summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaConcept.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaConcept.cpp')
-rw-r--r--clang/lib/Sema/SemaConcept.cpp821
1 files changed, 762 insertions, 59 deletions
diff --git a/clang/lib/Sema/SemaConcept.cpp b/clang/lib/Sema/SemaConcept.cpp
index 848ccf543445..018ac2d7dc9d 100644
--- a/clang/lib/Sema/SemaConcept.cpp
+++ b/clang/lib/Sema/SemaConcept.cpp
@@ -11,15 +11,24 @@
//
//===----------------------------------------------------------------------===//
+#include "clang/Sema/SemaConcept.h"
#include "clang/Sema/Sema.h"
+#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/Sema/Template.h"
#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Basic/OperatorPrecedence.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PointerUnion.h"
using namespace clang;
using namespace sema;
-bool Sema::CheckConstraintExpression(Expr *ConstraintExpression) {
+bool
+Sema::CheckConstraintExpression(Expr *ConstraintExpression, Token NextToken,
+ bool *PossibleNonPrimary,
+ bool IsTrailingRequiresClause) {
// C++2a [temp.constr.atomic]p1
// ..E shall be a constant expression of type bool.
@@ -27,99 +36,793 @@ bool Sema::CheckConstraintExpression(Expr *ConstraintExpression) {
if (auto *BinOp = dyn_cast<BinaryOperator>(ConstraintExpression)) {
if (BinOp->getOpcode() == BO_LAnd || BinOp->getOpcode() == BO_LOr)
- return CheckConstraintExpression(BinOp->getLHS()) &&
- CheckConstraintExpression(BinOp->getRHS());
+ return CheckConstraintExpression(BinOp->getLHS(), NextToken,
+ PossibleNonPrimary) &&
+ CheckConstraintExpression(BinOp->getRHS(), NextToken,
+ PossibleNonPrimary);
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
- return CheckConstraintExpression(C->getSubExpr());
+ return CheckConstraintExpression(C->getSubExpr(), NextToken,
+ PossibleNonPrimary);
+
+ QualType Type = ConstraintExpression->getType();
+
+ auto CheckForNonPrimary = [&] {
+ if (PossibleNonPrimary)
+ *PossibleNonPrimary =
+ // We have the following case:
+ // template<typename> requires func(0) struct S { };
+ // The user probably isn't aware of the parentheses required around
+ // the function call, and we're only going to parse 'func' as the
+ // primary-expression, and complain that it is of non-bool type.
+ (NextToken.is(tok::l_paren) &&
+ (IsTrailingRequiresClause ||
+ (Type->isDependentType() &&
+ IsDependentFunctionNameExpr(ConstraintExpression)) ||
+ Type->isFunctionType() ||
+ Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
+ // We have the following case:
+ // template<typename T> requires size_<T> == 0 struct S { };
+ // The user probably isn't aware of the parentheses required around
+ // the binary operator, and we're only going to parse 'func' as the
+ // first operand, and complain that it is of non-bool type.
+ getBinOpPrecedence(NextToken.getKind(),
+ /*GreaterThanIsOperator=*/true,
+ getLangOpts().CPlusPlus11) > prec::LogicalAnd;
+ };
// An atomic constraint!
- if (ConstraintExpression->isTypeDependent())
+ if (ConstraintExpression->isTypeDependent()) {
+ CheckForNonPrimary();
return true;
+ }
- QualType Type = ConstraintExpression->getType();
if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
Diag(ConstraintExpression->getExprLoc(),
diag::err_non_bool_atomic_constraint) << Type
<< ConstraintExpression->getSourceRange();
+ CheckForNonPrimary();
return false;
}
+
+ if (PossibleNonPrimary)
+ *PossibleNonPrimary = false;
return true;
}
-bool
-Sema::CalculateConstraintSatisfaction(ConceptDecl *NamedConcept,
- MultiLevelTemplateArgumentList &MLTAL,
- Expr *ConstraintExpr,
- bool &IsSatisfied) {
+template <typename AtomicEvaluator>
+static bool
+calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
+ ConstraintSatisfaction &Satisfaction,
+ AtomicEvaluator &&Evaluator) {
ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
if (auto *BO = dyn_cast<BinaryOperator>(ConstraintExpr)) {
- if (BO->getOpcode() == BO_LAnd) {
- if (CalculateConstraintSatisfaction(NamedConcept, MLTAL, BO->getLHS(),
- IsSatisfied))
+ if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) {
+ if (calculateConstraintSatisfaction(S, BO->getLHS(), Satisfaction,
+ Evaluator))
return true;
- if (!IsSatisfied)
+
+ bool IsLHSSatisfied = Satisfaction.IsSatisfied;
+
+ if (BO->getOpcode() == BO_LOr && IsLHSSatisfied)
+ // [temp.constr.op] p3
+ // A disjunction is a constraint taking two operands. To determine if
+ // a disjunction is satisfied, the satisfaction of the first operand
+ // is checked. If that is satisfied, the disjunction is satisfied.
+ // Otherwise, the disjunction is satisfied if and only if the second
+ // operand is satisfied.
return false;
- return CalculateConstraintSatisfaction(NamedConcept, MLTAL, BO->getRHS(),
- IsSatisfied);
- } else if (BO->getOpcode() == BO_LOr) {
- if (CalculateConstraintSatisfaction(NamedConcept, MLTAL, BO->getLHS(),
- IsSatisfied))
- return true;
- if (IsSatisfied)
+
+ if (BO->getOpcode() == BO_LAnd && !IsLHSSatisfied)
+ // [temp.constr.op] p2
+ // A conjunction is a constraint taking two operands. To determine if
+ // a conjunction is satisfied, the satisfaction of the first operand
+ // is checked. If that is not satisfied, the conjunction is not
+ // satisfied. Otherwise, the conjunction is satisfied if and only if
+ // the second operand is satisfied.
return false;
- return CalculateConstraintSatisfaction(NamedConcept, MLTAL, BO->getRHS(),
- IsSatisfied);
+
+ return calculateConstraintSatisfaction(S, BO->getRHS(), Satisfaction,
+ std::forward<AtomicEvaluator>(Evaluator));
}
}
else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr))
- return CalculateConstraintSatisfaction(NamedConcept, MLTAL, C->getSubExpr(),
- IsSatisfied);
+ return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
+ std::forward<AtomicEvaluator>(Evaluator));
- EnterExpressionEvaluationContext ConstantEvaluated(
- *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ // An atomic constraint expression
+ ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
- // Atomic constraint - substitute arguments and check satisfaction.
- ExprResult E;
- {
- TemplateDeductionInfo Info(ConstraintExpr->getBeginLoc());
- InstantiatingTemplate Inst(*this, ConstraintExpr->getBeginLoc(),
- InstantiatingTemplate::ConstraintSubstitution{},
- NamedConcept, Info,
- ConstraintExpr->getSourceRange());
- if (Inst.isInvalid())
- return true;
- // We do not want error diagnostics escaping here.
- Sema::SFINAETrap Trap(*this);
+ if (SubstitutedAtomicExpr.isInvalid())
+ return true;
+
+ if (!SubstitutedAtomicExpr.isUsable())
+ // Evaluator has decided satisfaction without yielding an expression.
+ return false;
- E = SubstExpr(ConstraintExpr, MLTAL);
- if (E.isInvalid() || Trap.hasErrorOccurred()) {
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
+ Expr::EvalResult EvalResult;
+ EvalResult.Diag = &EvaluationDiags;
+ if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) {
// C++2a [temp.constr.atomic]p1
- // ...If substitution results in an invalid type or expression, the
- // constraint is not satisfied.
- IsSatisfied = false;
+ // ...E shall be a constant expression of type bool.
+ S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
+ diag::err_non_constant_constraint_expression)
+ << SubstitutedAtomicExpr.get()->getSourceRange();
+ for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
+ S.Diag(PDiag.first, PDiag.second);
+ return true;
+ }
+
+ Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
+ if (!Satisfaction.IsSatisfied)
+ Satisfaction.Details.emplace_back(ConstraintExpr,
+ SubstitutedAtomicExpr.get());
+
+ return false;
+}
+
+template <typename TemplateDeclT>
+static bool calculateConstraintSatisfaction(
+ Sema &S, TemplateDeclT *Template, ArrayRef<TemplateArgument> TemplateArgs,
+ SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
+ const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
+ return calculateConstraintSatisfaction(
+ S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ // Atomic constraint - substitute arguments and check satisfaction.
+ ExprResult SubstitutedExpression;
+ {
+ TemplateDeductionInfo Info(TemplateNameLoc);
+ Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
+ Sema::InstantiatingTemplate::ConstraintSubstitution{}, Template,
+ Info, AtomicExpr->getSourceRange());
+ if (Inst.isInvalid())
+ return ExprError();
+ // We do not want error diagnostics escaping here.
+ Sema::SFINAETrap Trap(S);
+ SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
+ MLTAL);
+ if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
+ // C++2a [temp.constr.atomic]p1
+ // ...If substitution results in an invalid type or expression, the
+ // constraint is not satisfied.
+ if (!Trap.hasErrorOccurred())
+ // A non-SFINAE error has occured as a result of this
+ // substitution.
+ return ExprError();
+
+ PartialDiagnosticAt SubstDiag{SourceLocation(),
+ PartialDiagnostic::NullDiagnostic()};
+ Info.takeSFINAEDiagnostic(SubstDiag);
+ // FIXME: Concepts: This is an unfortunate consequence of there
+ // being no serialization code for PartialDiagnostics and the fact
+ // that serializing them would likely take a lot more storage than
+ // just storing them as strings. We would still like, in the
+ // future, to serialize the proper PartialDiagnostic as serializing
+ // it as a string defeats the purpose of the diagnostic mechanism.
+ SmallString<128> DiagString;
+ DiagString = ": ";
+ SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
+ unsigned MessageSize = DiagString.size();
+ char *Mem = new (S.Context) char[MessageSize];
+ memcpy(Mem, DiagString.c_str(), MessageSize);
+ Satisfaction.Details.emplace_back(
+ AtomicExpr,
+ new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
+ SubstDiag.first, StringRef(Mem, MessageSize)});
+ Satisfaction.IsSatisfied = false;
+ return ExprEmpty();
+ }
+ }
+
+ if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
+ return ExprError();
+
+ return SubstitutedExpression;
+ });
+}
+
+template<typename TemplateDeclT>
+static bool CheckConstraintSatisfaction(Sema &S, TemplateDeclT *Template,
+ ArrayRef<const Expr *> ConstraintExprs,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange TemplateIDRange,
+ ConstraintSatisfaction &Satisfaction) {
+ if (ConstraintExprs.empty()) {
+ Satisfaction.IsSatisfied = true;
+ return false;
+ }
+
+ for (auto& Arg : TemplateArgs)
+ if (Arg.isInstantiationDependent()) {
+ // No need to check satisfaction for dependent constraint expressions.
+ Satisfaction.IsSatisfied = true;
return false;
}
+
+ Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
+ Sema::InstantiatingTemplate::ConstraintsCheck{}, Template, TemplateArgs,
+ TemplateIDRange);
+ if (Inst.isInvalid())
+ return true;
+
+ MultiLevelTemplateArgumentList MLTAL;
+ MLTAL.addOuterTemplateArguments(TemplateArgs);
+
+ for (const Expr *ConstraintExpr : ConstraintExprs) {
+ if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
+ TemplateIDRange.getBegin(), MLTAL,
+ ConstraintExpr, Satisfaction))
+ return true;
+ if (!Satisfaction.IsSatisfied)
+ // [temp.constr.op] p2
+ // [...] To determine if a conjunction is satisfied, the satisfaction
+ // of the first operand is checked. If that is not satisfied, the
+ // conjunction is not satisfied. [...]
+ return false;
}
+ return false;
+}
+
+bool Sema::CheckConstraintSatisfaction(TemplateDecl *Template,
+ ArrayRef<const Expr *> ConstraintExprs,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange TemplateIDRange,
+ ConstraintSatisfaction &Satisfaction) {
+ return ::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
+ TemplateArgs, TemplateIDRange,
+ Satisfaction);
+}
- if (!CheckConstraintExpression(E.get()))
+bool
+Sema::CheckConstraintSatisfaction(ClassTemplatePartialSpecializationDecl* Part,
+ ArrayRef<const Expr *> ConstraintExprs,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange TemplateIDRange,
+ ConstraintSatisfaction &Satisfaction) {
+ return ::CheckConstraintSatisfaction(*this, Part, ConstraintExprs,
+ TemplateArgs, TemplateIDRange,
+ Satisfaction);
+}
+
+bool
+Sema::CheckConstraintSatisfaction(VarTemplatePartialSpecializationDecl* Partial,
+ ArrayRef<const Expr *> ConstraintExprs,
+ ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange TemplateIDRange,
+ ConstraintSatisfaction &Satisfaction) {
+ return ::CheckConstraintSatisfaction(*this, Partial, ConstraintExprs,
+ TemplateArgs, TemplateIDRange,
+ Satisfaction);
+}
+
+bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
+ ConstraintSatisfaction &Satisfaction) {
+ return calculateConstraintSatisfaction(
+ *this, ConstraintExpr, Satisfaction,
+ [](const Expr *AtomicExpr) -> ExprResult {
+ return ExprResult(const_cast<Expr *>(AtomicExpr));
+ });
+}
+
+bool Sema::EnsureTemplateArgumentListConstraints(
+ TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
+ SourceRange TemplateIDRange) {
+ ConstraintSatisfaction Satisfaction;
+ llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
+ TD->getAssociatedConstraints(AssociatedConstraints);
+ if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
+ TemplateIDRange, Satisfaction))
return true;
- SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
- Expr::EvalResult EvalResult;
- EvalResult.Diag = &EvaluationDiags;
- if (!E.get()->EvaluateAsRValue(EvalResult, Context)) {
- // C++2a [temp.constr.atomic]p1
- // ...E shall be a constant expression of type bool.
- Diag(E.get()->getBeginLoc(),
- diag::err_non_constant_constraint_expression)
- << E.get()->getSourceRange();
- for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
- Diag(PDiag.first, PDiag.second);
+ if (!Satisfaction.IsSatisfied) {
+ SmallString<128> TemplateArgString;
+ TemplateArgString = " ";
+ TemplateArgString += getTemplateArgumentBindingsText(
+ TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());
+
+ Diag(TemplateIDRange.getBegin(),
+ diag::err_template_arg_list_constraints_not_satisfied)
+ << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
+ << TemplateArgString << TemplateIDRange;
+ DiagnoseUnsatisfiedConstraint(Satisfaction);
+ return true;
+ }
+ return false;
+}
+
+static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
+ Expr *SubstExpr,
+ bool First = true) {
+ SubstExpr = SubstExpr->IgnoreParenImpCasts();
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
+ switch (BO->getOpcode()) {
+ // These two cases will in practice only be reached when using fold
+ // expressions with || and &&, since otherwise the || and && will have been
+ // broken down into atomic constraints during satisfaction checking.
+ case BO_LOr:
+ // Or evaluated to false - meaning both RHS and LHS evaluated to false.
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
+ /*First=*/false);
+ return;
+ case BO_LAnd:
+ bool LHSSatisfied;
+ BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context);
+ if (LHSSatisfied) {
+ // LHS is true, so RHS must be false.
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
+ return;
+ }
+ // LHS is false
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
+
+ // RHS might also be false
+ bool RHSSatisfied;
+ BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context);
+ if (!RHSSatisfied)
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
+ /*First=*/false);
+ return;
+ case BO_GE:
+ case BO_LE:
+ case BO_GT:
+ case BO_LT:
+ case BO_EQ:
+ case BO_NE:
+ if (BO->getLHS()->getType()->isIntegerType() &&
+ BO->getRHS()->getType()->isIntegerType()) {
+ Expr::EvalResult SimplifiedLHS;
+ Expr::EvalResult SimplifiedRHS;
+ BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context);
+ BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context);
+ if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
+ S.Diag(SubstExpr->getBeginLoc(),
+ diag::note_atomic_constraint_evaluated_to_false_elaborated)
+ << (int)First << SubstExpr
+ << SimplifiedLHS.Val.getInt().toString(10)
+ << BinaryOperator::getOpcodeStr(BO->getOpcode())
+ << SimplifiedRHS.Val.getInt().toString(10);
+ return;
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+ } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
+ if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
+ S.Diag(
+ CSE->getSourceRange().getBegin(),
+ diag::
+ note_single_arg_concept_specialization_constraint_evaluated_to_false)
+ << (int)First
+ << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
+ << CSE->getNamedConcept();
+ } else {
+ S.Diag(SubstExpr->getSourceRange().getBegin(),
+ diag::note_concept_specialization_constraint_evaluated_to_false)
+ << (int)First << CSE;
+ }
+ S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
+ return;
+ }
+
+ S.Diag(SubstExpr->getSourceRange().getBegin(),
+ diag::note_atomic_constraint_evaluated_to_false)
+ << (int)First << SubstExpr;
+}
+
+template<typename SubstitutionDiagnostic>
+static void diagnoseUnsatisfiedConstraintExpr(
+ Sema &S, const Expr *E,
+ const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
+ bool First = true) {
+ if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
+ S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
+ << Diag->second;
+ return;
+ }
+
+ diagnoseWellFormedUnsatisfiedConstraintExpr(S,
+ Record.template get<Expr *>(), First);
+}
+
+void Sema::DiagnoseUnsatisfiedConstraint(
+ const ConstraintSatisfaction& Satisfaction) {
+ assert(!Satisfaction.IsSatisfied &&
+ "Attempted to diagnose a satisfied constraint");
+ bool First = true;
+ for (auto &Pair : Satisfaction.Details) {
+ diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
+ First = false;
+ }
+}
+
+void Sema::DiagnoseUnsatisfiedConstraint(
+ const ASTConstraintSatisfaction &Satisfaction) {
+ assert(!Satisfaction.IsSatisfied &&
+ "Attempted to diagnose a satisfied constraint");
+ bool First = true;
+ for (auto &Pair : Satisfaction) {
+ diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
+ First = false;
+ }
+}
+
+const NormalizedConstraint *
+Sema::getNormalizedAssociatedConstraints(
+ NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
+ auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
+ if (CacheEntry == NormalizationCache.end()) {
+ auto Normalized =
+ NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
+ AssociatedConstraints);
+ CacheEntry =
+ NormalizationCache
+ .try_emplace(ConstrainedDecl,
+ Normalized
+ ? new (Context) NormalizedConstraint(
+ std::move(*Normalized))
+ : nullptr)
+ .first;
+ }
+ return CacheEntry->second;
+}
+
+static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
+ ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
+ const ASTTemplateArgumentListInfo *ArgsAsWritten) {
+ if (!N.isAtomic()) {
+ if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
+ ArgsAsWritten))
+ return true;
+ return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
+ ArgsAsWritten);
+ }
+ TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
+
+ AtomicConstraint &Atomic = *N.getAtomicConstraint();
+ TemplateArgumentListInfo SubstArgs;
+ MultiLevelTemplateArgumentList MLTAL;
+ MLTAL.addOuterTemplateArguments(TemplateArgs);
+ if (!Atomic.ParameterMapping) {
+ llvm::SmallBitVector OccurringIndices(TemplateParams->size());
+ S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
+ /*Depth=*/0, OccurringIndices);
+ Atomic.ParameterMapping.emplace(
+ MutableArrayRef<TemplateArgumentLoc>(
+ new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
+ OccurringIndices.count()));
+ for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
+ if (OccurringIndices[I])
+ new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
+ S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
+ // Here we assume we do not support things like
+ // template<typename A, typename B>
+ // concept C = ...;
+ //
+ // template<typename... Ts> requires C<Ts...>
+ // struct S { };
+ // The above currently yields a diagnostic.
+ // We still might have default arguments for concept parameters.
+ ArgsAsWritten->NumTemplateArgs > I ?
+ ArgsAsWritten->arguments()[I].getLocation() :
+ SourceLocation()));
+ }
+ Sema::InstantiatingTemplate Inst(
+ S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
+ Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
+ SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
+ ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
+ if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
+ return true;
+ std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
+ N.getAtomicConstraint()->ParameterMapping->begin());
+ return false;
+}
+
+Optional<NormalizedConstraint>
+NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
+ ArrayRef<const Expr *> E) {
+ assert(E.size() != 0);
+ auto First = fromConstraintExpr(S, D, E[0]);
+ if (E.size() == 1)
+ return First;
+ auto Second = fromConstraintExpr(S, D, E[1]);
+ if (!Second)
+ return None;
+ llvm::Optional<NormalizedConstraint> Conjunction;
+ Conjunction.emplace(S.Context, std::move(*First), std::move(*Second),
+ CCK_Conjunction);
+ for (unsigned I = 2; I < E.size(); ++I) {
+ auto Next = fromConstraintExpr(S, D, E[I]);
+ if (!Next)
+ return llvm::Optional<NormalizedConstraint>{};
+ NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction),
+ std::move(*Next), CCK_Conjunction);
+ *Conjunction = std::move(NewConjunction);
+ }
+ return Conjunction;
+}
+
+llvm::Optional<NormalizedConstraint>
+NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
+ assert(E != nullptr);
+
+ // C++ [temp.constr.normal]p1.1
+ // [...]
+ // - The normal form of an expression (E) is the normal form of E.
+ // [...]
+ E = E->IgnoreParenImpCasts();
+ if (auto *BO = dyn_cast<const BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) {
+ auto LHS = fromConstraintExpr(S, D, BO->getLHS());
+ if (!LHS)
+ return None;
+ auto RHS = fromConstraintExpr(S, D, BO->getRHS());
+ if (!RHS)
+ return None;
+
+ return NormalizedConstraint(
+ S.Context, std::move(*LHS), std::move(*RHS),
+ BO->getOpcode() == BO_LAnd ? CCK_Conjunction : CCK_Disjunction);
+ }
+ } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
+ const NormalizedConstraint *SubNF;
+ {
+ Sema::InstantiatingTemplate Inst(
+ S, CSE->getExprLoc(),
+ Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
+ CSE->getSourceRange());
+ // C++ [temp.constr.normal]p1.1
+ // [...]
+ // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
+ // where C names a concept, is the normal form of the
+ // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
+ // respective template parameters in the parameter mappings in each atomic
+ // constraint. If any such substitution results in an invalid type or
+ // expression, the program is ill-formed; no diagnostic is required.
+ // [...]
+ ConceptDecl *CD = CSE->getNamedConcept();
+ SubNF = S.getNormalizedAssociatedConstraints(CD,
+ {CD->getConstraintExpr()});
+ if (!SubNF)
+ return None;
+ }
+
+ Optional<NormalizedConstraint> New;
+ New.emplace(S.Context, *SubNF);
+
+ if (substituteParameterMappings(
+ S, *New, CSE->getNamedConcept(),
+ CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
+ return None;
+
+ return New;
+ }
+ return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
+}
+
+using NormalForm =
+ llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
+
+static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
+ if (Normalized.isAtomic())
+ return {{Normalized.getAtomicConstraint()}};
+
+ NormalForm LCNF = makeCNF(Normalized.getLHS());
+ NormalForm RCNF = makeCNF(Normalized.getRHS());
+ if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
+ LCNF.reserve(LCNF.size() + RCNF.size());
+ while (!RCNF.empty())
+ LCNF.push_back(RCNF.pop_back_val());
+ return LCNF;
+ }
+
+ // Disjunction
+ NormalForm Res;
+ Res.reserve(LCNF.size() * RCNF.size());
+ for (auto &LDisjunction : LCNF)
+ for (auto &RDisjunction : RCNF) {
+ NormalForm::value_type Combined;
+ Combined.reserve(LDisjunction.size() + RDisjunction.size());
+ std::copy(LDisjunction.begin(), LDisjunction.end(),
+ std::back_inserter(Combined));
+ std::copy(RDisjunction.begin(), RDisjunction.end(),
+ std::back_inserter(Combined));
+ Res.emplace_back(Combined);
+ }
+ return Res;
+}
+
+static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
+ if (Normalized.isAtomic())
+ return {{Normalized.getAtomicConstraint()}};
+
+ NormalForm LDNF = makeDNF(Normalized.getLHS());
+ NormalForm RDNF = makeDNF(Normalized.getRHS());
+ if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
+ LDNF.reserve(LDNF.size() + RDNF.size());
+ while (!RDNF.empty())
+ LDNF.push_back(RDNF.pop_back_val());
+ return LDNF;
+ }
+
+ // Conjunction
+ NormalForm Res;
+ Res.reserve(LDNF.size() * RDNF.size());
+ for (auto &LConjunction : LDNF) {
+ for (auto &RConjunction : RDNF) {
+ NormalForm::value_type Combined;
+ Combined.reserve(LConjunction.size() + RConjunction.size());
+ std::copy(LConjunction.begin(), LConjunction.end(),
+ std::back_inserter(Combined));
+ std::copy(RConjunction.begin(), RConjunction.end(),
+ std::back_inserter(Combined));
+ Res.emplace_back(Combined);
+ }
+ }
+ return Res;
+}
+
+template<typename AtomicSubsumptionEvaluator>
+static bool subsumes(NormalForm PDNF, NormalForm QCNF,
+ AtomicSubsumptionEvaluator E) {
+ // C++ [temp.constr.order] p2
+ // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
+ // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
+ // the conjuctive normal form of Q, where [...]
+ for (const auto &Pi : PDNF) {
+ for (const auto &Qj : QCNF) {
+ // C++ [temp.constr.order] p2
+ // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
+ // and only if there exists an atomic constraint Pia in Pi for which
+ // there exists an atomic constraint, Qjb, in Qj such that Pia
+ // subsumes Qjb.
+ bool Found = false;
+ for (const AtomicConstraint *Pia : Pi) {
+ for (const AtomicConstraint *Qjb : Qj) {
+ if (E(*Pia, *Qjb)) {
+ Found = true;
+ break;
+ }
+ }
+ if (Found)
+ break;
+ }
+ if (!Found)
+ return false;
+ }
+ }
+ return true;
+}
+
+template<typename AtomicSubsumptionEvaluator>
+static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
+ NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
+ AtomicSubsumptionEvaluator E) {
+ // C++ [temp.constr.order] p2
+ // In order to determine if a constraint P subsumes a constraint Q, P is
+ // transformed into disjunctive normal form, and Q is transformed into
+ // conjunctive normal form. [...]
+ auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
+ if (!PNormalized)
+ return true;
+ const NormalForm PDNF = makeDNF(*PNormalized);
+
+ auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
+ if (!QNormalized)
return true;
+ const NormalForm QCNF = makeCNF(*QNormalized);
+
+ Subsumes = subsumes(PDNF, QCNF, E);
+ return false;
+}
+
+bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
+ NamedDecl *D2, ArrayRef<const Expr *> AC2,
+ bool &Result) {
+ if (AC1.empty()) {
+ Result = AC2.empty();
+ return false;
+ }
+ if (AC2.empty()) {
+ // TD1 has associated constraints and TD2 does not.
+ Result = true;
+ return false;
}
- IsSatisfied = EvalResult.Val.getInt().getBoolValue();
+ std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
+ auto CacheEntry = SubsumptionCache.find(Key);
+ if (CacheEntry != SubsumptionCache.end()) {
+ Result = CacheEntry->second;
+ return false;
+ }
+ if (subsumes(*this, D1, AC1, D2, AC2, Result,
+ [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
+ return A.subsumes(Context, B);
+ }))
+ return true;
+ SubsumptionCache.try_emplace(Key, Result);
return false;
-} \ No newline at end of file
+}
+
+bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
+ ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
+ if (isSFINAEContext())
+ // No need to work here because our notes would be discarded.
+ return false;
+
+ if (AC1.empty() || AC2.empty())
+ return false;
+
+ auto NormalExprEvaluator =
+ [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
+ return A.subsumes(Context, B);
+ };
+
+ const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
+ auto IdenticalExprEvaluator =
+ [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
+ if (!A.hasMatchingParameterMapping(Context, B))
+ return false;
+ const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
+ if (EA == EB)
+ return true;
+
+ // Not the same source level expression - are the expressions
+ // identical?
+ llvm::FoldingSetNodeID IDA, IDB;
+ EA->Profile(IDA, Context, /*Cannonical=*/true);
+ EB->Profile(IDB, Context, /*Cannonical=*/true);
+ if (IDA != IDB)
+ return false;
+
+ AmbiguousAtomic1 = EA;
+ AmbiguousAtomic2 = EB;
+ return true;
+ };
+
+ {
+ // The subsumption checks might cause diagnostics
+ SFINAETrap Trap(*this);
+ auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
+ if (!Normalized1)
+ return false;
+ const NormalForm DNF1 = makeDNF(*Normalized1);
+ const NormalForm CNF1 = makeCNF(*Normalized1);
+
+ auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
+ if (!Normalized2)
+ return false;
+ const NormalForm DNF2 = makeDNF(*Normalized2);
+ const NormalForm CNF2 = makeCNF(*Normalized2);
+
+ bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
+ bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
+ bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
+ bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
+ if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
+ Is2AtLeastAs1 == Is2AtLeastAs1Normally)
+ // Same result - no ambiguity was caused by identical atomic expressions.
+ return false;
+ }
+
+ // A different result! Some ambiguous atomic constraint(s) caused a difference
+ assert(AmbiguousAtomic1 && AmbiguousAtomic2);
+
+ Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
+ << AmbiguousAtomic1->getSourceRange();
+ Diag(AmbiguousAtomic2->getBeginLoc(),
+ diag::note_ambiguous_atomic_constraints_similar_expression)
+ << AmbiguousAtomic2->getSourceRange();
+ return true;
+}