diff options
Diffstat (limited to 'clang/lib/StaticAnalyzer/Checkers/MIGChecker.cpp')
| -rw-r--r-- | clang/lib/StaticAnalyzer/Checkers/MIGChecker.cpp | 296 | 
1 files changed, 296 insertions, 0 deletions
| diff --git a/clang/lib/StaticAnalyzer/Checkers/MIGChecker.cpp b/clang/lib/StaticAnalyzer/Checkers/MIGChecker.cpp new file mode 100644 index 000000000000..d8fd125f4003 --- /dev/null +++ b/clang/lib/StaticAnalyzer/Checkers/MIGChecker.cpp @@ -0,0 +1,296 @@ +//== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines MIGChecker, a Mach Interface Generator calling convention +// checker. Namely, in MIG callback implementation the following rules apply: +// - When a server routine returns an error code that represents success, it +//   must take ownership of resources passed to it (and eventually release +//   them). +// - Additionally, when returning success, all out-parameters must be +//   initialized. +// - When it returns any other error code, it must not take ownership, +//   because the message and its out-of-line parameters will be destroyed +//   by the client that called the function. +// For now we only check the last rule, as its violations lead to dangerous +// use-after-free exploits. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/AnyCall.h" +#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/Checker.h" +#include "clang/StaticAnalyzer/Core/CheckerManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" + +using namespace clang; +using namespace ento; + +namespace { +class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>, +                                  check::EndFunction> { +  BugType BT{this, "Use-after-free (MIG calling convention violation)", +             categories::MemoryError}; + +  // The checker knows that an out-of-line object is deallocated if it is +  // passed as an argument to one of these functions. If this object is +  // additionally an argument of a MIG routine, the checker keeps track of that +  // information and issues a warning when an error is returned from the +  // respective routine. +  std::vector<std::pair<CallDescription, unsigned>> Deallocators = { +#define CALL(required_args, deallocated_arg, ...)                              \ +  {{{__VA_ARGS__}, required_args}, deallocated_arg} +      // E.g., if the checker sees a C function 'vm_deallocate' that is +      // defined on class 'IOUserClient' that has exactly 3 parameters, it knows +      // that argument #1 (starting from 0, i.e. the second argument) is going +      // to be consumed in the sense of the MIG consume-on-success convention. +      CALL(3, 1, "vm_deallocate"), +      CALL(3, 1, "mach_vm_deallocate"), +      CALL(2, 0, "mig_deallocate"), +      CALL(2, 1, "mach_port_deallocate"), +      CALL(1, 0, "device_deallocate"), +      CALL(1, 0, "iokit_remove_connect_reference"), +      CALL(1, 0, "iokit_remove_reference"), +      CALL(1, 0, "iokit_release_port"), +      CALL(1, 0, "ipc_port_release"), +      CALL(1, 0, "ipc_port_release_sonce"), +      CALL(1, 0, "ipc_voucher_attr_control_release"), +      CALL(1, 0, "ipc_voucher_release"), +      CALL(1, 0, "lock_set_dereference"), +      CALL(1, 0, "memory_object_control_deallocate"), +      CALL(1, 0, "pset_deallocate"), +      CALL(1, 0, "semaphore_dereference"), +      CALL(1, 0, "space_deallocate"), +      CALL(1, 0, "space_inspect_deallocate"), +      CALL(1, 0, "task_deallocate"), +      CALL(1, 0, "task_inspect_deallocate"), +      CALL(1, 0, "task_name_deallocate"), +      CALL(1, 0, "thread_deallocate"), +      CALL(1, 0, "thread_inspect_deallocate"), +      CALL(1, 0, "upl_deallocate"), +      CALL(1, 0, "vm_map_deallocate"), +      // E.g., if the checker sees a method 'releaseAsyncReference64()' that is +      // defined on class 'IOUserClient' that takes exactly 1 argument, it knows +      // that the argument is going to be consumed in the sense of the MIG +      // consume-on-success convention. +      CALL(1, 0, "IOUserClient", "releaseAsyncReference64"), +      CALL(1, 0, "IOUserClient", "releaseNotificationPort"), +#undef CALL +  }; + +  CallDescription OsRefRetain{"os_ref_retain", 1}; + +  void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const; + +public: +  void checkPostCall(const CallEvent &Call, CheckerContext &C) const; + +  // HACK: We're making two attempts to find the bug: checkEndFunction +  // should normally be enough but it fails when the return value is a literal +  // that never gets put into the Environment and ends of function with multiple +  // returns get agglutinated across returns, preventing us from obtaining +  // the return value. The problem is similar to https://reviews.llvm.org/D25326 +  // but now we step into it in the top-level function. +  void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { +    checkReturnAux(RS, C); +  } +  void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const { +    checkReturnAux(RS, C); +  } + +}; +} // end anonymous namespace + +// A flag that says that the programmer has called a MIG destructor +// for at least one parameter. +REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool) +// A set of parameters for which the check is suppressed because +// reference counting is being performed. +REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *) + +static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C, +                                         bool IncludeBaseRegions = false) { +  // TODO: We should most likely always include base regions here. +  SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions); +  if (!Sym) +    return nullptr; + +  // If we optimistically assume that the MIG routine never re-uses the storage +  // that was passed to it as arguments when it invalidates it (but at most when +  // it assigns to parameter variables directly), this procedure correctly +  // determines if the value was loaded from the transitive closure of MIG +  // routine arguments in the heap. +  while (const MemRegion *MR = Sym->getOriginRegion()) { +    const auto *VR = dyn_cast<VarRegion>(MR); +    if (VR && VR->hasStackParametersStorage() && +           VR->getStackFrame()->inTopFrame()) +      return cast<ParmVarDecl>(VR->getDecl()); + +    const SymbolicRegion *SR = MR->getSymbolicBase(); +    if (!SR) +      return nullptr; + +    Sym = SR->getSymbol(); +  } + +  return nullptr; +} + +static bool isInMIGCall(CheckerContext &C) { +  const LocationContext *LC = C.getLocationContext(); +  assert(LC && "Unknown location context"); + +  const StackFrameContext *SFC; +  // Find the top frame. +  while (LC) { +    SFC = LC->getStackFrame(); +    LC = SFC->getParent(); +  } + +  const Decl *D = SFC->getDecl(); + +  if (Optional<AnyCall> AC = AnyCall::forDecl(D)) { +    // Even though there's a Sema warning when the return type of an annotated +    // function is not a kern_return_t, this warning isn't an error, so we need +    // an extra sanity check here. +    // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked +    // for now. +    if (!AC->getReturnType(C.getASTContext()) +             .getCanonicalType()->isSignedIntegerType()) +      return false; +  } + +  if (D->hasAttr<MIGServerRoutineAttr>()) +    return true; + +  // See if there's an annotated method in the superclass. +  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) +    for (const auto *OMD: MD->overridden_methods()) +      if (OMD->hasAttr<MIGServerRoutineAttr>()) +        return true; + +  return false; +} + +void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { +  if (Call.isCalled(OsRefRetain)) { +    // If the code is doing reference counting over the parameter, +    // it opens up an opportunity for safely calling a destructor function. +    // TODO: We should still check for over-releases. +    if (const ParmVarDecl *PVD = +            getOriginParam(Call.getArgSVal(0), C, /*IncludeBaseRegions=*/true)) { +      // We never need to clean up the program state because these are +      // top-level parameters anyway, so they're always live. +      C.addTransition(C.getState()->add<RefCountedParameters>(PVD)); +    } +    return; +  } + +  if (!isInMIGCall(C)) +    return; + +  auto I = llvm::find_if(Deallocators, +                         [&](const std::pair<CallDescription, unsigned> &Item) { +                           return Call.isCalled(Item.first); +                         }); +  if (I == Deallocators.end()) +    return; + +  ProgramStateRef State = C.getState(); +  unsigned ArgIdx = I->second; +  SVal Arg = Call.getArgSVal(ArgIdx); +  const ParmVarDecl *PVD = getOriginParam(Arg, C); +  if (!PVD || State->contains<RefCountedParameters>(PVD)) +    return; + +  const NoteTag *T = C.getNoteTag([this, PVD](BugReport &BR) -> std::string { +    if (&BR.getBugType() != &BT) +      return ""; +    SmallString<64> Str; +    llvm::raw_svector_ostream OS(Str); +    OS << "Value passed through parameter '" << PVD->getName() +       << "\' is deallocated"; +    return OS.str(); +  }); +  C.addTransition(State->set<ReleasedParameter>(true), T); +} + +// Returns true if V can potentially represent a "successful" kern_return_t. +static bool mayBeSuccess(SVal V, CheckerContext &C) { +  ProgramStateRef State = C.getState(); + +  // Can V represent KERN_SUCCESS? +  if (!State->isNull(V).isConstrainedFalse()) +    return true; + +  SValBuilder &SVB = C.getSValBuilder(); +  ASTContext &ACtx = C.getASTContext(); + +  // Can V represent MIG_NO_REPLY? +  static const int MigNoReply = -305; +  V = SVB.evalEQ(C.getState(), V, SVB.makeIntVal(MigNoReply, ACtx.IntTy)); +  if (!State->isNull(V).isConstrainedTrue()) +    return true; + +  // If none of the above, it's definitely an error. +  return false; +} + +void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const { +  // It is very unlikely that a MIG callback will be called from anywhere +  // within the project under analysis and the caller isn't itself a routine +  // that follows the MIG calling convention. Therefore we're safe to believe +  // that it's always the top frame that is of interest. There's a slight chance +  // that the user would want to enforce the MIG calling convention upon +  // a random routine in the middle of nowhere, but given that the convention is +  // fairly weird and hard to follow in the first place, there's relatively +  // little motivation to spread it this way. +  if (!C.inTopFrame()) +    return; + +  if (!isInMIGCall(C)) +    return; + +  // We know that the function is non-void, but what if the return statement +  // is not there in the code? It's not a compile error, we should not crash. +  if (!RS) +    return; + +  ProgramStateRef State = C.getState(); +  if (!State->get<ReleasedParameter>()) +    return; + +  SVal V = C.getSVal(RS); +  if (mayBeSuccess(V, C)) +    return; + +  ExplodedNode *N = C.generateErrorNode(); +  if (!N) +    return; + +  auto R = std::make_unique<PathSensitiveBugReport>( +      BT, +      "MIG callback fails with error after deallocating argument value. " +      "This is a use-after-free vulnerability because the caller will try to " +      "deallocate it again", +      N); + +  R->addRange(RS->getSourceRange()); +  bugreporter::trackExpressionValue(N, RS->getRetValue(), *R, +                                    bugreporter::TrackingKind::Thorough, false); +  C.emitReport(std::move(R)); +} + +void ento::registerMIGChecker(CheckerManager &Mgr) { +  Mgr.registerChecker<MIGChecker>(); +} + +bool ento::shouldRegisterMIGChecker(const LangOptions &LO) { +  return true; +} | 
