summaryrefslogtreecommitdiff
path: root/contrib/gcc/flow.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc/flow.c')
-rw-r--r--contrib/gcc/flow.c5255
1 files changed, 0 insertions, 5255 deletions
diff --git a/contrib/gcc/flow.c b/contrib/gcc/flow.c
deleted file mode 100644
index ac8fd6337ff2..000000000000
--- a/contrib/gcc/flow.c
+++ /dev/null
@@ -1,5255 +0,0 @@
-/* Data flow analysis for GNU compiler.
- Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
-
-This file is part of GNU CC.
-
-GNU CC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2, or (at your option)
-any later version.
-
-GNU CC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GNU CC; see the file COPYING. If not, write to
-the Free Software Foundation, 59 Temple Place - Suite 330,
-Boston, MA 02111-1307, USA. */
-
-
-/* This file contains the data flow analysis pass of the compiler. It
- computes data flow information which tells combine_instructions
- which insns to consider combining and controls register allocation.
-
- Additional data flow information that is too bulky to record is
- generated during the analysis, and is used at that time to create
- autoincrement and autodecrement addressing.
-
- The first step is dividing the function into basic blocks.
- find_basic_blocks does this. Then life_analysis determines
- where each register is live and where it is dead.
-
- ** find_basic_blocks **
-
- find_basic_blocks divides the current function's rtl into basic
- blocks and constructs the CFG. The blocks are recorded in the
- basic_block_info array; the CFG exists in the edge structures
- referenced by the blocks.
-
- find_basic_blocks also finds any unreachable loops and deletes them.
-
- ** life_analysis **
-
- life_analysis is called immediately after find_basic_blocks.
- It uses the basic block information to determine where each
- hard or pseudo register is live.
-
- ** live-register info **
-
- The information about where each register is live is in two parts:
- the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
-
- basic_block->global_live_at_start has an element for each basic
- block, and the element is a bit-vector with a bit for each hard or
- pseudo register. The bit is 1 if the register is live at the
- beginning of the basic block.
-
- Two types of elements can be added to an insn's REG_NOTES.
- A REG_DEAD note is added to an insn's REG_NOTES for any register
- that meets both of two conditions: The value in the register is not
- needed in subsequent insns and the insn does not replace the value in
- the register (in the case of multi-word hard registers, the value in
- each register must be replaced by the insn to avoid a REG_DEAD note).
-
- In the vast majority of cases, an object in a REG_DEAD note will be
- used somewhere in the insn. The (rare) exception to this is if an
- insn uses a multi-word hard register and only some of the registers are
- needed in subsequent insns. In that case, REG_DEAD notes will be
- provided for those hard registers that are not subsequently needed.
- Partial REG_DEAD notes of this type do not occur when an insn sets
- only some of the hard registers used in such a multi-word operand;
- omitting REG_DEAD notes for objects stored in an insn is optional and
- the desire to do so does not justify the complexity of the partial
- REG_DEAD notes.
-
- REG_UNUSED notes are added for each register that is set by the insn
- but is unused subsequently (if every register set by the insn is unused
- and the insn does not reference memory or have some other side-effect,
- the insn is deleted instead). If only part of a multi-word hard
- register is used in a subsequent insn, REG_UNUSED notes are made for
- the parts that will not be used.
-
- To determine which registers are live after any insn, one can
- start from the beginning of the basic block and scan insns, noting
- which registers are set by each insn and which die there.
-
- ** Other actions of life_analysis **
-
- life_analysis sets up the LOG_LINKS fields of insns because the
- information needed to do so is readily available.
-
- life_analysis deletes insns whose only effect is to store a value
- that is never used.
-
- life_analysis notices cases where a reference to a register as
- a memory address can be combined with a preceding or following
- incrementation or decrementation of the register. The separate
- instruction to increment or decrement is deleted and the address
- is changed to a POST_INC or similar rtx.
-
- Each time an incrementing or decrementing address is created,
- a REG_INC element is added to the insn's REG_NOTES list.
-
- life_analysis fills in certain vectors containing information about
- register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
- reg_n_calls_crosses and reg_basic_block.
-
- life_analysis sets current_function_sp_is_unchanging if the function
- doesn't modify the stack pointer. */
-
-/* TODO:
-
- Split out from life_analysis:
- - local property discovery (bb->local_live, bb->local_set)
- - global property computation
- - log links creation
- - pre/post modify transformation
-*/
-
-#include "config.h"
-#include "system.h"
-#include "rtl.h"
-#include "basic-block.h"
-#include "insn-config.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "flags.h"
-#include "output.h"
-#include "except.h"
-#include "toplev.h"
-#include "recog.h"
-#include "insn-flags.h"
-
-#include "obstack.h"
-#define obstack_chunk_alloc xmalloc
-#define obstack_chunk_free free
-
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-#ifndef EXIT_IGNORE_STACK
-#define EXIT_IGNORE_STACK 0
-#endif
-
-
-/* The contents of the current function definition are allocated
- in this obstack, and all are freed at the end of the function.
- For top-level functions, this is temporary_obstack.
- Separate obstacks are made for nested functions. */
-
-extern struct obstack *function_obstack;
-
-/* List of labels that must never be deleted. */
-extern rtx forced_labels;
-
-/* Number of basic blocks in the current function. */
-
-int n_basic_blocks;
-
-/* The basic block array. */
-
-varray_type basic_block_info;
-
-/* The special entry and exit blocks. */
-
-struct basic_block_def entry_exit_blocks[2] =
-{
- {
- NULL, /* head */
- NULL, /* end */
- NULL, /* pred */
- NULL, /* succ */
- NULL, /* local_set */
- NULL, /* global_live_at_start */
- NULL, /* global_live_at_end */
- NULL, /* aux */
- ENTRY_BLOCK, /* index */
- 0 /* loop_depth */
- },
- {
- NULL, /* head */
- NULL, /* end */
- NULL, /* pred */
- NULL, /* succ */
- NULL, /* local_set */
- NULL, /* global_live_at_start */
- NULL, /* global_live_at_end */
- NULL, /* aux */
- EXIT_BLOCK, /* index */
- 0 /* loop_depth */
- }
-};
-
-/* Nonzero if the second flow pass has completed. */
-int flow2_completed;
-
-/* Maximum register number used in this function, plus one. */
-
-int max_regno;
-
-/* Indexed by n, giving various register information */
-
-varray_type reg_n_info;
-
-/* Size of the reg_n_info table. */
-
-unsigned int reg_n_max;
-
-/* Element N is the next insn that uses (hard or pseudo) register number N
- within the current basic block; or zero, if there is no such insn.
- This is valid only during the final backward scan in propagate_block. */
-
-static rtx *reg_next_use;
-
-/* Size of a regset for the current function,
- in (1) bytes and (2) elements. */
-
-int regset_bytes;
-int regset_size;
-
-/* Regset of regs live when calls to `setjmp'-like functions happen. */
-/* ??? Does this exist only for the setjmp-clobbered warning message? */
-
-regset regs_live_at_setjmp;
-
-/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
- that have to go in the same hard reg.
- The first two regs in the list are a pair, and the next two
- are another pair, etc. */
-rtx regs_may_share;
-
-/* Depth within loops of basic block being scanned for lifetime analysis,
- plus one. This is the weight attached to references to registers. */
-
-static int loop_depth;
-
-/* During propagate_block, this is non-zero if the value of CC0 is live. */
-
-static int cc0_live;
-
-/* During propagate_block, this contains a list of all the MEMs we are
- tracking for dead store elimination.
-
- ?!? Note we leak memory by not free-ing items on this list. We need to
- write some generic routines to operate on memory lists since cse, gcse,
- loop, sched, flow and possibly other passes all need to do basically the
- same operations on these lists. */
-
-static rtx mem_set_list;
-
-/* Set of registers that may be eliminable. These are handled specially
- in updating regs_ever_live. */
-
-static HARD_REG_SET elim_reg_set;
-
-/* The basic block structure for every insn, indexed by uid. */
-
-varray_type basic_block_for_insn;
-
-/* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
-/* ??? Should probably be using LABEL_NUSES instead. It would take a
- bit of surgery to be able to use or co-opt the routines in jump. */
-
-static rtx label_value_list;
-
-/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
-
-#define INSN_VOLATILE(INSN) bitmap_bit_p (uid_volatile, INSN_UID (INSN))
-#define SET_INSN_VOLATILE(INSN) bitmap_set_bit (uid_volatile, INSN_UID (INSN))
-static bitmap uid_volatile;
-
-/* Forward declarations */
-static int count_basic_blocks PROTO((rtx));
-static rtx find_basic_blocks_1 PROTO((rtx, rtx*));
-static void create_basic_block PROTO((int, rtx, rtx, rtx));
-static void compute_bb_for_insn PROTO((varray_type, int));
-static void clear_edges PROTO((void));
-static void make_edges PROTO((rtx, rtx*));
-static void make_edge PROTO((basic_block, basic_block, int));
-static void make_label_edge PROTO((basic_block, rtx, int));
-static void mark_critical_edges PROTO((void));
-
-static void commit_one_edge_insertion PROTO((edge));
-
-static void delete_unreachable_blocks PROTO((void));
-static void delete_eh_regions PROTO((void));
-static int can_delete_note_p PROTO((rtx));
-static void delete_insn_chain PROTO((rtx, rtx));
-static int delete_block PROTO((basic_block));
-static void expunge_block PROTO((basic_block));
-static rtx flow_delete_insn PROTO((rtx));
-static int can_delete_label_p PROTO((rtx));
-static void merge_blocks_nomove PROTO((basic_block, basic_block));
-static int merge_blocks PROTO((edge,basic_block,basic_block));
-static void tidy_fallthru_edge PROTO((edge,basic_block,basic_block));
-static void calculate_loop_depth PROTO((rtx));
-
-static int set_noop_p PROTO((rtx));
-static int noop_move_p PROTO((rtx));
-static void notice_stack_pointer_modification PROTO ((rtx, rtx));
-static void record_volatile_insns PROTO((rtx));
-static void mark_regs_live_at_end PROTO((regset));
-static void life_analysis_1 PROTO((rtx, int, int));
-static void init_regset_vector PROTO ((regset *, int,
- struct obstack *));
-static void propagate_block PROTO((regset, rtx, rtx, int,
- regset, int, int));
-static int insn_dead_p PROTO((rtx, regset, int, rtx));
-static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
-static void mark_set_regs PROTO((regset, regset, rtx,
- rtx, regset));
-static void mark_set_1 PROTO((regset, regset, rtx,
- rtx, regset));
-#ifdef AUTO_INC_DEC
-static void find_auto_inc PROTO((regset, rtx, rtx));
-static int try_pre_increment_1 PROTO((rtx));
-static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
-#endif
-static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
-void dump_flow_info PROTO((FILE *));
-static void dump_edge_info PROTO((FILE *, edge, int));
-
-static int_list_ptr alloc_int_list_node PROTO ((int_list_block **));
-static int_list_ptr add_int_list_node PROTO ((int_list_block **,
- int_list **, int));
-
-static void add_pred_succ PROTO ((int, int, int_list_ptr *,
- int_list_ptr *, int *, int *));
-
-static void count_reg_sets_1 PROTO ((rtx));
-static void count_reg_sets PROTO ((rtx));
-static void count_reg_references PROTO ((rtx));
-static void notice_stack_pointer_modification PROTO ((rtx, rtx));
-static void invalidate_mems_from_autoinc PROTO ((rtx));
-void verify_flow_info PROTO ((void));
-
-/* Find basic blocks of the current function.
- F is the first insn of the function and NREGS the number of register
- numbers in use. */
-
-void
-find_basic_blocks (f, nregs, file, do_cleanup)
- rtx f;
- int nregs ATTRIBUTE_UNUSED;
- FILE *file ATTRIBUTE_UNUSED;
- int do_cleanup;
-{
- rtx *bb_eh_end;
- int max_uid;
-
- /* Flush out existing data. */
- if (basic_block_info != NULL)
- {
- int i;
-
- clear_edges ();
-
- /* Clear bb->aux on all extant basic blocks. We'll use this as a
- tag for reuse during create_basic_block, just in case some pass
- copies around basic block notes improperly. */
- for (i = 0; i < n_basic_blocks; ++i)
- BASIC_BLOCK (i)->aux = NULL;
-
- VARRAY_FREE (basic_block_info);
- }
-
- n_basic_blocks = count_basic_blocks (f);
-
- /* Size the basic block table. The actual structures will be allocated
- by find_basic_blocks_1, since we want to keep the structure pointers
- stable across calls to find_basic_blocks. */
- /* ??? This whole issue would be much simpler if we called find_basic_blocks
- exactly once, and thereafter we don't have a single long chain of
- instructions at all until close to the end of compilation when we
- actually lay them out. */
-
- VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
-
- /* An array to record the active exception region at the end of each
- basic block. It is filled in by find_basic_blocks_1 for make_edges. */
- bb_eh_end = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
-
- label_value_list = find_basic_blocks_1 (f, bb_eh_end);
-
- /* Record the block to which an insn belongs. */
- /* ??? This should be done another way, by which (perhaps) a label is
- tagged directly with the basic block that it starts. It is used for
- more than that currently, but IMO that is the only valid use. */
-
- max_uid = get_max_uid ();
-#ifdef AUTO_INC_DEC
- /* Leave space for insns life_analysis makes in some cases for auto-inc.
- These cases are rare, so we don't need too much space. */
- max_uid += max_uid / 10;
-#endif
-
- VARRAY_BB_INIT (basic_block_for_insn, max_uid, "basic_block_for_insn");
- compute_bb_for_insn (basic_block_for_insn, max_uid);
-
- /* Discover the edges of our cfg. */
-
- make_edges (label_value_list, bb_eh_end);
-
- /* Delete unreachable blocks. */
-
- if (do_cleanup)
- delete_unreachable_blocks ();
-
- /* Mark critical edges. */
-
- mark_critical_edges ();
-
- /* Discover the loop depth at the start of each basic block to aid
- register allocation. */
- calculate_loop_depth (f);
-
- /* Kill the data we won't maintain. */
- label_value_list = 0;
-
-#ifdef ENABLE_CHECKING
- verify_flow_info ();
-#endif
-}
-
-/* Count the basic blocks of the function. */
-
-static int
-count_basic_blocks (f)
- rtx f;
-{
- register rtx insn;
- register RTX_CODE prev_code;
- register int count = 0;
- int eh_region = 0;
- int call_had_abnormal_edge = 0;
- rtx prev_call = NULL_RTX;
-
- prev_code = JUMP_INSN;
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- register RTX_CODE code = GET_CODE (insn);
-
- if (code == CODE_LABEL
- || (GET_RTX_CLASS (code) == 'i'
- && (prev_code == JUMP_INSN
- || prev_code == BARRIER
- || (prev_code == CALL_INSN && call_had_abnormal_edge))))
- {
- count++;
-
- /* If the previous insn was a call that did not create an
- abnormal edge, we want to add a nop so that the CALL_INSN
- itself is not at basic_block_end. This allows us to
- easily distinguish between normal calls and those which
- create abnormal edges in the flow graph. */
-
- if (count > 0 && prev_call != 0 && !call_had_abnormal_edge)
- {
- rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
- emit_insn_after (nop, prev_call);
- }
- }
-
- /* Record whether this call created an edge. */
- if (code == CALL_INSN)
- {
- rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
- int region = (note ? XINT (XEXP (note, 0), 0) : 1);
- prev_call = insn;
- call_had_abnormal_edge = 0;
-
- /* If there is a specified EH region, we have an edge. */
- if (eh_region && region > 0)
- call_had_abnormal_edge = 1;
- else
- {
- /* If there is a nonlocal goto label and the specified
- region number isn't -1, we have an edge. (0 means
- no throw, but might have a nonlocal goto). */
- if (nonlocal_goto_handler_labels && region >= 0)
- call_had_abnormal_edge = 1;
- }
- }
- else if (code != NOTE)
- prev_call = NULL_RTX;
-
- if (code != NOTE)
- prev_code = code;
- else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
- ++eh_region;
- else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
- --eh_region;
-
- }
-
- /* The rest of the compiler works a bit smoother when we don't have to
- check for the edge case of do-nothing functions with no basic blocks. */
- if (count == 0)
- {
- emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
- count = 1;
- }
-
- return count;
-}
-
-/* Find all basic blocks of the function whose first insn is F.
- Store the correct data in the tables that describe the basic blocks,
- set up the chains of references for each CODE_LABEL, and
- delete any entire basic blocks that cannot be reached.
-
- NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
- that are otherwise unreachable may be reachable with a non-local goto.
-
- BB_EH_END is an array in which we record the list of exception regions
- active at the end of every basic block. */
-
-static rtx
-find_basic_blocks_1 (f, bb_eh_end)
- rtx f;
- rtx *bb_eh_end;
-{
- register rtx insn, next;
- int call_has_abnormal_edge = 0;
- int i = 0;
- rtx bb_note = NULL_RTX;
- rtx eh_list = NULL_RTX;
- rtx label_value_list = NULL_RTX;
- rtx head = NULL_RTX;
- rtx end = NULL_RTX;
-
- /* We process the instructions in a slightly different way than we did
- previously. This is so that we see a NOTE_BASIC_BLOCK after we have
- closed out the previous block, so that it gets attached at the proper
- place. Since this form should be equivalent to the previous,
- find_basic_blocks_0 continues to use the old form as a check. */
-
- for (insn = f; insn; insn = next)
- {
- enum rtx_code code = GET_CODE (insn);
-
- next = NEXT_INSN (insn);
-
- if (code == CALL_INSN)
- {
- /* Record whether this call created an edge. */
- rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
- int region = (note ? XINT (XEXP (note, 0), 0) : 1);
- call_has_abnormal_edge = 0;
-
- /* If there is an EH region, we have an edge. */
- if (eh_list && region > 0)
- call_has_abnormal_edge = 1;
- else
- {
- /* If there is a nonlocal goto label and the specified
- region number isn't -1, we have an edge. (0 means
- no throw, but might have a nonlocal goto). */
- if (nonlocal_goto_handler_labels && region >= 0)
- call_has_abnormal_edge = 1;
- }
- }
-
- switch (code)
- {
- case NOTE:
- {
- int kind = NOTE_LINE_NUMBER (insn);
-
- /* Keep a LIFO list of the currently active exception notes. */
- if (kind == NOTE_INSN_EH_REGION_BEG)
- eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
- else if (kind == NOTE_INSN_EH_REGION_END)
- eh_list = XEXP (eh_list, 1);
-
- /* Look for basic block notes with which to keep the
- basic_block_info pointers stable. Unthread the note now;
- we'll put it back at the right place in create_basic_block.
- Or not at all if we've already found a note in this block. */
- else if (kind == NOTE_INSN_BASIC_BLOCK)
- {
- if (bb_note == NULL_RTX)
- bb_note = insn;
- next = flow_delete_insn (insn);
- }
-
- break;
- }
-
- case CODE_LABEL:
- /* A basic block starts at a label. If we've closed one off due
- to a barrier or some such, no need to do it again. */
- if (head != NULL_RTX)
- {
- /* While we now have edge lists with which other portions of
- the compiler might determine a call ending a basic block
- does not imply an abnormal edge, it will be a bit before
- everything can be updated. So continue to emit a noop at
- the end of such a block. */
- if (GET_CODE (end) == CALL_INSN)
- {
- rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
- end = emit_insn_after (nop, end);
- }
-
- bb_eh_end[i] = eh_list;
- create_basic_block (i++, head, end, bb_note);
- bb_note = NULL_RTX;
- }
- head = end = insn;
- break;
-
- case JUMP_INSN:
- /* A basic block ends at a jump. */
- if (head == NULL_RTX)
- head = insn;
- else
- {
- /* ??? Make a special check for table jumps. The way this
- happens is truely and amazingly gross. We are about to
- create a basic block that contains just a code label and
- an addr*vec jump insn. Worse, an addr_diff_vec creates
- its own natural loop.
-
- Prevent this bit of brain damage, pasting things together
- correctly in make_edges.
-
- The correct solution involves emitting the table directly
- on the tablejump instruction as a note, or JUMP_LABEL. */
-
- if (GET_CODE (PATTERN (insn)) == ADDR_VEC
- || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
- {
- head = end = NULL;
- n_basic_blocks--;
- break;
- }
- }
- end = insn;
- goto new_bb_inclusive;
-
- case BARRIER:
- /* A basic block ends at a barrier. It may be that an unconditional
- jump already closed the basic block -- no need to do it again. */
- if (head == NULL_RTX)
- break;
-
- /* While we now have edge lists with which other portions of the
- compiler might determine a call ending a basic block does not
- imply an abnormal edge, it will be a bit before everything can
- be updated. So continue to emit a noop at the end of such a
- block. */
- if (GET_CODE (end) == CALL_INSN)
- {
- rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
- end = emit_insn_after (nop, end);
- }
- goto new_bb_exclusive;
-
- case CALL_INSN:
- /* A basic block ends at a call that can either throw or
- do a non-local goto. */
- if (call_has_abnormal_edge)
- {
- new_bb_inclusive:
- if (head == NULL_RTX)
- head = insn;
- end = insn;
-
- new_bb_exclusive:
- bb_eh_end[i] = eh_list;
- create_basic_block (i++, head, end, bb_note);
- head = end = NULL_RTX;
- bb_note = NULL_RTX;
- break;
- }
- /* FALLTHRU */
-
- default:
- if (GET_RTX_CLASS (code) == 'i')
- {
- if (head == NULL_RTX)
- head = insn;
- end = insn;
- }
- break;
- }
-
- if (GET_RTX_CLASS (code) == 'i')
- {
- rtx note;
-
- /* Make a list of all labels referred to other than by jumps
- (which just don't have the REG_LABEL notes).
-
- Make a special exception for labels followed by an ADDR*VEC,
- as this would be a part of the tablejump setup code.
-
- Make a special exception for the eh_return_stub_label, which
- we know isn't part of any otherwise visible control flow. */
-
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_LABEL)
- {
- rtx lab = XEXP (note, 0), next;
-
- if (lab == eh_return_stub_label)
- ;
- else if ((next = next_nonnote_insn (lab)) != NULL
- && GET_CODE (next) == JUMP_INSN
- && (GET_CODE (PATTERN (next)) == ADDR_VEC
- || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
- ;
- else
- label_value_list
- = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
- label_value_list);
- }
- }
- }
-
- if (head != NULL_RTX)
- {
- bb_eh_end[i] = eh_list;
- create_basic_block (i++, head, end, bb_note);
- }
-
- if (i != n_basic_blocks)
- abort ();
-
- return label_value_list;
-}
-
-/* Create a new basic block consisting of the instructions between
- HEAD and END inclusive. Reuses the note and basic block struct
- in BB_NOTE, if any. */
-
-static void
-create_basic_block (index, head, end, bb_note)
- int index;
- rtx head, end, bb_note;
-{
- basic_block bb;
-
- if (bb_note
- && ! RTX_INTEGRATED_P (bb_note)
- && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
- && bb->aux == NULL)
- {
- /* If we found an existing note, thread it back onto the chain. */
-
- if (GET_CODE (head) == CODE_LABEL)
- add_insn_after (bb_note, head);
- else
- {
- add_insn_before (bb_note, head);
- head = bb_note;
- }
- }
- else
- {
- /* Otherwise we must create a note and a basic block structure.
- Since we allow basic block structs in rtl, give the struct
- the same lifetime by allocating it off the function obstack
- rather than using malloc. */
-
- bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
- memset (bb, 0, sizeof (*bb));
-
- if (GET_CODE (head) == CODE_LABEL)
- bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
- else
- {
- bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
- head = bb_note;
- }
- NOTE_BASIC_BLOCK (bb_note) = bb;
- }
-
- /* Always include the bb note in the block. */
- if (NEXT_INSN (end) == bb_note)
- end = bb_note;
-
- bb->head = head;
- bb->end = end;
- bb->index = index;
- BASIC_BLOCK (index) = bb;
-
- /* Tag the block so that we know it has been used when considering
- other basic block notes. */
- bb->aux = bb;
-}
-
-/* Records the basic block struct in BB_FOR_INSN, for every instruction
- indexed by INSN_UID. MAX is the size of the array. */
-
-static void
-compute_bb_for_insn (bb_for_insn, max)
- varray_type bb_for_insn;
- int max;
-{
- int i;
-
- for (i = 0; i < n_basic_blocks; ++i)
- {
- basic_block bb = BASIC_BLOCK (i);
- rtx insn, end;
-
- end = bb->end;
- insn = bb->head;
- while (1)
- {
- int uid = INSN_UID (insn);
- if (uid < max)
- VARRAY_BB (bb_for_insn, uid) = bb;
- if (insn == end)
- break;
- insn = NEXT_INSN (insn);
- }
- }
-}
-
-/* Free the memory associated with the edge structures. */
-
-static void
-clear_edges ()
-{
- int i;
- edge n, e;
-
- for (i = 0; i < n_basic_blocks; ++i)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- for (e = bb->succ; e ; e = n)
- {
- n = e->succ_next;
- free (e);
- }
-
- bb->succ = 0;
- bb->pred = 0;
- }
-
- for (e = ENTRY_BLOCK_PTR->succ; e ; e = n)
- {
- n = e->succ_next;
- free (e);
- }
-
- ENTRY_BLOCK_PTR->succ = 0;
- EXIT_BLOCK_PTR->pred = 0;
-}
-
-/* Identify the edges between basic blocks.
-
- NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
- that are otherwise unreachable may be reachable with a non-local goto.
-
- BB_EH_END is an array indexed by basic block number in which we record
- the list of exception regions active at the end of the basic block. */
-
-static void
-make_edges (label_value_list, bb_eh_end)
- rtx label_value_list;
- rtx *bb_eh_end;
-{
- int i;
-
- /* Assume no computed jump; revise as we create edges. */
- current_function_has_computed_jump = 0;
-
- /* By nature of the way these get numbered, block 0 is always the entry. */
- make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
-
- for (i = 0; i < n_basic_blocks; ++i)
- {
- basic_block bb = BASIC_BLOCK (i);
- rtx insn, x, eh_list;
- enum rtx_code code;
- int force_fallthru = 0;
-
- /* If we have asynchronous exceptions, scan the notes for all exception
- regions active in the block. In the normal case, we only need the
- one active at the end of the block, which is bb_eh_end[i]. */
-
- eh_list = bb_eh_end[i];
- if (asynchronous_exceptions)
- {
- for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
- {
- if (GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
- eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
- }
- }
-
- /* Now examine the last instruction of the block, and discover the
- ways we can leave the block. */
-
- insn = bb->end;
- code = GET_CODE (insn);
-
- /* A branch. */
- if (code == JUMP_INSN)
- {
- rtx tmp;
-
- /* ??? Recognize a tablejump and do the right thing. */
- if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
- && (tmp = NEXT_INSN (tmp)) != NULL_RTX
- && GET_CODE (tmp) == JUMP_INSN
- && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
- || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
- {
- rtvec vec;
- int j;
-
- if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
- vec = XVEC (PATTERN (tmp), 0);
- else
- vec = XVEC (PATTERN (tmp), 1);
-
- for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
- make_label_edge (bb, XEXP (RTVEC_ELT (vec, j), 0), 0);
-
- /* Some targets (eg, ARM) emit a conditional jump that also
- contains the out-of-range target. Scan for these and
- add an edge if necessary. */
- if ((tmp = single_set (insn)) != NULL
- && SET_DEST (tmp) == pc_rtx
- && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
- && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
- make_label_edge (bb, XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
-
-#ifdef CASE_DROPS_THROUGH
- /* Silly VAXen. The ADDR_VEC is going to be in the way of
- us naturally detecting fallthru into the next block. */
- force_fallthru = 1;
-#endif
- }
-
- /* If this is a computed jump, then mark it as reaching
- everything on the label_value_list and forced_labels list. */
- else if (computed_jump_p (insn))
- {
- current_function_has_computed_jump = 1;
-
- for (x = label_value_list; x; x = XEXP (x, 1))
- make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
-
- for (x = forced_labels; x; x = XEXP (x, 1))
- make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
- }
-
- /* Returns create an exit out. */
- else if (returnjump_p (insn))
- make_edge (bb, EXIT_BLOCK_PTR, 0);
-
- /* Otherwise, we have a plain conditional or unconditional jump. */
- else
- {
- if (! JUMP_LABEL (insn))
- abort ();
- make_label_edge (bb, JUMP_LABEL (insn), 0);
- }
- }
-
- /* If this is a CALL_INSN, then mark it as reaching the active EH
- handler for this CALL_INSN. If we're handling asynchronous
- exceptions then any insn can reach any of the active handlers.
-
- Also mark the CALL_INSN as reaching any nonlocal goto handler. */
-
- if (code == CALL_INSN || asynchronous_exceptions)
- {
- int is_call = (code == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
- handler_info *ptr;
-
- /* Use REG_EH_RETHROW and REG_EH_REGION if available. */
- /* ??? REG_EH_REGION is not generated presently. Is it
- inteded that there be multiple notes for the regions?
- or is my eh_list collection redundant with handler linking? */
-
- x = find_reg_note (insn, REG_EH_RETHROW, 0);
- if (!x)
- x = find_reg_note (insn, REG_EH_REGION, 0);
- if (x)
- {
- if (XINT (XEXP (x, 0), 0) > 0)
- {
- ptr = get_first_handler (XINT (XEXP (x, 0), 0));
- while (ptr)
- {
- make_label_edge (bb, ptr->handler_label,
- EDGE_ABNORMAL | EDGE_EH | is_call);
- ptr = ptr->next;
- }
- }
- }
- else
- {
- for (x = eh_list; x; x = XEXP (x, 1))
- {
- ptr = get_first_handler (NOTE_BLOCK_NUMBER (XEXP (x, 0)));
- while (ptr)
- {
- make_label_edge (bb, ptr->handler_label,
- EDGE_ABNORMAL | EDGE_EH | is_call);
- ptr = ptr->next;
- }
- }
- }
-
- if (code == CALL_INSN && nonlocal_goto_handler_labels)
- {
- /* ??? This could be made smarter: in some cases it's possible
- to tell that certain calls will not do a nonlocal goto.
-
- For example, if the nested functions that do the nonlocal
- gotos do not have their addresses taken, then only calls to
- those functions or to other nested functions that use them
- could possibly do nonlocal gotos. */
-
- for (x = nonlocal_goto_handler_labels; x ; x = XEXP (x, 1))
- make_label_edge (bb, XEXP (x, 0),
- EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
- }
- }
-
- /* We know something about the structure of the function __throw in
- libgcc2.c. It is the only function that ever contains eh_stub
- labels. It modifies its return address so that the last block
- returns to one of the eh_stub labels within it. So we have to
- make additional edges in the flow graph. */
- if (i + 1 == n_basic_blocks && eh_return_stub_label != 0)
- make_label_edge (bb, eh_return_stub_label, EDGE_EH);
-
- /* Find out if we can drop through to the next block. */
- insn = next_nonnote_insn (insn);
- if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
- make_edge (bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
- else if (i + 1 < n_basic_blocks)
- {
- rtx tmp = BLOCK_HEAD (i + 1);
- if (GET_CODE (tmp) == NOTE)
- tmp = next_nonnote_insn (tmp);
- if (force_fallthru || insn == tmp)
- make_edge (bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
- }
- }
-}
-
-/* Create an edge between two basic blocks. FLAGS are auxiliary information
- about the edge that is accumulated between calls. */
-
-static void
-make_edge (src, dst, flags)
- basic_block src, dst;
- int flags;
-{
- edge e;
-
- /* Make sure we don't add duplicate edges. */
-
- for (e = src->succ; e ; e = e->succ_next)
- if (e->dest == dst)
- {
- e->flags |= flags;
- return;
- }
-
- e = (edge) xcalloc (1, sizeof (*e));
-
- e->succ_next = src->succ;
- e->pred_next = dst->pred;
- e->src = src;
- e->dest = dst;
- e->flags = flags;
-
- src->succ = e;
- dst->pred = e;
-}
-
-/* Create an edge from a basic block to a label. */
-
-static void
-make_label_edge (src, label, flags)
- basic_block src;
- rtx label;
- int flags;
-{
- if (GET_CODE (label) != CODE_LABEL)
- abort ();
-
- /* If the label was never emitted, this insn is junk, but avoid a
- crash trying to refer to BLOCK_FOR_INSN (label). This can happen
- as a result of a syntax error and a diagnostic has already been
- printed. */
-
- if (INSN_UID (label) == 0)
- return;
-
- make_edge (src, BLOCK_FOR_INSN (label), flags);
-}
-
-/* Identify critical edges and set the bits appropriately. */
-static void
-mark_critical_edges ()
-{
- int i, n = n_basic_blocks;
- basic_block bb;
-
- /* We begin with the entry block. This is not terribly important now,
- but could be if a front end (Fortran) implemented alternate entry
- points. */
- bb = ENTRY_BLOCK_PTR;
- i = -1;
-
- while (1)
- {
- edge e;
-
- /* (1) Critical edges must have a source with multiple successors. */
- if (bb->succ && bb->succ->succ_next)
- {
- for (e = bb->succ; e ; e = e->succ_next)
- {
- /* (2) Critical edges must have a destination with multiple
- predecessors. Note that we know there is at least one
- predecessor -- the edge we followed to get here. */
- if (e->dest->pred->pred_next)
- e->flags |= EDGE_CRITICAL;
- else
- e->flags &= ~EDGE_CRITICAL;
- }
- }
- else
- {
- for (e = bb->succ; e ; e = e->succ_next)
- e->flags &= ~EDGE_CRITICAL;
- }
-
- if (++i >= n)
- break;
- bb = BASIC_BLOCK (i);
- }
-}
-
-/* Split a (typically critical) edge. Return the new block.
- Abort on abnormal edges.
-
- ??? The code generally expects to be called on critical edges.
- The case of a block ending in an unconditional jump to a
- block with multiple predecessors is not handled optimally. */
-
-basic_block
-split_edge (edge_in)
- edge edge_in;
-{
- basic_block old_pred, bb, old_succ;
- edge edge_out;
- rtx bb_note;
- int i;
-
- /* Abnormal edges cannot be split. */
- if ((edge_in->flags & EDGE_ABNORMAL) != 0)
- abort ();
-
- old_pred = edge_in->src;
- old_succ = edge_in->dest;
-
- /* Remove the existing edge from the destination's pred list. */
- {
- edge *pp;
- for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
- continue;
- *pp = edge_in->pred_next;
- edge_in->pred_next = NULL;
- }
-
- /* Create the new structures. */
- bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
- edge_out = (edge) xcalloc (1, sizeof (*edge_out));
-
- memset (bb, 0, sizeof (*bb));
- bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
- bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
- bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);
-
- /* ??? This info is likely going to be out of date very soon. */
- CLEAR_REG_SET (bb->local_set);
- if (old_succ->global_live_at_start)
- {
- COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
- COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
- }
- else
- {
- CLEAR_REG_SET (bb->global_live_at_start);
- CLEAR_REG_SET (bb->global_live_at_end);
- }
-
- /* Wire them up. */
- bb->pred = edge_in;
- bb->succ = edge_out;
-
- edge_in->dest = bb;
- edge_in->flags &= ~EDGE_CRITICAL;
-
- edge_out->pred_next = old_succ->pred;
- edge_out->succ_next = NULL;
- edge_out->src = bb;
- edge_out->dest = old_succ;
- edge_out->flags = EDGE_FALLTHRU;
- edge_out->probability = REG_BR_PROB_BASE;
-
- old_succ->pred = edge_out;
-
- /* Tricky case -- if there existed a fallthru into the successor
- (and we're not it) we must add a new unconditional jump around
- the new block we're actually interested in.
-
- Further, if that edge is critical, this means a second new basic
- block must be created to hold it. In order to simplify correct
- insn placement, do this before we touch the existing basic block
- ordering for the block we were really wanting. */
- if ((edge_in->flags & EDGE_FALLTHRU) == 0)
- {
- edge e;
- for (e = edge_out->pred_next; e ; e = e->pred_next)
- if (e->flags & EDGE_FALLTHRU)
- break;
-
- if (e)
- {
- basic_block jump_block;
- rtx pos;
-
- if ((e->flags & EDGE_CRITICAL) == 0)
- {
- /* Non critical -- we can simply add a jump to the end
- of the existing predecessor. */
- jump_block = e->src;
- }
- else
- {
- /* We need a new block to hold the jump. The simplest
- way to do the bulk of the work here is to recursively
- call ourselves. */
- jump_block = split_edge (e);
- e = jump_block->succ;
- }
-
- /* Now add the jump insn ... */
- pos = emit_jump_insn_after (gen_jump (old_succ->head),
- jump_block->end);
- jump_block->end = pos;
- emit_barrier_after (pos);
-
- /* ... let jump know that label is in use, ... */
- ++LABEL_NUSES (old_succ->head);
-
- /* ... and clear fallthru on the outgoing edge. */
- e->flags &= ~EDGE_FALLTHRU;
-
- /* Continue splitting the interesting edge. */
- }
- }
-
- /* Place the new block just in front of the successor. */
- VARRAY_GROW (basic_block_info, ++n_basic_blocks);
- for (i = n_basic_blocks - 1; i > old_succ->index; --i)
- {
- basic_block tmp = BASIC_BLOCK (i - 1);
- BASIC_BLOCK (i) = tmp;
- tmp->index = i;
- }
- BASIC_BLOCK (i) = bb;
- bb->index = i;
-
- /* Create the basic block note. */
- bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
- NOTE_BASIC_BLOCK (bb_note) = bb;
- bb->head = bb->end = bb_note;
-
- /* Not quite simple -- for non-fallthru edges, we must adjust the
- predecessor's jump instruction to target our new block. */
- if ((edge_in->flags & EDGE_FALLTHRU) == 0)
- {
- rtx tmp, insn = old_pred->end;
- rtx old_label = old_succ->head;
- rtx new_label = gen_label_rtx ();
-
- if (GET_CODE (insn) != JUMP_INSN)
- abort ();
-
- /* ??? Recognize a tablejump and adjust all matching cases. */
- if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
- && (tmp = NEXT_INSN (tmp)) != NULL_RTX
- && GET_CODE (tmp) == JUMP_INSN
- && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
- || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
- {
- rtvec vec;
- int j;
-
- if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
- vec = XVEC (PATTERN (tmp), 0);
- else
- vec = XVEC (PATTERN (tmp), 1);
-
- for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
- if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
- {
- RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
- --LABEL_NUSES (old_label);
- ++LABEL_NUSES (new_label);
- }
- }
- else
- {
- /* This would have indicated an abnormal edge. */
- if (computed_jump_p (insn))
- abort ();
-
- /* A return instruction can't be redirected. */
- if (returnjump_p (insn))
- abort ();
-
- /* If the insn doesn't go where we think, we're confused. */
- if (JUMP_LABEL (insn) != old_label)
- abort ();
-
- redirect_jump (insn, new_label);
- }
-
- emit_label_before (new_label, bb_note);
- bb->head = new_label;
- }
-
- return bb;
-}
-
-/* Queue instructions for insertion on an edge between two basic blocks.
- The new instructions and basic blocks (if any) will not appear in the
- CFG until commit_edge_insertions is called. */
-
-void
-insert_insn_on_edge (pattern, e)
- rtx pattern;
- edge e;
-{
- /* We cannot insert instructions on an abnormal critical edge.
- It will be easier to find the culprit if we die now. */
- if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
- == (EDGE_ABNORMAL|EDGE_CRITICAL))
- abort ();
-
- if (e->insns == NULL_RTX)
- start_sequence ();
- else
- push_to_sequence (e->insns);
-
- emit_insn (pattern);
-
- e->insns = get_insns ();
- end_sequence();
-}
-
-/* Update the CFG for the instructions queued on edge E. */
-
-static void
-commit_one_edge_insertion (e)
- edge e;
-{
- rtx before = NULL_RTX, after = NULL_RTX, tmp;
- basic_block bb;
-
- /* Figure out where to put these things. If the destination has
- one predecessor, insert there. Except for the exit block. */
- if (e->dest->pred->pred_next == NULL
- && e->dest != EXIT_BLOCK_PTR)
- {
- bb = e->dest;
-
- /* Get the location correct wrt a code label, and "nice" wrt
- a basic block note, and before everything else. */
- tmp = bb->head;
- if (GET_CODE (tmp) == CODE_LABEL)
- tmp = NEXT_INSN (tmp);
- if (GET_CODE (tmp) == NOTE
- && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BASIC_BLOCK)
- tmp = NEXT_INSN (tmp);
- if (tmp == bb->head)
- before = tmp;
- else
- after = PREV_INSN (tmp);
- }
-
- /* If the source has one successor and the edge is not abnormal,
- insert there. Except for the entry block. */
- else if ((e->flags & EDGE_ABNORMAL) == 0
- && e->src->succ->succ_next == NULL
- && e->src != ENTRY_BLOCK_PTR)
- {
- bb = e->src;
- if (GET_CODE (bb->end) == JUMP_INSN)
- {
- /* ??? Is it possible to wind up with non-simple jumps? Perhaps
- a jump with delay slots already filled? */
- if (! simplejump_p (bb->end))
- abort ();
-
- before = bb->end;
- }
- else
- {
- /* We'd better be fallthru, or we've lost track of what's what. */
- if ((e->flags & EDGE_FALLTHRU) == 0)
- abort ();
-
- after = bb->end;
- }
- }
-
- /* Otherwise we must split the edge. */
- else
- {
- bb = split_edge (e);
- after = bb->end;
- }
-
- /* Now that we've found the spot, do the insertion. */
- tmp = e->insns;
- e->insns = NULL_RTX;
- if (before)
- {
- emit_insns_before (tmp, before);
- if (before == bb->head)
- bb->head = before;
- }
- else
- {
- tmp = emit_insns_after (tmp, after);
- if (after == bb->end)
- bb->end = tmp;
- }
-}
-
-/* Update the CFG for all queued instructions. */
-
-void
-commit_edge_insertions ()
-{
- int i;
- basic_block bb;
-
- i = -1;
- bb = ENTRY_BLOCK_PTR;
- while (1)
- {
- edge e, next;
-
- for (e = bb->succ; e ; e = next)
- {
- next = e->succ_next;
- if (e->insns)
- commit_one_edge_insertion (e);
- }
-
- if (++i >= n_basic_blocks)
- break;
- bb = BASIC_BLOCK (i);
- }
-}
-
-/* Delete all unreachable basic blocks. */
-
-static void
-delete_unreachable_blocks ()
-{
- basic_block *worklist, *tos;
- int deleted_handler;
- edge e;
- int i, n;
-
- n = n_basic_blocks;
- tos = worklist = (basic_block *) alloca (sizeof (basic_block) * n);
-
- /* Use basic_block->aux as a marker. Clear them all. */
-
- for (i = 0; i < n; ++i)
- BASIC_BLOCK (i)->aux = NULL;
-
- /* Add our starting points to the worklist. Almost always there will
- be only one. It isn't inconcievable that we might one day directly
- support Fortran alternate entry points. */
-
- for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
- {
- *tos++ = e->dest;
-
- /* Mark the block with a handy non-null value. */
- e->dest->aux = e;
- }
-
- /* Iterate: find everything reachable from what we've already seen. */
-
- while (tos != worklist)
- {
- basic_block b = *--tos;
-
- for (e = b->succ; e ; e = e->succ_next)
- if (!e->dest->aux)
- {
- *tos++ = e->dest;
- e->dest->aux = e;
- }
- }
-
- /* Delete all unreachable basic blocks. Count down so that we don't
- interfere with the block renumbering that happens in delete_block. */
-
- deleted_handler = 0;
-
- for (i = n - 1; i >= 0; --i)
- {
- basic_block b = BASIC_BLOCK (i);
-
- if (b->aux != NULL)
- /* This block was found. Tidy up the mark. */
- b->aux = NULL;
- else
- deleted_handler |= delete_block (b);
- }
-
- /* Fix up edges that now fall through, or rather should now fall through
- but previously required a jump around now deleted blocks. Simplify
- the search by only examining blocks numerically adjacent, since this
- is how find_basic_blocks created them. */
-
- for (i = 1; i < n_basic_blocks; ++i)
- {
- basic_block b = BASIC_BLOCK (i - 1);
- basic_block c = BASIC_BLOCK (i);
- edge s;
-
- /* We care about simple conditional or unconditional jumps with
- a single successor.
-
- If we had a conditional branch to the next instruction when
- find_basic_blocks was called, then there will only be one
- out edge for the block which ended with the conditional
- branch (since we do not create duplicate edges).
-
- Furthermore, the edge will be marked as a fallthru because we
- merge the flags for the duplicate edges. So we do not want to
- check that the edge is not a FALLTHRU edge. */
- if ((s = b->succ) != NULL
- && s->succ_next == NULL
- && s->dest == c
- /* If the last insn is not a normal conditional jump
- (or an unconditional jump), then we can not tidy the
- fallthru edge because we can not delete the jump. */
- && GET_CODE (b->end) == JUMP_INSN
- && condjump_p (b->end))
- tidy_fallthru_edge (s, b, c);
- }
-
- /* Attempt to merge blocks as made possible by edge removal. If a block
- has only one successor, and the successor has only one predecessor,
- they may be combined. */
-
- for (i = 0; i < n_basic_blocks; )
- {
- basic_block c, b = BASIC_BLOCK (i);
- edge s;
-
- /* A loop because chains of blocks might be combineable. */
- while ((s = b->succ) != NULL
- && s->succ_next == NULL
- && (s->flags & EDGE_EH) == 0
- && (c = s->dest) != EXIT_BLOCK_PTR
- && c->pred->pred_next == NULL
- /* If the last insn is not a normal conditional jump
- (or an unconditional jump), then we can not merge
- the blocks because we can not delete the jump. */
- && GET_CODE (b->end) == JUMP_INSN
- && condjump_p (b->end)
- && merge_blocks (s, b, c))
- continue;
-
- /* Don't get confused by the index shift caused by deleting blocks. */
- i = b->index + 1;
- }
-
- /* If we deleted an exception handler, we may have EH region begin/end
- blocks to remove as well. */
- if (deleted_handler)
- delete_eh_regions ();
-}
-
-/* Find EH regions for which there is no longer a handler, and delete them. */
-
-static void
-delete_eh_regions ()
-{
- rtx insn;
-
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == NOTE)
- {
- if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) ||
- (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
- {
- int num = CODE_LABEL_NUMBER (insn);
- /* A NULL handler indicates a region is no longer needed */
- if (get_first_handler (num) == NULL)
- {
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
- }
- }
- }
-}
-
-/* Return true if NOTE is not one of the ones that must be kept paired,
- so that we may simply delete them. */
-
-static int
-can_delete_note_p (note)
- rtx note;
-{
- return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
- || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
-}
-
-/* Unlink a chain of insns between START and FINISH, leaving notes
- that must be paired. */
-
-static void
-delete_insn_chain (start, finish)
- rtx start, finish;
-{
- /* Unchain the insns one by one. It would be quicker to delete all
- of these with a single unchaining, rather than one at a time, but
- we need to keep the NOTE's. */
-
- rtx next;
-
- while (1)
- {
- next = NEXT_INSN (start);
- if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
- ;
- else if (GET_CODE (start) == CODE_LABEL && !can_delete_label_p (start))
- ;
- else
- next = flow_delete_insn (start);
-
- if (start == finish)
- break;
- start = next;
- }
-}
-
-/* Delete the insns in a (non-live) block. We physically delete every
- non-deleted-note insn, and update the flow graph appropriately.
-
- Return nonzero if we deleted an exception handler. */
-
-/* ??? Preserving all such notes strikes me as wrong. It would be nice
- to post-process the stream to remove empty blocks, loops, ranges, etc. */
-
-static int
-delete_block (b)
- basic_block b;
-{
- int deleted_handler = 0;
- rtx insn, end;
-
- /* If the head of this block is a CODE_LABEL, then it might be the
- label for an exception handler which can't be reached.
-
- We need to remove the label from the exception_handler_label list
- and remove the associated NOTE_EH_REGION_BEG and NOTE_EH_REGION_END
- notes. */
-
- insn = b->head;
-
- if (GET_CODE (insn) == CODE_LABEL)
- {
- rtx x, *prev = &exception_handler_labels;
-
- for (x = exception_handler_labels; x; x = XEXP (x, 1))
- {
- if (XEXP (x, 0) == insn)
- {
- /* Found a match, splice this label out of the EH label list. */
- *prev = XEXP (x, 1);
- XEXP (x, 1) = NULL_RTX;
- XEXP (x, 0) = NULL_RTX;
-
- /* Remove the handler from all regions */
- remove_handler (insn);
- deleted_handler = 1;
- break;
- }
- prev = &XEXP (x, 1);
- }
-
- /* This label may be referenced by code solely for its value, or
- referenced by static data, or something. We have determined
- that it is not reachable, but cannot delete the label itself.
- Save code space and continue to delete the balance of the block,
- along with properly updating the cfg. */
- if (!can_delete_label_p (insn))
- {
- /* If we've only got one of these, skip the whole deleting
- insns thing. */
- if (insn == b->end)
- goto no_delete_insns;
- insn = NEXT_INSN (insn);
- }
- }
-
- /* Selectively unlink the insn chain. Include any BARRIER that may
- follow the basic block. */
- end = next_nonnote_insn (b->end);
- if (!end || GET_CODE (end) != BARRIER)
- end = b->end;
- delete_insn_chain (insn, end);
-
-no_delete_insns:
-
- /* Remove the edges into and out of this block. Note that there may
- indeed be edges in, if we are removing an unreachable loop. */
- {
- edge e, next, *q;
-
- for (e = b->pred; e ; e = next)
- {
- for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
- continue;
- *q = e->succ_next;
- next = e->pred_next;
- free (e);
- }
- for (e = b->succ; e ; e = next)
- {
- for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
- continue;
- *q = e->pred_next;
- next = e->succ_next;
- free (e);
- }
-
- b->pred = NULL;
- b->succ = NULL;
- }
-
- /* Remove the basic block from the array, and compact behind it. */
- expunge_block (b);
-
- return deleted_handler;
-}
-
-/* Remove block B from the basic block array and compact behind it. */
-
-static void
-expunge_block (b)
- basic_block b;
-{
- int i, n = n_basic_blocks;
-
- for (i = b->index; i + 1 < n; ++i)
- {
- basic_block x = BASIC_BLOCK (i + 1);
- BASIC_BLOCK (i) = x;
- x->index = i;
- }
-
- basic_block_info->num_elements--;
- n_basic_blocks--;
-}
-
-/* Delete INSN by patching it out. Return the next insn. */
-
-static rtx
-flow_delete_insn (insn)
- rtx insn;
-{
- rtx prev = PREV_INSN (insn);
- rtx next = NEXT_INSN (insn);
-
- PREV_INSN (insn) = NULL_RTX;
- NEXT_INSN (insn) = NULL_RTX;
-
- if (prev)
- NEXT_INSN (prev) = next;
- if (next)
- PREV_INSN (next) = prev;
- else
- set_last_insn (prev);
-
- if (GET_CODE (insn) == CODE_LABEL)
- remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
-
- /* If deleting a jump, decrement the use count of the label. Deleting
- the label itself should happen in the normal course of block merging. */
- if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
- LABEL_NUSES (JUMP_LABEL (insn))--;
-
- return next;
-}
-
-/* True if a given label can be deleted. */
-
-static int
-can_delete_label_p (label)
- rtx label;
-{
- rtx x;
-
- if (LABEL_PRESERVE_P (label))
- return 0;
-
- for (x = forced_labels; x ; x = XEXP (x, 1))
- if (label == XEXP (x, 0))
- return 0;
- for (x = label_value_list; x ; x = XEXP (x, 1))
- if (label == XEXP (x, 0))
- return 0;
- for (x = exception_handler_labels; x ; x = XEXP (x, 1))
- if (label == XEXP (x, 0))
- return 0;
-
- /* User declared labels must be preserved. */
- if (LABEL_NAME (label) != 0)
- return 0;
-
- return 1;
-}
-
-/* Blocks A and B are to be merged into a single block. The insns
- are already contiguous, hence `nomove'. */
-
-static void
-merge_blocks_nomove (a, b)
- basic_block a, b;
-{
- edge e;
- rtx b_head, b_end, a_end;
- int b_empty = 0;
-
- /* If there was a CODE_LABEL beginning B, delete it. */
- b_head = b->head;
- b_end = b->end;
- if (GET_CODE (b_head) == CODE_LABEL)
- {
- /* Detect basic blocks with nothing but a label. This can happen
- in particular at the end of a function. */
- if (b_head == b_end)
- b_empty = 1;
- b_head = flow_delete_insn (b_head);
- }
-
- /* Delete the basic block note. */
- if (GET_CODE (b_head) == NOTE
- && NOTE_LINE_NUMBER (b_head) == NOTE_INSN_BASIC_BLOCK)
- {
- if (b_head == b_end)
- b_empty = 1;
- b_head = flow_delete_insn (b_head);
- }
-
- /* If there was a jump out of A, delete it. */
- a_end = a->end;
- if (GET_CODE (a_end) == JUMP_INSN)
- {
- rtx prev;
-
- prev = prev_nonnote_insn (a_end);
- if (!prev)
- prev = a->head;
-
-#ifdef HAVE_cc0
- /* If this was a conditional jump, we need to also delete
- the insn that set cc0. */
-
- if (prev && sets_cc0_p (prev))
- {
- rtx tmp = prev;
- prev = prev_nonnote_insn (prev);
- if (!prev)
- prev = a->head;
- flow_delete_insn (tmp);
- }
-#endif
-
- /* Note that a->head != a->end, since we should have at least a
- bb note plus the jump, so prev != insn. */
- flow_delete_insn (a_end);
- a_end = prev;
- }
-
- /* By definition, there should only be one successor of A, and that is
- B. Free that edge struct. */
- free (a->succ);
-
- /* Adjust the edges out of B for the new owner. */
- for (e = b->succ; e ; e = e->succ_next)
- e->src = a;
- a->succ = b->succ;
-
- /* Reassociate the insns of B with A. */
- if (!b_empty)
- {
- BLOCK_FOR_INSN (b_head) = a;
- while (b_head != b_end)
- {
- b_head = NEXT_INSN (b_head);
- BLOCK_FOR_INSN (b_head) = a;
- }
- a_end = b_head;
- }
- a->end = a_end;
-
- /* Compact the basic block array. */
- expunge_block (b);
-}
-
-/* Attempt to merge basic blocks that are potentially non-adjacent.
- Return true iff the attempt succeeded. */
-
-static int
-merge_blocks (e, b, c)
- edge e;
- basic_block b, c;
-{
- /* If B has a fallthru edge to C, no need to move anything. */
- if (!(e->flags & EDGE_FALLTHRU))
- {
- /* ??? From here on out we must make sure to not munge nesting
- of exception regions and lexical blocks. Need to think about
- these cases before this gets implemented. */
- return 0;
-
- /* If C has an outgoing fallthru, and B does not have an incoming
- fallthru, move B before C. The later clause is somewhat arbitrary,
- but avoids modifying blocks other than the two we've been given. */
-
- /* Otherwise, move C after B. If C had a fallthru, which doesn't
- happen to be the physical successor to B, insert an unconditional
- branch. If C already ended with a conditional branch, the new
- jump must go in a new basic block D. */
- }
-
- /* If a label still appears somewhere and we cannot delete the label,
- then we cannot merge the blocks. The edge was tidied already. */
- {
- rtx insn, stop = NEXT_INSN (c->head);
- for (insn = NEXT_INSN (b->end); insn != stop; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == CODE_LABEL && !can_delete_label_p (insn))
- return 0;
- }
-
- merge_blocks_nomove (b, c);
- return 1;
-}
-
-/* The given edge should potentially a fallthru edge. If that is in
- fact true, delete the unconditional jump and barriers that are in
- the way. */
-
-static void
-tidy_fallthru_edge (e, b, c)
- edge e;
- basic_block b, c;
-{
- rtx q;
-
- /* ??? In a late-running flow pass, other folks may have deleted basic
- blocks by nopping out blocks, leaving multiple BARRIERs between here
- and the target label. They ought to be chastized and fixed.
-
- We can also wind up with a sequence of undeletable labels between
- one block and the next.
-
- So search through a sequence of barriers, labels, and notes for
- the head of block C and assert that we really do fall through. */
-
- if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
- return;
-
- /* Remove what will soon cease being the jump insn from the source block.
- If block B consisted only of this single jump, turn it into a deleted
- note. */
- q = b->end;
- if (GET_CODE (q) == JUMP_INSN)
- {
-#ifdef HAVE_cc0
- /* If this was a conditional jump, we need to also delete
- the insn that set cc0. */
- if (! simplejump_p (q) && condjump_p (q))
- q = PREV_INSN (q);
-#endif
-
- if (b->head == q)
- {
- PUT_CODE (q, NOTE);
- NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (q) = 0;
- }
- else
- b->end = q = PREV_INSN (q);
- }
-
- /* Selectively unlink the sequence. */
- if (q != PREV_INSN (c->head))
- delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
-
- e->flags |= EDGE_FALLTHRU;
-}
-
-/* Discover and record the loop depth at the head of each basic block. */
-
-static void
-calculate_loop_depth (insns)
- rtx insns;
-{
- basic_block bb;
- rtx insn;
- int i = 0, depth = 1;
-
- bb = BASIC_BLOCK (i);
- for (insn = insns; insn ; insn = NEXT_INSN (insn))
- {
- if (insn == bb->head)
- {
- bb->loop_depth = depth;
- if (++i >= n_basic_blocks)
- break;
- bb = BASIC_BLOCK (i);
- }
-
- if (GET_CODE (insn) == NOTE)
- {
- if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
- depth++;
- else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
- depth--;
-
- /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. */
- if (depth == 0)
- abort ();
- }
- }
-}
-
-/* Perform data flow analysis.
- F is the first insn of the function and NREGS the number of register numbers
- in use. */
-
-void
-life_analysis (f, nregs, file, remove_dead_code)
- rtx f;
- int nregs;
- FILE *file;
- int remove_dead_code;
-{
-#ifdef ELIMINABLE_REGS
- register size_t i;
- static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
-#endif
-
- /* Record which registers will be eliminated. We use this in
- mark_used_regs. */
-
- CLEAR_HARD_REG_SET (elim_reg_set);
-
-#ifdef ELIMINABLE_REGS
- for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
- SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
-#else
- SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
-#endif
-
- /* Allocate a bitmap to be filled in by record_volatile_insns. */
- uid_volatile = BITMAP_ALLOCA ();
-
- /* We want alias analysis information for local dead store elimination. */
- init_alias_analysis ();
- life_analysis_1 (f, nregs, remove_dead_code);
- end_alias_analysis ();
-
- if (file)
- dump_flow_info (file);
-
- BITMAP_FREE (uid_volatile);
- free_basic_block_vars (1);
-}
-
-/* Free the variables allocated by find_basic_blocks.
-
- KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
-
-void
-free_basic_block_vars (keep_head_end_p)
- int keep_head_end_p;
-{
- if (basic_block_for_insn)
- {
- VARRAY_FREE (basic_block_for_insn);
- basic_block_for_insn = NULL;
- }
-
- if (! keep_head_end_p)
- {
- clear_edges ();
- VARRAY_FREE (basic_block_info);
- n_basic_blocks = 0;
-
- ENTRY_BLOCK_PTR->aux = NULL;
- ENTRY_BLOCK_PTR->global_live_at_end = NULL;
- EXIT_BLOCK_PTR->aux = NULL;
- EXIT_BLOCK_PTR->global_live_at_start = NULL;
- }
-}
-
-/* Return nonzero if the destination of SET equals the source. */
-static int
-set_noop_p (set)
- rtx set;
-{
- rtx src = SET_SRC (set);
- rtx dst = SET_DEST (set);
- if (GET_CODE (src) == REG && GET_CODE (dst) == REG
- && REGNO (src) == REGNO (dst))
- return 1;
- if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG
- || SUBREG_WORD (src) != SUBREG_WORD (dst))
- return 0;
- src = SUBREG_REG (src);
- dst = SUBREG_REG (dst);
- if (GET_CODE (src) == REG && GET_CODE (dst) == REG
- && REGNO (src) == REGNO (dst))
- return 1;
- return 0;
-}
-
-/* Return nonzero if an insn consists only of SETs, each of which only sets a
- value to itself. */
-static int
-noop_move_p (insn)
- rtx insn;
-{
- rtx pat = PATTERN (insn);
-
- /* Insns carrying these notes are useful later on. */
- if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
- return 0;
-
- if (GET_CODE (pat) == SET && set_noop_p (pat))
- return 1;
-
- if (GET_CODE (pat) == PARALLEL)
- {
- int i;
- /* If nothing but SETs of registers to themselves,
- this insn can also be deleted. */
- for (i = 0; i < XVECLEN (pat, 0); i++)
- {
- rtx tem = XVECEXP (pat, 0, i);
-
- if (GET_CODE (tem) == USE
- || GET_CODE (tem) == CLOBBER)
- continue;
-
- if (GET_CODE (tem) != SET || ! set_noop_p (tem))
- return 0;
- }
-
- return 1;
- }
- return 0;
-}
-
-static void
-notice_stack_pointer_modification (x, pat)
- rtx x;
- rtx pat ATTRIBUTE_UNUSED;
-{
- if (x == stack_pointer_rtx
- /* The stack pointer is only modified indirectly as the result
- of a push until later in flow. See the comments in rtl.texi
- regarding Embedded Side-Effects on Addresses. */
- || (GET_CODE (x) == MEM
- && (GET_CODE (XEXP (x, 0)) == PRE_DEC
- || GET_CODE (XEXP (x, 0)) == PRE_INC
- || GET_CODE (XEXP (x, 0)) == POST_DEC
- || GET_CODE (XEXP (x, 0)) == POST_INC)
- && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
- current_function_sp_is_unchanging = 0;
-}
-
-/* Record which insns refer to any volatile memory
- or for any reason can't be deleted just because they are dead stores.
- Also, delete any insns that copy a register to itself.
- And see if the stack pointer is modified. */
-static void
-record_volatile_insns (f)
- rtx f;
-{
- rtx insn;
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- enum rtx_code code1 = GET_CODE (insn);
- if (code1 == CALL_INSN)
- SET_INSN_VOLATILE (insn);
- else if (code1 == INSN || code1 == JUMP_INSN)
- {
- if (GET_CODE (PATTERN (insn)) != USE
- && volatile_refs_p (PATTERN (insn)))
- SET_INSN_VOLATILE (insn);
-
- /* A SET that makes space on the stack cannot be dead.
- (Such SETs occur only for allocating variable-size data,
- so they will always have a PLUS or MINUS according to the
- direction of stack growth.)
- Even if this function never uses this stack pointer value,
- signal handlers do! */
- else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
-#ifdef STACK_GROWS_DOWNWARD
- && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
-#else
- && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
-#endif
- && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
- SET_INSN_VOLATILE (insn);
-
- /* Delete (in effect) any obvious no-op moves. */
- else if (noop_move_p (insn))
- {
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
- }
- }
-
- /* Check if insn modifies the stack pointer. */
- if ( current_function_sp_is_unchanging
- && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- note_stores (PATTERN (insn), notice_stack_pointer_modification);
- }
-}
-
-/* Mark those regs which are needed at the end of the function as live
- at the end of the last basic block. */
-static void
-mark_regs_live_at_end (set)
- regset set;
-{
- int i;
-
- /* If exiting needs the right stack value, consider the stack pointer
- live at the end of the function. */
- if (! EXIT_IGNORE_STACK
- || (! FRAME_POINTER_REQUIRED
- && ! current_function_calls_alloca
- && flag_omit_frame_pointer)
- || current_function_sp_is_unchanging)
- {
- SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
- }
-
- /* Mark the frame pointer if needed at the end of the function. If
- we end up eliminating it, it will be removed from the live list
- of each basic block by reload. */
-
- if (! reload_completed || frame_pointer_needed)
- {
- SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- /* If they are different, also mark the hard frame pointer as live */
- SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
-#endif
- }
-
- /* Mark all global registers, and all registers used by the epilogue
- as being live at the end of the function since they may be
- referenced by our caller. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (global_regs[i]
-#ifdef EPILOGUE_USES
- || EPILOGUE_USES (i)
-#endif
- )
- SET_REGNO_REG_SET (set, i);
-
- /* ??? Mark function return value here rather than as uses. */
-}
-
-/* Determine which registers are live at the start of each
- basic block of the function whose first insn is F.
- NREGS is the number of registers used in F.
- We allocate the vector basic_block_live_at_start
- and the regsets that it points to, and fill them with the data.
- regset_size and regset_bytes are also set here. */
-
-static void
-life_analysis_1 (f, nregs, remove_dead_code)
- rtx f;
- int nregs;
- int remove_dead_code;
-{
- int first_pass;
- int changed;
- register int i;
- char save_regs_ever_live[FIRST_PSEUDO_REGISTER];
- regset *new_live_at_end;
-
- struct obstack flow_obstack;
-
- gcc_obstack_init (&flow_obstack);
-
- max_regno = nregs;
-
- /* Allocate and zero out many data structures
- that will record the data from lifetime analysis. */
-
- allocate_reg_life_data ();
- allocate_bb_life_data ();
-
- reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
- memset (reg_next_use, 0, nregs * sizeof (rtx));
-
- /* Set up regset-vectors used internally within this function.
- Their meanings are documented above, with their declarations. */
-
- new_live_at_end = (regset *) alloca ((n_basic_blocks + 1) * sizeof (regset));
- init_regset_vector (new_live_at_end, n_basic_blocks + 1, &flow_obstack);
-
- /* Stick these vectors into the AUX field of the basic block, so that
- we don't have to keep going through the index. */
-
- for (i = 0; i < n_basic_blocks; ++i)
- BASIC_BLOCK (i)->aux = new_live_at_end[i];
- ENTRY_BLOCK_PTR->aux = new_live_at_end[i];
-
- /* Assume that the stack pointer is unchanging if alloca hasn't been used.
- This will be cleared by record_volatile_insns if it encounters an insn
- which modifies the stack pointer. */
- current_function_sp_is_unchanging = !current_function_calls_alloca;
-
- record_volatile_insns (f);
-
- if (n_basic_blocks > 0)
- {
- regset theend;
- register edge e;
-
- theend = EXIT_BLOCK_PTR->global_live_at_start;
- mark_regs_live_at_end (theend);
-
- /* Propogate this exit data to each of EXIT's predecessors. */
- for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
- {
- COPY_REG_SET (e->src->global_live_at_end, theend);
- COPY_REG_SET ((regset) e->src->aux, theend);
- }
- }
-
- /* The post-reload life analysis have (on a global basis) the same registers
- live as was computed by reload itself.
-
- Otherwise elimination offsets and such may be incorrect.
-
- Reload will make some registers as live even though they do not appear
- in the rtl. */
- if (reload_completed)
- memcpy (save_regs_ever_live, regs_ever_live, sizeof (regs_ever_live));
- memset (regs_ever_live, 0, sizeof regs_ever_live);
-
- /* Propagate life info through the basic blocks
- around the graph of basic blocks.
-
- This is a relaxation process: each time a new register
- is live at the end of the basic block, we must scan the block
- to determine which registers are, as a consequence, live at the beginning
- of that block. These registers must then be marked live at the ends
- of all the blocks that can transfer control to that block.
- The process continues until it reaches a fixed point. */
-
- first_pass = 1;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (i = n_basic_blocks - 1; i >= 0; i--)
- {
- basic_block bb = BASIC_BLOCK (i);
- int consider = first_pass;
- int must_rescan = first_pass;
- register int j;
-
- if (!first_pass)
- {
- /* Set CONSIDER if this block needs thinking about at all
- (that is, if the regs live now at the end of it
- are not the same as were live at the end of it when
- we last thought about it).
- Set must_rescan if it needs to be thought about
- instruction by instruction (that is, if any additional
- reg that is live at the end now but was not live there before
- is one of the significant regs of this basic block). */
-
- EXECUTE_IF_AND_COMPL_IN_REG_SET
- ((regset) bb->aux, bb->global_live_at_end, 0, j,
- {
- consider = 1;
- if (REGNO_REG_SET_P (bb->local_set, j))
- {
- must_rescan = 1;
- goto done;
- }
- });
- done:
- if (! consider)
- continue;
- }
-
- /* The live_at_start of this block may be changing,
- so another pass will be required after this one. */
- changed = 1;
-
- if (! must_rescan)
- {
- /* No complete rescan needed;
- just record those variables newly known live at end
- as live at start as well. */
- IOR_AND_COMPL_REG_SET (bb->global_live_at_start,
- (regset) bb->aux,
- bb->global_live_at_end);
-
- IOR_AND_COMPL_REG_SET (bb->global_live_at_end,
- (regset) bb->aux,
- bb->global_live_at_end);
- }
- else
- {
- /* Update the basic_block_live_at_start
- by propagation backwards through the block. */
- COPY_REG_SET (bb->global_live_at_end, (regset) bb->aux);
- COPY_REG_SET (bb->global_live_at_start,
- bb->global_live_at_end);
- propagate_block (bb->global_live_at_start,
- bb->head, bb->end, 0,
- first_pass ? bb->local_set : (regset) 0,
- i, remove_dead_code);
- }
-
- /* Update the new_live_at_end's of the block's predecessors. */
- {
- register edge e;
-
- for (e = bb->pred; e ; e = e->pred_next)
- IOR_REG_SET ((regset) e->src->aux, bb->global_live_at_start);
- }
-
-#ifdef USE_C_ALLOCA
- alloca (0);
-#endif
- }
- first_pass = 0;
- }
-
- /* The only pseudos that are live at the beginning of the function are
- those that were not set anywhere in the function. local-alloc doesn't
- know how to handle these correctly, so mark them as not local to any
- one basic block. */
-
- if (n_basic_blocks > 0)
- EXECUTE_IF_SET_IN_REG_SET (BASIC_BLOCK (0)->global_live_at_start,
- FIRST_PSEUDO_REGISTER, i,
- {
- REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
- });
-
- /* Now the life information is accurate. Make one more pass over each
- basic block to delete dead stores, create autoincrement addressing
- and record how many times each register is used, is set, or dies. */
-
- for (i = 0; i < n_basic_blocks; i++)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- /* We start with global_live_at_end to determine which stores are
- dead. This process is destructive, and we wish to preserve the
- contents of global_live_at_end for posterity. Fortunately,
- new_live_at_end, due to the way we converged on a solution,
- contains a duplicate of global_live_at_end that we can kill. */
- propagate_block ((regset) bb->aux, bb->head, bb->end, 1, (regset) 0, i, remove_dead_code);
-
-#ifdef USE_C_ALLOCA
- alloca (0);
-#endif
- }
-
- /* We have a problem with any pseudoreg that lives across the setjmp.
- ANSI says that if a user variable does not change in value between
- the setjmp and the longjmp, then the longjmp preserves it. This
- includes longjmp from a place where the pseudo appears dead.
- (In principle, the value still exists if it is in scope.)
- If the pseudo goes in a hard reg, some other value may occupy
- that hard reg where this pseudo is dead, thus clobbering the pseudo.
- Conclusion: such a pseudo must not go in a hard reg. */
- EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
- FIRST_PSEUDO_REGISTER, i,
- {
- if (regno_reg_rtx[i] != 0)
- {
- REG_LIVE_LENGTH (i) = -1;
- REG_BASIC_BLOCK (i) = -1;
- }
- });
-
- /* Restore regs_ever_live that was provided by reload. */
- if (reload_completed)
- memcpy (regs_ever_live, save_regs_ever_live, sizeof (regs_ever_live));
-
- free_regset_vector (new_live_at_end, n_basic_blocks);
- obstack_free (&flow_obstack, NULL_PTR);
-
- for (i = 0; i < n_basic_blocks; ++i)
- BASIC_BLOCK (i)->aux = NULL;
- ENTRY_BLOCK_PTR->aux = NULL;
-}
-
-/* Subroutines of life analysis. */
-
-/* Allocate the permanent data structures that represent the results
- of life analysis. Not static since used also for stupid life analysis. */
-
-void
-allocate_bb_life_data ()
-{
- register int i;
-
- for (i = 0; i < n_basic_blocks; i++)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
- bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
- bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);
- }
-
- ENTRY_BLOCK_PTR->global_live_at_end
- = OBSTACK_ALLOC_REG_SET (function_obstack);
- EXIT_BLOCK_PTR->global_live_at_start
- = OBSTACK_ALLOC_REG_SET (function_obstack);
-
- regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
-}
-
-void
-allocate_reg_life_data ()
-{
- int i;
-
- /* Recalculate the register space, in case it has grown. Old style
- vector oriented regsets would set regset_{size,bytes} here also. */
- allocate_reg_info (max_regno, FALSE, FALSE);
-
- /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
- information, explicitly reset it here. The allocation should have
- already happened on the previous reg_scan pass. Make sure in case
- some more registers were allocated. */
- for (i = 0; i < max_regno; i++)
- REG_N_SETS (i) = 0;
-}
-
-/* Make each element of VECTOR point at a regset. The vector has
- NELTS elements, and space is allocated from the ALLOC_OBSTACK
- obstack. */
-
-static void
-init_regset_vector (vector, nelts, alloc_obstack)
- regset *vector;
- int nelts;
- struct obstack *alloc_obstack;
-{
- register int i;
-
- for (i = 0; i < nelts; i++)
- {
- vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
- CLEAR_REG_SET (vector[i]);
- }
-}
-
-/* Release any additional space allocated for each element of VECTOR point
- other than the regset header itself. The vector has NELTS elements. */
-
-void
-free_regset_vector (vector, nelts)
- regset *vector;
- int nelts;
-{
- register int i;
-
- for (i = 0; i < nelts; i++)
- FREE_REG_SET (vector[i]);
-}
-
-/* Compute the registers live at the beginning of a basic block
- from those live at the end.
-
- When called, OLD contains those live at the end.
- On return, it contains those live at the beginning.
- FIRST and LAST are the first and last insns of the basic block.
-
- FINAL is nonzero if we are doing the final pass which is not
- for computing the life info (since that has already been done)
- but for acting on it. On this pass, we delete dead stores,
- set up the logical links and dead-variables lists of instructions,
- and merge instructions for autoincrement and autodecrement addresses.
-
- SIGNIFICANT is nonzero only the first time for each basic block.
- If it is nonzero, it points to a regset in which we store
- a 1 for each register that is set within the block.
-
- BNUM is the number of the basic block. */
-
-static void
-propagate_block (old, first, last, final, significant, bnum, remove_dead_code)
- register regset old;
- rtx first;
- rtx last;
- int final;
- regset significant;
- int bnum;
- int remove_dead_code;
-{
- register rtx insn;
- rtx prev;
- regset live;
- regset dead;
-
- /* Find the loop depth for this block. Ignore loop level changes in the
- middle of the basic block -- for register allocation purposes, the
- important uses will be in the blocks wholely contained within the loop
- not in the loop pre-header or post-trailer. */
- loop_depth = BASIC_BLOCK (bnum)->loop_depth;
-
- dead = ALLOCA_REG_SET ();
- live = ALLOCA_REG_SET ();
-
- cc0_live = 0;
- mem_set_list = NULL_RTX;
-
- if (final)
- {
- register int i;
-
- /* Process the regs live at the end of the block.
- Mark them as not local to any one basic block. */
- EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
- {
- REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
- });
- }
-
- /* Scan the block an insn at a time from end to beginning. */
-
- for (insn = last; ; insn = prev)
- {
- prev = PREV_INSN (insn);
-
- if (GET_CODE (insn) == NOTE)
- {
- /* If this is a call to `setjmp' et al,
- warn if any non-volatile datum is live. */
-
- if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
- IOR_REG_SET (regs_live_at_setjmp, old);
- }
-
- /* Update the life-status of regs for this insn.
- First DEAD gets which regs are set in this insn
- then LIVE gets which regs are used in this insn.
- Then the regs live before the insn
- are those live after, with DEAD regs turned off,
- and then LIVE regs turned on. */
-
- else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- register int i;
- rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
- int insn_is_dead = 0;
- int libcall_is_dead = 0;
-
- if (remove_dead_code)
- {
- insn_is_dead = (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn))
- /* Don't delete something that refers to volatile storage! */
- && ! INSN_VOLATILE (insn));
- libcall_is_dead = (insn_is_dead && note != 0
- && libcall_dead_p (PATTERN (insn), old, note, insn));
- }
-
- /* If an instruction consists of just dead store(s) on final pass,
- "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
- We could really delete it with delete_insn, but that
- can cause trouble for first or last insn in a basic block. */
- if (final && insn_is_dead)
- {
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
-
- /* CC0 is now known to be dead. Either this insn used it,
- in which case it doesn't anymore, or clobbered it,
- so the next insn can't use it. */
- cc0_live = 0;
-
- /* If this insn is copying the return value from a library call,
- delete the entire library call. */
- if (libcall_is_dead)
- {
- rtx first = XEXP (note, 0);
- rtx p = insn;
- while (INSN_DELETED_P (first))
- first = NEXT_INSN (first);
- while (p != first)
- {
- p = PREV_INSN (p);
- PUT_CODE (p, NOTE);
- NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (p) = 0;
- }
- }
- goto flushed;
- }
-
- CLEAR_REG_SET (dead);
- CLEAR_REG_SET (live);
-
- /* See if this is an increment or decrement that can be
- merged into a following memory address. */
-#ifdef AUTO_INC_DEC
- {
- register rtx x = single_set (insn);
-
- /* Does this instruction increment or decrement a register? */
- if (!reload_completed
- && final && x != 0
- && GET_CODE (SET_DEST (x)) == REG
- && (GET_CODE (SET_SRC (x)) == PLUS
- || GET_CODE (SET_SRC (x)) == MINUS)
- && XEXP (SET_SRC (x), 0) == SET_DEST (x)
- && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- /* Ok, look for a following memory ref we can combine with.
- If one is found, change the memory ref to a PRE_INC
- or PRE_DEC, cancel this insn, and return 1.
- Return 0 if nothing has been done. */
- && try_pre_increment_1 (insn))
- goto flushed;
- }
-#endif /* AUTO_INC_DEC */
-
- /* If this is not the final pass, and this insn is copying the
- value of a library call and it's dead, don't scan the
- insns that perform the library call, so that the call's
- arguments are not marked live. */
- if (libcall_is_dead)
- {
- /* Mark the dest reg as `significant'. */
- mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
-
- insn = XEXP (note, 0);
- prev = PREV_INSN (insn);
- }
- else if (GET_CODE (PATTERN (insn)) == SET
- && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
- && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
- && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
- && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
- /* We have an insn to pop a constant amount off the stack.
- (Such insns use PLUS regardless of the direction of the stack,
- and any insn to adjust the stack by a constant is always a pop.)
- These insns, if not dead stores, have no effect on life. */
- ;
- else
- {
- /* Any regs live at the time of a call instruction
- must not go in a register clobbered by calls.
- Find all regs now live and record this for them. */
-
- if (GET_CODE (insn) == CALL_INSN && final)
- EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
- {
- REG_N_CALLS_CROSSED (i)++;
- });
-
- /* LIVE gets the regs used in INSN;
- DEAD gets those set by it. Dead insns don't make anything
- live. */
-
- mark_set_regs (old, dead, PATTERN (insn),
- final ? insn : NULL_RTX, significant);
-
- /* If an insn doesn't use CC0, it becomes dead since we
- assume that every insn clobbers it. So show it dead here;
- mark_used_regs will set it live if it is referenced. */
- cc0_live = 0;
-
- if (! insn_is_dead)
- mark_used_regs (old, live, PATTERN (insn), final, insn);
-
- /* Sometimes we may have inserted something before INSN (such as
- a move) when we make an auto-inc. So ensure we will scan
- those insns. */
-#ifdef AUTO_INC_DEC
- prev = PREV_INSN (insn);
-#endif
-
- if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
- {
- register int i;
-
- rtx note;
-
- for (note = CALL_INSN_FUNCTION_USAGE (insn);
- note;
- note = XEXP (note, 1))
- if (GET_CODE (XEXP (note, 0)) == USE)
- mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
- final, insn);
-
- /* Each call clobbers all call-clobbered regs that are not
- global or fixed. Note that the function-value reg is a
- call-clobbered reg, and mark_set_regs has already had
- a chance to handle it. */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i] && ! global_regs[i]
- && ! fixed_regs[i])
- SET_REGNO_REG_SET (dead, i);
-
- /* The stack ptr is used (honorarily) by a CALL insn. */
- SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
-
- /* Calls may also reference any of the global registers,
- so they are made live. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (global_regs[i])
- mark_used_regs (old, live,
- gen_rtx_REG (reg_raw_mode[i], i),
- final, insn);
-
- /* Calls also clobber memory. */
- mem_set_list = NULL_RTX;
- }
-
- /* Update OLD for the registers used or set. */
- AND_COMPL_REG_SET (old, dead);
- IOR_REG_SET (old, live);
-
- }
-
- /* On final pass, update counts of how many insns each reg is live
- at. */
- if (final)
- EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
- { REG_LIVE_LENGTH (i)++; });
- }
- flushed: ;
- if (insn == first)
- break;
- }
-
- FREE_REG_SET (dead);
- FREE_REG_SET (live);
-}
-
-/* Return 1 if X (the body of an insn, or part of it) is just dead stores
- (SET expressions whose destinations are registers dead after the insn).
- NEEDED is the regset that says which regs are alive after the insn.
-
- Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
-
- If X is the entire body of an insn, NOTES contains the reg notes
- pertaining to the insn. */
-
-static int
-insn_dead_p (x, needed, call_ok, notes)
- rtx x;
- regset needed;
- int call_ok;
- rtx notes ATTRIBUTE_UNUSED;
-{
- enum rtx_code code = GET_CODE (x);
-
-#ifdef AUTO_INC_DEC
- /* If flow is invoked after reload, we must take existing AUTO_INC
- expresions into account. */
- if (reload_completed)
- {
- for ( ; notes; notes = XEXP (notes, 1))
- {
- if (REG_NOTE_KIND (notes) == REG_INC)
- {
- int regno = REGNO (XEXP (notes, 0));
-
- /* Don't delete insns to set global regs. */
- if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
- || REGNO_REG_SET_P (needed, regno))
- return 0;
- }
- }
- }
-#endif
-
- /* If setting something that's a reg or part of one,
- see if that register's altered value will be live. */
-
- if (code == SET)
- {
- rtx r = SET_DEST (x);
-
- /* A SET that is a subroutine call cannot be dead. */
- if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
- return 0;
-
-#ifdef HAVE_cc0
- if (GET_CODE (r) == CC0)
- return ! cc0_live;
-#endif
-
- if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r))
- {
- rtx temp;
- /* Walk the set of memory locations we are currently tracking
- and see if one is an identical match to this memory location.
- If so, this memory write is dead (remember, we're walking
- backwards from the end of the block to the start. */
- temp = mem_set_list;
- while (temp)
- {
- if (rtx_equal_p (XEXP (temp, 0), r))
- return 1;
- temp = XEXP (temp, 1);
- }
- }
-
- while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART
- || GET_CODE (r) == ZERO_EXTRACT)
- r = SUBREG_REG (r);
-
- if (GET_CODE (r) == REG)
- {
- int regno = REGNO (r);
-
- /* Don't delete insns to set global regs. */
- if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
- /* Make sure insns to set frame pointer aren't deleted. */
- || (regno == FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed))
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- || (regno == HARD_FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed))
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- /* Make sure insns to set arg pointer are never deleted
- (if the arg pointer isn't fixed, there will be a USE for
- it, so we can treat it normally). */
- || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
- || REGNO_REG_SET_P (needed, regno))
- return 0;
-
- /* If this is a hard register, verify that subsequent words are
- not needed. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
-
- while (--n > 0)
- if (REGNO_REG_SET_P (needed, regno+n))
- return 0;
- }
-
- return 1;
- }
- }
-
- /* If performing several activities,
- insn is dead if each activity is individually dead.
- Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
- that's inside a PARALLEL doesn't make the insn worth keeping. */
- else if (code == PARALLEL)
- {
- int i = XVECLEN (x, 0);
-
- for (i--; i >= 0; i--)
- if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
- && GET_CODE (XVECEXP (x, 0, i)) != USE
- && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX))
- return 0;
-
- return 1;
- }
-
- /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
- is not necessarily true for hard registers. */
- else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
- && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0))))
- return 1;
-
- /* We do not check other CLOBBER or USE here. An insn consisting of just
- a CLOBBER or just a USE should not be deleted. */
- return 0;
-}
-
-/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
- return 1 if the entire library call is dead.
- This is true if X copies a register (hard or pseudo)
- and if the hard return reg of the call insn is dead.
- (The caller should have tested the destination of X already for death.)
-
- If this insn doesn't just copy a register, then we don't
- have an ordinary libcall. In that case, cse could not have
- managed to substitute the source for the dest later on,
- so we can assume the libcall is dead.
-
- NEEDED is the bit vector of pseudoregs live before this insn.
- NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
-
-static int
-libcall_dead_p (x, needed, note, insn)
- rtx x;
- regset needed;
- rtx note;
- rtx insn;
-{
- register RTX_CODE code = GET_CODE (x);
-
- if (code == SET)
- {
- register rtx r = SET_SRC (x);
- if (GET_CODE (r) == REG)
- {
- rtx call = XEXP (note, 0);
- rtx call_pat;
- register int i;
-
- /* Find the call insn. */
- while (call != insn && GET_CODE (call) != CALL_INSN)
- call = NEXT_INSN (call);
-
- /* If there is none, do nothing special,
- since ordinary death handling can understand these insns. */
- if (call == insn)
- return 0;
-
- /* See if the hard reg holding the value is dead.
- If this is a PARALLEL, find the call within it. */
- call_pat = PATTERN (call);
- if (GET_CODE (call_pat) == PARALLEL)
- {
- for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
- && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
- break;
-
- /* This may be a library call that is returning a value
- via invisible pointer. Do nothing special, since
- ordinary death handling can understand these insns. */
- if (i < 0)
- return 0;
-
- call_pat = XVECEXP (call_pat, 0, i);
- }
-
- return insn_dead_p (call_pat, needed, 1, REG_NOTES (call));
- }
- }
- return 1;
-}
-
-/* Return 1 if register REGNO was used before it was set, i.e. if it is
- live at function entry. Don't count global register variables, variables
- in registers that can be used for function arg passing, or variables in
- fixed hard registers. */
-
-int
-regno_uninitialized (regno)
- int regno;
-{
- if (n_basic_blocks == 0
- || (regno < FIRST_PSEUDO_REGISTER
- && (global_regs[regno]
- || fixed_regs[regno]
- || FUNCTION_ARG_REGNO_P (regno))))
- return 0;
-
- return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
-}
-
-/* 1 if register REGNO was alive at a place where `setjmp' was called
- and was set more than once or is an argument.
- Such regs may be clobbered by `longjmp'. */
-
-int
-regno_clobbered_at_setjmp (regno)
- int regno;
-{
- if (n_basic_blocks == 0)
- return 0;
-
- return ((REG_N_SETS (regno) > 1
- || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
- && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
-}
-
-/* INSN references memory, possibly using autoincrement addressing modes.
- Find any entries on the mem_set_list that need to be invalidated due
- to an address change. */
-static void
-invalidate_mems_from_autoinc (insn)
- rtx insn;
-{
- rtx note = REG_NOTES (insn);
- for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
- {
- if (REG_NOTE_KIND (note) == REG_INC)
- {
- rtx temp = mem_set_list;
- rtx prev = NULL_RTX;
-
- while (temp)
- {
- if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
- {
- /* Splice temp out of list. */
- if (prev)
- XEXP (prev, 1) = XEXP (temp, 1);
- else
- mem_set_list = XEXP (temp, 1);
- }
- else
- prev = temp;
- temp = XEXP (temp, 1);
- }
- }
- }
-}
-
-/* Process the registers that are set within X.
- Their bits are set to 1 in the regset DEAD,
- because they are dead prior to this insn.
-
- If INSN is nonzero, it is the insn being processed
- and the fact that it is nonzero implies this is the FINAL pass
- in propagate_block. In this case, various info about register
- usage is stored, LOG_LINKS fields of insns are set up. */
-
-static void
-mark_set_regs (needed, dead, x, insn, significant)
- regset needed;
- regset dead;
- rtx x;
- rtx insn;
- regset significant;
-{
- register RTX_CODE code = GET_CODE (x);
-
- if (code == SET || code == CLOBBER)
- mark_set_1 (needed, dead, x, insn, significant);
- else if (code == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET || code == CLOBBER)
- mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
- }
- }
-}
-
-/* Process a single SET rtx, X. */
-
-static void
-mark_set_1 (needed, dead, x, insn, significant)
- regset needed;
- regset dead;
- rtx x;
- rtx insn;
- regset significant;
-{
- register int regno;
- register rtx reg = SET_DEST (x);
-
- /* Some targets place small structures in registers for
- return values of functions. We have to detect this
- case specially here to get correct flow information. */
- if (GET_CODE (reg) == PARALLEL
- && GET_MODE (reg) == BLKmode)
- {
- register int i;
-
- for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
- mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant);
- return;
- }
-
- /* Modifying just one hardware register of a multi-reg value
- or just a byte field of a register
- does not mean the value from before this insn is now dead.
- But it does mean liveness of that register at the end of the block
- is significant.
-
- Within mark_set_1, however, we treat it as if the register is
- indeed modified. mark_used_regs will, however, also treat this
- register as being used. Thus, we treat these insns as setting a
- new value for the register as a function of its old value. This
- cases LOG_LINKS to be made appropriately and this will help combine. */
-
- while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
- || GET_CODE (reg) == SIGN_EXTRACT
- || GET_CODE (reg) == STRICT_LOW_PART)
- reg = XEXP (reg, 0);
-
- /* If this set is a MEM, then it kills any aliased writes.
- If this set is a REG, then it kills any MEMs which use the reg. */
- if (GET_CODE (reg) == MEM
- || GET_CODE (reg) == REG)
- {
- rtx temp = mem_set_list;
- rtx prev = NULL_RTX;
-
- while (temp)
- {
- if ((GET_CODE (reg) == MEM
- && output_dependence (XEXP (temp, 0), reg))
- || (GET_CODE (reg) == REG
- && reg_overlap_mentioned_p (reg, XEXP (temp, 0))))
- {
- /* Splice this entry out of the list. */
- if (prev)
- XEXP (prev, 1) = XEXP (temp, 1);
- else
- mem_set_list = XEXP (temp, 1);
- }
- else
- prev = temp;
- temp = XEXP (temp, 1);
- }
- }
-
- /* If the memory reference had embedded side effects (autoincrement
- address modes. Then we may need to kill some entries on the
- memory set list. */
- if (insn && GET_CODE (reg) == MEM)
- invalidate_mems_from_autoinc (insn);
-
- if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
- /* We do not know the size of a BLKmode store, so we do not track
- them for redundant store elimination. */
- && GET_MODE (reg) != BLKmode
- /* There are no REG_INC notes for SP, so we can't assume we'll see
- everything that invalidates it. To be safe, don't eliminate any
- stores though SP; none of them should be redundant anyway. */
- && ! reg_mentioned_p (stack_pointer_rtx, reg))
- mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list);
-
- if (GET_CODE (reg) == REG
- && (regno = REGNO (reg), ! (regno == FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed)))
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- && ! (regno == HARD_FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed))
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
- && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
- /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
- {
- int some_needed = REGNO_REG_SET_P (needed, regno);
- int some_not_needed = ! some_needed;
-
- /* Mark it as a significant register for this basic block. */
- if (significant)
- SET_REGNO_REG_SET (significant, regno);
-
- /* Mark it as dead before this insn. */
- SET_REGNO_REG_SET (dead, regno);
-
- /* A hard reg in a wide mode may really be multiple registers.
- If so, mark all of them just like the first. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int n;
-
- /* Nothing below is needed for the stack pointer; get out asap.
- Eg, log links aren't needed, since combine won't use them. */
- if (regno == STACK_POINTER_REGNUM)
- return;
-
- n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
- while (--n > 0)
- {
- int regno_n = regno + n;
- int needed_regno = REGNO_REG_SET_P (needed, regno_n);
- if (significant)
- SET_REGNO_REG_SET (significant, regno_n);
-
- SET_REGNO_REG_SET (dead, regno_n);
- some_needed |= needed_regno;
- some_not_needed |= ! needed_regno;
- }
- }
- /* Additional data to record if this is the final pass. */
- if (insn)
- {
- register rtx y = reg_next_use[regno];
- register int blocknum = BLOCK_NUM (insn);
-
- /* If this is a hard reg, record this function uses the reg. */
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- register int i;
- int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
-
- for (i = regno; i < endregno; i++)
- {
- /* The next use is no longer "next", since a store
- intervenes. */
- reg_next_use[i] = 0;
-
- regs_ever_live[i] = 1;
- REG_N_SETS (i)++;
- }
- }
- else
- {
- /* The next use is no longer "next", since a store
- intervenes. */
- reg_next_use[regno] = 0;
-
- /* Keep track of which basic blocks each reg appears in. */
-
- if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
- REG_BASIC_BLOCK (regno) = blocknum;
- else if (REG_BASIC_BLOCK (regno) != blocknum)
- REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
-
- /* Count (weighted) references, stores, etc. This counts a
- register twice if it is modified, but that is correct. */
- REG_N_SETS (regno)++;
-
- REG_N_REFS (regno) += loop_depth;
-
- /* The insns where a reg is live are normally counted
- elsewhere, but we want the count to include the insn
- where the reg is set, and the normal counting mechanism
- would not count it. */
- REG_LIVE_LENGTH (regno)++;
- }
-
- if (! some_not_needed)
- {
- /* Make a logical link from the next following insn
- that uses this register, back to this insn.
- The following insns have already been processed.
-
- We don't build a LOG_LINK for hard registers containing
- in ASM_OPERANDs. If these registers get replaced,
- we might wind up changing the semantics of the insn,
- even if reload can make what appear to be valid assignments
- later. */
- if (y && (BLOCK_NUM (y) == blocknum)
- && (regno >= FIRST_PSEUDO_REGISTER
- || asm_noperands (PATTERN (y)) < 0))
- LOG_LINKS (y)
- = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
- }
- else if (! some_needed)
- {
- /* Note that dead stores have already been deleted when possible
- If we get here, we have found a dead store that cannot
- be eliminated (because the same insn does something useful).
- Indicate this by marking the reg being set as dying here. */
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
- REG_N_DEATHS (REGNO (reg))++;
- }
- else
- {
- /* This is a case where we have a multi-word hard register
- and some, but not all, of the words of the register are
- needed in subsequent insns. Write REG_UNUSED notes
- for those parts that were not needed. This case should
- be rare. */
-
- int i;
-
- for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
- i >= 0; i--)
- if (!REGNO_REG_SET_P (needed, regno + i))
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_UNUSED,
- gen_rtx_REG (reg_raw_mode[regno + i],
- regno + i),
- REG_NOTES (insn));
- }
- }
- }
- else if (GET_CODE (reg) == REG)
- reg_next_use[regno] = 0;
-
- /* If this is the last pass and this is a SCRATCH, show it will be dying
- here and count it. */
- else if (GET_CODE (reg) == SCRATCH && insn != 0)
- {
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
- }
-}
-
-#ifdef AUTO_INC_DEC
-
-/* X is a MEM found in INSN. See if we can convert it into an auto-increment
- reference. */
-
-static void
-find_auto_inc (needed, x, insn)
- regset needed;
- rtx x;
- rtx insn;
-{
- rtx addr = XEXP (x, 0);
- HOST_WIDE_INT offset = 0;
- rtx set;
-
- /* Here we detect use of an index register which might be good for
- postincrement, postdecrement, preincrement, or predecrement. */
-
- if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
- offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
-
- if (GET_CODE (addr) == REG)
- {
- register rtx y;
- register int size = GET_MODE_SIZE (GET_MODE (x));
- rtx use;
- rtx incr;
- int regno = REGNO (addr);
-
- /* Is the next use an increment that might make auto-increment? */
- if ((incr = reg_next_use[regno]) != 0
- && (set = single_set (incr)) != 0
- && GET_CODE (set) == SET
- && BLOCK_NUM (incr) == BLOCK_NUM (insn)
- /* Can't add side effects to jumps; if reg is spilled and
- reloaded, there's no way to store back the altered value. */
- && GET_CODE (insn) != JUMP_INSN
- && (y = SET_SRC (set), GET_CODE (y) == PLUS)
- && XEXP (y, 0) == addr
- && GET_CODE (XEXP (y, 1)) == CONST_INT
- && ((HAVE_POST_INCREMENT
- && (INTVAL (XEXP (y, 1)) == size && offset == 0))
- || (HAVE_POST_DECREMENT
- && (INTVAL (XEXP (y, 1)) == - size && offset == 0))
- || (HAVE_PRE_INCREMENT
- && (INTVAL (XEXP (y, 1)) == size && offset == size))
- || (HAVE_PRE_DECREMENT
- && (INTVAL (XEXP (y, 1)) == - size && offset == - size)))
- /* Make sure this reg appears only once in this insn. */
- && (use = find_use_as_address (PATTERN (insn), addr, offset),
- use != 0 && use != (rtx) 1))
- {
- rtx q = SET_DEST (set);
- enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
- ? (offset ? PRE_INC : POST_INC)
- : (offset ? PRE_DEC : POST_DEC));
-
- if (dead_or_set_p (incr, addr))
- {
- /* This is the simple case. Try to make the auto-inc. If
- we can't, we are done. Otherwise, we will do any
- needed updates below. */
- if (! validate_change (insn, &XEXP (x, 0),
- gen_rtx_fmt_e (inc_code, Pmode, addr),
- 0))
- return;
- }
- else if (GET_CODE (q) == REG
- /* PREV_INSN used here to check the semi-open interval
- [insn,incr). */
- && ! reg_used_between_p (q, PREV_INSN (insn), incr)
- /* We must also check for sets of q as q may be
- a call clobbered hard register and there may
- be a call between PREV_INSN (insn) and incr. */
- && ! reg_set_between_p (q, PREV_INSN (insn), incr))
- {
- /* We have *p followed sometime later by q = p+size.
- Both p and q must be live afterward,
- and q is not used between INSN and its assignment.
- Change it to q = p, ...*q..., q = q+size.
- Then fall into the usual case. */
- rtx insns, temp;
- basic_block bb;
-
- start_sequence ();
- emit_move_insn (q, addr);
- insns = get_insns ();
- end_sequence ();
-
- bb = BLOCK_FOR_INSN (insn);
- for (temp = insns; temp; temp = NEXT_INSN (temp))
- set_block_for_insn (temp, bb);
-
- /* If we can't make the auto-inc, or can't make the
- replacement into Y, exit. There's no point in making
- the change below if we can't do the auto-inc and doing
- so is not correct in the pre-inc case. */
-
- validate_change (insn, &XEXP (x, 0),
- gen_rtx_fmt_e (inc_code, Pmode, q),
- 1);
- validate_change (incr, &XEXP (y, 0), q, 1);
- if (! apply_change_group ())
- return;
-
- /* We now know we'll be doing this change, so emit the
- new insn(s) and do the updates. */
- emit_insns_before (insns, insn);
-
- if (BLOCK_FOR_INSN (insn)->head == insn)
- BLOCK_FOR_INSN (insn)->head = insns;
-
- /* INCR will become a NOTE and INSN won't contain a
- use of ADDR. If a use of ADDR was just placed in
- the insn before INSN, make that the next use.
- Otherwise, invalidate it. */
- if (GET_CODE (PREV_INSN (insn)) == INSN
- && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
- && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
- reg_next_use[regno] = PREV_INSN (insn);
- else
- reg_next_use[regno] = 0;
-
- addr = q;
- regno = REGNO (q);
-
- /* REGNO is now used in INCR which is below INSN, but
- it previously wasn't live here. If we don't mark
- it as needed, we'll put a REG_DEAD note for it
- on this insn, which is incorrect. */
- SET_REGNO_REG_SET (needed, regno);
-
- /* If there are any calls between INSN and INCR, show
- that REGNO now crosses them. */
- for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
- if (GET_CODE (temp) == CALL_INSN)
- REG_N_CALLS_CROSSED (regno)++;
- }
- else
- return;
-
- /* If we haven't returned, it means we were able to make the
- auto-inc, so update the status. First, record that this insn
- has an implicit side effect. */
-
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));
-
- /* Modify the old increment-insn to simply copy
- the already-incremented value of our register. */
- if (! validate_change (incr, &SET_SRC (set), addr, 0))
- abort ();
-
- /* If that makes it a no-op (copying the register into itself) delete
- it so it won't appear to be a "use" and a "set" of this
- register. */
- if (SET_DEST (set) == addr)
- {
- PUT_CODE (incr, NOTE);
- NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (incr) = 0;
- }
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- /* Count an extra reference to the reg. When a reg is
- incremented, spilling it is worse, so we want to make
- that less likely. */
- REG_N_REFS (regno) += loop_depth;
-
- /* Count the increment as a setting of the register,
- even though it isn't a SET in rtl. */
- REG_N_SETS (regno)++;
- }
- }
- }
-}
-#endif /* AUTO_INC_DEC */
-
-/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
- This is done assuming the registers needed from X
- are those that have 1-bits in NEEDED.
-
- On the final pass, FINAL is 1. This means try for autoincrement
- and count the uses and deaths of each pseudo-reg.
-
- INSN is the containing instruction. If INSN is dead, this function is not
- called. */
-
-static void
-mark_used_regs (needed, live, x, final, insn)
- regset needed;
- regset live;
- rtx x;
- int final;
- rtx insn;
-{
- register RTX_CODE code;
- register int regno;
- int i;
-
- retry:
- code = GET_CODE (x);
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case PC:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
-#ifdef HAVE_cc0
- case CC0:
- cc0_live = 1;
- return;
-#endif
-
- case CLOBBER:
- /* If we are clobbering a MEM, mark any registers inside the address
- as being used. */
- if (GET_CODE (XEXP (x, 0)) == MEM)
- mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
- return;
-
- case MEM:
- /* Invalidate the data for the last MEM stored, but only if MEM is
- something that can be stored into. */
- if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
- ; /* needn't clear the memory set list */
- else
- {
- rtx temp = mem_set_list;
- rtx prev = NULL_RTX;
-
- while (temp)
- {
- if (anti_dependence (XEXP (temp, 0), x))
- {
- /* Splice temp out of the list. */
- if (prev)
- XEXP (prev, 1) = XEXP (temp, 1);
- else
- mem_set_list = XEXP (temp, 1);
- }
- else
- prev = temp;
- temp = XEXP (temp, 1);
- }
- }
-
- /* If the memory reference had embedded side effects (autoincrement
- address modes. Then we may need to kill some entries on the
- memory set list. */
- if (insn)
- invalidate_mems_from_autoinc (insn);
-
-#ifdef AUTO_INC_DEC
- if (final)
- find_auto_inc (needed, x, insn);
-#endif
- break;
-
- case SUBREG:
- if (GET_CODE (SUBREG_REG (x)) == REG
- && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
- && (GET_MODE_SIZE (GET_MODE (x))
- != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
-
- /* While we're here, optimize this case. */
- x = SUBREG_REG (x);
-
- /* In case the SUBREG is not of a register, don't optimize */
- if (GET_CODE (x) != REG)
- {
- mark_used_regs (needed, live, x, final, insn);
- return;
- }
-
- /* ... fall through ... */
-
- case REG:
- /* See a register other than being set
- => mark it as needed. */
-
- regno = REGNO (x);
- {
- int some_needed = REGNO_REG_SET_P (needed, regno);
- int some_not_needed = ! some_needed;
-
- SET_REGNO_REG_SET (live, regno);
-
- /* A hard reg in a wide mode may really be multiple registers.
- If so, mark all of them just like the first. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int n;
-
- /* For stack ptr or fixed arg pointer,
- nothing below can be necessary, so waste no more time. */
- if (regno == STACK_POINTER_REGNUM
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- || (regno == HARD_FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed))
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
- || (regno == FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed)))
- {
- /* If this is a register we are going to try to eliminate,
- don't mark it live here. If we are successful in
- eliminating it, it need not be live unless it is used for
- pseudos, in which case it will have been set live when
- it was allocated to the pseudos. If the register will not
- be eliminated, reload will set it live at that point. */
-
- if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
- regs_ever_live[regno] = 1;
- return;
- }
- /* No death notes for global register variables;
- their values are live after this function exits. */
- if (global_regs[regno])
- {
- if (final)
- reg_next_use[regno] = insn;
- return;
- }
-
- n = HARD_REGNO_NREGS (regno, GET_MODE (x));
- while (--n > 0)
- {
- int regno_n = regno + n;
- int needed_regno = REGNO_REG_SET_P (needed, regno_n);
-
- SET_REGNO_REG_SET (live, regno_n);
- some_needed |= needed_regno;
- some_not_needed |= ! needed_regno;
- }
- }
- if (final)
- {
- /* Record where each reg is used, so when the reg
- is set we know the next insn that uses it. */
-
- reg_next_use[regno] = insn;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- /* If a hard reg is being used,
- record that this function does use it. */
-
- i = HARD_REGNO_NREGS (regno, GET_MODE (x));
- if (i == 0)
- i = 1;
- do
- regs_ever_live[regno + --i] = 1;
- while (i > 0);
- }
- else
- {
- /* Keep track of which basic block each reg appears in. */
-
- register int blocknum = BLOCK_NUM (insn);
-
- if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
- REG_BASIC_BLOCK (regno) = blocknum;
- else if (REG_BASIC_BLOCK (regno) != blocknum)
- REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
-
- /* Count (weighted) number of uses of each reg. */
-
- REG_N_REFS (regno) += loop_depth;
- }
-
- /* Record and count the insns in which a reg dies.
- If it is used in this insn and was dead below the insn
- then it dies in this insn. If it was set in this insn,
- we do not make a REG_DEAD note; likewise if we already
- made such a note. */
-
- if (some_not_needed
- && ! dead_or_set_p (insn, x)
-#if 0
- && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
-#endif
- )
- {
- /* Check for the case where the register dying partially
- overlaps the register set by this insn. */
- if (regno < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
- {
- int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
- while (--n >= 0)
- some_needed |= dead_or_set_regno_p (insn, regno + n);
- }
-
- /* If none of the words in X is needed, make a REG_DEAD
- note. Otherwise, we must make partial REG_DEAD notes. */
- if (! some_needed)
- {
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
- REG_N_DEATHS (regno)++;
- }
- else
- {
- int i;
-
- /* Don't make a REG_DEAD note for a part of a register
- that is set in the insn. */
-
- for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
- i >= 0; i--)
- if (!REGNO_REG_SET_P (needed, regno + i)
- && ! dead_or_set_regno_p (insn, regno + i))
- REG_NOTES (insn)
- = gen_rtx_EXPR_LIST (REG_DEAD,
- gen_rtx_REG (reg_raw_mode[regno + i],
- regno + i),
- REG_NOTES (insn));
- }
- }
- }
- }
- return;
-
- case SET:
- {
- register rtx testreg = SET_DEST (x);
- int mark_dest = 0;
-
- /* If storing into MEM, don't show it as being used. But do
- show the address as being used. */
- if (GET_CODE (testreg) == MEM)
- {
-#ifdef AUTO_INC_DEC
- if (final)
- find_auto_inc (needed, testreg, insn);
-#endif
- mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
- mark_used_regs (needed, live, SET_SRC (x), final, insn);
- return;
- }
-
- /* Storing in STRICT_LOW_PART is like storing in a reg
- in that this SET might be dead, so ignore it in TESTREG.
- but in some other ways it is like using the reg.
-
- Storing in a SUBREG or a bit field is like storing the entire
- register in that if the register's value is not used
- then this SET is not needed. */
- while (GET_CODE (testreg) == STRICT_LOW_PART
- || GET_CODE (testreg) == ZERO_EXTRACT
- || GET_CODE (testreg) == SIGN_EXTRACT
- || GET_CODE (testreg) == SUBREG)
- {
- if (GET_CODE (testreg) == SUBREG
- && GET_CODE (SUBREG_REG (testreg)) == REG
- && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
- && (GET_MODE_SIZE (GET_MODE (testreg))
- != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
- REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
-
- /* Modifying a single register in an alternate mode
- does not use any of the old value. But these other
- ways of storing in a register do use the old value. */
- if (GET_CODE (testreg) == SUBREG
- && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
- ;
- else
- mark_dest = 1;
-
- testreg = XEXP (testreg, 0);
- }
-
- /* If this is a store into a register,
- recursively scan the value being stored. */
-
- if ((GET_CODE (testreg) == PARALLEL
- && GET_MODE (testreg) == BLKmode)
- || (GET_CODE (testreg) == REG
- && (regno = REGNO (testreg), ! (regno == FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed)))
-#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- && ! (regno == HARD_FRAME_POINTER_REGNUM
- && (! reload_completed || frame_pointer_needed))
-#endif
-#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
-#endif
- ))
- /* We used to exclude global_regs here, but that seems wrong.
- Storing in them is like storing in mem. */
- {
- mark_used_regs (needed, live, SET_SRC (x), final, insn);
- if (mark_dest)
- mark_used_regs (needed, live, SET_DEST (x), final, insn);
- return;
- }
- }
- break;
-
- case RETURN:
- /* If exiting needs the right stack value, consider this insn as
- using the stack pointer. In any event, consider it as using
- all global registers and all registers used by return. */
- if (! EXIT_IGNORE_STACK
- || (! FRAME_POINTER_REQUIRED
- && ! current_function_calls_alloca
- && flag_omit_frame_pointer)
- || current_function_sp_is_unchanging)
- SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (global_regs[i]
-#ifdef EPILOGUE_USES
- || EPILOGUE_USES (i)
-#endif
- )
- SET_REGNO_REG_SET (live, i);
- break;
-
- case ASM_OPERANDS:
- case UNSPEC_VOLATILE:
- case TRAP_IF:
- case ASM_INPUT:
- {
- /* Traditional and volatile asm instructions must be considered to use
- and clobber all hard registers, all pseudo-registers and all of
- memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
-
- Consider for instance a volatile asm that changes the fpu rounding
- mode. An insn should not be moved across this even if it only uses
- pseudo-regs because it might give an incorrectly rounded result.
-
- ?!? Unfortunately, marking all hard registers as live causes massive
- problems for the register allocator and marking all pseudos as live
- creates mountains of uninitialized variable warnings.
-
- So for now, just clear the memory set list and mark any regs
- we can find in ASM_OPERANDS as used. */
- if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
- mem_set_list = NULL_RTX;
-
- /* For all ASM_OPERANDS, we must traverse the vector of input operands.
- We can not just fall through here since then we would be confused
- by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
- traditional asms unlike their normal usage. */
- if (code == ASM_OPERANDS)
- {
- int j;
-
- for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
- mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j),
- final, insn);
- }
- break;
- }
-
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- /* Tail recursive case: save a function call level. */
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto retry;
- }
- mark_used_regs (needed, live, XEXP (x, i), final, insn);
- }
- else if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
- }
- }
- }
-}
-
-#ifdef AUTO_INC_DEC
-
-static int
-try_pre_increment_1 (insn)
- rtx insn;
-{
- /* Find the next use of this reg. If in same basic block,
- make it do pre-increment or pre-decrement if appropriate. */
- rtx x = single_set (insn);
- HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
- * INTVAL (XEXP (SET_SRC (x), 1)));
- int regno = REGNO (SET_DEST (x));
- rtx y = reg_next_use[regno];
- if (y != 0
- && BLOCK_NUM (y) == BLOCK_NUM (insn)
- /* Don't do this if the reg dies, or gets set in y; a standard addressing
- mode would be better. */
- && ! dead_or_set_p (y, SET_DEST (x))
- && try_pre_increment (y, SET_DEST (x), amount))
- {
- /* We have found a suitable auto-increment
- and already changed insn Y to do it.
- So flush this increment-instruction. */
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
- /* Count a reference to this reg for the increment
- insn we are deleting. When a reg is incremented.
- spilling it is worse, so we want to make that
- less likely. */
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- REG_N_REFS (regno) += loop_depth;
- REG_N_SETS (regno)++;
- }
- return 1;
- }
- return 0;
-}
-
-/* Try to change INSN so that it does pre-increment or pre-decrement
- addressing on register REG in order to add AMOUNT to REG.
- AMOUNT is negative for pre-decrement.
- Returns 1 if the change could be made.
- This checks all about the validity of the result of modifying INSN. */
-
-static int
-try_pre_increment (insn, reg, amount)
- rtx insn, reg;
- HOST_WIDE_INT amount;
-{
- register rtx use;
-
- /* Nonzero if we can try to make a pre-increment or pre-decrement.
- For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
- int pre_ok = 0;
- /* Nonzero if we can try to make a post-increment or post-decrement.
- For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
- It is possible for both PRE_OK and POST_OK to be nonzero if the machine
- supports both pre-inc and post-inc, or both pre-dec and post-dec. */
- int post_ok = 0;
-
- /* Nonzero if the opportunity actually requires post-inc or post-dec. */
- int do_post = 0;
-
- /* From the sign of increment, see which possibilities are conceivable
- on this target machine. */
- if (HAVE_PRE_INCREMENT && amount > 0)
- pre_ok = 1;
- if (HAVE_POST_INCREMENT && amount > 0)
- post_ok = 1;
-
- if (HAVE_PRE_DECREMENT && amount < 0)
- pre_ok = 1;
- if (HAVE_POST_DECREMENT && amount < 0)
- post_ok = 1;
-
- if (! (pre_ok || post_ok))
- return 0;
-
- /* It is not safe to add a side effect to a jump insn
- because if the incremented register is spilled and must be reloaded
- there would be no way to store the incremented value back in memory. */
-
- if (GET_CODE (insn) == JUMP_INSN)
- return 0;
-
- use = 0;
- if (pre_ok)
- use = find_use_as_address (PATTERN (insn), reg, 0);
- if (post_ok && (use == 0 || use == (rtx) 1))
- {
- use = find_use_as_address (PATTERN (insn), reg, -amount);
- do_post = 1;
- }
-
- if (use == 0 || use == (rtx) 1)
- return 0;
-
- if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
- return 0;
-
- /* See if this combination of instruction and addressing mode exists. */
- if (! validate_change (insn, &XEXP (use, 0),
- gen_rtx_fmt_e (amount > 0
- ? (do_post ? POST_INC : PRE_INC)
- : (do_post ? POST_DEC : PRE_DEC),
- Pmode, reg), 0))
- return 0;
-
- /* Record that this insn now has an implicit side effect on X. */
- REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
- return 1;
-}
-
-#endif /* AUTO_INC_DEC */
-
-/* Find the place in the rtx X where REG is used as a memory address.
- Return the MEM rtx that so uses it.
- If PLUSCONST is nonzero, search instead for a memory address equivalent to
- (plus REG (const_int PLUSCONST)).
-
- If such an address does not appear, return 0.
- If REG appears more than once, or is used other than in such an address,
- return (rtx)1. */
-
-rtx
-find_use_as_address (x, reg, plusconst)
- register rtx x;
- rtx reg;
- HOST_WIDE_INT plusconst;
-{
- enum rtx_code code = GET_CODE (x);
- char *fmt = GET_RTX_FORMAT (code);
- register int i;
- register rtx value = 0;
- register rtx tem;
-
- if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
- return x;
-
- if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
- && XEXP (XEXP (x, 0), 0) == reg
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
- return x;
-
- if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
- {
- /* If REG occurs inside a MEM used in a bit-field reference,
- that is unacceptable. */
- if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
- return (rtx) (HOST_WIDE_INT) 1;
- }
-
- if (x == reg)
- return (rtx) (HOST_WIDE_INT) 1;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- tem = find_use_as_address (XEXP (x, i), reg, plusconst);
- if (value == 0)
- value = tem;
- else if (tem != 0)
- return (rtx) (HOST_WIDE_INT) 1;
- }
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
- if (value == 0)
- value = tem;
- else if (tem != 0)
- return (rtx) (HOST_WIDE_INT) 1;
- }
- }
- }
-
- return value;
-}
-
-/* Write information about registers and basic blocks into FILE.
- This is part of making a debugging dump. */
-
-void
-dump_flow_info (file)
- FILE *file;
-{
- register int i;
- static char *reg_class_names[] = REG_CLASS_NAMES;
-
- fprintf (file, "%d registers.\n", max_regno);
- for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
- if (REG_N_REFS (i))
- {
- enum reg_class class, altclass;
- fprintf (file, "\nRegister %d used %d times across %d insns",
- i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
- if (REG_BASIC_BLOCK (i) >= 0)
- fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
- if (REG_N_SETS (i))
- fprintf (file, "; set %d time%s", REG_N_SETS (i),
- (REG_N_SETS (i) == 1) ? "" : "s");
- if (REG_USERVAR_P (regno_reg_rtx[i]))
- fprintf (file, "; user var");
- if (REG_N_DEATHS (i) != 1)
- fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
- if (REG_N_CALLS_CROSSED (i) == 1)
- fprintf (file, "; crosses 1 call");
- else if (REG_N_CALLS_CROSSED (i))
- fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
- if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
- fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
- class = reg_preferred_class (i);
- altclass = reg_alternate_class (i);
- if (class != GENERAL_REGS || altclass != ALL_REGS)
- {
- if (altclass == ALL_REGS || class == ALL_REGS)
- fprintf (file, "; pref %s", reg_class_names[(int) class]);
- else if (altclass == NO_REGS)
- fprintf (file, "; %s or none", reg_class_names[(int) class]);
- else
- fprintf (file, "; pref %s, else %s",
- reg_class_names[(int) class],
- reg_class_names[(int) altclass]);
- }
- if (REGNO_POINTER_FLAG (i))
- fprintf (file, "; pointer");
- fprintf (file, ".\n");
- }
-
- fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
- for (i = 0; i < n_basic_blocks; i++)
- {
- register basic_block bb = BASIC_BLOCK (i);
- register int regno;
- register edge e;
-
- fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
- i, INSN_UID (bb->head), INSN_UID (bb->end));
-
- fprintf (file, "Predecessors: ");
- for (e = bb->pred; e ; e = e->pred_next)
- dump_edge_info (file, e, 0);
-
- fprintf (file, "\nSuccessors: ");
- for (e = bb->succ; e ; e = e->succ_next)
- dump_edge_info (file, e, 1);
-
- fprintf (file, "\nRegisters live at start:");
- if (bb->global_live_at_start)
- {
- for (regno = 0; regno < max_regno; regno++)
- if (REGNO_REG_SET_P (bb->global_live_at_start, regno))
- fprintf (file, " %d", regno);
- }
- else
- fprintf (file, " n/a");
-
- fprintf (file, "\nRegisters live at end:");
- if (bb->global_live_at_end)
- {
- for (regno = 0; regno < max_regno; regno++)
- if (REGNO_REG_SET_P (bb->global_live_at_end, regno))
- fprintf (file, " %d", regno);
- }
- else
- fprintf (file, " n/a");
-
- putc('\n', file);
- }
-
- putc('\n', file);
-}
-
-static void
-dump_edge_info (file, e, do_succ)
- FILE *file;
- edge e;
- int do_succ;
-{
- basic_block side = (do_succ ? e->dest : e->src);
-
- if (side == ENTRY_BLOCK_PTR)
- fputs (" ENTRY", file);
- else if (side == EXIT_BLOCK_PTR)
- fputs (" EXIT", file);
- else
- fprintf (file, " %d", side->index);
-
- if (e->flags)
- {
- static char * bitnames[] = {
- "fallthru", "crit", "ab", "abcall", "eh", "fake"
- };
- int comma = 0;
- int i, flags = e->flags;
-
- fputc (' ', file);
- fputc ('(', file);
- for (i = 0; flags; i++)
- if (flags & (1 << i))
- {
- flags &= ~(1 << i);
-
- if (comma)
- fputc (',', file);
- if (i < (int)(sizeof (bitnames) / sizeof (*bitnames)))
- fputs (bitnames[i], file);
- else
- fprintf (file, "%d", i);
- comma = 1;
- }
- fputc (')', file);
- }
-}
-
-
-/* Like print_rtl, but also print out live information for the start of each
- basic block. */
-
-void
-print_rtl_with_bb (outf, rtx_first)
- FILE *outf;
- rtx rtx_first;
-{
- register rtx tmp_rtx;
-
- if (rtx_first == 0)
- fprintf (outf, "(nil)\n");
- else
- {
- int i;
- enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
- int max_uid = get_max_uid ();
- basic_block *start = (basic_block *)
- alloca (max_uid * sizeof (basic_block));
- basic_block *end = (basic_block *)
- alloca (max_uid * sizeof (basic_block));
- enum bb_state *in_bb_p = (enum bb_state *)
- alloca (max_uid * sizeof (enum bb_state));
-
- memset (start, 0, max_uid * sizeof (basic_block));
- memset (end, 0, max_uid * sizeof (basic_block));
- memset (in_bb_p, 0, max_uid * sizeof (enum bb_state));
-
- for (i = n_basic_blocks - 1; i >= 0; i--)
- {
- basic_block bb = BASIC_BLOCK (i);
- rtx x;
-
- start[INSN_UID (bb->head)] = bb;
- end[INSN_UID (bb->end)] = bb;
- for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
- {
- enum bb_state state = IN_MULTIPLE_BB;
- if (in_bb_p[INSN_UID(x)] == NOT_IN_BB)
- state = IN_ONE_BB;
- in_bb_p[INSN_UID(x)] = state;
-
- if (x == bb->end)
- break;
- }
- }
-
- for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
- {
- int did_output;
- basic_block bb;
-
- if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
- {
- fprintf (outf, ";; Start of basic block %d, registers live:",
- bb->index);
-
- EXECUTE_IF_SET_IN_REG_SET (bb->global_live_at_start, 0, i,
- {
- fprintf (outf, " %d", i);
- if (i < FIRST_PSEUDO_REGISTER)
- fprintf (outf, " [%s]",
- reg_names[i]);
- });
- putc ('\n', outf);
- }
-
- if (in_bb_p[INSN_UID(tmp_rtx)] == NOT_IN_BB
- && GET_CODE (tmp_rtx) != NOTE
- && GET_CODE (tmp_rtx) != BARRIER
- && ! obey_regdecls)
- fprintf (outf, ";; Insn is not within a basic block\n");
- else if (in_bb_p[INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
- fprintf (outf, ";; Insn is in multiple basic blocks\n");
-
- did_output = print_rtl_single (outf, tmp_rtx);
-
- if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
- fprintf (outf, ";; End of basic block %d\n", bb->index);
-
- if (did_output)
- putc ('\n', outf);
- }
- }
-}
-
-
-/* Integer list support. */
-
-/* Allocate a node from list *HEAD_PTR. */
-
-static int_list_ptr
-alloc_int_list_node (head_ptr)
- int_list_block **head_ptr;
-{
- struct int_list_block *first_blk = *head_ptr;
-
- if (first_blk == NULL || first_blk->nodes_left <= 0)
- {
- first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block));
- first_blk->nodes_left = INT_LIST_NODES_IN_BLK;
- first_blk->next = *head_ptr;
- *head_ptr = first_blk;
- }
-
- first_blk->nodes_left--;
- return &first_blk->nodes[first_blk->nodes_left];
-}
-
-/* Pointer to head of predecessor/successor block list. */
-static int_list_block *pred_int_list_blocks;
-
-/* Add a new node to integer list LIST with value VAL.
- LIST is a pointer to a list object to allow for different implementations.
- If *LIST is initially NULL, the list is empty.
- The caller must not care whether the element is added to the front or
- to the end of the list (to allow for different implementations). */
-
-static int_list_ptr
-add_int_list_node (blk_list, list, val)
- int_list_block **blk_list;
- int_list **list;
- int val;
-{
- int_list_ptr p = alloc_int_list_node (blk_list);
-
- p->val = val;
- p->next = *list;
- *list = p;
- return p;
-}
-
-/* Free the blocks of lists at BLK_LIST. */
-
-void
-free_int_list (blk_list)
- int_list_block **blk_list;
-{
- int_list_block *p, *next;
-
- for (p = *blk_list; p != NULL; p = next)
- {
- next = p->next;
- free (p);
- }
-
- /* Mark list as empty for the next function we compile. */
- *blk_list = NULL;
-}
-
-/* Predecessor/successor computation. */
-
-/* Mark PRED_BB a precessor of SUCC_BB,
- and conversely SUCC_BB a successor of PRED_BB. */
-
-static void
-add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs)
- int pred_bb;
- int succ_bb;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- int *num_preds;
- int *num_succs;
-{
- if (succ_bb != EXIT_BLOCK)
- {
- add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb);
- num_preds[succ_bb]++;
- }
- if (pred_bb != ENTRY_BLOCK)
- {
- add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb);
- num_succs[pred_bb]++;
- }
-}
-
-/* Convert edge lists into pred/succ lists for backward compatibility. */
-
-void
-compute_preds_succs (s_preds, s_succs, num_preds, num_succs)
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
- int *num_preds;
- int *num_succs;
-{
- int i, n = n_basic_blocks;
- edge e;
-
- memset (s_preds, 0, n_basic_blocks * sizeof (int_list_ptr));
- memset (s_succs, 0, n_basic_blocks * sizeof (int_list_ptr));
- memset (num_preds, 0, n_basic_blocks * sizeof (int));
- memset (num_succs, 0, n_basic_blocks * sizeof (int));
-
- for (i = 0; i < n; ++i)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- for (e = bb->succ; e ; e = e->succ_next)
- add_pred_succ (i, e->dest->index, s_preds, s_succs,
- num_preds, num_succs);
- }
-
- for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
- add_pred_succ (ENTRY_BLOCK, e->dest->index, s_preds, s_succs,
- num_preds, num_succs);
-}
-
-void
-dump_bb_data (file, preds, succs, live_info)
- FILE *file;
- int_list_ptr *preds;
- int_list_ptr *succs;
- int live_info;
-{
- int bb;
- int_list_ptr p;
-
- fprintf (file, "BB data\n\n");
- for (bb = 0; bb < n_basic_blocks; bb++)
- {
- fprintf (file, "BB %d, start %d, end %d\n", bb,
- INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb)));
- fprintf (file, " preds:");
- for (p = preds[bb]; p != NULL; p = p->next)
- {
- int pred_bb = INT_LIST_VAL (p);
- if (pred_bb == ENTRY_BLOCK)
- fprintf (file, " entry");
- else
- fprintf (file, " %d", pred_bb);
- }
- fprintf (file, "\n");
- fprintf (file, " succs:");
- for (p = succs[bb]; p != NULL; p = p->next)
- {
- int succ_bb = INT_LIST_VAL (p);
- if (succ_bb == EXIT_BLOCK)
- fprintf (file, " exit");
- else
- fprintf (file, " %d", succ_bb);
- }
- if (live_info)
- {
- int regno;
- fprintf (file, "\nRegisters live at start:");
- for (regno = 0; regno < max_regno; regno++)
- if (REGNO_REG_SET_P (BASIC_BLOCK (bb)->global_live_at_start, regno))
- fprintf (file, " %d", regno);
- fprintf (file, "\n");
- }
- fprintf (file, "\n");
- }
- fprintf (file, "\n");
-}
-
-/* Free basic block data storage. */
-
-void
-free_bb_mem ()
-{
- free_int_list (&pred_int_list_blocks);
-}
-
-/* Compute dominator relationships. */
-void
-compute_dominators (dominators, post_dominators, s_preds, s_succs)
- sbitmap *dominators;
- sbitmap *post_dominators;
- int_list_ptr *s_preds;
- int_list_ptr *s_succs;
-{
- int bb, changed, passes;
- sbitmap *temp_bitmap;
-
- temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
- sbitmap_vector_ones (dominators, n_basic_blocks);
- sbitmap_vector_ones (post_dominators, n_basic_blocks);
- sbitmap_vector_zero (temp_bitmap, n_basic_blocks);
-
- sbitmap_zero (dominators[0]);
- SET_BIT (dominators[0], 0);
-
- sbitmap_zero (post_dominators[n_basic_blocks - 1]);
- SET_BIT (post_dominators[n_basic_blocks - 1], 0);
-
- passes = 0;
- changed = 1;
- while (changed)
- {
- changed = 0;
- for (bb = 1; bb < n_basic_blocks; bb++)
- {
- sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators,
- bb, s_preds);
- SET_BIT (temp_bitmap[bb], bb);
- changed |= sbitmap_a_and_b (dominators[bb],
- dominators[bb],
- temp_bitmap[bb]);
- sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators,
- bb, s_succs);
- SET_BIT (temp_bitmap[bb], bb);
- changed |= sbitmap_a_and_b (post_dominators[bb],
- post_dominators[bb],
- temp_bitmap[bb]);
- }
- passes++;
- }
-
- free (temp_bitmap);
-}
-
-/* Given DOMINATORS, compute the immediate dominators into IDOM. */
-
-void
-compute_immediate_dominators (idom, dominators)
- int *idom;
- sbitmap *dominators;
-{
- sbitmap *tmp;
- int b;
-
- tmp = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
-
- /* Begin with tmp(n) = dom(n) - { n }. */
- for (b = n_basic_blocks; --b >= 0; )
- {
- sbitmap_copy (tmp[b], dominators[b]);
- RESET_BIT (tmp[b], b);
- }
-
- /* Subtract out all of our dominator's dominators. */
- for (b = n_basic_blocks; --b >= 0; )
- {
- sbitmap tmp_b = tmp[b];
- int s;
-
- for (s = n_basic_blocks; --s >= 0; )
- if (TEST_BIT (tmp_b, s))
- sbitmap_difference (tmp_b, tmp_b, tmp[s]);
- }
-
- /* Find the one bit set in the bitmap and put it in the output array. */
- for (b = n_basic_blocks; --b >= 0; )
- {
- int t;
- EXECUTE_IF_SET_IN_SBITMAP (tmp[b], 0, t, { idom[b] = t; });
- }
-
- sbitmap_vector_free (tmp);
-}
-
-/* Count for a single SET rtx, X. */
-
-static void
-count_reg_sets_1 (x)
- rtx x;
-{
- register int regno;
- register rtx reg = SET_DEST (x);
-
- /* Find the register that's set/clobbered. */
- while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
- || GET_CODE (reg) == SIGN_EXTRACT
- || GET_CODE (reg) == STRICT_LOW_PART)
- reg = XEXP (reg, 0);
-
- if (GET_CODE (reg) == PARALLEL
- && GET_MODE (reg) == BLKmode)
- {
- register int i;
- for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
- count_reg_sets_1 (XVECEXP (reg, 0, i));
- return;
- }
-
- if (GET_CODE (reg) == REG)
- {
- regno = REGNO (reg);
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- /* Count (weighted) references, stores, etc. This counts a
- register twice if it is modified, but that is correct. */
- REG_N_SETS (regno)++;
-
- REG_N_REFS (regno) += loop_depth;
- }
- }
-}
-
-/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment
- REG_N_REFS by the current loop depth for each SET or CLOBBER found. */
-
-static void
-count_reg_sets (x)
- rtx x;
-{
- register RTX_CODE code = GET_CODE (x);
-
- if (code == SET || code == CLOBBER)
- count_reg_sets_1 (x);
- else if (code == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET || code == CLOBBER)
- count_reg_sets_1 (XVECEXP (x, 0, i));
- }
- }
-}
-
-/* Increment REG_N_REFS by the current loop depth each register reference
- found in X. */
-
-static void
-count_reg_references (x)
- rtx x;
-{
- register RTX_CODE code;
-
- retry:
- code = GET_CODE (x);
- switch (code)
- {
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case PC:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- case ASM_INPUT:
- return;
-
-#ifdef HAVE_cc0
- case CC0:
- return;
-#endif
-
- case CLOBBER:
- /* If we are clobbering a MEM, mark any registers inside the address
- as being used. */
- if (GET_CODE (XEXP (x, 0)) == MEM)
- count_reg_references (XEXP (XEXP (x, 0), 0));
- return;
-
- case SUBREG:
- /* While we're here, optimize this case. */
- x = SUBREG_REG (x);
-
- /* In case the SUBREG is not of a register, don't optimize */
- if (GET_CODE (x) != REG)
- {
- count_reg_references (x);
- return;
- }
-
- /* ... fall through ... */
-
- case REG:
- if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
- REG_N_REFS (REGNO (x)) += loop_depth;
- return;
-
- case SET:
- {
- register rtx testreg = SET_DEST (x);
- int mark_dest = 0;
-
- /* If storing into MEM, don't show it as being used. But do
- show the address as being used. */
- if (GET_CODE (testreg) == MEM)
- {
- count_reg_references (XEXP (testreg, 0));
- count_reg_references (SET_SRC (x));
- return;
- }
-
- /* Storing in STRICT_LOW_PART is like storing in a reg
- in that this SET might be dead, so ignore it in TESTREG.
- but in some other ways it is like using the reg.
-
- Storing in a SUBREG or a bit field is like storing the entire
- register in that if the register's value is not used
- then this SET is not needed. */
- while (GET_CODE (testreg) == STRICT_LOW_PART
- || GET_CODE (testreg) == ZERO_EXTRACT
- || GET_CODE (testreg) == SIGN_EXTRACT
- || GET_CODE (testreg) == SUBREG)
- {
- /* Modifying a single register in an alternate mode
- does not use any of the old value. But these other
- ways of storing in a register do use the old value. */
- if (GET_CODE (testreg) == SUBREG
- && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
- ;
- else
- mark_dest = 1;
-
- testreg = XEXP (testreg, 0);
- }
-
- /* If this is a store into a register,
- recursively scan the value being stored. */
-
- if ((GET_CODE (testreg) == PARALLEL
- && GET_MODE (testreg) == BLKmode)
- || GET_CODE (testreg) == REG)
- {
- count_reg_references (SET_SRC (x));
- if (mark_dest)
- count_reg_references (SET_DEST (x));
- return;
- }
- }
- break;
-
- default:
- break;
- }
-
- /* Recursively scan the operands of this expression. */
-
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- /* Tail recursive case: save a function call level. */
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto retry;
- }
- count_reg_references (XEXP (x, i));
- }
- else if (fmt[i] == 'E')
- {
- register int j;
- for (j = 0; j < XVECLEN (x, i); j++)
- count_reg_references (XVECEXP (x, i, j));
- }
- }
- }
-}
-
-/* Recompute register set/reference counts immediately prior to register
- allocation.
-
- This avoids problems with set/reference counts changing to/from values
- which have special meanings to the register allocators.
-
- Additionally, the reference counts are the primary component used by the
- register allocators to prioritize pseudos for allocation to hard regs.
- More accurate reference counts generally lead to better register allocation.
-
- F is the first insn to be scanned.
- LOOP_STEP denotes how much loop_depth should be incremented per
- loop nesting level in order to increase the ref count more for references
- in a loop.
-
- It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
- possibly other information which is used by the register allocators. */
-
-void
-recompute_reg_usage (f, loop_step)
- rtx f;
- int loop_step;
-{
- rtx insn;
- int i, max_reg;
-
- /* Clear out the old data. */
- max_reg = max_reg_num ();
- for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
- {
- REG_N_SETS (i) = 0;
- REG_N_REFS (i) = 0;
- }
-
- /* Scan each insn in the chain and count how many times each register is
- set/used. */
- loop_depth = 1;
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- /* Keep track of loop depth. */
- if (GET_CODE (insn) == NOTE)
- {
- /* Look for loop boundaries. */
- if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
- loop_depth -= loop_step;
- else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
- loop_depth += loop_step;
-
- /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
- Abort now rather than setting register status incorrectly. */
- if (loop_depth == 0)
- abort ();
- }
- else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- rtx links;
-
- /* This call will increment REG_N_SETS for each SET or CLOBBER
- of a register in INSN. It will also increment REG_N_REFS
- by the loop depth for each set of a register in INSN. */
- count_reg_sets (PATTERN (insn));
-
- /* count_reg_sets does not detect autoincrement address modes, so
- detect them here by looking at the notes attached to INSN. */
- for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
- {
- if (REG_NOTE_KIND (links) == REG_INC)
- /* Count (weighted) references, stores, etc. This counts a
- register twice if it is modified, but that is correct. */
- REG_N_SETS (REGNO (XEXP (links, 0)))++;
- }
-
- /* This call will increment REG_N_REFS by the current loop depth for
- each reference to a register in INSN. */
- count_reg_references (PATTERN (insn));
-
- /* count_reg_references will not include counts for arguments to
- function calls, so detect them here by examining the
- CALL_INSN_FUNCTION_USAGE data. */
- if (GET_CODE (insn) == CALL_INSN)
- {
- rtx note;
-
- for (note = CALL_INSN_FUNCTION_USAGE (insn);
- note;
- note = XEXP (note, 1))
- if (GET_CODE (XEXP (note, 0)) == USE)
- count_reg_references (SET_DEST (XEXP (note, 0)));
- }
- }
- }
-}
-
-/* Record INSN's block as BB. */
-
-void
-set_block_for_insn (insn, bb)
- rtx insn;
- basic_block bb;
-{
- size_t uid = INSN_UID (insn);
- if (uid >= basic_block_for_insn->num_elements)
- {
- int new_size;
-
- /* Add one-eighth the size so we don't keep calling xrealloc. */
- new_size = uid + (uid + 7) / 8;
-
- VARRAY_GROW (basic_block_for_insn, new_size);
- }
- VARRAY_BB (basic_block_for_insn, uid) = bb;
-}
-
-/* Record INSN's block number as BB. */
-/* ??? This has got to go. */
-
-void
-set_block_num (insn, bb)
- rtx insn;
- int bb;
-{
- set_block_for_insn (insn, BASIC_BLOCK (bb));
-}
-
-/* Verify the CFG consistency. This function check some CFG invariants and
- aborts when something is wrong. Hope that this function will help to
- convert many optimization passes to preserve CFG consistent.
-
- Currently it does following checks:
-
- - test head/end pointers
- - overlapping of basic blocks
- - edge list corectness
- - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
- - tails of basic blocks (ensure that boundary is necesary)
- - scans body of the basic block for JUMP_INSN, CODE_LABEL
- and NOTE_INSN_BASIC_BLOCK
- - check that all insns are in the basic blocks
- (except the switch handling code, barriers and notes)
-
- In future it can be extended check a lot of other stuff as well
- (reachability of basic blocks, life information, etc. etc.). */
-
-void
-verify_flow_info ()
-{
- const int max_uid = get_max_uid ();
- const rtx rtx_first = get_insns ();
- basic_block *bb_info;
- rtx x;
- int i;
-
- bb_info = (basic_block *) alloca (max_uid * sizeof (basic_block));
- memset (bb_info, 0, max_uid * sizeof (basic_block));
-
- /* First pass check head/end pointers and set bb_info array used by
- later passes. */
- for (i = n_basic_blocks - 1; i >= 0; i--)
- {
- basic_block bb = BASIC_BLOCK (i);
-
- /* Check the head pointer and make sure that it is pointing into
- insn list. */
- for (x = rtx_first; x != NULL_RTX; x = NEXT_INSN (x))
- if (x == bb->head)
- break;
- if (!x)
- {
- fatal ("verify_flow_info: Head insn %d for block %d not found in the insn stream.\n",
- INSN_UID (bb->head), bb->index);
- }
-
- /* Check the end pointer and make sure that it is pointing into
- insn list. */
- for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
- {
- if (bb_info[INSN_UID (x)] != NULL)
- {
- fatal ("verify_flow_info: Insn %d is in multiple basic blocks (%d and %d)",
- INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
- }
- bb_info[INSN_UID (x)] = bb;
-
- if (x == bb->end)
- break;
- }
- if (!x)
- {
- fatal ("verify_flow_info: End insn %d for block %d not found in the insn stream.\n",
- INSN_UID (bb->end), bb->index);
- }
- }
-
- /* Now check the basic blocks (boundaries etc.) */
- for (i = n_basic_blocks - 1; i >= 0; i--)
- {
- basic_block bb = BASIC_BLOCK (i);
- /* Check corectness of edge lists */
- edge e;
-
- e = bb->succ;
- while (e)
- {
- if (e->src != bb)
- {
- fprintf (stderr, "verify_flow_info: Basic block %d succ edge is corrupted\n",
- bb->index);
- fprintf (stderr, "Predecessor: ");
- dump_edge_info (stderr, e, 0);
- fprintf (stderr, "\nSuccessor: ");
- dump_edge_info (stderr, e, 1);
- fflush (stderr);
- abort ();
- }
- if (e->dest != EXIT_BLOCK_PTR)
- {
- edge e2 = e->dest->pred;
- while (e2 && e2 != e)
- e2 = e2->pred_next;
- if (!e2)
- {
- fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
- bb->index);
- }
- }
- e = e->succ_next;
- }
-
- e = bb->pred;
- while (e)
- {
- if (e->dest != bb)
- {
- fprintf (stderr, "verify_flow_info: Basic block %d pred edge is corrupted\n",
- bb->index);
- fprintf (stderr, "Predecessor: ");
- dump_edge_info (stderr, e, 0);
- fprintf (stderr, "\nSuccessor: ");
- dump_edge_info (stderr, e, 1);
- fflush (stderr);
- abort ();
- }
- if (e->src != ENTRY_BLOCK_PTR)
- {
- edge e2 = e->src->succ;
- while (e2 && e2 != e)
- e2 = e2->succ_next;
- if (!e2)
- {
- fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
- bb->index);
- }
- }
- e = e->pred_next;
- }
-
- /* OK pointers are correct. Now check the header of basic
- block. It ought to contain optional CODE_LABEL followed
- by NOTE_BASIC_BLOCK. */
- x = bb->head;
- if (GET_CODE (x) == CODE_LABEL)
- {
- if (bb->end == x)
- {
- fatal ("verify_flow_info: Basic block contains only CODE_LABEL and no NOTE_INSN_BASIC_BLOCK note\n");
- }
- x = NEXT_INSN (x);
- }
- if (GET_CODE (x) != NOTE
- || NOTE_LINE_NUMBER (x) != NOTE_INSN_BASIC_BLOCK
- || NOTE_BASIC_BLOCK (x) != bb)
- {
- fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
- bb->index);
- }
-
- if (bb->end == x)
- {
- /* Do checks for empty blocks here */
- }
- else
- {
- x = NEXT_INSN (x);
- while (x)
- {
- if (GET_CODE (x) == NOTE
- && NOTE_LINE_NUMBER (x) == NOTE_INSN_BASIC_BLOCK)
- {
- fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d\n",
- INSN_UID (x), bb->index);
- }
-
- if (x == bb->end)
- break;
-
- if (GET_CODE (x) == JUMP_INSN
- || GET_CODE (x) == CODE_LABEL
- || GET_CODE (x) == BARRIER)
- {
- fatal_insn ("verify_flow_info: Incorrect insn in the middle of basic block %d\n",
- x, bb->index);
- }
-
- x = NEXT_INSN (x);
- }
- }
- }
-
- x = rtx_first;
- while (x)
- {
- if (!bb_info[INSN_UID (x)])
- {
- switch (GET_CODE (x))
- {
- case BARRIER:
- case NOTE:
- break;
-
- case CODE_LABEL:
- /* An addr_vec is placed outside any block block. */
- if (NEXT_INSN (x)
- && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
- && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
- || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
- {
- x = NEXT_INSN (x);
- }
-
- /* But in any case, non-deletable labels can appear anywhere. */
- break;
-
- default:
- fatal_insn ("verify_flow_info: Insn outside basic block\n", x);
- }
- }
-
- x = NEXT_INSN (x);
- }
-}