud_suffix = true;
+ return;
+ }
+
+ if (s != ThisTokEnd) {
+ // Report an error if there are any.
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
+ diag::err_invalid_suffix_constant)
+ << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) << isFPConstant;
+ hadError = true;
+ }
+ }
+
+ if (!hadError && saw_fixed_point_suffix) {
+ assert(isFract || isAccum);
+ }
+}
+
+/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
+/// numbers. It issues an error for illegal digits, and handles floating point
+/// parsing. If it detects a floating point number, the radix is set to 10.
+void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
+ assert((radix == 8 || radix == 10) && "Unexpected radix");
+
+ // If we have a hex digit other than 'e' (which denotes a FP exponent) then
+ // the code is using an incorrect base.
+ if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
+ !isValidUDSuffix(PP.getLangOpts(), StringRef(s, ThisTokEnd - s))) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
+ diag::err_invalid_digit) << StringRef(s, 1) << (radix == 8 ? 1 : 0);
+ hadError = true;
+ return;
+ }
+
+ if (*s == '.') {
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ s++;
+ radix = 10;
+ saw_period = true;
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = SkipDigits(s); // Skip suffix.
+ }
+ if (*s == 'e' || *s == 'E') { // exponent
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ const char *Exponent = s;
+ s++;
+ radix = 10;
+ saw_exponent = true;
+ if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (containsDigits(s, first_non_digit)) {
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = first_non_digit;
+ } else {
+ if (!hadError) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
+ diag::err_exponent_has_no_digits);
+ hadError = true;
+ }
+ return;
+ }
+ }
+}
+
+/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
+/// suffixes as ud-suffixes, because the diagnostic experience is better if we
+/// treat it as an invalid suffix.
+bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
+ StringRef Suffix) {
+ if (!LangOpts.CPlusPlus11 || Suffix.empty())
+ return false;
+
+ // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
+ if (Suffix[0] == '_')
+ return true;
+
+ // In C++11, there are no library suffixes.
+ if (!LangOpts.CPlusPlus14)
+ return false;
+
+ // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
+ // Per tweaked N3660, "il", "i", and "if" are also used in the library.
+ // In C++2a "d" and "y" are used in the library.
+ return llvm::StringSwitch<bool>(Suffix)
+ .Cases("h", "min", "s", true)
+ .Cases("ms", "us", "ns", true)
+ .Cases("il", "i", "if", true)
+ .Cases("d", "y", LangOpts.CPlusPlus2a)
+ .Default(false);
+}
+
+void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
+ const char *Pos,
+ CheckSeparatorKind IsAfterDigits) {
+ if (IsAfterDigits == CSK_AfterDigits) {
+ if (Pos == ThisTokBegin)
+ return;
+ --Pos;
+ } else if (Pos == ThisTokEnd)
+ return;
+
+ if (isDigitSeparator(*Pos)) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
+ diag::err_digit_separator_not_between_digits)
+ << IsAfterDigits;
+ hadError = true;
+ }
+}
+
+/// ParseNumberStartingWithZero - This method is called when the first character
+/// of the number is found to be a zero. This means it is either an octal
+/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
+/// a floating point number (01239.123e4). Eat the prefix, determining the
+/// radix etc.
+void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
+ assert(s[0] == '0' && "Invalid method call");
+ s++;
+
+ int c1 = s[0];
+
+ // Handle a hex number like 0x1234.
+ if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
+ s++;
+ assert(s < ThisTokEnd && "didn't maximally munch?");
+ radix = 16;
+ DigitsBegin = s;
+ s = SkipHexDigits(s);
+ bool HasSignificandDigits = containsDigits(DigitsBegin, s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (*s == '.') {
+ s++;
+ saw_period = true;
+ const char *floatDigitsBegin = s;
+ s = SkipHexDigits(s);
+ if (containsDigits(floatDigitsBegin, s))
+ HasSignificandDigits = true;
+ if (HasSignificandDigits)
+ checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
+ }
+
+ if (!HasSignificandDigits) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
+ diag::err_hex_constant_requires)
+ << PP.getLangOpts().CPlusPlus << 1;
+ hadError = true;
+ return;
+ }
+
+ // A binary exponent can appear with or with a '.'. If dotted, the
+ // binary exponent is required.
+ if (*s == 'p' || *s == 'P') {
+ checkSeparator(TokLoc, s, CSK_AfterDigits);
+ const char *Exponent = s;
+ s++;
+ saw_exponent = true;
+ if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
+ const char *first_non_digit = SkipDigits(s);
+ if (!containsDigits(s, first_non_digit)) {
+ if (!hadError) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
+ diag::err_exponent_has_no_digits);
+ hadError = true;
+ }
+ return;
+ }
+ checkSeparator(TokLoc, s, CSK_BeforeDigits);
+ s = first_non_digit;
+
+ if (!PP.getLangOpts().HexFloats)
+ PP.Diag(TokLoc, PP.getLangOpts().CPlusPlus
+ ? diag::ext_hex_literal_invalid
+ : diag::ext_hex_constant_invalid);
+ else if (PP.getLangOpts().CPlusPlus17)
+ PP.Diag(TokLoc, diag::warn_cxx17_hex_literal);
+ } else if (saw_period) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
+ diag::err_hex_constant_requires)
+ << PP.getLangOpts().CPlusPlus << 0;
+ hadError = true;
+ }
+ return;
+ }
+
+ // Handle simple binary numbers 0b01010
+ if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
+ // 0b101010 is a C++1y / GCC extension.
+ PP.Diag(TokLoc,
+ PP.getLangOpts().CPlusPlus14
+ ? diag::warn_cxx11_compat_binary_literal
+ : PP.getLangOpts().CPlusPlus
+ ? diag::ext_binary_literal_cxx14
+ : diag::ext_binary_literal);
+ ++s;
+ assert(s < ThisTokEnd && "didn't maximally munch?");
+ radix = 2;
+ DigitsBegin = s;
+ s = SkipBinaryDigits(s);
+ if (s == ThisTokEnd) {
+ // Done.
+ } else if (isHexDigit(*s) &&
+ !isValidUDSuffix(PP.getLangOpts(),
+ StringRef(s, ThisTokEnd - s))) {
+ PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
+ diag::err_invalid_digit) << StringRef(s, 1) << 2;
+ hadError = true;
+ }
+ // Other suffixes will be diagnosed by the caller.
+ return;
+ }
+
+ // For now, the radix is set to 8. If we discover that we have a
+ // floating point constant, the radix will change to 10. Octal floating
+ // point constants are not permitted (only decimal and hexadecimal).
+ radix = 8;
+ DigitsBegin = s;
+ s = SkipOctalDigits(s);
+ if (s == ThisTokEnd)
+ return; // Done, simple octal number like 01234
+
+ // If we have some other non-octal digit that *is* a decimal digit, see if
+ // this is part of a floating point number like 094.123 or 09e1.
+ if (isDigit(*s)) {
+ const char *EndDecimal = SkipDigits(s);
+ if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
+ s = EndDecimal;
+ radix = 10;
+ }
+ }
+
+ ParseDecimalOrOctalCommon(TokLoc);
+}
+
+static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
+ switch (Radix) {
+ case 2:
+ return NumDigits <= 64;
+ case 8:
+ return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
+ case 10:
+ return NumDigits <= 19; // floor(log10(2^64))
+ case 16:
+ return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
+ default:
+ llvm_unreachable("impossible Radix");
+ }
+}
+
+/// GetIntegerValue - Convert this numeric literal value to an APInt that
+/// matches Val's input width. If there is an overflow, set Val to the low bits
+/// of the result and return true. Otherwise, return false.
+bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
+ // Fast path: Compute a conservative bound on the maximum number of
+ // bits per digit in this radix. If we can't possibly overflow a
+ // uint64 based on that bound then do the simple conversion to
+ // integer. This avoids the expensive overflow checking below, and
+ // handles the common cases that matter (small decimal integers and
+ // hex/octal values which don't overflow).
+ const unsigned NumDigits = SuffixBegin - DigitsBegin;
+ if (alwaysFitsInto64Bits(radix, NumDigits)) {
+ uint64_t N = 0;
+ for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
+ if (!isDigitSeparator(*Ptr))
+ N = N * radix + llvm::hexDigitValue(*Ptr);
+
+ // This will truncate the value to Val's input width. Simply check
+ // for overflow by comparing.
+ Val = N;
+ return Val.getZExtValue() != N;
+ }
+
+ Val = 0;
+ const char *Ptr = DigitsBegin;
+
+ llvm::APInt RadixVal(Val.getBitWidth(), radix);
+ llvm::APInt CharVal(Val.getBitWidth(), 0);
+ llvm::APInt OldVal = Val;
+
+ bool OverflowOccurred = false;
+ while (Ptr < SuffixBegin) {
+ if (isDigitSeparator(*Ptr)) {
+ ++Ptr;
+ continue;
+ }
+
+ unsigned C = llvm::hexDigitValue(*Ptr++);
+
+ // If this letter is out of bound for this radix, reject it.
+ assert(C < radix && "NumericLiteralParser ctor should have rejected this");
+
+ CharVal = C;
+
+ // Add the digit to the value in the appropriate radix. If adding in digits
+ // made the value smaller, then this overflowed.
+ OldVal = Val;
+
+ // Multiply by radix, did overflow occur on the multiply?
+ Val *= RadixVal;
+ OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
+
+ // Add value, did overflow occur on the value?
+ // (a + b) ult b <=> overflow
+ Val += CharVal;
+ OverflowOccurred |= Val.ult(CharVal);
+ }
+ return OverflowOccurred;
+}
+
+llvm::APFloat::opStatus
+NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
+ using llvm::APFloat;
+
+ unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
+
+ llvm::SmallString<16> Buffer;
+ StringRef Str(ThisTokBegin, n);
+ if (Str.find('\'') != StringRef::npos) {
+ Buffer.reserve(n);
+ std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
+ &isDigitSeparator);
+ Str = Buffer;
+ }
+
+ return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
+}
+
+static inline bool IsExponentPart(char c) {
+ return c == 'p' || c == 'P' || c == 'e' || c == 'E';
+}
+
+bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
+ assert(radix == 16 || radix == 10);
+
+ // Find how many digits are needed to store the whole literal.
+ unsigned NumDigits = SuffixBegin - DigitsBegin;
+ if (saw_period) --NumDigits;
+
+ // Initial scan of the exponent if it exists
+ bool ExpOverflowOccurred = false;
+ bool NegativeExponent = false;
+ const char *ExponentBegin;
+ uint64_t Exponent = 0;
+ int64_t BaseShift = 0;
+ if (saw_exponent) {
+ const char *Ptr = DigitsBegin;
+
+ while (!IsExponentPart(*Ptr)) ++Ptr;
+ ExponentBegin = Ptr;
+ ++Ptr;
+ NegativeExponent = *Ptr == '-';
+ if (NegativeExponent) ++Ptr;
+
+ unsigned NumExpDigits = SuffixBegin - Ptr;
+ if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
+ llvm::StringRef ExpStr(Ptr, NumExpDigits);
+ llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
+ Exponent = ExpInt.getZExtValue();
+ } else {
+ ExpOverflowOccurred = true;
+ }
+
+ if (NegativeExponent) BaseShift -= Exponent;
+ else BaseShift += Exponent;
+ }
+
+ // Number of bits needed for decimal literal is
+ // ceil(NumDigits * log2(10)) Integral part
+ // + Scale Fractional part
+ // + ceil(Exponent * log2(10)) Exponent
+ // --------------------------------------------------
+ // ceil((NumDigits + Exponent) * log2(10)) + Scale
+ //
+ // But for simplicity in handling integers, we can round up log2(10) to 4,
+ // making:
+ // 4 * (NumDigits + Exponent) + Scale
+ //
+ // Number of digits needed for hexadecimal literal is
+ // 4 * NumDigits Integral part
+ // + Scale Fractional part
+ // + Exponent Exponent
+ // --------------------------------------------------
+ // (4 * NumDigits) + Scale + Exponent
+ uint64_t NumBitsNeeded;
+ if (radix == 10)
+ NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
+ else
+ NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
+
+ if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
+ ExpOverflowOccurred = true;
+ llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
+
+ bool FoundDecimal = false;
+
+ int64_t FractBaseShift = 0;
+ const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
+ for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
+ if (*Ptr == '.') {
+ FoundDecimal = true;
+ continue;
+ }
+
+ // Normal reading of an integer
+ unsigned C = llvm::hexDigitValue(*Ptr);
+ assert(C < radix && "NumericLiteralParser ctor should have rejected this");
+
+ Val *= radix;
+ Val += C;
+
+ if (FoundDecimal)
+ // Keep track of how much we will need to adjust this value by from the
+ // number of digits past the radix point.
+ --FractBaseShift;
+ }
+
+ // For a radix of 16, we will be multiplying by 2 instead of 16.
+ if (radix == 16) FractBaseShift *= 4;
+ BaseShift += FractBaseShift;
+
+ Val <<= Scale;
+
+ uint64_t Base = (radix == 16) ? 2 : 10;
+ if (BaseShift > 0) {
+ for (int64_t i = 0; i < BaseShift; ++i) {
+ Val *= Base;
+ }
+ } else if (BaseShift < 0) {
+ for (int64_t i = BaseShift; i < 0 && !Val.isNullValue(); ++i)
+ Val = Val.udiv(Base);
+ }
+
+ bool IntOverflowOccurred = false;
+ auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
+ if (Val.getBitWidth() > StoreVal.getBitWidth()) {
+ IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
+ StoreVal = Val.trunc(StoreVal.getBitWidth());
+ } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
+ IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
+ StoreVal = Val.zext(StoreVal.getBitWidth());
+ } else {
+ StoreVal = Val;
+ }
+
+ return IntOverflowOccurred || ExpOverflowOccurred;
+}
+
+/// \verbatim
+/// user-defined-character-literal: [C++11 lex.ext]
+/// character-literal ud-suffix
+/// ud-suffix:
+/// identifier
+/// character-literal: [C++11 lex.ccon]
+/// ' c-char-sequence '
+/// u' c-char-sequence '
+/// U' c-char-sequence '
+/// L' c-char-sequence '
+/// u8' c-char-sequence ' [C++1z lex.ccon]
+/// c-char-sequence:
+/// c-char
+/// c-char-sequence c-char
+/// c-char:
+/// any member of the source character set except the single-quote ',
+/// backslash \, or new-line character
+/// escape-sequence
+/// universal-character-name
+/// escape-sequence:
+/// simple-escape-sequence
+/// octal-escape-sequence
+/// hexadecimal-escape-sequence
+/// simple-escape-sequence:
+/// one of \' \" \? \\ \a \b \f \n \r \t \v
+/// octal-escape-sequence:
+/// \ octal-digit
+/// \ octal-digit octal-digit
+/// \ octal-digit octal-digit octal-digit
+/// hexadecimal-escape-sequence:
+/// \x hexadecimal-digit
+/// hexadecimal-escape-sequence hexadecimal-digit
+/// universal-character-name: [C++11 lex.charset]
+/// \u hex-quad
+/// \U hex-quad hex-quad
+/// hex-quad:
+/// hex-digit hex-digit hex-digit hex-digit
+/// \endverbatim
+///
+CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
+ SourceLocation Loc, Preprocessor &PP,
+ tok::TokenKind kind) {
+ // At this point we know that the character matches the regex "(L|u|U)?'.*'".
+ HadError = false;
+
+ Kind = kind;
+
+ const char *TokBegin = begin;
+
+ // Skip over wide character determinant.
+ if (Kind != tok::char_constant)
+ ++begin;
+ if (Kind == tok::utf8_char_constant)
+ ++begin;
+
+ // Skip over the entry quote.
+ assert(begin[0] == '\'' && "Invalid token lexed");
+ ++begin;
+
+ // Remove an optional ud-suffix.
+ if (end[-1] != '\'') {
+ const char *UDSuffixEnd = end;
+ do {
+ --end;
+ } while (end[-1] != '\'');
+ // FIXME: Don't bother with this if !tok.hasUCN().
+ expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
+ UDSuffixOffset = end - TokBegin;
+ }
+
+ // Trim the ending quote.
+ assert(end != begin && "Invalid token lexed");
+ --end;
+
+ // FIXME: The "Value" is an uint64_t so we can handle char literals of
+ // up to 64-bits.
+ // FIXME: This extensively assumes that 'char' is 8-bits.
+ assert(PP.getTargetInfo().getCharWidth() == 8 &&
+ "Assumes char is 8 bits");
+ assert(PP.getTargetInfo().getIntWidth() <= 64 &&
+ (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
+ "Assumes sizeof(int) on target is <= 64 and a multiple of char");
+ assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
+ "Assumes sizeof(wchar) on target is <= 64");
+
+ SmallVector<uint32_t, 4> codepoint_buffer;
+ codepoint_buffer.resize(end - begin);
+ uint32_t *buffer_begin = &codepoint_buffer.front();
+ uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
+
+ // Unicode escapes representing characters that cannot be correctly
+ // represented in a single code unit are disallowed in character literals
+ // by this implementation.
+ uint32_t largest_character_for_kind;
+ if (tok::wide_char_constant == Kind) {
+ largest_character_for_kind =
+ 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
+ } else if (tok::utf8_char_constant == Kind) {
+ largest_character_for_kind = 0x7F;
+ } else if (tok::utf16_char_constant == Kind) {
+ largest_character_for_kind = 0xFFFF;
+ } else if (tok::utf32_char_constant == Kind) {
+ largest_character_for_kind = 0x10FFFF;
+ } else {
+ largest_character_for_kind = 0x7Fu;
+ }
+
+ while (begin != end) {
+ // Is this a span of non-escape characters?
+ if (begin[0] != '\\') {
+ char const *start = begin;
+ do {
+ ++begin;
+ } while (begin != end && *begin != '\\');
+
+ char const *tmp_in_start = start;
+ uint32_t *tmp_out_start = buffer_begin;
+ llvm::ConversionResult res =
+ llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
+ reinterpret_cast<llvm::UTF8 const *>(begin),
+ &buffer_begin, buffer_end, llvm::strictConversion);
+ if (res != llvm::conversionOK) {
+ // If we see bad encoding for unprefixed character literals, warn and
+ // simply copy the byte values, for compatibility with gcc and
+ // older versions of clang.
+ bool NoErrorOnBadEncoding = isAscii();
+ unsigned Msg = diag::err_bad_character_encoding;
+ if (NoErrorOnBadEncoding)
+ Msg = diag::warn_bad_character_encoding;
+ PP.Diag(Loc, Msg);
+ if (NoErrorOnBadEncoding) {
+ start = tmp_in_start;
+ buffer_begin = tmp_out_start;
+ for (; start != begin; ++start, ++buffer_begin)
+ *buffer_begin = static_cast<uint8_t>(*start);
+ } else {
+ HadError = true;
+ }
+ } else {
+ for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
+ if (*tmp_out_start > largest_character_for_kind) {
+ HadError = true;
+ PP.Diag(Loc, diag::err_character_too_large);
+ }
+ }
+ }
+
+ continue;
+ }
+ // Is this a Universal Character Name escape?
+ if (begin[1] == 'u' || begin[1] == 'U') {
+ unsigned short UcnLen = 0;
+ if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
+ FullSourceLoc(Loc, PP.getSourceManager()),
+ &PP.getDiagnostics(), PP.getLangOpts(), true)) {
+ HadError = true;
+ } else if (*buffer_begin > largest_character_for_kind) {
+ HadError = true;
+ PP.Diag(Loc, diag::err_character_too_large);
+ }
+
+ ++buffer_begin;
+ continue;
+ }
+ unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
+ uint64_t result =
+ ProcessCharEscape(TokBegin, begin, end, HadError,
+ FullSourceLoc(Loc,PP.getSourceManager()),
+ CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
+ *buffer_begin++ = result;
+ }
+
+ unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
+
+ if (NumCharsSoFar > 1) {
+ if (isWide())
+ PP.Diag(Loc, diag::warn_extraneous_char_constant);
+ else if (isAscii() && NumCharsSoFar == 4)
+ PP.Diag(Loc, diag::ext_four_char_character_literal);
+ else if (isAscii())
+ PP.Diag(Loc, diag::ext_multichar_character_literal);
+ else
+ PP.Diag(Loc, diag::err_multichar_utf_character_literal);
+ IsMultiChar = true;
+ } else {
+ IsMultiChar = false;
+ }
+
+ llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
+
+ // Narrow character literals act as though their value is concatenated
+ // in this implementation, but warn on overflow.
+ bool multi_char_too_long = false;
+ if (isAscii() && isMultiChar()) {
+ LitVal = 0;
+ for (size_t i = 0; i < NumCharsSoFar; ++i) {
+ // check for enough leading zeros to shift into
+ multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
+ LitVal <<= 8;
+ LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
+ }
+ } else if (NumCharsSoFar > 0) {
+ // otherwise just take the last character
+ LitVal = buffer_begin[-1];
+ }
+
+ if (!HadError && multi_char_too_long) {
+ PP.Diag(Loc, diag::warn_char_constant_too_large);
+ }
+
+ // Transfer the value from APInt to uint64_t
+ Value = LitVal.getZExtValue();
+
+ // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
+ // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
+ // character constants are not sign extended in the this implementation:
+ // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
+ if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
+ PP.getLangOpts().CharIsSigned)
+ Value = (signed char)Value;
+}
+
+/// \verbatim
+/// string-literal: [C++0x lex.string]
+/// encoding-prefix " [s-char-sequence] "
+/// encoding-prefix R raw-string
+/// encoding-prefix:
+/// u8
+/// u
+/// U
+/// L
+/// s-char-sequence:
+/// s-char
+/// s-char-sequence s-char
+/// s-char:
+/// any member of the source character set except the double-quote ",
+/// backslash \, or new-line character
+/// escape-sequence
+/// universal-character-name
+/// raw-string:
+/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
+/// r-char-sequence:
+/// r-char
+/// r-char-sequence r-char
+/// r-char:
+/// any member of the source character set, except a right parenthesis )
+/// followed by the initial d-char-sequence (which may be empty)
+/// followed by a double quote ".
+/// d-char-sequence:
+/// d-char
+/// d-char-sequence d-char
+/// d-char:
+/// any member of the basic source character set except:
+/// space, the left parenthesis (, the right parenthesis ),
+/// the backslash \, and the control characters representing horizontal
+/// tab, vertical tab, form feed, and newline.
+/// escape-sequence: [C++0x lex.ccon]
+/// simple-escape-sequence
+/// octal-escape-sequence
+/// hexadecimal-escape-sequence
+/// simple-escape-sequence:
+/// one of \' \" \? \\ \a \b \f \n \r \t \v
+/// octal-escape-sequence:
+/// \ octal-digit
+/// \ octal-digit octal-digit
+/// \ octal-digit octal-digit octal-digit
+/// hexadecimal-escape-sequence:
+/// \x hexadecimal-digit
+/// hexadecimal-escape-sequence hexadecimal-digit
+/// universal-character-name:
+/// \u hex-quad
+/// \U hex-quad hex-quad
+/// hex-quad:
+/// hex-digit hex-digit hex-digit hex-digit
+/// \endverbatim
+///
+StringLiteralParser::
+StringLiteralParser(ArrayRef<Token> StringToks,
+ Preprocessor &PP, bool Complain)
+ : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
+ Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
+ MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
+ ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
+ init(StringToks);
+}
+
+void StringLiteralParser::init(ArrayRef<Token> StringToks){
+ // The literal token may have come from an invalid source location (e.g. due
+ // to a PCH error), in which case the token length will be 0.
+ if (StringToks.empty() || StringToks[0].getLength() < 2)
+ return DiagnoseLexingError(SourceLocation());
+
+ // Scan all of the string portions, remember the max individual token length,
+ // computing a bound on the concatenated string length, and see whether any
+ // piece is a wide-string. If any of the string portions is a wide-string
+ // literal, the result is a wide-string literal [C99 6.4.5p4].
+ assert(!StringToks.empty() && "expected at least one token");
+ MaxTokenLength = StringToks[0].getLength();
+ assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
+ SizeBound = StringToks[0].getLength()-2; // -2 for "".
+ Kind = StringToks[0].getKind();
+
+ hadError = false;
+
+ // Implement Translation Phase #6: concatenation of string literals
+ /// (C99 5.1.1.2p1). The common case is only one string fragment.
+ for (unsigned i = 1; i != StringToks.size(); ++i) {
+ if (StringToks[i].getLength() < 2)
+ return DiagnoseLexingError(StringToks[i].getLocation());
+
+ // The string could be shorter than this if it needs cleaning, but this is a
+ // reasonable bound, which is all we need.
+ assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
+ SizeBound += StringToks[i].getLength()-2; // -2 for "".
+
+ // Remember maximum string piece length.
+ if (StringToks[i].getLength() > MaxTokenLength)
+ MaxTokenLength = StringToks[i].getLength();
+
+ // Remember if we see any wide or utf-8/16/32 strings.
+ // Also check for illegal concatenations.
+ if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
+ if (isAscii()) {
+ Kind = StringToks[i].getKind();
+ } else {
+ if (Diags)
+ Diags->Report(StringToks[i].getLocation(),
+ diag::err_unsupported_string_concat);
+ hadError = true;
+ }
+ }
+ }
+
+ // Include space for the null terminator.
+ ++SizeBound;
+
+ // TODO: K&R warning: "traditional C rejects string constant concatenation"
+
+ // Get the width in bytes of char/wchar_t/char16_t/char32_t
+ CharByteWidth = getCharWidth(Kind, Target);
+ assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
+ CharByteWidth /= 8;
+
+ // The output buffer size needs to be large enough to hold wide characters.
+ // This is a worst-case assumption which basically corresponds to L"" "long".
+ SizeBound *= CharByteWidth;
+
+ // Size the temporary buffer to hold the result string data.
+ ResultBuf.resize(SizeBound);
+
+ // Likewise, but for each string piece.
+ SmallString<512> TokenBuf;
+ TokenBuf.resize(MaxTokenLength);
+
+ // Loop over all the strings, getting their spelling, and expanding them to
+ // wide strings as appropriate.
+ ResultPtr = &ResultBuf[0]; // Next byte to fill in.
+
+ Pascal = false;
+
+ SourceLocation UDSuffixTokLoc;
+
+ for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
+ const char *ThisTokBuf = &TokenBuf[0];
+ // Get the spelling of the token, which eliminates trigraphs, etc. We know
+ // that ThisTokBuf points to a buffer that is big enough for the whole token
+ // and 'spelled' tokens can only shrink.
+ bool StringInvalid = false;
+ unsigned ThisTokLen =
+ Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
+ &StringInvalid);
+ if (StringInvalid)
+ return DiagnoseLexingError(StringToks[i].getLocation());
+
+ const char *ThisTokBegin = ThisTokBuf;
+ const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
+
+ // Remove an optional ud-suffix.
+ if (ThisTokEnd[-1] != '"') {
+ const char *UDSuffixEnd = ThisTokEnd;
+ do {
+ --ThisTokEnd;
+ } while (ThisTokEnd[-1] != '"');
+
+ StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
+
+ if (UDSuffixBuf.empty()) {
+ if (StringToks[i].hasUCN())
+ expandUCNs(UDSuffixBuf, UDSuffix);
+ else
+ UDSuffixBuf.assign(UDSuffix);
+ UDSuffixToken = i;
+ UDSuffixOffset = ThisTokEnd - ThisTokBuf;
+ UDSuffixTokLoc = StringToks[i].getLocation();
+ } else {
+ SmallString<32> ExpandedUDSuffix;
+ if (StringToks[i].hasUCN()) {
+ expandUCNs(ExpandedUDSuffix, UDSuffix);
+ UDSuffix = ExpandedUDSuffix;
+ }
+
+ // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
+ // result of a concatenation involving at least one user-defined-string-
+ // literal, all the participating user-defined-string-literals shall
+ // have the same ud-suffix.
+ if (UDSuffixBuf != UDSuffix) {
+ if (Diags) {
+ SourceLocation TokLoc = StringToks[i].getLocation();
+ Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
+ << UDSuffixBuf << UDSuffix
+ << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
+ << SourceRange(TokLoc, TokLoc);
+ }
+ hadError = true;
+ }
+ }
+ }
+
+ // Strip the end quote.
+ --ThisTokEnd;
+
+ // TODO: Input character set mapping support.
+
+ // Skip marker for wide or unicode strings.
+ if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
+ ++ThisTokBuf;
+ // Skip 8 of u8 marker for utf8 strings.
+ if (ThisTokBuf[0] == '8')
+ ++ThisTokBuf;
+ }
+
+ // Check for raw string
+ if (ThisTokBuf[0] == 'R') {
+ ThisTokBuf += 2; // skip R"
+
+ const char *Prefix = ThisTokBuf;
+ while (ThisTokBuf[0] != '(')
+ ++ThisTokBuf;
+ ++ThisTokBuf; // skip '('
+
+ // Remove same number of characters from the end
+ ThisTokEnd -= ThisTokBuf - Prefix;
+ assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
+
+ // C++14 [lex.string]p4: A source-file new-line in a raw string literal
+ // results in a new-line in the resulting execution string-literal.
+ StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
+ while (!RemainingTokenSpan.empty()) {
+ // Split the string literal on \r\n boundaries.
+ size_t CRLFPos = RemainingTokenSpan.find("\r\n");
+ StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
+ StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
+
+ // Copy everything before the \r\n sequence into the string literal.
+ if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
+ hadError = true;
+
+ // Point into the \n inside the \r\n sequence and operate on the
+ // remaining portion of the literal.
+ RemainingTokenSpan = AfterCRLF.substr(1);
+ }
+ } else {
+ if (ThisTokBuf[0] != '"') {
+ // The file may have come from PCH and then changed after loading the
+ // PCH; Fail gracefully.
+ return DiagnoseLexingError(StringToks[i].getLocation());
+ }
+ ++ThisTokBuf; // skip "
+
+ // Check if this is a pascal string
+ if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
+ ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
+
+ // If the \p sequence is found in the first token, we have a pascal string
+ // Otherwise, if we already have a pascal string, ignore the first \p
+ if (i == 0) {
+ ++ThisTokBuf;
+ Pascal = true;
+ } else if (Pascal)
+ ThisTokBuf += 2;
+ }
+
+ while (ThisTokBuf != ThisTokEnd) {
+ // Is this a span of non-escape characters?
+ if (ThisTokBuf[0] != '\\') {
+ const char *InStart = ThisTokBuf;
+ do {
+ ++ThisTokBuf;
+ } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
+
+ // Copy the character span over.
+ if (CopyStringFragment(StringToks[i], ThisTokBegin,
+ StringRef(InStart, ThisTokBuf - InStart)))
+ hadError = true;
+ continue;
+ }
+ // Is this a Universal Character Name escape?
+ if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
+ EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
+ ResultPtr, hadError,
+ FullSourceLoc(StringToks[i].getLocation(), SM),
+ CharByteWidth, Diags, Features);
+ continue;
+ }
+ // Otherwise, this is a non-UCN escape character. Process it.
+ unsigned ResultChar =
+ ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
+ FullSourceLoc(StringToks[i].getLocation(), SM),
+ CharByteWidth*8, Diags, Features);
+
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
+ *ResultWidePtr = ResultChar;
+ ResultPtr += 4;
+ } else if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
+ *ResultWidePtr = ResultChar & 0xFFFF;
+ ResultPtr += 2;
+ } else {
+ assert(CharByteWidth == 1 && "Unexpected char width");
+ *ResultPtr++ = ResultChar & 0xFF;
+ }
+ }
+ }
+ }
+
+ if (Pascal) {
+ if (CharByteWidth == 4) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
+ ResultWidePtr[0] = GetNumStringChars() - 1;
+ } else if (CharByteWidth == 2) {
+ // FIXME: Make the type of the result buffer correct instead of
+ // using reinterpret_cast.
+ llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
+ ResultWidePtr[0] = GetNumStringChars() - 1;
+ } else {
+ assert(CharByteWidth == 1 && "Unexpected char width");
+ ResultBuf[0] = GetNumStringChars() - 1;
+ }
+
+ // Verify that pascal strings aren't too large.
+ if (GetStringLength() > 256) {
+ if (Diags)
+ Diags->Report(StringToks.front().getLocation(),
+ diag::err_pascal_string_too_long)
+ << SourceRange(StringToks.front().getLocation(),
+ StringToks.back().getLocation());
+ hadError = true;
+ return;
+ }
+ } else if (Diags) {
+ // Complain if this string literal has too many characters.
+ unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
+
+ if (GetNumStringChars() > MaxChars)
+ Diags->Report(StringToks.front().getLocation(),
+ diag::ext_string_too_long)
+ << GetNumStringChars() << MaxChars
+ << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
+ << SourceRange(StringToks.front().getLocation(),
+ StringToks.back().getLocation());
+ }
+}
+
+static const char *resyncUTF8(const char *Err, const char *End) {
+ if (Err == End)
+ return End;
+ End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
+ while (++Err != End && (*Err & 0xC0) == 0x80)
+ ;
+ return Err;
+}
+
+/// This function copies from Fragment, which is a sequence of bytes
+/// within Tok's contents (which begin at TokBegin) into ResultPtr.
+/// Performs widening for multi-byte characters.
+bool StringLiteralParser::CopyStringFragment(const Token &Tok,
+ const char *TokBegin,
+ StringRef Fragment) {
+ const llvm::UTF8 *ErrorPtrTmp;
+ if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
+ return false;
+
+ // If we see bad encoding for unprefixed string literals, warn and
+ // simply copy the byte values, for compatibility with gcc and older
+ // versions of clang.
+ bool NoErrorOnBadEncoding = isAscii();
+ if (NoErrorOnBadEncoding) {
+ memcpy(ResultPtr, Fragment.data(), Fragment.size());
+ ResultPtr += Fragment.size();
+ }
+
+ if (Diags) {
+ const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
+
+ FullSourceLoc SourceLoc(Tok.getLocation(), SM);
+ const DiagnosticBuilder &Builder =
+ Diag(Diags, Features, SourceLoc, TokBegin,
+ ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
+ NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
+ : diag::err_bad_string_encoding);
+
+ const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
+ StringRef NextFragment(NextStart, Fragment.end()-NextStart);
+
+ // Decode into a dummy buffer.
+ SmallString<512> Dummy;
+ Dummy.reserve(Fragment.size() * CharByteWidth);
+ char *Ptr = Dummy.data();
+
+ while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
+ const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
+ NextStart = resyncUTF8(ErrorPtr, Fragment.end());
+ Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
+ ErrorPtr, NextStart);
+ NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
+ }
+ }
+ return !NoErrorOnBadEncoding;
+}
+
+void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
+ hadError = true;
+ if (Diags)
+ Diags->Report(Loc, diag::err_lexing_string);
+}
+
+/// getOffsetOfStringByte - This function returns the offset of the
+/// specified byte of the string data represented by Token. This handles
+/// advancing over escape sequences in the string.
+unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
+ unsigned ByteNo) const {
+ // Get the spelling of the token.
+ SmallString<32> SpellingBuffer;
+ SpellingBuffer.resize(Tok.getLength());
+
+ bool StringInvalid = false;
+ const char *SpellingPtr = &SpellingBuffer[0];
+ unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
+ &StringInvalid);
+ if (StringInvalid)
+ return 0;
+
+ const char *SpellingStart = SpellingPtr;
+ const char *SpellingEnd = SpellingPtr+TokLen;
+
+ // Handle UTF-8 strings just like narrow strings.
+ if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
+ SpellingPtr += 2;
+
+ assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
+ SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
+
+ // For raw string literals, this is easy.
+ if (SpellingPtr[0] == 'R') {
+ assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
+ // Skip 'R"'.
+ SpellingPtr += 2;
+ while (*SpellingPtr != '(') {
+ ++SpellingPtr;
+ assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
+ }
+ // Skip '('.
+ ++SpellingPtr;
+ return SpellingPtr - SpellingStart + ByteNo;
+ }
+
+ // Skip over the leading quote
+ assert(SpellingPtr[0] == '"' && "Should be a string literal!");
+ ++SpellingPtr;
+
+ // Skip over bytes until we find the offset we're looking for.
+ while (ByteNo) {
+ assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
+
+ // Step over non-escapes simply.
+ if (*SpellingPtr != '\\') {
+ ++SpellingPtr;
+ --ByteNo;
+ continue;
+ }
+
+ // Otherwise, this is an escape character. Advance over it.
+ bool HadError = false;
+ if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
+ const char *EscapePtr = SpellingPtr;
+ unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
+ 1, Features, HadError);
+ if (Len > ByteNo) {
+ // ByteNo is somewhere within the escape sequence.
+ SpellingPtr = EscapePtr;
+ break;
+ }
+ ByteNo -= Len;
+ } else {
+ ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
+ FullSourceLoc(Tok.getLocation(), SM),
+ CharByteWidth*8, Diags, Features);
+ --ByteNo;
+ }
+ assert(!HadError && "This method isn't valid on erroneous strings");
+ }
+
+ return SpellingPtr-SpellingStart;
+}
+
+/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
+/// suffixes as ud-suffixes, because the diagnostic experience is better if we
+/// treat it as an invalid suffix.
+bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
+ StringRef Suffix) {
+ return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
+ Suffix == "sv";
+}