summaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaTemplateDeduction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaTemplateDeduction.cpp')
-rw-r--r--clang/lib/Sema/SemaTemplateDeduction.cpp5717
1 files changed, 5717 insertions, 0 deletions
diff --git a/clang/lib/Sema/SemaTemplateDeduction.cpp b/clang/lib/Sema/SemaTemplateDeduction.cpp
new file mode 100644
index 000000000000..64ef819e30d4
--- /dev/null
+++ b/clang/lib/Sema/SemaTemplateDeduction.cpp
@@ -0,0 +1,5717 @@
+//===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements C++ template argument deduction.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Sema/TemplateDeduction.h"
+#include "TreeTransform.h"
+#include "TypeLocBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclAccessPair.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclarationName.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/TemplateName.h"
+#include "clang/AST/Type.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/UnresolvedSet.h"
+#include "clang/Basic/AddressSpaces.h"
+#include "clang/Basic/ExceptionSpecificationType.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/Specifiers.h"
+#include "clang/Sema/Ownership.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <tuple>
+#include <utility>
+
+namespace clang {
+
+ /// Various flags that control template argument deduction.
+ ///
+ /// These flags can be bitwise-OR'd together.
+ enum TemplateDeductionFlags {
+ /// No template argument deduction flags, which indicates the
+ /// strictest results for template argument deduction (as used for, e.g.,
+ /// matching class template partial specializations).
+ TDF_None = 0,
+
+ /// Within template argument deduction from a function call, we are
+ /// matching with a parameter type for which the original parameter was
+ /// a reference.
+ TDF_ParamWithReferenceType = 0x1,
+
+ /// Within template argument deduction from a function call, we
+ /// are matching in a case where we ignore cv-qualifiers.
+ TDF_IgnoreQualifiers = 0x02,
+
+ /// Within template argument deduction from a function call,
+ /// we are matching in a case where we can perform template argument
+ /// deduction from a template-id of a derived class of the argument type.
+ TDF_DerivedClass = 0x04,
+
+ /// Allow non-dependent types to differ, e.g., when performing
+ /// template argument deduction from a function call where conversions
+ /// may apply.
+ TDF_SkipNonDependent = 0x08,
+
+ /// Whether we are performing template argument deduction for
+ /// parameters and arguments in a top-level template argument
+ TDF_TopLevelParameterTypeList = 0x10,
+
+ /// Within template argument deduction from overload resolution per
+ /// C++ [over.over] allow matching function types that are compatible in
+ /// terms of noreturn and default calling convention adjustments, or
+ /// similarly matching a declared template specialization against a
+ /// possible template, per C++ [temp.deduct.decl]. In either case, permit
+ /// deduction where the parameter is a function type that can be converted
+ /// to the argument type.
+ TDF_AllowCompatibleFunctionType = 0x20,
+
+ /// Within template argument deduction for a conversion function, we are
+ /// matching with an argument type for which the original argument was
+ /// a reference.
+ TDF_ArgWithReferenceType = 0x40,
+ };
+}
+
+using namespace clang;
+using namespace sema;
+
+/// Compare two APSInts, extending and switching the sign as
+/// necessary to compare their values regardless of underlying type.
+static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
+ if (Y.getBitWidth() > X.getBitWidth())
+ X = X.extend(Y.getBitWidth());
+ else if (Y.getBitWidth() < X.getBitWidth())
+ Y = Y.extend(X.getBitWidth());
+
+ // If there is a signedness mismatch, correct it.
+ if (X.isSigned() != Y.isSigned()) {
+ // If the signed value is negative, then the values cannot be the same.
+ if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
+ return false;
+
+ Y.setIsSigned(true);
+ X.setIsSigned(true);
+ }
+
+ return X == Y;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &
+ Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false,
+ bool DeducedFromArrayBound = false);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
+ ArrayRef<TemplateArgument> Params,
+ ArrayRef<TemplateArgument> Args,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ bool NumberOfArgumentsMustMatch);
+
+static void MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced, unsigned Depth,
+ llvm::SmallBitVector &Used);
+
+static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced, unsigned Level,
+ llvm::SmallBitVector &Deduced);
+
+/// If the given expression is of a form that permits the deduction
+/// of a non-type template parameter, return the declaration of that
+/// non-type template parameter.
+static NonTypeTemplateParmDecl *
+getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
+ // If we are within an alias template, the expression may have undergone
+ // any number of parameter substitutions already.
+ while (true) {
+ if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
+ E = IC->getSubExpr();
+ else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
+ E = CE->getSubExpr();
+ else if (SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
+ if (NTTP->getDepth() == Info.getDeducedDepth())
+ return NTTP;
+
+ return nullptr;
+}
+
+/// Determine whether two declaration pointers refer to the same
+/// declaration.
+static bool isSameDeclaration(Decl *X, Decl *Y) {
+ if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
+ X = NX->getUnderlyingDecl();
+ if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
+ Y = NY->getUnderlyingDecl();
+
+ return X->getCanonicalDecl() == Y->getCanonicalDecl();
+}
+
+/// Verify that the given, deduced template arguments are compatible.
+///
+/// \returns The deduced template argument, or a NULL template argument if
+/// the deduced template arguments were incompatible.
+static DeducedTemplateArgument
+checkDeducedTemplateArguments(ASTContext &Context,
+ const DeducedTemplateArgument &X,
+ const DeducedTemplateArgument &Y) {
+ // We have no deduction for one or both of the arguments; they're compatible.
+ if (X.isNull())
+ return Y;
+ if (Y.isNull())
+ return X;
+
+ // If we have two non-type template argument values deduced for the same
+ // parameter, they must both match the type of the parameter, and thus must
+ // match each other's type. As we're only keeping one of them, we must check
+ // for that now. The exception is that if either was deduced from an array
+ // bound, the type is permitted to differ.
+ if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
+ QualType XType = X.getNonTypeTemplateArgumentType();
+ if (!XType.isNull()) {
+ QualType YType = Y.getNonTypeTemplateArgumentType();
+ if (YType.isNull() || !Context.hasSameType(XType, YType))
+ return DeducedTemplateArgument();
+ }
+ }
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Non-deduced template arguments handled above");
+
+ case TemplateArgument::Type:
+ // If two template type arguments have the same type, they're compatible.
+ if (Y.getKind() == TemplateArgument::Type &&
+ Context.hasSameType(X.getAsType(), Y.getAsType()))
+ return X;
+
+ // If one of the two arguments was deduced from an array bound, the other
+ // supersedes it.
+ if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
+ return X.wasDeducedFromArrayBound() ? Y : X;
+
+ // The arguments are not compatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Integral:
+ // If we deduced a constant in one case and either a dependent expression or
+ // declaration in another case, keep the integral constant.
+ // If both are integral constants with the same value, keep that value.
+ if (Y.getKind() == TemplateArgument::Expression ||
+ Y.getKind() == TemplateArgument::Declaration ||
+ (Y.getKind() == TemplateArgument::Integral &&
+ hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
+ return X.wasDeducedFromArrayBound() ? Y : X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Template:
+ if (Y.getKind() == TemplateArgument::Template &&
+ Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::TemplateExpansion:
+ if (Y.getKind() == TemplateArgument::TemplateExpansion &&
+ Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
+ Y.getAsTemplateOrTemplatePattern()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Expression: {
+ if (Y.getKind() != TemplateArgument::Expression)
+ return checkDeducedTemplateArguments(Context, Y, X);
+
+ // Compare the expressions for equality
+ llvm::FoldingSetNodeID ID1, ID2;
+ X.getAsExpr()->Profile(ID1, Context, true);
+ Y.getAsExpr()->Profile(ID2, Context, true);
+ if (ID1 == ID2)
+ return X.wasDeducedFromArrayBound() ? Y : X;
+
+ // Differing dependent expressions are incompatible.
+ return DeducedTemplateArgument();
+ }
+
+ case TemplateArgument::Declaration:
+ assert(!X.wasDeducedFromArrayBound());
+
+ // If we deduced a declaration and a dependent expression, keep the
+ // declaration.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a declaration and an integral constant, keep the
+ // integral constant and whichever type did not come from an array
+ // bound.
+ if (Y.getKind() == TemplateArgument::Integral) {
+ if (Y.wasDeducedFromArrayBound())
+ return TemplateArgument(Context, Y.getAsIntegral(),
+ X.getParamTypeForDecl());
+ return Y;
+ }
+
+ // If we deduced two declarations, make sure that they refer to the
+ // same declaration.
+ if (Y.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::NullPtr:
+ // If we deduced a null pointer and a dependent expression, keep the
+ // null pointer.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a null pointer and an integral constant, keep the
+ // integral constant.
+ if (Y.getKind() == TemplateArgument::Integral)
+ return Y;
+
+ // If we deduced two null pointers, they are the same.
+ if (Y.getKind() == TemplateArgument::NullPtr)
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Pack: {
+ if (Y.getKind() != TemplateArgument::Pack ||
+ X.pack_size() != Y.pack_size())
+ return DeducedTemplateArgument();
+
+ llvm::SmallVector<TemplateArgument, 8> NewPack;
+ for (TemplateArgument::pack_iterator XA = X.pack_begin(),
+ XAEnd = X.pack_end(),
+ YA = Y.pack_begin();
+ XA != XAEnd; ++XA, ++YA) {
+ TemplateArgument Merged = checkDeducedTemplateArguments(
+ Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
+ DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
+ if (Merged.isNull())
+ return DeducedTemplateArgument();
+ NewPack.push_back(Merged);
+ }
+
+ return DeducedTemplateArgument(
+ TemplateArgument::CreatePackCopy(Context, NewPack),
+ X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
+ }
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// Deduce the value of the given non-type template parameter
+/// as the given deduced template argument. All non-type template parameter
+/// deduction is funneled through here.
+static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
+ Sema &S, TemplateParameterList *TemplateParams,
+ NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
+ QualType ValueType, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == Info.getDeducedDepth() &&
+ "deducing non-type template argument with wrong depth");
+
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(
+ S.Context, Deduced[NTTP->getIndex()], NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ if (!S.getLangOpts().CPlusPlus17)
+ return Sema::TDK_Success;
+
+ if (NTTP->isExpandedParameterPack())
+ // FIXME: We may still need to deduce parts of the type here! But we
+ // don't have any way to find which slice of the type to use, and the
+ // type stored on the NTTP itself is nonsense. Perhaps the type of an
+ // expanded NTTP should be a pack expansion type?
+ return Sema::TDK_Success;
+
+ // Get the type of the parameter for deduction. If it's a (dependent) array
+ // or function type, we will not have decayed it yet, so do that now.
+ QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
+ if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
+ ParamType = Expansion->getPattern();
+
+ // FIXME: It's not clear how deduction of a parameter of reference
+ // type from an argument (of non-reference type) should be performed.
+ // For now, we just remove reference types from both sides and let
+ // the final check for matching types sort out the mess.
+ return DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, ParamType.getNonReferenceType(),
+ ValueType.getNonReferenceType(), Info, Deduced, TDF_SkipNonDependent,
+ /*PartialOrdering=*/false,
+ /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
+}
+
+/// Deduce the value of the given non-type template parameter
+/// from the given integral constant.
+static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
+ Sema &S, TemplateParameterList *TemplateParams,
+ NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
+ QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP,
+ DeducedTemplateArgument(S.Context, Value, ValueType,
+ DeducedFromArrayBound),
+ ValueType, Info, Deduced);
+}
+
+/// Deduce the value of the given non-type template parameter
+/// from the given null pointer template argument type.
+static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
+ Sema &S, TemplateParameterList *TemplateParams,
+ NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ Expr *Value =
+ S.ImpCastExprToType(new (S.Context) CXXNullPtrLiteralExpr(
+ S.Context.NullPtrTy, NTTP->getLocation()),
+ NullPtrType, CK_NullToPointer)
+ .get();
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ DeducedTemplateArgument(Value),
+ Value->getType(), Info, Deduced);
+}
+
+/// Deduce the value of the given non-type template parameter
+/// from the given type- or value-dependent expression.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
+ Sema &S, TemplateParameterList *TemplateParams,
+ NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ DeducedTemplateArgument(Value),
+ Value->getType(), Info, Deduced);
+}
+
+/// Deduce the value of the given non-type template parameter
+/// from the given declaration.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
+ Sema &S, TemplateParameterList *TemplateParams,
+ NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
+ TemplateArgument New(D, T);
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ TemplateName Param,
+ TemplateName Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
+ if (!ParamDecl) {
+ // The parameter type is dependent and is not a template template parameter,
+ // so there is nothing that we can deduce.
+ return Sema::TDK_Success;
+ }
+
+ if (TemplateTemplateParmDecl *TempParam
+ = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
+ // If we're not deducing at this depth, there's nothing to deduce.
+ if (TempParam->getDepth() != Info.getDeducedDepth())
+ return Sema::TDK_Success;
+
+ DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[TempParam->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = TempParam;
+ Info.FirstArg = Deduced[TempParam->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[TempParam->getIndex()] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Verify that the two template names are equivalent.
+ if (S.Context.hasSameTemplateName(Param, Arg))
+ return Sema::TDK_Success;
+
+ // Mismatch of non-dependent template parameter to argument.
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+}
+
+/// Deduce the template arguments by comparing the template parameter
+/// type (which is a template-id) with the template argument type.
+///
+/// \param S the Sema
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param Param the parameter type
+///
+/// \param Arg the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateSpecializationType *Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(Arg.isCanonical() && "Argument type must be canonical");
+
+ // Treat an injected-class-name as its underlying template-id.
+ if (auto *Injected = dyn_cast<InjectedClassNameType>(Arg))
+ Arg = Injected->getInjectedSpecializationType();
+
+ // Check whether the template argument is a dependent template-id.
+ if (const TemplateSpecializationType *SpecArg
+ = dyn_cast<TemplateSpecializationType>(Arg)) {
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Param->getTemplateName(),
+ SpecArg->getTemplateName(),
+ Info, Deduced))
+ return Result;
+
+
+ // Perform template argument deduction on each template
+ // argument. Ignore any missing/extra arguments, since they could be
+ // filled in by default arguments.
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param->template_arguments(),
+ SpecArg->template_arguments(), Info, Deduced,
+ /*NumberOfArgumentsMustMatch=*/false);
+ }
+
+ // If the argument type is a class template specialization, we
+ // perform template argument deduction using its template
+ // arguments.
+ const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
+ if (!RecordArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ ClassTemplateSpecializationDecl *SpecArg
+ = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
+ if (!SpecArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S,
+ TemplateParams,
+ Param->getTemplateName(),
+ TemplateName(SpecArg->getSpecializedTemplate()),
+ Info, Deduced))
+ return Result;
+
+ // Perform template argument deduction for the template arguments.
+ return DeduceTemplateArguments(S, TemplateParams, Param->template_arguments(),
+ SpecArg->getTemplateArgs().asArray(), Info,
+ Deduced, /*NumberOfArgumentsMustMatch=*/true);
+}
+
+/// Determines whether the given type is an opaque type that
+/// might be more qualified when instantiated.
+static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
+ switch (T->getTypeClass()) {
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::Decltype:
+ case Type::UnresolvedUsing:
+ case Type::TemplateTypeParm:
+ return true;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ return IsPossiblyOpaquelyQualifiedType(
+ cast<ArrayType>(T)->getElementType());
+
+ default:
+ return false;
+ }
+}
+
+/// Helper function to build a TemplateParameter when we don't
+/// know its type statically.
+static TemplateParameter makeTemplateParameter(Decl *D) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
+ return TemplateParameter(TTP);
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
+ return TemplateParameter(NTTP);
+
+ return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
+}
+
+/// If \p Param is an expanded parameter pack, get the number of expansions.
+static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
+ if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
+ if (NTTP->isExpandedParameterPack())
+ return NTTP->getNumExpansionTypes();
+
+ if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
+ if (TTP->isExpandedParameterPack())
+ return TTP->getNumExpansionTemplateParameters();
+
+ return None;
+}
+
+/// A pack that we're currently deducing.
+struct clang::DeducedPack {
+ // The index of the pack.
+ unsigned Index;
+
+ // The old value of the pack before we started deducing it.
+ DeducedTemplateArgument Saved;
+
+ // A deferred value of this pack from an inner deduction, that couldn't be
+ // deduced because this deduction hadn't happened yet.
+ DeducedTemplateArgument DeferredDeduction;
+
+ // The new value of the pack.
+ SmallVector<DeducedTemplateArgument, 4> New;
+
+ // The outer deduction for this pack, if any.
+ DeducedPack *Outer = nullptr;
+
+ DeducedPack(unsigned Index) : Index(Index) {}
+};
+
+namespace {
+
+/// A scope in which we're performing pack deduction.
+class PackDeductionScope {
+public:
+ /// Prepare to deduce the packs named within Pattern.
+ PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info, TemplateArgument Pattern)
+ : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
+ unsigned NumNamedPacks = addPacks(Pattern);
+ finishConstruction(NumNamedPacks);
+ }
+
+ /// Prepare to directly deduce arguments of the parameter with index \p Index.
+ PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info, unsigned Index)
+ : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
+ addPack(Index);
+ finishConstruction(1);
+ }
+
+private:
+ void addPack(unsigned Index) {
+ // Save the deduced template argument for the parameter pack expanded
+ // by this pack expansion, then clear out the deduction.
+ DeducedPack Pack(Index);
+ Pack.Saved = Deduced[Index];
+ Deduced[Index] = TemplateArgument();
+
+ // FIXME: What if we encounter multiple packs with different numbers of
+ // pre-expanded expansions? (This should already have been diagnosed
+ // during substitution.)
+ if (Optional<unsigned> ExpandedPackExpansions =
+ getExpandedPackSize(TemplateParams->getParam(Index)))
+ FixedNumExpansions = ExpandedPackExpansions;
+
+ Packs.push_back(Pack);
+ }
+
+ unsigned addPacks(TemplateArgument Pattern) {
+ // Compute the set of template parameter indices that correspond to
+ // parameter packs expanded by the pack expansion.
+ llvm::SmallBitVector SawIndices(TemplateParams->size());
+
+ auto AddPack = [&](unsigned Index) {
+ if (SawIndices[Index])
+ return;
+ SawIndices[Index] = true;
+ addPack(Index);
+ };
+
+ // First look for unexpanded packs in the pattern.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
+ unsigned Depth, Index;
+ std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
+ if (Depth == Info.getDeducedDepth())
+ AddPack(Index);
+ }
+ assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
+
+ unsigned NumNamedPacks = Packs.size();
+
+ // We can also have deduced template parameters that do not actually
+ // appear in the pattern, but can be deduced by it (the type of a non-type
+ // template parameter pack, in particular). These won't have prevented us
+ // from partially expanding the pack.
+ llvm::SmallBitVector Used(TemplateParams->size());
+ MarkUsedTemplateParameters(S.Context, Pattern, /*OnlyDeduced*/true,
+ Info.getDeducedDepth(), Used);
+ for (int Index = Used.find_first(); Index != -1;
+ Index = Used.find_next(Index))
+ if (TemplateParams->getParam(Index)->isParameterPack())
+ AddPack(Index);
+
+ return NumNamedPacks;
+ }
+
+ void finishConstruction(unsigned NumNamedPacks) {
+ // Dig out the partially-substituted pack, if there is one.
+ const TemplateArgument *PartialPackArgs = nullptr;
+ unsigned NumPartialPackArgs = 0;
+ std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
+ if (auto *Scope = S.CurrentInstantiationScope)
+ if (auto *Partial = Scope->getPartiallySubstitutedPack(
+ &PartialPackArgs, &NumPartialPackArgs))
+ PartialPackDepthIndex = getDepthAndIndex(Partial);
+
+ // This pack expansion will have been partially or fully expanded if
+ // it only names explicitly-specified parameter packs (including the
+ // partially-substituted one, if any).
+ bool IsExpanded = true;
+ for (unsigned I = 0; I != NumNamedPacks; ++I) {
+ if (Packs[I].Index >= Info.getNumExplicitArgs()) {
+ IsExpanded = false;
+ IsPartiallyExpanded = false;
+ break;
+ }
+ if (PartialPackDepthIndex ==
+ std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
+ IsPartiallyExpanded = true;
+ }
+ }
+
+ // Skip over the pack elements that were expanded into separate arguments.
+ // If we partially expanded, this is the number of partial arguments.
+ if (IsPartiallyExpanded)
+ PackElements += NumPartialPackArgs;
+ else if (IsExpanded)
+ PackElements += *FixedNumExpansions;
+
+ for (auto &Pack : Packs) {
+ if (Info.PendingDeducedPacks.size() > Pack.Index)
+ Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
+ else
+ Info.PendingDeducedPacks.resize(Pack.Index + 1);
+ Info.PendingDeducedPacks[Pack.Index] = &Pack;
+
+ if (PartialPackDepthIndex ==
+ std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
+ Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
+ // We pre-populate the deduced value of the partially-substituted
+ // pack with the specified value. This is not entirely correct: the
+ // value is supposed to have been substituted, not deduced, but the
+ // cases where this is observable require an exact type match anyway.
+ //
+ // FIXME: If we could represent a "depth i, index j, pack elem k"
+ // parameter, we could substitute the partially-substituted pack
+ // everywhere and avoid this.
+ if (!IsPartiallyExpanded)
+ Deduced[Pack.Index] = Pack.New[PackElements];
+ }
+ }
+ }
+
+public:
+ ~PackDeductionScope() {
+ for (auto &Pack : Packs)
+ Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
+ }
+
+ /// Determine whether this pack has already been partially expanded into a
+ /// sequence of (prior) function parameters / template arguments.
+ bool isPartiallyExpanded() { return IsPartiallyExpanded; }
+
+ /// Determine whether this pack expansion scope has a known, fixed arity.
+ /// This happens if it involves a pack from an outer template that has
+ /// (notionally) already been expanded.
+ bool hasFixedArity() { return FixedNumExpansions.hasValue(); }
+
+ /// Determine whether the next element of the argument is still part of this
+ /// pack. This is the case unless the pack is already expanded to a fixed
+ /// length.
+ bool hasNextElement() {
+ return !FixedNumExpansions || *FixedNumExpansions > PackElements;
+ }
+
+ /// Move to deducing the next element in each pack that is being deduced.
+ void nextPackElement() {
+ // Capture the deduced template arguments for each parameter pack expanded
+ // by this pack expansion, add them to the list of arguments we've deduced
+ // for that pack, then clear out the deduced argument.
+ for (auto &Pack : Packs) {
+ DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
+ if (!Pack.New.empty() || !DeducedArg.isNull()) {
+ while (Pack.New.size() < PackElements)
+ Pack.New.push_back(DeducedTemplateArgument());
+ if (Pack.New.size() == PackElements)
+ Pack.New.push_back(DeducedArg);
+ else
+ Pack.New[PackElements] = DeducedArg;
+ DeducedArg = Pack.New.size() > PackElements + 1
+ ? Pack.New[PackElements + 1]
+ : DeducedTemplateArgument();
+ }
+ }
+ ++PackElements;
+ }
+
+ /// Finish template argument deduction for a set of argument packs,
+ /// producing the argument packs and checking for consistency with prior
+ /// deductions.
+ Sema::TemplateDeductionResult
+ finish(bool TreatNoDeductionsAsNonDeduced = true) {
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ for (auto &Pack : Packs) {
+ // Put back the old value for this pack.
+ Deduced[Pack.Index] = Pack.Saved;
+
+ // If we are deducing the size of this pack even if we didn't deduce any
+ // values for it, then make sure we build a pack of the right size.
+ // FIXME: Should we always deduce the size, even if the pack appears in
+ // a non-deduced context?
+ if (!TreatNoDeductionsAsNonDeduced)
+ Pack.New.resize(PackElements);
+
+ // Build or find a new value for this pack.
+ DeducedTemplateArgument NewPack;
+ if (PackElements && Pack.New.empty()) {
+ if (Pack.DeferredDeduction.isNull()) {
+ // We were not able to deduce anything for this parameter pack
+ // (because it only appeared in non-deduced contexts), so just
+ // restore the saved argument pack.
+ continue;
+ }
+
+ NewPack = Pack.DeferredDeduction;
+ Pack.DeferredDeduction = TemplateArgument();
+ } else if (Pack.New.empty()) {
+ // If we deduced an empty argument pack, create it now.
+ NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
+ } else {
+ TemplateArgument *ArgumentPack =
+ new (S.Context) TemplateArgument[Pack.New.size()];
+ std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
+ NewPack = DeducedTemplateArgument(
+ TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
+ // FIXME: This is wrong, it's possible that some pack elements are
+ // deduced from an array bound and others are not:
+ // template<typename ...T, T ...V> void g(const T (&...p)[V]);
+ // g({1, 2, 3}, {{}, {}});
+ // ... should deduce T = {int, size_t (from array bound)}.
+ Pack.New[0].wasDeducedFromArrayBound());
+ }
+
+ // Pick where we're going to put the merged pack.
+ DeducedTemplateArgument *Loc;
+ if (Pack.Outer) {
+ if (Pack.Outer->DeferredDeduction.isNull()) {
+ // Defer checking this pack until we have a complete pack to compare
+ // it against.
+ Pack.Outer->DeferredDeduction = NewPack;
+ continue;
+ }
+ Loc = &Pack.Outer->DeferredDeduction;
+ } else {
+ Loc = &Deduced[Pack.Index];
+ }
+
+ // Check the new pack matches any previous value.
+ DeducedTemplateArgument OldPack = *Loc;
+ DeducedTemplateArgument Result =
+ checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+
+ // If we deferred a deduction of this pack, check that one now too.
+ if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
+ OldPack = Result;
+ NewPack = Pack.DeferredDeduction;
+ Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+ }
+
+ NamedDecl *Param = TemplateParams->getParam(Pack.Index);
+ if (Result.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = OldPack;
+ Info.SecondArg = NewPack;
+ return Sema::TDK_Inconsistent;
+ }
+
+ // If we have a pre-expanded pack and we didn't deduce enough elements
+ // for it, fail deduction.
+ if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) {
+ if (*Expansions != PackElements) {
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = Result;
+ return Sema::TDK_IncompletePack;
+ }
+ }
+
+ *Loc = Result;
+ }
+
+ return Sema::TDK_Success;
+ }
+
+private:
+ Sema &S;
+ TemplateParameterList *TemplateParams;
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced;
+ TemplateDeductionInfo &Info;
+ unsigned PackElements = 0;
+ bool IsPartiallyExpanded = false;
+ /// The number of expansions, if we have a fully-expanded pack in this scope.
+ Optional<unsigned> FixedNumExpansions;
+
+ SmallVector<DeducedPack, 2> Packs;
+};
+
+} // namespace
+
+/// Deduce the template arguments by comparing the list of parameter
+/// types to the list of argument types, as in the parameter-type-lists of
+/// function types (C++ [temp.deduct.type]p10).
+///
+/// \param S The semantic analysis object within which we are deducing
+///
+/// \param TemplateParams The template parameters that we are deducing
+///
+/// \param Params The list of parameter types
+///
+/// \param NumParams The number of types in \c Params
+///
+/// \param Args The list of argument types
+///
+/// \param NumArgs The number of types in \c Args
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering If true, we are performing template argument
+/// deduction for during partial ordering for a call
+/// (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const QualType *Params, unsigned NumParams,
+ const QualType *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false) {
+ // C++0x [temp.deduct.type]p10:
+ // Similarly, if P has a form that contains (T), then each parameter type
+ // Pi of the respective parameter-type- list of P is compared with the
+ // corresponding parameter type Ai of the corresponding parameter-type-list
+ // of A. [...]
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; ParamIdx != NumParams; ++ParamIdx) {
+ // Check argument types.
+ const PackExpansionType *Expansion
+ = dyn_cast<PackExpansionType>(Params[ParamIdx]);
+ if (!Expansion) {
+ // Simple case: compare the parameter and argument types at this point.
+
+ // Make sure we have an argument.
+ if (ArgIdx >= NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ if (isa<PackExpansionType>(Args[ArgIdx])) {
+ // C++0x [temp.deduct.type]p22:
+ // If the original function parameter associated with A is a function
+ // parameter pack and the function parameter associated with P is not
+ // a function parameter pack, then template argument deduction fails.
+ return Sema::TDK_MiscellaneousDeductionFailure;
+ }
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced, TDF,
+ PartialOrdering))
+ return Result;
+
+ ++ArgIdx;
+ continue;
+ }
+
+ // C++0x [temp.deduct.type]p10:
+ // If the parameter-declaration corresponding to Pi is a function
+ // parameter pack, then the type of its declarator- id is compared with
+ // each remaining parameter type in the parameter-type-list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by the function parameter pack.
+
+ QualType Pattern = Expansion->getPattern();
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ // A pack scope with fixed arity is not really a pack any more, so is not
+ // a non-deduced context.
+ if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
+ for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
+ Args[ArgIdx], Info, Deduced,
+ TDF, PartialOrdering))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+ } else {
+ // C++0x [temp.deduct.type]p5:
+ // The non-deduced contexts are:
+ // - A function parameter pack that does not occur at the end of the
+ // parameter-declaration-clause.
+ //
+ // FIXME: There is no wording to say what we should do in this case. We
+ // choose to resolve this by applying the same rule that is applied for a
+ // function call: that is, deduce all contained packs to their
+ // explicitly-specified values (or to <> if there is no such value).
+ //
+ // This is seemingly-arbitrarily different from the case of a template-id
+ // with a non-trailing pack-expansion in its arguments, which renders the
+ // entire template-argument-list a non-deduced context.
+
+ // If the parameter type contains an explicitly-specified pack that we
+ // could not expand, skip the number of parameters notionally created
+ // by the expansion.
+ Optional<unsigned> NumExpansions = Expansion->getNumExpansions();
+ if (NumExpansions && !PackScope.isPartiallyExpanded()) {
+ for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
+ ++I, ++ArgIdx)
+ PackScope.nextPackElement();
+ }
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish())
+ return Result;
+ }
+
+ // Make sure we don't have any extra arguments.
+ if (ArgIdx < NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// Determine whether the parameter has qualifiers that the argument
+/// lacks. Put another way, determine whether there is no way to add
+/// a deduced set of qualifiers to the ParamType that would result in
+/// its qualifiers matching those of the ArgType.
+static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
+ QualType ArgType) {
+ Qualifiers ParamQs = ParamType.getQualifiers();
+ Qualifiers ArgQs = ArgType.getQualifiers();
+
+ if (ParamQs == ArgQs)
+ return false;
+
+ // Mismatched (but not missing) Objective-C GC attributes.
+ if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
+ ParamQs.hasObjCGCAttr())
+ return true;
+
+ // Mismatched (but not missing) address spaces.
+ if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
+ ParamQs.hasAddressSpace())
+ return true;
+
+ // Mismatched (but not missing) Objective-C lifetime qualifiers.
+ if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
+ ParamQs.hasObjCLifetime())
+ return true;
+
+ // CVR qualifiers inconsistent or a superset.
+ return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
+}
+
+/// Compare types for equality with respect to possibly compatible
+/// function types (noreturn adjustment, implicit calling conventions). If any
+/// of parameter and argument is not a function, just perform type comparison.
+///
+/// \param Param the template parameter type.
+///
+/// \param Arg the argument type.
+bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
+ CanQualType Arg) {
+ const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
+ *ArgFunction = Arg->getAs<FunctionType>();
+
+ // Just compare if not functions.
+ if (!ParamFunction || !ArgFunction)
+ return Param == Arg;
+
+ // Noreturn and noexcept adjustment.
+ QualType AdjustedParam;
+ if (IsFunctionConversion(Param, Arg, AdjustedParam))
+ return Arg == Context.getCanonicalType(AdjustedParam);
+
+ // FIXME: Compatible calling conventions.
+
+ return Param == Arg;
+}
+
+/// Get the index of the first template parameter that was originally from the
+/// innermost template-parameter-list. This is 0 except when we concatenate
+/// the template parameter lists of a class template and a constructor template
+/// when forming an implicit deduction guide.
+static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
+ auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
+ if (!Guide || !Guide->isImplicit())
+ return 0;
+ return Guide->getDeducedTemplate()->getTemplateParameters()->size();
+}
+
+/// Determine whether a type denotes a forwarding reference.
+static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
+ // C++1z [temp.deduct.call]p3:
+ // A forwarding reference is an rvalue reference to a cv-unqualified
+ // template parameter that does not represent a template parameter of a
+ // class template.
+ if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
+ if (ParamRef->getPointeeType().getQualifiers())
+ return false;
+ auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
+ return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
+ }
+ return false;
+}
+
+/// Deduce the template arguments by comparing the parameter type and
+/// the argument type (C++ [temp.deduct.type]).
+///
+/// \param S the semantic analysis object within which we are deducing
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param ParamIn the parameter type
+///
+/// \param ArgIn the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering Whether we're performing template argument deduction
+/// in the context of partial ordering (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType ParamIn, QualType ArgIn,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering,
+ bool DeducedFromArrayBound) {
+ // We only want to look at the canonical types, since typedefs and
+ // sugar are not part of template argument deduction.
+ QualType Param = S.Context.getCanonicalType(ParamIn);
+ QualType Arg = S.Context.getCanonicalType(ArgIn);
+
+ // If the argument type is a pack expansion, look at its pattern.
+ // This isn't explicitly called out
+ if (const PackExpansionType *ArgExpansion
+ = dyn_cast<PackExpansionType>(Arg))
+ Arg = ArgExpansion->getPattern();
+
+ if (PartialOrdering) {
+ // C++11 [temp.deduct.partial]p5:
+ // Before the partial ordering is done, certain transformations are
+ // performed on the types used for partial ordering:
+ // - If P is a reference type, P is replaced by the type referred to.
+ const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
+ if (ParamRef)
+ Param = ParamRef->getPointeeType();
+
+ // - If A is a reference type, A is replaced by the type referred to.
+ const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
+ if (ArgRef)
+ Arg = ArgRef->getPointeeType();
+
+ if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
+ // C++11 [temp.deduct.partial]p9:
+ // If, for a given type, deduction succeeds in both directions (i.e.,
+ // the types are identical after the transformations above) and both
+ // P and A were reference types [...]:
+ // - if [one type] was an lvalue reference and [the other type] was
+ // not, [the other type] is not considered to be at least as
+ // specialized as [the first type]
+ // - if [one type] is more cv-qualified than [the other type],
+ // [the other type] is not considered to be at least as specialized
+ // as [the first type]
+ // Objective-C ARC adds:
+ // - [one type] has non-trivial lifetime, [the other type] has
+ // __unsafe_unretained lifetime, and the types are otherwise
+ // identical
+ //
+ // A is "considered to be at least as specialized" as P iff deduction
+ // succeeds, so we model this as a deduction failure. Note that
+ // [the first type] is P and [the other type] is A here; the standard
+ // gets this backwards.
+ Qualifiers ParamQuals = Param.getQualifiers();
+ Qualifiers ArgQuals = Arg.getQualifiers();
+ if ((ParamRef->isLValueReferenceType() &&
+ !ArgRef->isLValueReferenceType()) ||
+ ParamQuals.isStrictSupersetOf(ArgQuals) ||
+ (ParamQuals.hasNonTrivialObjCLifetime() &&
+ ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
+ ParamQuals.withoutObjCLifetime() ==
+ ArgQuals.withoutObjCLifetime())) {
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ // C++11 [temp.deduct.partial]p7:
+ // Remove any top-level cv-qualifiers:
+ // - If P is a cv-qualified type, P is replaced by the cv-unqualified
+ // version of P.
+ Param = Param.getUnqualifiedType();
+ // - If A is a cv-qualified type, A is replaced by the cv-unqualified
+ // version of A.
+ Arg = Arg.getUnqualifiedType();
+ } else {
+ // C++0x [temp.deduct.call]p4 bullet 1:
+ // - If the original P is a reference type, the deduced A (i.e., the type
+ // referred to by the reference) can be more cv-qualified than the
+ // transformed A.
+ if (TDF & TDF_ParamWithReferenceType) {
+ Qualifiers Quals;
+ QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
+ Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
+ Arg.getCVRQualifiers());
+ Param = S.Context.getQualifiedType(UnqualParam, Quals);
+ }
+
+ if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
+ // C++0x [temp.deduct.type]p10:
+ // If P and A are function types that originated from deduction when
+ // taking the address of a function template (14.8.2.2) or when deducing
+ // template arguments from a function declaration (14.8.2.6) and Pi and
+ // Ai are parameters of the top-level parameter-type-list of P and A,
+ // respectively, Pi is adjusted if it is a forwarding reference and Ai
+ // is an lvalue reference, in
+ // which case the type of Pi is changed to be the template parameter
+ // type (i.e., T&& is changed to simply T). [ Note: As a result, when
+ // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
+ // deduced as X&. - end note ]
+ TDF &= ~TDF_TopLevelParameterTypeList;
+ if (isForwardingReference(Param, 0) && Arg->isLValueReferenceType())
+ Param = Param->getPointeeType();
+ }
+ }
+
+ // C++ [temp.deduct.type]p9:
+ // A template type argument T, a template template argument TT or a
+ // template non-type argument i can be deduced if P and A have one of
+ // the following forms:
+ //
+ // T
+ // cv-list T
+ if (const TemplateTypeParmType *TemplateTypeParm
+ = Param->getAs<TemplateTypeParmType>()) {
+ // Just skip any attempts to deduce from a placeholder type or a parameter
+ // at a different depth.
+ if (Arg->isPlaceholderType() ||
+ Info.getDeducedDepth() != TemplateTypeParm->getDepth())
+ return Sema::TDK_Success;
+
+ unsigned Index = TemplateTypeParm->getIndex();
+ bool RecanonicalizeArg = false;
+
+ // If the argument type is an array type, move the qualifiers up to the
+ // top level, so they can be matched with the qualifiers on the parameter.
+ if (isa<ArrayType>(Arg)) {
+ Qualifiers Quals;
+ Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
+ if (Quals) {
+ Arg = S.Context.getQualifiedType(Arg, Quals);
+ RecanonicalizeArg = true;
+ }
+ }
+
+ // The argument type can not be less qualified than the parameter
+ // type.
+ if (!(TDF & TDF_IgnoreQualifiers) &&
+ hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ // Do not match a function type with a cv-qualified type.
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
+ if (Arg->isFunctionType() && Param.hasQualifiers()) {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ assert(TemplateTypeParm->getDepth() == Info.getDeducedDepth() &&
+ "saw template type parameter with wrong depth");
+ assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
+ QualType DeducedType = Arg;
+
+ // Remove any qualifiers on the parameter from the deduced type.
+ // We checked the qualifiers for consistency above.
+ Qualifiers DeducedQs = DeducedType.getQualifiers();
+ Qualifiers ParamQs = Param.getQualifiers();
+ DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
+ if (ParamQs.hasObjCGCAttr())
+ DeducedQs.removeObjCGCAttr();
+ if (ParamQs.hasAddressSpace())
+ DeducedQs.removeAddressSpace();
+ if (ParamQs.hasObjCLifetime())
+ DeducedQs.removeObjCLifetime();
+
+ // Objective-C ARC:
+ // If template deduction would produce a lifetime qualifier on a type
+ // that is not a lifetime type, template argument deduction fails.
+ if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
+ !DeducedType->isDependentType()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ // Objective-C ARC:
+ // If template deduction would produce an argument type with lifetime type
+ // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ DeducedType->isObjCLifetimeType() &&
+ !DeducedQs.hasObjCLifetime())
+ DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
+
+ DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
+ DeducedQs);
+
+ if (RecanonicalizeArg)
+ DeducedType = S.Context.getCanonicalType(DeducedType);
+
+ DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[Index],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = Deduced[Index];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[Index] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Set up the template argument deduction information for a failure.
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+
+ // If the parameter is an already-substituted template parameter
+ // pack, do nothing: we don't know which of its arguments to look
+ // at, so we have to wait until all of the parameter packs in this
+ // expansion have arguments.
+ if (isa<SubstTemplateTypeParmPackType>(Param))
+ return Sema::TDK_Success;
+
+ // Check the cv-qualifiers on the parameter and argument types.
+ CanQualType CanParam = S.Context.getCanonicalType(Param);
+ CanQualType CanArg = S.Context.getCanonicalType(Arg);
+ if (!(TDF & TDF_IgnoreQualifiers)) {
+ if (TDF & TDF_ParamWithReferenceType) {
+ if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
+ return Sema::TDK_NonDeducedMismatch;
+ } else if (TDF & TDF_ArgWithReferenceType) {
+ // C++ [temp.deduct.conv]p4:
+ // If the original A is a reference type, A can be more cv-qualified
+ // than the deduced A
+ if (!Arg.getQualifiers().compatiblyIncludes(Param.getQualifiers()))
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Strip out all extra qualifiers from the argument to figure out the
+ // type we're converting to, prior to the qualification conversion.
+ Qualifiers Quals;
+ Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
+ Arg = S.Context.getQualifiedType(Arg, Param.getQualifiers());
+ } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
+ if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // If the parameter type is not dependent, there is nothing to deduce.
+ if (!Param->isDependentType()) {
+ if (!(TDF & TDF_SkipNonDependent)) {
+ bool NonDeduced =
+ (TDF & TDF_AllowCompatibleFunctionType)
+ ? !S.isSameOrCompatibleFunctionType(CanParam, CanArg)
+ : Param != Arg;
+ if (NonDeduced) {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+ return Sema::TDK_Success;
+ }
+ } else if (!Param->isDependentType()) {
+ CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
+ ArgUnqualType = CanArg.getUnqualifiedType();
+ bool Success =
+ (TDF & TDF_AllowCompatibleFunctionType)
+ ? S.isSameOrCompatibleFunctionType(ParamUnqualType, ArgUnqualType)
+ : ParamUnqualType == ArgUnqualType;
+ if (Success)
+ return Sema::TDK_Success;
+ }
+
+ switch (Param->getTypeClass()) {
+ // Non-canonical types cannot appear here.
+#define NON_CANONICAL_TYPE(Class, Base) \
+ case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
+#define TYPE(Class, Base)
+#include "clang/AST/TypeNodes.inc"
+
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ llvm_unreachable("Type nodes handled above");
+
+ // These types cannot be dependent, so simply check whether the types are
+ // the same.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::Vector:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ if (TDF & TDF_SkipNonDependent)
+ return Sema::TDK_Success;
+
+ if (TDF & TDF_IgnoreQualifiers) {
+ Param = Param.getUnqualifiedType();
+ Arg = Arg.getUnqualifiedType();
+ }
+
+ return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
+
+ // _Complex T [placeholder extension]
+ case Type::Complex:
+ if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<ComplexType>(Param)->getElementType(),
+ ComplexArg->getElementType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // _Atomic T [extension]
+ case Type::Atomic:
+ if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<AtomicType>(Param)->getValueType(),
+ AtomicArg->getValueType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // T *
+ case Type::Pointer: {
+ QualType PointeeType;
+ if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else if (const ObjCObjectPointerType *PointerArg
+ = Arg->getAs<ObjCObjectPointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<PointerType>(Param)->getPointeeType(),
+ PointeeType,
+ Info, Deduced, SubTDF);
+ }
+
+ // T &
+ case Type::LValueReference: {
+ const LValueReferenceType *ReferenceArg =
+ Arg->getAs<LValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<LValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(), Info, Deduced, 0);
+ }
+
+ // T && [C++0x]
+ case Type::RValueReference: {
+ const RValueReferenceType *ReferenceArg =
+ Arg->getAs<RValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<RValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // T [] (implied, but not stated explicitly)
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *IncompleteArrayArg =
+ S.Context.getAsIncompleteArrayType(Arg);
+ if (!IncompleteArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ S.Context.getAsIncompleteArrayType(Param)->getElementType(),
+ IncompleteArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // T [integer-constant]
+ case Type::ConstantArray: {
+ const ConstantArrayType *ConstantArrayArg =
+ S.Context.getAsConstantArrayType(Arg);
+ if (!ConstantArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const ConstantArrayType *ConstantArrayParm =
+ S.Context.getAsConstantArrayType(Param);
+ if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ ConstantArrayParm->getElementType(),
+ ConstantArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // type [i]
+ case Type::DependentSizedArray: {
+ const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
+ if (!ArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+
+ // Check the element type of the arrays
+ const DependentSizedArrayType *DependentArrayParm
+ = S.Context.getAsDependentSizedArrayType(Param);
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ DependentArrayParm->getElementType(),
+ ArrayArg->getElementType(),
+ Info, Deduced, SubTDF))
+ return Result;
+
+ // Determine the array bound is something we can deduce.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Info, DependentArrayParm->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ // We can perform template argument deduction for the given non-type
+ // template parameter.
+ assert(NTTP->getDepth() == Info.getDeducedDepth() &&
+ "saw non-type template parameter with wrong depth");
+ if (const ConstantArrayType *ConstantArrayArg
+ = dyn_cast<ConstantArrayType>(ArrayArg)) {
+ llvm::APSInt Size(ConstantArrayArg->getSize());
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, Size,
+ S.Context.getSizeType(),
+ /*ArrayBound=*/true,
+ Info, Deduced);
+ }
+ if (const DependentSizedArrayType *DependentArrayArg
+ = dyn_cast<DependentSizedArrayType>(ArrayArg))
+ if (DependentArrayArg->getSizeExpr())
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ DependentArrayArg->getSizeExpr(),
+ Info, Deduced);
+
+ // Incomplete type does not match a dependently-sized array type
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // type(*)(T)
+ // T(*)()
+ // T(*)(T)
+ case Type::FunctionProto: {
+ unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
+ const FunctionProtoType *FunctionProtoArg =
+ dyn_cast<FunctionProtoType>(Arg);
+ if (!FunctionProtoArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const FunctionProtoType *FunctionProtoParam =
+ cast<FunctionProtoType>(Param);
+
+ if (FunctionProtoParam->getMethodQuals()
+ != FunctionProtoArg->getMethodQuals() ||
+ FunctionProtoParam->getRefQualifier()
+ != FunctionProtoArg->getRefQualifier() ||
+ FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Check return types.
+ if (auto Result = DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, FunctionProtoParam->getReturnType(),
+ FunctionProtoArg->getReturnType(), Info, Deduced, 0))
+ return Result;
+
+ // Check parameter types.
+ if (auto Result = DeduceTemplateArguments(
+ S, TemplateParams, FunctionProtoParam->param_type_begin(),
+ FunctionProtoParam->getNumParams(),
+ FunctionProtoArg->param_type_begin(),
+ FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF))
+ return Result;
+
+ if (TDF & TDF_AllowCompatibleFunctionType)
+ return Sema::TDK_Success;
+
+ // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
+ // deducing through the noexcept-specifier if it's part of the canonical
+ // type. libstdc++ relies on this.
+ Expr *NoexceptExpr = FunctionProtoParam->getNoexceptExpr();
+ if (NonTypeTemplateParmDecl *NTTP =
+ NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
+ : nullptr) {
+ assert(NTTP->getDepth() == Info.getDeducedDepth() &&
+ "saw non-type template parameter with wrong depth");
+
+ llvm::APSInt Noexcept(1);
+ switch (FunctionProtoArg->canThrow()) {
+ case CT_Cannot:
+ Noexcept = 1;
+ LLVM_FALLTHROUGH;
+
+ case CT_Can:
+ // We give E in noexcept(E) the "deduced from array bound" treatment.
+ // FIXME: Should we?
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
+ /*ArrayBound*/true, Info, Deduced);
+
+ case CT_Dependent:
+ if (Expr *ArgNoexceptExpr = FunctionProtoArg->getNoexceptExpr())
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
+ // Can't deduce anything from throw(T...).
+ break;
+ }
+ }
+ // FIXME: Detect non-deduced exception specification mismatches?
+ //
+ // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
+ // top-level differences in noexcept-specifications.
+
+ return Sema::TDK_Success;
+ }
+
+ case Type::InjectedClassName:
+ // Treat a template's injected-class-name as if the template
+ // specialization type had been used.
+ Param = cast<InjectedClassNameType>(Param)
+ ->getInjectedSpecializationType();
+ assert(isa<TemplateSpecializationType>(Param) &&
+ "injected class name is not a template specialization type");
+ LLVM_FALLTHROUGH;
+
+ // template-name<T> (where template-name refers to a class template)
+ // template-name<i>
+ // TT<T>
+ // TT<i>
+ // TT<>
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *SpecParam =
+ cast<TemplateSpecializationType>(Param);
+
+ // When Arg cannot be a derived class, we can just try to deduce template
+ // arguments from the template-id.
+ const RecordType *RecordT = Arg->getAs<RecordType>();
+ if (!(TDF & TDF_DerivedClass) || !RecordT)
+ return DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, Info,
+ Deduced);
+
+ SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
+ Deduced.end());
+
+ Sema::TemplateDeductionResult Result = DeduceTemplateArguments(
+ S, TemplateParams, SpecParam, Arg, Info, Deduced);
+
+ if (Result == Sema::TDK_Success)
+ return Result;
+
+ // We cannot inspect base classes as part of deduction when the type
+ // is incomplete, so either instantiate any templates necessary to
+ // complete the type, or skip over it if it cannot be completed.
+ if (!S.isCompleteType(Info.getLocation(), Arg))
+ return Result;
+
+ // C++14 [temp.deduct.call] p4b3:
+ // If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. Likewise if
+ // P is a pointer to a class of the form simple-template-id, the
+ // transformed A can be a pointer to a derived class pointed to by the
+ // deduced A.
+ //
+ // These alternatives are considered only if type deduction would
+ // otherwise fail. If they yield more than one possible deduced A, the
+ // type deduction fails.
+
+ // Reset the incorrectly deduced argument from above.
+ Deduced = DeducedOrig;
+
+ // Use data recursion to crawl through the list of base classes.
+ // Visited contains the set of nodes we have already visited, while
+ // ToVisit is our stack of records that we still need to visit.
+ llvm::SmallPtrSet<const RecordType *, 8> Visited;
+ SmallVector<const RecordType *, 8> ToVisit;
+ ToVisit.push_back(RecordT);
+ bool Successful = false;
+ SmallVector<DeducedTemplateArgument, 8> SuccessfulDeduced;
+ while (!ToVisit.empty()) {
+ // Retrieve the next class in the inheritance hierarchy.
+ const RecordType *NextT = ToVisit.pop_back_val();
+
+ // If we have already seen this type, skip it.
+ if (!Visited.insert(NextT).second)
+ continue;
+
+ // If this is a base class, try to perform template argument
+ // deduction from it.
+ if (NextT != RecordT) {
+ TemplateDeductionInfo BaseInfo(Info.getLocation());
+ Sema::TemplateDeductionResult BaseResult =
+ DeduceTemplateArguments(S, TemplateParams, SpecParam,
+ QualType(NextT, 0), BaseInfo, Deduced);
+
+ // If template argument deduction for this base was successful,
+ // note that we had some success. Otherwise, ignore any deductions
+ // from this base class.
+ if (BaseResult == Sema::TDK_Success) {
+ // If we've already seen some success, then deduction fails due to
+ // an ambiguity (temp.deduct.call p5).
+ if (Successful)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ Successful = true;
+ std::swap(SuccessfulDeduced, Deduced);
+
+ Info.Param = BaseInfo.Param;
+ Info.FirstArg = BaseInfo.FirstArg;
+ Info.SecondArg = BaseInfo.SecondArg;
+ }
+
+ Deduced = DeducedOrig;
+ }
+
+ // Visit base classes
+ CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
+ for (const auto &Base : Next->bases()) {
+ assert(Base.getType()->isRecordType() &&
+ "Base class that isn't a record?");
+ ToVisit.push_back(Base.getType()->getAs<RecordType>());
+ }
+ }
+
+ if (Successful) {
+ std::swap(SuccessfulDeduced, Deduced);
+ return Sema::TDK_Success;
+ }
+
+ return Result;
+ }
+
+ // T type::*
+ // T T::*
+ // T (type::*)()
+ // type (T::*)()
+ // type (type::*)(T)
+ // type (T::*)(T)
+ // T (type::*)(T)
+ // T (T::*)()
+ // T (T::*)(T)
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
+ const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
+ if (!MemPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ QualType ParamPointeeType = MemPtrParam->getPointeeType();
+ if (ParamPointeeType->isFunctionType())
+ S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
+ /*IsCtorOrDtor=*/false, Info.getLocation());
+ QualType ArgPointeeType = MemPtrArg->getPointeeType();
+ if (ArgPointeeType->isFunctionType())
+ S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
+ /*IsCtorOrDtor=*/false, Info.getLocation());
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ ParamPointeeType,
+ ArgPointeeType,
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers))
+ return Result;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ QualType(MemPtrParam->getClass(), 0),
+ QualType(MemPtrArg->getClass(), 0),
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers);
+ }
+
+ // (clang extension)
+ //
+ // type(^)(T)
+ // T(^)()
+ // T(^)(T)
+ case Type::BlockPointer: {
+ const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
+ const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
+
+ if (!BlockPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ BlockPtrParam->getPointeeType(),
+ BlockPtrArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(<integral constant>))))
+ case Type::ExtVector: {
+ const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Make sure that the vectors have the same number of elements.
+ if (VectorParam->getNumElements() != VectorArg->getNumElements())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // We can't check the number of elements, since the argument has a
+ // dependent number of elements. This can only occur during partial
+ // ordering.
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ case Type::DependentVector: {
+ const auto *VectorParam = cast<DependentVectorType>(Param);
+
+ if (const auto *VectorArg = dyn_cast<VectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, VectorParam->getElementType(),
+ VectorArg->getElementType(), Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP =
+ getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
+ ArgSize = VectorArg->getNumElements();
+ // Note that we use the "array bound" rules here; just like in that
+ // case, we don't have any particular type for the vector size, but
+ // we can provide one if necessary.
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
+ S.Context.UnsignedIntTy, true,
+ Info, Deduced);
+ }
+
+ if (const auto *VectorArg = dyn_cast<DependentVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, VectorParam->getElementType(),
+ VectorArg->getElementType(), Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
+ Info, VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, VectorArg->getSizeExpr(), Info, Deduced);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(N))))
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VectorParam
+ = cast<DependentSizedExtVectorType>(Param);
+
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
+ ArgSize = VectorArg->getNumElements();
+ // Note that we use the "array bound" rules here; just like in that
+ // case, we don't have any particular type for the vector size, but
+ // we can provide one if necessary.
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
+ S.Context.IntTy, true, Info,
+ Deduced);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Info, VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ VectorArg->getSizeExpr(),
+ Info, Deduced);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((address_space(N))))
+ case Type::DependentAddressSpace: {
+ const DependentAddressSpaceType *AddressSpaceParam =
+ cast<DependentAddressSpaceType>(Param);
+
+ if (const DependentAddressSpaceType *AddressSpaceArg =
+ dyn_cast<DependentAddressSpaceType>(Arg)) {
+ // Perform deduction on the pointer type.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, AddressSpaceParam->getPointeeType(),
+ AddressSpaceArg->getPointeeType(), Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the address space, if we can.
+ NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
+ Info, AddressSpaceParam->getAddrSpaceExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, AddressSpaceArg->getAddrSpaceExpr(), Info,
+ Deduced);
+ }
+
+ if (isTargetAddressSpace(Arg.getAddressSpace())) {
+ llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
+ false);
+ ArgAddressSpace = toTargetAddressSpace(Arg.getAddressSpace());
+
+ // Perform deduction on the pointer types.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, AddressSpaceParam->getPointeeType(),
+ S.Context.removeAddrSpaceQualType(Arg), Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the address space, if we can.
+ NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(
+ Info, AddressSpaceParam->getAddrSpaceExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ ArgAddressSpace, S.Context.IntTy,
+ true, Info, Deduced);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::UnresolvedUsing:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ case Type::DependentTemplateSpecialization:
+ case Type::PackExpansion:
+ case Type::Pipe:
+ // No template argument deduction for these types
+ return Sema::TDK_Success;
+ }
+
+ llvm_unreachable("Invalid Type Class!");
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ // If the template argument is a pack expansion, perform template argument
+ // deduction against the pattern of that expansion. This only occurs during
+ // partial ordering.
+ if (Arg.isPackExpansion())
+ Arg = Arg.getPackExpansionPattern();
+
+ switch (Param.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Null template argument in parameter list");
+
+ case TemplateArgument::Type:
+ if (Arg.getKind() == TemplateArgument::Type)
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Param.getAsType(),
+ Arg.getAsType(),
+ Info, Deduced, 0);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Template:
+ if (Arg.getKind() == TemplateArgument::Template)
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param.getAsTemplate(),
+ Arg.getAsTemplate(), Info, Deduced);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("caller should handle pack expansions");
+
+ case TemplateArgument::Declaration:
+ if (Arg.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::NullPtr:
+ if (Arg.getKind() == TemplateArgument::NullPtr &&
+ S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Integral:
+ if (Arg.getKind() == TemplateArgument::Integral) {
+ if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ if (Arg.getKind() == TemplateArgument::Expression) {
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Expression:
+ if (NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Info, Param.getAsExpr())) {
+ if (Arg.getKind() == TemplateArgument::Integral)
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ Arg.getAsIntegral(),
+ Arg.getIntegralType(),
+ /*ArrayBound=*/false,
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::NullPtr)
+ return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
+ Arg.getNullPtrType(),
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Expression)
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ Arg.getAsExpr(), Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Declaration)
+ return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
+ Arg.getAsDecl(),
+ Arg.getParamTypeForDecl(),
+ Info, Deduced);
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Can't deduce anything, but that's okay.
+ return Sema::TDK_Success;
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Argument packs should be expanded by the caller!");
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// Determine whether there is a template argument to be used for
+/// deduction.
+///
+/// This routine "expands" argument packs in-place, overriding its input
+/// parameters so that \c Args[ArgIdx] will be the available template argument.
+///
+/// \returns true if there is another template argument (which will be at
+/// \c Args[ArgIdx]), false otherwise.
+static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
+ unsigned &ArgIdx) {
+ if (ArgIdx == Args.size())
+ return false;
+
+ const TemplateArgument &Arg = Args[ArgIdx];
+ if (Arg.getKind() != TemplateArgument::Pack)
+ return true;
+
+ assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
+ Args = Arg.pack_elements();
+ ArgIdx = 0;
+ return ArgIdx < Args.size();
+}
+
+/// Determine whether the given set of template arguments has a pack
+/// expansion that is not the last template argument.
+static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
+ bool FoundPackExpansion = false;
+ for (const auto &A : Args) {
+ if (FoundPackExpansion)
+ return true;
+
+ if (A.getKind() == TemplateArgument::Pack)
+ return hasPackExpansionBeforeEnd(A.pack_elements());
+
+ // FIXME: If this is a fixed-arity pack expansion from an outer level of
+ // templates, it should not be treated as a pack expansion.
+ if (A.isPackExpansion())
+ FoundPackExpansion = true;
+ }
+
+ return false;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
+ ArrayRef<TemplateArgument> Params,
+ ArrayRef<TemplateArgument> Args,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ bool NumberOfArgumentsMustMatch) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (hasPackExpansionBeforeEnd(Params))
+ return Sema::TDK_Success;
+
+ // C++0x [temp.deduct.type]p9:
+ // If P has a form that contains <T> or <i>, then each argument Pi of the
+ // respective template argument list P is compared with the corresponding
+ // argument Ai of the corresponding template argument list of A.
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; hasTemplateArgumentForDeduction(Params, ParamIdx); ++ParamIdx) {
+ if (!Params[ParamIdx].isPackExpansion()) {
+ // The simple case: deduce template arguments by matching Pi and Ai.
+
+ // Check whether we have enough arguments.
+ if (!hasTemplateArgumentForDeduction(Args, ArgIdx))
+ return NumberOfArgumentsMustMatch
+ ? Sema::TDK_MiscellaneousDeductionFailure
+ : Sema::TDK_Success;
+
+ // C++1z [temp.deduct.type]p9:
+ // During partial ordering, if Ai was originally a pack expansion [and]
+ // Pi is not a pack expansion, template argument deduction fails.
+ if (Args[ArgIdx].isPackExpansion())
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ // Perform deduction for this Pi/Ai pair.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ // Move to the next argument.
+ ++ArgIdx;
+ continue;
+ }
+
+ // The parameter is a pack expansion.
+
+ // C++0x [temp.deduct.type]p9:
+ // If Pi is a pack expansion, then the pattern of Pi is compared with
+ // each remaining argument in the template argument list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by Pi.
+ TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
+
+ // Prepare to deduce the packs within the pattern.
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ // Keep track of the deduced template arguments for each parameter pack
+ // expanded by this pack expansion (the outer index) and for each
+ // template argument (the inner SmallVectors).
+ for (; hasTemplateArgumentForDeduction(Args, ArgIdx) &&
+ PackScope.hasNextElement();
+ ++ArgIdx) {
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish())
+ return Result;
+ }
+
+ return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgumentList &ParamList,
+ const TemplateArgumentList &ArgList,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
+ ArgList.asArray(), Info, Deduced,
+ /*NumberOfArgumentsMustMatch*/false);
+}
+
+/// Determine whether two template arguments are the same.
+static bool isSameTemplateArg(ASTContext &Context,
+ TemplateArgument X,
+ const TemplateArgument &Y,
+ bool PackExpansionMatchesPack = false) {
+ // If we're checking deduced arguments (X) against original arguments (Y),
+ // we will have flattened packs to non-expansions in X.
+ if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
+ X = X.getPackExpansionPattern();
+
+ if (X.getKind() != Y.getKind())
+ return false;
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Comparing NULL template argument");
+
+ case TemplateArgument::Type:
+ return Context.getCanonicalType(X.getAsType()) ==
+ Context.getCanonicalType(Y.getAsType());
+
+ case TemplateArgument::Declaration:
+ return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ return Context.getCanonicalTemplateName(
+ X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
+ Context.getCanonicalTemplateName(
+ Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
+
+ case TemplateArgument::Integral:
+ return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
+
+ case TemplateArgument::Expression: {
+ llvm::FoldingSetNodeID XID, YID;
+ X.getAsExpr()->Profile(XID, Context, true);
+ Y.getAsExpr()->Profile(YID, Context, true);
+ return XID == YID;
+ }
+
+ case TemplateArgument::Pack:
+ if (X.pack_size() != Y.pack_size())
+ return false;
+
+ for (TemplateArgument::pack_iterator XP = X.pack_begin(),
+ XPEnd = X.pack_end(),
+ YP = Y.pack_begin();
+ XP != XPEnd; ++XP, ++YP)
+ if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// Allocate a TemplateArgumentLoc where all locations have
+/// been initialized to the given location.
+///
+/// \param Arg The template argument we are producing template argument
+/// location information for.
+///
+/// \param NTTPType For a declaration template argument, the type of
+/// the non-type template parameter that corresponds to this template
+/// argument. Can be null if no type sugar is available to add to the
+/// type from the template argument.
+///
+/// \param Loc The source location to use for the resulting template
+/// argument.
+TemplateArgumentLoc
+Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
+ QualType NTTPType, SourceLocation Loc) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Can't get a NULL template argument here");
+
+ case TemplateArgument::Type:
+ return TemplateArgumentLoc(
+ Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
+
+ case TemplateArgument::Declaration: {
+ if (NTTPType.isNull())
+ NTTPType = Arg.getParamTypeForDecl();
+ Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::NullPtr: {
+ if (NTTPType.isNull())
+ NTTPType = Arg.getNullPtrType();
+ Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
+ E);
+ }
+
+ case TemplateArgument::Integral: {
+ Expr *E =
+ BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLocBuilder Builder;
+ TemplateName Template = Arg.getAsTemplate();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
+ else if (QualifiedTemplateName *QTN =
+ Template.getAsQualifiedTemplateName())
+ Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
+
+ if (Arg.getKind() == TemplateArgument::Template)
+ return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
+ Loc);
+
+ return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(Context),
+ Loc, Loc);
+ }
+
+ case TemplateArgument::Expression:
+ return TemplateArgumentLoc(Arg, Arg.getAsExpr());
+
+ case TemplateArgument::Pack:
+ return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// Convert the given deduced template argument and add it to the set of
+/// fully-converted template arguments.
+static bool
+ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
+ DeducedTemplateArgument Arg,
+ NamedDecl *Template,
+ TemplateDeductionInfo &Info,
+ bool IsDeduced,
+ SmallVectorImpl<TemplateArgument> &Output) {
+ auto ConvertArg = [&](DeducedTemplateArgument Arg,
+ unsigned ArgumentPackIndex) {
+ // Convert the deduced template argument into a template
+ // argument that we can check, almost as if the user had written
+ // the template argument explicitly.
+ TemplateArgumentLoc ArgLoc =
+ S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
+
+ // Check the template argument, converting it as necessary.
+ return S.CheckTemplateArgument(
+ Param, ArgLoc, Template, Template->getLocation(),
+ Template->getSourceRange().getEnd(), ArgumentPackIndex, Output,
+ IsDeduced
+ ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
+ : Sema::CTAK_Deduced)
+ : Sema::CTAK_Specified);
+ };
+
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ // This is a template argument pack, so check each of its arguments against
+ // the template parameter.
+ SmallVector<TemplateArgument, 2> PackedArgsBuilder;
+ for (const auto &P : Arg.pack_elements()) {
+ // When converting the deduced template argument, append it to the
+ // general output list. We need to do this so that the template argument
+ // checking logic has all of the prior template arguments available.
+ DeducedTemplateArgument InnerArg(P);
+ InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
+ assert(InnerArg.getKind() != TemplateArgument::Pack &&
+ "deduced nested pack");
+ if (P.isNull()) {
+ // We deduced arguments for some elements of this pack, but not for
+ // all of them. This happens if we get a conditionally-non-deduced
+ // context in a pack expansion (such as an overload set in one of the
+ // arguments).
+ S.Diag(Param->getLocation(),
+ diag::err_template_arg_deduced_incomplete_pack)
+ << Arg << Param;
+ return true;
+ }
+ if (ConvertArg(InnerArg, PackedArgsBuilder.size()))
+ return true;
+
+ // Move the converted template argument into our argument pack.
+ PackedArgsBuilder.push_back(Output.pop_back_val());
+ }
+
+ // If the pack is empty, we still need to substitute into the parameter
+ // itself, in case that substitution fails.
+ if (PackedArgsBuilder.empty()) {
+ LocalInstantiationScope Scope(S);
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output);
+ MultiLevelTemplateArgumentList Args(TemplateArgs);
+
+ if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
+ NTTP, Output,
+ Template->getSourceRange());
+ if (Inst.isInvalid() ||
+ S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
+ NTTP->getDeclName()).isNull())
+ return true;
+ } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
+ TTP, Output,
+ Template->getSourceRange());
+ if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
+ return true;
+ }
+ // For type parameters, no substitution is ever required.
+ }
+
+ // Create the resulting argument pack.
+ Output.push_back(
+ TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
+ return false;
+ }
+
+ return ConvertArg(Arg, 0);
+}
+
+// FIXME: This should not be a template, but
+// ClassTemplatePartialSpecializationDecl sadly does not derive from
+// TemplateDecl.
+template<typename TemplateDeclT>
+static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
+ Sema &S, TemplateDeclT *Template, bool IsDeduced,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder,
+ LocalInstantiationScope *CurrentInstantiationScope = nullptr,
+ unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
+ TemplateParameterList *TemplateParams = Template->getTemplateParameters();
+
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NamedDecl *Param = TemplateParams->getParam(I);
+
+ // C++0x [temp.arg.explicit]p3:
+ // A trailing template parameter pack (14.5.3) not otherwise deduced will
+ // be deduced to an empty sequence of template arguments.
+ // FIXME: Where did the word "trailing" come from?
+ if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
+ if (auto Result = PackDeductionScope(S, TemplateParams, Deduced, Info, I)
+ .finish(/*TreatNoDeductionsAsNonDeduced*/false))
+ return Result;
+ }
+
+ if (!Deduced[I].isNull()) {
+ if (I < NumAlreadyConverted) {
+ // We may have had explicitly-specified template arguments for a
+ // template parameter pack (that may or may not have been extended
+ // via additional deduced arguments).
+ if (Param->isParameterPack() && CurrentInstantiationScope &&
+ CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
+ // Forget the partially-substituted pack; its substitution is now
+ // complete.
+ CurrentInstantiationScope->ResetPartiallySubstitutedPack();
+ // We still need to check the argument in case it was extended by
+ // deduction.
+ } else {
+ // We have already fully type-checked and converted this
+ // argument, because it was explicitly-specified. Just record the
+ // presence of this argument.
+ Builder.push_back(Deduced[I]);
+ continue;
+ }
+ }
+
+ // We may have deduced this argument, so it still needs to be
+ // checked and converted.
+ if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
+ IsDeduced, Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
+ return Sema::TDK_SubstitutionFailure;
+ }
+
+ continue;
+ }
+
+ // Substitute into the default template argument, if available.
+ bool HasDefaultArg = false;
+ TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
+ if (!TD) {
+ assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
+ isa<VarTemplatePartialSpecializationDecl>(Template));
+ return Sema::TDK_Incomplete;
+ }
+
+ TemplateArgumentLoc DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
+ TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder,
+ HasDefaultArg);
+
+ // If there was no default argument, deduction is incomplete.
+ if (DefArg.getArgument().isNull()) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
+ if (PartialOverloading) break;
+
+ return HasDefaultArg ? Sema::TDK_SubstitutionFailure
+ : Sema::TDK_Incomplete;
+ }
+
+ // Check whether we can actually use the default argument.
+ if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(),
+ TD->getSourceRange().getEnd(), 0, Builder,
+ Sema::CTAK_Specified)) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder));
+ return Sema::TDK_SubstitutionFailure;
+ }
+
+ // If we get here, we successfully used the default template argument.
+ }
+
+ return Sema::TDK_Success;
+}
+
+static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
+ if (auto *DC = dyn_cast<DeclContext>(D))
+ return DC;
+ return D->getDeclContext();
+}
+
+template<typename T> struct IsPartialSpecialization {
+ static constexpr bool value = false;
+};
+template<>
+struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
+ static constexpr bool value = true;
+};
+template<>
+struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
+ static constexpr bool value = true;
+};
+
+/// Complete template argument deduction for a partial specialization.
+template <typename T>
+static typename std::enable_if<IsPartialSpecialization<T>::value,
+ Sema::TemplateDeductionResult>::type
+FinishTemplateArgumentDeduction(
+ Sema &S, T *Partial, bool IsPartialOrdering,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ if (auto Result = ConvertDeducedTemplateArguments(
+ S, Partial, IsPartialOrdering, Deduced, Info, Builder))
+ return Result;
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(S.Context, Builder);
+
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the template
+ // arguments of the class template partial specialization, and
+ // verify that the instantiated template arguments are both valid
+ // and are equivalent to the template arguments originally provided
+ // to the class template.
+ LocalInstantiationScope InstScope(S);
+ auto *Template = Partial->getSpecializedTemplate();
+ const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
+ Partial->getTemplateArgsAsWritten();
+ const TemplateArgumentLoc *PartialTemplateArgs =
+ PartialTemplArgInfo->getTemplateArgs();
+
+ TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
+ PartialTemplArgInfo->RAngleLoc);
+
+ if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
+ InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+ unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
+ if (ParamIdx >= Partial->getTemplateParameters()->size())
+ ParamIdx = Partial->getTemplateParameters()->size() - 1;
+
+ Decl *Param = const_cast<NamedDecl *>(
+ Partial->getTemplateParameters()->getParam(ParamIdx));
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
+ return Sema::TDK_SubstitutionFailure;
+ }
+
+ SmallVector<TemplateArgument, 4> ConvertedInstArgs;
+ if (S.CheckTemplateArgumentList(Template, Partial->getLocation(), InstArgs,
+ false, ConvertedInstArgs))
+ return Sema::TDK_SubstitutionFailure;
+
+ TemplateParameterList *TemplateParams = Template->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = ConvertedInstArgs.data()[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// Complete template argument deduction for a class or variable template,
+/// when partial ordering against a partial specialization.
+// FIXME: Factor out duplication with partial specialization version above.
+static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
+ Sema &S, TemplateDecl *Template, bool PartialOrdering,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ if (auto Result = ConvertDeducedTemplateArguments(
+ S, Template, /*IsDeduced*/PartialOrdering, Deduced, Info, Builder))
+ return Result;
+
+ // Check that we produced the correct argument list.
+ TemplateParameterList *TemplateParams = Template->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = Builder[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
+ /*PackExpansionMatchesPack*/true)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+
+/// Perform template argument deduction to determine whether
+/// the given template arguments match the given class template
+/// partial specialization per C++ [temp.class.spec.match].
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result
+ = ::DeduceTemplateArguments(*this,
+ Partial->getTemplateParameters(),
+ Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(
+ *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
+}
+
+/// Perform template argument deduction to determine whether
+/// the given template arguments match the given variable template
+/// partial specialization per C++ [temp.class.spec.match].
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
+ *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(
+ *this, Partial, /*IsPartialOrdering=*/false, TemplateArgs, Deduced, Info);
+}
+
+/// Determine whether the given type T is a simple-template-id type.
+static bool isSimpleTemplateIdType(QualType T) {
+ if (const TemplateSpecializationType *Spec
+ = T->getAs<TemplateSpecializationType>())
+ return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
+
+ // C++17 [temp.local]p2:
+ // the injected-class-name [...] is equivalent to the template-name followed
+ // by the template-arguments of the class template specialization or partial
+ // specialization enclosed in <>
+ // ... which means it's equivalent to a simple-template-id.
+ //
+ // This only arises during class template argument deduction for a copy
+ // deduction candidate, where it permits slicing.
+ if (T->getAs<InjectedClassNameType>())
+ return true;
+
+ return false;
+}
+
+/// Substitute the explicitly-provided template arguments into the
+/// given function template according to C++ [temp.arg.explicit].
+///
+/// \param FunctionTemplate the function template into which the explicit
+/// template arguments will be substituted.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Deduced the deduced template arguments, which will be populated
+/// with the converted and checked explicit template arguments.
+///
+/// \param ParamTypes will be populated with the instantiated function
+/// parameters.
+///
+/// \param FunctionType if non-NULL, the result type of the function template
+/// will also be instantiated and the pointed-to value will be updated with
+/// the instantiated function type.
+///
+/// \param Info if substitution fails for any reason, this object will be
+/// populated with more information about the failure.
+///
+/// \returns TDK_Success if substitution was successful, or some failure
+/// condition.
+Sema::TemplateDeductionResult
+Sema::SubstituteExplicitTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo &ExplicitTemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<QualType> &ParamTypes,
+ QualType *FunctionType,
+ TemplateDeductionInfo &Info) {
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+
+ if (ExplicitTemplateArgs.size() == 0) {
+ // No arguments to substitute; just copy over the parameter types and
+ // fill in the function type.
+ for (auto P : Function->parameters())
+ ParamTypes.push_back(P->getType());
+
+ if (FunctionType)
+ *FunctionType = Function->getType();
+ return TDK_Success;
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.arg.explicit]p3:
+ // Template arguments that are present shall be specified in the
+ // declaration order of their corresponding template-parameters. The
+ // template argument list shall not specify more template-arguments than
+ // there are corresponding template-parameters.
+ SmallVector<TemplateArgument, 4> Builder;
+
+ // Enter a new template instantiation context where we check the
+ // explicitly-specified template arguments against this function template,
+ // and then substitute them into the function parameter types.
+ SmallVector<TemplateArgument, 4> DeducedArgs;
+ InstantiatingTemplate Inst(
+ *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
+ CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
+ ExplicitTemplateArgs, true, Builder, false) ||
+ Trap.hasErrorOccurred()) {
+ unsigned Index = Builder.size();
+ if (Index >= TemplateParams->size())
+ return TDK_SubstitutionFailure;
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
+ return TDK_InvalidExplicitArguments;
+ }
+
+ // Form the template argument list from the explicitly-specified
+ // template arguments.
+ TemplateArgumentList *ExplicitArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder);
+ Info.setExplicitArgs(ExplicitArgumentList);
+
+ // Template argument deduction and the final substitution should be
+ // done in the context of the templated declaration. Explicit
+ // argument substitution, on the other hand, needs to happen in the
+ // calling context.
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // If we deduced template arguments for a template parameter pack,
+ // note that the template argument pack is partially substituted and record
+ // the explicit template arguments. They'll be used as part of deduction
+ // for this template parameter pack.
+ unsigned PartiallySubstitutedPackIndex = -1u;
+ if (!Builder.empty()) {
+ const TemplateArgument &Arg = Builder.back();
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ auto *Param = TemplateParams->getParam(Builder.size() - 1);
+ // If this is a fully-saturated fixed-size pack, it should be
+ // fully-substituted, not partially-substituted.
+ Optional<unsigned> Expansions = getExpandedPackSize(Param);
+ if (!Expansions || Arg.pack_size() < *Expansions) {
+ PartiallySubstitutedPackIndex = Builder.size() - 1;
+ CurrentInstantiationScope->SetPartiallySubstitutedPack(
+ Param, Arg.pack_begin(), Arg.pack_size());
+ }
+ }
+ }
+
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Function template does not have a prototype?");
+
+ // Isolate our substituted parameters from our caller.
+ LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
+
+ ExtParameterInfoBuilder ExtParamInfos;
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments. If the function has a trailing
+ // return type, substitute it after the arguments to ensure we substitute
+ // in lexical order.
+ if (Proto->hasTrailingReturn()) {
+ if (SubstParmTypes(Function->getLocation(), Function->parameters(),
+ Proto->getExtParameterInfosOrNull(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes, /*params*/ nullptr, ExtParamInfos))
+ return TDK_SubstitutionFailure;
+ }
+
+ // Instantiate the return type.
+ QualType ResultType;
+ {
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ Qualifiers ThisTypeQuals;
+ CXXRecordDecl *ThisContext = nullptr;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ ThisContext = Method->getParent();
+ ThisTypeQuals = Method->getMethodQualifiers();
+ }
+
+ CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
+ getLangOpts().CPlusPlus11);
+
+ ResultType =
+ SubstType(Proto->getReturnType(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ Function->getTypeSpecStartLoc(), Function->getDeclName());
+ if (ResultType.isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ // CUDA: Kernel function must have 'void' return type.
+ if (getLangOpts().CUDA)
+ if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
+ Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
+ << Function->getType() << Function->getSourceRange();
+ return TDK_SubstitutionFailure;
+ }
+ }
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments if we didn't do so earlier.
+ if (!Proto->hasTrailingReturn() &&
+ SubstParmTypes(Function->getLocation(), Function->parameters(),
+ Proto->getExtParameterInfosOrNull(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes, /*params*/ nullptr, ExtParamInfos))
+ return TDK_SubstitutionFailure;
+
+ if (FunctionType) {
+ auto EPI = Proto->getExtProtoInfo();
+ EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
+
+ // In C++1z onwards, exception specifications are part of the function type,
+ // so substitution into the type must also substitute into the exception
+ // specification.
+ SmallVector<QualType, 4> ExceptionStorage;
+ if (getLangOpts().CPlusPlus17 &&
+ SubstExceptionSpec(
+ Function->getLocation(), EPI.ExceptionSpec, ExceptionStorage,
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList)))
+ return TDK_SubstitutionFailure;
+
+ *FunctionType = BuildFunctionType(ResultType, ParamTypes,
+ Function->getLocation(),
+ Function->getDeclName(),
+ EPI);
+ if (FunctionType->isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ }
+
+ // C++ [temp.arg.explicit]p2:
+ // Trailing template arguments that can be deduced (14.8.2) may be
+ // omitted from the list of explicit template-arguments. If all of the
+ // template arguments can be deduced, they may all be omitted; in this
+ // case, the empty template argument list <> itself may also be omitted.
+ //
+ // Take all of the explicitly-specified arguments and put them into
+ // the set of deduced template arguments. The partially-substituted
+ // parameter pack, however, will be set to NULL since the deduction
+ // mechanism handles the partially-substituted argument pack directly.
+ Deduced.reserve(TemplateParams->size());
+ for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
+ const TemplateArgument &Arg = ExplicitArgumentList->get(I);
+ if (I == PartiallySubstitutedPackIndex)
+ Deduced.push_back(DeducedTemplateArgument());
+ else
+ Deduced.push_back(Arg);
+ }
+
+ return TDK_Success;
+}
+
+/// Check whether the deduced argument type for a call to a function
+/// template matches the actual argument type per C++ [temp.deduct.call]p4.
+static Sema::TemplateDeductionResult
+CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
+ Sema::OriginalCallArg OriginalArg,
+ QualType DeducedA) {
+ ASTContext &Context = S.Context;
+
+ auto Failed = [&]() -> Sema::TemplateDeductionResult {
+ Info.FirstArg = TemplateArgument(DeducedA);
+ Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
+ Info.CallArgIndex = OriginalArg.ArgIdx;
+ return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
+ : Sema::TDK_DeducedMismatch;
+ };
+
+ QualType A = OriginalArg.OriginalArgType;
+ QualType OriginalParamType = OriginalArg.OriginalParamType;
+
+ // Check for type equality (top-level cv-qualifiers are ignored).
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return Sema::TDK_Success;
+
+ // Strip off references on the argument types; they aren't needed for
+ // the following checks.
+ if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
+ DeducedA = DeducedARef->getPointeeType();
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+ A = ARef->getPointeeType();
+
+ // C++ [temp.deduct.call]p4:
+ // [...] However, there are three cases that allow a difference:
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (const ReferenceType *OriginalParamRef
+ = OriginalParamType->getAs<ReferenceType>()) {
+ // We don't want to keep the reference around any more.
+ OriginalParamType = OriginalParamRef->getPointeeType();
+
+ // FIXME: Resolve core issue (no number yet): if the original P is a
+ // reference type and the transformed A is function type "noexcept F",
+ // the deduced A can be F.
+ QualType Tmp;
+ if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
+ return Sema::TDK_Success;
+
+ Qualifiers AQuals = A.getQualifiers();
+ Qualifiers DeducedAQuals = DeducedA.getQualifiers();
+
+ // Under Objective-C++ ARC, the deduced type may have implicitly
+ // been given strong or (when dealing with a const reference)
+ // unsafe_unretained lifetime. If so, update the original
+ // qualifiers to include this lifetime.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
+ AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
+ (DeducedAQuals.hasConst() &&
+ DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
+ AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
+ }
+
+ if (AQuals == DeducedAQuals) {
+ // Qualifiers match; there's nothing to do.
+ } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
+ return Failed();
+ } else {
+ // Qualifiers are compatible, so have the argument type adopt the
+ // deduced argument type's qualifiers as if we had performed the
+ // qualification conversion.
+ A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
+ }
+ }
+
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a function pointer
+ // conversion and/or a qualification conversion.
+ //
+ // Also allow conversions which merely strip __attribute__((noreturn)) from
+ // function types (recursively).
+ bool ObjCLifetimeConversion = false;
+ QualType ResultTy;
+ if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
+ (S.IsQualificationConversion(A, DeducedA, false,
+ ObjCLifetimeConversion) ||
+ S.IsFunctionConversion(A, DeducedA, ResultTy)))
+ return Sema::TDK_Success;
+
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. [...]
+ // [...] Likewise, if P is a pointer to a class of the form
+ // simple-template-id, the transformed A can be a pointer to a
+ // derived class pointed to by the deduced A.
+ if (const PointerType *OriginalParamPtr
+ = OriginalParamType->getAs<PointerType>()) {
+ if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
+ if (const PointerType *APtr = A->getAs<PointerType>()) {
+ if (A->getPointeeType()->isRecordType()) {
+ OriginalParamType = OriginalParamPtr->getPointeeType();
+ DeducedA = DeducedAPtr->getPointeeType();
+ A = APtr->getPointeeType();
+ }
+ }
+ }
+ }
+
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return Sema::TDK_Success;
+
+ if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
+ S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
+ return Sema::TDK_Success;
+
+ return Failed();
+}
+
+/// Find the pack index for a particular parameter index in an instantiation of
+/// a function template with specific arguments.
+///
+/// \return The pack index for whichever pack produced this parameter, or -1
+/// if this was not produced by a parameter. Intended to be used as the
+/// ArgumentPackSubstitutionIndex for further substitutions.
+// FIXME: We should track this in OriginalCallArgs so we don't need to
+// reconstruct it here.
+static unsigned getPackIndexForParam(Sema &S,
+ FunctionTemplateDecl *FunctionTemplate,
+ const MultiLevelTemplateArgumentList &Args,
+ unsigned ParamIdx) {
+ unsigned Idx = 0;
+ for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
+ if (PD->isParameterPack()) {
+ unsigned NumExpansions =
+ S.getNumArgumentsInExpansion(PD->getType(), Args).getValueOr(1);
+ if (Idx + NumExpansions > ParamIdx)
+ return ParamIdx - Idx;
+ Idx += NumExpansions;
+ } else {
+ if (Idx == ParamIdx)
+ return -1; // Not a pack expansion
+ ++Idx;
+ }
+ }
+
+ llvm_unreachable("parameter index would not be produced from template");
+}
+
+/// Finish template argument deduction for a function template,
+/// checking the deduced template arguments for completeness and forming
+/// the function template specialization.
+///
+/// \param OriginalCallArgs If non-NULL, the original call arguments against
+/// which the deduced argument types should be compared.
+Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
+ FunctionTemplateDecl *FunctionTemplate,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
+ bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // Enter a new template instantiation context while we instantiate the
+ // actual function declaration.
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(
+ *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
+ CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ if (auto Result = ConvertDeducedTemplateArguments(
+ *this, FunctionTemplate, /*IsDeduced*/true, Deduced, Info, Builder,
+ CurrentInstantiationScope, NumExplicitlySpecified,
+ PartialOverloading))
+ return Result;
+
+ // C++ [temp.deduct.call]p10: [DR1391]
+ // If deduction succeeds for all parameters that contain
+ // template-parameters that participate in template argument deduction,
+ // and all template arguments are explicitly specified, deduced, or
+ // obtained from default template arguments, remaining parameters are then
+ // compared with the corresponding arguments. For each remaining parameter
+ // P with a type that was non-dependent before substitution of any
+ // explicitly-specified template arguments, if the corresponding argument
+ // A cannot be implicitly converted to P, deduction fails.
+ if (CheckNonDependent())
+ return TDK_NonDependentConversionFailure;
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder);
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the function template
+ // declaration to produce the function template specialization.
+ DeclContext *Owner = FunctionTemplate->getDeclContext();
+ if (FunctionTemplate->getFriendObjectKind())
+ Owner = FunctionTemplate->getLexicalDeclContext();
+ MultiLevelTemplateArgumentList SubstArgs(*DeducedArgumentList);
+ Specialization = cast_or_null<FunctionDecl>(
+ SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
+ if (!Specialization || Specialization->isInvalidDecl())
+ return TDK_SubstitutionFailure;
+
+ assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
+ FunctionTemplate->getCanonicalDecl());
+
+ // If the template argument list is owned by the function template
+ // specialization, release it.
+ if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
+ !Trap.hasErrorOccurred())
+ Info.take();
+
+ // There may have been an error that did not prevent us from constructing a
+ // declaration. Mark the declaration invalid and return with a substitution
+ // failure.
+ if (Trap.hasErrorOccurred()) {
+ Specialization->setInvalidDecl(true);
+ return TDK_SubstitutionFailure;
+ }
+
+ if (OriginalCallArgs) {
+ // C++ [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
+ for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
+ OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
+
+ auto ParamIdx = OriginalArg.ArgIdx;
+ if (ParamIdx >= Specialization->getNumParams())
+ // FIXME: This presumably means a pack ended up smaller than we
+ // expected while deducing. Should this not result in deduction
+ // failure? Can it even happen?
+ continue;
+
+ QualType DeducedA;
+ if (!OriginalArg.DecomposedParam) {
+ // P is one of the function parameters, just look up its substituted
+ // type.
+ DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
+ } else {
+ // P is a decomposed element of a parameter corresponding to a
+ // braced-init-list argument. Substitute back into P to find the
+ // deduced A.
+ QualType &CacheEntry =
+ DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
+ if (CacheEntry.isNull()) {
+ ArgumentPackSubstitutionIndexRAII PackIndex(
+ *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
+ ParamIdx));
+ CacheEntry =
+ SubstType(OriginalArg.OriginalParamType, SubstArgs,
+ Specialization->getTypeSpecStartLoc(),
+ Specialization->getDeclName());
+ }
+ DeducedA = CacheEntry;
+ }
+
+ if (auto TDK =
+ CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
+ return TDK;
+ }
+ }
+
+ // If we suppressed any diagnostics while performing template argument
+ // deduction, and if we haven't already instantiated this declaration,
+ // keep track of these diagnostics. They'll be emitted if this specialization
+ // is actually used.
+ if (Info.diag_begin() != Info.diag_end()) {
+ SuppressedDiagnosticsMap::iterator
+ Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
+ if (Pos == SuppressedDiagnostics.end())
+ SuppressedDiagnostics[Specialization->getCanonicalDecl()]
+ .append(Info.diag_begin(), Info.diag_end());
+ }
+
+ return TDK_Success;
+}
+
+/// Gets the type of a function for template-argument-deducton
+/// purposes when it's considered as part of an overload set.
+static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
+ FunctionDecl *Fn) {
+ // We may need to deduce the return type of the function now.
+ if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
+ S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
+ return {};
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
+ if (Method->isInstance()) {
+ // An instance method that's referenced in a form that doesn't
+ // look like a member pointer is just invalid.
+ if (!R.HasFormOfMemberPointer)
+ return {};
+
+ return S.Context.getMemberPointerType(Fn->getType(),
+ S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
+ }
+
+ if (!R.IsAddressOfOperand) return Fn->getType();
+ return S.Context.getPointerType(Fn->getType());
+}
+
+/// Apply the deduction rules for overload sets.
+///
+/// \return the null type if this argument should be treated as an
+/// undeduced context
+static QualType
+ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
+ Expr *Arg, QualType ParamType,
+ bool ParamWasReference) {
+
+ OverloadExpr::FindResult R = OverloadExpr::find(Arg);
+
+ OverloadExpr *Ovl = R.Expression;
+
+ // C++0x [temp.deduct.call]p4
+ unsigned TDF = 0;
+ if (ParamWasReference)
+ TDF |= TDF_ParamWithReferenceType;
+ if (R.IsAddressOfOperand)
+ TDF |= TDF_IgnoreQualifiers;
+
+ // C++0x [temp.deduct.call]p6:
+ // When P is a function type, pointer to function type, or pointer
+ // to member function type:
+
+ if (!ParamType->isFunctionType() &&
+ !ParamType->isFunctionPointerType() &&
+ !ParamType->isMemberFunctionPointerType()) {
+ if (Ovl->hasExplicitTemplateArgs()) {
+ // But we can still look for an explicit specialization.
+ if (FunctionDecl *ExplicitSpec
+ = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
+ return GetTypeOfFunction(S, R, ExplicitSpec);
+ }
+
+ DeclAccessPair DAP;
+ if (FunctionDecl *Viable =
+ S.resolveAddressOfOnlyViableOverloadCandidate(Arg, DAP))
+ return GetTypeOfFunction(S, R, Viable);
+
+ return {};
+ }
+
+ // Gather the explicit template arguments, if any.
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ if (Ovl->hasExplicitTemplateArgs())
+ Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
+ QualType Match;
+ for (UnresolvedSetIterator I = Ovl->decls_begin(),
+ E = Ovl->decls_end(); I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
+ // - If the argument is an overload set containing one or more
+ // function templates, the parameter is treated as a
+ // non-deduced context.
+ if (!Ovl->hasExplicitTemplateArgs())
+ return {};
+
+ // Otherwise, see if we can resolve a function type
+ FunctionDecl *Specialization = nullptr;
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
+ Specialization, Info))
+ continue;
+
+ D = Specialization;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ QualType ArgType = GetTypeOfFunction(S, R, Fn);
+ if (ArgType.isNull()) continue;
+
+ // Function-to-pointer conversion.
+ if (!ParamWasReference && ParamType->isPointerType() &&
+ ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+
+ // - If the argument is an overload set (not containing function
+ // templates), trial argument deduction is attempted using each
+ // of the members of the set. If deduction succeeds for only one
+ // of the overload set members, that member is used as the
+ // argument value for the deduction. If deduction succeeds for
+ // more than one member of the overload set the parameter is
+ // treated as a non-deduced context.
+
+ // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
+ // Type deduction is done independently for each P/A pair, and
+ // the deduced template argument values are then combined.
+ // So we do not reject deductions which were made elsewhere.
+ SmallVector<DeducedTemplateArgument, 8>
+ Deduced(TemplateParams->size());
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+ if (Result) continue;
+ if (!Match.isNull())
+ return {};
+ Match = ArgType;
+ }
+
+ return Match;
+}
+
+/// Perform the adjustments to the parameter and argument types
+/// described in C++ [temp.deduct.call].
+///
+/// \returns true if the caller should not attempt to perform any template
+/// argument deduction based on this P/A pair because the argument is an
+/// overloaded function set that could not be resolved.
+static bool AdjustFunctionParmAndArgTypesForDeduction(
+ Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
+ QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
+ // C++0x [temp.deduct.call]p3:
+ // If P is a cv-qualified type, the top level cv-qualifiers of P's type
+ // are ignored for type deduction.
+ if (ParamType.hasQualifiers())
+ ParamType = ParamType.getUnqualifiedType();
+
+ // [...] If P is a reference type, the type referred to by P is
+ // used for type deduction.
+ const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
+ if (ParamRefType)
+ ParamType = ParamRefType->getPointeeType();
+
+ // Overload sets usually make this parameter an undeduced context,
+ // but there are sometimes special circumstances. Typically
+ // involving a template-id-expr.
+ if (ArgType == S.Context.OverloadTy) {
+ ArgType = ResolveOverloadForDeduction(S, TemplateParams,
+ Arg, ParamType,
+ ParamRefType != nullptr);
+ if (ArgType.isNull())
+ return true;
+ }
+
+ if (ParamRefType) {
+ // If the argument has incomplete array type, try to complete its type.
+ if (ArgType->isIncompleteArrayType()) {
+ S.completeExprArrayBound(Arg);
+ ArgType = Arg->getType();
+ }
+
+ // C++1z [temp.deduct.call]p3:
+ // If P is a forwarding reference and the argument is an lvalue, the type
+ // "lvalue reference to A" is used in place of A for type deduction.
+ if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
+ Arg->isLValue())
+ ArgType = S.Context.getLValueReferenceType(ArgType);
+ } else {
+ // C++ [temp.deduct.call]p2:
+ // If P is not a reference type:
+ // - If A is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place of
+ // A for type deduction; otherwise,
+ if (ArgType->isArrayType())
+ ArgType = S.Context.getArrayDecayedType(ArgType);
+ // - If A is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in place
+ // of A for type deduction; otherwise,
+ else if (ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+ else {
+ // - If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction.
+ ArgType = ArgType.getUnqualifiedType();
+ }
+ }
+
+ // C++0x [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ TDF = TDF_SkipNonDependent;
+
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (ParamRefType)
+ TDF |= TDF_ParamWithReferenceType;
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a qualification
+ // conversion (4.4).
+ if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
+ ArgType->isObjCObjectPointerType())
+ TDF |= TDF_IgnoreQualifiers;
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. Likewise,
+ // if P is a pointer to a class of the form simple-template-id, the
+ // transformed A can be a pointer to a derived class pointed to by
+ // the deduced A.
+ if (isSimpleTemplateIdType(ParamType) ||
+ (isa<PointerType>(ParamType) &&
+ isSimpleTemplateIdType(
+ ParamType->getAs<PointerType>()->getPointeeType())))
+ TDF |= TDF_DerivedClass;
+
+ return false;
+}
+
+static bool
+hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
+ QualType T);
+
+static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
+ Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
+ QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
+ bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
+
+/// Attempt template argument deduction from an initializer list
+/// deemed to be an argument in a function call.
+static Sema::TemplateDeductionResult DeduceFromInitializerList(
+ Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
+ InitListExpr *ILE, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
+ unsigned TDF) {
+ // C++ [temp.deduct.call]p1: (CWG 1591)
+ // If removing references and cv-qualifiers from P gives
+ // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
+ // a non-empty initializer list, then deduction is performed instead for
+ // each element of the initializer list, taking P0 as a function template
+ // parameter type and the initializer element as its argument
+ //
+ // We've already removed references and cv-qualifiers here.
+ if (!ILE->getNumInits())
+ return Sema::TDK_Success;
+
+ QualType ElTy;
+ auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
+ if (ArrTy)
+ ElTy = ArrTy->getElementType();
+ else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
+ // Otherwise, an initializer list argument causes the parameter to be
+ // considered a non-deduced context
+ return Sema::TDK_Success;
+ }
+
+ // Resolving a core issue: a braced-init-list containing any designators is
+ // a non-deduced context.
+ for (Expr *E : ILE->inits())
+ if (isa<DesignatedInitExpr>(E))
+ return Sema::TDK_Success;
+
+ // Deduction only needs to be done for dependent types.
+ if (ElTy->isDependentType()) {
+ for (Expr *E : ILE->inits()) {
+ if (auto Result = DeduceTemplateArgumentsFromCallArgument(
+ S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
+ ArgIdx, TDF))
+ return Result;
+ }
+ }
+
+ // in the P0[N] case, if N is a non-type template parameter, N is deduced
+ // from the length of the initializer list.
+ if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
+ // Determine the array bound is something we can deduce.
+ if (NonTypeTemplateParmDecl *NTTP =
+ getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
+ // We can perform template argument deduction for the given non-type
+ // template parameter.
+ // C++ [temp.deduct.type]p13:
+ // The type of N in the type T[N] is std::size_t.
+ QualType T = S.Context.getSizeType();
+ llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
+ if (auto Result = DeduceNonTypeTemplateArgument(
+ S, TemplateParams, NTTP, llvm::APSInt(Size), T,
+ /*ArrayBound=*/true, Info, Deduced))
+ return Result;
+ }
+ }
+
+ return Sema::TDK_Success;
+}
+
+/// Perform template argument deduction per [temp.deduct.call] for a
+/// single parameter / argument pair.
+static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
+ Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
+ QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
+ bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
+ QualType ArgType = Arg->getType();
+ QualType OrigParamType = ParamType;
+
+ // If P is a reference type [...]
+ // If P is a cv-qualified type [...]
+ if (AdjustFunctionParmAndArgTypesForDeduction(
+ S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
+ return Sema::TDK_Success;
+
+ // If [...] the argument is a non-empty initializer list [...]
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
+ return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
+ Deduced, OriginalCallArgs, ArgIdx, TDF);
+
+ // [...] the deduction process attempts to find template argument values
+ // that will make the deduced A identical to A
+ //
+ // Keep track of the argument type and corresponding parameter index,
+ // so we can check for compatibility between the deduced A and A.
+ OriginalCallArgs.push_back(
+ Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+}
+
+/// Perform template argument deduction from a function call
+/// (C++ [temp.deduct.call]).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicit template arguments provided
+/// for this call.
+///
+/// \param Args the function call arguments
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \param CheckNonDependent A callback to invoke to check conversions for
+/// non-dependent parameters, between deduction and substitution, per DR1391.
+/// If this returns true, substitution will be skipped and we return
+/// TDK_NonDependentConversionFailure. The callback is passed the parameter
+/// types (after substituting explicit template arguments).
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
+ FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
+ bool PartialOverloading,
+ llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+
+ unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
+
+ // C++ [temp.deduct.call]p1:
+ // Template argument deduction is done by comparing each function template
+ // parameter type (call it P) with the type of the corresponding argument
+ // of the call (call it A) as described below.
+ if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
+ return TDK_TooFewArguments;
+ else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
+ const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
+ if (Proto->isTemplateVariadic())
+ /* Do nothing */;
+ else if (!Proto->isVariadic())
+ return TDK_TooManyArguments;
+ }
+
+ // The types of the parameters from which we will perform template argument
+ // deduction.
+ LocalInstantiationScope InstScope(*this);
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ SmallVector<QualType, 8> ParamTypes;
+ unsigned NumExplicitlySpecified = 0;
+ if (ExplicitTemplateArgs) {
+ TemplateDeductionResult Result =
+ SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced,
+ ParamTypes,
+ nullptr,
+ Info);
+ if (Result)
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ } else {
+ // Just fill in the parameter types from the function declaration.
+ for (unsigned I = 0; I != NumParams; ++I)
+ ParamTypes.push_back(Function->getParamDecl(I)->getType());
+ }
+
+ SmallVector<OriginalCallArg, 8> OriginalCallArgs;
+
+ // Deduce an argument of type ParamType from an expression with index ArgIdx.
+ auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
+ // C++ [demp.deduct.call]p1: (DR1391)
+ // Template argument deduction is done by comparing each function template
+ // parameter that contains template-parameters that participate in
+ // template argument deduction ...
+ if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
+ return Sema::TDK_Success;
+
+ // ... with the type of the corresponding argument
+ return DeduceTemplateArgumentsFromCallArgument(
+ *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
+ OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
+ };
+
+ // Deduce template arguments from the function parameters.
+ Deduced.resize(TemplateParams->size());
+ SmallVector<QualType, 8> ParamTypesForArgChecking;
+ for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
+ ParamIdx != NumParamTypes; ++ParamIdx) {
+ QualType ParamType = ParamTypes[ParamIdx];
+
+ const PackExpansionType *ParamExpansion =
+ dyn_cast<PackExpansionType>(ParamType);
+ if (!ParamExpansion) {
+ // Simple case: matching a function parameter to a function argument.
+ if (ArgIdx >= Args.size())
+ break;
+
+ ParamTypesForArgChecking.push_back(ParamType);
+ if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
+ return Result;
+
+ continue;
+ }
+
+ QualType ParamPattern = ParamExpansion->getPattern();
+ PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
+ ParamPattern);
+
+ // C++0x [temp.deduct.call]p1:
+ // For a function parameter pack that occurs at the end of the
+ // parameter-declaration-list, the type A of each remaining argument of
+ // the call is compared with the type P of the declarator-id of the
+ // function parameter pack. Each comparison deduces template arguments
+ // for subsequent positions in the template parameter packs expanded by
+ // the function parameter pack. When a function parameter pack appears
+ // in a non-deduced context [not at the end of the list], the type of
+ // that parameter pack is never deduced.
+ //
+ // FIXME: The above rule allows the size of the parameter pack to change
+ // after we skip it (in the non-deduced case). That makes no sense, so
+ // we instead notionally deduce the pack against N arguments, where N is
+ // the length of the explicitly-specified pack if it's expanded by the
+ // parameter pack and 0 otherwise, and we treat each deduction as a
+ // non-deduced context.
+ if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
+ for (; ArgIdx < Args.size() && PackScope.hasNextElement();
+ PackScope.nextPackElement(), ++ArgIdx) {
+ ParamTypesForArgChecking.push_back(ParamPattern);
+ if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
+ return Result;
+ }
+ } else {
+ // If the parameter type contains an explicitly-specified pack that we
+ // could not expand, skip the number of parameters notionally created
+ // by the expansion.
+ Optional<unsigned> NumExpansions = ParamExpansion->getNumExpansions();
+ if (NumExpansions && !PackScope.isPartiallyExpanded()) {
+ for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
+ ++I, ++ArgIdx) {
+ ParamTypesForArgChecking.push_back(ParamPattern);
+ // FIXME: Should we add OriginalCallArgs for these? What if the
+ // corresponding argument is a list?
+ PackScope.nextPackElement();
+ }
+ }
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish())
+ return Result;
+ }
+
+ // Capture the context in which the function call is made. This is the context
+ // that is needed when the accessibility of template arguments is checked.
+ DeclContext *CallingCtx = CurContext;
+
+ return FinishTemplateArgumentDeduction(
+ FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
+ &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
+ ContextRAII SavedContext(*this, CallingCtx);
+ return CheckNonDependent(ParamTypesForArgChecking);
+ });
+}
+
+QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
+ QualType FunctionType,
+ bool AdjustExceptionSpec) {
+ if (ArgFunctionType.isNull())
+ return ArgFunctionType;
+
+ const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
+ const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
+ bool Rebuild = false;
+
+ CallingConv CC = FunctionTypeP->getCallConv();
+ if (EPI.ExtInfo.getCC() != CC) {
+ EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
+ Rebuild = true;
+ }
+
+ bool NoReturn = FunctionTypeP->getNoReturnAttr();
+ if (EPI.ExtInfo.getNoReturn() != NoReturn) {
+ EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
+ Rebuild = true;
+ }
+
+ if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
+ ArgFunctionTypeP->hasExceptionSpec())) {
+ EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
+ Rebuild = true;
+ }
+
+ if (!Rebuild)
+ return ArgFunctionType;
+
+ return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
+ ArgFunctionTypeP->getParamTypes(), EPI);
+}
+
+/// Deduce template arguments when taking the address of a function
+/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
+/// a template.
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param ArgFunctionType the function type that will be used as the
+/// "argument" type (A) when performing template argument deduction from the
+/// function template's function type. This type may be NULL, if there is no
+/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
+/// the address of a function template per [temp.deduct.funcaddr] and
+/// [over.over]. If \c false, we are looking up a function template
+/// specialization based on its signature, per [temp.deduct.decl].
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
+ FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
+ bool IsAddressOfFunction) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ QualType FunctionType = Function->getType();
+
+ // Substitute any explicit template arguments.
+ LocalInstantiationScope InstScope(*this);
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ unsigned NumExplicitlySpecified = 0;
+ SmallVector<QualType, 4> ParamTypes;
+ if (ExplicitTemplateArgs) {
+ if (TemplateDeductionResult Result
+ = SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced, ParamTypes,
+ &FunctionType, Info))
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ }
+
+ // When taking the address of a function, we require convertibility of
+ // the resulting function type. Otherwise, we allow arbitrary mismatches
+ // of calling convention and noreturn.
+ if (!IsAddressOfFunction)
+ ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
+ /*AdjustExceptionSpec*/false);
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ Deduced.resize(TemplateParams->size());
+
+ // If the function has a deduced return type, substitute it for a dependent
+ // type so that we treat it as a non-deduced context in what follows. If we
+ // are looking up by signature, the signature type should also have a deduced
+ // return type, which we instead expect to exactly match.
+ bool HasDeducedReturnType = false;
+ if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
+ Function->getReturnType()->getContainedAutoType()) {
+ FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
+ HasDeducedReturnType = true;
+ }
+
+ if (!ArgFunctionType.isNull()) {
+ unsigned TDF =
+ TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
+ // Deduce template arguments from the function type.
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ FunctionType, ArgFunctionType,
+ Info, Deduced, TDF))
+ return Result;
+ }
+
+ if (TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+ NumExplicitlySpecified,
+ Specialization, Info))
+ return Result;
+
+ // If the function has a deduced return type, deduce it now, so we can check
+ // that the deduced function type matches the requested type.
+ if (HasDeducedReturnType &&
+ Specialization->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(Specialization, Info.getLocation(), false))
+ return TDK_MiscellaneousDeductionFailure;
+
+ // If the function has a dependent exception specification, resolve it now,
+ // so we can check that the exception specification matches.
+ auto *SpecializationFPT =
+ Specialization->getType()->castAs<FunctionProtoType>();
+ if (getLangOpts().CPlusPlus17 &&
+ isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
+ !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
+ return TDK_MiscellaneousDeductionFailure;
+
+ // Adjust the exception specification of the argument to match the
+ // substituted and resolved type we just formed. (Calling convention and
+ // noreturn can't be dependent, so we don't actually need this for them
+ // right now.)
+ QualType SpecializationType = Specialization->getType();
+ if (!IsAddressOfFunction)
+ ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
+ /*AdjustExceptionSpec*/true);
+
+ // If the requested function type does not match the actual type of the
+ // specialization with respect to arguments of compatible pointer to function
+ // types, template argument deduction fails.
+ if (!ArgFunctionType.isNull()) {
+ if (IsAddressOfFunction &&
+ !isSameOrCompatibleFunctionType(
+ Context.getCanonicalType(SpecializationType),
+ Context.getCanonicalType(ArgFunctionType)))
+ return TDK_MiscellaneousDeductionFailure;
+
+ if (!IsAddressOfFunction &&
+ !Context.hasSameType(SpecializationType, ArgFunctionType))
+ return TDK_MiscellaneousDeductionFailure;
+ }
+
+ return TDK_Success;
+}
+
+/// Deduce template arguments for a templated conversion
+/// function (C++ [temp.deduct.conv]) and, if successful, produce a
+/// conversion function template specialization.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
+ QualType ToType,
+ CXXConversionDecl *&Specialization,
+ TemplateDeductionInfo &Info) {
+ if (ConversionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ CXXConversionDecl *ConversionGeneric
+ = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
+
+ QualType FromType = ConversionGeneric->getConversionType();
+
+ // Canonicalize the types for deduction.
+ QualType P = Context.getCanonicalType(FromType);
+ QualType A = Context.getCanonicalType(ToType);
+
+ // C++0x [temp.deduct.conv]p2:
+ // If P is a reference type, the type referred to by P is used for
+ // type deduction.
+ if (const ReferenceType *PRef = P->getAs<ReferenceType>())
+ P = PRef->getPointeeType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // [...] If A is a reference type, the type referred to by A is used
+ // for type deduction.
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
+ A = ARef->getPointeeType();
+ // We work around a defect in the standard here: cv-qualifiers are also
+ // removed from P and A in this case, unless P was a reference type. This
+ // seems to mostly match what other compilers are doing.
+ if (!FromType->getAs<ReferenceType>()) {
+ A = A.getUnqualifiedType();
+ P = P.getUnqualifiedType();
+ }
+
+ // C++ [temp.deduct.conv]p3:
+ //
+ // If A is not a reference type:
+ } else {
+ assert(!A->isReferenceType() && "Reference types were handled above");
+
+ // - If P is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place
+ // of P for type deduction; otherwise,
+ if (P->isArrayType())
+ P = Context.getArrayDecayedType(P);
+ // - If P is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in
+ // place of P for type deduction; otherwise,
+ else if (P->isFunctionType())
+ P = Context.getPointerType(P);
+ // - If P is a cv-qualified type, the top level cv-qualifiers of
+ // P's type are ignored for type deduction.
+ else
+ P = P.getUnqualifiedType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction. If A is a reference type, the type
+ // referred to by A is used for type deduction.
+ A = A.getUnqualifiedType();
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.deduct.conv]p1:
+ // Template argument deduction is done by comparing the return
+ // type of the template conversion function (call it P) with the
+ // type that is required as the result of the conversion (call it
+ // A) as described in 14.8.2.4.
+ TemplateParameterList *TemplateParams
+ = ConversionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.conv]p4:
+ // In general, the deduction process attempts to find template
+ // argument values that will make the deduced A identical to
+ // A. However, there are two cases that allow a difference:
+ unsigned TDF = 0;
+ // - If the original A is a reference type, A can be more
+ // cv-qualified than the deduced A (i.e., the type referred to
+ // by the reference)
+ if (ToType->isReferenceType())
+ TDF |= TDF_ArgWithReferenceType;
+ // - The deduced A can be another pointer or pointer to member
+ // type that can be converted to A via a qualification
+ // conversion.
+ //
+ // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
+ // both P and A are pointers or member pointers. In this case, we
+ // just ignore cv-qualifiers completely).
+ if ((P->isPointerType() && A->isPointerType()) ||
+ (P->isMemberPointerType() && A->isMemberPointerType()))
+ TDF |= TDF_IgnoreQualifiers;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ P, A, Info, Deduced, TDF))
+ return Result;
+
+ // Create an Instantiation Scope for finalizing the operator.
+ LocalInstantiationScope InstScope(*this);
+ // Finish template argument deduction.
+ FunctionDecl *ConversionSpecialized = nullptr;
+ TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
+ ConversionSpecialized, Info);
+ Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
+ return Result;
+}
+
+/// Deduce template arguments for a function template when there is
+/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \param IsAddressOfFunction If \c true, we are deducing as part of taking
+/// the address of a function template in a context where we do not have a
+/// target type, per [over.over]. If \c false, we are looking up a function
+/// template specialization based on its signature, which only happens when
+/// deducing a function parameter type from an argument that is a template-id
+/// naming a function template specialization.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
+ bool IsAddressOfFunction) {
+ return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+ QualType(), Specialization, Info,
+ IsAddressOfFunction);
+}
+
+namespace {
+ struct DependentAuto { bool IsPack; };
+
+ /// Substitute the 'auto' specifier or deduced template specialization type
+ /// specifier within a type for a given replacement type.
+ class SubstituteDeducedTypeTransform :
+ public TreeTransform<SubstituteDeducedTypeTransform> {
+ QualType Replacement;
+ bool ReplacementIsPack;
+ bool UseTypeSugar;
+
+ public:
+ SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
+ : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef), Replacement(),
+ ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
+
+ SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
+ bool UseTypeSugar = true)
+ : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
+ Replacement(Replacement), ReplacementIsPack(false),
+ UseTypeSugar(UseTypeSugar) {}
+
+ QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
+ assert(isa<TemplateTypeParmType>(Replacement) &&
+ "unexpected unsugared replacement kind");
+ QualType Result = Replacement;
+ TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+
+ QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
+ // If we're building the type pattern to deduce against, don't wrap the
+ // substituted type in an AutoType. Certain template deduction rules
+ // apply only when a template type parameter appears directly (and not if
+ // the parameter is found through desugaring). For instance:
+ // auto &&lref = lvalue;
+ // must transform into "rvalue reference to T" not "rvalue reference to
+ // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
+ //
+ // FIXME: Is this still necessary?
+ if (!UseTypeSugar)
+ return TransformDesugared(TLB, TL);
+
+ QualType Result = SemaRef.Context.getAutoType(
+ Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
+ ReplacementIsPack);
+ auto NewTL = TLB.push<AutoTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+
+ QualType TransformDeducedTemplateSpecializationType(
+ TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
+ if (!UseTypeSugar)
+ return TransformDesugared(TLB, TL);
+
+ QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
+ TL.getTypePtr()->getTemplateName(),
+ Replacement, Replacement.isNull());
+ auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+
+ QualType Apply(TypeLoc TL) {
+ // Create some scratch storage for the transformed type locations.
+ // FIXME: We're just going to throw this information away. Don't build it.
+ TypeLocBuilder TLB;
+ TLB.reserve(TL.getFullDataSize());
+ return TransformType(TLB, TL);
+ }
+ };
+
+} // namespace
+
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result,
+ Optional<unsigned> DependentDeductionDepth) {
+ return DeduceAutoType(Type->getTypeLoc(), Init, Result,
+ DependentDeductionDepth);
+}
+
+/// Attempt to produce an informative diagostic explaining why auto deduction
+/// failed.
+/// \return \c true if diagnosed, \c false if not.
+static bool diagnoseAutoDeductionFailure(Sema &S,
+ Sema::TemplateDeductionResult TDK,
+ TemplateDeductionInfo &Info,
+ ArrayRef<SourceRange> Ranges) {
+ switch (TDK) {
+ case Sema::TDK_Inconsistent: {
+ // Inconsistent deduction means we were deducing from an initializer list.
+ auto D = S.Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction);
+ D << Info.FirstArg << Info.SecondArg;
+ for (auto R : Ranges)
+ D << R;
+ return true;
+ }
+
+ // FIXME: Are there other cases for which a custom diagnostic is more useful
+ // than the basic "types don't match" diagnostic?
+
+ default:
+ return false;
+ }
+}
+
+/// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
+///
+/// Note that this is done even if the initializer is dependent. (This is
+/// necessary to support partial ordering of templates using 'auto'.)
+/// A dependent type will be produced when deducing from a dependent type.
+///
+/// \param Type the type pattern using the auto type-specifier.
+/// \param Init the initializer for the variable whose type is to be deduced.
+/// \param Result if type deduction was successful, this will be set to the
+/// deduced type.
+/// \param DependentDeductionDepth Set if we should permit deduction in
+/// dependent cases. This is necessary for template partial ordering with
+/// 'auto' template parameters. The value specified is the template
+/// parameter depth at which we should perform 'auto' deduction.
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result,
+ Optional<unsigned> DependentDeductionDepth) {
+ if (Init->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
+ if (NonPlaceholder.isInvalid())
+ return DAR_FailedAlreadyDiagnosed;
+ Init = NonPlaceholder.get();
+ }
+
+ DependentAuto DependentResult = {
+ /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
+
+ if (!DependentDeductionDepth &&
+ (Type.getType()->isDependentType() || Init->isTypeDependent())) {
+ Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
+ assert(!Result.isNull() && "substituting DependentTy can't fail");
+ return DAR_Succeeded;
+ }
+
+ // Find the depth of template parameter to synthesize.
+ unsigned Depth = DependentDeductionDepth.getValueOr(0);
+
+ // If this is a 'decltype(auto)' specifier, do the decltype dance.
+ // Since 'decltype(auto)' can only occur at the top of the type, we
+ // don't need to go digging for it.
+ if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
+ if (AT->isDecltypeAuto()) {
+ if (isa<InitListExpr>(Init)) {
+ Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ ExprResult ER = CheckPlaceholderExpr(Init);
+ if (ER.isInvalid())
+ return DAR_FailedAlreadyDiagnosed;
+ Init = ER.get();
+ QualType Deduced = BuildDecltypeType(Init, Init->getBeginLoc(), false);
+ if (Deduced.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ // FIXME: Support a non-canonical deduced type for 'auto'.
+ Deduced = Context.getCanonicalType(Deduced);
+ Result = SubstituteDeducedTypeTransform(*this, Deduced).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ return DAR_Succeeded;
+ } else if (!getLangOpts().CPlusPlus) {
+ if (isa<InitListExpr>(Init)) {
+ Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
+ return DAR_FailedAlreadyDiagnosed;
+ }
+ }
+ }
+
+ SourceLocation Loc = Init->getExprLoc();
+
+ LocalInstantiationScope InstScope(*this);
+
+ // Build template<class TemplParam> void Func(FuncParam);
+ TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
+ Context, nullptr, SourceLocation(), Loc, Depth, 0, nullptr, false, false);
+ QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
+ NamedDecl *TemplParamPtr = TemplParam;
+ FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
+ Loc, Loc, TemplParamPtr, Loc, nullptr);
+
+ QualType FuncParam =
+ SubstituteDeducedTypeTransform(*this, TemplArg, /*UseTypeSugar*/false)
+ .Apply(Type);
+ assert(!FuncParam.isNull() &&
+ "substituting template parameter for 'auto' failed");
+
+ // Deduce type of TemplParam in Func(Init)
+ SmallVector<DeducedTemplateArgument, 1> Deduced;
+ Deduced.resize(1);
+
+ TemplateDeductionInfo Info(Loc, Depth);
+
+ // If deduction failed, don't diagnose if the initializer is dependent; it
+ // might acquire a matching type in the instantiation.
+ auto DeductionFailed = [&](TemplateDeductionResult TDK,
+ ArrayRef<SourceRange> Ranges) -> DeduceAutoResult {
+ if (Init->isTypeDependent()) {
+ Result =
+ SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
+ assert(!Result.isNull() && "substituting DependentTy can't fail");
+ return DAR_Succeeded;
+ }
+ if (diagnoseAutoDeductionFailure(*this, TDK, Info, Ranges))
+ return DAR_FailedAlreadyDiagnosed;
+ return DAR_Failed;
+ };
+
+ SmallVector<OriginalCallArg, 4> OriginalCallArgs;
+
+ InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
+ if (InitList) {
+ // Notionally, we substitute std::initializer_list<T> for 'auto' and deduce
+ // against that. Such deduction only succeeds if removing cv-qualifiers and
+ // references results in std::initializer_list<T>.
+ if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
+ return DAR_Failed;
+
+ // Resolving a core issue: a braced-init-list containing any designators is
+ // a non-deduced context.
+ for (Expr *E : InitList->inits())
+ if (isa<DesignatedInitExpr>(E))
+ return DAR_Failed;
+
+ SourceRange DeducedFromInitRange;
+ for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
+ Expr *Init = InitList->getInit(i);
+
+ if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
+ *this, TemplateParamsSt.get(), 0, TemplArg, Init,
+ Info, Deduced, OriginalCallArgs, /*Decomposed*/ true,
+ /*ArgIdx*/ 0, /*TDF*/ 0))
+ return DeductionFailed(TDK, {DeducedFromInitRange,
+ Init->getSourceRange()});
+
+ if (DeducedFromInitRange.isInvalid() &&
+ Deduced[0].getKind() != TemplateArgument::Null)
+ DeducedFromInitRange = Init->getSourceRange();
+ }
+ } else {
+ if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
+ Diag(Loc, diag::err_auto_bitfield);
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
+ *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
+ OriginalCallArgs, /*Decomposed*/ false, /*ArgIdx*/ 0, /*TDF*/ 0))
+ return DeductionFailed(TDK, {});
+ }
+
+ // Could be null if somehow 'auto' appears in a non-deduced context.
+ if (Deduced[0].getKind() != TemplateArgument::Type)
+ return DeductionFailed(TDK_Incomplete, {});
+
+ QualType DeducedType = Deduced[0].getAsType();
+
+ if (InitList) {
+ DeducedType = BuildStdInitializerList(DeducedType, Loc);
+ if (DeducedType.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+
+ // Check that the deduced argument type is compatible with the original
+ // argument type per C++ [temp.deduct.call]p4.
+ QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
+ for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
+ assert((bool)InitList == OriginalArg.DecomposedParam &&
+ "decomposed non-init-list in auto deduction?");
+ if (auto TDK =
+ CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
+ Result = QualType();
+ return DeductionFailed(TDK, {});
+ }
+ }
+
+ return DAR_Succeeded;
+}
+
+QualType Sema::SubstAutoType(QualType TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ if (TypeToReplaceAuto->isDependentType())
+ return SubstituteDeducedTypeTransform(
+ *this, DependentAuto{
+ TypeToReplaceAuto->containsUnexpandedParameterPack()})
+ .TransformType(TypeWithAuto);
+ return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
+ .TransformType(TypeWithAuto);
+}
+
+TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ if (TypeToReplaceAuto->isDependentType())
+ return SubstituteDeducedTypeTransform(
+ *this,
+ DependentAuto{
+ TypeToReplaceAuto->containsUnexpandedParameterPack()})
+ .TransformType(TypeWithAuto);
+ return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
+ .TransformType(TypeWithAuto);
+}
+
+QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
+ /*UseTypeSugar*/ false)
+ .TransformType(TypeWithAuto);
+}
+
+void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
+ if (isa<InitListExpr>(Init))
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture()
+ ? diag::err_init_capture_deduction_failure_from_init_list
+ : diag::err_auto_var_deduction_failure_from_init_list)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
+ else
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
+ : diag::err_auto_var_deduction_failure)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getType()
+ << Init->getSourceRange();
+}
+
+bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
+ bool Diagnose) {
+ assert(FD->getReturnType()->isUndeducedType());
+
+ // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
+ // within the return type from the call operator's type.
+ if (isLambdaConversionOperator(FD)) {
+ CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
+ FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
+
+ // For a generic lambda, instantiate the call operator if needed.
+ if (auto *Args = FD->getTemplateSpecializationArgs()) {
+ CallOp = InstantiateFunctionDeclaration(
+ CallOp->getDescribedFunctionTemplate(), Args, Loc);
+ if (!CallOp || CallOp->isInvalidDecl())
+ return true;
+
+ // We might need to deduce the return type by instantiating the definition
+ // of the operator() function.
+ if (CallOp->getReturnType()->isUndeducedType()) {
+ runWithSufficientStackSpace(Loc, [&] {
+ InstantiateFunctionDefinition(Loc, CallOp);
+ });
+ }
+ }
+
+ if (CallOp->isInvalidDecl())
+ return true;
+ assert(!CallOp->getReturnType()->isUndeducedType() &&
+ "failed to deduce lambda return type");
+
+ // Build the new return type from scratch.
+ QualType RetType = getLambdaConversionFunctionResultType(
+ CallOp->getType()->castAs<FunctionProtoType>());
+ if (FD->getReturnType()->getAs<PointerType>())
+ RetType = Context.getPointerType(RetType);
+ else {
+ assert(FD->getReturnType()->getAs<BlockPointerType>());
+ RetType = Context.getBlockPointerType(RetType);
+ }
+ Context.adjustDeducedFunctionResultType(FD, RetType);
+ return false;
+ }
+
+ if (FD->getTemplateInstantiationPattern()) {
+ runWithSufficientStackSpace(Loc, [&] {
+ InstantiateFunctionDefinition(Loc, FD);
+ });
+ }
+
+ bool StillUndeduced = FD->getReturnType()->isUndeducedType();
+ if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
+ Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
+ Diag(FD->getLocation(), diag::note_callee_decl) << FD;
+ }
+
+ return StillUndeduced;
+}
+
+/// If this is a non-static member function,
+static void
+AddImplicitObjectParameterType(ASTContext &Context,
+ CXXMethodDecl *Method,
+ SmallVectorImpl<QualType> &ArgTypes) {
+ // C++11 [temp.func.order]p3:
+ // [...] The new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // The standard doesn't say explicitly, but we pick the appropriate kind of
+ // reference type based on [over.match.funcs]p4.
+ QualType ArgTy = Context.getTypeDeclType(Method->getParent());
+ ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
+ if (Method->getRefQualifier() == RQ_RValue)
+ ArgTy = Context.getRValueReferenceType(ArgTy);
+ else
+ ArgTy = Context.getLValueReferenceType(ArgTy);
+ ArgTypes.push_back(ArgTy);
+}
+
+/// Determine whether the function template \p FT1 is at least as
+/// specialized as \p FT2.
+static bool isAtLeastAsSpecializedAs(Sema &S,
+ SourceLocation Loc,
+ FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1) {
+ FunctionDecl *FD1 = FT1->getTemplatedDecl();
+ FunctionDecl *FD2 = FT2->getTemplatedDecl();
+ const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
+
+ assert(Proto1 && Proto2 && "Function templates must have prototypes");
+ TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.partial]p3:
+ // The types used to determine the ordering depend on the context in which
+ // the partial ordering is done:
+ TemplateDeductionInfo Info(Loc);
+ SmallVector<QualType, 4> Args2;
+ switch (TPOC) {
+ case TPOC_Call: {
+ // - In the context of a function call, the function parameter types are
+ // used.
+ CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
+ CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
+
+ // C++11 [temp.func.order]p3:
+ // [...] If only one of the function templates is a non-static
+ // member, that function template is considered to have a new
+ // first parameter inserted in its function parameter list. The
+ // new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // Note that we interpret this to mean "if one of the function
+ // templates is a non-static member and the other is a non-member";
+ // otherwise, the ordering rules for static functions against non-static
+ // functions don't make any sense.
+ //
+ // C++98/03 doesn't have this provision but we've extended DR532 to cover
+ // it as wording was broken prior to it.
+ SmallVector<QualType, 4> Args1;
+
+ unsigned NumComparedArguments = NumCallArguments1;
+
+ if (!Method2 && Method1 && !Method1->isStatic()) {
+ // Compare 'this' from Method1 against first parameter from Method2.
+ AddImplicitObjectParameterType(S.Context, Method1, Args1);
+ ++NumComparedArguments;
+ } else if (!Method1 && Method2 && !Method2->isStatic()) {
+ // Compare 'this' from Method2 against first parameter from Method1.
+ AddImplicitObjectParameterType(S.Context, Method2, Args2);
+ }
+
+ Args1.insert(Args1.end(), Proto1->param_type_begin(),
+ Proto1->param_type_end());
+ Args2.insert(Args2.end(), Proto2->param_type_begin(),
+ Proto2->param_type_end());
+
+ // C++ [temp.func.order]p5:
+ // The presence of unused ellipsis and default arguments has no effect on
+ // the partial ordering of function templates.
+ if (Args1.size() > NumComparedArguments)
+ Args1.resize(NumComparedArguments);
+ if (Args2.size() > NumComparedArguments)
+ Args2.resize(NumComparedArguments);
+ if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
+ Args1.data(), Args1.size(), Info, Deduced,
+ TDF_None, /*PartialOrdering=*/true))
+ return false;
+
+ break;
+ }
+
+ case TPOC_Conversion:
+ // - In the context of a call to a conversion operator, the return types
+ // of the conversion function templates are used.
+ if (DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+
+ case TPOC_Other:
+ // - In other contexts (14.6.6.2) the function template's function type
+ // is used.
+ if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ FD2->getType(), FD1->getType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+ }
+
+ // C++0x [temp.deduct.partial]p11:
+ // In most cases, all template parameters must have values in order for
+ // deduction to succeed, but for partial ordering purposes a template
+ // parameter may remain without a value provided it is not used in the
+ // types being used for partial ordering. [ Note: a template parameter used
+ // in a non-deduced context is considered used. -end note]
+ unsigned ArgIdx = 0, NumArgs = Deduced.size();
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ if (Deduced[ArgIdx].isNull())
+ break;
+
+ // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
+ // to substitute the deduced arguments back into the template and check that
+ // we get the right type.
+
+ if (ArgIdx == NumArgs) {
+ // All template arguments were deduced. FT1 is at least as specialized
+ // as FT2.
+ return true;
+ }
+
+ // Figure out which template parameters were used.
+ llvm::SmallBitVector UsedParameters(TemplateParams->size());
+ switch (TPOC) {
+ case TPOC_Call:
+ for (unsigned I = 0, N = Args2.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+
+ case TPOC_Conversion:
+ ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
+ TemplateParams->getDepth(), UsedParameters);
+ break;
+
+ case TPOC_Other:
+ ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+ }
+
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ // If this argument had no value deduced but was used in one of the types
+ // used for partial ordering, then deduction fails.
+ if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
+ return false;
+
+ return true;
+}
+
+/// Determine whether this a function template whose parameter-type-list
+/// ends with a function parameter pack.
+static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
+ FunctionDecl *Function = FunTmpl->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+ if (NumParams == 0)
+ return false;
+
+ ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
+ if (!Last->isParameterPack())
+ return false;
+
+ // Make sure that no previous parameter is a parameter pack.
+ while (--NumParams > 0) {
+ if (Function->getParamDecl(NumParams - 1)->isParameterPack())
+ return false;
+ }
+
+ return true;
+}
+
+/// Returns the more specialized function template according
+/// to the rules of function template partial ordering (C++ [temp.func.order]).
+///
+/// \param FT1 the first function template
+///
+/// \param FT2 the second function template
+///
+/// \param TPOC the context in which we are performing partial ordering of
+/// function templates.
+///
+/// \param NumCallArguments1 The number of arguments in the call to FT1, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \param NumCallArguments2 The number of arguments in the call to FT2, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \returns the more specialized function template. If neither
+/// template is more specialized, returns NULL.
+FunctionTemplateDecl *
+Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ SourceLocation Loc,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1,
+ unsigned NumCallArguments2) {
+ bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
+ NumCallArguments1);
+ bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
+ NumCallArguments2);
+
+ if (Better1 != Better2) // We have a clear winner
+ return Better1 ? FT1 : FT2;
+
+ if (!Better1 && !Better2) // Neither is better than the other
+ return nullptr;
+
+ // FIXME: This mimics what GCC implements, but doesn't match up with the
+ // proposed resolution for core issue 692. This area needs to be sorted out,
+ // but for now we attempt to maintain compatibility.
+ bool Variadic1 = isVariadicFunctionTemplate(FT1);
+ bool Variadic2 = isVariadicFunctionTemplate(FT2);
+ if (Variadic1 != Variadic2)
+ return Variadic1? FT2 : FT1;
+
+ return nullptr;
+}
+
+/// Determine if the two templates are equivalent.
+static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
+ if (T1 == T2)
+ return true;
+
+ if (!T1 || !T2)
+ return false;
+
+ return T1->getCanonicalDecl() == T2->getCanonicalDecl();
+}
+
+/// Retrieve the most specialized of the given function template
+/// specializations.
+///
+/// \param SpecBegin the start iterator of the function template
+/// specializations that we will be comparing.
+///
+/// \param SpecEnd the end iterator of the function template
+/// specializations, paired with \p SpecBegin.
+///
+/// \param Loc the location where the ambiguity or no-specializations
+/// diagnostic should occur.
+///
+/// \param NoneDiag partial diagnostic used to diagnose cases where there are
+/// no matching candidates.
+///
+/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
+/// occurs.
+///
+/// \param CandidateDiag partial diagnostic used for each function template
+/// specialization that is a candidate in the ambiguous ordering. One parameter
+/// in this diagnostic should be unbound, which will correspond to the string
+/// describing the template arguments for the function template specialization.
+///
+/// \returns the most specialized function template specialization, if
+/// found. Otherwise, returns SpecEnd.
+UnresolvedSetIterator Sema::getMostSpecialized(
+ UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
+ TemplateSpecCandidateSet &FailedCandidates,
+ SourceLocation Loc, const PartialDiagnostic &NoneDiag,
+ const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
+ bool Complain, QualType TargetType) {
+ if (SpecBegin == SpecEnd) {
+ if (Complain) {
+ Diag(Loc, NoneDiag);
+ FailedCandidates.NoteCandidates(*this, Loc);
+ }
+ return SpecEnd;
+ }
+
+ if (SpecBegin + 1 == SpecEnd)
+ return SpecBegin;
+
+ // Find the function template that is better than all of the templates it
+ // has been compared to.
+ UnresolvedSetIterator Best = SpecBegin;
+ FunctionTemplateDecl *BestTemplate
+ = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
+ assert(BestTemplate && "Not a function template specialization?");
+ for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ assert(Challenger && "Not a function template specialization?");
+ if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ Challenger)) {
+ Best = I;
+ BestTemplate = Challenger;
+ }
+ }
+
+ // Make sure that the "best" function template is more specialized than all
+ // of the others.
+ bool Ambiguous = false;
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ if (I != Best &&
+ !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ BestTemplate)) {
+ Ambiguous = true;
+ break;
+ }
+ }
+
+ if (!Ambiguous) {
+ // We found an answer. Return it.
+ return Best;
+ }
+
+ // Diagnose the ambiguity.
+ if (Complain) {
+ Diag(Loc, AmbigDiag);
+
+ // FIXME: Can we order the candidates in some sane way?
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ PartialDiagnostic PD = CandidateDiag;
+ const auto *FD = cast<FunctionDecl>(*I);
+ PD << FD << getTemplateArgumentBindingsText(
+ FD->getPrimaryTemplate()->getTemplateParameters(),
+ *FD->getTemplateSpecializationArgs());
+ if (!TargetType.isNull())
+ HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
+ Diag((*I)->getLocation(), PD);
+ }
+ }
+
+ return SpecEnd;
+}
+
+/// Determine whether one partial specialization, P1, is at least as
+/// specialized than another, P2.
+///
+/// \tparam TemplateLikeDecl The kind of P2, which must be a
+/// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
+/// \param T1 The injected-class-name of P1 (faked for a variable template).
+/// \param T2 The injected-class-name of P2 (faked for a variable template).
+template<typename TemplateLikeDecl>
+static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
+ TemplateLikeDecl *P2,
+ TemplateDeductionInfo &Info) {
+ // C++ [temp.class.order]p1:
+ // For two class template partial specializations, the first is at least as
+ // specialized as the second if, given the following rewrite to two
+ // function templates, the first function template is at least as
+ // specialized as the second according to the ordering rules for function
+ // templates (14.6.6.2):
+ // - the first function template has the same template parameters as the
+ // first partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the first partial specialization, and
+ // - the second function template has the same template parameters as the
+ // second partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the second partial specialization.
+ //
+ // Rather than synthesize function templates, we merely perform the
+ // equivalent partial ordering by performing deduction directly on
+ // the template arguments of the class template partial
+ // specializations. This computation is slightly simpler than the
+ // general problem of function template partial ordering, because
+ // class template partial specializations are more constrained. We
+ // know that every template parameter is deducible from the class
+ // template partial specialization's template arguments, for
+ // example.
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+
+ // Determine whether P1 is at least as specialized as P2.
+ Deduced.resize(P2->getTemplateParameters()->size());
+ if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
+ T2, T1, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
+ Deduced.end());
+ Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
+ Info);
+ auto *TST1 = T1->castAs<TemplateSpecializationType>();
+ if (FinishTemplateArgumentDeduction(
+ S, P2, /*IsPartialOrdering=*/true,
+ TemplateArgumentList(TemplateArgumentList::OnStack,
+ TST1->template_arguments()),
+ Deduced, Info))
+ return false;
+
+ return true;
+}
+
+/// Returns the more specialized class template partial specialization
+/// according to the rules of partial ordering of class template partial
+/// specializations (C++ [temp.class.order]).
+///
+/// \param PS1 the first class template partial specialization
+///
+/// \param PS2 the second class template partial specialization
+///
+/// \returns the more specialized class template partial specialization. If
+/// neither partial specialization is more specialized, returns NULL.
+ClassTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ ClassTemplatePartialSpecializationDecl *PS1,
+ ClassTemplatePartialSpecializationDecl *PS2,
+ SourceLocation Loc) {
+ QualType PT1 = PS1->getInjectedSpecializationType();
+ QualType PT2 = PS2->getInjectedSpecializationType();
+
+ TemplateDeductionInfo Info(Loc);
+ bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
+ bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1 ? PS1 : PS2;
+}
+
+bool Sema::isMoreSpecializedThanPrimary(
+ ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
+ ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
+ QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
+ QualType PartialT = Spec->getInjectedSpecializationType();
+ if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
+ return false;
+ if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) {
+ Info.clearSFINAEDiagnostic();
+ return false;
+ }
+ return true;
+}
+
+VarTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ VarTemplatePartialSpecializationDecl *PS1,
+ VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
+ // Pretend the variable template specializations are class template
+ // specializations and form a fake injected class name type for comparison.
+ assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
+ "the partial specializations being compared should specialize"
+ " the same template.");
+ TemplateName Name(PS1->getSpecializedTemplate());
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ QualType PT1 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS1->getTemplateArgs().asArray());
+ QualType PT2 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS2->getTemplateArgs().asArray());
+
+ TemplateDeductionInfo Info(Loc);
+ bool Better1 = isAtLeastAsSpecializedAs(*this, PT1, PT2, PS2, Info);
+ bool Better2 = isAtLeastAsSpecializedAs(*this, PT2, PT1, PS1, Info);
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1 ? PS1 : PS2;
+}
+
+bool Sema::isMoreSpecializedThanPrimary(
+ VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
+ TemplateDecl *Primary = Spec->getSpecializedTemplate();
+ // FIXME: Cache the injected template arguments rather than recomputing
+ // them for each partial specialization.
+ SmallVector<TemplateArgument, 8> PrimaryArgs;
+ Context.getInjectedTemplateArgs(Primary->getTemplateParameters(),
+ PrimaryArgs);
+
+ TemplateName CanonTemplate =
+ Context.getCanonicalTemplateName(TemplateName(Primary));
+ QualType PrimaryT = Context.getTemplateSpecializationType(
+ CanonTemplate, PrimaryArgs);
+ QualType PartialT = Context.getTemplateSpecializationType(
+ CanonTemplate, Spec->getTemplateArgs().asArray());
+ if (!isAtLeastAsSpecializedAs(*this, PartialT, PrimaryT, Primary, Info))
+ return false;
+ if (isAtLeastAsSpecializedAs(*this, PrimaryT, PartialT, Spec, Info)) {
+ Info.clearSFINAEDiagnostic();
+ return false;
+ }
+ return true;
+}
+
+bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
+ TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
+ // C++1z [temp.arg.template]p4: (DR 150)
+ // A template template-parameter P is at least as specialized as a
+ // template template-argument A if, given the following rewrite to two
+ // function templates...
+
+ // Rather than synthesize function templates, we merely perform the
+ // equivalent partial ordering by performing deduction directly on
+ // the template parameter lists of the template template parameters.
+ //
+ // Given an invented class template X with the template parameter list of
+ // A (including default arguments):
+ TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
+ TemplateParameterList *A = AArg->getTemplateParameters();
+
+ // - Each function template has a single function parameter whose type is
+ // a specialization of X with template arguments corresponding to the
+ // template parameters from the respective function template
+ SmallVector<TemplateArgument, 8> AArgs;
+ Context.getInjectedTemplateArgs(A, AArgs);
+
+ // Check P's arguments against A's parameter list. This will fill in default
+ // template arguments as needed. AArgs are already correct by construction.
+ // We can't just use CheckTemplateIdType because that will expand alias
+ // templates.
+ SmallVector<TemplateArgument, 4> PArgs;
+ {
+ SFINAETrap Trap(*this);
+
+ Context.getInjectedTemplateArgs(P, PArgs);
+ TemplateArgumentListInfo PArgList(P->getLAngleLoc(), P->getRAngleLoc());
+ for (unsigned I = 0, N = P->size(); I != N; ++I) {
+ // Unwrap packs that getInjectedTemplateArgs wrapped around pack
+ // expansions, to form an "as written" argument list.
+ TemplateArgument Arg = PArgs[I];
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
+ Arg = *Arg.pack_begin();
+ }
+ PArgList.addArgument(getTrivialTemplateArgumentLoc(
+ Arg, QualType(), P->getParam(I)->getLocation()));
+ }
+ PArgs.clear();
+
+ // C++1z [temp.arg.template]p3:
+ // If the rewrite produces an invalid type, then P is not at least as
+ // specialized as A.
+ if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, PArgs) ||
+ Trap.hasErrorOccurred())
+ return false;
+ }
+
+ QualType AType = Context.getTemplateSpecializationType(X, AArgs);
+ QualType PType = Context.getTemplateSpecializationType(X, PArgs);
+
+ // ... the function template corresponding to P is at least as specialized
+ // as the function template corresponding to A according to the partial
+ // ordering rules for function templates.
+ TemplateDeductionInfo Info(Loc, A->getDepth());
+ return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
+}
+
+/// Mark the template parameters that are used by the given
+/// expression.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const Expr *E,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // We can deduce from a pack expansion.
+ if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
+ E = Expansion->getPattern();
+
+ // Skip through any implicit casts we added while type-checking, and any
+ // substitutions performed by template alias expansion.
+ while (true) {
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExpr();
+ else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(E))
+ E = CE->getSubExpr();
+ else if (const SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
+ // find other occurrences of template parameters.
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return;
+
+ const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+ if (!NTTP)
+ return;
+
+ if (NTTP->getDepth() == Depth)
+ Used[NTTP->getIndex()] = true;
+
+ // In C++17 mode, additional arguments may be deduced from the type of a
+ // non-type argument.
+ if (Ctx.getLangOpts().CPlusPlus17)
+ MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
+}
+
+/// Mark the template parameters that are used by the given
+/// nested name specifier.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ NestedNameSpecifier *NNS,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (!NNS)
+ return;
+
+ MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
+ Used);
+ MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
+ OnlyDeduced, Depth, Used);
+}
+
+/// Mark the template parameters that are used by the given
+/// template name.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ TemplateName Name,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template)) {
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ }
+ return;
+ }
+
+ if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
+ MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+ if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
+ MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+}
+
+/// Mark the template parameters that are used by the given
+/// type.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (T.isNull())
+ return;
+
+ // Non-dependent types have nothing deducible
+ if (!T->isDependentType())
+ return;
+
+ T = Ctx.getCanonicalType(T);
+ switch (T->getTypeClass()) {
+ case Type::Pointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::BlockPointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<BlockPointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ReferenceType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
+ MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::DependentSizedArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentSizedArrayType>(T)->getSizeExpr(),
+ OnlyDeduced, Depth, Used);
+ // Fall through to check the element type
+ LLVM_FALLTHROUGH;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ArrayType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Vector:
+ case Type::ExtVector:
+ MarkUsedTemplateParameters(Ctx,
+ cast<VectorType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentVector: {
+ const auto *VecType = cast<DependentVectorType>(T);
+ MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VecType
+ = cast<DependentSizedExtVectorType>(T);
+ MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+ }
+
+ case Type::DependentAddressSpace: {
+ const DependentAddressSpaceType *DependentASType =
+ cast<DependentAddressSpaceType>(T);
+ MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
+ OnlyDeduced, Depth, Used);
+ MarkUsedTemplateParameters(Ctx,
+ DependentASType->getAddrSpaceExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+ MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
+ Used);
+ for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
+ // C++17 [temp.deduct.type]p5:
+ // The non-deduced contexts are: [...]
+ // -- A function parameter pack that does not occur at the end of the
+ // parameter-declaration-list.
+ if (!OnlyDeduced || I + 1 == N ||
+ !Proto->getParamType(I)->getAs<PackExpansionType>()) {
+ MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
+ Depth, Used);
+ } else {
+ // FIXME: C++17 [temp.deduct.call]p1:
+ // When a function parameter pack appears in a non-deduced context,
+ // the type of that pack is never deduced.
+ //
+ // We should also track a set of "never deduced" parameters, and
+ // subtract that from the list of deduced parameters after marking.
+ }
+ }
+ if (auto *E = Proto->getNoexceptExpr())
+ MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst
+ = cast<SubstTemplateTypeParmPackType>(T);
+ MarkUsedTemplateParameters(Ctx,
+ QualType(Subst->getReplacedParameter(), 0),
+ OnlyDeduced, Depth, Used);
+ MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::InjectedClassName:
+ T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
+ LLVM_FALLTHROUGH;
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec
+ = cast<TemplateSpecializationType>(T);
+ MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
+ Depth, Used);
+
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is
+ // not the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(Spec->template_arguments()))
+ break;
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::Complex:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<ComplexType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Atomic:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<AtomicType>(T)->getValueType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentName:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentNameType>(T)->getQualifier(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ // C++14 [temp.deduct.type]p5:
+ // The non-deduced contexts are:
+ // -- The nested-name-specifier of a type that was specified using a
+ // qualified-id
+ //
+ // C++14 [temp.deduct.type]p6:
+ // When a type name is specified in a way that includes a non-deduced
+ // context, all of the types that comprise that type name are also
+ // non-deduced.
+ if (OnlyDeduced)
+ break;
+
+ const DependentTemplateSpecializationType *Spec
+ = cast<DependentTemplateSpecializationType>(T);
+
+ MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
+ OnlyDeduced, Depth, Used);
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::TypeOf:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::TypeOfExpr:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfExprType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Decltype:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DecltypeType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::UnaryTransform:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<UnaryTransformType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::PackExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PackExpansionType>(T)->getPattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ MarkUsedTemplateParameters(Ctx,
+ cast<DeducedType>(T)->getDeducedType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ // None of these types have any template parameters in them.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCInterface:
+ case Type::ObjCObject:
+ case Type::ObjCObjectPointer:
+ case Type::UnresolvedUsing:
+ case Type::Pipe:
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.inc"
+ break;
+ }
+}
+
+/// Mark the template parameters that are used by this
+/// template argument.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ switch (TemplateArg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ break;
+
+ case TemplateArgument::NullPtr:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Type:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ TemplateArg.getAsTemplateOrTemplatePattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case TemplateArgument::Expression:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Pack:
+ for (const auto &P : TemplateArg.pack_elements())
+ MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
+ break;
+ }
+}
+
+/// Mark which template parameters can be deduced from a given
+/// template argument list.
+///
+/// \param TemplateArgs the template argument list from which template
+/// parameters will be deduced.
+///
+/// \param Used a bit vector whose elements will be set to \c true
+/// to indicate when the corresponding template parameter will be
+/// deduced.
+void
+Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
+ bool OnlyDeduced, unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
+ return;
+
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
+ Depth, Used);
+}
+
+/// Marks all of the template parameters that will be deduced by a
+/// call to the given function template.
+void Sema::MarkDeducedTemplateParameters(
+ ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
+ llvm::SmallBitVector &Deduced) {
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ Deduced.clear();
+ Deduced.resize(TemplateParams->size());
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
+ true, TemplateParams->getDepth(), Deduced);
+}
+
+bool hasDeducibleTemplateParameters(Sema &S,
+ FunctionTemplateDecl *FunctionTemplate,
+ QualType T) {
+ if (!T->isDependentType())
+ return false;
+
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ llvm::SmallBitVector Deduced(TemplateParams->size());
+ ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
+ Deduced);
+
+ return Deduced.any();
+}