summaryrefslogtreecommitdiff
path: root/clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp')
-rw-r--r--clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp2390
1 files changed, 2390 insertions, 0 deletions
diff --git a/clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp b/clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp
new file mode 100644
index 000000000000..97ace68569ef
--- /dev/null
+++ b/clang/lib/StaticAnalyzer/Checkers/IteratorChecker.cpp
@@ -0,0 +1,2390 @@
+//===-- IteratorChecker.cpp ---------------------------------------*- C++ -*--//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Defines a checker for using iterators outside their range (past end). Usage
+// means here dereferencing, incrementing etc.
+//
+//===----------------------------------------------------------------------===//
+//
+// In the code, iterator can be represented as a:
+// * type-I: typedef-ed pointer. Operations over such iterator, such as
+// comparisons or increments, are modeled straightforwardly by the
+// analyzer.
+// * type-II: structure with its method bodies available. Operations over such
+// iterator are inlined by the analyzer, and results of modeling
+// these operations are exposing implementation details of the
+// iterators, which is not necessarily helping.
+// * type-III: completely opaque structure. Operations over such iterator are
+// modeled conservatively, producing conjured symbols everywhere.
+//
+// To handle all these types in a common way we introduce a structure called
+// IteratorPosition which is an abstraction of the position the iterator
+// represents using symbolic expressions. The checker handles all the
+// operations on this structure.
+//
+// Additionally, depending on the circumstances, operators of types II and III
+// can be represented as:
+// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
+// from conservatively evaluated methods such as
+// `.begin()`.
+// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
+// variables or temporaries, when the iterator object is
+// currently treated as an lvalue.
+// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
+// iterator object is treated as an rvalue taken of a
+// particular lvalue, eg. a copy of "type-a" iterator
+// object, or an iterator that existed before the
+// analysis has started.
+//
+// To handle any of these three different representations stored in an SVal we
+// use setter and getters functions which separate the three cases. To store
+// them we use a pointer union of symbol and memory region.
+//
+// The checker works the following way: We record the begin and the
+// past-end iterator for all containers whenever their `.begin()` and `.end()`
+// are called. Since the Constraint Manager cannot handle such SVals we need
+// to take over its role. We post-check equality and non-equality comparisons
+// and record that the two sides are equal if we are in the 'equal' branch
+// (true-branch for `==` and false-branch for `!=`).
+//
+// In case of type-I or type-II iterators we get a concrete integer as a result
+// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
+// this latter case we record the symbol and reload it in evalAssume() and do
+// the propagation there. We also handle (maybe double) negated comparisons
+// which are represented in the form of (x == 0 or x != 0) where x is the
+// comparison itself.
+//
+// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
+// we only use expressions of the format S, S+n or S-n for iterator positions
+// where S is a conjured symbol and n is an unsigned concrete integer. When
+// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
+// a constraint which we later retrieve when doing an actual comparison.
+
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
+
+#include <utility>
+
+using namespace clang;
+using namespace ento;
+
+namespace {
+
+// Abstract position of an iterator. This helps to handle all three kinds
+// of operators in a common way by using a symbolic position.
+struct IteratorPosition {
+private:
+
+ // Container the iterator belongs to
+ const MemRegion *Cont;
+
+ // Whether iterator is valid
+ const bool Valid;
+
+ // Abstract offset
+ const SymbolRef Offset;
+
+ IteratorPosition(const MemRegion *C, bool V, SymbolRef Of)
+ : Cont(C), Valid(V), Offset(Of) {}
+
+public:
+ const MemRegion *getContainer() const { return Cont; }
+ bool isValid() const { return Valid; }
+ SymbolRef getOffset() const { return Offset; }
+
+ IteratorPosition invalidate() const {
+ return IteratorPosition(Cont, false, Offset);
+ }
+
+ static IteratorPosition getPosition(const MemRegion *C, SymbolRef Of) {
+ return IteratorPosition(C, true, Of);
+ }
+
+ IteratorPosition setTo(SymbolRef NewOf) const {
+ return IteratorPosition(Cont, Valid, NewOf);
+ }
+
+ IteratorPosition reAssign(const MemRegion *NewCont) const {
+ return IteratorPosition(NewCont, Valid, Offset);
+ }
+
+ bool operator==(const IteratorPosition &X) const {
+ return Cont == X.Cont && Valid == X.Valid && Offset == X.Offset;
+ }
+
+ bool operator!=(const IteratorPosition &X) const {
+ return Cont != X.Cont || Valid != X.Valid || Offset != X.Offset;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddPointer(Cont);
+ ID.AddInteger(Valid);
+ ID.Add(Offset);
+ }
+};
+
+// Structure to record the symbolic begin and end position of a container
+struct ContainerData {
+private:
+ const SymbolRef Begin, End;
+
+ ContainerData(SymbolRef B, SymbolRef E) : Begin(B), End(E) {}
+
+public:
+ static ContainerData fromBegin(SymbolRef B) {
+ return ContainerData(B, nullptr);
+ }
+
+ static ContainerData fromEnd(SymbolRef E) {
+ return ContainerData(nullptr, E);
+ }
+
+ SymbolRef getBegin() const { return Begin; }
+ SymbolRef getEnd() const { return End; }
+
+ ContainerData newBegin(SymbolRef B) const { return ContainerData(B, End); }
+
+ ContainerData newEnd(SymbolRef E) const { return ContainerData(Begin, E); }
+
+ bool operator==(const ContainerData &X) const {
+ return Begin == X.Begin && End == X.End;
+ }
+
+ bool operator!=(const ContainerData &X) const {
+ return Begin != X.Begin || End != X.End;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.Add(Begin);
+ ID.Add(End);
+ }
+};
+
+class IteratorChecker
+ : public Checker<check::PreCall, check::PostCall,
+ check::PostStmt<MaterializeTemporaryExpr>, check::Bind,
+ check::LiveSymbols, check::DeadSymbols> {
+
+ std::unique_ptr<BugType> OutOfRangeBugType;
+ std::unique_ptr<BugType> MismatchedBugType;
+ std::unique_ptr<BugType> InvalidatedBugType;
+
+ void handleComparison(CheckerContext &C, const Expr *CE, const SVal &RetVal,
+ const SVal &LVal, const SVal &RVal,
+ OverloadedOperatorKind Op) const;
+ void processComparison(CheckerContext &C, ProgramStateRef State,
+ SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
+ OverloadedOperatorKind Op) const;
+ void verifyAccess(CheckerContext &C, const SVal &Val) const;
+ void verifyDereference(CheckerContext &C, const SVal &Val) const;
+ void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
+ bool Postfix) const;
+ void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
+ bool Postfix) const;
+ void handleRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
+ const SVal &RetVal, const SVal &LHS,
+ const SVal &RHS) const;
+ void handleBegin(CheckerContext &C, const Expr *CE, const SVal &RetVal,
+ const SVal &Cont) const;
+ void handleEnd(CheckerContext &C, const Expr *CE, const SVal &RetVal,
+ const SVal &Cont) const;
+ void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
+ const MemRegion *Cont) const;
+ void handleAssign(CheckerContext &C, const SVal &Cont,
+ const Expr *CE = nullptr,
+ const SVal &OldCont = UndefinedVal()) const;
+ void handleClear(CheckerContext &C, const SVal &Cont) const;
+ void handlePushBack(CheckerContext &C, const SVal &Cont) const;
+ void handlePopBack(CheckerContext &C, const SVal &Cont) const;
+ void handlePushFront(CheckerContext &C, const SVal &Cont) const;
+ void handlePopFront(CheckerContext &C, const SVal &Cont) const;
+ void handleInsert(CheckerContext &C, const SVal &Iter) const;
+ void handleErase(CheckerContext &C, const SVal &Iter) const;
+ void handleErase(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const;
+ void handleEraseAfter(CheckerContext &C, const SVal &Iter) const;
+ void handleEraseAfter(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const;
+ void verifyIncrement(CheckerContext &C, const SVal &Iter) const;
+ void verifyDecrement(CheckerContext &C, const SVal &Iter) const;
+ void verifyRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
+ const SVal &LHS, const SVal &RHS) const;
+ void verifyMatch(CheckerContext &C, const SVal &Iter,
+ const MemRegion *Cont) const;
+ void verifyMatch(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const;
+ IteratorPosition advancePosition(CheckerContext &C, OverloadedOperatorKind Op,
+ const IteratorPosition &Pos,
+ const SVal &Distance) const;
+ void reportOutOfRangeBug(const StringRef &Message, const SVal &Val,
+ CheckerContext &C, ExplodedNode *ErrNode) const;
+ void reportMismatchedBug(const StringRef &Message, const SVal &Val1,
+ const SVal &Val2, CheckerContext &C,
+ ExplodedNode *ErrNode) const;
+ void reportMismatchedBug(const StringRef &Message, const SVal &Val,
+ const MemRegion *Reg, CheckerContext &C,
+ ExplodedNode *ErrNode) const;
+ void reportInvalidatedBug(const StringRef &Message, const SVal &Val,
+ CheckerContext &C, ExplodedNode *ErrNode) const;
+
+public:
+ IteratorChecker();
+
+ enum CheckKind {
+ CK_IteratorRangeChecker,
+ CK_MismatchedIteratorChecker,
+ CK_InvalidatedIteratorChecker,
+ CK_NumCheckKinds
+ };
+
+ DefaultBool ChecksEnabled[CK_NumCheckKinds];
+ CheckerNameRef CheckNames[CK_NumCheckKinds];
+
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
+ void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const;
+ void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
+ void checkPostStmt(const MaterializeTemporaryExpr *MTE,
+ CheckerContext &C) const;
+ void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+};
+} // namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(IteratorSymbolMap, SymbolRef, IteratorPosition)
+REGISTER_MAP_WITH_PROGRAMSTATE(IteratorRegionMap, const MemRegion *,
+ IteratorPosition)
+
+REGISTER_MAP_WITH_PROGRAMSTATE(ContainerMap, const MemRegion *, ContainerData)
+
+namespace {
+
+bool isIteratorType(const QualType &Type);
+bool isIterator(const CXXRecordDecl *CRD);
+bool isComparisonOperator(OverloadedOperatorKind OK);
+bool isBeginCall(const FunctionDecl *Func);
+bool isEndCall(const FunctionDecl *Func);
+bool isAssignCall(const FunctionDecl *Func);
+bool isClearCall(const FunctionDecl *Func);
+bool isPushBackCall(const FunctionDecl *Func);
+bool isEmplaceBackCall(const FunctionDecl *Func);
+bool isPopBackCall(const FunctionDecl *Func);
+bool isPushFrontCall(const FunctionDecl *Func);
+bool isEmplaceFrontCall(const FunctionDecl *Func);
+bool isPopFrontCall(const FunctionDecl *Func);
+bool isInsertCall(const FunctionDecl *Func);
+bool isEraseCall(const FunctionDecl *Func);
+bool isEraseAfterCall(const FunctionDecl *Func);
+bool isEmplaceCall(const FunctionDecl *Func);
+bool isAssignmentOperator(OverloadedOperatorKind OK);
+bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
+bool isAccessOperator(OverloadedOperatorKind OK);
+bool isDereferenceOperator(OverloadedOperatorKind OK);
+bool isIncrementOperator(OverloadedOperatorKind OK);
+bool isDecrementOperator(OverloadedOperatorKind OK);
+bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK);
+bool hasSubscriptOperator(ProgramStateRef State, const MemRegion *Reg);
+bool frontModifiable(ProgramStateRef State, const MemRegion *Reg);
+bool backModifiable(ProgramStateRef State, const MemRegion *Reg);
+SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont);
+SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont);
+ProgramStateRef createContainerBegin(ProgramStateRef State,
+ const MemRegion *Cont, const Expr *E,
+ QualType T, const LocationContext *LCtx,
+ unsigned BlockCount);
+ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
+ const Expr *E, QualType T,
+ const LocationContext *LCtx,
+ unsigned BlockCount);
+const IteratorPosition *getIteratorPosition(ProgramStateRef State,
+ const SVal &Val);
+ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
+ const IteratorPosition &Pos);
+ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
+ProgramStateRef assumeNoOverflow(ProgramStateRef State, SymbolRef Sym,
+ long Scale);
+ProgramStateRef invalidateAllIteratorPositions(ProgramStateRef State,
+ const MemRegion *Cont);
+ProgramStateRef
+invalidateAllIteratorPositionsExcept(ProgramStateRef State,
+ const MemRegion *Cont, SymbolRef Offset,
+ BinaryOperator::Opcode Opc);
+ProgramStateRef invalidateIteratorPositions(ProgramStateRef State,
+ SymbolRef Offset,
+ BinaryOperator::Opcode Opc);
+ProgramStateRef invalidateIteratorPositions(ProgramStateRef State,
+ SymbolRef Offset1,
+ BinaryOperator::Opcode Opc1,
+ SymbolRef Offset2,
+ BinaryOperator::Opcode Opc2);
+ProgramStateRef reassignAllIteratorPositions(ProgramStateRef State,
+ const MemRegion *Cont,
+ const MemRegion *NewCont);
+ProgramStateRef reassignAllIteratorPositionsUnless(ProgramStateRef State,
+ const MemRegion *Cont,
+ const MemRegion *NewCont,
+ SymbolRef Offset,
+ BinaryOperator::Opcode Opc);
+ProgramStateRef rebaseSymbolInIteratorPositionsIf(
+ ProgramStateRef State, SValBuilder &SVB, SymbolRef OldSym,
+ SymbolRef NewSym, SymbolRef CondSym, BinaryOperator::Opcode Opc);
+ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, bool Equal);
+const ContainerData *getContainerData(ProgramStateRef State,
+ const MemRegion *Cont);
+ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
+ const ContainerData &CData);
+bool hasLiveIterators(ProgramStateRef State, const MemRegion *Cont);
+bool isBoundThroughLazyCompoundVal(const Environment &Env,
+ const MemRegion *Reg);
+bool isPastTheEnd(ProgramStateRef State, const IteratorPosition &Pos);
+bool isAheadOfRange(ProgramStateRef State, const IteratorPosition &Pos);
+bool isBehindPastTheEnd(ProgramStateRef State, const IteratorPosition &Pos);
+bool isZero(ProgramStateRef State, const NonLoc &Val);
+} // namespace
+
+IteratorChecker::IteratorChecker() {
+ OutOfRangeBugType.reset(
+ new BugType(this, "Iterator out of range", "Misuse of STL APIs"));
+ MismatchedBugType.reset(
+ new BugType(this, "Iterator(s) mismatched", "Misuse of STL APIs",
+ /*SuppressOnSink=*/true));
+ InvalidatedBugType.reset(
+ new BugType(this, "Iterator invalidated", "Misuse of STL APIs"));
+}
+
+void IteratorChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ // Check for out of range access or access of invalidated position and
+ // iterator mismatches
+ const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
+ if (!Func)
+ return;
+
+ if (Func->isOverloadedOperator()) {
+ if (ChecksEnabled[CK_InvalidatedIteratorChecker] &&
+ isAccessOperator(Func->getOverloadedOperator())) {
+ // Check for any kind of access of invalidated iterator positions
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ verifyAccess(C, InstCall->getCXXThisVal());
+ } else {
+ verifyAccess(C, Call.getArgSVal(0));
+ }
+ }
+ if (ChecksEnabled[CK_IteratorRangeChecker]) {
+ if (isIncrementOperator(Func->getOverloadedOperator())) {
+ // Check for out-of-range incrementions
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ verifyIncrement(C, InstCall->getCXXThisVal());
+ } else {
+ if (Call.getNumArgs() >= 1) {
+ verifyIncrement(C, Call.getArgSVal(0));
+ }
+ }
+ } else if (isDecrementOperator(Func->getOverloadedOperator())) {
+ // Check for out-of-range decrementions
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ verifyDecrement(C, InstCall->getCXXThisVal());
+ } else {
+ if (Call.getNumArgs() >= 1) {
+ verifyDecrement(C, Call.getArgSVal(0));
+ }
+ }
+ } else if (isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ // Check for out-of-range incrementions and decrementions
+ if (Call.getNumArgs() >= 1 &&
+ Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
+ verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
+ InstCall->getCXXThisVal(),
+ Call.getArgSVal(0));
+ }
+ } else {
+ if (Call.getNumArgs() >= 2 &&
+ Call.getArgExpr(1)->getType()->isIntegralOrEnumerationType()) {
+ verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
+ Call.getArgSVal(0), Call.getArgSVal(1));
+ }
+ }
+ } else if (isDereferenceOperator(Func->getOverloadedOperator())) {
+ // Check for dereference of out-of-range iterators
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ verifyDereference(C, InstCall->getCXXThisVal());
+ } else {
+ verifyDereference(C, Call.getArgSVal(0));
+ }
+ }
+ } else if (ChecksEnabled[CK_MismatchedIteratorChecker] &&
+ isComparisonOperator(Func->getOverloadedOperator())) {
+ // Check for comparisons of iterators of different containers
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (Call.getNumArgs() < 1)
+ return;
+
+ if (!isIteratorType(InstCall->getCXXThisExpr()->getType()) ||
+ !isIteratorType(Call.getArgExpr(0)->getType()))
+ return;
+
+ verifyMatch(C, InstCall->getCXXThisVal(), Call.getArgSVal(0));
+ } else {
+ if (Call.getNumArgs() < 2)
+ return;
+
+ if (!isIteratorType(Call.getArgExpr(0)->getType()) ||
+ !isIteratorType(Call.getArgExpr(1)->getType()))
+ return;
+
+ verifyMatch(C, Call.getArgSVal(0), Call.getArgSVal(1));
+ }
+ }
+ } else if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (!ChecksEnabled[CK_MismatchedIteratorChecker])
+ return;
+
+ const auto *ContReg = InstCall->getCXXThisVal().getAsRegion();
+ if (!ContReg)
+ return;
+ // Check for erase, insert and emplace using iterator of another container
+ if (isEraseCall(Func) || isEraseAfterCall(Func)) {
+ verifyMatch(C, Call.getArgSVal(0),
+ InstCall->getCXXThisVal().getAsRegion());
+ if (Call.getNumArgs() == 2) {
+ verifyMatch(C, Call.getArgSVal(1),
+ InstCall->getCXXThisVal().getAsRegion());
+ }
+ } else if (isInsertCall(Func)) {
+ verifyMatch(C, Call.getArgSVal(0),
+ InstCall->getCXXThisVal().getAsRegion());
+ if (Call.getNumArgs() == 3 &&
+ isIteratorType(Call.getArgExpr(1)->getType()) &&
+ isIteratorType(Call.getArgExpr(2)->getType())) {
+ verifyMatch(C, Call.getArgSVal(1), Call.getArgSVal(2));
+ }
+ } else if (isEmplaceCall(Func)) {
+ verifyMatch(C, Call.getArgSVal(0),
+ InstCall->getCXXThisVal().getAsRegion());
+ }
+ } else if (isa<CXXConstructorCall>(&Call)) {
+ // Check match of first-last iterator pair in a constructor of a container
+ if (Call.getNumArgs() < 2)
+ return;
+
+ const auto *Ctr = cast<CXXConstructorDecl>(Call.getDecl());
+ if (Ctr->getNumParams() < 2)
+ return;
+
+ if (Ctr->getParamDecl(0)->getName() != "first" ||
+ Ctr->getParamDecl(1)->getName() != "last")
+ return;
+
+ if (!isIteratorType(Call.getArgExpr(0)->getType()) ||
+ !isIteratorType(Call.getArgExpr(1)->getType()))
+ return;
+
+ verifyMatch(C, Call.getArgSVal(0), Call.getArgSVal(1));
+ } else {
+ // The main purpose of iterators is to abstract away from different
+ // containers and provide a (maybe limited) uniform access to them.
+ // This implies that any correctly written template function that
+ // works on multiple containers using iterators takes different
+ // template parameters for different containers. So we can safely
+ // assume that passing iterators of different containers as arguments
+ // whose type replaces the same template parameter is a bug.
+ //
+ // Example:
+ // template<typename I1, typename I2>
+ // void f(I1 first1, I1 last1, I2 first2, I2 last2);
+ //
+ // In this case the first two arguments to f() must be iterators must belong
+ // to the same container and the last to also to the same container but
+ // not necessarily to the same as the first two.
+
+ if (!ChecksEnabled[CK_MismatchedIteratorChecker])
+ return;
+
+ const auto *Templ = Func->getPrimaryTemplate();
+ if (!Templ)
+ return;
+
+ const auto *TParams = Templ->getTemplateParameters();
+ const auto *TArgs = Func->getTemplateSpecializationArgs();
+
+ // Iterate over all the template parameters
+ for (size_t I = 0; I < TParams->size(); ++I) {
+ const auto *TPDecl = dyn_cast<TemplateTypeParmDecl>(TParams->getParam(I));
+ if (!TPDecl)
+ continue;
+
+ if (TPDecl->isParameterPack())
+ continue;
+
+ const auto TAType = TArgs->get(I).getAsType();
+ if (!isIteratorType(TAType))
+ continue;
+
+ SVal LHS = UndefinedVal();
+
+ // For every template parameter which is an iterator type in the
+ // instantiation look for all functions' parameters' type by it and
+ // check whether they belong to the same container
+ for (auto J = 0U; J < Func->getNumParams(); ++J) {
+ const auto *Param = Func->getParamDecl(J);
+ const auto *ParamType =
+ Param->getType()->getAs<SubstTemplateTypeParmType>();
+ if (!ParamType ||
+ ParamType->getReplacedParameter()->getDecl() != TPDecl)
+ continue;
+ if (LHS.isUndef()) {
+ LHS = Call.getArgSVal(J);
+ } else {
+ verifyMatch(C, LHS, Call.getArgSVal(J));
+ }
+ }
+ }
+ }
+}
+
+void IteratorChecker::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ // Record new iterator positions and iterator position changes
+ const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
+ if (!Func)
+ return;
+
+ if (Func->isOverloadedOperator()) {
+ const auto Op = Func->getOverloadedOperator();
+ if (isAssignmentOperator(Op)) {
+ // Overloaded 'operator=' must be a non-static member function.
+ const auto *InstCall = cast<CXXInstanceCall>(&Call);
+ if (cast<CXXMethodDecl>(Func)->isMoveAssignmentOperator()) {
+ handleAssign(C, InstCall->getCXXThisVal(), Call.getOriginExpr(),
+ Call.getArgSVal(0));
+ return;
+ }
+
+ handleAssign(C, InstCall->getCXXThisVal());
+ return;
+ } else if (isSimpleComparisonOperator(Op)) {
+ const auto *OrigExpr = Call.getOriginExpr();
+ if (!OrigExpr)
+ return;
+
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleComparison(C, OrigExpr, Call.getReturnValue(),
+ InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
+ return;
+ }
+
+ handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getArgSVal(1), Op);
+ return;
+ } else if (isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (Call.getNumArgs() >= 1 &&
+ Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
+ handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
+ Call.getReturnValue(),
+ InstCall->getCXXThisVal(), Call.getArgSVal(0));
+ return;
+ }
+ } else {
+ if (Call.getNumArgs() >= 2 &&
+ Call.getArgExpr(1)->getType()->isIntegralOrEnumerationType()) {
+ handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
+ Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getArgSVal(1));
+ return;
+ }
+ }
+ } else if (isIncrementOperator(Func->getOverloadedOperator())) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
+ Call.getNumArgs());
+ return;
+ }
+
+ handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getNumArgs());
+ return;
+ } else if (isDecrementOperator(Func->getOverloadedOperator())) {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
+ Call.getNumArgs());
+ return;
+ }
+
+ handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
+ Call.getNumArgs());
+ return;
+ }
+ } else {
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (isAssignCall(Func)) {
+ handleAssign(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isClearCall(Func)) {
+ handleClear(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isPushBackCall(Func) || isEmplaceBackCall(Func)) {
+ handlePushBack(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isPopBackCall(Func)) {
+ handlePopBack(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isPushFrontCall(Func) || isEmplaceFrontCall(Func)) {
+ handlePushFront(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isPopFrontCall(Func)) {
+ handlePopFront(C, InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isInsertCall(Func) || isEmplaceCall(Func)) {
+ handleInsert(C, Call.getArgSVal(0));
+ return;
+ }
+
+ if (isEraseCall(Func)) {
+ if (Call.getNumArgs() == 1) {
+ handleErase(C, Call.getArgSVal(0));
+ return;
+ }
+
+ if (Call.getNumArgs() == 2) {
+ handleErase(C, Call.getArgSVal(0), Call.getArgSVal(1));
+ return;
+ }
+ }
+
+ if (isEraseAfterCall(Func)) {
+ if (Call.getNumArgs() == 1) {
+ handleEraseAfter(C, Call.getArgSVal(0));
+ return;
+ }
+
+ if (Call.getNumArgs() == 2) {
+ handleEraseAfter(C, Call.getArgSVal(0), Call.getArgSVal(1));
+ return;
+ }
+ }
+ }
+
+ const auto *OrigExpr = Call.getOriginExpr();
+ if (!OrigExpr)
+ return;
+
+ if (!isIteratorType(Call.getResultType()))
+ return;
+
+ auto State = C.getState();
+
+ if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
+ if (isBeginCall(Func)) {
+ handleBegin(C, OrigExpr, Call.getReturnValue(),
+ InstCall->getCXXThisVal());
+ return;
+ }
+
+ if (isEndCall(Func)) {
+ handleEnd(C, OrigExpr, Call.getReturnValue(),
+ InstCall->getCXXThisVal());
+ return;
+ }
+ }
+
+ // Already bound to container?
+ if (getIteratorPosition(State, Call.getReturnValue()))
+ return;
+
+ // Copy-like and move constructors
+ if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
+ if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
+ State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
+ if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
+ State = removeIteratorPosition(State, Call.getArgSVal(0));
+ }
+ C.addTransition(State);
+ return;
+ }
+ }
+
+ // Assumption: if return value is an iterator which is not yet bound to a
+ // container, then look for the first iterator argument, and
+ // bind the return value to the same container. This approach
+ // works for STL algorithms.
+ // FIXME: Add a more conservative mode
+ for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
+ if (isIteratorType(Call.getArgExpr(i)->getType())) {
+ if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
+ assignToContainer(C, OrigExpr, Call.getReturnValue(),
+ Pos->getContainer());
+ return;
+ }
+ }
+ }
+ }
+}
+
+void IteratorChecker::checkBind(SVal Loc, SVal Val, const Stmt *S,
+ CheckerContext &C) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Val);
+ if (Pos) {
+ State = setIteratorPosition(State, Loc, *Pos);
+ C.addTransition(State);
+ } else {
+ const auto *OldPos = getIteratorPosition(State, Loc);
+ if (OldPos) {
+ State = removeIteratorPosition(State, Loc);
+ C.addTransition(State);
+ }
+ }
+}
+
+void IteratorChecker::checkPostStmt(const MaterializeTemporaryExpr *MTE,
+ CheckerContext &C) const {
+ /* Transfer iterator state to temporary objects */
+ auto State = C.getState();
+ const auto *Pos =
+ getIteratorPosition(State, C.getSVal(MTE->GetTemporaryExpr()));
+ if (!Pos)
+ return;
+ State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
+ C.addTransition(State);
+}
+
+void IteratorChecker::checkLiveSymbols(ProgramStateRef State,
+ SymbolReaper &SR) const {
+ // Keep symbolic expressions of iterator positions, container begins and ends
+ // alive
+ auto RegionMap = State->get<IteratorRegionMap>();
+ for (const auto Reg : RegionMap) {
+ const auto Offset = Reg.second.getOffset();
+ for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
+ if (isa<SymbolData>(*i))
+ SR.markLive(*i);
+ }
+
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ for (const auto Sym : SymbolMap) {
+ const auto Offset = Sym.second.getOffset();
+ for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
+ if (isa<SymbolData>(*i))
+ SR.markLive(*i);
+ }
+
+ auto ContMap = State->get<ContainerMap>();
+ for (const auto Cont : ContMap) {
+ const auto CData = Cont.second;
+ if (CData.getBegin()) {
+ SR.markLive(CData.getBegin());
+ if(const auto *SIE = dyn_cast<SymIntExpr>(CData.getBegin()))
+ SR.markLive(SIE->getLHS());
+ }
+ if (CData.getEnd()) {
+ SR.markLive(CData.getEnd());
+ if(const auto *SIE = dyn_cast<SymIntExpr>(CData.getEnd()))
+ SR.markLive(SIE->getLHS());
+ }
+ }
+}
+
+void IteratorChecker::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ // Cleanup
+ auto State = C.getState();
+
+ auto RegionMap = State->get<IteratorRegionMap>();
+ for (const auto Reg : RegionMap) {
+ if (!SR.isLiveRegion(Reg.first)) {
+ // The region behind the `LazyCompoundVal` is often cleaned up before
+ // the `LazyCompoundVal` itself. If there are iterator positions keyed
+ // by these regions their cleanup must be deferred.
+ if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
+ State = State->remove<IteratorRegionMap>(Reg.first);
+ }
+ }
+ }
+
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ for (const auto Sym : SymbolMap) {
+ if (!SR.isLive(Sym.first)) {
+ State = State->remove<IteratorSymbolMap>(Sym.first);
+ }
+ }
+
+ auto ContMap = State->get<ContainerMap>();
+ for (const auto Cont : ContMap) {
+ if (!SR.isLiveRegion(Cont.first)) {
+ // We must keep the container data while it has live iterators to be able
+ // to compare them to the begin and the end of the container.
+ if (!hasLiveIterators(State, Cont.first)) {
+ State = State->remove<ContainerMap>(Cont.first);
+ }
+ }
+ }
+
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleComparison(CheckerContext &C, const Expr *CE,
+ const SVal &RetVal, const SVal &LVal,
+ const SVal &RVal,
+ OverloadedOperatorKind Op) const {
+ // Record the operands and the operator of the comparison for the next
+ // evalAssume, if the result is a symbolic expression. If it is a concrete
+ // value (only one branch is possible), then transfer the state between
+ // the operands according to the operator and the result
+ auto State = C.getState();
+ const auto *LPos = getIteratorPosition(State, LVal);
+ const auto *RPos = getIteratorPosition(State, RVal);
+ const MemRegion *Cont = nullptr;
+ if (LPos) {
+ Cont = LPos->getContainer();
+ } else if (RPos) {
+ Cont = RPos->getContainer();
+ }
+ if (!Cont)
+ return;
+
+ // At least one of the iterators have recorded positions. If one of them has
+ // not then create a new symbol for the offset.
+ SymbolRef Sym;
+ if (!LPos || !RPos) {
+ auto &SymMgr = C.getSymbolManager();
+ Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
+ C.getASTContext().LongTy, C.blockCount());
+ State = assumeNoOverflow(State, Sym, 4);
+ }
+
+ if (!LPos) {
+ State = setIteratorPosition(State, LVal,
+ IteratorPosition::getPosition(Cont, Sym));
+ LPos = getIteratorPosition(State, LVal);
+ } else if (!RPos) {
+ State = setIteratorPosition(State, RVal,
+ IteratorPosition::getPosition(Cont, Sym));
+ RPos = getIteratorPosition(State, RVal);
+ }
+
+ processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
+}
+
+void IteratorChecker::processComparison(CheckerContext &C,
+ ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, const SVal &RetVal,
+ OverloadedOperatorKind Op) const {
+ if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
+ if ((State = relateSymbols(State, Sym1, Sym2,
+ (Op == OO_EqualEqual) ==
+ (TruthVal->getValue() != 0)))) {
+ C.addTransition(State);
+ } else {
+ C.generateSink(State, C.getPredecessor());
+ }
+ return;
+ }
+
+ const auto ConditionVal = RetVal.getAs<DefinedSVal>();
+ if (!ConditionVal)
+ return;
+
+ if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
+ StateTrue = StateTrue->assume(*ConditionVal, true);
+ C.addTransition(StateTrue);
+ }
+
+ if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
+ StateFalse = StateFalse->assume(*ConditionVal, false);
+ C.addTransition(StateFalse);
+ }
+}
+
+void IteratorChecker::verifyDereference(CheckerContext &C,
+ const SVal &Val) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Val);
+ if (Pos && isPastTheEnd(State, *Pos)) {
+ auto *N = C.generateErrorNode(State);
+ if (!N)
+ return;
+ reportOutOfRangeBug("Past-the-end iterator dereferenced.", Val, C, N);
+ return;
+ }
+}
+
+void IteratorChecker::verifyAccess(CheckerContext &C, const SVal &Val) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Val);
+ if (Pos && !Pos->isValid()) {
+ auto *N = C.generateErrorNode(State);
+ if (!N) {
+ return;
+ }
+ reportInvalidatedBug("Invalidated iterator accessed.", Val, C, N);
+ }
+}
+
+void IteratorChecker::handleIncrement(CheckerContext &C, const SVal &RetVal,
+ const SVal &Iter, bool Postfix) const {
+ // Increment the symbolic expressions which represents the position of the
+ // iterator
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (Pos) {
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ const auto NewPos =
+ advancePosition(C, OO_Plus, *Pos,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+ State = setIteratorPosition(State, Iter, NewPos);
+ State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
+ C.addTransition(State);
+ }
+}
+
+void IteratorChecker::handleDecrement(CheckerContext &C, const SVal &RetVal,
+ const SVal &Iter, bool Postfix) const {
+ // Decrement the symbolic expressions which represents the position of the
+ // iterator
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (Pos) {
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ const auto NewPos =
+ advancePosition(C, OO_Minus, *Pos,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+ State = setIteratorPosition(State, Iter, NewPos);
+ State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
+ C.addTransition(State);
+ }
+}
+
+void IteratorChecker::handleRandomIncrOrDecr(CheckerContext &C,
+ OverloadedOperatorKind Op,
+ const SVal &RetVal,
+ const SVal &LHS,
+ const SVal &RHS) const {
+ // Increment or decrement the symbolic expressions which represents the
+ // position of the iterator
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, LHS);
+ if (!Pos)
+ return;
+
+ const auto *value = &RHS;
+ if (auto loc = RHS.getAs<Loc>()) {
+ const auto val = State->getRawSVal(*loc);
+ value = &val;
+ }
+
+ auto &TgtVal = (Op == OO_PlusEqual || Op == OO_MinusEqual) ? LHS : RetVal;
+ State =
+ setIteratorPosition(State, TgtVal, advancePosition(C, Op, *Pos, *value));
+ C.addTransition(State);
+}
+
+void IteratorChecker::verifyIncrement(CheckerContext &C,
+ const SVal &Iter) const {
+ auto &BVF = C.getSValBuilder().getBasicValueFactory();
+ verifyRandomIncrOrDecr(C, OO_Plus, Iter,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+}
+
+void IteratorChecker::verifyDecrement(CheckerContext &C,
+ const SVal &Iter) const {
+ auto &BVF = C.getSValBuilder().getBasicValueFactory();
+ verifyRandomIncrOrDecr(C, OO_Minus, Iter,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
+}
+
+void IteratorChecker::verifyRandomIncrOrDecr(CheckerContext &C,
+ OverloadedOperatorKind Op,
+ const SVal &LHS,
+ const SVal &RHS) const {
+ auto State = C.getState();
+
+ // If the iterator is initially inside its range, then the operation is valid
+ const auto *Pos = getIteratorPosition(State, LHS);
+ if (!Pos)
+ return;
+
+ auto Value = RHS;
+ if (auto ValAsLoc = RHS.getAs<Loc>()) {
+ Value = State->getRawSVal(*ValAsLoc);
+ }
+
+ if (Value.isUnknown())
+ return;
+
+ // Incremention or decremention by 0 is never a bug.
+ if (isZero(State, Value.castAs<NonLoc>()))
+ return;
+
+ // The result may be the past-end iterator of the container, but any other
+ // out of range position is undefined behaviour
+ if (isAheadOfRange(State, advancePosition(C, Op, *Pos, Value))) {
+ auto *N = C.generateErrorNode(State);
+ if (!N)
+ return;
+ reportOutOfRangeBug("Iterator decremented ahead of its valid range.", LHS,
+ C, N);
+ }
+ if (isBehindPastTheEnd(State, advancePosition(C, Op, *Pos, Value))) {
+ auto *N = C.generateErrorNode(State);
+ if (!N)
+ return;
+ reportOutOfRangeBug("Iterator incremented behind the past-the-end "
+ "iterator.", LHS, C, N);
+ }
+}
+
+void IteratorChecker::verifyMatch(CheckerContext &C, const SVal &Iter,
+ const MemRegion *Cont) const {
+ // Verify match between a container and the container of an iterator
+ Cont = Cont->getMostDerivedObjectRegion();
+
+ if (const auto *ContSym = Cont->getSymbolicBase()) {
+ if (isa<SymbolConjured>(ContSym->getSymbol()))
+ return;
+ }
+
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ const auto *IterCont = Pos->getContainer();
+
+ // Skip symbolic regions based on conjured symbols. Two conjured symbols
+ // may or may not be the same. For example, the same function can return
+ // the same or a different container but we get different conjured symbols
+ // for each call. This may cause false positives so omit them from the check.
+ if (const auto *ContSym = IterCont->getSymbolicBase()) {
+ if (isa<SymbolConjured>(ContSym->getSymbol()))
+ return;
+ }
+
+ if (IterCont != Cont) {
+ auto *N = C.generateNonFatalErrorNode(State);
+ if (!N) {
+ return;
+ }
+ reportMismatchedBug("Container accessed using foreign iterator argument.",
+ Iter, Cont, C, N);
+ }
+}
+
+void IteratorChecker::verifyMatch(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const {
+ // Verify match between the containers of two iterators
+ auto State = C.getState();
+ const auto *Pos1 = getIteratorPosition(State, Iter1);
+ if (!Pos1)
+ return;
+
+ const auto *IterCont1 = Pos1->getContainer();
+
+ // Skip symbolic regions based on conjured symbols. Two conjured symbols
+ // may or may not be the same. For example, the same function can return
+ // the same or a different container but we get different conjured symbols
+ // for each call. This may cause false positives so omit them from the check.
+ if (const auto *ContSym = IterCont1->getSymbolicBase()) {
+ if (isa<SymbolConjured>(ContSym->getSymbol()))
+ return;
+ }
+
+ const auto *Pos2 = getIteratorPosition(State, Iter2);
+ if (!Pos2)
+ return;
+
+ const auto *IterCont2 = Pos2->getContainer();
+ if (const auto *ContSym = IterCont2->getSymbolicBase()) {
+ if (isa<SymbolConjured>(ContSym->getSymbol()))
+ return;
+ }
+
+ if (IterCont1 != IterCont2) {
+ auto *N = C.generateNonFatalErrorNode(State);
+ if (!N)
+ return;
+ reportMismatchedBug("Iterators of different containers used where the "
+ "same container is expected.", Iter1, Iter2, C, N);
+ }
+}
+
+void IteratorChecker::handleBegin(CheckerContext &C, const Expr *CE,
+ const SVal &RetVal, const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // If the container already has a begin symbol then use it. Otherwise first
+ // create a new one.
+ auto State = C.getState();
+ auto BeginSym = getContainerBegin(State, ContReg);
+ if (!BeginSym) {
+ State = createContainerBegin(State, ContReg, CE, C.getASTContext().LongTy,
+ C.getLocationContext(), C.blockCount());
+ BeginSym = getContainerBegin(State, ContReg);
+ }
+ State = setIteratorPosition(State, RetVal,
+ IteratorPosition::getPosition(ContReg, BeginSym));
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleEnd(CheckerContext &C, const Expr *CE,
+ const SVal &RetVal, const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // If the container already has an end symbol then use it. Otherwise first
+ // create a new one.
+ auto State = C.getState();
+ auto EndSym = getContainerEnd(State, ContReg);
+ if (!EndSym) {
+ State = createContainerEnd(State, ContReg, CE, C.getASTContext().LongTy,
+ C.getLocationContext(), C.blockCount());
+ EndSym = getContainerEnd(State, ContReg);
+ }
+ State = setIteratorPosition(State, RetVal,
+ IteratorPosition::getPosition(ContReg, EndSym));
+ C.addTransition(State);
+}
+
+void IteratorChecker::assignToContainer(CheckerContext &C, const Expr *CE,
+ const SVal &RetVal,
+ const MemRegion *Cont) const {
+ Cont = Cont->getMostDerivedObjectRegion();
+
+ auto State = C.getState();
+ auto &SymMgr = C.getSymbolManager();
+ auto Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
+ C.getASTContext().LongTy, C.blockCount());
+ State = assumeNoOverflow(State, Sym, 4);
+ State = setIteratorPosition(State, RetVal,
+ IteratorPosition::getPosition(Cont, Sym));
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleAssign(CheckerContext &C, const SVal &Cont,
+ const Expr *CE, const SVal &OldCont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // Assignment of a new value to a container always invalidates all its
+ // iterators
+ auto State = C.getState();
+ const auto CData = getContainerData(State, ContReg);
+ if (CData) {
+ State = invalidateAllIteratorPositions(State, ContReg);
+ }
+
+ // In case of move, iterators of the old container (except the past-end
+ // iterators) remain valid but refer to the new container
+ if (!OldCont.isUndef()) {
+ const auto *OldContReg = OldCont.getAsRegion();
+ if (OldContReg) {
+ OldContReg = OldContReg->getMostDerivedObjectRegion();
+ const auto OldCData = getContainerData(State, OldContReg);
+ if (OldCData) {
+ if (const auto OldEndSym = OldCData->getEnd()) {
+ // If we already assigned an "end" symbol to the old container, then
+ // first reassign all iterator positions to the new container which
+ // are not past the container (thus not greater or equal to the
+ // current "end" symbol).
+ State = reassignAllIteratorPositionsUnless(State, OldContReg, ContReg,
+ OldEndSym, BO_GE);
+ auto &SymMgr = C.getSymbolManager();
+ auto &SVB = C.getSValBuilder();
+ // Then generate and assign a new "end" symbol for the new container.
+ auto NewEndSym =
+ SymMgr.conjureSymbol(CE, C.getLocationContext(),
+ C.getASTContext().LongTy, C.blockCount());
+ State = assumeNoOverflow(State, NewEndSym, 4);
+ if (CData) {
+ State = setContainerData(State, ContReg, CData->newEnd(NewEndSym));
+ } else {
+ State = setContainerData(State, ContReg,
+ ContainerData::fromEnd(NewEndSym));
+ }
+ // Finally, replace the old "end" symbol in the already reassigned
+ // iterator positions with the new "end" symbol.
+ State = rebaseSymbolInIteratorPositionsIf(
+ State, SVB, OldEndSym, NewEndSym, OldEndSym, BO_LT);
+ } else {
+ // There was no "end" symbol assigned yet to the old container,
+ // so reassign all iterator positions to the new container.
+ State = reassignAllIteratorPositions(State, OldContReg, ContReg);
+ }
+ if (const auto OldBeginSym = OldCData->getBegin()) {
+ // If we already assigned a "begin" symbol to the old container, then
+ // assign it to the new container and remove it from the old one.
+ if (CData) {
+ State =
+ setContainerData(State, ContReg, CData->newBegin(OldBeginSym));
+ } else {
+ State = setContainerData(State, ContReg,
+ ContainerData::fromBegin(OldBeginSym));
+ }
+ State =
+ setContainerData(State, OldContReg, OldCData->newEnd(nullptr));
+ }
+ } else {
+ // There was neither "begin" nor "end" symbol assigned yet to the old
+ // container, so reassign all iterator positions to the new container.
+ State = reassignAllIteratorPositions(State, OldContReg, ContReg);
+ }
+ }
+ }
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleClear(CheckerContext &C, const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // The clear() operation invalidates all the iterators, except the past-end
+ // iterators of list-like containers
+ auto State = C.getState();
+ if (!hasSubscriptOperator(State, ContReg) ||
+ !backModifiable(State, ContReg)) {
+ const auto CData = getContainerData(State, ContReg);
+ if (CData) {
+ if (const auto EndSym = CData->getEnd()) {
+ State =
+ invalidateAllIteratorPositionsExcept(State, ContReg, EndSym, BO_GE);
+ C.addTransition(State);
+ return;
+ }
+ }
+ }
+ State = invalidateAllIteratorPositions(State, ContReg);
+ C.addTransition(State);
+}
+
+void IteratorChecker::handlePushBack(CheckerContext &C,
+ const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // For deque-like containers invalidate all iterator positions
+ auto State = C.getState();
+ if (hasSubscriptOperator(State, ContReg) && frontModifiable(State, ContReg)) {
+ State = invalidateAllIteratorPositions(State, ContReg);
+ C.addTransition(State);
+ return;
+ }
+
+ const auto CData = getContainerData(State, ContReg);
+ if (!CData)
+ return;
+
+ // For vector-like containers invalidate the past-end iterator positions
+ if (const auto EndSym = CData->getEnd()) {
+ if (hasSubscriptOperator(State, ContReg)) {
+ State = invalidateIteratorPositions(State, EndSym, BO_GE);
+ }
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ auto &SVB = C.getSValBuilder();
+ const auto newEndSym =
+ SVB.evalBinOp(State, BO_Add,
+ nonloc::SymbolVal(EndSym),
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
+ SymMgr.getType(EndSym)).getAsSymbol();
+ State = setContainerData(State, ContReg, CData->newEnd(newEndSym));
+ }
+ C.addTransition(State);
+}
+
+void IteratorChecker::handlePopBack(CheckerContext &C, const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ auto State = C.getState();
+ const auto CData = getContainerData(State, ContReg);
+ if (!CData)
+ return;
+
+ if (const auto EndSym = CData->getEnd()) {
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ auto &SVB = C.getSValBuilder();
+ const auto BackSym =
+ SVB.evalBinOp(State, BO_Sub,
+ nonloc::SymbolVal(EndSym),
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
+ SymMgr.getType(EndSym)).getAsSymbol();
+ // For vector-like and deque-like containers invalidate the last and the
+ // past-end iterator positions. For list-like containers only invalidate
+ // the last position
+ if (hasSubscriptOperator(State, ContReg) &&
+ backModifiable(State, ContReg)) {
+ State = invalidateIteratorPositions(State, BackSym, BO_GE);
+ State = setContainerData(State, ContReg, CData->newEnd(nullptr));
+ } else {
+ State = invalidateIteratorPositions(State, BackSym, BO_EQ);
+ }
+ auto newEndSym = BackSym;
+ State = setContainerData(State, ContReg, CData->newEnd(newEndSym));
+ C.addTransition(State);
+ }
+}
+
+void IteratorChecker::handlePushFront(CheckerContext &C,
+ const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ // For deque-like containers invalidate all iterator positions
+ auto State = C.getState();
+ if (hasSubscriptOperator(State, ContReg)) {
+ State = invalidateAllIteratorPositions(State, ContReg);
+ C.addTransition(State);
+ } else {
+ const auto CData = getContainerData(State, ContReg);
+ if (!CData)
+ return;
+
+ if (const auto BeginSym = CData->getBegin()) {
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ auto &SVB = C.getSValBuilder();
+ const auto newBeginSym =
+ SVB.evalBinOp(State, BO_Sub,
+ nonloc::SymbolVal(BeginSym),
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
+ SymMgr.getType(BeginSym)).getAsSymbol();
+ State = setContainerData(State, ContReg, CData->newBegin(newBeginSym));
+ C.addTransition(State);
+ }
+ }
+}
+
+void IteratorChecker::handlePopFront(CheckerContext &C,
+ const SVal &Cont) const {
+ const auto *ContReg = Cont.getAsRegion();
+ if (!ContReg)
+ return;
+
+ ContReg = ContReg->getMostDerivedObjectRegion();
+
+ auto State = C.getState();
+ const auto CData = getContainerData(State, ContReg);
+ if (!CData)
+ return;
+
+ // For deque-like containers invalidate all iterator positions. For list-like
+ // iterators only invalidate the first position
+ if (const auto BeginSym = CData->getBegin()) {
+ if (hasSubscriptOperator(State, ContReg)) {
+ State = invalidateIteratorPositions(State, BeginSym, BO_LE);
+ } else {
+ State = invalidateIteratorPositions(State, BeginSym, BO_EQ);
+ }
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ auto &SVB = C.getSValBuilder();
+ const auto newBeginSym =
+ SVB.evalBinOp(State, BO_Add,
+ nonloc::SymbolVal(BeginSym),
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
+ SymMgr.getType(BeginSym)).getAsSymbol();
+ State = setContainerData(State, ContReg, CData->newBegin(newBeginSym));
+ C.addTransition(State);
+ }
+}
+
+void IteratorChecker::handleInsert(CheckerContext &C, const SVal &Iter) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ // For deque-like containers invalidate all iterator positions. For
+ // vector-like containers invalidate iterator positions after the insertion.
+ const auto *Cont = Pos->getContainer();
+ if (hasSubscriptOperator(State, Cont) && backModifiable(State, Cont)) {
+ if (frontModifiable(State, Cont)) {
+ State = invalidateAllIteratorPositions(State, Cont);
+ } else {
+ State = invalidateIteratorPositions(State, Pos->getOffset(), BO_GE);
+ }
+ if (const auto *CData = getContainerData(State, Cont)) {
+ if (const auto EndSym = CData->getEnd()) {
+ State = invalidateIteratorPositions(State, EndSym, BO_GE);
+ State = setContainerData(State, Cont, CData->newEnd(nullptr));
+ }
+ }
+ C.addTransition(State);
+ }
+}
+
+void IteratorChecker::handleErase(CheckerContext &C, const SVal &Iter) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ // For deque-like containers invalidate all iterator positions. For
+ // vector-like containers invalidate iterator positions at and after the
+ // deletion. For list-like containers only invalidate the deleted position.
+ const auto *Cont = Pos->getContainer();
+ if (hasSubscriptOperator(State, Cont) && backModifiable(State, Cont)) {
+ if (frontModifiable(State, Cont)) {
+ State = invalidateAllIteratorPositions(State, Cont);
+ } else {
+ State = invalidateIteratorPositions(State, Pos->getOffset(), BO_GE);
+ }
+ if (const auto *CData = getContainerData(State, Cont)) {
+ if (const auto EndSym = CData->getEnd()) {
+ State = invalidateIteratorPositions(State, EndSym, BO_GE);
+ State = setContainerData(State, Cont, CData->newEnd(nullptr));
+ }
+ }
+ } else {
+ State = invalidateIteratorPositions(State, Pos->getOffset(), BO_EQ);
+ }
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleErase(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const {
+ auto State = C.getState();
+ const auto *Pos1 = getIteratorPosition(State, Iter1);
+ const auto *Pos2 = getIteratorPosition(State, Iter2);
+ if (!Pos1 || !Pos2)
+ return;
+
+ // For deque-like containers invalidate all iterator positions. For
+ // vector-like containers invalidate iterator positions at and after the
+ // deletion range. For list-like containers only invalidate the deleted
+ // position range [first..last].
+ const auto *Cont = Pos1->getContainer();
+ if (hasSubscriptOperator(State, Cont) && backModifiable(State, Cont)) {
+ if (frontModifiable(State, Cont)) {
+ State = invalidateAllIteratorPositions(State, Cont);
+ } else {
+ State = invalidateIteratorPositions(State, Pos1->getOffset(), BO_GE);
+ }
+ if (const auto *CData = getContainerData(State, Cont)) {
+ if (const auto EndSym = CData->getEnd()) {
+ State = invalidateIteratorPositions(State, EndSym, BO_GE);
+ State = setContainerData(State, Cont, CData->newEnd(nullptr));
+ }
+ }
+ } else {
+ State = invalidateIteratorPositions(State, Pos1->getOffset(), BO_GE,
+ Pos2->getOffset(), BO_LT);
+ }
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleEraseAfter(CheckerContext &C,
+ const SVal &Iter) const {
+ auto State = C.getState();
+ const auto *Pos = getIteratorPosition(State, Iter);
+ if (!Pos)
+ return;
+
+ // Invalidate the deleted iterator position, which is the position of the
+ // parameter plus one.
+ auto &SymMgr = C.getSymbolManager();
+ auto &BVF = SymMgr.getBasicVals();
+ auto &SVB = C.getSValBuilder();
+ const auto NextSym =
+ SVB.evalBinOp(State, BO_Add,
+ nonloc::SymbolVal(Pos->getOffset()),
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
+ SymMgr.getType(Pos->getOffset())).getAsSymbol();
+ State = invalidateIteratorPositions(State, NextSym, BO_EQ);
+ C.addTransition(State);
+}
+
+void IteratorChecker::handleEraseAfter(CheckerContext &C, const SVal &Iter1,
+ const SVal &Iter2) const {
+ auto State = C.getState();
+ const auto *Pos1 = getIteratorPosition(State, Iter1);
+ const auto *Pos2 = getIteratorPosition(State, Iter2);
+ if (!Pos1 || !Pos2)
+ return;
+
+ // Invalidate the deleted iterator position range (first..last)
+ State = invalidateIteratorPositions(State, Pos1->getOffset(), BO_GT,
+ Pos2->getOffset(), BO_LT);
+ C.addTransition(State);
+}
+
+IteratorPosition IteratorChecker::advancePosition(CheckerContext &C,
+ OverloadedOperatorKind Op,
+ const IteratorPosition &Pos,
+ const SVal &Distance) const {
+ auto State = C.getState();
+ auto &SymMgr = C.getSymbolManager();
+ auto &SVB = C.getSValBuilder();
+
+ assert ((Op == OO_Plus || Op == OO_PlusEqual ||
+ Op == OO_Minus || Op == OO_MinusEqual) &&
+ "Advance operator must be one of +, -, += and -=.");
+ auto BinOp = (Op == OO_Plus || Op == OO_PlusEqual) ? BO_Add : BO_Sub;
+ if (const auto IntDist = Distance.getAs<nonloc::ConcreteInt>()) {
+ // For concrete integers we can calculate the new position
+ return Pos.setTo(SVB.evalBinOp(State, BinOp,
+ nonloc::SymbolVal(Pos.getOffset()), *IntDist,
+ SymMgr.getType(Pos.getOffset()))
+ .getAsSymbol());
+ } else {
+ // For other symbols create a new symbol to keep expressions simple
+ const auto &LCtx = C.getLocationContext();
+ const auto NewPosSym = SymMgr.conjureSymbol(nullptr, LCtx,
+ SymMgr.getType(Pos.getOffset()),
+ C.blockCount());
+ State = assumeNoOverflow(State, NewPosSym, 4);
+ return Pos.setTo(NewPosSym);
+ }
+}
+
+void IteratorChecker::reportOutOfRangeBug(const StringRef &Message,
+ const SVal &Val, CheckerContext &C,
+ ExplodedNode *ErrNode) const {
+ auto R = std::make_unique<PathSensitiveBugReport>(*OutOfRangeBugType, Message,
+ ErrNode);
+ R->markInteresting(Val);
+ C.emitReport(std::move(R));
+}
+
+void IteratorChecker::reportMismatchedBug(const StringRef &Message,
+ const SVal &Val1, const SVal &Val2,
+ CheckerContext &C,
+ ExplodedNode *ErrNode) const {
+ auto R = std::make_unique<PathSensitiveBugReport>(*MismatchedBugType, Message,
+ ErrNode);
+ R->markInteresting(Val1);
+ R->markInteresting(Val2);
+ C.emitReport(std::move(R));
+}
+
+void IteratorChecker::reportMismatchedBug(const StringRef &Message,
+ const SVal &Val, const MemRegion *Reg,
+ CheckerContext &C,
+ ExplodedNode *ErrNode) const {
+ auto R = std::make_unique<PathSensitiveBugReport>(*MismatchedBugType, Message,
+ ErrNode);
+ R->markInteresting(Val);
+ R->markInteresting(Reg);
+ C.emitReport(std::move(R));
+}
+
+void IteratorChecker::reportInvalidatedBug(const StringRef &Message,
+ const SVal &Val, CheckerContext &C,
+ ExplodedNode *ErrNode) const {
+ auto R = std::make_unique<PathSensitiveBugReport>(*InvalidatedBugType,
+ Message, ErrNode);
+ R->markInteresting(Val);
+ C.emitReport(std::move(R));
+}
+
+namespace {
+
+bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
+bool isGreater(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
+bool isEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
+bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
+ BinaryOperator::Opcode Opc);
+bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
+ BinaryOperator::Opcode Opc);
+const CXXRecordDecl *getCXXRecordDecl(ProgramStateRef State,
+ const MemRegion *Reg);
+SymbolRef rebaseSymbol(ProgramStateRef State, SValBuilder &SVB, SymbolRef Expr,
+ SymbolRef OldSym, SymbolRef NewSym);
+
+bool isIteratorType(const QualType &Type) {
+ if (Type->isPointerType())
+ return true;
+
+ const auto *CRD = Type->getUnqualifiedDesugaredType()->getAsCXXRecordDecl();
+ return isIterator(CRD);
+}
+
+bool isIterator(const CXXRecordDecl *CRD) {
+ if (!CRD)
+ return false;
+
+ const auto Name = CRD->getName();
+ if (!(Name.endswith_lower("iterator") || Name.endswith_lower("iter") ||
+ Name.endswith_lower("it")))
+ return false;
+
+ bool HasCopyCtor = false, HasCopyAssign = true, HasDtor = false,
+ HasPreIncrOp = false, HasPostIncrOp = false, HasDerefOp = false;
+ for (const auto *Method : CRD->methods()) {
+ if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Method)) {
+ if (Ctor->isCopyConstructor()) {
+ HasCopyCtor = !Ctor->isDeleted() && Ctor->getAccess() == AS_public;
+ }
+ continue;
+ }
+ if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
+ HasDtor = !Dtor->isDeleted() && Dtor->getAccess() == AS_public;
+ continue;
+ }
+ if (Method->isCopyAssignmentOperator()) {
+ HasCopyAssign = !Method->isDeleted() && Method->getAccess() == AS_public;
+ continue;
+ }
+ if (!Method->isOverloadedOperator())
+ continue;
+ const auto OPK = Method->getOverloadedOperator();
+ if (OPK == OO_PlusPlus) {
+ HasPreIncrOp = HasPreIncrOp || (Method->getNumParams() == 0);
+ HasPostIncrOp = HasPostIncrOp || (Method->getNumParams() == 1);
+ continue;
+ }
+ if (OPK == OO_Star) {
+ HasDerefOp = (Method->getNumParams() == 0);
+ continue;
+ }
+ }
+
+ return HasCopyCtor && HasCopyAssign && HasDtor && HasPreIncrOp &&
+ HasPostIncrOp && HasDerefOp;
+}
+
+bool isComparisonOperator(OverloadedOperatorKind OK) {
+ return OK == OO_EqualEqual || OK == OO_ExclaimEqual || OK == OO_Less ||
+ OK == OO_LessEqual || OK == OO_Greater || OK == OO_GreaterEqual;
+}
+
+bool isBeginCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ return IdInfo->getName().endswith_lower("begin");
+}
+
+bool isEndCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ return IdInfo->getName().endswith_lower("end");
+}
+
+bool isAssignCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() > 2)
+ return false;
+ return IdInfo->getName() == "assign";
+}
+
+bool isClearCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() > 0)
+ return false;
+ return IdInfo->getName() == "clear";
+}
+
+bool isPushBackCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() != 1)
+ return false;
+ return IdInfo->getName() == "push_back";
+}
+
+bool isEmplaceBackCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 1)
+ return false;
+ return IdInfo->getName() == "emplace_back";
+}
+
+bool isPopBackCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() > 0)
+ return false;
+ return IdInfo->getName() == "pop_back";
+}
+
+bool isPushFrontCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() != 1)
+ return false;
+ return IdInfo->getName() == "push_front";
+}
+
+bool isEmplaceFrontCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 1)
+ return false;
+ return IdInfo->getName() == "emplace_front";
+}
+
+bool isPopFrontCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() > 0)
+ return false;
+ return IdInfo->getName() == "pop_front";
+}
+
+bool isInsertCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 2 || Func->getNumParams() > 3)
+ return false;
+ if (!isIteratorType(Func->getParamDecl(0)->getType()))
+ return false;
+ return IdInfo->getName() == "insert";
+}
+
+bool isEmplaceCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 2)
+ return false;
+ if (!isIteratorType(Func->getParamDecl(0)->getType()))
+ return false;
+ return IdInfo->getName() == "emplace";
+}
+
+bool isEraseCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 1 || Func->getNumParams() > 2)
+ return false;
+ if (!isIteratorType(Func->getParamDecl(0)->getType()))
+ return false;
+ if (Func->getNumParams() == 2 &&
+ !isIteratorType(Func->getParamDecl(1)->getType()))
+ return false;
+ return IdInfo->getName() == "erase";
+}
+
+bool isEraseAfterCall(const FunctionDecl *Func) {
+ const auto *IdInfo = Func->getIdentifier();
+ if (!IdInfo)
+ return false;
+ if (Func->getNumParams() < 1 || Func->getNumParams() > 2)
+ return false;
+ if (!isIteratorType(Func->getParamDecl(0)->getType()))
+ return false;
+ if (Func->getNumParams() == 2 &&
+ !isIteratorType(Func->getParamDecl(1)->getType()))
+ return false;
+ return IdInfo->getName() == "erase_after";
+}
+
+bool isAssignmentOperator(OverloadedOperatorKind OK) { return OK == OO_Equal; }
+
+bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
+ return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
+}
+
+bool isAccessOperator(OverloadedOperatorKind OK) {
+ return isDereferenceOperator(OK) || isIncrementOperator(OK) ||
+ isDecrementOperator(OK) || isRandomIncrOrDecrOperator(OK);
+}
+
+bool isDereferenceOperator(OverloadedOperatorKind OK) {
+ return OK == OO_Star || OK == OO_Arrow || OK == OO_ArrowStar ||
+ OK == OO_Subscript;
+}
+
+bool isIncrementOperator(OverloadedOperatorKind OK) {
+ return OK == OO_PlusPlus;
+}
+
+bool isDecrementOperator(OverloadedOperatorKind OK) {
+ return OK == OO_MinusMinus;
+}
+
+bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK) {
+ return OK == OO_Plus || OK == OO_PlusEqual || OK == OO_Minus ||
+ OK == OO_MinusEqual;
+}
+
+bool hasSubscriptOperator(ProgramStateRef State, const MemRegion *Reg) {
+ const auto *CRD = getCXXRecordDecl(State, Reg);
+ if (!CRD)
+ return false;
+
+ for (const auto *Method : CRD->methods()) {
+ if (!Method->isOverloadedOperator())
+ continue;
+ const auto OPK = Method->getOverloadedOperator();
+ if (OPK == OO_Subscript) {
+ return true;
+ }
+ }
+ return false;
+}
+
+bool frontModifiable(ProgramStateRef State, const MemRegion *Reg) {
+ const auto *CRD = getCXXRecordDecl(State, Reg);
+ if (!CRD)
+ return false;
+
+ for (const auto *Method : CRD->methods()) {
+ if (!Method->getDeclName().isIdentifier())
+ continue;
+ if (Method->getName() == "push_front" || Method->getName() == "pop_front") {
+ return true;
+ }
+ }
+ return false;
+}
+
+bool backModifiable(ProgramStateRef State, const MemRegion *Reg) {
+ const auto *CRD = getCXXRecordDecl(State, Reg);
+ if (!CRD)
+ return false;
+
+ for (const auto *Method : CRD->methods()) {
+ if (!Method->getDeclName().isIdentifier())
+ continue;
+ if (Method->getName() == "push_back" || Method->getName() == "pop_back") {
+ return true;
+ }
+ }
+ return false;
+}
+
+const CXXRecordDecl *getCXXRecordDecl(ProgramStateRef State,
+ const MemRegion *Reg) {
+ auto TI = getDynamicTypeInfo(State, Reg);
+ if (!TI.isValid())
+ return nullptr;
+
+ auto Type = TI.getType();
+ if (const auto *RefT = Type->getAs<ReferenceType>()) {
+ Type = RefT->getPointeeType();
+ }
+
+ return Type->getUnqualifiedDesugaredType()->getAsCXXRecordDecl();
+}
+
+SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont) {
+ const auto *CDataPtr = getContainerData(State, Cont);
+ if (!CDataPtr)
+ return nullptr;
+
+ return CDataPtr->getBegin();
+}
+
+SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont) {
+ const auto *CDataPtr = getContainerData(State, Cont);
+ if (!CDataPtr)
+ return nullptr;
+
+ return CDataPtr->getEnd();
+}
+
+ProgramStateRef createContainerBegin(ProgramStateRef State,
+ const MemRegion *Cont, const Expr *E,
+ QualType T, const LocationContext *LCtx,
+ unsigned BlockCount) {
+ // Only create if it does not exist
+ const auto *CDataPtr = getContainerData(State, Cont);
+ if (CDataPtr && CDataPtr->getBegin())
+ return State;
+
+ auto &SymMgr = State->getSymbolManager();
+ const SymbolConjured *Sym = SymMgr.conjureSymbol(E, LCtx, T, BlockCount,
+ "begin");
+ State = assumeNoOverflow(State, Sym, 4);
+
+ if (CDataPtr) {
+ const auto CData = CDataPtr->newBegin(Sym);
+ return setContainerData(State, Cont, CData);
+ }
+
+ const auto CData = ContainerData::fromBegin(Sym);
+ return setContainerData(State, Cont, CData);
+}
+
+ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
+ const Expr *E, QualType T,
+ const LocationContext *LCtx,
+ unsigned BlockCount) {
+ // Only create if it does not exist
+ const auto *CDataPtr = getContainerData(State, Cont);
+ if (CDataPtr && CDataPtr->getEnd())
+ return State;
+
+ auto &SymMgr = State->getSymbolManager();
+ const SymbolConjured *Sym = SymMgr.conjureSymbol(E, LCtx, T, BlockCount,
+ "end");
+ State = assumeNoOverflow(State, Sym, 4);
+
+ if (CDataPtr) {
+ const auto CData = CDataPtr->newEnd(Sym);
+ return setContainerData(State, Cont, CData);
+ }
+
+ const auto CData = ContainerData::fromEnd(Sym);
+ return setContainerData(State, Cont, CData);
+}
+
+const ContainerData *getContainerData(ProgramStateRef State,
+ const MemRegion *Cont) {
+ return State->get<ContainerMap>(Cont);
+}
+
+ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
+ const ContainerData &CData) {
+ return State->set<ContainerMap>(Cont, CData);
+}
+
+const IteratorPosition *getIteratorPosition(ProgramStateRef State,
+ const SVal &Val) {
+ if (auto Reg = Val.getAsRegion()) {
+ Reg = Reg->getMostDerivedObjectRegion();
+ return State->get<IteratorRegionMap>(Reg);
+ } else if (const auto Sym = Val.getAsSymbol()) {
+ return State->get<IteratorSymbolMap>(Sym);
+ } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
+ return State->get<IteratorRegionMap>(LCVal->getRegion());
+ }
+ return nullptr;
+}
+
+ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
+ const IteratorPosition &Pos) {
+ if (auto Reg = Val.getAsRegion()) {
+ Reg = Reg->getMostDerivedObjectRegion();
+ return State->set<IteratorRegionMap>(Reg, Pos);
+ } else if (const auto Sym = Val.getAsSymbol()) {
+ return State->set<IteratorSymbolMap>(Sym, Pos);
+ } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
+ return State->set<IteratorRegionMap>(LCVal->getRegion(), Pos);
+ }
+ return nullptr;
+}
+
+ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
+ if (auto Reg = Val.getAsRegion()) {
+ Reg = Reg->getMostDerivedObjectRegion();
+ return State->remove<IteratorRegionMap>(Reg);
+ } else if (const auto Sym = Val.getAsSymbol()) {
+ return State->remove<IteratorSymbolMap>(Sym);
+ } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
+ return State->remove<IteratorRegionMap>(LCVal->getRegion());
+ }
+ return nullptr;
+}
+
+ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
+ SymbolRef Sym2, bool Equal) {
+ auto &SVB = State->getStateManager().getSValBuilder();
+
+ // FIXME: This code should be reworked as follows:
+ // 1. Subtract the operands using evalBinOp().
+ // 2. Assume that the result doesn't overflow.
+ // 3. Compare the result to 0.
+ // 4. Assume the result of the comparison.
+ const auto comparison =
+ SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
+ nonloc::SymbolVal(Sym2), SVB.getConditionType());
+
+ assert(comparison.getAs<DefinedSVal>() &&
+ "Symbol comparison must be a `DefinedSVal`");
+
+ auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
+ if (!NewState)
+ return nullptr;
+
+ if (const auto CompSym = comparison.getAsSymbol()) {
+ assert(isa<SymIntExpr>(CompSym) &&
+ "Symbol comparison must be a `SymIntExpr`");
+ assert(BinaryOperator::isComparisonOp(
+ cast<SymIntExpr>(CompSym)->getOpcode()) &&
+ "Symbol comparison must be a comparison");
+ return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
+ }
+
+ return NewState;
+}
+
+bool hasLiveIterators(ProgramStateRef State, const MemRegion *Cont) {
+ auto RegionMap = State->get<IteratorRegionMap>();
+ for (const auto Reg : RegionMap) {
+ if (Reg.second.getContainer() == Cont)
+ return true;
+ }
+
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ for (const auto Sym : SymbolMap) {
+ if (Sym.second.getContainer() == Cont)
+ return true;
+ }
+
+ return false;
+}
+
+bool isBoundThroughLazyCompoundVal(const Environment &Env,
+ const MemRegion *Reg) {
+ for (const auto Binding: Env) {
+ if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
+ if (LCVal->getRegion() == Reg)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// This function tells the analyzer's engine that symbols produced by our
+// checker, most notably iterator positions, are relatively small.
+// A distance between items in the container should not be very large.
+// By assuming that it is within around 1/8 of the address space,
+// we can help the analyzer perform operations on these symbols
+// without being afraid of integer overflows.
+// FIXME: Should we provide it as an API, so that all checkers could use it?
+ProgramStateRef assumeNoOverflow(ProgramStateRef State, SymbolRef Sym,
+ long Scale) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ BasicValueFactory &BV = SVB.getBasicValueFactory();
+
+ QualType T = Sym->getType();
+ assert(T->isSignedIntegerOrEnumerationType());
+ APSIntType AT = BV.getAPSIntType(T);
+
+ ProgramStateRef NewState = State;
+
+ llvm::APSInt Max = AT.getMaxValue() / AT.getValue(Scale);
+ SVal IsCappedFromAbove =
+ SVB.evalBinOpNN(State, BO_LE, nonloc::SymbolVal(Sym),
+ nonloc::ConcreteInt(Max), SVB.getConditionType());
+ if (auto DV = IsCappedFromAbove.getAs<DefinedSVal>()) {
+ NewState = NewState->assume(*DV, true);
+ if (!NewState)
+ return State;
+ }
+
+ llvm::APSInt Min = -Max;
+ SVal IsCappedFromBelow =
+ SVB.evalBinOpNN(State, BO_GE, nonloc::SymbolVal(Sym),
+ nonloc::ConcreteInt(Min), SVB.getConditionType());
+ if (auto DV = IsCappedFromBelow.getAs<DefinedSVal>()) {
+ NewState = NewState->assume(*DV, true);
+ if (!NewState)
+ return State;
+ }
+
+ return NewState;
+}
+
+template <typename Condition, typename Process>
+ProgramStateRef processIteratorPositions(ProgramStateRef State, Condition Cond,
+ Process Proc) {
+ auto &RegionMapFactory = State->get_context<IteratorRegionMap>();
+ auto RegionMap = State->get<IteratorRegionMap>();
+ bool Changed = false;
+ for (const auto Reg : RegionMap) {
+ if (Cond(Reg.second)) {
+ RegionMap = RegionMapFactory.add(RegionMap, Reg.first, Proc(Reg.second));
+ Changed = true;
+ }
+ }
+
+ if (Changed)
+ State = State->set<IteratorRegionMap>(RegionMap);
+
+ auto &SymbolMapFactory = State->get_context<IteratorSymbolMap>();
+ auto SymbolMap = State->get<IteratorSymbolMap>();
+ Changed = false;
+ for (const auto Sym : SymbolMap) {
+ if (Cond(Sym.second)) {
+ SymbolMap = SymbolMapFactory.add(SymbolMap, Sym.first, Proc(Sym.second));
+ Changed = true;
+ }
+ }
+
+ if (Changed)
+ State = State->set<IteratorSymbolMap>(SymbolMap);
+
+ return State;
+}
+
+ProgramStateRef invalidateAllIteratorPositions(ProgramStateRef State,
+ const MemRegion *Cont) {
+ auto MatchCont = [&](const IteratorPosition &Pos) {
+ return Pos.getContainer() == Cont;
+ };
+ auto Invalidate = [&](const IteratorPosition &Pos) {
+ return Pos.invalidate();
+ };
+ return processIteratorPositions(State, MatchCont, Invalidate);
+}
+
+ProgramStateRef
+invalidateAllIteratorPositionsExcept(ProgramStateRef State,
+ const MemRegion *Cont, SymbolRef Offset,
+ BinaryOperator::Opcode Opc) {
+ auto MatchContAndCompare = [&](const IteratorPosition &Pos) {
+ return Pos.getContainer() == Cont &&
+ !compare(State, Pos.getOffset(), Offset, Opc);
+ };
+ auto Invalidate = [&](const IteratorPosition &Pos) {
+ return Pos.invalidate();
+ };
+ return processIteratorPositions(State, MatchContAndCompare, Invalidate);
+}
+
+ProgramStateRef invalidateIteratorPositions(ProgramStateRef State,
+ SymbolRef Offset,
+ BinaryOperator::Opcode Opc) {
+ auto Compare = [&](const IteratorPosition &Pos) {
+ return compare(State, Pos.getOffset(), Offset, Opc);
+ };
+ auto Invalidate = [&](const IteratorPosition &Pos) {
+ return Pos.invalidate();
+ };
+ return processIteratorPositions(State, Compare, Invalidate);
+}
+
+ProgramStateRef invalidateIteratorPositions(ProgramStateRef State,
+ SymbolRef Offset1,
+ BinaryOperator::Opcode Opc1,
+ SymbolRef Offset2,
+ BinaryOperator::Opcode Opc2) {
+ auto Compare = [&](const IteratorPosition &Pos) {
+ return compare(State, Pos.getOffset(), Offset1, Opc1) &&
+ compare(State, Pos.getOffset(), Offset2, Opc2);
+ };
+ auto Invalidate = [&](const IteratorPosition &Pos) {
+ return Pos.invalidate();
+ };
+ return processIteratorPositions(State, Compare, Invalidate);
+}
+
+ProgramStateRef reassignAllIteratorPositions(ProgramStateRef State,
+ const MemRegion *Cont,
+ const MemRegion *NewCont) {
+ auto MatchCont = [&](const IteratorPosition &Pos) {
+ return Pos.getContainer() == Cont;
+ };
+ auto ReAssign = [&](const IteratorPosition &Pos) {
+ return Pos.reAssign(NewCont);
+ };
+ return processIteratorPositions(State, MatchCont, ReAssign);
+}
+
+ProgramStateRef reassignAllIteratorPositionsUnless(ProgramStateRef State,
+ const MemRegion *Cont,
+ const MemRegion *NewCont,
+ SymbolRef Offset,
+ BinaryOperator::Opcode Opc) {
+ auto MatchContAndCompare = [&](const IteratorPosition &Pos) {
+ return Pos.getContainer() == Cont &&
+ !compare(State, Pos.getOffset(), Offset, Opc);
+ };
+ auto ReAssign = [&](const IteratorPosition &Pos) {
+ return Pos.reAssign(NewCont);
+ };
+ return processIteratorPositions(State, MatchContAndCompare, ReAssign);
+}
+
+// This function rebases symbolic expression `OldSym + Int` to `NewSym + Int`,
+// `OldSym - Int` to `NewSym - Int` and `OldSym` to `NewSym` in any iterator
+// position offsets where `CondSym` is true.
+ProgramStateRef rebaseSymbolInIteratorPositionsIf(
+ ProgramStateRef State, SValBuilder &SVB, SymbolRef OldSym,
+ SymbolRef NewSym, SymbolRef CondSym, BinaryOperator::Opcode Opc) {
+ auto LessThanEnd = [&](const IteratorPosition &Pos) {
+ return compare(State, Pos.getOffset(), CondSym, Opc);
+ };
+ auto RebaseSymbol = [&](const IteratorPosition &Pos) {
+ return Pos.setTo(rebaseSymbol(State, SVB, Pos.getOffset(), OldSym,
+ NewSym));
+ };
+ return processIteratorPositions(State, LessThanEnd, RebaseSymbol);
+}
+
+// This function rebases symbolic expression `OldExpr + Int` to `NewExpr + Int`,
+// `OldExpr - Int` to `NewExpr - Int` and `OldExpr` to `NewExpr` in expression
+// `OrigExpr`.
+SymbolRef rebaseSymbol(ProgramStateRef State, SValBuilder &SVB,
+ SymbolRef OrigExpr, SymbolRef OldExpr,
+ SymbolRef NewSym) {
+ auto &SymMgr = SVB.getSymbolManager();
+ auto Diff = SVB.evalBinOpNN(State, BO_Sub, nonloc::SymbolVal(OrigExpr),
+ nonloc::SymbolVal(OldExpr),
+ SymMgr.getType(OrigExpr));
+
+ const auto DiffInt = Diff.getAs<nonloc::ConcreteInt>();
+ if (!DiffInt)
+ return OrigExpr;
+
+ return SVB.evalBinOpNN(State, BO_Add, *DiffInt, nonloc::SymbolVal(NewSym),
+ SymMgr.getType(OrigExpr)).getAsSymbol();
+}
+
+bool isZero(ProgramStateRef State, const NonLoc &Val) {
+ auto &BVF = State->getBasicVals();
+ return compare(State, Val,
+ nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(0))),
+ BO_EQ);
+}
+
+bool isPastTheEnd(ProgramStateRef State, const IteratorPosition &Pos) {
+ const auto *Cont = Pos.getContainer();
+ const auto *CData = getContainerData(State, Cont);
+ if (!CData)
+ return false;
+
+ const auto End = CData->getEnd();
+ if (End) {
+ if (isEqual(State, Pos.getOffset(), End)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool isAheadOfRange(ProgramStateRef State, const IteratorPosition &Pos) {
+ const auto *Cont = Pos.getContainer();
+ const auto *CData = getContainerData(State, Cont);
+ if (!CData)
+ return false;
+
+ const auto Beg = CData->getBegin();
+ if (Beg) {
+ if (isLess(State, Pos.getOffset(), Beg)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool isBehindPastTheEnd(ProgramStateRef State, const IteratorPosition &Pos) {
+ const auto *Cont = Pos.getContainer();
+ const auto *CData = getContainerData(State, Cont);
+ if (!CData)
+ return false;
+
+ const auto End = CData->getEnd();
+ if (End) {
+ if (isGreater(State, Pos.getOffset(), End)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
+ return compare(State, Sym1, Sym2, BO_LT);
+}
+
+bool isGreater(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
+ return compare(State, Sym1, Sym2, BO_GT);
+}
+
+bool isEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
+ return compare(State, Sym1, Sym2, BO_EQ);
+}
+
+bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
+ BinaryOperator::Opcode Opc) {
+ return compare(State, nonloc::SymbolVal(Sym1), nonloc::SymbolVal(Sym2), Opc);
+}
+
+bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
+ BinaryOperator::Opcode Opc) {
+ auto &SVB = State->getStateManager().getSValBuilder();
+
+ const auto comparison =
+ SVB.evalBinOp(State, Opc, NL1, NL2, SVB.getConditionType());
+
+ assert(comparison.getAs<DefinedSVal>() &&
+ "Symbol comparison must be a `DefinedSVal`");
+
+ return !State->assume(comparison.castAs<DefinedSVal>(), false);
+}
+
+} // namespace
+
+void ento::registerIteratorModeling(CheckerManager &mgr) {
+ mgr.registerChecker<IteratorChecker>();
+}
+
+bool ento::shouldRegisterIteratorModeling(const LangOptions &LO) {
+ return true;
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &Mgr) { \
+ auto *checker = Mgr.getChecker<IteratorChecker>(); \
+ checker->ChecksEnabled[IteratorChecker::CK_##name] = true; \
+ checker->CheckNames[IteratorChecker::CK_##name] = \
+ Mgr.getCurrentCheckerName(); \
+ } \
+ \
+ bool ento::shouldRegister##name(const LangOptions &LO) { return true; }
+
+REGISTER_CHECKER(IteratorRangeChecker)
+REGISTER_CHECKER(MismatchedIteratorChecker)
+REGISTER_CHECKER(InvalidatedIteratorChecker)