summaryrefslogtreecommitdiff
path: root/contrib/gcc
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/gcc')
-rw-r--r--contrib/gcc/cp/g++.11
-rw-r--r--contrib/gcc/cpp.11
-rw-r--r--contrib/gcc/doc/cpp.1817
-rw-r--r--contrib/gcc/doc/gcc.19464
-rw-r--r--contrib/gcc/doc/gcov.1453
-rw-r--r--contrib/gcc/f/BUGS130
-rw-r--r--contrib/gcc/f/NEWS531
-rw-r--r--contrib/gcc/f/g77.11719
-rw-r--r--contrib/gcc/gcc.14191
9 files changed, 0 insertions, 17307 deletions
diff --git a/contrib/gcc/cp/g++.1 b/contrib/gcc/cp/g++.1
deleted file mode 100644
index a5be7bceeff4..000000000000
--- a/contrib/gcc/cp/g++.1
+++ /dev/null
@@ -1 +0,0 @@
-.so man1/gcc.1
diff --git a/contrib/gcc/cpp.1 b/contrib/gcc/cpp.1
deleted file mode 100644
index 54c4dfb19832..000000000000
--- a/contrib/gcc/cpp.1
+++ /dev/null
@@ -1 +0,0 @@
-.so man1/cccp.1
diff --git a/contrib/gcc/doc/cpp.1 b/contrib/gcc/doc/cpp.1
deleted file mode 100644
index 8b7412325911..000000000000
--- a/contrib/gcc/doc/cpp.1
+++ /dev/null
@@ -1,817 +0,0 @@
-.\" Automatically generated by Pod::Man version 1.15
-.\" Wed Feb 5 03:13:55 2003
-.\"
-.\" Standard preamble:
-.\" ======================================================================
-.de Sh \" Subsection heading
-.br
-.if t .Sp
-.ne 5
-.PP
-\fB\\$1\fR
-.PP
-..
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Ip \" List item
-.br
-.ie \\n(.$>=3 .ne \\$3
-.el .ne 3
-.IP "\\$1" \\$2
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. | will give a
-.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
-.\" to do unbreakable dashes and therefore won't be available. \*(C` and
-.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
-.tr \(*W-|\(bv\*(Tr
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-'br\}
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr
-.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
-.\" index entries marked with X<> in POD. Of course, you'll have to process
-.\" the output yourself in some meaningful fashion.
-.if \nF \{\
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. nr % 0
-. rr F
-.\}
-.\"
-.\" For nroff, turn off justification. Always turn off hyphenation; it
-.\" makes way too many mistakes in technical documents.
-.hy 0
-.if n .na
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-.bd B 3
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ======================================================================
-.\"
-.IX Title "CPP 1"
-.TH CPP 1 "gcc-3.2.2" "2003-02-05" "GNU"
-.UC
-.SH "NAME"
-cpp \- The C Preprocessor
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-cpp [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-W\fR\fIwarn\fR...]
- [\fB\-M\fR|\fB\-MM\fR] [\fB\-MG\fR] [\fB\-MF\fR \fIfilename\fR]
- [\fB\-MP\fR] [\fB\-MQ\fR \fItarget\fR...] [\fB\-MT\fR \fItarget\fR...]
- [\fB\-x\fR \fIlanguage\fR] [\fB\-std=\fR\fIstandard\fR]
- \fIinfile\fR \fIoutfile\fR
-.PP
-Only the most useful options are listed here; see below for the remainder.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-The C preprocessor, often known as \fIcpp\fR, is a \fImacro processor\fR
-that is used automatically by the C compiler to transform your program
-before compilation. It is called a macro processor because it allows
-you to define \fImacros\fR, which are brief abbreviations for longer
-constructs.
-.PP
-The C preprocessor is intended to be used only with C, \*(C+, and
-Objective-C source code. In the past, it has been abused as a general
-text processor. It will choke on input which does not obey C's lexical
-rules. For example, apostrophes will be interpreted as the beginning of
-character constants, and cause errors. Also, you cannot rely on it
-preserving characteristics of the input which are not significant to
-C-family languages. If a Makefile is preprocessed, all the hard tabs
-will be removed, and the Makefile will not work.
-.PP
-Having said that, you can often get away with using cpp on things which
-are not C. Other Algol-ish programming languages are often safe
-(Pascal, Ada, etc.) So is assembly, with caution. \fB\-traditional\fR
-mode preserves more white space, and is otherwise more permissive. Many
-of the problems can be avoided by writing C or \*(C+ style comments
-instead of native language comments, and keeping macros simple.
-.PP
-Wherever possible, you should use a preprocessor geared to the language
-you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro
-facilities. Most high level programming languages have their own
-conditional compilation and inclusion mechanism. If all else fails,
-try a true general text processor, such as \s-1GNU\s0 M4.
-.PP
-C preprocessors vary in some details. This manual discusses the \s-1GNU\s0 C
-preprocessor, which provides a small superset of the features of \s-1ISO\s0
-Standard C. In its default mode, the \s-1GNU\s0 C preprocessor does not do a
-few things required by the standard. These are features which are
-rarely, if ever, used, and may cause surprising changes to the meaning
-of a program which does not expect them. To get strict \s-1ISO\s0 Standard C,
-you should use the \fB\-std=c89\fR or \fB\-std=c99\fR options, depending
-on which version of the standard you want. To get all the mandatory
-diagnostics, you must also use \fB\-pedantic\fR.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-The C preprocessor expects two file names as arguments, \fIinfile\fR and
-\&\fIoutfile\fR. The preprocessor reads \fIinfile\fR together with any
-other files it specifies with \fB#include\fR. All the output generated
-by the combined input files is written in \fIoutfile\fR.
-.PP
-Either \fIinfile\fR or \fIoutfile\fR may be \fB-\fR, which as
-\&\fIinfile\fR means to read from standard input and as \fIoutfile\fR
-means to write to standard output. Also, if either file is omitted, it
-means the same as if \fB-\fR had been specified for that file.
-.PP
-Unless otherwise noted, or the option ends in \fB=\fR, all options
-which take an argument may have that argument appear either immediately
-after the option, or with a space between option and argument:
-\&\fB\-Ifoo\fR and \fB\-I foo\fR have the same effect.
-.PP
-Many options have multi-letter names; therefore multiple single-letter
-options may \fInot\fR be grouped: \fB\-dM\fR is very different from
-\&\fB\-d\ \-M\fR.
-.Ip "\fB\-D\fR \fIname\fR" 4
-.IX Item "-D name"
-Predefine \fIname\fR as a macro, with definition \f(CW\*(C`1\*(C'\fR.
-.Ip "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-D name=definition"
-Predefine \fIname\fR as a macro, with definition \fIdefinition\fR.
-There are no restrictions on the contents of \fIdefinition\fR, but if
-you are invoking the preprocessor from a shell or shell-like program you
-may need to use the shell's quoting syntax to protect characters such as
-spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With \fBsh\fR and \fBcsh\fR,
-\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
-are given on the command line. All \fB\-imacros\fR \fIfile\fR and
-\&\fB\-include\fR \fIfile\fR options are processed after all
-\&\fB\-D\fR and \fB\-U\fR options.
-.Ip "\fB\-U\fR \fIname\fR" 4
-.IX Item "-U name"
-Cancel any previous definition of \fIname\fR, either built in or
-provided with a \fB\-D\fR option.
-.Ip "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific macros. The common predefined
-macros remain defined.
-.Ip "\fB\-I\fR \fIdir\fR" 4
-.IX Item "-I dir"
-Add the directory \fIdir\fR to the list of directories to be searched
-for header files.
-.Sp
-Directories named by \fB\-I\fR are searched before the standard
-system include directories.
-.Sp
-It is dangerous to specify a standard system include directory in an
-\&\fB\-I\fR option. This defeats the special treatment of system
-headers
-\&. It can also defeat the repairs to buggy system headers which \s-1GCC\s0
-makes when it is installed.
-.Ip "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write output to \fIfile\fR. This is the same as specifying \fIfile\fR
-as the second non-option argument to \fBcpp\fR. \fBgcc\fR has a
-different interpretation of a second non-option argument, so you must
-use \fB\-o\fR to specify the output file.
-.Ip "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Turns on all optional warnings which are desirable for normal code. At
-present this is \fB\-Wcomment\fR and \fB\-Wtrigraphs\fR. Note that
-many of the preprocessor's warnings are on by default and have no
-options to control them.
-.Ip "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.Ip "\fB\-Wcomments\fR" 4
-.IX Item "-Wcomments"
-.PD
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a backslash-newline appears in a \fB//\fR comment.
-(Both forms have the same effect.)
-.Ip "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Warn if any trigraphs are encountered. This option used to take effect
-only if \fB\-trigraphs\fR was also specified, but now works
-independently. Warnings are not given for trigraphs within comments, as
-they do not affect the meaning of the program.
-.Ip "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C
-equivalent, and problematic constructs which should be avoided.
-.Ip "\fB\-Wimport\fR" 4
-.IX Item "-Wimport"
-Warn the first time \fB#import\fR is used.
-.Ip "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn whenever an identifier which is not a macro is encountered in an
-\&\fB#if\fR directive, outside of \fBdefined\fR. Such identifiers are
-replaced with zero.
-.Ip "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into hard errors. Source code which triggers warnings
-will be rejected.
-.Ip "\fB\-Wsystem-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Issue warnings for code in system headers. These are normally unhelpful
-in finding bugs in your own code, therefore suppressed. If you are
-responsible for the system library, you may want to see them.
-.Ip "\fB\-w\fR" 4
-.IX Item "-w"
-Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default.
-.Ip "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the mandatory diagnostics listed in the C standard. Some of
-them are left out by default, since they trigger frequently on harmless
-code.
-.Ip "\fB\-pedantic-errors\fR" 4
-.IX Item "-pedantic-errors"
-Issue all the mandatory diagnostics, and make all mandatory diagnostics
-into errors. This includes mandatory diagnostics that \s-1GCC\s0 issues
-without \fB\-pedantic\fR but treats as warnings.
-.Ip "\fB\-M\fR" 4
-.IX Item "-M"
-Instead of outputting the result of preprocessing, output a rule
-suitable for \fBmake\fR describing the dependencies of the main
-source file. The preprocessor outputs one \fBmake\fR rule containing
-the object file name for that source file, a colon, and the names of all
-the included files, including those coming from \fB\-include\fR or
-\&\fB\-imacros\fR command line options.
-.Sp
-Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
-object file name consists of the basename of the source file with any
-suffix replaced with object file suffix. If there are many included
-files then the rule is split into several lines using \fB\e\fR\-newline.
-The rule has no commands.
-.Sp
-This option does not suppress the preprocessor's debug output, such as
-\&\fB\-dM\fR. To avoid mixing such debug output with the dependency
-rules you should explicitly specify the dependency output file with
-\&\fB\-MF\fR, or use an environment variable like
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR. Debug output
-will still be sent to the regular output stream as normal.
-.Sp
-Passing \fB\-M\fR to the driver implies \fB\-E\fR.
-.Ip "\fB\-MM\fR" 4
-.IX Item "-MM"
-Like \fB\-M\fR but do not mention header files that are found in
-system header directories, nor header files that are included,
-directly or indirectly, from such a header.
-.Sp
-This implies that the choice of angle brackets or double quotes in an
-\&\fB#include\fR directive does not in itself determine whether that
-header will appear in \fB\-MM\fR dependency output. This is a
-slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
-.Ip "\fB\-MF\fR \fIfile\fR" 4
-.IX Item "-MF file"
-@anchor{\-MF}
-When used with \fB\-M\fR or \fB\-MM\fR, specifies a
-file to write the dependencies to. If no \fB\-MF\fR switch is given
-the preprocessor sends the rules to the same place it would have sent
-preprocessed output.
-.Sp
-When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
-\&\fB\-MF\fR overrides the default dependency output file.
-.Ip "\fB\-MG\fR" 4
-.IX Item "-MG"
-When used with \fB\-M\fR or \fB\-MM\fR, \fB\-MG\fR says to treat missing
-header files as generated files and assume they live in the same
-directory as the source file. It suppresses preprocessed output, as a
-missing header file is ordinarily an error.
-.Sp
-This feature is used in automatic updating of makefiles.
-.Ip "\fB\-MP\fR" 4
-.IX Item "-MP"
-This option instructs \s-1CPP\s0 to add a phony target for each dependency
-other than the main file, causing each to depend on nothing. These
-dummy rules work around errors \fBmake\fR gives if you remove header
-files without updating the \fIMakefile\fR to match.
-.Sp
-This is typical output:
-.Sp
-.Vb 1
-\& test.o: test.c test.h
-.Ve
-.Vb 1
-\& test.h:
-.Ve
-.Ip "\fB\-MT\fR \fItarget\fR" 4
-.IX Item "-MT target"
-Change the target of the rule emitted by dependency generation. By
-default \s-1CPP\s0 takes the name of the main input file, including any path,
-deletes any file suffix such as \fB.c\fR, and appends the platform's
-usual object suffix. The result is the target.
-.Sp
-An \fB\-MT\fR option will set the target to be exactly the string you
-specify. If you want multiple targets, you can specify them as a single
-argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
-.Sp
-For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
-.Sp
-.Vb 1
-\& $(objpfx)foo.o: foo.c
-.Ve
-.Ip "\fB\-MQ\fR \fItarget\fR" 4
-.IX Item "-MQ target"
-Same as \fB\-MT\fR, but it quotes any characters which are special to
-Make. \fB\-MQ\ '$(objpfx)foo.o'\fR gives
-.Sp
-.Vb 1
-\& $$(objpfx)foo.o: foo.c
-.Ve
-The default target is automatically quoted, as if it were given with
-\&\fB\-MQ\fR.
-.Ip "\fB\-MD\fR" 4
-.IX Item "-MD"
-\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
-\&\fB\-E\fR is not implied. The driver determines \fIfile\fR based on
-whether an \fB\-o\fR option is given. If it is, the driver uses its
-argument but with a suffix of \fI.d\fR, otherwise it take the
-basename of the input file and applies a \fI.d\fR suffix.
-.Sp
-If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
-\&\fB\-o\fR switch is understood to specify the dependency output file
-(but \f(CW@pxref\fR{\-MF}), but if used without \fB\-E\fR, each \fB\-o\fR
-is understood to specify a target object file.
-.Sp
-Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
-a dependency output file as a side-effect of the compilation process.
-.Ip "\fB\-MMD\fR" 4
-.IX Item "-MMD"
-Like \fB\-MD\fR except mention only user header files, not system
-\&\-header files.
-.Ip "\fB\-x c\fR" 4
-.IX Item "-x c"
-.PD 0
-.Ip "\fB\-x c++\fR" 4
-.IX Item "-x c++"
-.Ip "\fB\-x objective-c\fR" 4
-.IX Item "-x objective-c"
-.Ip "\fB\-x assembler-with-cpp\fR" 4
-.IX Item "-x assembler-with-cpp"
-.PD
-Specify the source language: C, \*(C+, Objective-C, or assembly. This has
-nothing to do with standards conformance or extensions; it merely
-selects which base syntax to expect. If you give none of these options,
-cpp will deduce the language from the extension of the source file:
-\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR. Some other common
-extensions for \*(C+ and assembly are also recognized. If cpp does not
-recognize the extension, it will treat the file as C; this is the most
-generic mode.
-.Sp
-\&\fBNote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
-which selected both the language and the standards conformance level.
-This option has been removed, because it conflicts with the \fB\-l\fR
-option.
-.Ip "\fB\-std=\fR\fIstandard\fR" 4
-.IX Item "-std=standard"
-.PD 0
-.Ip "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-.PD
-Specify the standard to which the code should conform. Currently cpp
-only knows about the standards for C; other language standards will be
-added in the future.
-.Sp
-\&\fIstandard\fR
-may be one of:
-.RS 4
-.if n .Ip "\f(CW""""iso9899:1990""""\fR" 4
-.el .Ip "\f(CWiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD 0
-.if n .Ip "\f(CW""""c89""""\fR" 4
-.el .Ip "\f(CWc89\fR" 4
-.IX Item "c89"
-.PD
-The \s-1ISO\s0 C standard from 1990. \fBc89\fR is the customary shorthand for
-this version of the standard.
-.Sp
-The \fB\-ansi\fR option is equivalent to \fB\-std=c89\fR.
-.if n .Ip "\f(CW""""iso9899:199409""""\fR" 4
-.el .Ip "\f(CWiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-The 1990 C standard, as amended in 1994.
-.if n .Ip "\f(CW""""iso9899:1999""""\fR" 4
-.el .Ip "\f(CWiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.PD 0
-.if n .Ip "\f(CW""""c99""""\fR" 4
-.el .Ip "\f(CWc99\fR" 4
-.IX Item "c99"
-.if n .Ip "\f(CW""""iso9899:199x""""\fR" 4
-.el .Ip "\f(CWiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.if n .Ip "\f(CW""""c9x""""\fR" 4
-.el .Ip "\f(CWc9x\fR" 4
-.IX Item "c9x"
-.PD
-The revised \s-1ISO\s0 C standard, published in December 1999. Before
-publication, this was known as C9X.
-.if n .Ip "\f(CW""""gnu89""""\fR" 4
-.el .Ip "\f(CWgnu89\fR" 4
-.IX Item "gnu89"
-The 1990 C standard plus \s-1GNU\s0 extensions. This is the default.
-.if n .Ip "\f(CW""""gnu99""""\fR" 4
-.el .Ip "\f(CWgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.if n .Ip "\f(CW""""gnu9x""""\fR" 4
-.el .Ip "\f(CWgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-The 1999 C standard plus \s-1GNU\s0 extensions.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-I-\fR" 4
-.IX Item "-I-"
-Split the include path. Any directories specified with \fB\-I\fR
-options before \fB\-I-\fR are searched only for headers requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR. If additional directories are
-specified with \fB\-I\fR options after the \fB\-I-\fR, those
-directories are searched for all \fB#include\fR directives.
-.Sp
-In addition, \fB\-I-\fR inhibits the use of the directory of the current
-file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
-.Ip "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files.
-Only the directories you have specified with \fB\-I\fR options
-(and the directory of the current file, if appropriate) are searched.
-.Ip "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the \*(C+\-specific standard directories,
-but do still search the other standard directories. (This option is
-used when building the \*(C+ library.)
-.Ip "\fB\-include\fR \fIfile\fR" 4
-.IX Item "-include file"
-Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
-line of the primary source file. However, the first directory searched
-for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
-the directory containing the main source file. If not found there, it
-is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
-chain as normal.
-.Sp
-If multiple \fB\-include\fR options are given, the files are included
-in the order they appear on the command line.
-.Ip "\fB\-imacros\fR \fIfile\fR" 4
-.IX Item "-imacros file"
-Exactly like \fB\-include\fR, except that any output produced by
-scanning \fIfile\fR is thrown away. Macros it defines remain defined.
-This allows you to acquire all the macros from a header without also
-processing its declarations.
-.Sp
-All files specified by \fB\-imacros\fR are processed before all files
-specified by \fB\-include\fR.
-.Ip "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for header files, but do it \fIafter\fR all
-directories specified with \fB\-I\fR and the standard system directories
-have been exhausted. \fIdir\fR is treated as a system include directory.
-.Ip "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the prefix represents a directory, you should include the
-final \fB/\fR.
-.Ip "\fB\-iwithprefix\fR \fIdir\fR" 4
-.IX Item "-iwithprefix dir"
-.PD 0
-.Ip "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
-.IX Item "-iwithprefixbefore dir"
-.PD
-Append \fIdir\fR to the prefix specified previously with
-\&\fB\-iprefix\fR, and add the resulting directory to the include search
-path. \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
-would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
-.Sp
-Use of these options is discouraged.
-.Ip "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-.Ip "\fB\-fpreprocessed\fR" 4
-.IX Item "-fpreprocessed"
-Indicate to the preprocessor that the input file has already been
-preprocessed. This suppresses things like macro expansion, trigraph
-conversion, escaped newline splicing, and processing of most directives.
-The preprocessor still recognizes and removes comments, so that you can
-pass a file preprocessed with \fB\-C\fR to the compiler without
-problems. In this mode the integrated preprocessor is little more than
-a tokenizer for the front ends.
-.Sp
-\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
-extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR. These are the
-extensions that \s-1GCC\s0 uses for preprocessed files created by
-\&\fB\-save-temps\fR.
-.Ip "\fB\-ftabstop=\fR\fIwidth\fR" 4
-.IX Item "-ftabstop=width"
-Set the distance between tab stops. This helps the preprocessor report
-correct column numbers in warnings or errors, even if tabs appear on the
-line. If the value is less than 1 or greater than 100, the option is
-ignored. The default is 8.
-.Ip "\fB\-fno-show-column\fR" 4
-.IX Item "-fno-show-column"
-Do not print column numbers in diagnostics. This may be necessary if
-diagnostics are being scanned by a program that does not understand the
-column numbers, such as \fBdejagnu\fR.
-.Ip "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A predicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR. This form is preferred to the older form \fB\-A\fR
-\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
-it does not use shell special characters.
-.Ip "\fB\-A -\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A -predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR.
-.Ip "\fB\-A-\fR" 4
-.IX Item "-A-"
-Cancel all predefined assertions and all assertions preceding it on
-the command line. Also, undefine all predefined macros and all
-macros preceding it on the command line. (This is a historical wart and
-may change in the future.)
-.Ip "\fB\-dCHARS\fR" 4
-.IX Item "-dCHARS"
-\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
-and must not be preceded by a space. Other characters are interpreted
-by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so
-are silently ignored. If you specify characters whose behavior
-conflicts, the result is undefined.
-.RS 4
-.Ip "\fBM\fR" 4
-.IX Item "M"
-Instead of the normal output, generate a list of \fB#define\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way of
-finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.h\fR, the command
-.Sp
-.Vb 1
-\& touch foo.h; cpp -dM foo.h
-.Ve
-will show all the predefined macros.
-.Ip "\fBD\fR" 4
-.IX Item "D"
-Like \fBM\fR except in two respects: it does \fInot\fR include the
-predefined macros, and it outputs \fIboth\fR the \fB#define\fR
-directives and the result of preprocessing. Both kinds of output go to
-the standard output file.
-.Ip "\fBN\fR" 4
-.IX Item "N"
-Like \fBD\fR, but emit only the macro names, not their expansions.
-.Ip "\fBI\fR" 4
-.IX Item "I"
-Output \fB#include\fR directives in addition to the result of
-preprocessing.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that is
-not C code, and will be sent to a program which might be confused by the
-linemarkers.
-.Ip "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it
-causes the preprocessor to treat comments as tokens in their own right.
-For example, comments appearing at the start of what would be a
-directive line have the effect of turning that line into an ordinary
-source line, since the first token on the line is no longer a \fB#\fR.
-.Ip "\fB\-gcc\fR" 4
-.IX Item "-gcc"
-Define the macros _\|_GNUC_\|_, _\|_GNUC_MINOR_\|_ and
-_\|_GNUC_PATCHLEVEL_\|_. These are defined automatically when you use
-\&\fBgcc \-E\fR; you can turn them off in that case with
-\&\fB\-no-gcc\fR.
-.Ip "\fB\-traditional\fR" 4
-.IX Item "-traditional"
-Try to imitate the behavior of old-fashioned C, as opposed to \s-1ISO\s0
-C.
-.Ip "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Process trigraph sequences.
-.Ip "\fB\-remap\fR" 4
-.IX Item "-remap"
-Enable special code to work around file systems which only permit very
-short file names, such as \s-1MS-DOS\s0.
-.Ip "\fB\-$\fR" 4
-.IX Item "-$"
-Forbid the use of \fB$\fR in identifiers. The C standard allows
-implementations to define extra characters that can appear in
-identifiers. By default \s-1GNU\s0 \s-1CPP\s0 permits \fB$\fR, a common extension.
-.Ip "\fB\-h\fR" 4
-.IX Item "-h"
-.PD 0
-.Ip "\fB\*(--help\fR" 4
-.IX Item "help"
-.Ip "\fB\*(--target-help\fR" 4
-.IX Item "target-help"
-.PD
-Print text describing all the command line options instead of
-preprocessing anything.
-.Ip "\fB\-v\fR" 4
-.IX Item "-v"
-Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of
-execution, and report the final form of the include path.
-.Ip "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the
-\&\fB#include\fR stack it is.
-.Ip "\fB\-version\fR" 4
-.IX Item "-version"
-.PD 0
-.Ip "\fB\*(--version\fR" 4
-.IX Item "version"
-.PD
-Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to
-preprocess as normal. With two dashes, exit immediately.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-This section describes the environment variables that affect how \s-1CPP\s0
-operates. You can use them to specify directories or prefixes to use
-when searching for include files, or to control dependency output.
-.PP
-Note that you can also specify places to search using options such as
-\&\fB\-I\fR, and control dependency output with options like
-\&\fB\-M\fR. These take precedence over
-environment variables, which in turn take precedence over the
-configuration of \s-1GCC\s0.
-.Ip "\fB\s-1CPATH\s0\fR" 4
-.IX Item "CPATH"
-.PD 0
-.Ip "\fBC_INCLUDE_PATH\fR" 4
-.IX Item "C_INCLUDE_PATH"
-.Ip "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
-.IX Item "CPLUS_INCLUDE_PATH"
-.Ip "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
-.IX Item "OBJC_INCLUDE_PATH"
-.PD
-Each variable's value is a list of directories separated by a special
-character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
-The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
-determined at \s-1GCC\s0 build time. For Windows-based targets it is a
-semicolon, and for almost all other targets it is a colon.
-.Sp
-\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
-specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
-options on the command line. The environment variable is used
-regardless of which language is being preprocessed.
-.Sp
-The remaining environment variables apply only when preprocessing the
-particular language indicated. Each specifies a list of directories
-to be searched as if specified with \fB\-isystem\fR, but after any
-paths given with \fB\-isystem\fR options on the command line.
-.Sp
-See also \f(CW@ref\fR{Search Path}.
-.Ip "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
-.IX Item "DEPENDENCIES_OUTPUT"
-@anchor{\s-1DEPENDENCIES_OUTPUT\s0}
-If this variable is set, its value specifies how to output
-dependencies for Make based on the non-system header files processed
-by the compiler. System header files are ignored in the dependency
-output.
-.Sp
-The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
-file \fIfile\fR using \fItarget\fR as the target name.
-.Sp
-In other words, this environment variable is equivalent to combining
-the options \fB\-MM\fR and \fB\-MF\fR,
-with an optional \fB\-MT\fR switch too.
-.Ip "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
-.IX Item "SUNPRO_DEPENDENCIES"
-This variable is the same as the environment variable
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR, except that
-system header files are not ignored, so it implies \fB\-M\fR rather
-than \fB\-MM\fR. However, the dependence on the main input file is
-omitted.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf-funding\fR\|(7),
-\&\fIgcc\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), and the Info entries for \fIcpp\fR, \fIgcc\fR, and
-\&\fIbinutils\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
-1997, 1998, 1999, 2000, 2001
-Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.1 or
-any later version published by the Free Software Foundation. A copy of
-the license is included in the
-man page \fIgfdl\fR\|(7).
-This manual contains no Invariant Sections. The Front-Cover Texts are
-(a) (see below), and the Back-Cover Texts are (b) (see below).
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/contrib/gcc/doc/gcc.1 b/contrib/gcc/doc/gcc.1
deleted file mode 100644
index 16a2b28300fd..000000000000
--- a/contrib/gcc/doc/gcc.1
+++ /dev/null
@@ -1,9464 +0,0 @@
-.\" Automatically generated by Pod::Man version 1.15
-.\" Wed Feb 5 03:13:56 2003
-.\"
-.\" Standard preamble:
-.\" ======================================================================
-.de Sh \" Subsection heading
-.br
-.if t .Sp
-.ne 5
-.PP
-\fB\\$1\fR
-.PP
-..
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Ip \" List item
-.br
-.ie \\n(.$>=3 .ne \\$3
-.el .ne 3
-.IP "\\$1" \\$2
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. | will give a
-.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
-.\" to do unbreakable dashes and therefore won't be available. \*(C` and
-.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
-.tr \(*W-|\(bv\*(Tr
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-'br\}
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr
-.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
-.\" index entries marked with X<> in POD. Of course, you'll have to process
-.\" the output yourself in some meaningful fashion.
-.if \nF \{\
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. nr % 0
-. rr F
-.\}
-.\"
-.\" For nroff, turn off justification. Always turn off hyphenation; it
-.\" makes way too many mistakes in technical documents.
-.hy 0
-.if n .na
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-.bd B 3
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ======================================================================
-.\"
-.IX Title "GCC 1"
-.TH GCC 1 "gcc-3.2.2" "2003-02-05" "GNU"
-.UC
-.SH "NAME"
-gcc \- \s-1GNU\s0 project C and \*(C+ compiler
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcc [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR] [\fB\-std=\fR\fIstandard\fR]
- [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
- [\fB\-W\fR\fIwarn\fR...] [\fB\-pedantic\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
- [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
- [\fB\-o\fR \fIoutfile\fR] \fIinfile\fR...
-.PP
-Only the most useful options are listed here; see below for the
-remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-When you invoke \s-1GCC\s0, it normally does preprocessing, compilation,
-assembly and linking. The ``overall options'' allow you to stop this
-process at an intermediate stage. For example, the \fB\-c\fR option
-says not to run the linker. Then the output consists of object files
-output by the assembler.
-.PP
-Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-.PP
-Most of the command line options that you can use with \s-1GCC\s0 are useful
-for C programs; when an option is only useful with another language
-(usually \*(C+), the explanation says so explicitly. If the description
-for a particular option does not mention a source language, you can use
-that option with all supported languages.
-.PP
-The \fBgcc\fR program accepts options and file names as operands. Many
-options have multi-letter names; therefore multiple single-letter options
-may \fInot\fR be grouped: \fB\-dr\fR is very different from \fB\-d\ \-r\fR.
-.PP
-You can mix options and other arguments. For the most part, the order
-you use doesn't matter. Order does matter when you use several options
-of the same kind; for example, if you specify \fB\-L\fR more than once,
-the directories are searched in the order specified.
-.PP
-Many options have long names starting with \fB\-f\fR or with
-\&\fB\-W\fR\-\-\-for example, \fB\-fforce-mem\fR,
-\&\fB\-fstrength-reduce\fR, \fB\-Wformat\fR and so on. Most of
-these have both positive and negative forms; the negative form of
-\&\fB\-ffoo\fR would be \fB\-fno-foo\fR. This manual documents
-only one of these two forms, whichever one is not the default.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.Sh "Option Summary"
-.IX Subsection "Option Summary"
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-.Ip "\fIOverall Options\fR" 4
-.IX Item "Overall Options"
-\&\fB\-c \-S \-E \-o\fR \fIfile\fR \fB\-pipe \-pass-exit-codes \-x\fR \fIlanguage\fR
-\&\fB\-v \-### \-\-help \-\-target-help \-\-version\fR
-.Ip "\fIC Language Options\fR" 4
-.IX Item "C Language Options"
-\&\fB\-ansi \-std=\fR\fIstandard\fR \fB\-aux-info\fR \fIfilename\fR
-\&\fB\-fno-asm \-fno-builtin \-fno-builtin-\fR\fIfunction\fR
-\&\fB\-fhosted \-ffreestanding
-\&\-trigraphs \-no-integrated-cpp \-traditional \-traditional-cpp
-\&\-fallow-single-precision \-fcond-mismatch
-\&\-fsigned-bitfields \-fsigned-char
-\&\-funsigned-bitfields \-funsigned-char
-\&\-fwritable-strings\fR
-.Ip "\fI\*(C+ Language Options\fR" 4
-.IX Item " Language Options"
-\&\fB\-fno-access-control \-fcheck-new \-fconserve-space
-\&\-fno-const-strings \-fdollars-in-identifiers
-\&\-fno-elide-constructors
-\&\-fno-enforce-eh-specs \-fexternal-templates
-\&\-falt-external-templates
-\&\-ffor-scope \-fno-for-scope \-fno-gnu-keywords
-\&\-fno-implicit-templates
-\&\-fno-implicit-inline-templates
-\&\-fno-implement-inlines \-fms-extensions
-\&\-fno-nonansi-builtins \-fno-operator-names
-\&\-fno-optional-diags \-fpermissive
-\&\-frepo \-fno-rtti \-fstats \-ftemplate-depth-\fR\fIn\fR
-\&\fB\-fuse-cxa-atexit \-fvtable-gc \-fno-weak \-nostdinc++
-\&\-fno-default-inline \-Wabi \-Wctor-dtor-privacy
-\&\-Wnon-virtual-dtor \-Wreorder
-\&\-Weffc++ \-Wno-deprecated
-\&\-Wno-non-template-friend \-Wold-style-cast
-\&\-Woverloaded-virtual \-Wno-pmf-conversions
-\&\-Wsign-promo \-Wsynth\fR
-.Ip "\fIObjective-C Language Options\fR" 4
-.IX Item "Objective-C Language Options"
-\&\fB\-fconstant-string-class=\fR\fIclass-name\fR
-\&\fB\-fgnu-runtime \-fnext-runtime \-gen-decls
-\&\-Wno-protocol \-Wselector\fR
-.Ip "\fILanguage Independent Options\fR" 4
-.IX Item "Language Independent Options"
-\&\fB\-fmessage-length=\fR\fIn\fR
-\&\fB\-fdiagnostics-show-location=\fR[\fBonce\fR|\fBevery-line\fR]
-.Ip "\fIWarning Options\fR" 4
-.IX Item "Warning Options"
-\&\fB\-fsyntax-only \-pedantic \-pedantic-errors
-\&\-w \-W \-Wall \-Waggregate-return
-\&\-Wcast-align \-Wcast-qual \-Wchar-subscripts \-Wcomment
-\&\-Wconversion \-Wno-deprecated-declarations
-\&\-Wdisabled-optimization \-Wdiv-by-zero \-Werror
-\&\-Wfloat-equal \-Wformat \-Wformat=2
-\&\-Wformat-nonliteral \-Wformat-security
-\&\-Wimplicit \-Wimplicit-int
-\&\-Wimplicit-function-declaration
-\&\-Werror-implicit-function-declaration
-\&\-Wimport \-Winline
-\&\-Wlarger-than-\fR\fIlen\fR \fB\-Wlong-long
-\&\-Wmain \-Wmissing-braces
-\&\-Wmissing-format-attribute \-Wmissing-noreturn
-\&\-Wmultichar \-Wno-format-extra-args \-Wno-format-y2k
-\&\-Wno-import \-Wpacked \-Wpadded
-\&\-Wparentheses \-Wpointer-arith \-Wredundant-decls
-\&\-Wreturn-type \-Wsequence-point \-Wshadow
-\&\-Wsign-compare \-Wswitch \-Wsystem-headers
-\&\-Wtrigraphs \-Wundef \-Wuninitialized
-\&\-Wunknown-pragmas \-Wunreachable-code
-\&\-Wunused \-Wunused-function \-Wunused-label \-Wunused-parameter
-\&\-Wunused-value \-Wunused-variable \-Wwrite-strings\fR
-.Ip "\fIC-only Warning Options\fR" 4
-.IX Item "C-only Warning Options"
-\&\fB\-Wbad-function-cast \-Wmissing-declarations
-\&\-Wmissing-prototypes \-Wnested-externs
-\&\-Wstrict-prototypes \-Wtraditional\fR
-.Ip "\fIDebugging Options\fR" 4
-.IX Item "Debugging Options"
-\&\fB\-d\fR\fIletters\fR \fB\-dumpspecs \-dumpmachine \-dumpversion
-\&\-fdump-unnumbered \-fdump-translation-unit\fR[\fB-\fR\fIn\fR]
-\&\fB\-fdump-class-hierarchy\fR[\fB-\fR\fIn\fR]
-\&\fB\-fdump-tree-original\fR[\fB-\fR\fIn\fR] \fB\-fdump-tree-optimized\fR[\fB-\fR\fIn\fR]
-\&\fB\-fdump-tree-inlined\fR[\fB-\fR\fIn\fR]
-\&\fB\-fmem-report \-fpretend-float
-\&\-fprofile-arcs \-fsched-verbose=\fR\fIn\fR
-\&\fB\-ftest-coverage \-ftime-report
-\&\-g \-g\fR\fIlevel\fR \fB\-gcoff \-gdwarf \-gdwarf-1 \-gdwarf-1+ \-gdwarf-2
-\&\-ggdb \-gstabs \-gstabs+ \-gvms \-gxcoff \-gxcoff+
-\&\-p \-pg \-print-file-name=\fR\fIlibrary\fR \fB\-print-libgcc-file-name
-\&\-print-multi-directory \-print-multi-lib
-\&\-print-prog-name=\fR\fIprogram\fR \fB\-print-search-dirs \-Q
-\&\-save-temps \-time\fR
-.Ip "\fIOptimization Options\fR" 4
-.IX Item "Optimization Options"
-\&\fB\-falign-functions=\fR\fIn\fR \fB\-falign-jumps=\fR\fIn\fR
-\&\fB\-falign-labels=\fR\fIn\fR \fB\-falign-loops=\fR\fIn\fR
-\&\fB\-fbounds-check
-\&\-fbranch-probabilities \-fcaller-saves \-fcprop-registers
-\&\-fcse-follow-jumps \-fcse-skip-blocks \-fdata-sections
-\&\-fdelayed-branch \-fdelete-null-pointer-checks
-\&\-fexpensive-optimizations \-ffast-math \-ffloat-store
-\&\-fforce-addr \-fforce-mem \-ffunction-sections
-\&\-fgcse \-fgcse-lm \-fgcse-sm
-\&\-finline-functions \-finline-limit=\fR\fIn\fR \fB\-fkeep-inline-functions
-\&\-fkeep-static-consts \-fmerge-constants \-fmerge-all-constants
-\&\-fmove-all-movables \-fno-branch-count-reg
-\&\-fno-default-inline \-fno-defer-pop
-\&\-fno-function-cse \-fno-guess-branch-probability
-\&\-fno-inline \-fno-math-errno \-fno-peephole \-fno-peephole2
-\&\-funsafe-math-optimizations \-fno-trapping-math
-\&\-fomit-frame-pointer \-foptimize-register-move
-\&\-foptimize-sibling-calls \-fprefetch-loop-arrays
-\&\-freduce-all-givs \-fregmove \-frename-registers
-\&\-frerun-cse-after-loop \-frerun-loop-opt
-\&\-fschedule-insns \-fschedule-insns2
-\&\-fno-sched-interblock \-fno-sched-spec
-\&\-fsched-spec-load \-fsched-spec-load-dangerous
-\&\-fsingle-precision-constant \-fssa \-fssa-ccp \-fssa-dce
-\&\-fstrength-reduce \-fstrict-aliasing \-fthread-jumps
-\&\-ftrapv \-funroll-all-loops \-funroll-loops
-\&\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR
-\&\fB\-O \-O0 \-O1 \-O2 \-O3 \-Os\fR
-.Ip "\fIPreprocessor Options\fR" 4
-.IX Item "Preprocessor Options"
-\&\fB\-$ \-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR \fB\-A-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR]
-\&\fB\-C \-dD \-dI \-dM \-dN
-\&\-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR] \fB\-E \-H
-\&\-idirafter\fR \fIdir\fR
-\&\fB\-include\fR \fIfile\fR \fB\-imacros\fR \fIfile\fR
-\&\fB\-iprefix\fR \fIfile\fR \fB\-iwithprefix\fR \fIdir\fR
-\&\fB\-iwithprefixbefore\fR \fIdir\fR \fB\-isystem\fR \fIdir\fR
-\&\fB\-M \-MM \-MF \-MG \-MP \-MQ \-MT \-nostdinc \-P \-remap
-\&\-trigraphs \-undef \-U\fR\fImacro\fR \fB\-Wp,\fR\fIoption\fR
-.Ip "\fIAssembler Option\fR" 4
-.IX Item "Assembler Option"
-\&\fB\-Wa,\fR\fIoption\fR
-.Ip "\fILinker Options\fR" 4
-.IX Item "Linker Options"
-\&\fB
-\&\fR\fIobject-file-name\fR \fB\-l\fR\fIlibrary\fR
-\&\fB\-nostartfiles \-nodefaultlibs \-nostdlib
-\&\-s \-static \-static-libgcc \-shared \-shared-libgcc \-symbolic
-\&\-Wl,\fR\fIoption\fR \fB\-Xlinker\fR \fIoption\fR
-\&\fB\-u\fR \fIsymbol\fR
-.Ip "\fIDirectory Options\fR" 4
-.IX Item "Directory Options"
-\&\fB\-B\fR\fIprefix\fR \fB\-I\fR\fIdir\fR \fB\-I- \-L\fR\fIdir\fR \fB\-specs=\fR\fIfile\fR
-.Ip "\fITarget Options\fR" 4
-.IX Item "Target Options"
-\&\fB\-b\fR \fImachine\fR \fB\-V\fR \fIversion\fR
-.Ip "\fIMachine Dependent Options\fR" 4
-.IX Item "Machine Dependent Options"
-\&\fIM680x0 Options\fR
-.Sp
-\&\fB\-m68000 \-m68020 \-m68020\-40 \-m68020\-60 \-m68030 \-m68040
-\&\-m68060 \-mcpu32 \-m5200 \-m68881 \-mbitfield \-mc68000 \-mc68020
-\&\-mfpa \-mnobitfield \-mrtd \-mshort \-msoft-float \-mpcrel
-\&\-malign-int \-mstrict-align\fR
-.Sp
-\&\fIM68hc1x Options\fR
-.Sp
-\&\fB\-m6811 \-m6812 \-m68hc11 \-m68hc12
-\&\-mauto-incdec \-mshort \-msoft-reg-count=\fR\fIcount\fR
-.Sp
-\&\fI\s-1VAX\s0 Options\fR
-.Sp
-\&\fB\-mg \-mgnu \-munix\fR
-.Sp
-\&\fI\s-1SPARC\s0 Options\fR
-.Sp
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-m32 \-m64
-\&\-mapp-regs \-mbroken-saverestore \-mcypress
-\&\-mfaster-structs \-mflat
-\&\-mfpu \-mhard-float \-mhard-quad-float
-\&\-mimpure-text \-mlive-g0 \-mno-app-regs
-\&\-mno-faster-structs \-mno-flat \-mno-fpu
-\&\-mno-impure-text \-mno-stack-bias \-mno-unaligned-doubles
-\&\-msoft-float \-msoft-quad-float \-msparclite \-mstack-bias
-\&\-msupersparc \-munaligned-doubles \-mv8\fR
-.Sp
-\&\fIConvex Options\fR
-.Sp
-\&\fB\-mc1 \-mc2 \-mc32 \-mc34 \-mc38
-\&\-margcount \-mnoargcount
-\&\-mlong32 \-mlong64
-\&\-mvolatile-cache \-mvolatile-nocache\fR
-.Sp
-\&\fI\s-1AMD29K\s0 Options\fR
-.Sp
-\&\fB\-m29000 \-m29050 \-mbw \-mnbw \-mdw \-mndw
-\&\-mlarge \-mnormal \-msmall
-\&\-mkernel-registers \-mno-reuse-arg-regs
-\&\-mno-stack-check \-mno-storem-bug
-\&\-mreuse-arg-regs \-msoft-float \-mstack-check
-\&\-mstorem-bug \-muser-registers\fR
-.Sp
-\&\fI\s-1ARM\s0 Options\fR
-.Sp
-\&\fB\-mapcs-frame \-mno-apcs-frame
-\&\-mapcs-26 \-mapcs-32
-\&\-mapcs-stack-check \-mno-apcs-stack-check
-\&\-mapcs-float \-mno-apcs-float
-\&\-mapcs-reentrant \-mno-apcs-reentrant
-\&\-msched-prolog \-mno-sched-prolog
-\&\-mlittle-endian \-mbig-endian \-mwords-little-endian
-\&\-malignment-traps \-mno-alignment-traps
-\&\-msoft-float \-mhard-float \-mfpe
-\&\-mthumb-interwork \-mno-thumb-interwork
-\&\-mcpu=\fR\fIname\fR \fB\-march=\fR\fIname\fR \fB\-mfpe=\fR\fIname\fR
-\&\fB\-mstructure-size-boundary=\fR\fIn\fR
-\&\fB\-mbsd \-mxopen \-mno-symrename
-\&\-mabort-on-noreturn
-\&\-mlong-calls \-mno-long-calls
-\&\-msingle-pic-base \-mno-single-pic-base
-\&\-mpic-register=\fR\fIreg\fR
-\&\fB\-mnop-fun-dllimport
-\&\-mpoke-function-name
-\&\-mthumb \-marm
-\&\-mtpcs-frame \-mtpcs-leaf-frame
-\&\-mcaller-super-interworking \-mcallee-super-interworking\fR
-.Sp
-\&\fI\s-1MN10200\s0 Options\fR
-.Sp
-\&\fB\-mrelax\fR
-.Sp
-\&\fI\s-1MN10300\s0 Options\fR
-.Sp
-\&\fB\-mmult-bug \-mno-mult-bug
-\&\-mam33 \-mno-am33
-\&\-mno-crt0 \-mrelax\fR
-.Sp
-\&\fIM32R/D Options\fR
-.Sp
-\&\fB\-m32rx \-m32r \-mcode-model=\fR\fImodel-type\fR \fB\-msdata=\fR\fIsdata-type\fR
-\&\fB\-G\fR \fInum\fR
-.Sp
-\&\fIM88K Options\fR
-.Sp
-\&\fB\-m88000 \-m88100 \-m88110 \-mbig-pic
-\&\-mcheck-zero-division \-mhandle-large-shift
-\&\-midentify-revision \-mno-check-zero-division
-\&\-mno-ocs-debug-info \-mno-ocs-frame-position
-\&\-mno-optimize-arg-area \-mno-serialize-volatile
-\&\-mno-underscores \-mocs-debug-info
-\&\-mocs-frame-position \-moptimize-arg-area
-\&\-mserialize-volatile \-mshort-data-\fR\fInum\fR \fB\-msvr3
-\&\-msvr4 \-mtrap-large-shift \-muse-div-instruction
-\&\-mversion-03.00 \-mwarn-passed-structs\fR
-.Sp
-\&\fI\s-1RS/6000\s0 and PowerPC Options\fR
-.Sp
-\&\fB\-mcpu=\fR\fIcpu-type\fR
-\&\fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mpower \-mno-power \-mpower2 \-mno-power2
-\&\-mpowerpc \-mpowerpc64 \-mno-powerpc
-\&\-maltivec \-mno-altivec
-\&\-mpowerpc-gpopt \-mno-powerpc-gpopt
-\&\-mpowerpc-gfxopt \-mno-powerpc-gfxopt
-\&\-mnew-mnemonics \-mold-mnemonics
-\&\-mfull-toc \-mminimal-toc \-mno-fp-in-toc \-mno-sum-in-toc
-\&\-m64 \-m32 \-mxl-call \-mno-xl-call \-mpe
-\&\-msoft-float \-mhard-float \-mmultiple \-mno-multiple
-\&\-mstring \-mno-string \-mupdate \-mno-update
-\&\-mfused-madd \-mno-fused-madd \-mbit-align \-mno-bit-align
-\&\-mstrict-align \-mno-strict-align \-mrelocatable
-\&\-mno-relocatable \-mrelocatable-lib \-mno-relocatable-lib
-\&\-mtoc \-mno-toc \-mlittle \-mlittle-endian \-mbig \-mbig-endian
-\&\-mcall-aix \-mcall-sysv \-mcall-netbsd
-\&\-maix-struct-return \-msvr4\-struct-return
-\&\-mabi=altivec \-mabi=no-altivec
-\&\-mprototype \-mno-prototype
-\&\-msim \-mmvme \-mads \-myellowknife \-memb \-msdata
-\&\-msdata=\fR\fIopt\fR \fB\-mvxworks \-G\fR \fInum\fR \fB\-pthread\fR
-.Sp
-\&\fI\s-1RT\s0 Options\fR
-.Sp
-\&\fB\-mcall-lib-mul \-mfp-arg-in-fpregs \-mfp-arg-in-gregs
-\&\-mfull-fp-blocks \-mhc-struct-return \-min-line-mul
-\&\-mminimum-fp-blocks \-mnohc-struct-return\fR
-.Sp
-\&\fI\s-1MIPS\s0 Options\fR
-.Sp
-\&\fB\-mabicalls \-march=\fR\fIcpu-type\fR \fB\-mtune=\fR\fIcpu=type\fR
-\&\fB\-mcpu=\fR\fIcpu-type\fR \fB\-membedded-data \-muninit-const-in-rodata
-\&\-membedded-pic \-mfp32 \-mfp64 \-mfused-madd \-mno-fused-madd
-\&\-mgas \-mgp32 \-mgp64
-\&\-mgpopt \-mhalf-pic \-mhard-float \-mint64 \-mips1
-\&\-mips2 \-mips3 \-mips4 \-mlong64 \-mlong32 \-mlong-calls \-mmemcpy
-\&\-mmips-as \-mmips-tfile \-mno-abicalls
-\&\-mno-embedded-data \-mno-uninit-const-in-rodata
-\&\-mno-embedded-pic \-mno-gpopt \-mno-long-calls
-\&\-mno-memcpy \-mno-mips-tfile \-mno-rnames \-mno-stats
-\&\-mrnames \-msoft-float
-\&\-m4650 \-msingle-float \-mmad
-\&\-mstats \-EL \-EB \-G\fR \fInum\fR \fB\-nocpp
-\&\-mabi=32 \-mabi=n32 \-mabi=64 \-mabi=eabi
-\&\-mfix7000 \-mno-crt0 \-mflush-func=\fR\fIfunc\fR \fB\-mno-flush-func\fR
-.Sp
-\&\fIi386 and x86\-64 Options\fR
-.Sp
-\&\fB\-mcpu=\fR\fIcpu-type\fR \fB\-march=\fR\fIcpu-type\fR \fB\-mfpmath=\fR\fIunit\fR
-\&\fB\-masm=\fR\fIdialect\fR \fB\-mno-fancy-math-387
-\&\-mno-fp-ret-in-387 \-msoft-float \-msvr3\-shlib
-\&\-mno-wide-multiply \-mrtd \-malign-double
-\&\-mpreferred-stack-boundary=\fR\fInum\fR
-\&\fB\-mmmx \-msse \-msse2 \-m3dnow
-\&\-mthreads \-mno-align-stringops \-minline-all-stringops
-\&\-mpush-args \-maccumulate-outgoing-args \-m128bit-long-double
-\&\-m96bit-long-double \-mregparm=\fR\fInum\fR \fB\-momit-leaf-frame-pointer
-\&\-mno-red-zone
-\&\-mcmodel=\fR\fIcode-model\fR
-\&\fB\-m32 \-m64\fR
-.Sp
-\&\fI\s-1HPPA\s0 Options\fR
-.Sp
-\&\fB\-march=\fR\fIarchitecture-type\fR
-\&\fB\-mbig-switch \-mdisable-fpregs \-mdisable-indexing
-\&\-mfast-indirect-calls \-mgas \-mjump-in-delay
-\&\-mlong-load-store \-mno-big-switch \-mno-disable-fpregs
-\&\-mno-disable-indexing \-mno-fast-indirect-calls \-mno-gas
-\&\-mno-jump-in-delay \-mno-long-load-store
-\&\-mno-portable-runtime \-mno-soft-float
-\&\-mno-space-regs \-msoft-float \-mpa-risc-1\-0
-\&\-mpa-risc-1\-1 \-mpa-risc-2\-0 \-mportable-runtime
-\&\-mschedule=\fR\fIcpu-type\fR \fB\-mspace-regs\fR
-.Sp
-\&\fIIntel 960 Options\fR
-.Sp
-\&\fB\-m\fR\fIcpu-type\fR \fB\-masm-compat \-mclean-linkage
-\&\-mcode-align \-mcomplex-addr \-mleaf-procedures
-\&\-mic-compat \-mic2.0\-compat \-mic3.0\-compat
-\&\-mintel-asm \-mno-clean-linkage \-mno-code-align
-\&\-mno-complex-addr \-mno-leaf-procedures
-\&\-mno-old-align \-mno-strict-align \-mno-tail-call
-\&\-mnumerics \-mold-align \-msoft-float \-mstrict-align
-\&\-mtail-call\fR
-.Sp
-\&\fI\s-1DEC\s0 Alpha Options\fR
-.Sp
-\&\fB\-mno-fp-regs \-msoft-float \-malpha-as \-mgas
-\&\-mieee \-mieee-with-inexact \-mieee-conformant
-\&\-mfp-trap-mode=\fR\fImode\fR \fB\-mfp-rounding-mode=\fR\fImode\fR
-\&\fB\-mtrap-precision=\fR\fImode\fR \fB\-mbuild-constants
-\&\-mcpu=\fR\fIcpu-type\fR \fB\-mtune=\fR\fIcpu-type\fR
-\&\fB\-mbwx \-mmax \-mfix \-mcix
-\&\-mfloat-vax \-mfloat-ieee
-\&\-mexplicit-relocs \-msmall-data \-mlarge-data
-\&\-mmemory-latency=\fR\fItime\fR
-.Sp
-\&\fI\s-1DEC\s0 Alpha/VMS Options\fR
-.Sp
-\&\fB\-mvms-return-codes\fR
-.Sp
-\&\fIClipper Options\fR
-.Sp
-\&\fB\-mc300 \-mc400\fR
-.Sp
-\&\fIH8/300 Options\fR
-.Sp
-\&\fB\-mrelax \-mh \-ms \-mint32 \-malign-300\fR
-.Sp
-\&\fI\s-1SH\s0 Options\fR
-.Sp
-\&\fB\-m1 \-m2 \-m3 \-m3e
-\&\-m4\-nofpu \-m4\-single-only \-m4\-single \-m4
-\&\-m5\-64media \-m5\-64media-nofpu
-\&\-m5\-32media \-m5\-32media-nofpu
-\&\-m5\-compact \-m5\-compact-nofpu
-\&\-mb \-ml \-mdalign \-mrelax
-\&\-mbigtable \-mfmovd \-mhitachi \-mnomacsave
-\&\-mieee \-misize \-mpadstruct \-mspace
-\&\-mprefergot \-musermode\fR
-.Sp
-\&\fISystem V Options\fR
-.Sp
-\&\fB\-Qy \-Qn \-YP,\fR\fIpaths\fR \fB\-Ym,\fR\fIdir\fR
-.Sp
-\&\fI\s-1ARC\s0 Options\fR
-.Sp
-\&\fB\-EB \-EL
-\&\-mmangle-cpu \-mcpu=\fR\fIcpu\fR \fB\-mtext=\fR\fItext-section\fR
-\&\fB\-mdata=\fR\fIdata-section\fR \fB\-mrodata=\fR\fIreadonly-data-section\fR
-.Sp
-\&\fITMS320C3x/C4x Options\fR
-.Sp
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-mbig \-msmall \-mregparm \-mmemparm
-\&\-mfast-fix \-mmpyi \-mbk \-mti \-mdp-isr-reload
-\&\-mrpts=\fR\fIcount\fR \fB\-mrptb \-mdb \-mloop-unsigned
-\&\-mparallel-insns \-mparallel-mpy \-mpreserve-float\fR
-.Sp
-\&\fIV850 Options\fR
-.Sp
-\&\fB\-mlong-calls \-mno-long-calls \-mep \-mno-ep
-\&\-mprolog-function \-mno-prolog-function \-mspace
-\&\-mtda=\fR\fIn\fR \fB\-msda=\fR\fIn\fR \fB\-mzda=\fR\fIn\fR
-\&\fB\-mv850 \-mbig-switch\fR
-.Sp
-\&\fI\s-1NS32K\s0 Options\fR
-.Sp
-\&\fB\-m32032 \-m32332 \-m32532 \-m32081 \-m32381
-\&\-mmult-add \-mnomult-add \-msoft-float \-mrtd \-mnortd
-\&\-mregparam \-mnoregparam \-msb \-mnosb
-\&\-mbitfield \-mnobitfield \-mhimem \-mnohimem\fR
-.Sp
-\&\fI\s-1AVR\s0 Options\fR
-.Sp
-\&\fB\-mmcu=\fR\fImcu\fR \fB\-msize \-minit-stack=\fR\fIn\fR \fB\-mno-interrupts
-\&\-mcall-prologues \-mno-tablejump \-mtiny-stack\fR
-.Sp
-\&\fIMCore Options\fR
-.Sp
-\&\fB\-mhardlit \-mno-hardlit \-mdiv \-mno-div \-mrelax-immediates
-\&\-mno-relax-immediates \-mwide-bitfields \-mno-wide-bitfields
-\&\-m4byte-functions \-mno-4byte-functions \-mcallgraph-data
-\&\-mno-callgraph-data \-mslow-bytes \-mno-slow-bytes \-mno-lsim
-\&\-mlittle-endian \-mbig-endian \-m210 \-m340 \-mstack-increment\fR
-.Sp
-\&\fI\s-1MMIX\s0 Options\fR
-.Sp
-\&\fB\-mlibfuncs \-mno-libfuncs \-mepsilon \-mno-epsilon \-mabi=gnu
-\&\-mabi=mmixware \-mzero-extend \-mknuthdiv \-mtoplevel-symbols
-\&\-melf \-mbranch-predict \-mno-branch-predict \-mbase-addresses
-\&\-mno-base-addresses\fR
-.Sp
-\&\fI\s-1IA-64\s0 Options\fR
-.Sp
-\&\fB\-mbig-endian \-mlittle-endian \-mgnu-as \-mgnu-ld \-mno-pic
-\&\-mvolatile-asm-stop \-mb-step \-mregister-names \-mno-sdata
-\&\-mconstant-gp \-mauto-pic \-minline-divide-min-latency
-\&\-minline-divide-max-throughput \-mno-dwarf2\-asm
-\&\-mfixed-range=\fR\fIregister-range\fR
-.Sp
-\&\fID30V Options\fR
-.Sp
-\&\fB\-mextmem \-mextmemory \-monchip \-mno-asm-optimize
-\&\-masm-optimize \-mbranch-cost=\fR\fIn\fR \fB\-mcond-exec=\fR\fIn\fR
-.Sp
-\&\fIS/390 and zSeries Options\fR
-.Sp
-\&\fB\-mhard-float \-msoft-float \-mbackchain \-mno-backchain
-\&\-msmall-exec \-mno-small-exec \-mmvcle \-mno-mvcle
-\&\-m64 \-m31 \-mdebug \-mno-debug\fR
-.Sp
-\&\fI\s-1CRIS\s0 Options\fR
-.Sp
-\&\fB\-mcpu=\fR\fIcpu\fR \fB\-march=\fR\fIcpu\fR \fB\-mtune=\fR\fIcpu\fR
-\&\fB\-mmax-stack-frame=\fR\fIn\fR \fB\-melinux-stacksize=\fR\fIn\fR
-\&\fB\-metrax4 \-metrax100 \-mpdebug \-mcc-init \-mno-side-effects
-\&\-mstack-align \-mdata-align \-mconst-align
-\&\-m32\-bit \-m16\-bit \-m8\-bit \-mno-prologue-epilogue \-mno-gotplt
-\&\-melf \-maout \-melinux \-mlinux \-sim \-sim2\fR
-.Sp
-\&\fI\s-1PDP-11\s0 Options\fR
-.Sp
-\&\fB\-mfpu \-msoft-float \-mac0 \-mno-ac0 \-m40 \-m45 \-m10
-\&\-mbcopy \-mbcopy-builtin \-mint32 \-mno-int16
-\&\-mint16 \-mno-int32 \-mfloat32 \-mno-float64
-\&\-mfloat64 \-mno-float32 \-mabshi \-mno-abshi
-\&\-mbranch-expensive \-mbranch-cheap
-\&\-msplit \-mno-split \-munix-asm \-mdec-asm\fR
-.Sp
-\&\fIXstormy16 Options\fR
-.Sp
-\&\fB\-msim\fR
-.Sp
-\&\fIXtensa Options\fR
-.Sp
-\&\fB\-mbig-endian \-mlittle-endian
-\&\-mdensity \-mno-density
-\&\-mmac16 \-mno-mac16
-\&\-mmul16 \-mno-mul16
-\&\-mmul32 \-mno-mul32
-\&\-mnsa \-mno-nsa
-\&\-mminmax \-mno-minmax
-\&\-msext \-mno-sext
-\&\-mbooleans \-mno-booleans
-\&\-mhard-float \-msoft-float
-\&\-mfused-madd \-mno-fused-madd
-\&\-mserialize-volatile \-mno-serialize-volatile
-\&\-mtext-section-literals \-mno-text-section-literals
-\&\-mtarget-align \-mno-target-align
-\&\-mlongcalls \-mno-longcalls\fR
-.Ip "\fICode Generation Options\fR" 4
-.IX Item "Code Generation Options"
-\&\fB\-fcall-saved-\fR\fIreg\fR \fB\-fcall-used-\fR\fIreg\fR
-\&\fB\-ffixed-\fR\fIreg\fR \fB\-fexceptions
-\&\-fnon-call-exceptions \-funwind-tables
-\&\-fasynchronous-unwind-tables
-\&\-finhibit-size-directive \-finstrument-functions
-\&\-fno-common \-fno-ident \-fno-gnu-linker
-\&\-fpcc-struct-return \-fpic \-fPIC
-\&\-freg-struct-return \-fshared-data \-fshort-enums
-\&\-fshort-double \-fshort-wchar \-fvolatile
-\&\-fvolatile-global \-fvolatile-static
-\&\-fverbose-asm \-fpack-struct \-fstack-check
-\&\-fstack-limit-register=\fR\fIreg\fR \fB\-fstack-limit-symbol=\fR\fIsym\fR
-\&\fB\-fargument-alias \-fargument-noalias
-\&\-fargument-noalias-global \-fleading-underscore\fR
-.Sh "Options Controlling the Kind of Output"
-.IX Subsection "Options Controlling the Kind of Output"
-Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. The first three
-stages apply to an individual source file, and end by producing an
-object file; linking combines all the object files (those newly
-compiled, and those specified as input) into an executable file.
-.PP
-For any given input file, the file name suffix determines what kind of
-compilation is done:
-.Ip "\fIfile\fR\fB.c\fR" 4
-.IX Item "file.c"
-C source code which must be preprocessed.
-.Ip "\fIfile\fR\fB.i\fR" 4
-.IX Item "file.i"
-C source code which should not be preprocessed.
-.Ip "\fIfile\fR\fB.ii\fR" 4
-.IX Item "file.ii"
-\&\*(C+ source code which should not be preprocessed.
-.Ip "\fIfile\fR\fB.m\fR" 4
-.IX Item "file.m"
-Objective-C source code. Note that you must link with the library
-\&\fIlibobjc.a\fR to make an Objective-C program work.
-.Ip "\fIfile\fR\fB.mi\fR" 4
-.IX Item "file.mi"
-Objective-C source code which should not be preprocessed.
-.Ip "\fIfile\fR\fB.h\fR" 4
-.IX Item "file.h"
-C header file (not to be compiled or linked).
-.Ip "\fIfile\fR\fB.cc\fR" 4
-.IX Item "file.cc"
-.PD 0
-.Ip "\fIfile\fR\fB.cp\fR" 4
-.IX Item "file.cp"
-.Ip "\fIfile\fR\fB.cxx\fR" 4
-.IX Item "file.cxx"
-.Ip "\fIfile\fR\fB.cpp\fR" 4
-.IX Item "file.cpp"
-.Ip "\fIfile\fR\fB.c++\fR" 4
-.IX Item "file.c++"
-.Ip "\fIfile\fR\fB.C\fR" 4
-.IX Item "file.C"
-.PD
-\&\*(C+ source code which must be preprocessed. Note that in \fB.cxx\fR,
-the last two letters must both be literally \fBx\fR. Likewise,
-\&\fB.C\fR refers to a literal capital C.
-.Ip "\fIfile\fR\fB.f\fR" 4
-.IX Item "file.f"
-.PD 0
-.Ip "\fIfile\fR\fB.for\fR" 4
-.IX Item "file.for"
-.Ip "\fIfile\fR\fB.FOR\fR" 4
-.IX Item "file.FOR"
-.PD
-Fortran source code which should not be preprocessed.
-.Ip "\fIfile\fR\fB.F\fR" 4
-.IX Item "file.F"
-.PD 0
-.Ip "\fIfile\fR\fB.fpp\fR" 4
-.IX Item "file.fpp"
-.Ip "\fIfile\fR\fB.FPP\fR" 4
-.IX Item "file.FPP"
-.PD
-Fortran source code which must be preprocessed (with the traditional
-preprocessor).
-.Ip "\fIfile\fR\fB.r\fR" 4
-.IX Item "file.r"
-Fortran source code which must be preprocessed with a \s-1RATFOR\s0
-preprocessor (not included with \s-1GCC\s0).
-.Ip "\fIfile\fR\fB.ads\fR" 4
-.IX Item "file.ads"
-Ada source code file which contains a library unit declaration (a
-declaration of a package, subprogram, or generic, or a generic
-instantiation), or a library unit renaming declaration (a package,
-generic, or subprogram renaming declaration). Such files are also
-called \fIspecs\fR.
-.Ip "\fIfile\fR\fB.adb\fR" 4
-.IX Item "file.adb"
-Ada source code file containing a library unit body (a subprogram or
-package body). Such files are also called \fIbodies\fR.
-.Ip "\fIfile\fR\fB.s\fR" 4
-.IX Item "file.s"
-Assembler code.
-.Ip "\fIfile\fR\fB.S\fR" 4
-.IX Item "file.S"
-Assembler code which must be preprocessed.
-.Ip "\fIother\fR" 4
-.IX Item "other"
-An object file to be fed straight into linking.
-Any file name with no recognized suffix is treated this way.
-.PP
-You can specify the input language explicitly with the \fB\-x\fR option:
-.Ip "\fB\-x\fR \fIlanguage\fR" 4
-.IX Item "-x language"
-Specify explicitly the \fIlanguage\fR for the following input files
-(rather than letting the compiler choose a default based on the file
-name suffix). This option applies to all following input files until
-the next \fB\-x\fR option. Possible values for \fIlanguage\fR are:
-.Sp
-.Vb 7
-\& c c-header cpp-output
-\& c++ c++-cpp-output
-\& objective-c objc-cpp-output
-\& assembler assembler-with-cpp
-\& ada
-\& f77 f77-cpp-input ratfor
-\& java
-.Ve
-.Ip "\fB\-x none\fR" 4
-.IX Item "-x none"
-Turn off any specification of a language, so that subsequent files are
-handled according to their file name suffixes (as they are if \fB\-x\fR
-has not been used at all).
-.Ip "\fB\-pass-exit-codes\fR" 4
-.IX Item "-pass-exit-codes"
-Normally the \fBgcc\fR program will exit with the code of 1 if any
-phase of the compiler returns a non-success return code. If you specify
-\&\fB\-pass-exit-codes\fR, the \fBgcc\fR program will instead return with
-numerically highest error produced by any phase that returned an error
-indication.
-.PP
-If you only want some of the stages of compilation, you can use
-\&\fB\-x\fR (or filename suffixes) to tell \fBgcc\fR where to start, and
-one of the options \fB\-c\fR, \fB\-S\fR, or \fB\-E\fR to say where
-\&\fBgcc\fR is to stop. Note that some combinations (for example,
-\&\fB\-x cpp-output \-E\fR) instruct \fBgcc\fR to do nothing at all.
-.Ip "\fB\-c\fR" 4
-.IX Item "-c"
-Compile or assemble the source files, but do not link. The linking
-stage simply is not done. The ultimate output is in the form of an
-object file for each source file.
-.Sp
-By default, the object file name for a source file is made by replacing
-the suffix \fB.c\fR, \fB.i\fR, \fB.s\fR, etc., with \fB.o\fR.
-.Sp
-Unrecognized input files, not requiring compilation or assembly, are
-ignored.
-.Ip "\fB\-S\fR" 4
-.IX Item "-S"
-Stop after the stage of compilation proper; do not assemble. The output
-is in the form of an assembler code file for each non-assembler input
-file specified.
-.Sp
-By default, the assembler file name for a source file is made by
-replacing the suffix \fB.c\fR, \fB.i\fR, etc., with \fB.s\fR.
-.Sp
-Input files that don't require compilation are ignored.
-.Ip "\fB\-E\fR" 4
-.IX Item "-E"
-Stop after the preprocessing stage; do not run the compiler proper. The
-output is in the form of preprocessed source code, which is sent to the
-standard output.
-.Sp
-Input files which don't require preprocessing are ignored.
-.Ip "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Place output in file \fIfile\fR. This applies regardless to whatever
-sort of output is being produced, whether it be an executable file,
-an object file, an assembler file or preprocessed C code.
-.Sp
-Since only one output file can be specified, it does not make sense to
-use \fB\-o\fR when compiling more than one input file, unless you are
-producing an executable file as output.
-.Sp
-If \fB\-o\fR is not specified, the default is to put an executable file
-in \fIa.out\fR, the object file for \fI\fIsource\fI.\fIsuffix\fI\fR in
-\&\fI\fIsource\fI.o\fR, its assembler file in \fI\fIsource\fI.s\fR, and
-all preprocessed C source on standard output.
-.Ip "\fB\-v\fR" 4
-.IX Item "-v"
-Print (on standard error output) the commands executed to run the stages
-of compilation. Also print the version number of the compiler driver
-program and of the preprocessor and the compiler proper.
-.Ip "\fB\-###\fR" 4
-.IX Item "-###"
-Like \fB\-v\fR except the commands are not executed and all command
-arguments are quoted. This is useful for shell scripts to capture the
-driver-generated command lines.
-.Ip "\fB\-pipe\fR" 4
-.IX Item "-pipe"
-Use pipes rather than temporary files for communication between the
-various stages of compilation. This fails to work on some systems where
-the assembler is unable to read from a pipe; but the \s-1GNU\s0 assembler has
-no trouble.
-.Ip "\fB\*(--help\fR" 4
-.IX Item "help"
-Print (on the standard output) a description of the command line options
-understood by \fBgcc\fR. If the \fB\-v\fR option is also specified
-then \fB\*(--help\fR will also be passed on to the various processes
-invoked by \fBgcc\fR, so that they can display the command line options
-they accept. If the \fB\-W\fR option is also specified then command
-line options which have no documentation associated with them will also
-be displayed.
-.Ip "\fB\*(--target-help\fR" 4
-.IX Item "target-help"
-Print (on the standard output) a description of target specific command
-line options for each tool.
-.Ip "\fB\*(--version\fR" 4
-.IX Item "version"
-Display the version number and copyrights of the invoked \s-1GCC\s0.
-.Sh "Compiling \*(C+ Programs"
-.IX Subsection "Compiling Programs"
-\&\*(C+ source files conventionally use one of the suffixes \fB.C\fR,
-\&\fB.cc\fR, \fB.cpp\fR, \fB.c++\fR, \fB.cp\fR, or \fB.cxx\fR;
-preprocessed \*(C+ files use the suffix \fB.ii\fR. \s-1GCC\s0 recognizes
-files with these names and compiles them as \*(C+ programs even if you
-call the compiler the same way as for compiling C programs (usually with
-the name \fBgcc\fR).
-.PP
-However, \*(C+ programs often require class libraries as well as a
-compiler that understands the \*(C+ language\-\-\-and under some
-circumstances, you might want to compile programs from standard input,
-or otherwise without a suffix that flags them as \*(C+ programs.
-\&\fBg++\fR is a program that calls \s-1GCC\s0 with the default language
-set to \*(C+, and automatically specifies linking against the \*(C+
-library. On many systems, \fBg++\fR is also
-installed with the name \fBc++\fR.
-.PP
-When you compile \*(C+ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for \*(C+ programs.
-.Sh "Options Controlling C Dialect"
-.IX Subsection "Options Controlling C Dialect"
-The following options control the dialect of C (or languages derived
-from C, such as \*(C+ and Objective-C) that the compiler accepts:
-.Ip "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-In C mode, support all \s-1ISO\s0 C89 programs. In \*(C+ mode,
-remove \s-1GNU\s0 extensions that conflict with \s-1ISO\s0 \*(C+.
-.Sp
-This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0
-C89 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code),
-such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and
-predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the
-type of system you are using. It also enables the undesirable and
-rarely used \s-1ISO\s0 trigraph feature. For the C compiler,
-it disables recognition of \*(C+ style \fB//\fR comments as well as
-the \f(CW\*(C`inline\*(C'\fR keyword.
-.Sp
-The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR,
-\&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite
-\&\fB\-ansi\fR. You would not want to use them in an \s-1ISO\s0 C program, of
-course, but it is useful to put them in header files that might be included
-in compilations done with \fB\-ansi\fR. Alternate predefined macros
-such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or
-without \fB\-ansi\fR.
-.Sp
-The \fB\-ansi\fR option does not cause non-ISO programs to be
-rejected gratuitously. For that, \fB\-pedantic\fR is required in
-addition to \fB\-ansi\fR.
-.Sp
-The macro \f(CW\*(C`_\|_STRICT_ANSI_\|_\*(C'\fR is predefined when the \fB\-ansi\fR
-option is used. Some header files may notice this macro and refrain
-from declaring certain functions or defining certain macros that the
-\&\s-1ISO\s0 standard doesn't call for; this is to avoid interfering with any
-programs that might use these names for other things.
-.Sp
-Functions which would normally be built in but do not have semantics
-defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in
-functions with \fB\-ansi\fR is used.
-.Ip "\fB\-std=\fR" 4
-.IX Item "-std="
-Determine the language standard. This option is currently only
-supported when compiling C. A value for this option must be provided;
-possible values are
-.RS 4
-.Ip "\fBc89\fR" 4
-.IX Item "c89"
-.PD 0
-.Ip "\fBiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD
-\&\s-1ISO\s0 C89 (same as \fB\-ansi\fR).
-.Ip "\fBiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-\&\s-1ISO\s0 C89 as modified in amendment 1.
-.Ip "\fBc99\fR" 4
-.IX Item "c99"
-.PD 0
-.Ip "\fBc9x\fR" 4
-.IX Item "c9x"
-.Ip "\fBiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.Ip "\fBiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.PD
-\&\s-1ISO\s0 C99. Note that this standard is not yet fully supported; see
-<\fBhttp://gcc.gnu.org/gcc-3.1/c99status.html\fR> for more information. The
-names \fBc9x\fR and \fBiso9899:199x\fR are deprecated.
-.Ip "\fBgnu89\fR" 4
-.IX Item "gnu89"
-Default, \s-1ISO\s0 C89 plus \s-1GNU\s0 extensions (including some C99 features).
-.Ip "\fBgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.Ip "\fBgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-\&\s-1ISO\s0 C99 plus \s-1GNU\s0 extensions. When \s-1ISO\s0 C99 is fully implemented in \s-1GCC\s0,
-this will become the default. The name \fBgnu9x\fR is deprecated.
-.RE
-.RS 4
-.Sp
-Even when this option is not specified, you can still use some of the
-features of newer standards in so far as they do not conflict with
-previous C standards. For example, you may use \f(CW\*(C`_\|_restrict_\|_\*(C'\fR even
-when \fB\-std=c99\fR is not specified.
-.Sp
-The \fB\-std\fR options specifying some version of \s-1ISO\s0 C have the same
-effects as \fB\-ansi\fR, except that features that were not in \s-1ISO\s0 C89
-but are in the specified version (for example, \fB//\fR comments and
-the \f(CW\*(C`inline\*(C'\fR keyword in \s-1ISO\s0 C99) are not disabled.
-.RE
-.Ip "\fB\-aux-info\fR \fIfilename\fR" 4
-.IX Item "-aux-info filename"
-Output to the given filename prototyped declarations for all functions
-declared and/or defined in a translation unit, including those in header
-files. This option is silently ignored in any language other than C.
-.Sp
-Besides declarations, the file indicates, in comments, the origin of
-each declaration (source file and line), whether the declaration was
-implicit, prototyped or unprototyped (\fBI\fR, \fBN\fR for new or
-\&\fBO\fR for old, respectively, in the first character after the line
-number and the colon), and whether it came from a declaration or a
-definition (\fBC\fR or \fBF\fR, respectively, in the following
-character). In the case of function definitions, a K&R-style list of
-arguments followed by their declarations is also provided, inside
-comments, after the declaration.
-.Ip "\fB\-fno-asm\fR" 4
-.IX Item "-fno-asm"
-Do not recognize \f(CW\*(C`asm\*(C'\fR, \f(CW\*(C`inline\*(C'\fR or \f(CW\*(C`typeof\*(C'\fR as a
-keyword, so that code can use these words as identifiers. You can use
-the keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR
-instead. \fB\-ansi\fR implies \fB\-fno-asm\fR.
-.Sp
-In \*(C+, this switch only affects the \f(CW\*(C`typeof\*(C'\fR keyword, since
-\&\f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`inline\*(C'\fR are standard keywords. You may want to
-use the \fB\-fno-gnu-keywords\fR flag instead, which has the same
-effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this
-switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since
-\&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99.
-.Ip "\fB\-fno-builtin\fR" 4
-.IX Item "-fno-builtin"
-.PD 0
-.Ip "\fB\-fno-builtin-\fR\fIfunction\fR\fB \fR(C and Objective-C only)" 4
-.IX Item "-fno-builtin-function (C and Objective-C only)"
-.PD
-Don't recognize built-in functions that do not begin with
-\&\fB_\|_builtin_\fR as prefix.
-.Sp
-\&\s-1GCC\s0 normally generates special code to handle certain built-in functions
-more efficiently; for instance, calls to \f(CW\*(C`alloca\*(C'\fR may become single
-instructions that adjust the stack directly, and calls to \f(CW\*(C`memcpy\*(C'\fR
-may become inline copy loops. The resulting code is often both smaller
-and faster, but since the function calls no longer appear as such, you
-cannot set a breakpoint on those calls, nor can you change the behavior
-of the functions by linking with a different library.
-.Sp
-In \*(C+, \fB\-fno-builtin\fR is always in effect. The \fB\-fbuiltin\fR
-option has no effect. Therefore, in \*(C+, the only way to get the
-optimization benefits of built-in functions is to call the function
-using the \fB_\|_builtin_\fR prefix. The \s-1GNU\s0 \*(C+ Standard Library uses
-built-in functions to implement many functions (like
-\&\f(CW\*(C`std::strchr\*(C'\fR), so that you automatically get efficient code.
-.Sp
-With the \fB\-fno-builtin-\fR\fIfunction\fR option, not available
-when compiling \*(C+, only the built-in function \fIfunction\fR is
-disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a
-function is named this is not built-in in this version of \s-1GCC\s0, this
-option is ignored. There is no corresponding
-\&\fB\-fbuiltin-\fR\fIfunction\fR option; if you wish to enable
-built-in functions selectively when using \fB\-fno-builtin\fR or
-\&\fB\-ffreestanding\fR, you may define macros such as:
-.Sp
-.Vb 2
-\& #define abs(n) __builtin_abs ((n))
-\& #define strcpy(d, s) __builtin_strcpy ((d), (s))
-.Ve
-.Ip "\fB\-fhosted\fR" 4
-.IX Item "-fhosted"
-Assert that compilation takes place in a hosted environment. This implies
-\&\fB\-fbuiltin\fR. A hosted environment is one in which the
-entire standard library is available, and in which \f(CW\*(C`main\*(C'\fR has a return
-type of \f(CW\*(C`int\*(C'\fR. Examples are nearly everything except a kernel.
-This is equivalent to \fB\-fno-freestanding\fR.
-.Ip "\fB\-ffreestanding\fR" 4
-.IX Item "-ffreestanding"
-Assert that compilation takes place in a freestanding environment. This
-implies \fB\-fno-builtin\fR. A freestanding environment
-is one in which the standard library may not exist, and program startup may
-not necessarily be at \f(CW\*(C`main\*(C'\fR. The most obvious example is an \s-1OS\s0 kernel.
-This is equivalent to \fB\-fno-hosted\fR.
-.Ip "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Support \s-1ISO\s0 C trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR
-options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR.
-.Ip "\fB\-no-integrated-cpp\fR" 4
-.IX Item "-no-integrated-cpp"
-Invoke the external cpp during compilation. The default is to use the
-integrated cpp (internal cpp). This option also allows a
-user-supplied cpp via the \fB\-B\fR option. This flag is applicable
-in both C and \*(C+ modes.
-.Sp
-We do not guarantee to retain this option in future, and we may change
-its semantics.
-.Ip "\fB\-traditional\fR" 4
-.IX Item "-traditional"
-Attempt to support some aspects of traditional C compilers.
-Specifically:
-.RS 4
-.Ip "\(bu" 4
-All \f(CW\*(C`extern\*(C'\fR declarations take effect globally even if they
-are written inside of a function definition. This includes implicit
-declarations of functions.
-.Ip "\(bu" 4
-The newer keywords \f(CW\*(C`typeof\*(C'\fR, \f(CW\*(C`inline\*(C'\fR, \f(CW\*(C`signed\*(C'\fR, \f(CW\*(C`const\*(C'\fR
-and \f(CW\*(C`volatile\*(C'\fR are not recognized. (You can still use the
-alternative keywords such as \f(CW\*(C`_\|_typeof_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR, and
-so on.)
-.Ip "\(bu" 4
-Comparisons between pointers and integers are always allowed.
-.Ip "\(bu" 4
-Integer types \f(CW\*(C`unsigned short\*(C'\fR and \f(CW\*(C`unsigned char\*(C'\fR promote
-to \f(CW\*(C`unsigned int\*(C'\fR.
-.Ip "\(bu" 4
-Out-of-range floating point literals are not an error.
-.Ip "\(bu" 4
-Certain constructs which \s-1ISO\s0 regards as a single invalid preprocessing
-number, such as \fB0xe-0xd\fR, are treated as expressions instead.
-.Ip "\(bu" 4
-String ``constants'' are not necessarily constant; they are stored in
-writable space, and identical looking constants are allocated
-separately. (This is the same as the effect of
-\&\fB\-fwritable-strings\fR.)
-.Ip "\(bu" 4
-All automatic variables not declared \f(CW\*(C`register\*(C'\fR are preserved by
-\&\f(CW\*(C`longjmp\*(C'\fR. Ordinarily, \s-1GNU\s0 C follows \s-1ISO\s0 C: automatic variables
-not declared \f(CW\*(C`volatile\*(C'\fR may be clobbered.
-.Ip "\(bu" 4
-The character escape sequences \fB\ex\fR and \fB\ea\fR evaluate as the
-literal characters \fBx\fR and \fBa\fR respectively. Without
-\&\fB\-traditional\fR, \fB\ex\fR is a prefix for the hexadecimal
-representation of a character, and \fB\ea\fR produces a bell.
-.RE
-.RS 4
-.Sp
-This option is deprecated and may be removed.
-.Sp
-You may wish to use \fB\-fno-builtin\fR as well as \fB\-traditional\fR
-if your program uses names that are normally \s-1GNU\s0 C built-in functions for
-other purposes of its own.
-.Sp
-You cannot use \fB\-traditional\fR if you include any header files that
-rely on \s-1ISO\s0 C features. Some vendors are starting to ship systems with
-\&\s-1ISO\s0 C header files and you cannot use \fB\-traditional\fR on such
-systems to compile files that include any system headers.
-.Sp
-The \fB\-traditional\fR option also enables \fB\-traditional-cpp\fR.
-.RE
-.Ip "\fB\-traditional-cpp\fR" 4
-.IX Item "-traditional-cpp"
-Attempt to support some aspects of traditional C preprocessors.
-See the \s-1GNU\s0 \s-1CPP\s0 manual for details.
-.Ip "\fB\-fcond-mismatch\fR" 4
-.IX Item "-fcond-mismatch"
-Allow conditional expressions with mismatched types in the second and
-third arguments. The value of such an expression is void. This option
-is not supported for \*(C+.
-.Ip "\fB\-funsigned-char\fR" 4
-.IX Item "-funsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be unsigned, like \f(CW\*(C`unsigned char\*(C'\fR.
-.Sp
-Each kind of machine has a default for what \f(CW\*(C`char\*(C'\fR should
-be. It is either like \f(CW\*(C`unsigned char\*(C'\fR by default or like
-\&\f(CW\*(C`signed char\*(C'\fR by default.
-.Sp
-Ideally, a portable program should always use \f(CW\*(C`signed char\*(C'\fR or
-\&\f(CW\*(C`unsigned char\*(C'\fR when it depends on the signedness of an object.
-But many programs have been written to use plain \f(CW\*(C`char\*(C'\fR and
-expect it to be signed, or expect it to be unsigned, depending on the
-machines they were written for. This option, and its inverse, let you
-make such a program work with the opposite default.
-.Sp
-The type \f(CW\*(C`char\*(C'\fR is always a distinct type from each of
-\&\f(CW\*(C`signed char\*(C'\fR or \f(CW\*(C`unsigned char\*(C'\fR, even though its behavior
-is always just like one of those two.
-.Ip "\fB\-fsigned-char\fR" 4
-.IX Item "-fsigned-char"
-Let the type \f(CW\*(C`char\*(C'\fR be signed, like \f(CW\*(C`signed char\*(C'\fR.
-.Sp
-Note that this is equivalent to \fB\-fno-unsigned-char\fR, which is
-the negative form of \fB\-funsigned-char\fR. Likewise, the option
-\&\fB\-fno-signed-char\fR is equivalent to \fB\-funsigned-char\fR.
-.Ip "\fB\-fsigned-bitfields\fR" 4
-.IX Item "-fsigned-bitfields"
-.PD 0
-.Ip "\fB\-funsigned-bitfields\fR" 4
-.IX Item "-funsigned-bitfields"
-.Ip "\fB\-fno-signed-bitfields\fR" 4
-.IX Item "-fno-signed-bitfields"
-.Ip "\fB\-fno-unsigned-bitfields\fR" 4
-.IX Item "-fno-unsigned-bitfields"
-.PD
-These options control whether a bit-field is signed or unsigned, when the
-declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By
-default, such a bit-field is signed, because this is consistent: the
-basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types.
-.Sp
-However, when \fB\-traditional\fR is used, bit-fields are all unsigned
-no matter what.
-.Ip "\fB\-fwritable-strings\fR" 4
-.IX Item "-fwritable-strings"
-Store string constants in the writable data segment and don't uniquize
-them. This is for compatibility with old programs which assume they can
-write into string constants. The option \fB\-traditional\fR also has
-this effect.
-.Sp
-Writing into string constants is a very bad idea; ``constants'' should
-be constant.
-.Ip "\fB\-fallow-single-precision\fR" 4
-.IX Item "-fallow-single-precision"
-Do not promote single precision math operations to double precision,
-even when compiling with \fB\-traditional\fR.
-.Sp
-Traditional K&R C promotes all floating point operations to double
-precision, regardless of the sizes of the operands. On the
-architecture for which you are compiling, single precision may be faster
-than double precision. If you must use \fB\-traditional\fR, but want
-to use single precision operations when the operands are single
-precision, use this option. This option has no effect when compiling
-with \s-1ISO\s0 or \s-1GNU\s0 C conventions (the default).
-.Sh "Options Controlling \*(C+ Dialect"
-.IX Subsection "Options Controlling Dialect"
-This section describes the command-line options that are only meaningful
-for \*(C+ programs; but you can also use most of the \s-1GNU\s0 compiler options
-regardless of what language your program is in. For example, you
-might compile a file \f(CW\*(C`firstClass.C\*(C'\fR like this:
-.PP
-.Vb 1
-\& g++ -g -frepo -O -c firstClass.C
-.Ve
-In this example, only \fB\-frepo\fR is an option meant
-only for \*(C+ programs; you can use the other options with any
-language supported by \s-1GCC\s0.
-.PP
-Here is a list of options that are \fIonly\fR for compiling \*(C+ programs:
-.Ip "\fB\-fno-access-control\fR" 4
-.IX Item "-fno-access-control"
-Turn off all access checking. This switch is mainly useful for working
-around bugs in the access control code.
-.Ip "\fB\-fcheck-new\fR" 4
-.IX Item "-fcheck-new"
-Check that the pointer returned by \f(CW\*(C`operator new\*(C'\fR is non-null
-before attempting to modify the storage allocated. The current Working
-Paper requires that \f(CW\*(C`operator new\*(C'\fR never return a null pointer, so
-this check is normally unnecessary.
-.Sp
-An alternative to using this option is to specify that your
-\&\f(CW\*(C`operator new\*(C'\fR does not throw any exceptions; if you declare it
-\&\fB\f(BIthrow()\fB\fR, G++ will check the return value. See also \fBnew
-(nothrow)\fR.
-.Ip "\fB\-fconserve-space\fR" 4
-.IX Item "-fconserve-space"
-Put uninitialized or runtime-initialized global variables into the
-common segment, as C does. This saves space in the executable at the
-cost of not diagnosing duplicate definitions. If you compile with this
-flag and your program mysteriously crashes after \f(CW\*(C`main()\*(C'\fR has
-completed, you may have an object that is being destroyed twice because
-two definitions were merged.
-.Sp
-This option is no longer useful on most targets, now that support has
-been added for putting variables into \s-1BSS\s0 without making them common.
-.Ip "\fB\-fno-const-strings\fR" 4
-.IX Item "-fno-const-strings"
-Give string constants type \f(CW\*(C`char *\*(C'\fR instead of type \f(CW\*(C`const
-char *\*(C'\fR. By default, G++ uses type \f(CW\*(C`const char *\*(C'\fR as required by
-the standard. Even if you use \fB\-fno-const-strings\fR, you cannot
-actually modify the value of a string constant, unless you also use
-\&\fB\-fwritable-strings\fR.
-.Sp
-This option might be removed in a future release of G++. For maximum
-portability, you should structure your code so that it works with
-string constants that have type \f(CW\*(C`const char *\*(C'\fR.
-.Ip "\fB\-fdollars-in-identifiers\fR" 4
-.IX Item "-fdollars-in-identifiers"
-Accept \fB$\fR in identifiers. You can also explicitly prohibit use of
-\&\fB$\fR with the option \fB\-fno-dollars-in-identifiers\fR. (\s-1GNU\s0 C allows
-\&\fB$\fR by default on most target systems, but there are a few exceptions.)
-Traditional C allowed the character \fB$\fR to form part of
-identifiers. However, \s-1ISO\s0 C and \*(C+ forbid \fB$\fR in identifiers.
-.Ip "\fB\-fno-elide-constructors\fR" 4
-.IX Item "-fno-elide-constructors"
-The \*(C+ standard allows an implementation to omit creating a temporary
-which is only used to initialize another object of the same type.
-Specifying this option disables that optimization, and forces G++ to
-call the copy constructor in all cases.
-.Ip "\fB\-fno-enforce-eh-specs\fR" 4
-.IX Item "-fno-enforce-eh-specs"
-Don't check for violation of exception specifications at runtime. This
-option violates the \*(C+ standard, but may be useful for reducing code
-size in production builds, much like defining \fB\s-1NDEBUG\s0\fR. The compiler
-will still optimize based on the exception specifications.
-.Ip "\fB\-fexternal-templates\fR" 4
-.IX Item "-fexternal-templates"
-Cause \fB#pragma interface\fR and \fBimplementation\fR to apply to
-template instantiation; template instances are emitted or not according
-to the location of the template definition.
-.Sp
-This option is deprecated.
-.Ip "\fB\-falt-external-templates\fR" 4
-.IX Item "-falt-external-templates"
-Similar to \fB\-fexternal-templates\fR, but template instances are
-emitted or not according to the place where they are first instantiated.
-.Sp
-This option is deprecated.
-.Ip "\fB\-ffor-scope\fR" 4
-.IX Item "-ffor-scope"
-.PD 0
-.Ip "\fB\-fno-for-scope\fR" 4
-.IX Item "-fno-for-scope"
-.PD
-If \fB\-ffor-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR is limited to the \fBfor\fR loop itself,
-as specified by the \*(C+ standard.
-If \fB\-fno-for-scope\fR is specified, the scope of variables declared in
-a \fIfor-init-statement\fR extends to the end of the enclosing scope,
-as was the case in old versions of G++, and other (traditional)
-implementations of \*(C+.
-.Sp
-The default if neither flag is given to follow the standard,
-but to allow and give a warning for old-style code that would
-otherwise be invalid, or have different behavior.
-.Ip "\fB\-fno-gnu-keywords\fR" 4
-.IX Item "-fno-gnu-keywords"
-Do not recognize \f(CW\*(C`typeof\*(C'\fR as a keyword, so that code can use this
-word as an identifier. You can use the keyword \f(CW\*(C`_\|_typeof_\|_\*(C'\fR instead.
-\&\fB\-ansi\fR implies \fB\-fno-gnu-keywords\fR.
-.Ip "\fB\-fno-implicit-templates\fR" 4
-.IX Item "-fno-implicit-templates"
-Never emit code for non-inline templates which are instantiated
-implicitly (i.e. by use); only emit code for explicit instantiations.
-.Ip "\fB\-fno-implicit-inline-templates\fR" 4
-.IX Item "-fno-implicit-inline-templates"
-Don't emit code for implicit instantiations of inline templates, either.
-The default is to handle inlines differently so that compiles with and
-without optimization will need the same set of explicit instantiations.
-.Ip "\fB\-fno-implement-inlines\fR" 4
-.IX Item "-fno-implement-inlines"
-To save space, do not emit out-of-line copies of inline functions
-controlled by \fB#pragma implementation\fR. This will cause linker
-errors if these functions are not inlined everywhere they are called.
-.Ip "\fB\-fms-extensions\fR" 4
-.IX Item "-fms-extensions"
-Disable pedantic warnings about constructs used in \s-1MFC\s0, such as implicit
-int and getting a pointer to member function via non-standard syntax.
-.Ip "\fB\-fno-nonansi-builtins\fR" 4
-.IX Item "-fno-nonansi-builtins"
-Disable built-in declarations of functions that are not mandated by
-\&\s-1ANSI/ISO\s0 C. These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR,
-\&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions.
-.Ip "\fB\-fno-operator-names\fR" 4
-.IX Item "-fno-operator-names"
-Do not treat the operator name keywords \f(CW\*(C`and\*(C'\fR, \f(CW\*(C`bitand\*(C'\fR,
-\&\f(CW\*(C`bitor\*(C'\fR, \f(CW\*(C`compl\*(C'\fR, \f(CW\*(C`not\*(C'\fR, \f(CW\*(C`or\*(C'\fR and \f(CW\*(C`xor\*(C'\fR as
-synonyms as keywords.
-.Ip "\fB\-fno-optional-diags\fR" 4
-.IX Item "-fno-optional-diags"
-Disable diagnostics that the standard says a compiler does not need to
-issue. Currently, the only such diagnostic issued by G++ is the one for
-a name having multiple meanings within a class.
-.Ip "\fB\-fpermissive\fR" 4
-.IX Item "-fpermissive"
-Downgrade messages about nonconformant code from errors to warnings. By
-default, G++ effectively sets \fB\-pedantic-errors\fR without
-\&\fB\-pedantic\fR; this option reverses that. This behavior and this
-option are superseded by \fB\-pedantic\fR, which works as it does for \s-1GNU\s0 C.
-.Ip "\fB\-frepo\fR" 4
-.IX Item "-frepo"
-Enable automatic template instantiation at link time. This option also
-implies \fB\-fno-implicit-templates\fR.
-.Ip "\fB\-fno-rtti\fR" 4
-.IX Item "-fno-rtti"
-Disable generation of information about every class with virtual
-functions for use by the \*(C+ runtime type identification features
-(\fBdynamic_cast\fR and \fBtypeid\fR). If you don't use those parts
-of the language, you can save some space by using this flag. Note that
-exception handling uses the same information, but it will generate it as
-needed.
-.Ip "\fB\-fstats\fR" 4
-.IX Item "-fstats"
-Emit statistics about front-end processing at the end of the compilation.
-This information is generally only useful to the G++ development team.
-.Ip "\fB\-ftemplate-depth-\fR\fIn\fR" 4
-.IX Item "-ftemplate-depth-n"
-Set the maximum instantiation depth for template classes to \fIn\fR.
-A limit on the template instantiation depth is needed to detect
-endless recursions during template class instantiation. \s-1ANSI/ISO\s0 \*(C+
-conforming programs must not rely on a maximum depth greater than 17.
-.Ip "\fB\-fuse-cxa-atexit\fR" 4
-.IX Item "-fuse-cxa-atexit"
-Register destructors for objects with static storage duration with the
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR function rather than the \f(CW\*(C`atexit\*(C'\fR function.
-This option is required for fully standards-compliant handling of static
-destructors, but will only work if your C library supports
-\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR.
-.Ip "\fB\-fvtable-gc\fR" 4
-.IX Item "-fvtable-gc"
-Emit special relocations for vtables and virtual function references
-so that the linker can identify unused virtual functions and zero out
-vtable slots that refer to them. This is most useful with
-\&\fB\-ffunction-sections\fR and \fB\-Wl,\-\-gc-sections\fR, in order to
-also discard the functions themselves.
-.Sp
-This optimization requires \s-1GNU\s0 as and \s-1GNU\s0 ld. Not all systems support
-this option. \fB\-Wl,\-\-gc-sections\fR is ignored without \fB\-static\fR.
-.Ip "\fB\-fno-weak\fR" 4
-.IX Item "-fno-weak"
-Do not use weak symbol support, even if it is provided by the linker.
-By default, G++ will use weak symbols if they are available. This
-option exists only for testing, and should not be used by end-users;
-it will result in inferior code and has no benefits. This option may
-be removed in a future release of G++.
-.Ip "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the standard directories specific to
-\&\*(C+, but do still search the other standard directories. (This option
-is used when building the \*(C+ library.)
-.PP
-In addition, these optimization, warning, and code generation options
-have meanings only for \*(C+ programs:
-.Ip "\fB\-fno-default-inline\fR" 4
-.IX Item "-fno-default-inline"
-Do not assume \fBinline\fR for functions defined inside a class scope.
- Note that these
-functions will have linkage like inline functions; they just won't be
-inlined by default.
-.Ip "\fB\-Wabi\fR (\*(C+ only)" 4
-.IX Item "-Wabi ( only)"
-Warn when G++ generates code that is probably not compatible with the
-vendor-neutral \*(C+ \s-1ABI\s0. Although an effort has been made to warn about
-all such cases, there are probably some cases that are not warned about,
-even though G++ is generating incompatible code. There may also be
-cases where warnings are emitted even though the code that is generated
-will be compatible.
-.Sp
-You should rewrite your code to avoid these warnings if you are
-concerned about the fact that code generated by G++ may not be binary
-compatible with code generated by other compilers.
-.Sp
-The known incompatibilites at this point include:
-.RS 4
-.Ip "\(bu" 4
-Incorrect handling of tail-padding for bit-fields. G++ may attempt to
-pack data into the same byte as a base class. For example:
-.Sp
-.Vb 2
-\& struct A { virtual void f(); int f1 : 1; };
-\& struct B : public A { int f2 : 1; };
-.Ve
-In this case, G++ will place \f(CW\*(C`B::f2\*(C'\fR into the same byte
-as\f(CW\*(C`A::f1\*(C'\fR; other compilers will not. You can avoid this problem
-by explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of the
-byte size on your platform; that will cause G++ and other compilers to
-layout \f(CW\*(C`B\*(C'\fR identically.
-.Ip "\(bu" 4
-Incorrect handling of tail-padding for virtual bases. G++ does not use
-tail padding when laying out virtual bases. For example:
-.Sp
-.Vb 3
-\& struct A { virtual void f(); char c1; };
-\& struct B { B(); char c2; };
-\& struct C : public A, public virtual B {};
-.Ve
-In this case, G++ will not place \f(CW\*(C`B\*(C'\fR into the tail-padding for
-\&\f(CW\*(C`A\*(C'\fR; other compilers will. You can avoid this problem by
-explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of its
-alignment (ignoring virtual base classes); that will cause G++ and other
-compilers to layout \f(CW\*(C`C\*(C'\fR identically.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-Wctor-dtor-privacy\fR (\*(C+ only)" 4
-.IX Item "-Wctor-dtor-privacy ( only)"
-Warn when a class seems unusable, because all the constructors or
-destructors in a class are private and the class has no friends or
-public static member functions.
-.Ip "\fB\-Wnon-virtual-dtor\fR (\*(C+ only)" 4
-.IX Item "-Wnon-virtual-dtor ( only)"
-Warn when a class declares a non-virtual destructor that should probably
-be virtual, because it looks like the class will be used polymorphically.
-.Ip "\fB\-Wreorder\fR (\*(C+ only)" 4
-.IX Item "-Wreorder ( only)"
-Warn when the order of member initializers given in the code does not
-match the order in which they must be executed. For instance:
-.Sp
-.Vb 5
-\& struct A {
-\& int i;
-\& int j;
-\& A(): j (0), i (1) { }
-\& };
-.Ve
-Here the compiler will warn that the member initializers for \fBi\fR
-and \fBj\fR will be rearranged to match the declaration order of the
-members.
-.PP
-The following \fB\-W...\fR options are not affected by \fB\-Wall\fR.
-.Ip "\fB\-Weffc++\fR (\*(C+ only)" 4
-.IX Item "-Weffc++ ( only)"
-Warn about violations of the following style guidelines from Scott Meyers'
-\&\fIEffective \*(C+\fR book:
-.RS 4
-.Ip "\(bu" 4
-Item 11: Define a copy constructor and an assignment operator for classes
-with dynamically allocated memory.
-.Ip "\(bu" 4
-Item 12: Prefer initialization to assignment in constructors.
-.Ip "\(bu" 4
-Item 14: Make destructors virtual in base classes.
-.Ip "\(bu" 4
-Item 15: Have \f(CW\*(C`operator=\*(C'\fR return a reference to \f(CW\*(C`*this\*(C'\fR.
-.Ip "\(bu" 4
-Item 23: Don't try to return a reference when you must return an object.
-.RE
-.RS 4
-.Sp
-and about violations of the following style guidelines from Scott Meyers'
-\&\fIMore Effective \*(C+\fR book:
-.RS 4
-.RE
-.Ip "\(bu" 4
-Item 6: Distinguish between prefix and postfix forms of increment and
-decrement operators.
-.Ip "\(bu" 4
-Item 7: Never overload \f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, or \f(CW\*(C`,\*(C'\fR.
-.RE
-.RS 4
-.Sp
-If you use this option, you should be aware that the standard library
-headers do not obey all of these guidelines; you can use \fBgrep \-v\fR
-to filter out those warnings.
-.RE
-.Ip "\fB\-Wno-deprecated\fR (\*(C+ only)" 4
-.IX Item "-Wno-deprecated ( only)"
-Do not warn about usage of deprecated features.
-.Ip "\fB\-Wno-non-template-friend\fR (\*(C+ only)" 4
-.IX Item "-Wno-non-template-friend ( only)"
-Disable warnings when non-templatized friend functions are declared
-within a template. With the advent of explicit template specification
-support in G++, if the name of the friend is an unqualified-id (i.e.,
-\&\fBfriend foo(int)\fR), the \*(C+ language specification demands that the
-friend declare or define an ordinary, nontemplate function. (Section
-14.5.3). Before G++ implemented explicit specification, unqualified-ids
-could be interpreted as a particular specialization of a templatized
-function. Because this non-conforming behavior is no longer the default
-behavior for G++, \fB\-Wnon-template-friend\fR allows the compiler to
-check existing code for potential trouble spots, and is on by default.
-This new compiler behavior can be turned off with
-\&\fB\-Wno-non-template-friend\fR which keeps the conformant compiler code
-but disables the helpful warning.
-.Ip "\fB\-Wold-style-cast\fR (\*(C+ only)" 4
-.IX Item "-Wold-style-cast ( only)"
-Warn if an old-style (C-style) cast to a non-void type is used within
-a \*(C+ program. The new-style casts (\fBstatic_cast\fR,
-\&\fBreinterpret_cast\fR, and \fBconst_cast\fR) are less vulnerable to
-unintended effects, and much easier to grep for.
-.Ip "\fB\-Woverloaded-virtual\fR (\*(C+ only)" 4
-.IX Item "-Woverloaded-virtual ( only)"
-Warn when a function declaration hides virtual functions from a
-base class. For example, in:
-.Sp
-.Vb 3
-\& struct A {
-\& virtual void f();
-\& };
-.Ve
-.Vb 3
-\& struct B: public A {
-\& void f(int);
-\& };
-.Ve
-the \f(CW\*(C`A\*(C'\fR class version of \f(CW\*(C`f\*(C'\fR is hidden in \f(CW\*(C`B\*(C'\fR, and code
-like this:
-.Sp
-.Vb 2
-\& B* b;
-\& b->f();
-.Ve
-will fail to compile.
-.Ip "\fB\-Wno-pmf-conversions\fR (\*(C+ only)" 4
-.IX Item "-Wno-pmf-conversions ( only)"
-Disable the diagnostic for converting a bound pointer to member function
-to a plain pointer.
-.Ip "\fB\-Wsign-promo\fR (\*(C+ only)" 4
-.IX Item "-Wsign-promo ( only)"
-Warn when overload resolution chooses a promotion from unsigned or
-enumeral type to a signed type over a conversion to an unsigned type of
-the same size. Previous versions of G++ would try to preserve
-unsignedness, but the standard mandates the current behavior.
-.Ip "\fB\-Wsynth\fR (\*(C+ only)" 4
-.IX Item "-Wsynth ( only)"
-Warn when G++'s synthesis behavior does not match that of cfront. For
-instance:
-.Sp
-.Vb 4
-\& struct A {
-\& operator int ();
-\& A& operator = (int);
-\& };
-.Ve
-.Vb 5
-\& main ()
-\& {
-\& A a,b;
-\& a = b;
-\& }
-.Ve
-In this example, G++ will synthesize a default \fBA& operator =
-(const A&);\fR, while cfront will use the user-defined \fBoperator =\fR.
-.Sh "Options Controlling Objective-C Dialect"
-.IX Subsection "Options Controlling Objective-C Dialect"
-This section describes the command-line options that are only meaningful
-for Objective-C programs; but you can also use most of the \s-1GNU\s0 compiler
-options regardless of what language your program is in. For example,
-you might compile a file \f(CW\*(C`some_class.m\*(C'\fR like this:
-.PP
-.Vb 1
-\& gcc -g -fgnu-runtime -O -c some_class.m
-.Ve
-In this example, only \fB\-fgnu-runtime\fR is an option meant only for
-Objective-C programs; you can use the other options with any language
-supported by \s-1GCC\s0.
-.PP
-Here is a list of options that are \fIonly\fR for compiling Objective-C
-programs:
-.Ip "\fB\-fconstant-string-class=\fR\fIclass-name\fR" 4
-.IX Item "-fconstant-string-class=class-name"
-Use \fIclass-name\fR as the name of the class to instantiate for each
-literal string specified with the syntax \f(CW\*(C`@"..."\*(C'\fR. The default
-class name is \f(CW\*(C`NXConstantString\*(C'\fR.
-.Ip "\fB\-fgnu-runtime\fR" 4
-.IX Item "-fgnu-runtime"
-Generate object code compatible with the standard \s-1GNU\s0 Objective-C
-runtime. This is the default for most types of systems.
-.Ip "\fB\-fnext-runtime\fR" 4
-.IX Item "-fnext-runtime"
-Generate output compatible with the NeXT runtime. This is the default
-for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X.
-.Ip "\fB\-gen-decls\fR" 4
-.IX Item "-gen-decls"
-Dump interface declarations for all classes seen in the source file to a
-file named \fI\fIsourcename\fI.decl\fR.
-.Ip "\fB\-Wno-protocol\fR" 4
-.IX Item "-Wno-protocol"
-Do not warn if methods required by a protocol are not implemented
-in the class adopting it.
-.Ip "\fB\-Wselector\fR" 4
-.IX Item "-Wselector"
-Warn if a selector has multiple methods of different types defined.
-.Sh "Options to Control Diagnostic Messages Formatting"
-.IX Subsection "Options to Control Diagnostic Messages Formatting"
-Traditionally, diagnostic messages have been formatted irrespective of
-the output device's aspect (e.g. its width, ...). The options described
-below can be used to control the diagnostic messages formatting
-algorithm, e.g. how many characters per line, how often source location
-information should be reported. Right now, only the \*(C+ front end can
-honor these options. However it is expected, in the near future, that
-the remaining front ends would be able to digest them correctly.
-.Ip "\fB\-fmessage-length=\fR\fIn\fR" 4
-.IX Item "-fmessage-length=n"
-Try to format error messages so that they fit on lines of about \fIn\fR
-characters. The default is 72 characters for \fBg++\fR and 0 for the rest of
-the front ends supported by \s-1GCC\s0. If \fIn\fR is zero, then no
-line-wrapping will be done; each error message will appear on a single
-line.
-.Ip "\fB\-fdiagnostics-show-location=once\fR" 4
-.IX Item "-fdiagnostics-show-location=once"
-Only meaningful in line-wrapping mode. Instructs the diagnostic messages
-reporter to emit \fIonce\fR source location information; that is, in
-case the message is too long to fit on a single physical line and has to
-be wrapped, the source location won't be emitted (as prefix) again,
-over and over, in subsequent continuation lines. This is the default
-behavior.
-.Ip "\fB\-fdiagnostics-show-location=every-line\fR" 4
-.IX Item "-fdiagnostics-show-location=every-line"
-Only meaningful in line-wrapping mode. Instructs the diagnostic
-messages reporter to emit the same source location information (as
-prefix) for physical lines that result from the process of breaking
-a message which is too long to fit on a single line.
-.Sh "Options to Request or Suppress Warnings"
-.IX Subsection "Options to Request or Suppress Warnings"
-Warnings are diagnostic messages that report constructions which
-are not inherently erroneous but which are risky or suggest there
-may have been an error.
-.PP
-You can request many specific warnings with options beginning \fB\-W\fR,
-for example \fB\-Wimplicit\fR to request warnings on implicit
-declarations. Each of these specific warning options also has a
-negative form beginning \fB\-Wno-\fR to turn off warnings;
-for example, \fB\-Wno-implicit\fR. This manual lists only one of the
-two forms, whichever is not the default.
-.PP
-The following options control the amount and kinds of warnings produced
-by \s-1GCC\s0; for further, language-specific options also refer to
-\&\f(CW@ref\fR{\*(C+ Dialect Options} and \f(CW@ref\fR{Objective-C Dialect Options}.
-.Ip "\fB\-fsyntax-only\fR" 4
-.IX Item "-fsyntax-only"
-Check the code for syntax errors, but don't do anything beyond that.
-.Ip "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+;
-reject all programs that use forbidden extensions, and some other
-programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+. For \s-1ISO\s0 C, follows the
-version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used.
-.Sp
-Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without
-this option (though a rare few will require \fB\-ansi\fR or a
-\&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C). However,
-without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+
-features are supported as well. With this option, they are rejected.
-.Sp
-\&\fB\-pedantic\fR does not cause warning messages for use of the
-alternate keywords whose names begin and end with \fB_\|_\fR. Pedantic
-warnings are also disabled in the expression that follows
-\&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use
-these escape routes; application programs should avoid them.
-.Sp
-Some users try to use \fB\-pedantic\fR to check programs for strict \s-1ISO\s0
-C conformance. They soon find that it does not do quite what they want:
-it finds some non-ISO practices, but not all\-\-\-only those for which
-\&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which
-diagnostics have been added.
-.Sp
-A feature to report any failure to conform to \s-1ISO\s0 C might be useful in
-some instances, but would require considerable additional work and would
-be quite different from \fB\-pedantic\fR. We don't have plans to
-support such a feature in the near future.
-.Sp
-Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0
-extended dialect of C, such as \fBgnu89\fR or \fBgnu99\fR, there is a
-corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0
-extended dialect is based. Warnings from \fB\-pedantic\fR are given
-where they are required by the base standard. (It would not make sense
-for such warnings to be given only for features not in the specified \s-1GNU\s0
-C dialect, since by definition the \s-1GNU\s0 dialects of C include all
-features the compiler supports with the given option, and there would be
-nothing to warn about.)
-.Ip "\fB\-pedantic-errors\fR" 4
-.IX Item "-pedantic-errors"
-Like \fB\-pedantic\fR, except that errors are produced rather than
-warnings.
-.Ip "\fB\-w\fR" 4
-.IX Item "-w"
-Inhibit all warning messages.
-.Ip "\fB\-Wno-import\fR" 4
-.IX Item "-Wno-import"
-Inhibit warning messages about the use of \fB#import\fR.
-.Ip "\fB\-Wchar-subscripts\fR" 4
-.IX Item "-Wchar-subscripts"
-Warn if an array subscript has type \f(CW\*(C`char\*(C'\fR. This is a common cause
-of error, as programmers often forget that this type is signed on some
-machines.
-.Ip "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a Backslash-Newline appears in a \fB//\fR comment.
-.Ip "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-Check calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR, etc., to make sure that
-the arguments supplied have types appropriate to the format string
-specified, and that the conversions specified in the format string make
-sense. This includes standard functions, and others specified by format
-attributes, in the \f(CW\*(C`printf\*(C'\fR,
-\&\f(CW\*(C`scanf\*(C'\fR, \f(CW\*(C`strftime\*(C'\fR and \f(CW\*(C`strfmon\*(C'\fR (an X/Open extension,
-not in the C standard) families.
-.Sp
-The formats are checked against the format features supported by \s-1GNU\s0
-libc version 2.2. These include all \s-1ISO\s0 C89 and C99 features, as well
-as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0
-extensions. Other library implementations may not support all these
-features; \s-1GCC\s0 does not support warning about features that go beyond a
-particular library's limitations. However, if \fB\-pedantic\fR is used
-with \fB\-Wformat\fR, warnings will be given about format features not
-in the selected standard version (but not for \f(CW\*(C`strfmon\*(C'\fR formats,
-since those are not in any version of the C standard).
-.Sp
-\&\fB\-Wformat\fR is included in \fB\-Wall\fR. For more control over some
-aspects of format checking, the options \fB\-Wno-format-y2k\fR,
-\&\fB\-Wno-format-extra-args\fR, \fB\-Wformat-nonliteral\fR,
-\&\fB\-Wformat-security\fR and \fB\-Wformat=2\fR are available, but are
-not included in \fB\-Wall\fR.
-.Ip "\fB\-Wno-format-y2k\fR" 4
-.IX Item "-Wno-format-y2k"
-If \fB\-Wformat\fR is specified, do not warn about \f(CW\*(C`strftime\*(C'\fR
-formats which may yield only a two-digit year.
-.Ip "\fB\-Wno-format-extra-args\fR" 4
-.IX Item "-Wno-format-extra-args"
-If \fB\-Wformat\fR is specified, do not warn about excess arguments to a
-\&\f(CW\*(C`printf\*(C'\fR or \f(CW\*(C`scanf\*(C'\fR format function. The C standard specifies
-that such arguments are ignored.
-.Sp
-Where the unused arguments lie between used arguments that are
-specified with \fB$\fR operand number specifications, normally
-warnings are still given, since the implementation could not know what
-type to pass to \f(CW\*(C`va_arg\*(C'\fR to skip the unused arguments. However,
-in the case of \f(CW\*(C`scanf\*(C'\fR formats, this option will suppress the
-warning if the unused arguments are all pointers, since the Single
-Unix Specification says that such unused arguments are allowed.
-.Ip "\fB\-Wformat-nonliteral\fR" 4
-.IX Item "-Wformat-nonliteral"
-If \fB\-Wformat\fR is specified, also warn if the format string is not a
-string literal and so cannot be checked, unless the format function
-takes its format arguments as a \f(CW\*(C`va_list\*(C'\fR.
-.Ip "\fB\-Wformat-security\fR" 4
-.IX Item "-Wformat-security"
-If \fB\-Wformat\fR is specified, also warn about uses of format
-functions that represent possible security problems. At present, this
-warns about calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR functions where the
-format string is not a string literal and there are no format arguments,
-as in \f(CW\*(C`printf (foo);\*(C'\fR. This may be a security hole if the format
-string came from untrusted input and contains \fB%n\fR. (This is
-currently a subset of what \fB\-Wformat-nonliteral\fR warns about, but
-in future warnings may be added to \fB\-Wformat-security\fR that are not
-included in \fB\-Wformat-nonliteral\fR.)
-.Ip "\fB\-Wformat=2\fR" 4
-.IX Item "-Wformat=2"
-Enable \fB\-Wformat\fR plus format checks not included in
-\&\fB\-Wformat\fR. Currently equivalent to \fB\-Wformat
-\&\-Wformat-nonliteral \-Wformat-security\fR.
-.Ip "\fB\-Wimplicit-int\fR" 4
-.IX Item "-Wimplicit-int"
-Warn when a declaration does not specify a type.
-.Ip "\fB\-Wimplicit-function-declaration\fR" 4
-.IX Item "-Wimplicit-function-declaration"
-.PD 0
-.Ip "\fB\-Werror-implicit-function-declaration\fR" 4
-.IX Item "-Werror-implicit-function-declaration"
-.PD
-Give a warning (or error) whenever a function is used before being
-declared.
-.Ip "\fB\-Wimplicit\fR" 4
-.IX Item "-Wimplicit"
-Same as \fB\-Wimplicit-int\fR and \fB\-Wimplicit-function-declaration\fR.
-.Ip "\fB\-Wmain\fR" 4
-.IX Item "-Wmain"
-Warn if the type of \fBmain\fR is suspicious. \fBmain\fR should be a
-function with external linkage, returning int, taking either zero
-arguments, two, or three arguments of appropriate types.
-.Ip "\fB\-Wmissing-braces\fR" 4
-.IX Item "-Wmissing-braces"
-Warn if an aggregate or union initializer is not fully bracketed. In
-the following example, the initializer for \fBa\fR is not fully
-bracketed, but that for \fBb\fR is fully bracketed.
-.Sp
-.Vb 2
-\& int a[2][2] = { 0, 1, 2, 3 };
-\& int b[2][2] = { { 0, 1 }, { 2, 3 } };
-.Ve
-.Ip "\fB\-Wparentheses\fR" 4
-.IX Item "-Wparentheses"
-Warn if parentheses are omitted in certain contexts, such
-as when there is an assignment in a context where a truth value
-is expected, or when operators are nested whose precedence people
-often get confused about.
-.Sp
-Also warn about constructions where there may be confusion to which
-\&\f(CW\*(C`if\*(C'\fR statement an \f(CW\*(C`else\*(C'\fR branch belongs. Here is an example of
-such a case:
-.Sp
-.Vb 7
-\& {
-\& if (a)
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-.Ve
-In C, every \f(CW\*(C`else\*(C'\fR branch belongs to the innermost possible \f(CW\*(C`if\*(C'\fR
-statement, which in this example is \f(CW\*(C`if (b)\*(C'\fR. This is often not
-what the programmer expected, as illustrated in the above example by
-indentation the programmer chose. When there is the potential for this
-confusion, \s-1GCC\s0 will issue a warning when this flag is specified.
-To eliminate the warning, add explicit braces around the innermost
-\&\f(CW\*(C`if\*(C'\fR statement so there is no way the \f(CW\*(C`else\*(C'\fR could belong to
-the enclosing \f(CW\*(C`if\*(C'\fR. The resulting code would look like this:
-.Sp
-.Vb 9
-\& {
-\& if (a)
-\& {
-\& if (b)
-\& foo ();
-\& else
-\& bar ();
-\& }
-\& }
-.Ve
-.Ip "\fB\-Wsequence-point\fR" 4
-.IX Item "-Wsequence-point"
-Warn about code that may have undefined semantics because of violations
-of sequence point rules in the C standard.
-.Sp
-The C standard defines the order in which expressions in a C program are
-evaluated in terms of \fIsequence points\fR, which represent a partial
-ordering between the execution of parts of the program: those executed
-before the sequence point, and those executed after it. These occur
-after the evaluation of a full expression (one which is not part of a
-larger expression), after the evaluation of the first operand of a
-\&\f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, \f(CW\*(C`? :\*(C'\fR or \f(CW\*(C`,\*(C'\fR (comma) operator, before a
-function is called (but after the evaluation of its arguments and the
-expression denoting the called function), and in certain other places.
-Other than as expressed by the sequence point rules, the order of
-evaluation of subexpressions of an expression is not specified. All
-these rules describe only a partial order rather than a total order,
-since, for example, if two functions are called within one expression
-with no sequence point between them, the order in which the functions
-are called is not specified. However, the standards committee have
-ruled that function calls do not overlap.
-.Sp
-It is not specified when between sequence points modifications to the
-values of objects take effect. Programs whose behavior depends on this
-have undefined behavior; the C standard specifies that ``Between the
-previous and next sequence point an object shall have its stored value
-modified at most once by the evaluation of an expression. Furthermore,
-the prior value shall be read only to determine the value to be
-stored.''. If a program breaks these rules, the results on any
-particular implementation are entirely unpredictable.
-.Sp
-Examples of code with undefined behavior are \f(CW\*(C`a = a++;\*(C'\fR, \f(CW\*(C`a[n]
-= b[n++]\*(C'\fR and \f(CW\*(C`a[i++] = i;\*(C'\fR. Some more complicated cases are not
-diagnosed by this option, and it may give an occasional false positive
-result, but in general it has been found fairly effective at detecting
-this sort of problem in programs.
-.Sp
-The present implementation of this option only works for C programs. A
-future implementation may also work for \*(C+ programs.
-.Sp
-The C standard is worded confusingly, therefore there is some debate
-over the precise meaning of the sequence point rules in subtle cases.
-Links to discussions of the problem, including proposed formal
-definitions, may be found on our readings page, at
-<\fBhttp://gcc.gnu.org/readings.html\fR>.
-.Ip "\fB\-Wreturn-type\fR" 4
-.IX Item "-Wreturn-type"
-Warn whenever a function is defined with a return-type that defaults to
-\&\f(CW\*(C`int\*(C'\fR. Also warn about any \f(CW\*(C`return\*(C'\fR statement with no
-return-value in a function whose return-type is not \f(CW\*(C`void\*(C'\fR.
-.Sp
-For \*(C+, a function without return type always produces a diagnostic
-message, even when \fB\-Wno-return-type\fR is specified. The only
-exceptions are \fBmain\fR and functions defined in system headers.
-.Ip "\fB\-Wswitch\fR" 4
-.IX Item "-Wswitch"
-Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumeral type
-and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
-enumeration. (The presence of a \f(CW\*(C`default\*(C'\fR label prevents this
-warning.) \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
-provoke warnings when this option is used.
-.Ip "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Warn if any trigraphs are encountered that might change the meaning of
-the program (trigraphs within comments are not warned about).
-.Ip "\fB\-Wunused-function\fR" 4
-.IX Item "-Wunused-function"
-Warn whenever a static function is declared but not defined or a
-non\e-inline static function is unused.
-.Ip "\fB\-Wunused-label\fR" 4
-.IX Item "-Wunused-label"
-Warn whenever a label is declared but not used.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Ip "\fB\-Wunused-parameter\fR" 4
-.IX Item "-Wunused-parameter"
-Warn whenever a function parameter is unused aside from its declaration.
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Ip "\fB\-Wunused-variable\fR" 4
-.IX Item "-Wunused-variable"
-Warn whenever a local variable or non-constant static variable is unused
-aside from its declaration
-.Sp
-To suppress this warning use the \fBunused\fR attribute.
-.Ip "\fB\-Wunused-value\fR" 4
-.IX Item "-Wunused-value"
-Warn whenever a statement computes a result that is explicitly not used.
-.Sp
-To suppress this warning cast the expression to \fBvoid\fR.
-.Ip "\fB\-Wunused\fR" 4
-.IX Item "-Wunused"
-All all the above \fB\-Wunused\fR options combined.
-.Sp
-In order to get a warning about an unused function parameter, you must
-either specify \fB\-W \-Wunused\fR or separately specify
-\&\fB\-Wunused-parameter\fR.
-.Ip "\fB\-Wuninitialized\fR" 4
-.IX Item "-Wuninitialized"
-Warn if an automatic variable is used without first being initialized or
-if a variable may be clobbered by a \f(CW\*(C`setjmp\*(C'\fR call.
-.Sp
-These warnings are possible only in optimizing compilation,
-because they require data flow information that is computed only
-when optimizing. If you don't specify \fB\-O\fR, you simply won't
-get these warnings.
-.Sp
-These warnings occur only for variables that are candidates for
-register allocation. Therefore, they do not occur for a variable that
-is declared \f(CW\*(C`volatile\*(C'\fR, or whose address is taken, or whose size
-is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
-structures, unions or arrays, even when they are in registers.
-.Sp
-Note that there may be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data flow analysis before the warnings
-are printed.
-.Sp
-These warnings are made optional because \s-1GCC\s0 is not smart
-enough to see all the reasons why the code might be correct
-despite appearing to have an error. Here is one example of how
-this can happen:
-.Sp
-.Vb 12
-\& {
-\& int x;
-\& switch (y)
-\& {
-\& case 1: x = 1;
-\& break;
-\& case 2: x = 4;
-\& break;
-\& case 3: x = 5;
-\& }
-\& foo (x);
-\& }
-.Ve
-If the value of \f(CW\*(C`y\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`x\*(C'\fR is
-always initialized, but \s-1GCC\s0 doesn't know this. Here is
-another common case:
-.Sp
-.Vb 6
-\& {
-\& int save_y;
-\& if (change_y) save_y = y, y = new_y;
-\& ...
-\& if (change_y) y = save_y;
-\& }
-.Ve
-This has no bug because \f(CW\*(C`save_y\*(C'\fR is used only if it is set.
-.Sp
-This option also warns when a non-volatile automatic variable might be
-changed by a call to \f(CW\*(C`longjmp\*(C'\fR. These warnings as well are possible
-only in optimizing compilation.
-.Sp
-The compiler sees only the calls to \f(CW\*(C`setjmp\*(C'\fR. It cannot know
-where \f(CW\*(C`longjmp\*(C'\fR will be called; in fact, a signal handler could
-call it at any point in the code. As a result, you may get a warning
-even when there is in fact no problem because \f(CW\*(C`longjmp\*(C'\fR cannot
-in fact be called at the place which would cause a problem.
-.Sp
-Some spurious warnings can be avoided if you declare all the functions
-you use that never return as \f(CW\*(C`noreturn\*(C'\fR.
-.Ip "\fB\-Wreorder\fR (\*(C+ only)" 4
-.IX Item "-Wreorder ( only)"
-Warn when the order of member initializers given in the code does not
-match the order in which they must be executed. For instance:
-.Ip "\fB\-Wunknown-pragmas\fR" 4
-.IX Item "-Wunknown-pragmas"
-Warn when a #pragma directive is encountered which is not understood by
-\&\s-1GCC\s0. If this command line option is used, warnings will even be issued
-for unknown pragmas in system header files. This is not the case if
-the warnings were only enabled by the \fB\-Wall\fR command line option.
-.Ip "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-All of the above \fB\-W\fR options combined. This enables all the
-warnings about constructions that some users consider questionable, and
-that are easy to avoid (or modify to prevent the warning), even in
-conjunction with macros.
-.Ip "\fB\-Wdiv-by-zero\fR" 4
-.IX Item "-Wdiv-by-zero"
-Warn about compile-time integer division by zero. This is default. To
-inhibit the warning messages, use \fB\-Wno-div-by-zero\fR. Floating
-point division by zero is not warned about, as it can be a legitimate
-way of obtaining infinities and NaNs.
-.Ip "\fB\-Wmultichar\fR" 4
-.IX Item "-Wmultichar"
-Warn if a multicharacter constant (\fB'\s-1FOOF\s0'\fR) is used. This is
-default. To inhibit the warning messages, use \fB\-Wno-multichar\fR.
-Usually they indicate a typo in the user's code, as they have
-implementation-defined values, and should not be used in portable code.
-.Ip "\fB\-Wsystem-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Print warning messages for constructs found in system header files.
-Warnings from system headers are normally suppressed, on the assumption
-that they usually do not indicate real problems and would only make the
-compiler output harder to read. Using this command line option tells
-\&\s-1GCC\s0 to emit warnings from system headers as if they occurred in user
-code. However, note that using \fB\-Wall\fR in conjunction with this
-option will \fInot\fR warn about unknown pragmas in system
-headers\-\-\-for that, \fB\-Wunknown-pragmas\fR must also be used.
-.PP
-The following \fB\-W...\fR options are not implied by \fB\-Wall\fR.
-Some of them warn about constructions that users generally do not
-consider questionable, but which occasionally you might wish to check
-for; others warn about constructions that are necessary or hard to avoid
-in some cases, and there is no simple way to modify the code to suppress
-the warning.
-.Ip "\fB\-W\fR" 4
-.IX Item "-W"
-Print extra warning messages for these events:
-.RS 4
-.Ip "\(bu" 4
-A function can return either with or without a value. (Falling
-off the end of the function body is considered returning without
-a value.) For example, this function would evoke such a
-warning:
-.Sp
-.Vb 5
-\& foo (a)
-\& {
-\& if (a > 0)
-\& return a;
-\& }
-.Ve
-.Ip "\(bu" 4
-An expression-statement or the left-hand side of a comma expression
-contains no side effects.
-To suppress the warning, cast the unused expression to void.
-For example, an expression such as \fBx[i,j]\fR will cause a warning,
-but \fBx[(void)i,j]\fR will not.
-.Ip "\(bu" 4
-An unsigned value is compared against zero with \fB<\fR or \fB<=\fR.
-.Ip "\(bu" 4
-A comparison like \fBx<=y<=z\fR appears; this is equivalent to
-\&\fB(x<=y ? 1 : 0) <= z\fR, which is a different interpretation from
-that of ordinary mathematical notation.
-.Ip "\(bu" 4
-Storage-class specifiers like \f(CW\*(C`static\*(C'\fR are not the first things in
-a declaration. According to the C Standard, this usage is obsolescent.
-.Ip "\(bu" 4
-The return type of a function has a type qualifier such as \f(CW\*(C`const\*(C'\fR.
-Such a type qualifier has no effect, since the value returned by a
-function is not an lvalue. (But don't warn about the \s-1GNU\s0 extension of
-\&\f(CW\*(C`volatile void\*(C'\fR return types. That extension will be warned about
-if \fB\-pedantic\fR is specified.)
-.Ip "\(bu" 4
-If \fB\-Wall\fR or \fB\-Wunused\fR is also specified, warn about unused
-arguments.
-.Ip "\(bu" 4
-A comparison between signed and unsigned values could produce an
-incorrect result when the signed value is converted to unsigned.
-(But don't warn if \fB\-Wno-sign-compare\fR is also specified.)
-.Ip "\(bu" 4
-An aggregate has a partly bracketed initializer.
-For example, the following code would evoke such a warning,
-because braces are missing around the initializer for \f(CW\*(C`x.h\*(C'\fR:
-.Sp
-.Vb 3
-\& struct s { int f, g; };
-\& struct t { struct s h; int i; };
-\& struct t x = { 1, 2, 3 };
-.Ve
-.Ip "\(bu" 4
-An aggregate has an initializer which does not initialize all members.
-For example, the following code would cause such a warning, because
-\&\f(CW\*(C`x.h\*(C'\fR would be implicitly initialized to zero:
-.Sp
-.Vb 2
-\& struct s { int f, g, h; };
-\& struct s x = { 3, 4 };
-.Ve
-.RE
-.RS 4
-.RE
-.Ip "\fB\-Wfloat-equal\fR" 4
-.IX Item "-Wfloat-equal"
-Warn if floating point values are used in equality comparisons.
-.Sp
-The idea behind this is that sometimes it is convenient (for the
-programmer) to consider floating-point values as approximations to
-infinitely precise real numbers. If you are doing this, then you need
-to compute (by analysing the code, or in some other way) the maximum or
-likely maximum error that the computation introduces, and allow for it
-when performing comparisons (and when producing output, but that's a
-different problem). In particular, instead of testing for equality, you
-would check to see whether the two values have ranges that overlap; and
-this is done with the relational operators, so equality comparisons are
-probably mistaken.
-.Ip "\fB\-Wtraditional\fR (C only)" 4
-.IX Item "-Wtraditional (C only)"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C
-equivalent, and/or problematic constructs which should be avoided.
-.RS 4
-.Ip "\(bu" 4
-Macro parameters that appear within string literals in the macro body.
-In traditional C macro replacement takes place within string literals,
-but does not in \s-1ISO\s0 C.
-.Ip "\(bu" 4
-In traditional C, some preprocessor directives did not exist.
-Traditional preprocessors would only consider a line to be a directive
-if the \fB#\fR appeared in column 1 on the line. Therefore
-\&\fB\-Wtraditional\fR warns about directives that traditional C
-understands but would ignore because the \fB#\fR does not appear as the
-first character on the line. It also suggests you hide directives like
-\&\fB#pragma\fR not understood by traditional C by indenting them. Some
-traditional implementations would not recognize \fB#elif\fR, so it
-suggests avoiding it altogether.
-.Ip "\(bu" 4
-A function-like macro that appears without arguments.
-.Ip "\(bu" 4
-The unary plus operator.
-.Ip "\(bu" 4
-The \fBU\fR integer constant suffix, or the \fBF\fR or \fBL\fR floating point
-constant suffixes. (Traditional C does support the \fBL\fR suffix on integer
-constants.) Note, these suffixes appear in macros defined in the system
-headers of most modern systems, e.g. the \fB_MIN\fR/\fB_MAX\fR macros in \f(CW\*(C`<limits.h>\*(C'\fR.
-Use of these macros in user code might normally lead to spurious
-warnings, however gcc's integrated preprocessor has enough context to
-avoid warning in these cases.
-.Ip "\(bu" 4
-A function declared external in one block and then used after the end of
-the block.
-.Ip "\(bu" 4
-A \f(CW\*(C`switch\*(C'\fR statement has an operand of type \f(CW\*(C`long\*(C'\fR.
-.Ip "\(bu" 4
-A non-\f(CW\*(C`static\*(C'\fR function declaration follows a \f(CW\*(C`static\*(C'\fR one.
-This construct is not accepted by some traditional C compilers.
-.Ip "\(bu" 4
-The \s-1ISO\s0 type of an integer constant has a different width or
-signedness from its traditional type. This warning is only issued if
-the base of the constant is ten. I.e. hexadecimal or octal values, which
-typically represent bit patterns, are not warned about.
-.Ip "\(bu" 4
-Usage of \s-1ISO\s0 string concatenation is detected.
-.Ip "\(bu" 4
-Initialization of automatic aggregates.
-.Ip "\(bu" 4
-Identifier conflicts with labels. Traditional C lacks a separate
-namespace for labels.
-.Ip "\(bu" 4
-Initialization of unions. If the initializer is zero, the warning is
-omitted. This is done under the assumption that the zero initializer in
-user code appears conditioned on e.g. \f(CW\*(C`_\|_STDC_\|_\*(C'\fR to avoid missing
-initializer warnings and relies on default initialization to zero in the
-traditional C case.
-.Ip "\(bu" 4
-Conversions by prototypes between fixed/floating point values and vice
-versa. The absence of these prototypes when compiling with traditional
-C would cause serious problems. This is a subset of the possible
-conversion warnings, for the full set use \fB\-Wconversion\fR.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn if an undefined identifier is evaluated in an \fB#if\fR directive.
-.Ip "\fB\-Wshadow\fR" 4
-.IX Item "-Wshadow"
-Warn whenever a local variable shadows another local variable, parameter or
-global variable or whenever a built-in function is shadowed.
-.Ip "\fB\-Wlarger-than-\fR\fIlen\fR" 4
-.IX Item "-Wlarger-than-len"
-Warn whenever an object of larger than \fIlen\fR bytes is defined.
-.Ip "\fB\-Wpointer-arith\fR" 4
-.IX Item "-Wpointer-arith"
-Warn about anything that depends on the ``size of'' a function type or
-of \f(CW\*(C`void\*(C'\fR. \s-1GNU\s0 C assigns these types a size of 1, for
-convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers
-to functions.
-.Ip "\fB\-Wbad-function-cast\fR (C only)" 4
-.IX Item "-Wbad-function-cast (C only)"
-Warn whenever a function call is cast to a non-matching type.
-For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR.
-.Ip "\fB\-Wcast-qual\fR" 4
-.IX Item "-Wcast-qual"
-Warn whenever a pointer is cast so as to remove a type qualifier from
-the target type. For example, warn if a \f(CW\*(C`const char *\*(C'\fR is cast
-to an ordinary \f(CW\*(C`char *\*(C'\fR.
-.Ip "\fB\-Wcast-align\fR" 4
-.IX Item "-Wcast-align"
-Warn whenever a pointer is cast such that the required alignment of the
-target is increased. For example, warn if a \f(CW\*(C`char *\*(C'\fR is cast to
-an \f(CW\*(C`int *\*(C'\fR on machines where integers can only be accessed at
-two- or four-byte boundaries.
-.Ip "\fB\-Wwrite-strings\fR" 4
-.IX Item "-Wwrite-strings"
-When compiling C, give string constants the type \f(CW\*(C`const
-char[\f(CIlength\f(CW]\*(C'\fR so that
-copying the address of one into a non-\f(CW\*(C`const\*(C'\fR \f(CW\*(C`char *\*(C'\fR
-pointer will get a warning; when compiling \*(C+, warn about the
-deprecated conversion from string constants to \f(CW\*(C`char *\*(C'\fR.
-These warnings will help you find at
-compile time code that can try to write into a string constant, but
-only if you have been very careful about using \f(CW\*(C`const\*(C'\fR in
-declarations and prototypes. Otherwise, it will just be a nuisance;
-this is why we did not make \fB\-Wall\fR request these warnings.
-.Ip "\fB\-Wconversion\fR" 4
-.IX Item "-Wconversion"
-Warn if a prototype causes a type conversion that is different from what
-would happen to the same argument in the absence of a prototype. This
-includes conversions of fixed point to floating and vice versa, and
-conversions changing the width or signedness of a fixed point argument
-except when the same as the default promotion.
-.Sp
-Also, warn if a negative integer constant expression is implicitly
-converted to an unsigned type. For example, warn about the assignment
-\&\f(CW\*(C`x = \-1\*(C'\fR if \f(CW\*(C`x\*(C'\fR is unsigned. But do not warn about explicit
-casts like \f(CW\*(C`(unsigned) \-1\*(C'\fR.
-.Ip "\fB\-Wsign-compare\fR" 4
-.IX Item "-Wsign-compare"
-Warn when a comparison between signed and unsigned values could produce
-an incorrect result when the signed value is converted to unsigned.
-This warning is also enabled by \fB\-W\fR; to get the other warnings
-of \fB\-W\fR without this warning, use \fB\-W \-Wno-sign-compare\fR.
-.Ip "\fB\-Waggregate-return\fR" 4
-.IX Item "-Waggregate-return"
-Warn if any functions that return structures or unions are defined or
-called. (In languages where you can return an array, this also elicits
-a warning.)
-.Ip "\fB\-Wstrict-prototypes\fR (C only)" 4
-.IX Item "-Wstrict-prototypes (C only)"
-Warn if a function is declared or defined without specifying the
-argument types. (An old-style function definition is permitted without
-a warning if preceded by a declaration which specifies the argument
-types.)
-.Ip "\fB\-Wmissing-prototypes\fR (C only)" 4
-.IX Item "-Wmissing-prototypes (C only)"
-Warn if a global function is defined without a previous prototype
-declaration. This warning is issued even if the definition itself
-provides a prototype. The aim is to detect global functions that fail
-to be declared in header files.
-.Ip "\fB\-Wmissing-declarations\fR" 4
-.IX Item "-Wmissing-declarations"
-Warn if a global function is defined without a previous declaration.
-Do so even if the definition itself provides a prototype.
-Use this option to detect global functions that are not declared in
-header files.
-.Ip "\fB\-Wmissing-noreturn\fR" 4
-.IX Item "-Wmissing-noreturn"
-Warn about functions which might be candidates for attribute \f(CW\*(C`noreturn\*(C'\fR.
-Note these are only possible candidates, not absolute ones. Care should
-be taken to manually verify functions actually do not ever return before
-adding the \f(CW\*(C`noreturn\*(C'\fR attribute, otherwise subtle code generation
-bugs could be introduced. You will not get a warning for \f(CW\*(C`main\*(C'\fR in
-hosted C environments.
-.Ip "\fB\-Wmissing-format-attribute\fR" 4
-.IX Item "-Wmissing-format-attribute"
-If \fB\-Wformat\fR is enabled, also warn about functions which might be
-candidates for \f(CW\*(C`format\*(C'\fR attributes. Note these are only possible
-candidates, not absolute ones. \s-1GCC\s0 will guess that \f(CW\*(C`format\*(C'\fR
-attributes might be appropriate for any function that calls a function
-like \f(CW\*(C`vprintf\*(C'\fR or \f(CW\*(C`vscanf\*(C'\fR, but this might not always be the
-case, and some functions for which \f(CW\*(C`format\*(C'\fR attributes are
-appropriate may not be detected. This option has no effect unless
-\&\fB\-Wformat\fR is enabled (possibly by \fB\-Wall\fR).
-.Ip "\fB\-Wno-deprecated-declarations\fR" 4
-.IX Item "-Wno-deprecated-declarations"
-Do not warn about uses of functions, variables, and types marked as
-deprecated by using the \f(CW\*(C`deprecated\*(C'\fR attribute.
-(@pxref{Function Attributes}, \f(CW@pxref\fR{Variable Attributes},
-\&\f(CW@pxref\fR{Type Attributes}.)
-.Ip "\fB\-Wpacked\fR" 4
-.IX Item "-Wpacked"
-Warn if a structure is given the packed attribute, but the packed
-attribute has no effect on the layout or size of the structure.
-Such structures may be mis-aligned for little benefit. For
-instance, in this code, the variable \f(CW\*(C`f.x\*(C'\fR in \f(CW\*(C`struct bar\*(C'\fR
-will be misaligned even though \f(CW\*(C`struct bar\*(C'\fR does not itself
-have the packed attribute:
-.Sp
-.Vb 8
-\& struct foo {
-\& int x;
-\& char a, b, c, d;
-\& } __attribute__((packed));
-\& struct bar {
-\& char z;
-\& struct foo f;
-\& };
-.Ve
-.Ip "\fB\-Wpadded\fR" 4
-.IX Item "-Wpadded"
-Warn if padding is included in a structure, either to align an element
-of the structure or to align the whole structure. Sometimes when this
-happens it is possible to rearrange the fields of the structure to
-reduce the padding and so make the structure smaller.
-.Ip "\fB\-Wredundant-decls\fR" 4
-.IX Item "-Wredundant-decls"
-Warn if anything is declared more than once in the same scope, even in
-cases where multiple declaration is valid and changes nothing.
-.Ip "\fB\-Wnested-externs\fR (C only)" 4
-.IX Item "-Wnested-externs (C only)"
-Warn if an \f(CW\*(C`extern\*(C'\fR declaration is encountered within a function.
-.Ip "\fB\-Wunreachable-code\fR" 4
-.IX Item "-Wunreachable-code"
-Warn if the compiler detects that code will never be executed.
-.Sp
-This option is intended to warn when the compiler detects that at
-least a whole line of source code will never be executed, because
-some condition is never satisfied or because it is after a
-procedure that never returns.
-.Sp
-It is possible for this option to produce a warning even though there
-are circumstances under which part of the affected line can be executed,
-so care should be taken when removing apparently-unreachable code.
-.Sp
-For instance, when a function is inlined, a warning may mean that the
-line is unreachable in only one inlined copy of the function.
-.Sp
-This option is not made part of \fB\-Wall\fR because in a debugging
-version of a program there is often substantial code which checks
-correct functioning of the program and is, hopefully, unreachable
-because the program does work. Another common use of unreachable
-code is to provide behavior which is selectable at compile-time.
-.Ip "\fB\-Winline\fR" 4
-.IX Item "-Winline"
-Warn if a function can not be inlined and it was declared as inline.
-.Ip "\fB\-Wlong-long\fR" 4
-.IX Item "-Wlong-long"
-Warn if \fBlong long\fR type is used. This is default. To inhibit
-the warning messages, use \fB\-Wno-long-long\fR. Flags
-\&\fB\-Wlong-long\fR and \fB\-Wno-long-long\fR are taken into account
-only when \fB\-pedantic\fR flag is used.
-.Ip "\fB\-Wdisabled-optimization\fR" 4
-.IX Item "-Wdisabled-optimization"
-Warn if a requested optimization pass is disabled. This warning does
-not generally indicate that there is anything wrong with your code; it
-merely indicates that \s-1GCC\s0's optimizers were unable to handle the code
-effectively. Often, the problem is that your code is too big or too
-complex; \s-1GCC\s0 will refuse to optimize programs when the optimization
-itself is likely to take inordinate amounts of time.
-.Ip "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into errors.
-.Sh "Options for Debugging Your Program or \s-1GCC\s0"
-.IX Subsection "Options for Debugging Your Program or GCC"
-\&\s-1GCC\s0 has various special options that are used for debugging
-either your program or \s-1GCC:\s0
-.Ip "\fB\-g\fR" 4
-.IX Item "-g"
-Produce debugging information in the operating system's native format
-(stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0). \s-1GDB\s0 can work with this debugging
-information.
-.Sp
-On most systems that use stabs format, \fB\-g\fR enables use of extra
-debugging information that only \s-1GDB\s0 can use; this extra information
-makes debugging work better in \s-1GDB\s0 but will probably make other debuggers
-crash or
-refuse to read the program. If you want to control for certain whether
-to generate the extra information, use \fB\-gstabs+\fR, \fB\-gstabs\fR,
-\&\fB\-gxcoff+\fR, \fB\-gxcoff\fR, \fB\-gdwarf-1+\fR, \fB\-gdwarf-1\fR,
-or \fB\-gvms\fR (see below).
-.Sp
-Unlike most other C compilers, \s-1GCC\s0 allows you to use \fB\-g\fR with
-\&\fB\-O\fR. The shortcuts taken by optimized code may occasionally
-produce surprising results: some variables you declared may not exist
-at all; flow of control may briefly move where you did not expect it;
-some statements may not be executed because they compute constant
-results or their values were already at hand; some statements may
-execute in different places because they were moved out of loops.
-.Sp
-Nevertheless it proves possible to debug optimized output. This makes
-it reasonable to use the optimizer for programs that might have bugs.
-.Sp
-The following options are useful when \s-1GCC\s0 is generated with the
-capability for more than one debugging format.
-.Ip "\fB\-ggdb\fR" 4
-.IX Item "-ggdb"
-Produce debugging information for use by \s-1GDB\s0. This means to use the
-most expressive format available (\s-1DWARF\s0 2, stabs, or the native format
-if neither of those are supported), including \s-1GDB\s0 extensions if at all
-possible.
-.Ip "\fB\-gstabs\fR" 4
-.IX Item "-gstabs"
-Produce debugging information in stabs format (if that is supported),
-without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0
-systems. On \s-1MIPS\s0, Alpha and System V Release 4 systems this option
-produces stabs debugging output which is not understood by \s-1DBX\s0 or \s-1SDB\s0.
-On System V Release 4 systems this option requires the \s-1GNU\s0 assembler.
-.Ip "\fB\-gstabs+\fR" 4
-.IX Item "-gstabs+"
-Produce debugging information in stabs format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.Ip "\fB\-gcoff\fR" 4
-.IX Item "-gcoff"
-Produce debugging information in \s-1COFF\s0 format (if that is supported).
-This is the format used by \s-1SDB\s0 on most System V systems prior to
-System V Release 4.
-.Ip "\fB\-gxcoff\fR" 4
-.IX Item "-gxcoff"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported).
-This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems.
-.Ip "\fB\-gxcoff+\fR" 4
-.IX Item "-gxcoff+"
-Produce debugging information in \s-1XCOFF\s0 format (if that is supported),
-using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program, and may cause assemblers other than the \s-1GNU\s0
-assembler (\s-1GAS\s0) to fail with an error.
-.Ip "\fB\-gdwarf\fR" 4
-.IX Item "-gdwarf"
-Produce debugging information in \s-1DWARF\s0 version 1 format (if that is
-supported). This is the format used by \s-1SDB\s0 on most System V Release 4
-systems.
-.Ip "\fB\-gdwarf+\fR" 4
-.IX Item "-gdwarf+"
-Produce debugging information in \s-1DWARF\s0 version 1 format (if that is
-supported), using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger
-(\s-1GDB\s0). The use of these extensions is likely to make other debuggers
-crash or refuse to read the program.
-.Ip "\fB\-gdwarf-2\fR" 4
-.IX Item "-gdwarf-2"
-Produce debugging information in \s-1DWARF\s0 version 2 format (if that is
-supported). This is the format used by \s-1DBX\s0 on \s-1IRIX\s0 6.
-.Ip "\fB\-gvms\fR" 4
-.IX Item "-gvms"
-Produce debugging information in \s-1VMS\s0 debug format (if that is
-supported). This is the format used by \s-1DEBUG\s0 on \s-1VMS\s0 systems.
-.Ip "\fB\-g\fR\fIlevel\fR" 4
-.IX Item "-glevel"
-.PD 0
-.Ip "\fB\-ggdb\fR\fIlevel\fR" 4
-.IX Item "-ggdblevel"
-.Ip "\fB\-gstabs\fR\fIlevel\fR" 4
-.IX Item "-gstabslevel"
-.Ip "\fB\-gcoff\fR\fIlevel\fR" 4
-.IX Item "-gcofflevel"
-.Ip "\fB\-gxcoff\fR\fIlevel\fR" 4
-.IX Item "-gxcofflevel"
-.Ip "\fB\-gvms\fR\fIlevel\fR" 4
-.IX Item "-gvmslevel"
-.PD
-Request debugging information and also use \fIlevel\fR to specify how
-much information. The default level is 2.
-.Sp
-Level 1 produces minimal information, enough for making backtraces in
-parts of the program that you don't plan to debug. This includes
-descriptions of functions and external variables, but no information
-about local variables and no line numbers.
-.Sp
-Level 3 includes extra information, such as all the macro definitions
-present in the program. Some debuggers support macro expansion when
-you use \fB\-g3\fR.
-.Sp
-Note that in order to avoid confusion between \s-1DWARF1\s0 debug level 2,
-and \s-1DWARF2\s0, neither \fB\-gdwarf\fR nor \fB\-gdwarf-2\fR accept
-a concatenated debug level. Instead use an additional \fB\-g\fR\fIlevel\fR
-option to change the debug level for \s-1DWARF1\s0 or \s-1DWARF2\s0.
-.Ip "\fB\-p\fR" 4
-.IX Item "-p"
-Generate extra code to write profile information suitable for the
-analysis program \f(CW\*(C`prof\*(C'\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.Ip "\fB\-pg\fR" 4
-.IX Item "-pg"
-Generate extra code to write profile information suitable for the
-analysis program \f(CW\*(C`gprof\*(C'\fR. You must use this option when compiling
-the source files you want data about, and you must also use it when
-linking.
-.Ip "\fB\-Q\fR" 4
-.IX Item "-Q"
-Makes the compiler print out each function name as it is compiled, and
-print some statistics about each pass when it finishes.
-.Ip "\fB\-ftime-report\fR" 4
-.IX Item "-ftime-report"
-Makes the compiler print some statistics about the time consumed by each
-pass when it finishes.
-.Ip "\fB\-fmem-report\fR" 4
-.IX Item "-fmem-report"
-Makes the compiler print some statistics about permanent memory
-allocation when it finishes.
-.Ip "\fB\-fprofile-arcs\fR" 4
-.IX Item "-fprofile-arcs"
-Instrument \fIarcs\fR during compilation to generate coverage data
-or for profile-directed block ordering. During execution the program
-records how many times each branch is executed and how many times it is
-taken. When the compiled program exits it saves this data to a file
-called \fI\fIsourcename\fI.da\fR for each source file.
-.Sp
-For profile-directed block ordering, compile the program with
-\&\fB\-fprofile-arcs\fR plus optimization and code generation options,
-generate the arc profile information by running the program on a
-selected workload, and then compile the program again with the same
-optimization and code generation options plus
-\&\fB\-fbranch-probabilities\fR.
-.Sp
-The other use of \fB\-fprofile-arcs\fR is for use with \f(CW\*(C`gcov\*(C'\fR,
-when it is used with the \fB\-ftest-coverage\fR option.
-.Sp
-With \fB\-fprofile-arcs\fR, for each function of your program \s-1GCC\s0
-creates a program flow graph, then finds a spanning tree for the graph.
-Only arcs that are not on the spanning tree have to be instrumented: the
-compiler adds code to count the number of times that these arcs are
-executed. When an arc is the only exit or only entrance to a block, the
-instrumentation code can be added to the block; otherwise, a new basic
-block must be created to hold the instrumentation code.
-.Ip "\fB\-ftest-coverage\fR" 4
-.IX Item "-ftest-coverage"
-Create data files for the \fBgcov\fR code-coverage utility.
-The data file names begin with the name of your source file:
-.RS 4
-.Ip "\fIsourcename\fR\fB.bb\fR" 4
-.IX Item "sourcename.bb"
-A mapping from basic blocks to line numbers, which \f(CW\*(C`gcov\*(C'\fR uses to
-associate basic block execution counts with line numbers.
-.Ip "\fIsourcename\fR\fB.bbg\fR" 4
-.IX Item "sourcename.bbg"
-A list of all arcs in the program flow graph. This allows \f(CW\*(C`gcov\*(C'\fR
-to reconstruct the program flow graph, so that it can compute all basic
-block and arc execution counts from the information in the
-\&\f(CW\*(C`\f(CIsourcename\f(CW.da\*(C'\fR file.
-.RE
-.RS 4
-.Sp
-Use \fB\-ftest-coverage\fR with \fB\-fprofile-arcs\fR; the latter
-option adds instrumentation to the program, which then writes
-execution counts to another data file:
-.RS 4
-.RE
-.Ip "\fIsourcename\fR\fB.da\fR" 4
-.IX Item "sourcename.da"
-Runtime arc execution counts, used in conjunction with the arc
-information in the file \f(CW\*(C`\f(CIsourcename\f(CW.bbg\*(C'\fR.
-.RE
-.RS 4
-.Sp
-Coverage data will map better to the source files if
-\&\fB\-ftest-coverage\fR is used without optimization.
-.RE
-.Ip "\fB\-d\fR\fIletters\fR" 4
-.IX Item "-dletters"
-Says to make debugging dumps during compilation at times specified by
-\&\fIletters\fR. This is used for debugging the compiler. The file names
-for most of the dumps are made by appending a pass number and a word to
-the source file name (e.g. \fIfoo.c.00.rtl\fR or \fIfoo.c.01.sibling\fR).
-Here are the possible letters for use in \fIletters\fR, and their meanings:
-.RS 4
-.Ip "\fBA\fR" 4
-.IX Item "A"
-Annotate the assembler output with miscellaneous debugging information.
-.Ip "\fBb\fR" 4
-.IX Item "b"
-Dump after computing branch probabilities, to \fI\fIfile\fI.14.bp\fR.
-.Ip "\fBB\fR" 4
-.IX Item "B"
-Dump after block reordering, to \fI\fIfile\fI.29.bbro\fR.
-.Ip "\fBc\fR" 4
-.IX Item "c"
-Dump after instruction combination, to the file \fI\fIfile\fI.16.combine\fR.
-.Ip "\fBC\fR" 4
-.IX Item "C"
-Dump after the first if conversion, to the file \fI\fIfile\fI.17.ce\fR.
-.Ip "\fBd\fR" 4
-.IX Item "d"
-Dump after delayed branch scheduling, to \fI\fIfile\fI.31.dbr\fR.
-.Ip "\fBD\fR" 4
-.IX Item "D"
-Dump all macro definitions, at the end of preprocessing, in addition to
-normal output.
-.Ip "\fBe\fR" 4
-.IX Item "e"
-Dump after \s-1SSA\s0 optimizations, to \fI\fIfile\fI.04.ssa\fR and
-\&\fI\fIfile\fI.07.ussa\fR.
-.Ip "\fBE\fR" 4
-.IX Item "E"
-Dump after the second if conversion, to \fI\fIfile\fI.26.ce2\fR.
-.Ip "\fBf\fR" 4
-.IX Item "f"
-Dump after life analysis, to \fI\fIfile\fI.15.life\fR.
-.Ip "\fBF\fR" 4
-.IX Item "F"
-Dump after purging \f(CW\*(C`ADDRESSOF\*(C'\fR codes, to \fI\fIfile\fI.09.addressof\fR.
-.Ip "\fBg\fR" 4
-.IX Item "g"
-Dump after global register allocation, to \fI\fIfile\fI.21.greg\fR.
-.Ip "\fBh\fR" 4
-.IX Item "h"
-Dump after finalization of \s-1EH\s0 handling code, to \fI\fIfile\fI.02.eh\fR.
-.Ip "\fBk\fR" 4
-.IX Item "k"
-Dump after reg-to-stack conversion, to \fI\fIfile\fI.28.stack\fR.
-.Ip "\fBo\fR" 4
-.IX Item "o"
-Dump after post-reload optimizations, to \fI\fIfile\fI.22.postreload\fR.
-.Ip "\fBG\fR" 4
-.IX Item "G"
-Dump after \s-1GCSE\s0, to \fI\fIfile\fI.10.gcse\fR.
-.Ip "\fBi\fR" 4
-.IX Item "i"
-Dump after sibling call optimizations, to \fI\fIfile\fI.01.sibling\fR.
-.Ip "\fBj\fR" 4
-.IX Item "j"
-Dump after the first jump optimization, to \fI\fIfile\fI.03.jump\fR.
-.Ip "\fBk\fR" 4
-.IX Item "k"
-Dump after conversion from registers to stack, to \fI\fIfile\fI.32.stack\fR.
-.Ip "\fBl\fR" 4
-.IX Item "l"
-Dump after local register allocation, to \fI\fIfile\fI.20.lreg\fR.
-.Ip "\fBL\fR" 4
-.IX Item "L"
-Dump after loop optimization, to \fI\fIfile\fI.11.loop\fR.
-.Ip "\fBM\fR" 4
-.IX Item "M"
-Dump after performing the machine dependent reorganisation pass, to
-\&\fI\fIfile\fI.30.mach\fR.
-.Ip "\fBn\fR" 4
-.IX Item "n"
-Dump after register renumbering, to \fI\fIfile\fI.25.rnreg\fR.
-.Ip "\fBN\fR" 4
-.IX Item "N"
-Dump after the register move pass, to \fI\fIfile\fI.18.regmove\fR.
-.Ip "\fBr\fR" 4
-.IX Item "r"
-Dump after \s-1RTL\s0 generation, to \fI\fIfile\fI.00.rtl\fR.
-.Ip "\fBR\fR" 4
-.IX Item "R"
-Dump after the second scheduling pass, to \fI\fIfile\fI.27.sched2\fR.
-.Ip "\fBs\fR" 4
-.IX Item "s"
-Dump after \s-1CSE\s0 (including the jump optimization that sometimes follows
-\&\s-1CSE\s0), to \fI\fIfile\fI.08.cse\fR.
-.Ip "\fBS\fR" 4
-.IX Item "S"
-Dump after the first scheduling pass, to \fI\fIfile\fI.19.sched\fR.
-.Ip "\fBt\fR" 4
-.IX Item "t"
-Dump after the second \s-1CSE\s0 pass (including the jump optimization that
-sometimes follows \s-1CSE\s0), to \fI\fIfile\fI.12.cse2\fR.
-.Ip "\fBw\fR" 4
-.IX Item "w"
-Dump after the second flow pass, to \fI\fIfile\fI.23.flow2\fR.
-.Ip "\fBX\fR" 4
-.IX Item "X"
-Dump after \s-1SSA\s0 dead code elimination, to \fI\fIfile\fI.06.ssadce\fR.
-.Ip "\fBz\fR" 4
-.IX Item "z"
-Dump after the peephole pass, to \fI\fIfile\fI.24.peephole2\fR.
-.Ip "\fBa\fR" 4
-.IX Item "a"
-Produce all the dumps listed above.
-.Ip "\fBm\fR" 4
-.IX Item "m"
-Print statistics on memory usage, at the end of the run, to
-standard error.
-.Ip "\fBp\fR" 4
-.IX Item "p"
-Annotate the assembler output with a comment indicating which
-pattern and alternative was used. The length of each instruction is
-also printed.
-.Ip "\fBP\fR" 4
-.IX Item "P"
-Dump the \s-1RTL\s0 in the assembler output as a comment before each instruction.
-Also turns on \fB\-dp\fR annotation.
-.Ip "\fBv\fR" 4
-.IX Item "v"
-For each of the other indicated dump files (except for
-\&\fI\fIfile\fI.00.rtl\fR), dump a representation of the control flow graph
-suitable for viewing with \s-1VCG\s0 to \fI\fIfile\fI.\fIpass\fI.vcg\fR.
-.Ip "\fBx\fR" 4
-.IX Item "x"
-Just generate \s-1RTL\s0 for a function instead of compiling it. Usually used
-with \fBr\fR.
-.Ip "\fBy\fR" 4
-.IX Item "y"
-Dump debugging information during parsing, to standard error.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-fdump-unnumbered\fR" 4
-.IX Item "-fdump-unnumbered"
-When doing debugging dumps (see \fB\-d\fR option above), suppress instruction
-numbers and line number note output. This makes it more feasible to
-use diff on debugging dumps for compiler invocations with different
-options, in particular with and without \fB\-g\fR.
-.Ip "\fB\-fdump-translation-unit\fR (C and \*(C+ only)" 4
-.IX Item "-fdump-translation-unit (C and only)"
-.PD 0
-.Ip "\fB\-fdump-translation-unit-\fR\fIoptions\fR\fB \fR(C and \*(C+ only)" 4
-.IX Item "-fdump-translation-unit-options (C and only)"
-.PD
-Dump a representation of the tree structure for the entire translation
-unit to a file. The file name is made by appending \fI.tu\fR to the
-source file name. If the \fB-\fR\fIoptions\fR form is used, \fIoptions\fR
-controls the details of the dump as described for the
-\&\fB\-fdump-tree\fR options.
-.Ip "\fB\-fdump-class-hierarchy\fR (\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy ( only)"
-.PD 0
-.Ip "\fB\-fdump-class-hierarchy-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-class-hierarchy-options ( only)"
-.PD
-Dump a representation of each class's hierarchy and virtual function
-table layout to a file. The file name is made by appending \fI.class\fR
-to the source file name. If the \fB-\fR\fIoptions\fR form is used,
-\&\fIoptions\fR controls the details of the dump as described for the
-\&\fB\-fdump-tree\fR options.
-.Ip "\fB\-fdump-tree-\fR\fIswitch\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-tree-switch ( only)"
-.PD 0
-.Ip "\fB\-fdump-tree-\fR\fIswitch\fR\fB-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
-.IX Item "-fdump-tree-switch-options ( only)"
-.PD
-Control the dumping at various stages of processing the intermediate
-language tree to a file. The file name is generated by appending a switch
-specific suffix to the source file name. If the \fB-\fR\fIoptions\fR
-form is used, \fIoptions\fR is a list of \fB-\fR separated options that
-control the details of the dump. Not all options are applicable to all
-dumps, those which are not meaningful will be ignored. The following
-options are available
-.RS 4
-.Ip "\fBaddress\fR" 4
-.IX Item "address"
-Print the address of each node. Usually this is not meaningful as it
-changes according to the environment and source file. Its primary use
-is for tying up a dump file with a debug environment.
-.Ip "\fBslim\fR" 4
-.IX Item "slim"
-Inhibit dumping of members of a scope or body of a function merely
-because that scope has been reached. Only dump such items when they
-are directly reachable by some other path.
-.Ip "\fBall\fR" 4
-.IX Item "all"
-Turn on all options.
-.RE
-.RS 4
-.Sp
-The following tree dumps are possible:
-.RS 4
-.RE
-.Ip "\fBoriginal\fR" 4
-.IX Item "original"
-Dump before any tree based optimization, to \fI\fIfile\fI.original\fR.
-.Ip "\fBoptimized\fR" 4
-.IX Item "optimized"
-Dump after all tree based optimization, to \fI\fIfile\fI.optimized\fR.
-.Ip "\fBinlined\fR" 4
-.IX Item "inlined"
-Dump after function inlining, to \fI\fIfile\fI.inlined\fR.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-fsched-verbose=\fR\fIn\fR" 4
-.IX Item "-fsched-verbose=n"
-On targets that use instruction scheduling, this option controls the
-amount of debugging output the scheduler prints. This information is
-written to standard error, unless \fB\-dS\fR or \fB\-dR\fR is
-specified, in which case it is output to the usual dump
-listing file, \fI.sched\fR or \fI.sched2\fR respectively. However
-for \fIn\fR greater than nine, the output is always printed to standard
-error.
-.Sp
-For \fIn\fR greater than zero, \fB\-fsched-verbose\fR outputs the
-same information as \fB\-dRS\fR. For \fIn\fR greater than one, it
-also output basic block probabilities, detailed ready list information
-and unit/insn info. For \fIn\fR greater than two, it includes \s-1RTL\s0
-at abort point, control-flow and regions info. And for \fIn\fR over
-four, \fB\-fsched-verbose\fR also includes dependence info.
-.Ip "\fB\-fpretend-float\fR" 4
-.IX Item "-fpretend-float"
-When running a cross-compiler, pretend that the target machine uses the
-same floating point format as the host machine. This causes incorrect
-output of the actual floating constants, but the actual instruction
-sequence will probably be the same as \s-1GCC\s0 would make when running on
-the target machine.
-.Ip "\fB\-save-temps\fR" 4
-.IX Item "-save-temps"
-Store the usual ``temporary'' intermediate files permanently; place them
-in the current directory and name them based on the source file. Thus,
-compiling \fIfoo.c\fR with \fB\-c \-save-temps\fR would produce files
-\&\fIfoo.i\fR and \fIfoo.s\fR, as well as \fIfoo.o\fR. This creates a
-preprocessed \fIfoo.i\fR output file even though the compiler now
-normally uses an integrated preprocessor.
-.Ip "\fB\-time\fR" 4
-.IX Item "-time"
-Report the \s-1CPU\s0 time taken by each subprocess in the compilation
-sequence. For C source files, this is the compiler proper and assembler
-(plus the linker if linking is done). The output looks like this:
-.Sp
-.Vb 2
-\& # cc1 0.12 0.01
-\& # as 0.00 0.01
-.Ve
-The first number on each line is the ``user time,'' that is time spent
-executing the program itself. The second number is ``system time,''
-time spent executing operating system routines on behalf of the program.
-Both numbers are in seconds.
-.Ip "\fB\-print-file-name=\fR\fIlibrary\fR" 4
-.IX Item "-print-file-name=library"
-Print the full absolute name of the library file \fIlibrary\fR that
-would be used when linking\-\-\-and don't do anything else. With this
-option, \s-1GCC\s0 does not compile or link anything; it just prints the
-file name.
-.Ip "\fB\-print-multi-directory\fR" 4
-.IX Item "-print-multi-directory"
-Print the directory name corresponding to the multilib selected by any
-other switches present in the command line. This directory is supposed
-to exist in \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.Ip "\fB\-print-multi-lib\fR" 4
-.IX Item "-print-multi-lib"
-Print the mapping from multilib directory names to compiler switches
-that enable them. The directory name is separated from the switches by
-\&\fB;\fR, and each switch starts with an \fB@} instead of the
-\&\f(CB@samp\fB{-\fR, without spaces between multiple switches. This is supposed to
-ease shell-processing.
-.Ip "\fB\-print-prog-name=\fR\fIprogram\fR" 4
-.IX Item "-print-prog-name=program"
-Like \fB\-print-file-name\fR, but searches for a program such as \fBcpp\fR.
-.Ip "\fB\-print-libgcc-file-name\fR" 4
-.IX Item "-print-libgcc-file-name"
-Same as \fB\-print-file-name=libgcc.a\fR.
-.Sp
-This is useful when you use \fB\-nostdlib\fR or \fB\-nodefaultlibs\fR
-but you do want to link with \fIlibgcc.a\fR. You can do
-.Sp
-.Vb 1
-\& gcc -nostdlib <files>... `gcc -print-libgcc-file-name`
-.Ve
-.Ip "\fB\-print-search-dirs\fR" 4
-.IX Item "-print-search-dirs"
-Print the name of the configured installation directory and a list of
-program and library directories gcc will search\-\-\-and don't do anything else.
-.Sp
-This is useful when gcc prints the error message
-\&\fBinstallation problem, cannot exec cpp0: No such file or directory\fR.
-To resolve this you either need to put \fIcpp0\fR and the other compiler
-components where gcc expects to find them, or you can set the environment
-variable \fB\s-1GCC_EXEC_PREFIX\s0\fR to the directory where you installed them.
-Don't forget the trailing '/'.
-.Ip "\fB\-dumpmachine\fR" 4
-.IX Item "-dumpmachine"
-Print the compiler's target machine (for example,
-\&\fBi686\-pc-linux-gnu\fR)\-\-\-and don't do anything else.
-.Ip "\fB\-dumpversion\fR" 4
-.IX Item "-dumpversion"
-Print the compiler version (for example, \fB3.0\fR)\-\-\-and don't do
-anything else.
-.Ip "\fB\-dumpspecs\fR" 4
-.IX Item "-dumpspecs"
-Print the compiler's built-in specs\-\-\-and don't do anything else. (This
-is used when \s-1GCC\s0 itself is being built.)
-.Sh "Options That Control Optimization"
-.IX Subsection "Options That Control Optimization"
-These options control various sorts of optimizations:
-.Ip "\fB\-O\fR" 4
-.IX Item "-O"
-.PD 0
-.Ip "\fB\-O1\fR" 4
-.IX Item "-O1"
-.PD
-Optimize. Optimizing compilation takes somewhat more time, and a lot
-more memory for a large function.
-.Sp
-Without \fB\-O\fR, the compiler's goal is to reduce the cost of
-compilation and to make debugging produce the expected results.
-Statements are independent: if you stop the program with a breakpoint
-between statements, you can then assign a new value to any variable or
-change the program counter to any other statement in the function and
-get exactly the results you would expect from the source code.
-.Sp
-With \fB\-O\fR, the compiler tries to reduce code size and execution
-time, without performing any optimizations that take a great deal of
-compilation time.
-.Ip "\fB\-O2\fR" 4
-.IX Item "-O2"
-Optimize even more. \s-1GCC\s0 performs nearly all supported optimizations
-that do not involve a space-speed tradeoff. The compiler does not
-perform loop unrolling or function inlining when you specify \fB\-O2\fR.
-As compared to \fB\-O\fR, this option increases both compilation time
-and the performance of the generated code.
-.Sp
-\&\fB\-O2\fR turns on all optional optimizations except for loop unrolling,
-function inlining, and register renaming. It also turns on the
-\&\fB\-fforce-mem\fR option on all machines and frame pointer elimination
-on machines where doing so does not interfere with debugging.
-.Sp
-Please note the warning under \fB\-fgcse\fR about
-invoking \fB\-O2\fR on programs that use computed gotos.
-.Ip "\fB\-O3\fR" 4
-.IX Item "-O3"
-Optimize yet more. \fB\-O3\fR turns on all optimizations specified by
-\&\fB\-O2\fR and also turns on the \fB\-finline-functions\fR and
-\&\fB\-frename-registers\fR options.
-.Ip "\fB\-O0\fR" 4
-.IX Item "-O0"
-Do not optimize.
-.Ip "\fB\-Os\fR" 4
-.IX Item "-Os"
-Optimize for size. \fB\-Os\fR enables all \fB\-O2\fR optimizations that
-do not typically increase code size. It also performs further
-optimizations designed to reduce code size.
-.Sp
-If you use multiple \fB\-O\fR options, with or without level numbers,
-the last such option is the one that is effective.
-.PP
-Options of the form \fB\-f\fR\fIflag\fR specify machine-independent
-flags. Most flags have both positive and negative forms; the negative
-form of \fB\-ffoo\fR would be \fB\-fno-foo\fR. In the table below,
-only one of the forms is listed\-\-\-the one which is not the default.
-You can figure out the other form by either removing \fBno-\fR or
-adding it.
-.Ip "\fB\-ffloat-store\fR" 4
-.IX Item "-ffloat-store"
-Do not store floating point variables in registers, and inhibit other
-options that might change whether a floating point value is taken from a
-register or memory.
-.Sp
-This option prevents undesirable excess precision on machines such as
-the 68000 where the floating registers (of the 68881) keep more
-precision than a \f(CW\*(C`double\*(C'\fR is supposed to have. Similarly for the
-x86 architecture. For most programs, the excess precision does only
-good, but a few programs rely on the precise definition of \s-1IEEE\s0 floating
-point. Use \fB\-ffloat-store\fR for such programs, after modifying
-them to store all pertinent intermediate computations into variables.
-.Ip "\fB\-fno-default-inline\fR" 4
-.IX Item "-fno-default-inline"
-Do not make member functions inline by default merely because they are
-defined inside the class scope (\*(C+ only). Otherwise, when you specify
-\&\fB\-O\fR, member functions defined inside class scope are compiled
-inline by default; i.e., you don't need to add \fBinline\fR in front of
-the member function name.
-.Ip "\fB\-fno-defer-pop\fR" 4
-.IX Item "-fno-defer-pop"
-Always pop the arguments to each function call as soon as that function
-returns. For machines which must pop arguments after a function call,
-the compiler normally lets arguments accumulate on the stack for several
-function calls and pops them all at once.
-.Ip "\fB\-fforce-mem\fR" 4
-.IX Item "-fforce-mem"
-Force memory operands to be copied into registers before doing
-arithmetic on them. This produces better code by making all memory
-references potential common subexpressions. When they are not common
-subexpressions, instruction combination should eliminate the separate
-register-load. The \fB\-O2\fR option turns on this option.
-.Ip "\fB\-fforce-addr\fR" 4
-.IX Item "-fforce-addr"
-Force memory address constants to be copied into registers before
-doing arithmetic on them. This may produce better code just as
-\&\fB\-fforce-mem\fR may.
-.Ip "\fB\-fomit-frame-pointer\fR" 4
-.IX Item "-fomit-frame-pointer"
-Don't keep the frame pointer in a register for functions that
-don't need one. This avoids the instructions to save, set up and
-restore frame pointers; it also makes an extra register available
-in many functions. \fBIt also makes debugging impossible on
-some machines.\fR
-.Sp
-On some machines, such as the \s-1VAX\s0, this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls
-whether a target machine supports this flag.
-.Ip "\fB\-foptimize-sibling-calls\fR" 4
-.IX Item "-foptimize-sibling-calls"
-Optimize sibling and tail recursive calls.
-.Ip "\fB\-ftrapv\fR" 4
-.IX Item "-ftrapv"
-This option generates traps for signed overflow on addition, subtraction,
-multiplication operations.
-.Ip "\fB\-fno-inline\fR" 4
-.IX Item "-fno-inline"
-Don't pay attention to the \f(CW\*(C`inline\*(C'\fR keyword. Normally this option
-is used to keep the compiler from expanding any functions inline.
-Note that if you are not optimizing, no functions can be expanded inline.
-.Ip "\fB\-finline-functions\fR" 4
-.IX Item "-finline-functions"
-Integrate all simple functions into their callers. The compiler
-heuristically decides which functions are simple enough to be worth
-integrating in this way.
-.Sp
-If all calls to a given function are integrated, and the function is
-declared \f(CW\*(C`static\*(C'\fR, then the function is normally not output as
-assembler code in its own right.
-.Ip "\fB\-finline-limit=\fR\fIn\fR" 4
-.IX Item "-finline-limit=n"
-By default, gcc limits the size of functions that can be inlined. This flag
-allows the control of this limit for functions that are explicitly marked as
-inline (ie marked with the inline keyword or defined within the class
-definition in c++). \fIn\fR is the size of functions that can be inlined in
-number of pseudo instructions (not counting parameter handling). The default
-value of \fIn\fR is 600.
-Increasing this value can result in more inlined code at
-the cost of compilation time and memory consumption. Decreasing usually makes
-the compilation faster and less code will be inlined (which presumably
-means slower programs). This option is particularly useful for programs that
-use inlining heavily such as those based on recursive templates with \*(C+.
-.Sp
-\&\fINote:\fR pseudo instruction represents, in this particular context, an
-abstract measurement of function's size. In no way, it represents a count
-of assembly instructions and as such its exact meaning might change from one
-release to an another.
-.Ip "\fB\-fkeep-inline-functions\fR" 4
-.IX Item "-fkeep-inline-functions"
-Even if all calls to a given function are integrated, and the function
-is declared \f(CW\*(C`static\*(C'\fR, nevertheless output a separate run-time
-callable version of the function. This switch does not affect
-\&\f(CW\*(C`extern inline\*(C'\fR functions.
-.Ip "\fB\-fkeep-static-consts\fR" 4
-.IX Item "-fkeep-static-consts"
-Emit variables declared \f(CW\*(C`static const\*(C'\fR when optimization isn't turned
-on, even if the variables aren't referenced.
-.Sp
-\&\s-1GCC\s0 enables this option by default. If you want to force the compiler to
-check if the variable was referenced, regardless of whether or not
-optimization is turned on, use the \fB\-fno-keep-static-consts\fR option.
-.Ip "\fB\-fmerge-constants\fR" 4
-.IX Item "-fmerge-constants"
-Attempt to merge identical constants (string constants and floating point
-constants) accross compilation units.
-.Sp
-This option is default for optimized compilation if assembler and linker
-support it. Use \fB\-fno-merge-constants\fR to inhibit this behavior.
-.Ip "\fB\-fmerge-all-constants\fR" 4
-.IX Item "-fmerge-all-constants"
-Attempt to merge identical constants and identical variables.
-.Sp
-This option implies \fB\-fmerge-constants\fR. In addition to
-\&\fB\-fmerge-constants\fR this considers e.g. even constant initialized
-arrays or initialized constant variables with integral or floating point
-types. Languages like C or \*(C+ require each non-automatic variable to
-have distinct location, so using this option will result in non-conforming
-behavior.
-.Ip "\fB\-fno-branch-count-reg\fR" 4
-.IX Item "-fno-branch-count-reg"
-Do not use ``decrement and branch'' instructions on a count register,
-but instead generate a sequence of instructions that decrement a
-register, compare it against zero, then branch based upon the result.
-This option is only meaningful on architectures that support such
-instructions, which include x86, PowerPC, \s-1IA-64\s0 and S/390.
-.Ip "\fB\-fno-function-cse\fR" 4
-.IX Item "-fno-function-cse"
-Do not put function addresses in registers; make each instruction that
-calls a constant function contain the function's address explicitly.
-.Sp
-This option results in less efficient code, but some strange hacks
-that alter the assembler output may be confused by the optimizations
-performed when this option is not used.
-.Ip "\fB\-ffast-math\fR" 4
-.IX Item "-ffast-math"
-Sets \fB\-fno-math-errno\fR, \fB\-funsafe-math-optimizations\fR, and \fB\-fno-trapping-math\fR.
-.Sp
-This option causes the preprocessor macro \f(CW\*(C`_\|_FAST_MATH_\|_\*(C'\fR to be defined.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs which depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Ip "\fB\-fno-math-errno\fR" 4
-.IX Item "-fno-math-errno"
-Do not set \s-1ERRNO\s0 after calling math functions that are executed
-with a single instruction, e.g., sqrt. A program that relies on
-\&\s-1IEEE\s0 exceptions for math error handling may want to use this flag
-for speed while maintaining \s-1IEEE\s0 arithmetic compatibility.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs which depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Sp
-The default is \fB\-fmath-errno\fR.
-.Ip "\fB\-funsafe-math-optimizations\fR" 4
-.IX Item "-funsafe-math-optimizations"
-Allow optimizations for floating-point arithmetic that (a) assume
-that arguments and results are valid and (b) may violate \s-1IEEE\s0 or
-\&\s-1ANSI\s0 standards. When used at link-time, it may include libraries
-or startup files that change the default \s-1FPU\s0 control word or other
-similar optimizations.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs which depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Sp
-The default is \fB\-fno-unsafe-math-optimizations\fR.
-.Ip "\fB\-fno-trapping-math\fR" 4
-.IX Item "-fno-trapping-math"
-Compile code assuming that floating-point operations cannot generate
-user-visible traps. Setting this option may allow faster code
-if one relies on ``non-stop'' \s-1IEEE\s0 arithmetic, for example.
-.Sp
-This option should never be turned on by any \fB\-O\fR option since
-it can result in incorrect output for programs which depend on
-an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
-math functions.
-.Sp
-The default is \fB\-ftrapping-math\fR.
-.Ip "\fB\-fbounds-check\fR" 4
-.IX Item "-fbounds-check"
-For front-ends that support it, generate additional code to check that
-indices used to access arrays are within the declared range. This is
-currenly only supported by the Java and Fortran 77 front-ends, where
-this option defaults to true and false respectively.
-.PP
-The following options control specific optimizations. The \fB\-O2\fR
-option turns on all of these optimizations except \fB\-funroll-loops\fR
-and \fB\-funroll-all-loops\fR. On most machines, the \fB\-O\fR option
-turns on the \fB\-fthread-jumps\fR and \fB\-fdelayed-branch\fR options,
-but specific machines may handle it differently.
-.PP
-You can use the following flags in the rare cases when ``fine-tuning''
-of optimizations to be performed is desired.
-.PP
-Not all of the optimizations performed by \s-1GCC\s0 have \fB\-f\fR options
-to control them.
-.Ip "\fB\-fstrength-reduce\fR" 4
-.IX Item "-fstrength-reduce"
-Perform the optimizations of loop strength reduction and
-elimination of iteration variables.
-.Ip "\fB\-fthread-jumps\fR" 4
-.IX Item "-fthread-jumps"
-Perform optimizations where we check to see if a jump branches to a
-location where another comparison subsumed by the first is found. If
-so, the first branch is redirected to either the destination of the
-second branch or a point immediately following it, depending on whether
-the condition is known to be true or false.
-.Ip "\fB\-fcse-follow-jumps\fR" 4
-.IX Item "-fcse-follow-jumps"
-In common subexpression elimination, scan through jump instructions
-when the target of the jump is not reached by any other path. For
-example, when \s-1CSE\s0 encounters an \f(CW\*(C`if\*(C'\fR statement with an
-\&\f(CW\*(C`else\*(C'\fR clause, \s-1CSE\s0 will follow the jump when the condition
-tested is false.
-.Ip "\fB\-fcse-skip-blocks\fR" 4
-.IX Item "-fcse-skip-blocks"
-This is similar to \fB\-fcse-follow-jumps\fR, but causes \s-1CSE\s0 to
-follow jumps which conditionally skip over blocks. When \s-1CSE\s0
-encounters a simple \f(CW\*(C`if\*(C'\fR statement with no else clause,
-\&\fB\-fcse-skip-blocks\fR causes \s-1CSE\s0 to follow the jump around the
-body of the \f(CW\*(C`if\*(C'\fR.
-.Ip "\fB\-frerun-cse-after-loop\fR" 4
-.IX Item "-frerun-cse-after-loop"
-Re-run common subexpression elimination after loop optimizations has been
-performed.
-.Ip "\fB\-frerun-loop-opt\fR" 4
-.IX Item "-frerun-loop-opt"
-Run the loop optimizer twice.
-.Ip "\fB\-fgcse\fR" 4
-.IX Item "-fgcse"
-Perform a global common subexpression elimination pass.
-This pass also performs global constant and copy propagation.
-.Sp
-\&\fINote:\fR When compiling a program using computed gotos, a \s-1GCC\s0
-extension, you may get better runtime performance if you disable
-the global common subexpression elmination pass by adding
-\&\fB\-fno-gcse\fR to the command line.
-.Ip "\fB\-fgcse-lm\fR" 4
-.IX Item "-fgcse-lm"
-When \fB\-fgcse-lm\fR is enabled, global common subexpression elimination will
-attempt to move loads which are only killed by stores into themselves. This
-allows a loop containing a load/store sequence to be changed to a load outside
-the loop, and a copy/store within the loop.
-.Ip "\fB\-fgcse-sm\fR" 4
-.IX Item "-fgcse-sm"
-When \fB\-fgcse-sm\fR is enabled, A store motion pass is run after global common
-subexpression elimination. This pass will attempt to move stores out of loops.
-When used in conjunction with \fB\-fgcse-lm\fR, loops containing a load/store sequence
-can be changed to a load before the loop and a store after the loop.
-.Ip "\fB\-fdelete-null-pointer-checks\fR" 4
-.IX Item "-fdelete-null-pointer-checks"
-Use global dataflow analysis to identify and eliminate useless checks
-for null pointers. The compiler assumes that dereferencing a null
-pointer would have halted the program. If a pointer is checked after
-it has already been dereferenced, it cannot be null.
-.Sp
-In some environments, this assumption is not true, and programs can
-safely dereference null pointers. Use
-\&\fB\-fno-delete-null-pointer-checks\fR to disable this optimization
-for programs which depend on that behavior.
-.Ip "\fB\-fexpensive-optimizations\fR" 4
-.IX Item "-fexpensive-optimizations"
-Perform a number of minor optimizations that are relatively expensive.
-.Ip "\fB\-foptimize-register-move\fR" 4
-.IX Item "-foptimize-register-move"
-.PD 0
-.Ip "\fB\-fregmove\fR" 4
-.IX Item "-fregmove"
-.PD
-Attempt to reassign register numbers in move instructions and as
-operands of other simple instructions in order to maximize the amount of
-register tying. This is especially helpful on machines with two-operand
-instructions. \s-1GCC\s0 enables this optimization by default with \fB\-O2\fR
-or higher.
-.Sp
-Note \fB\-fregmove\fR and \fB\-foptimize-register-move\fR are the same
-optimization.
-.Ip "\fB\-fdelayed-branch\fR" 4
-.IX Item "-fdelayed-branch"
-If supported for the target machine, attempt to reorder instructions
-to exploit instruction slots available after delayed branch
-instructions.
-.Ip "\fB\-fschedule-insns\fR" 4
-.IX Item "-fschedule-insns"
-If supported for the target machine, attempt to reorder instructions to
-eliminate execution stalls due to required data being unavailable. This
-helps machines that have slow floating point or memory load instructions
-by allowing other instructions to be issued until the result of the load
-or floating point instruction is required.
-.Ip "\fB\-fschedule-insns2\fR" 4
-.IX Item "-fschedule-insns2"
-Similar to \fB\-fschedule-insns\fR, but requests an additional pass of
-instruction scheduling after register allocation has been done. This is
-especially useful on machines with a relatively small number of
-registers and where memory load instructions take more than one cycle.
-.Ip "\fB\-fno-sched-interblock\fR" 4
-.IX Item "-fno-sched-interblock"
-Don't schedule instructions across basic blocks. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule-insns\fR or at \fB\-O2\fR or higher.
-.Ip "\fB\-fno-sched-spec\fR" 4
-.IX Item "-fno-sched-spec"
-Don't allow speculative motion of non-load instructions. This is normally
-enabled by default when scheduling before register allocation, i.e.
-with \fB\-fschedule-insns\fR or at \fB\-O2\fR or higher.
-.Ip "\fB\-fsched-spec-load\fR" 4
-.IX Item "-fsched-spec-load"
-Allow speculative motion of some load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule-insns\fR or at \fB\-O2\fR or higher.
-.Ip "\fB\-fsched-spec-load-dangerous\fR" 4
-.IX Item "-fsched-spec-load-dangerous"
-Allow speculative motion of more load instructions. This only makes
-sense when scheduling before register allocation, i.e. with
-\&\fB\-fschedule-insns\fR or at \fB\-O2\fR or higher.
-.Ip "\fB\-ffunction-sections\fR" 4
-.IX Item "-ffunction-sections"
-.PD 0
-.Ip "\fB\-fdata-sections\fR" 4
-.IX Item "-fdata-sections"
-.PD
-Place each function or data item into its own section in the output
-file if the target supports arbitrary sections. The name of the
-function or the name of the data item determines the section's name
-in the output file.
-.Sp
-Use these options on systems where the linker can perform optimizations
-to improve locality of reference in the instruction space. \s-1HPPA\s0
-processors running \s-1HP-UX\s0 and Sparc processors running Solaris 2 have
-linkers with such optimizations. Other systems using the \s-1ELF\s0 object format
-as well as \s-1AIX\s0 may have these optimizations in the future.
-.Sp
-Only use these options when there are significant benefits from doing
-so. When you specify these options, the assembler and linker will
-create larger object and executable files and will also be slower.
-You will not be able to use \f(CW\*(C`gprof\*(C'\fR on all systems if you
-specify this option and you may have problems with debugging if
-you specify both this option and \fB\-g\fR.
-.Ip "\fB\-fcaller-saves\fR" 4
-.IX Item "-fcaller-saves"
-Enable values to be allocated in registers that will be clobbered by
-function calls, by emitting extra instructions to save and restore the
-registers around such calls. Such allocation is done only when it
-seems to result in better code than would otherwise be produced.
-.Sp
-This option is always enabled by default on certain machines, usually
-those which have no call-preserved registers to use instead.
-.Sp
-For all machines, optimization level 2 and higher enables this flag by
-default.
-.Ip "\fB\-funroll-loops\fR" 4
-.IX Item "-funroll-loops"
-Unroll loops whose number of iterations can be determined at compile
-time or upon entry to the loop. \fB\-funroll-loops\fR implies both
-\&\fB\-fstrength-reduce\fR and \fB\-frerun-cse-after-loop\fR. This
-option makes code larger, and may or may not make it run faster.
-.Ip "\fB\-funroll-all-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Unroll all loops, even if their number of iterations is uncertain when
-the loop is entered. This usually makes programs run more slowly.
-\&\fB\-funroll-all-loops\fR implies the same options as
-\&\fB\-funroll-loops\fR,
-.Ip "\fB\-fprefetch-loop-arrays\fR" 4
-.IX Item "-fprefetch-loop-arrays"
-If supported by the target machine, generate instructions to prefetch
-memory to improve the performance of loops that access large arrays.
-.Ip "\fB\-fmove-all-movables\fR" 4
-.IX Item "-fmove-all-movables"
-Forces all invariant computations in loops to be moved
-outside the loop.
-.Ip "\fB\-freduce-all-givs\fR" 4
-.IX Item "-freduce-all-givs"
-Forces all general-induction variables in loops to be
-strength-reduced.
-.Sp
-\&\fINote:\fR When compiling programs written in Fortran,
-\&\fB\-fmove-all-movables\fR and \fB\-freduce-all-givs\fR are enabled
-by default when you use the optimizer.
-.Sp
-These options may generate better or worse code; results are highly
-dependent on the structure of loops within the source code.
-.Sp
-These two options are intended to be removed someday, once
-they have helped determine the efficacy of various
-approaches to improving loop optimizations.
-.Sp
-Please let us (<\fBgcc@gcc.gnu.org\fR> and <\fBfortran@gnu.org\fR>)
-know how use of these options affects
-the performance of your production code.
-We're very interested in code that runs \fIslower\fR
-when these options are \fIenabled\fR.
-.Ip "\fB\-fno-peephole\fR" 4
-.IX Item "-fno-peephole"
-.PD 0
-.Ip "\fB\-fno-peephole2\fR" 4
-.IX Item "-fno-peephole2"
-.PD
-Disable any machine-specific peephole optimizations. The difference
-between \fB\-fno-peephole\fR and \fB\-fno-peephole2\fR is in how they
-are implemented in the compiler; some targets use one, some use the
-other, a few use both.
-.Ip "\fB\-fbranch-probabilities\fR" 4
-.IX Item "-fbranch-probabilities"
-After running a program compiled with \fB\-fprofile-arcs\fR, you can compile it a second time using
-\&\fB\-fbranch-probabilities\fR, to improve optimizations based on
-the number of times each branch was taken. When the program
-compiled with \fB\-fprofile-arcs\fR exits it saves arc execution
-counts to a file called \fI\fIsourcename\fI.da\fR for each source
-file The information in this data file is very dependent on the
-structure of the generated code, so you must use the same source code
-and the same optimization options for both compilations.
-.Sp
-With \fB\-fbranch-probabilities\fR, \s-1GCC\s0 puts a \fB\s-1REG_EXEC_COUNT\s0\fR
-note on the first instruction of each basic block, and a
-\&\fB\s-1REG_BR_PROB\s0\fR note on each \fB\s-1JUMP_INSN\s0\fR and \fB\s-1CALL_INSN\s0\fR.
-These can be used to improve optimization. Currently, they are only
-used in one place: in \fIreorg.c\fR, instead of guessing which path a
-branch is mostly to take, the \fB\s-1REG_BR_PROB\s0\fR values are used to
-exactly determine which path is taken more often.
-.Ip "\fB\-fno-guess-branch-probability\fR" 4
-.IX Item "-fno-guess-branch-probability"
-Do not guess branch probabilities using a randomized model.
-.Sp
-Sometimes gcc will opt to use a randomized model to guess branch
-probabilities, when none are available from either profiling feedback
-(\fB\-fprofile-arcs\fR) or \fB_\|_builtin_expect\fR. This means that
-different runs of the compiler on the same program may produce different
-object code.
-.Sp
-In a hard real-time system, people don't want different runs of the
-compiler to produce code that has different behavior; minimizing
-non-determinism is of paramount import. This switch allows users to
-reduce non-determinism, possibly at the expense of inferior
-optimization.
-.Ip "\fB\-fstrict-aliasing\fR" 4
-.IX Item "-fstrict-aliasing"
-Allows the compiler to assume the strictest aliasing rules applicable to
-the language being compiled. For C (and \*(C+), this activates
-optimizations based on the type of expressions. In particular, an
-object of one type is assumed never to reside at the same address as an
-object of a different type, unless the types are almost the same. For
-example, an \f(CW\*(C`unsigned int\*(C'\fR can alias an \f(CW\*(C`int\*(C'\fR, but not a
-\&\f(CW\*(C`void*\*(C'\fR or a \f(CW\*(C`double\*(C'\fR. A character type may alias any other
-type.
-.Sp
-Pay special attention to code like this:
-.Sp
-.Vb 4
-\& union a_union {
-\& int i;
-\& double d;
-\& };
-.Ve
-.Vb 5
-\& int f() {
-\& a_union t;
-\& t.d = 3.0;
-\& return t.i;
-\& }
-.Ve
-The practice of reading from a different union member than the one most
-recently written to (called ``type-punning'') is common. Even with
-\&\fB\-fstrict-aliasing\fR, type-punning is allowed, provided the memory
-is accessed through the union type. So, the code above will work as
-expected. However, this code might not:
-.Sp
-.Vb 7
-\& int f() {
-\& a_union t;
-\& int* ip;
-\& t.d = 3.0;
-\& ip = &t.i;
-\& return *ip;
-\& }
-.Ve
-Every language that wishes to perform language-specific alias analysis
-should define a function that computes, given an \f(CW\*(C`tree\*(C'\fR
-node, an alias set for the node. Nodes in different alias sets are not
-allowed to alias. For an example, see the C front-end function
-\&\f(CW\*(C`c_get_alias_set\*(C'\fR.
-.Ip "\fB\-falign-functions\fR" 4
-.IX Item "-falign-functions"
-.PD 0
-.Ip "\fB\-falign-functions=\fR\fIn\fR" 4
-.IX Item "-falign-functions=n"
-.PD
-Align the start of functions to the next power-of-two greater than
-\&\fIn\fR, skipping up to \fIn\fR bytes. For instance,
-\&\fB\-falign-functions=32\fR aligns functions to the next 32\-byte
-boundary, but \fB\-falign-functions=24\fR would align to the next
-32\-byte boundary only if this can be done by skipping 23 bytes or less.
-.Sp
-\&\fB\-fno-align-functions\fR and \fB\-falign-functions=1\fR are
-equivalent and mean that functions will not be aligned.
-.Sp
-Some assemblers only support this flag when \fIn\fR is a power of two;
-in that case, it is rounded up.
-.Sp
-If \fIn\fR is not specified, use a machine-dependent default.
-.Ip "\fB\-falign-labels\fR" 4
-.IX Item "-falign-labels"
-.PD 0
-.Ip "\fB\-falign-labels=\fR\fIn\fR" 4
-.IX Item "-falign-labels=n"
-.PD
-Align all branch targets to a power-of-two boundary, skipping up to
-\&\fIn\fR bytes like \fB\-falign-functions\fR. This option can easily
-make code slower, because it must insert dummy operations for when the
-branch target is reached in the usual flow of the code.
-.Sp
-If \fB\-falign-loops\fR or \fB\-falign-jumps\fR are applicable and
-are greater than this value, then their values are used instead.
-.Sp
-If \fIn\fR is not specified, use a machine-dependent default which is
-very likely to be \fB1\fR, meaning no alignment.
-.Ip "\fB\-falign-loops\fR" 4
-.IX Item "-falign-loops"
-.PD 0
-.Ip "\fB\-falign-loops=\fR\fIn\fR" 4
-.IX Item "-falign-loops=n"
-.PD
-Align loops to a power-of-two boundary, skipping up to \fIn\fR bytes
-like \fB\-falign-functions\fR. The hope is that the loop will be
-executed many times, which will make up for any execution of the dummy
-operations.
-.Sp
-If \fIn\fR is not specified, use a machine-dependent default.
-.Ip "\fB\-falign-jumps\fR" 4
-.IX Item "-falign-jumps"
-.PD 0
-.Ip "\fB\-falign-jumps=\fR\fIn\fR" 4
-.IX Item "-falign-jumps=n"
-.PD
-Align branch targets to a power-of-two boundary, for branch targets
-where the targets can only be reached by jumping, skipping up to \fIn\fR
-bytes like \fB\-falign-functions\fR. In this case, no dummy operations
-need be executed.
-.Sp
-If \fIn\fR is not specified, use a machine-dependent default.
-.Ip "\fB\-fssa\fR" 4
-.IX Item "-fssa"
-Perform optimizations in static single assignment form. Each function's
-flow graph is translated into \s-1SSA\s0 form, optimizations are performed, and
-the flow graph is translated back from \s-1SSA\s0 form. Users should not
-specify this option, since it is not yet ready for production use.
-.Ip "\fB\-fssa-ccp\fR" 4
-.IX Item "-fssa-ccp"
-Perform Sparse Conditional Constant Propagation in \s-1SSA\s0 form. Requires
-\&\fB\-fssa\fR. Like \fB\-fssa\fR, this is an experimental feature.
-.Ip "\fB\-fssa-dce\fR" 4
-.IX Item "-fssa-dce"
-Perform aggressive dead-code elimination in \s-1SSA\s0 form. Requires \fB\-fssa\fR.
-Like \fB\-fssa\fR, this is an experimental feature.
-.Ip "\fB\-fsingle-precision-constant\fR" 4
-.IX Item "-fsingle-precision-constant"
-Treat floating point constant as single precision constant instead of
-implicitly converting it to double precision constant.
-.Ip "\fB\-frename-registers\fR" 4
-.IX Item "-frename-registers"
-Attempt to avoid false dependencies in scheduled code by making use
-of registers left over after register allocation. This optimization
-will most benefit processors with lots of registers. It can, however,
-make debugging impossible, since variables will no longer stay in
-a ``home register''.
-.Ip "\fB\-fno-cprop-registers\fR" 4
-.IX Item "-fno-cprop-registers"
-After register allocation and post-register allocation instruction splitting,
-we perform a copy-propagation pass to try to reduce scheduling dependencies
-and occasionally eliminate the copy.
-.Ip "\fB\*(--param\fR \fIname\fR\fB=\fR\fIvalue\fR" 4
-.IX Item "param name=value"
-In some places, \s-1GCC\s0 uses various constants to control the amount of
-optimization that is done. For example, \s-1GCC\s0 will not inline functions
-that contain more that a certain number of instructions. You can
-control some of these constants on the command-line using the
-\&\fB\*(--param\fR option.
-.Sp
-In each case, the \fIvalue\fR is an integer. The allowable choices for
-\&\fIname\fR are given in the following table:
-.RS 4
-.Ip "\fBmax-delay-slot-insn-search\fR" 4
-.IX Item "max-delay-slot-insn-search"
-The maximum number of instructions to consider when looking for an
-instruction to fill a delay slot. If more than this arbitrary number of
-instructions is searched, the time savings from filling the delay slot
-will be minimal so stop searching. Increasing values mean more
-aggressive optimization, making the compile time increase with probably
-small improvement in executable run time.
-.Ip "\fBmax-delay-slot-live-search\fR" 4
-.IX Item "max-delay-slot-live-search"
-When trying to fill delay slots, the maximum number of instructions to
-consider when searching for a block with valid live register
-information. Increasing this arbitrarily chosen value means more
-aggressive optimization, increasing the compile time. This parameter
-should be removed when the delay slot code is rewritten to maintain the
-control-flow graph.
-.Ip "\fBmax-gcse-memory\fR" 4
-.IX Item "max-gcse-memory"
-The approximate maximum amount of memory that will be allocated in
-order to perform the global common subexpression elimination
-optimization. If more memory than specified is required, the
-optimization will not be done.
-.Ip "\fBmax-gcse-passes\fR" 4
-.IX Item "max-gcse-passes"
-The maximum number of passes of \s-1GCSE\s0 to run.
-.Ip "\fBmax-pending-list-length\fR" 4
-.IX Item "max-pending-list-length"
-The maximum number of pending dependencies scheduling will allow
-before flushing the current state and starting over. Large functions
-with few branches or calls can create excessively large lists which
-needlessly consume memory and resources.
-.Ip "\fBmax-inline-insns\fR" 4
-.IX Item "max-inline-insns"
-If an function contains more than this many instructions, it
-will not be inlined. This option is precisely equivalent to
-\&\fB\-finline-limit\fR.
-.RE
-.RS 4
-.RE
-.Sh "Options Controlling the Preprocessor"
-.IX Subsection "Options Controlling the Preprocessor"
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-.PP
-If you use the \fB\-E\fR option, nothing is done except preprocessing.
-Some of these options make sense only together with \fB\-E\fR because
-they cause the preprocessor output to be unsuitable for actual
-compilation.
-.PP
-You can use \fB\-Wp,\fR\fIoption\fR to bypass the compiler driver
-and pass \fIoption\fR directly through to the preprocessor. If
-\&\fIoption\fR contains commas, it is split into multiple options at the
-commas. However, many options are modified, translated or interpreted
-by the compiler driver before being passed to the preprocessor, and
-\&\fB\-Wp\fR forcibly bypasses this phase. The preprocessor's direct
-interface is undocumented and subject to change, so whenever possible
-you should avoid using \fB\-Wp\fR and let the driver handle the
-options instead.
-.Ip "\fB\-D\fR \fIname\fR" 4
-.IX Item "-D name"
-Predefine \fIname\fR as a macro, with definition \f(CW\*(C`1\*(C'\fR.
-.Ip "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
-.IX Item "-D name=definition"
-Predefine \fIname\fR as a macro, with definition \fIdefinition\fR.
-There are no restrictions on the contents of \fIdefinition\fR, but if
-you are invoking the preprocessor from a shell or shell-like program you
-may need to use the shell's quoting syntax to protect characters such as
-spaces that have a meaning in the shell syntax.
-.Sp
-If you wish to define a function-like macro on the command line, write
-its argument list with surrounding parentheses before the equals sign
-(if any). Parentheses are meaningful to most shells, so you will need
-to quote the option. With \fBsh\fR and \fBcsh\fR,
-\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
-.Sp
-\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
-are given on the command line. All \fB\-imacros\fR \fIfile\fR and
-\&\fB\-include\fR \fIfile\fR options are processed after all
-\&\fB\-D\fR and \fB\-U\fR options.
-.Ip "\fB\-U\fR \fIname\fR" 4
-.IX Item "-U name"
-Cancel any previous definition of \fIname\fR, either built in or
-provided with a \fB\-D\fR option.
-.Ip "\fB\-undef\fR" 4
-.IX Item "-undef"
-Do not predefine any system-specific macros. The common predefined
-macros remain defined.
-.Ip "\fB\-I\fR \fIdir\fR" 4
-.IX Item "-I dir"
-Add the directory \fIdir\fR to the list of directories to be searched
-for header files.
-Directories named by \fB\-I\fR are searched before the standard
-system include directories.
-.Sp
-It is dangerous to specify a standard system include directory in an
-\&\fB\-I\fR option. This defeats the special treatment of system
-headers
-\&. It can also defeat the repairs to buggy system headers which \s-1GCC\s0
-makes when it is installed.
-.Ip "\fB\-o\fR \fIfile\fR" 4
-.IX Item "-o file"
-Write output to \fIfile\fR. This is the same as specifying \fIfile\fR
-as the second non-option argument to \fBcpp\fR. \fBgcc\fR has a
-different interpretation of a second non-option argument, so you must
-use \fB\-o\fR to specify the output file.
-.Ip "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-Turns on all optional warnings which are desirable for normal code. At
-present this is \fB\-Wcomment\fR and \fB\-Wtrigraphs\fR. Note that
-many of the preprocessor's warnings are on by default and have no
-options to control them.
-.Ip "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.Ip "\fB\-Wcomments\fR" 4
-.IX Item "-Wcomments"
-.PD
-Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
-comment, or whenever a backslash-newline appears in a \fB//\fR comment.
-(Both forms have the same effect.)
-.Ip "\fB\-Wtrigraphs\fR" 4
-.IX Item "-Wtrigraphs"
-Warn if any trigraphs are encountered. This option used to take effect
-only if \fB\-trigraphs\fR was also specified, but now works
-independently. Warnings are not given for trigraphs within comments, as
-they do not affect the meaning of the program.
-.Ip "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-Warn about certain constructs that behave differently in traditional and
-\&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C
-equivalent, and problematic constructs which should be avoided.
-.Ip "\fB\-Wimport\fR" 4
-.IX Item "-Wimport"
-Warn the first time \fB#import\fR is used.
-.Ip "\fB\-Wundef\fR" 4
-.IX Item "-Wundef"
-Warn whenever an identifier which is not a macro is encountered in an
-\&\fB#if\fR directive, outside of \fBdefined\fR. Such identifiers are
-replaced with zero.
-.Ip "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into hard errors. Source code which triggers warnings
-will be rejected.
-.Ip "\fB\-Wsystem-headers\fR" 4
-.IX Item "-Wsystem-headers"
-Issue warnings for code in system headers. These are normally unhelpful
-in finding bugs in your own code, therefore suppressed. If you are
-responsible for the system library, you may want to see them.
-.Ip "\fB\-w\fR" 4
-.IX Item "-w"
-Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default.
-.Ip "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue all the mandatory diagnostics listed in the C standard. Some of
-them are left out by default, since they trigger frequently on harmless
-code.
-.Ip "\fB\-pedantic-errors\fR" 4
-.IX Item "-pedantic-errors"
-Issue all the mandatory diagnostics, and make all mandatory diagnostics
-into errors. This includes mandatory diagnostics that \s-1GCC\s0 issues
-without \fB\-pedantic\fR but treats as warnings.
-.Ip "\fB\-M\fR" 4
-.IX Item "-M"
-Instead of outputting the result of preprocessing, output a rule
-suitable for \fBmake\fR describing the dependencies of the main
-source file. The preprocessor outputs one \fBmake\fR rule containing
-the object file name for that source file, a colon, and the names of all
-the included files, including those coming from \fB\-include\fR or
-\&\fB\-imacros\fR command line options.
-.Sp
-Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
-object file name consists of the basename of the source file with any
-suffix replaced with object file suffix. If there are many included
-files then the rule is split into several lines using \fB\e\fR\-newline.
-The rule has no commands.
-.Sp
-This option does not suppress the preprocessor's debug output, such as
-\&\fB\-dM\fR. To avoid mixing such debug output with the dependency
-rules you should explicitly specify the dependency output file with
-\&\fB\-MF\fR, or use an environment variable like
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR. Debug output
-will still be sent to the regular output stream as normal.
-.Sp
-Passing \fB\-M\fR to the driver implies \fB\-E\fR.
-.Ip "\fB\-MM\fR" 4
-.IX Item "-MM"
-Like \fB\-M\fR but do not mention header files that are found in
-system header directories, nor header files that are included,
-directly or indirectly, from such a header.
-.Sp
-This implies that the choice of angle brackets or double quotes in an
-\&\fB#include\fR directive does not in itself determine whether that
-header will appear in \fB\-MM\fR dependency output. This is a
-slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
-.Ip "\fB\-MF\fR \fIfile\fR" 4
-.IX Item "-MF file"
-@anchor{\-MF}
-When used with \fB\-M\fR or \fB\-MM\fR, specifies a
-file to write the dependencies to. If no \fB\-MF\fR switch is given
-the preprocessor sends the rules to the same place it would have sent
-preprocessed output.
-.Sp
-When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
-\&\fB\-MF\fR overrides the default dependency output file.
-.Ip "\fB\-MG\fR" 4
-.IX Item "-MG"
-When used with \fB\-M\fR or \fB\-MM\fR, \fB\-MG\fR says to treat missing
-header files as generated files and assume they live in the same
-directory as the source file. It suppresses preprocessed output, as a
-missing header file is ordinarily an error.
-.Sp
-This feature is used in automatic updating of makefiles.
-.Ip "\fB\-MP\fR" 4
-.IX Item "-MP"
-This option instructs \s-1CPP\s0 to add a phony target for each dependency
-other than the main file, causing each to depend on nothing. These
-dummy rules work around errors \fBmake\fR gives if you remove header
-files without updating the \fIMakefile\fR to match.
-.Sp
-This is typical output:
-.Sp
-.Vb 1
-\& test.o: test.c test.h
-.Ve
-.Vb 1
-\& test.h:
-.Ve
-.Ip "\fB\-MT\fR \fItarget\fR" 4
-.IX Item "-MT target"
-Change the target of the rule emitted by dependency generation. By
-default \s-1CPP\s0 takes the name of the main input file, including any path,
-deletes any file suffix such as \fB.c\fR, and appends the platform's
-usual object suffix. The result is the target.
-.Sp
-An \fB\-MT\fR option will set the target to be exactly the string you
-specify. If you want multiple targets, you can specify them as a single
-argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
-.Sp
-For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
-.Sp
-.Vb 1
-\& $(objpfx)foo.o: foo.c
-.Ve
-.Ip "\fB\-MQ\fR \fItarget\fR" 4
-.IX Item "-MQ target"
-Same as \fB\-MT\fR, but it quotes any characters which are special to
-Make. \fB\-MQ\ '$(objpfx)foo.o'\fR gives
-.Sp
-.Vb 1
-\& $$(objpfx)foo.o: foo.c
-.Ve
-The default target is automatically quoted, as if it were given with
-\&\fB\-MQ\fR.
-.Ip "\fB\-MD\fR" 4
-.IX Item "-MD"
-\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
-\&\fB\-E\fR is not implied. The driver determines \fIfile\fR based on
-whether an \fB\-o\fR option is given. If it is, the driver uses its
-argument but with a suffix of \fI.d\fR, otherwise it take the
-basename of the input file and applies a \fI.d\fR suffix.
-.Sp
-If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
-\&\fB\-o\fR switch is understood to specify the dependency output file
-(but \f(CW@pxref\fR{\-MF}), but if used without \fB\-E\fR, each \fB\-o\fR
-is understood to specify a target object file.
-.Sp
-Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
-a dependency output file as a side-effect of the compilation process.
-.Ip "\fB\-MMD\fR" 4
-.IX Item "-MMD"
-Like \fB\-MD\fR except mention only user header files, not system
-\&\-header files.
-.Ip "\fB\-x c\fR" 4
-.IX Item "-x c"
-.PD 0
-.Ip "\fB\-x c++\fR" 4
-.IX Item "-x c++"
-.Ip "\fB\-x objective-c\fR" 4
-.IX Item "-x objective-c"
-.Ip "\fB\-x assembler-with-cpp\fR" 4
-.IX Item "-x assembler-with-cpp"
-.PD
-Specify the source language: C, \*(C+, Objective-C, or assembly. This has
-nothing to do with standards conformance or extensions; it merely
-selects which base syntax to expect. If you give none of these options,
-cpp will deduce the language from the extension of the source file:
-\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR. Some other common
-extensions for \*(C+ and assembly are also recognized. If cpp does not
-recognize the extension, it will treat the file as C; this is the most
-generic mode.
-.Sp
-\&\fBNote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
-which selected both the language and the standards conformance level.
-This option has been removed, because it conflicts with the \fB\-l\fR
-option.
-.Ip "\fB\-std=\fR\fIstandard\fR" 4
-.IX Item "-std=standard"
-.PD 0
-.Ip "\fB\-ansi\fR" 4
-.IX Item "-ansi"
-.PD
-Specify the standard to which the code should conform. Currently cpp
-only knows about the standards for C; other language standards will be
-added in the future.
-.Sp
-\&\fIstandard\fR
-may be one of:
-.RS 4
-.if n .Ip "\f(CW""""iso9899:1990""""\fR" 4
-.el .Ip "\f(CWiso9899:1990\fR" 4
-.IX Item "iso9899:1990"
-.PD 0
-.if n .Ip "\f(CW""""c89""""\fR" 4
-.el .Ip "\f(CWc89\fR" 4
-.IX Item "c89"
-.PD
-The \s-1ISO\s0 C standard from 1990. \fBc89\fR is the customary shorthand for
-this version of the standard.
-.Sp
-The \fB\-ansi\fR option is equivalent to \fB\-std=c89\fR.
-.if n .Ip "\f(CW""""iso9899:199409""""\fR" 4
-.el .Ip "\f(CWiso9899:199409\fR" 4
-.IX Item "iso9899:199409"
-The 1990 C standard, as amended in 1994.
-.if n .Ip "\f(CW""""iso9899:1999""""\fR" 4
-.el .Ip "\f(CWiso9899:1999\fR" 4
-.IX Item "iso9899:1999"
-.PD 0
-.if n .Ip "\f(CW""""c99""""\fR" 4
-.el .Ip "\f(CWc99\fR" 4
-.IX Item "c99"
-.if n .Ip "\f(CW""""iso9899:199x""""\fR" 4
-.el .Ip "\f(CWiso9899:199x\fR" 4
-.IX Item "iso9899:199x"
-.if n .Ip "\f(CW""""c9x""""\fR" 4
-.el .Ip "\f(CWc9x\fR" 4
-.IX Item "c9x"
-.PD
-The revised \s-1ISO\s0 C standard, published in December 1999. Before
-publication, this was known as C9X.
-.if n .Ip "\f(CW""""gnu89""""\fR" 4
-.el .Ip "\f(CWgnu89\fR" 4
-.IX Item "gnu89"
-The 1990 C standard plus \s-1GNU\s0 extensions. This is the default.
-.if n .Ip "\f(CW""""gnu99""""\fR" 4
-.el .Ip "\f(CWgnu99\fR" 4
-.IX Item "gnu99"
-.PD 0
-.if n .Ip "\f(CW""""gnu9x""""\fR" 4
-.el .Ip "\f(CWgnu9x\fR" 4
-.IX Item "gnu9x"
-.PD
-The 1999 C standard plus \s-1GNU\s0 extensions.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-I-\fR" 4
-.IX Item "-I-"
-Split the include path. Any directories specified with \fB\-I\fR
-options before \fB\-I-\fR are searched only for headers requested with
-\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
-\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR. If additional directories are
-specified with \fB\-I\fR options after the \fB\-I-\fR, those
-directories are searched for all \fB#include\fR directives.
-.Sp
-In addition, \fB\-I-\fR inhibits the use of the directory of the current
-file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
-.Ip "\fB\-nostdinc\fR" 4
-.IX Item "-nostdinc"
-Do not search the standard system directories for header files.
-Only the directories you have specified with \fB\-I\fR options
-(and the directory of the current file, if appropriate) are searched.
-.Ip "\fB\-nostdinc++\fR" 4
-.IX Item "-nostdinc++"
-Do not search for header files in the \*(C+\-specific standard directories,
-but do still search the other standard directories. (This option is
-used when building the \*(C+ library.)
-.Ip "\fB\-include\fR \fIfile\fR" 4
-.IX Item "-include file"
-Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
-line of the primary source file. However, the first directory searched
-for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
-the directory containing the main source file. If not found there, it
-is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
-chain as normal.
-.Sp
-If multiple \fB\-include\fR options are given, the files are included
-in the order they appear on the command line.
-.Ip "\fB\-imacros\fR \fIfile\fR" 4
-.IX Item "-imacros file"
-Exactly like \fB\-include\fR, except that any output produced by
-scanning \fIfile\fR is thrown away. Macros it defines remain defined.
-This allows you to acquire all the macros from a header without also
-processing its declarations.
-.Sp
-All files specified by \fB\-imacros\fR are processed before all files
-specified by \fB\-include\fR.
-.Ip "\fB\-idirafter\fR \fIdir\fR" 4
-.IX Item "-idirafter dir"
-Search \fIdir\fR for header files, but do it \fIafter\fR all
-directories specified with \fB\-I\fR and the standard system directories
-have been exhausted. \fIdir\fR is treated as a system include directory.
-.Ip "\fB\-iprefix\fR \fIprefix\fR" 4
-.IX Item "-iprefix prefix"
-Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
-options. If the prefix represents a directory, you should include the
-final \fB/\fR.
-.Ip "\fB\-iwithprefix\fR \fIdir\fR" 4
-.IX Item "-iwithprefix dir"
-.PD 0
-.Ip "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
-.IX Item "-iwithprefixbefore dir"
-.PD
-Append \fIdir\fR to the prefix specified previously with
-\&\fB\-iprefix\fR, and add the resulting directory to the include search
-path. \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
-would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
-.Sp
-Use of these options is discouraged.
-.Ip "\fB\-isystem\fR \fIdir\fR" 4
-.IX Item "-isystem dir"
-Search \fIdir\fR for header files, after all directories specified by
-\&\fB\-I\fR but before the standard system directories. Mark it
-as a system directory, so that it gets the same special treatment as
-is applied to the standard system directories.
-.Ip "\fB\-fpreprocessed\fR" 4
-.IX Item "-fpreprocessed"
-Indicate to the preprocessor that the input file has already been
-preprocessed. This suppresses things like macro expansion, trigraph
-conversion, escaped newline splicing, and processing of most directives.
-The preprocessor still recognizes and removes comments, so that you can
-pass a file preprocessed with \fB\-C\fR to the compiler without
-problems. In this mode the integrated preprocessor is little more than
-a tokenizer for the front ends.
-.Sp
-\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
-extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR. These are the
-extensions that \s-1GCC\s0 uses for preprocessed files created by
-\&\fB\-save-temps\fR.
-.Ip "\fB\-ftabstop=\fR\fIwidth\fR" 4
-.IX Item "-ftabstop=width"
-Set the distance between tab stops. This helps the preprocessor report
-correct column numbers in warnings or errors, even if tabs appear on the
-line. If the value is less than 1 or greater than 100, the option is
-ignored. The default is 8.
-.Ip "\fB\-fno-show-column\fR" 4
-.IX Item "-fno-show-column"
-Do not print column numbers in diagnostics. This may be necessary if
-diagnostics are being scanned by a program that does not understand the
-column numbers, such as \fBdejagnu\fR.
-.Ip "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A predicate=answer"
-Make an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR. This form is preferred to the older form \fB\-A\fR
-\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
-it does not use shell special characters.
-.Ip "\fB\-A -\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
-.IX Item "-A -predicate=answer"
-Cancel an assertion with the predicate \fIpredicate\fR and answer
-\&\fIanswer\fR.
-.Ip "\fB\-A-\fR" 4
-.IX Item "-A-"
-Cancel all predefined assertions and all assertions preceding it on
-the command line. Also, undefine all predefined macros and all
-macros preceding it on the command line. (This is a historical wart and
-may change in the future.)
-.Ip "\fB\-dCHARS\fR" 4
-.IX Item "-dCHARS"
-\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
-and must not be preceded by a space. Other characters are interpreted
-by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so
-are silently ignored. If you specify characters whose behavior
-conflicts, the result is undefined.
-.RS 4
-.Ip "\fBM\fR" 4
-.IX Item "M"
-Instead of the normal output, generate a list of \fB#define\fR
-directives for all the macros defined during the execution of the
-preprocessor, including predefined macros. This gives you a way of
-finding out what is predefined in your version of the preprocessor.
-Assuming you have no file \fIfoo.h\fR, the command
-.Sp
-.Vb 1
-\& touch foo.h; cpp -dM foo.h
-.Ve
-will show all the predefined macros.
-.Ip "\fBD\fR" 4
-.IX Item "D"
-Like \fBM\fR except in two respects: it does \fInot\fR include the
-predefined macros, and it outputs \fIboth\fR the \fB#define\fR
-directives and the result of preprocessing. Both kinds of output go to
-the standard output file.
-.Ip "\fBN\fR" 4
-.IX Item "N"
-Like \fBD\fR, but emit only the macro names, not their expansions.
-.Ip "\fBI\fR" 4
-.IX Item "I"
-Output \fB#include\fR directives in addition to the result of
-preprocessing.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-P\fR" 4
-.IX Item "-P"
-Inhibit generation of linemarkers in the output from the preprocessor.
-This might be useful when running the preprocessor on something that is
-not C code, and will be sent to a program which might be confused by the
-linemarkers.
-.Ip "\fB\-C\fR" 4
-.IX Item "-C"
-Do not discard comments. All comments are passed through to the output
-file, except for comments in processed directives, which are deleted
-along with the directive.
-.Sp
-You should be prepared for side effects when using \fB\-C\fR; it
-causes the preprocessor to treat comments as tokens in their own right.
-For example, comments appearing at the start of what would be a
-directive line have the effect of turning that line into an ordinary
-source line, since the first token on the line is no longer a \fB#\fR.
-.Ip "\fB\-gcc\fR" 4
-.IX Item "-gcc"
-Define the macros _\|_GNUC_\|_, _\|_GNUC_MINOR_\|_ and
-_\|_GNUC_PATCHLEVEL_\|_. These are defined automatically when you use
-\&\fBgcc \-E\fR; you can turn them off in that case with
-\&\fB\-no-gcc\fR.
-.Ip "\fB\-traditional\fR" 4
-.IX Item "-traditional"
-Try to imitate the behavior of old-fashioned C, as opposed to \s-1ISO\s0
-C.
-.Ip "\fB\-trigraphs\fR" 4
-.IX Item "-trigraphs"
-Process trigraph sequences.
-These are three-character sequences, all starting with \fB??\fR, that
-are defined by \s-1ISO\s0 C to stand for single characters. For example,
-\&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character
-constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in
-standard-conforming modes it converts them. See the \fB\-std\fR and
-\&\fB\-ansi\fR options.
-.Sp
-The nine trigraphs and their replacements are
-.Sp
-.Vb 2
-\& Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??-
-\& Replacement: [ ] { } # \e ^ | ~
-.Ve
-.Ip "\fB\-remap\fR" 4
-.IX Item "-remap"
-Enable special code to work around file systems which only permit very
-short file names, such as \s-1MS-DOS\s0.
-.Ip "\fB\-$\fR" 4
-.IX Item "-$"
-Forbid the use of \fB$\fR in identifiers. The C standard allows
-implementations to define extra characters that can appear in
-identifiers. By default \s-1GNU\s0 \s-1CPP\s0 permits \fB$\fR, a common extension.
-.Ip "\fB\-h\fR" 4
-.IX Item "-h"
-.PD 0
-.Ip "\fB\*(--help\fR" 4
-.IX Item "help"
-.Ip "\fB\*(--target-help\fR" 4
-.IX Item "target-help"
-.PD
-Print text describing all the command line options instead of
-preprocessing anything.
-.Ip "\fB\-v\fR" 4
-.IX Item "-v"
-Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of
-execution, and report the final form of the include path.
-.Ip "\fB\-H\fR" 4
-.IX Item "-H"
-Print the name of each header file used, in addition to other normal
-activities. Each name is indented to show how deep in the
-\&\fB#include\fR stack it is.
-.Ip "\fB\-version\fR" 4
-.IX Item "-version"
-.PD 0
-.Ip "\fB\*(--version\fR" 4
-.IX Item "version"
-.PD
-Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to
-preprocess as normal. With two dashes, exit immediately.
-.Sh "Passing Options to the Assembler"
-.IX Subsection "Passing Options to the Assembler"
-You can pass options to the assembler.
-.Ip "\fB\-Wa,\fR\fIoption\fR" 4
-.IX Item "-Wa,option"
-Pass \fIoption\fR as an option to the assembler. If \fIoption\fR
-contains commas, it is split into multiple options at the commas.
-.Sh "Options for Linking"
-.IX Subsection "Options for Linking"
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is
-not doing a link step.
-.Ip "\fIobject-file-name\fR" 4
-.IX Item "object-file-name"
-A file name that does not end in a special recognized suffix is
-considered to name an object file or library. (Object files are
-distinguished from libraries by the linker according to the file
-contents.) If linking is done, these object files are used as input
-to the linker.
-.Ip "\fB\-c\fR" 4
-.IX Item "-c"
-.PD 0
-.Ip "\fB\-S\fR" 4
-.IX Item "-S"
-.Ip "\fB\-E\fR" 4
-.IX Item "-E"
-.PD
-If any of these options is used, then the linker is not run, and
-object file names should not be used as arguments.
-.Ip "\fB\-l\fR\fIlibrary\fR" 4
-.IX Item "-llibrary"
-.PD 0
-.Ip "\fB\-l\fR \fIlibrary\fR" 4
-.IX Item "-l library"
-.PD
-Search the library named \fIlibrary\fR when linking. (The second
-alternative with the library as a separate argument is only for
-\&\s-1POSIX\s0 compliance and is not recommended.)
-.Sp
-It makes a difference where in the command you write this option; the
-linker searches and processes libraries and object files in the order they
-are specified. Thus, \fBfoo.o \-lz bar.o\fR searches library \fBz\fR
-after file \fIfoo.o\fR but before \fIbar.o\fR. If \fIbar.o\fR refers
-to functions in \fBz\fR, those functions may not be loaded.
-.Sp
-The linker searches a standard list of directories for the library,
-which is actually a file named \fIlib\fIlibrary\fI.a\fR. The linker
-then uses this file as if it had been specified precisely by name.
-.Sp
-The directories searched include several standard system directories
-plus any that you specify with \fB\-L\fR.
-.Sp
-Normally the files found this way are library files\-\-\-archive files
-whose members are object files. The linker handles an archive file by
-scanning through it for members which define symbols that have so far
-been referenced but not defined. But if the file that is found is an
-ordinary object file, it is linked in the usual fashion. The only
-difference between using an \fB\-l\fR option and specifying a file name
-is that \fB\-l\fR surrounds \fIlibrary\fR with \fBlib\fR and \fB.a\fR
-and searches several directories.
-.Ip "\fB\-lobjc\fR" 4
-.IX Item "-lobjc"
-You need this special case of the \fB\-l\fR option in order to
-link an Objective-C program.
-.Ip "\fB\-nostartfiles\fR" 4
-.IX Item "-nostartfiles"
-Do not use the standard system startup files when linking.
-The standard system libraries are used normally, unless \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR is used.
-.Ip "\fB\-nodefaultlibs\fR" 4
-.IX Item "-nodefaultlibs"
-Do not use the standard system libraries when linking.
-Only the libraries you specify will be passed to the linker.
-The standard startup files are used normally, unless \fB\-nostartfiles\fR
-is used. The compiler may generate calls to memcmp, memset, and memcpy
-for System V (and \s-1ISO\s0 C) environments or to bcopy and bzero for
-\&\s-1BSD\s0 environments. These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.Ip "\fB\-nostdlib\fR" 4
-.IX Item "-nostdlib"
-Do not use the standard system startup files or libraries when linking.
-No startup files and only the libraries you specify will be passed to
-the linker. The compiler may generate calls to memcmp, memset, and memcpy
-for System V (and \s-1ISO\s0 C) environments or to bcopy and bzero for
-\&\s-1BSD\s0 environments. These entries are usually resolved by entries in
-libc. These entry points should be supplied through some other
-mechanism when this option is specified.
-.Sp
-One of the standard libraries bypassed by \fB\-nostdlib\fR and
-\&\fB\-nodefaultlibs\fR is \fIlibgcc.a\fR, a library of internal subroutines
-that \s-1GCC\s0 uses to overcome shortcomings of particular machines, or special
-needs for some languages.
-.Sp
-In most cases, you need \fIlibgcc.a\fR even when you want to avoid
-other standard libraries. In other words, when you specify \fB\-nostdlib\fR
-or \fB\-nodefaultlibs\fR you should usually specify \fB\-lgcc\fR as well.
-This ensures that you have no unresolved references to internal \s-1GCC\s0
-library subroutines. (For example, \fB_\|_main\fR, used to ensure \*(C+
-constructors will be called.)
-.Ip "\fB\-s\fR" 4
-.IX Item "-s"
-Remove all symbol table and relocation information from the executable.
-.Ip "\fB\-static\fR" 4
-.IX Item "-static"
-On systems that support dynamic linking, this prevents linking with the shared
-libraries. On other systems, this option has no effect.
-.Ip "\fB\-shared\fR" 4
-.IX Item "-shared"
-Produce a shared object which can then be linked with other objects to
-form an executable. Not all systems support this option. For predictable
-results, you must also specify the same set of options that were used to
-generate code (\fB\-fpic\fR, \fB\-fPIC\fR, or model suboptions)
-when you specify this option.[1]
-.Ip "\fB\-shared-libgcc\fR" 4
-.IX Item "-shared-libgcc"
-.PD 0
-.Ip "\fB\-static-libgcc\fR" 4
-.IX Item "-static-libgcc"
-.PD
-On systems that provide \fIlibgcc\fR as a shared library, these options
-force the use of either the shared or static version respectively.
-If no shared version of \fIlibgcc\fR was built when the compiler was
-configured, these options have no effect.
-.Sp
-There are several situations in which an application should use the
-shared \fIlibgcc\fR instead of the static version. The most common
-of these is when the application wishes to throw and catch exceptions
-across different shared libraries. In that case, each of the libraries
-as well as the application itself should use the shared \fIlibgcc\fR.
-.Sp
-Therefore, the G++ and \s-1GCJ\s0 drivers automatically add
-\&\fB\-shared-libgcc\fR whenever you build a shared library or a main
-executable, because \*(C+ and Java programs typically use exceptions, so
-this is the right thing to do.
-.Sp
-If, instead, you use the \s-1GCC\s0 driver to create shared libraries, you may
-find that they will not always be linked with the shared \fIlibgcc\fR.
-If \s-1GCC\s0 finds, at its configuration time, that you have a \s-1GNU\s0 linker that
-does not support option \fB\*(--eh-frame-hdr\fR, it will link the shared
-version of \fIlibgcc\fR into shared libraries by default. Otherwise,
-it will take advantage of the linker and optimize away the linking with
-the shared version of \fIlibgcc\fR, linking with the static version of
-libgcc by default. This allows exceptions to propagate through such
-shared libraries, without incurring relocation costs at library load
-time.
-.Sp
-However, if a library or main executable is supposed to throw or catch
-exceptions, you must link it using the G++ or \s-1GCJ\s0 driver, as appropriate
-for the languages used in the program, or using the option
-\&\fB\-shared-libgcc\fR, such that it is linked with the shared
-\&\fIlibgcc\fR.
-.Ip "\fB\-symbolic\fR" 4
-.IX Item "-symbolic"
-Bind references to global symbols when building a shared object. Warn
-about any unresolved references (unless overridden by the link editor
-option \fB\-Xlinker \-z \-Xlinker defs\fR). Only a few systems support
-this option.
-.Ip "\fB\-Xlinker\fR \fIoption\fR" 4
-.IX Item "-Xlinker option"
-Pass \fIoption\fR as an option to the linker. You can use this to
-supply system-specific linker options which \s-1GCC\s0 does not know how to
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-\&\fB\-Xlinker\fR twice, once for the option and once for the argument.
-For example, to pass \fB\-assert definitions\fR, you must write
-\&\fB\-Xlinker \-assert \-Xlinker definitions\fR. It does not work to write
-\&\fB\-Xlinker \*(L"\-assert definitions\*(R"\fR, because this passes the entire
-string as a single argument, which is not what the linker expects.
-.Ip "\fB\-Wl,\fR\fIoption\fR" 4
-.IX Item "-Wl,option"
-Pass \fIoption\fR as an option to the linker. If \fIoption\fR contains
-commas, it is split into multiple options at the commas.
-.Ip "\fB\-u\fR \fIsymbol\fR" 4
-.IX Item "-u symbol"
-Pretend the symbol \fIsymbol\fR is undefined, to force linking of
-library modules to define it. You can use \fB\-u\fR multiple times with
-different symbols to force loading of additional library modules.
-.Sh "Options for Directory Search"
-.IX Subsection "Options for Directory Search"
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-.Ip "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-Add the directory \fIdir\fR to the head of the list of directories to be
-searched for header files. This can be used to override a system header
-file, substituting your own version, since these directories are
-searched before the system header file directories. However, you should
-not use this option to add directories that contain vendor-supplied
-system header files (use \fB\-isystem\fR for that). If you use more than
-one \fB\-I\fR option, the directories are scanned in left-to-right
-order; the standard system directories come after.
-.Sp
-If a standard system include directory, or a directory specified with
-\&\fB\-isystem\fR, is also specified with \fB\-I\fR, the \fB\-I\fR
-option will be ignored. The directory will still be searched but as a
-system directory at its normal position in the system include chain.
-This is to ensure that \s-1GCC\s0's procedure to fix buggy system headers and
-the ordering for the include_next directive are not inadvertantly changed.
-If you really need to change the search order for system directories,
-use the \fB\-nostdinc\fR and/or \fB\-isystem\fR options.
-.Ip "\fB\-I-\fR" 4
-.IX Item "-I-"
-Any directories you specify with \fB\-I\fR options before the \fB\-I-\fR
-option are searched only for the case of \fB#include "\fR\fIfile\fR\fB"\fR;
-they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR.
-.Sp
-If additional directories are specified with \fB\-I\fR options after
-the \fB\-I-\fR, these directories are searched for all \fB#include\fR
-directives. (Ordinarily \fIall\fR \fB\-I\fR directories are used
-this way.)
-.Sp
-In addition, the \fB\-I-\fR option inhibits the use of the current
-directory (where the current input file came from) as the first search
-directory for \fB#include "\fR\fIfile\fR\fB"\fR. There is no way to
-override this effect of \fB\-I-\fR. With \fB\-I.\fR you can specify
-searching the directory which was current when the compiler was
-invoked. That is not exactly the same as what the preprocessor does
-by default, but it is often satisfactory.
-.Sp
-\&\fB\-I-\fR does not inhibit the use of the standard system directories
-for header files. Thus, \fB\-I-\fR and \fB\-nostdinc\fR are
-independent.
-.Ip "\fB\-L\fR\fIdir\fR" 4
-.IX Item "-Ldir"
-Add directory \fIdir\fR to the list of directories to be searched
-for \fB\-l\fR.
-.Ip "\fB\-B\fR\fIprefix\fR" 4
-.IX Item "-Bprefix"
-This option specifies where to find the executables, libraries,
-include files, and data files of the compiler itself.
-.Sp
-The compiler driver program runs one or more of the subprograms
-\&\fIcpp\fR, \fIcc1\fR, \fIas\fR and \fIld\fR. It tries
-\&\fIprefix\fR as a prefix for each program it tries to run, both with and
-without \fImachine\fR\fB/\fR\fIversion\fR\fB/\fR.
-.Sp
-For each subprogram to be run, the compiler driver first tries the
-\&\fB\-B\fR prefix, if any. If that name is not found, or if \fB\-B\fR
-was not specified, the driver tries two standard prefixes, which are
-\&\fI/usr/lib/gcc/\fR and \fI/usr/local/lib/gcc-lib/\fR. If neither of
-those results in a file name that is found, the unmodified program
-name is searched for using the directories specified in your
-\&\fB\s-1PATH\s0\fR environment variable.
-.Sp
-The compiler will check to see if the path provided by the \fB\-B\fR
-refers to a directory, and if necessary it will add a directory
-separator character at the end of the path.
-.Sp
-\&\fB\-B\fR prefixes that effectively specify directory names also apply
-to libraries in the linker, because the compiler translates these
-options into \fB\-L\fR options for the linker. They also apply to
-includes files in the preprocessor, because the compiler translates these
-options into \fB\-isystem\fR options for the preprocessor. In this case,
-the compiler appends \fBinclude\fR to the prefix.
-.Sp
-The run-time support file \fIlibgcc.a\fR can also be searched for using
-the \fB\-B\fR prefix, if needed. If it is not found there, the two
-standard prefixes above are tried, and that is all. The file is left
-out of the link if it is not found by those means.
-.Sp
-Another way to specify a prefix much like the \fB\-B\fR prefix is to use
-the environment variable \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.Sp
-As a special kludge, if the path provided by \fB\-B\fR is
-\&\fI[dir/]stage\fIN\fI/\fR, where \fIN\fR is a number in the range 0 to
-9, then it will be replaced by \fI[dir/]include\fR. This is to help
-with boot-strapping the compiler.
-.Ip "\fB\-specs=\fR\fIfile\fR" 4
-.IX Item "-specs=file"
-Process \fIfile\fR after the compiler reads in the standard \fIspecs\fR
-file, in order to override the defaults that the \fIgcc\fR driver
-program uses when determining what switches to pass to \fIcc1\fR,
-\&\fIcc1plus\fR, \fIas\fR, \fIld\fR, etc. More than one
-\&\fB\-specs=\fR\fIfile\fR can be specified on the command line, and they
-are processed in order, from left to right.
-.Sh "Specifying Target Machine and Compiler Version"
-.IX Subsection "Specifying Target Machine and Compiler Version"
-By default, \s-1GCC\s0 compiles code for the same type of machine that you
-are using. However, it can also be installed as a cross-compiler, to
-compile for some other type of machine. In fact, several different
-configurations of \s-1GCC\s0, for different target machines, can be
-installed side by side. Then you specify which one to use with the
-\&\fB\-b\fR option.
-.PP
-In addition, older and newer versions of \s-1GCC\s0 can be installed side
-by side. One of them (probably the newest) will be the default, but
-you may sometimes wish to use another.
-.Ip "\fB\-b\fR \fImachine\fR" 4
-.IX Item "-b machine"
-The argument \fImachine\fR specifies the target machine for compilation.
-This is useful when you have installed \s-1GCC\s0 as a cross-compiler.
-.Sp
-The value to use for \fImachine\fR is the same as was specified as the
-machine type when configuring \s-1GCC\s0 as a cross-compiler. For
-example, if a cross-compiler was configured with \fBconfigure
-i386v\fR, meaning to compile for an 80386 running System V, then you
-would specify \fB\-b i386v\fR to run that cross compiler.
-.Sp
-When you do not specify \fB\-b\fR, it normally means to compile for
-the same type of machine that you are using.
-.Ip "\fB\-V\fR \fIversion\fR" 4
-.IX Item "-V version"
-The argument \fIversion\fR specifies which version of \s-1GCC\s0 to run.
-This is useful when multiple versions are installed. For example,
-\&\fIversion\fR might be \fB2.0\fR, meaning to run \s-1GCC\s0 version 2.0.
-.Sp
-The default version, when you do not specify \fB\-V\fR, is the last
-version of \s-1GCC\s0 that you installed.
-.PP
-The \fB\-b\fR and \fB\-V\fR options actually work by controlling part of
-the file name used for the executable files and libraries used for
-compilation. A given version of \s-1GCC\s0, for a given target machine, is
-normally kept in the directory \fI/usr/local/lib/gcc-lib/\fImachine\fI/\fIversion\fI\fR.
-.PP
-Thus, sites can customize the effect of \fB\-b\fR or \fB\-V\fR either by
-changing the names of these directories or adding alternate names (or
-symbolic links). If in directory \fI/usr/local/lib/gcc-lib/\fR the
-file \fI80386\fR is a link to the file \fIi386v\fR, then \fB\-b
-80386\fR becomes an alias for \fB\-b i386v\fR.
-.PP
-In one respect, the \fB\-b\fR or \fB\-V\fR do not completely change
-to a different compiler: the top-level driver program \fBgcc\fR
-that you originally invoked continues to run and invoke the other
-executables (preprocessor, compiler per se, assembler and linker)
-that do the real work. However, since no real work is done in the
-driver program, it usually does not matter that the driver program
-in use is not the one for the specified target. It is common for the
-interface to the other executables to change incompatibly between
-compiler versions, so unless the version specified is very close to that
-of the driver (for example, \fB\-V 3.0\fR with a driver program from \s-1GCC\s0
-version 3.0.1), use of \fB\-V\fR may not work; for example, using
-\&\fB\-V 2.95.2\fR will not work with a driver program from \s-1GCC\s0 3.0.
-.PP
-The only way that the driver program depends on the target machine is
-in the parsing and handling of special machine-specific options.
-However, this is controlled by a file which is found, along with the
-other executables, in the directory for the specified version and
-target machine. As a result, a single installed driver program adapts
-to any specified target machine, and sufficiently similar compiler
-versions.
-.PP
-The driver program executable does control one significant thing,
-however: the default version and target machine. Therefore, you can
-install different instances of the driver program, compiled for
-different targets or versions, under different names.
-.PP
-For example, if the driver for version 2.0 is installed as \fBogcc\fR
-and that for version 2.1 is installed as \fBgcc\fR, then the command
-\&\fBgcc\fR will use version 2.1 by default, while \fBogcc\fR will use
-2.0 by default. However, you can choose either version with either
-command with the \fB\-V\fR option.
-.Sh "Hardware Models and Configurations"
-.IX Subsection "Hardware Models and Configurations"
-Earlier we discussed the standard option \fB\-b\fR which chooses among
-different installed compilers for completely different target
-machines, such as \s-1VAX\s0 vs. 68000 vs. 80386.
-.PP
-In addition, each of these target machine types can have its own
-special options, starting with \fB\-m\fR, to choose among various
-hardware models or configurations\-\-\-for example, 68010 vs 68020,
-floating coprocessor or none. A single installed version of the
-compiler can compile for any model or configuration, according to the
-options specified.
-.PP
-Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-.PP
-These options are defined by the macro \f(CW\*(C`TARGET_SWITCHES\*(C'\fR in the
-machine description. The default for the options is also defined by
-that macro, which enables you to change the defaults.
-.PP
-.I "M680x0 Options"
-.IX Subsection "M680x0 Options"
-.PP
-These are the \fB\-m\fR options defined for the 68000 series. The default
-values for these options depends on which style of 68000 was selected when
-the compiler was configured; the defaults for the most common choices are
-given below.
-.Ip "\fB\-m68000\fR" 4
-.IX Item "-m68000"
-.PD 0
-.Ip "\fB\-mc68000\fR" 4
-.IX Item "-mc68000"
-.PD
-Generate output for a 68000. This is the default
-when the compiler is configured for 68000\-based systems.
-.Sp
-Use this option for microcontrollers with a 68000 or \s-1EC000\s0 core,
-including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
-.Ip "\fB\-m68020\fR" 4
-.IX Item "-m68020"
-.PD 0
-.Ip "\fB\-mc68020\fR" 4
-.IX Item "-mc68020"
-.PD
-Generate output for a 68020. This is the default
-when the compiler is configured for 68020\-based systems.
-.Ip "\fB\-m68881\fR" 4
-.IX Item "-m68881"
-Generate output containing 68881 instructions for floating point.
-This is the default for most 68020 systems unless \fB\*(--nfp\fR was
-specified when the compiler was configured.
-.Ip "\fB\-m68030\fR" 4
-.IX Item "-m68030"
-Generate output for a 68030. This is the default when the compiler is
-configured for 68030\-based systems.
-.Ip "\fB\-m68040\fR" 4
-.IX Item "-m68040"
-Generate output for a 68040. This is the default when the compiler is
-configured for 68040\-based systems.
-.Sp
-This option inhibits the use of 68881/68882 instructions that have to be
-emulated by software on the 68040. Use this option if your 68040 does not
-have code to emulate those instructions.
-.Ip "\fB\-m68060\fR" 4
-.IX Item "-m68060"
-Generate output for a 68060. This is the default when the compiler is
-configured for 68060\-based systems.
-.Sp
-This option inhibits the use of 68020 and 68881/68882 instructions that
-have to be emulated by software on the 68060. Use this option if your 68060
-does not have code to emulate those instructions.
-.Ip "\fB\-mcpu32\fR" 4
-.IX Item "-mcpu32"
-Generate output for a \s-1CPU32\s0. This is the default
-when the compiler is configured for CPU32\-based systems.
-.Sp
-Use this option for microcontrollers with a
-\&\s-1CPU32\s0 or \s-1CPU32+\s0 core, including the 68330, 68331, 68332, 68333, 68334,
-68336, 68340, 68341, 68349 and 68360.
-.Ip "\fB\-m5200\fR" 4
-.IX Item "-m5200"
-Generate output for a 520X ``coldfire'' family cpu. This is the default
-when the compiler is configured for 520X-based systems.
-.Sp
-Use this option for microcontroller with a 5200 core, including
-the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5202\s0.
-.Ip "\fB\-m68020\-40\fR" 4
-.IX Item "-m68020-40"
-Generate output for a 68040, without using any of the new instructions.
-This results in code which can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68040.
-.Ip "\fB\-m68020\-60\fR" 4
-.IX Item "-m68020-60"
-Generate output for a 68060, without using any of the new instructions.
-This results in code which can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040. The generated code does use the
-68881 instructions that are emulated on the 68060.
-.Ip "\fB\-mfpa\fR" 4
-.IX Item "-mfpa"
-Generate output containing Sun \s-1FPA\s0 instructions for floating point.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all m68k
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this can't be done directly in cross-compilation. You must
-make your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets \fBm68k-*\-aout\fR and
-\&\fBm68k-*\-coff\fR do provide software floating point support.
-.Ip "\fB\-mshort\fR" 4
-.IX Item "-mshort"
-Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
-.Ip "\fB\-mnobitfield\fR" 4
-.IX Item "-mnobitfield"
-Do not use the bit-field instructions. The \fB\-m68000\fR, \fB\-mcpu32\fR
-and \fB\-m5200\fR options imply \fB\-mnobitfield\fR.
-.Ip "\fB\-mbitfield\fR" 4
-.IX Item "-mbitfield"
-Do use the bit-field instructions. The \fB\-m68020\fR option implies
-\&\fB\-mbitfield\fR. This is the default if you use a configuration
-designed for a 68020.
-.Ip "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return with the \f(CW\*(C`rtd\*(C'\fR
-instruction, which pops their arguments while returning. This
-saves one instruction in the caller since there is no need to pop
-the arguments there.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code will be generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Sp
-The \f(CW\*(C`rtd\*(C'\fR instruction is supported by the 68010, 68020, 68030,
-68040, 68060 and \s-1CPU32\s0 processors, but not by the 68000 or 5200.
-.Ip "\fB\-malign-int\fR" 4
-.IX Item "-malign-int"
-.PD 0
-.Ip "\fB\-mno-align-int\fR" 4
-.IX Item "-mno-align-int"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`long long\*(C'\fR,
-\&\f(CW\*(C`float\*(C'\fR, \f(CW\*(C`double\*(C'\fR, and \f(CW\*(C`long double\*(C'\fR variables on a 32\-bit
-boundary (\fB\-malign-int\fR) or a 16\-bit boundary (\fB\-mno-align-int\fR).
-Aligning variables on 32\-bit boundaries produces code that runs somewhat
-faster on processors with 32\-bit busses at the expense of more memory.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign-int\fR switch, \s-1GCC\s0 will
-align structures containing the above types differently than
-most published application binary interface specifications for the m68k.
-.Ip "\fB\-mpcrel\fR" 4
-.IX Item "-mpcrel"
-Use the pc-relative addressing mode of the 68000 directly, instead of
-using a global offset table. At present, this option implies \fB\-fpic\fR,
-allowing at most a 16\-bit offset for pc-relative addressing. \fB\-fPIC\fR is
-not presently supported with \fB\-mpcrel\fR, though this could be supported for
-68020 and higher processors.
-.Ip "\fB\-mno-strict-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.Ip "\fB\-mstrict-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-Do not (do) assume that unaligned memory references will be handled by
-the system.
-.PP
-.I "M68hc1x Options"
-.IX Subsection "M68hc1x Options"
-.PP
-These are the \fB\-m\fR options defined for the 68hc11 and 68hc12
-microcontrollers. The default values for these options depends on
-which style of microcontroller was selected when the compiler was configured;
-the defaults for the most common choices are given below.
-.Ip "\fB\-m6811\fR" 4
-.IX Item "-m6811"
-.PD 0
-.Ip "\fB\-m68hc11\fR" 4
-.IX Item "-m68hc11"
-.PD
-Generate output for a 68HC11. This is the default
-when the compiler is configured for 68HC11\-based systems.
-.Ip "\fB\-m6812\fR" 4
-.IX Item "-m6812"
-.PD 0
-.Ip "\fB\-m68hc12\fR" 4
-.IX Item "-m68hc12"
-.PD
-Generate output for a 68HC12. This is the default
-when the compiler is configured for 68HC12\-based systems.
-.Ip "\fB\-mauto-incdec\fR" 4
-.IX Item "-mauto-incdec"
-Enable the use of 68HC12 pre and post auto-increment and auto-decrement
-addressing modes.
-.Ip "\fB\-mshort\fR" 4
-.IX Item "-mshort"
-Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
-.Ip "\fB\-msoft-reg-count=\fR\fIcount\fR" 4
-.IX Item "-msoft-reg-count=count"
-Specify the number of pseudo-soft registers which are used for the
-code generation. The maximum number is 32. Using more pseudo-soft
-register may or may not result in better code depending on the program.
-The default is 4 for 68HC11 and 2 for 68HC12.
-.PP
-.I "\s-1VAX\s0 Options"
-.IX Subsection "VAX Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1VAX:\s0
-.Ip "\fB\-munix\fR" 4
-.IX Item "-munix"
-Do not output certain jump instructions (\f(CW\*(C`aobleq\*(C'\fR and so on)
-that the Unix assembler for the \s-1VAX\s0 cannot handle across long
-ranges.
-.Ip "\fB\-mgnu\fR" 4
-.IX Item "-mgnu"
-Do output those jump instructions, on the assumption that you
-will assemble with the \s-1GNU\s0 assembler.
-.Ip "\fB\-mg\fR" 4
-.IX Item "-mg"
-Output code for g-format floating point numbers instead of d-format.
-.PP
-.I "\s-1SPARC\s0 Options"
-.IX Subsection "SPARC Options"
-.PP
-These \fB\-m\fR switches are supported on the \s-1SPARC:\s0
-.Ip "\fB\-mno-app-regs\fR" 4
-.IX Item "-mno-app-regs"
-.PD 0
-.Ip "\fB\-mapp-regs\fR" 4
-.IX Item "-mapp-regs"
-.PD
-Specify \fB\-mapp-regs\fR to generate output using the global registers
-2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications. This
-is the default.
-.Sp
-To be fully \s-1SVR4\s0 \s-1ABI\s0 compliant at the cost of some performance loss,
-specify \fB\-mno-app-regs\fR. You should compile libraries and system
-software with this option.
-.Ip "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-.PD 0
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate output containing floating point instructions. This is the
-default.
-.Ip "\fB\-mno-fpu\fR" 4
-.IX Item "-mno-fpu"
-.PD 0
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1SPARC\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded targets \fBsparc-*\-aout\fR and
-\&\fBsparclite-*\-*\fR do provide software floating point support.
-.Sp
-\&\fB\-msoft-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC\s0, with \fB\-msoft-float\fR in order for
-this to work.
-.Ip "\fB\-mhard-quad-float\fR" 4
-.IX Item "-mhard-quad-float"
-Generate output containing quad-word (long double) floating point
-instructions.
-.Ip "\fB\-msoft-quad-float\fR" 4
-.IX Item "-msoft-quad-float"
-Generate output containing library calls for quad-word (long double)
-floating point instructions. The functions called are those specified
-in the \s-1SPARC\s0 \s-1ABI\s0. This is the default.
-.Sp
-As of this writing, there are no sparc implementations that have hardware
-support for the quad-word floating point instructions. They all invoke
-a trap handler for one of these instructions, and then the trap handler
-emulates the effect of the instruction. Because of the trap handler overhead,
-this is much slower than calling the \s-1ABI\s0 library routines. Thus the
-\&\fB\-msoft-quad-float\fR option is the default.
-.Ip "\fB\-mno-flat\fR" 4
-.IX Item "-mno-flat"
-.PD 0
-.Ip "\fB\-mflat\fR" 4
-.IX Item "-mflat"
-.PD
-With \fB\-mflat\fR, the compiler does not generate save/restore instructions
-and will use a ``flat'' or single register window calling convention.
-This model uses \f(CW%i7\fR as the frame pointer and is compatible with the normal
-register window model. Code from either may be intermixed.
-The local registers and the input registers (0\*(--5) are still treated as
-``call saved'' registers and will be saved on the stack as necessary.
-.Sp
-With \fB\-mno-flat\fR (the default), the compiler emits save/restore
-instructions (except for leaf functions) and is the normal mode of operation.
-.Ip "\fB\-mno-unaligned-doubles\fR" 4
-.IX Item "-mno-unaligned-doubles"
-.PD 0
-.Ip "\fB\-munaligned-doubles\fR" 4
-.IX Item "-munaligned-doubles"
-.PD
-Assume that doubles have 8 byte alignment. This is the default.
-.Sp
-With \fB\-munaligned-doubles\fR, \s-1GCC\s0 assumes that doubles have 8 byte
-alignment only if they are contained in another type, or if they have an
-absolute address. Otherwise, it assumes they have 4 byte alignment.
-Specifying this option avoids some rare compatibility problems with code
-generated by other compilers. It is not the default because it results
-in a performance loss, especially for floating point code.
-.Ip "\fB\-mno-faster-structs\fR" 4
-.IX Item "-mno-faster-structs"
-.PD 0
-.Ip "\fB\-mfaster-structs\fR" 4
-.IX Item "-mfaster-structs"
-.PD
-With \fB\-mfaster-structs\fR, the compiler assumes that structures
-should have 8 byte alignment. This enables the use of pairs of
-\&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure
-assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs.
-However, the use of this changed alignment directly violates the Sparc
-\&\s-1ABI\s0. Thus, it's intended only for use on targets where the developer
-acknowledges that their resulting code will not be directly in line with
-the rules of the \s-1ABI\s0.
-.Ip "\fB\-mv8\fR" 4
-.IX Item "-mv8"
-.PD 0
-.Ip "\fB\-msparclite\fR" 4
-.IX Item "-msparclite"
-.PD
-These two options select variations on the \s-1SPARC\s0 architecture.
-.Sp
-By default (unless specifically configured for the Fujitsu SPARClite),
-\&\s-1GCC\s0 generates code for the v7 variant of the \s-1SPARC\s0 architecture.
-.Sp
-\&\fB\-mv8\fR will give you \s-1SPARC\s0 v8 code. The only difference from v7
-code is that the compiler emits the integer multiply and integer
-divide instructions which exist in \s-1SPARC\s0 v8 but not in \s-1SPARC\s0 v7.
-.Sp
-\&\fB\-msparclite\fR will give you SPARClite code. This adds the integer
-multiply, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which
-exist in SPARClite but not in \s-1SPARC\s0 v7.
-.Sp
-These options are deprecated and will be deleted in a future \s-1GCC\s0 release.
-They have been replaced with \fB\-mcpu=xxx\fR.
-.Ip "\fB\-mcypress\fR" 4
-.IX Item "-mcypress"
-.PD 0
-.Ip "\fB\-msupersparc\fR" 4
-.IX Item "-msupersparc"
-.PD
-These two options select the processor for which the code is optimized.
-.Sp
-With \fB\-mcypress\fR (the default), the compiler optimizes code for the
-Cypress \s-1CY7C602\s0 chip, as used in the SparcStation/SparcServer 3xx series.
-This is also appropriate for the older SparcStation 1, 2, \s-1IPX\s0 etc.
-.Sp
-With \fB\-msupersparc\fR the compiler optimizes code for the SuperSparc cpu, as
-used in the SparcStation 10, 1000 and 2000 series. This flag also enables use
-of the full \s-1SPARC\s0 v8 instruction set.
-.Sp
-These options are deprecated and will be deleted in a future \s-1GCC\s0 release.
-They have been replaced with \fB\-mcpu=xxx\fR.
-.Ip "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set, register set, and instruction scheduling parameters
-for machine type \fIcpu_type\fR. Supported values for \fIcpu_type\fR are
-\&\fBv7\fR, \fBcypress\fR, \fBv8\fR, \fBsupersparc\fR, \fBsparclite\fR,
-\&\fBhypersparc\fR, \fBsparclite86x\fR, \fBf930\fR, \fBf934\fR,
-\&\fBsparclet\fR, \fBtsc701\fR, \fBv9\fR, and \fBultrasparc\fR.
-.Sp
-Default instruction scheduling parameters are used for values that select
-an architecture and not an implementation. These are \fBv7\fR, \fBv8\fR,
-\&\fBsparclite\fR, \fBsparclet\fR, \fBv9\fR.
-.Sp
-Here is a list of each supported architecture and their supported
-implementations.
-.Sp
-.Vb 5
-\& v7: cypress
-\& v8: supersparc, hypersparc
-\& sparclite: f930, f934, sparclite86x
-\& sparclet: tsc701
-\& v9: ultrasparc
-.Ve
-.Ip "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the instruction set or register set that the
-option \fB\-mcpu=\fR\fIcpu_type\fR would.
-.Sp
-The same values for \fB\-mcpu=\fR\fIcpu_type\fR can be used for
-\&\fB\-mtune=\fR\fIcpu_type\fR, but the only useful values are those
-that select a particular cpu implementation. Those are \fBcypress\fR,
-\&\fBsupersparc\fR, \fBhypersparc\fR, \fBf930\fR, \fBf934\fR,
-\&\fBsparclite86x\fR, \fBtsc701\fR, and \fBultrasparc\fR.
-.PP
-These \fB\-m\fR switches are supported in addition to the above
-on the \s-1SPARCLET\s0 processor.
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a processor running in little-endian mode.
-.Ip "\fB\-mlive-g0\fR" 4
-.IX Item "-mlive-g0"
-Treat register \f(CW\*(C`%g0\*(C'\fR as a normal register.
-\&\s-1GCC\s0 will continue to clobber it as necessary but will not assume
-it always reads as 0.
-.Ip "\fB\-mbroken-saverestore\fR" 4
-.IX Item "-mbroken-saverestore"
-Generate code that does not use non-trivial forms of the \f(CW\*(C`save\*(C'\fR and
-\&\f(CW\*(C`restore\*(C'\fR instructions. Early versions of the \s-1SPARCLET\s0 processor do
-not correctly handle \f(CW\*(C`save\*(C'\fR and \f(CW\*(C`restore\*(C'\fR instructions used with
-arguments. They correctly handle them used without arguments. A \f(CW\*(C`save\*(C'\fR
-instruction used without arguments increments the current window pointer
-but does not allocate a new stack frame. It is assumed that the window
-overflow trap handler will properly handle this case as will interrupt
-handlers.
-.PP
-These \fB\-m\fR switches are supported in addition to the above
-on \s-1SPARC\s0 V9 processors in 64\-bit environments.
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a processor running in little-endian mode.
-.Ip "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.Ip "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits.
-.Ip "\fB\-mcmodel=medlow\fR" 4
-.IX Item "-mcmodel=medlow"
-Generate code for the Medium/Low code model: the program must be linked
-in the low 32 bits of the address space. Pointers are 64 bits.
-Programs can be statically or dynamically linked.
-.Ip "\fB\-mcmodel=medmid\fR" 4
-.IX Item "-mcmodel=medmid"
-Generate code for the Medium/Middle code model: the program must be linked
-in the low 44 bits of the address space, the text segment must be less than
-2G bytes, and data segment must be within 2G of the text segment.
-Pointers are 64 bits.
-.Ip "\fB\-mcmodel=medany\fR" 4
-.IX Item "-mcmodel=medany"
-Generate code for the Medium/Anywhere code model: the program may be linked
-anywhere in the address space, the text segment must be less than
-2G bytes, and data segment must be within 2G of the text segment.
-Pointers are 64 bits.
-.Ip "\fB\-mcmodel=embmedany\fR" 4
-.IX Item "-mcmodel=embmedany"
-Generate code for the Medium/Anywhere code model for embedded systems:
-assume a 32\-bit text and a 32\-bit data segment, both starting anywhere
-(determined at link time). Register \f(CW%g4\fR points to the base of the
-data segment. Pointers are still 64 bits.
-Programs are statically linked, \s-1PIC\s0 is not supported.
-.Ip "\fB\-mstack-bias\fR" 4
-.IX Item "-mstack-bias"
-.PD 0
-.Ip "\fB\-mno-stack-bias\fR" 4
-.IX Item "-mno-stack-bias"
-.PD
-With \fB\-mstack-bias\fR, \s-1GCC\s0 assumes that the stack pointer, and
-frame pointer if present, are offset by \-2047 which must be added back
-when making stack frame references.
-Otherwise, assume no such offset is present.
-.PP
-.I "Convex Options"
-.IX Subsection "Convex Options"
-.PP
-These \fB\-m\fR options are defined for Convex:
-.Ip "\fB\-mc1\fR" 4
-.IX Item "-mc1"
-Generate output for C1. The code will run on any Convex machine.
-The preprocessor symbol \f(CW\*(C`_\|_convex_\|_c1_\|_\*(C'\fR is defined.
-.Ip "\fB\-mc2\fR" 4
-.IX Item "-mc2"
-Generate output for C2. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C2.
-The preprocessor symbol \f(CW\*(C`_\|_convex_c2_\|_\*(C'\fR is defined.
-.Ip "\fB\-mc32\fR" 4
-.IX Item "-mc32"
-Generate output for C32xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C32.
-The preprocessor symbol \f(CW\*(C`_\|_convex_c32_\|_\*(C'\fR is defined.
-.Ip "\fB\-mc34\fR" 4
-.IX Item "-mc34"
-Generate output for C34xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C34.
-The preprocessor symbol \f(CW\*(C`_\|_convex_c34_\|_\*(C'\fR is defined.
-.Ip "\fB\-mc38\fR" 4
-.IX Item "-mc38"
-Generate output for C38xx. Uses instructions not available on C1.
-Scheduling and other optimizations are chosen for max performance on C38.
-The preprocessor symbol \f(CW\*(C`_\|_convex_c38_\|_\*(C'\fR is defined.
-.Ip "\fB\-margcount\fR" 4
-.IX Item "-margcount"
-Generate code which puts an argument count in the word preceding each
-argument list. This is compatible with regular \s-1CC\s0, and a few programs
-may need the argument count word. \s-1GDB\s0 and other source-level debuggers
-do not need it; this info is in the symbol table.
-.Ip "\fB\-mnoargcount\fR" 4
-.IX Item "-mnoargcount"
-Omit the argument count word. This is the default.
-.Ip "\fB\-mvolatile-cache\fR" 4
-.IX Item "-mvolatile-cache"
-Allow volatile references to be cached. This is the default.
-.Ip "\fB\-mvolatile-nocache\fR" 4
-.IX Item "-mvolatile-nocache"
-Volatile references bypass the data cache, going all the way to memory.
-This is only needed for multi-processor code that does not use standard
-synchronization instructions. Making non-volatile references to volatile
-locations will not necessarily work.
-.Ip "\fB\-mlong32\fR" 4
-.IX Item "-mlong32"
-Type long is 32 bits, the same as type int. This is the default.
-.Ip "\fB\-mlong64\fR" 4
-.IX Item "-mlong64"
-Type long is 64 bits, the same as type long long. This option is useless,
-because no library support exists for it.
-.PP
-.I "\s-1AMD29K\s0 Options"
-.IX Subsection "AMD29K Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1AMD\s0 Am29000:
-.Ip "\fB\-mdw\fR" 4
-.IX Item "-mdw"
-Generate code that assumes the \f(CW\*(C`DW\*(C'\fR bit is set, i.e., that byte and
-halfword operations are directly supported by the hardware. This is the
-default.
-.Ip "\fB\-mndw\fR" 4
-.IX Item "-mndw"
-Generate code that assumes the \f(CW\*(C`DW\*(C'\fR bit is not set.
-.Ip "\fB\-mbw\fR" 4
-.IX Item "-mbw"
-Generate code that assumes the system supports byte and halfword write
-operations. This is the default.
-.Ip "\fB\-mnbw\fR" 4
-.IX Item "-mnbw"
-Generate code that assumes the systems does not support byte and
-halfword write operations. \fB\-mnbw\fR implies \fB\-mndw\fR.
-.Ip "\fB\-msmall\fR" 4
-.IX Item "-msmall"
-Use a small memory model that assumes that all function addresses are
-either within a single 256 \s-1KB\s0 segment or at an absolute address of less
-than 256k. This allows the \f(CW\*(C`call\*(C'\fR instruction to be used instead
-of a \f(CW\*(C`const\*(C'\fR, \f(CW\*(C`consth\*(C'\fR, \f(CW\*(C`calli\*(C'\fR sequence.
-.Ip "\fB\-mnormal\fR" 4
-.IX Item "-mnormal"
-Use the normal memory model: Generate \f(CW\*(C`call\*(C'\fR instructions only when
-calling functions in the same file and \f(CW\*(C`calli\*(C'\fR instructions
-otherwise. This works if each file occupies less than 256 \s-1KB\s0 but allows
-the entire executable to be larger than 256 \s-1KB\s0. This is the default.
-.Ip "\fB\-mlarge\fR" 4
-.IX Item "-mlarge"
-Always use \f(CW\*(C`calli\*(C'\fR instructions. Specify this option if you expect
-a single file to compile into more than 256 \s-1KB\s0 of code.
-.Ip "\fB\-m29050\fR" 4
-.IX Item "-m29050"
-Generate code for the Am29050.
-.Ip "\fB\-m29000\fR" 4
-.IX Item "-m29000"
-Generate code for the Am29000. This is the default.
-.Ip "\fB\-mkernel-registers\fR" 4
-.IX Item "-mkernel-registers"
-Generate references to registers \f(CW\*(C`gr64\-gr95\*(C'\fR instead of to
-registers \f(CW\*(C`gr96\-gr127\*(C'\fR. This option can be used when compiling
-kernel code that wants a set of global registers disjoint from that used
-by user-mode code.
-.Sp
-Note that when this option is used, register names in \fB\-f\fR flags
-must use the normal, user-mode, names.
-.Ip "\fB\-muser-registers\fR" 4
-.IX Item "-muser-registers"
-Use the normal set of global registers, \f(CW\*(C`gr96\-gr127\*(C'\fR. This is the
-default.
-.Ip "\fB\-mstack-check\fR" 4
-.IX Item "-mstack-check"
-.PD 0
-.Ip "\fB\-mno-stack-check\fR" 4
-.IX Item "-mno-stack-check"
-.PD
-Insert (or do not insert) a call to \f(CW\*(C`_\|_msp_check\*(C'\fR after each stack
-adjustment. This is often used for kernel code.
-.Ip "\fB\-mstorem-bug\fR" 4
-.IX Item "-mstorem-bug"
-.PD 0
-.Ip "\fB\-mno-storem-bug\fR" 4
-.IX Item "-mno-storem-bug"
-.PD
-\&\fB\-mstorem-bug\fR handles 29k processors which cannot handle the
-separation of a mtsrim insn and a storem instruction (most 29000 chips
-to date, but not the 29050).
-.Ip "\fB\-mno-reuse-arg-regs\fR" 4
-.IX Item "-mno-reuse-arg-regs"
-.PD 0
-.Ip "\fB\-mreuse-arg-regs\fR" 4
-.IX Item "-mreuse-arg-regs"
-.PD
-\&\fB\-mno-reuse-arg-regs\fR tells the compiler to only use incoming argument
-registers for copying out arguments. This helps detect calling a function
-with fewer arguments than it was declared with.
-.Ip "\fB\-mno-impure-text\fR" 4
-.IX Item "-mno-impure-text"
-.PD 0
-.Ip "\fB\-mimpure-text\fR" 4
-.IX Item "-mimpure-text"
-.PD
-\&\fB\-mimpure-text\fR, used in addition to \fB\-shared\fR, tells the compiler to
-not pass \fB\-assert pure-text\fR to the linker when linking a shared object.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Ip "\fB\-mno-multm\fR" 4
-.IX Item "-mno-multm"
-Do not generate multm or multmu instructions. This is useful for some embedded
-systems which do not have trap handlers for these instructions.
-.PP
-.I "\s-1ARM\s0 Options"
-.IX Subsection "ARM Options"
-.PP
-These \fB\-m\fR options are defined for Advanced \s-1RISC\s0 Machines (\s-1ARM\s0)
-architectures:
-.Ip "\fB\-mapcs-frame\fR" 4
-.IX Item "-mapcs-frame"
-Generate a stack frame that is compliant with the \s-1ARM\s0 Procedure Call
-Standard for all functions, even if this is not strictly necessary for
-correct execution of the code. Specifying \fB\-fomit-frame-pointer\fR
-with this option will cause the stack frames not to be generated for
-leaf functions. The default is \fB\-mno-apcs-frame\fR.
-.Ip "\fB\-mapcs\fR" 4
-.IX Item "-mapcs"
-This is a synonym for \fB\-mapcs-frame\fR.
-.Ip "\fB\-mapcs-26\fR" 4
-.IX Item "-mapcs-26"
-Generate code for a processor running with a 26\-bit program counter,
-and conforming to the function calling standards for the \s-1APCS\s0 26\-bit
-option. This option replaces the \fB\-m2\fR and \fB\-m3\fR options
-of previous releases of the compiler.
-.Ip "\fB\-mapcs-32\fR" 4
-.IX Item "-mapcs-32"
-Generate code for a processor running with a 32\-bit program counter,
-and conforming to the function calling standards for the \s-1APCS\s0 32\-bit
-option. This option replaces the \fB\-m6\fR option of previous releases
-of the compiler.
-.Ip "\fB\-mthumb-interwork\fR" 4
-.IX Item "-mthumb-interwork"
-Generate code which supports calling between the \s-1ARM\s0 and Thumb
-instruction sets. Without this option the two instruction sets cannot
-be reliably used inside one program. The default is
-\&\fB\-mno-thumb-interwork\fR, since slightly larger code is generated
-when \fB\-mthumb-interwork\fR is specified.
-.Ip "\fB\-mno-sched-prolog\fR" 4
-.IX Item "-mno-sched-prolog"
-Prevent the reordering of instructions in the function prolog, or the
-merging of those instruction with the instructions in the function's
-body. This means that all functions will start with a recognizable set
-of instructions (or in fact one of a choice from a small set of
-different function prologues), and this information can be used to
-locate the start if functions inside an executable piece of code. The
-default is \fB\-msched-prolog\fR.
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-Generate output containing floating point instructions. This is the
-default.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1ARM\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-\&\fB\-msoft-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC\s0, with \fB\-msoft-float\fR in order for
-this to work.
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a processor running in little-endian mode. This is
-the default for all standard configurations.
-.Ip "\fB\-mbig-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a processor running in big-endian mode; the default is
-to compile code for a little-endian processor.
-.Ip "\fB\-mwords-little-endian\fR" 4
-.IX Item "-mwords-little-endian"
-This option only applies when generating code for big-endian processors.
-Generate code for a little-endian word order but a big-endian byte
-order. That is, a byte order of the form \fB32107654\fR. Note: this
-option should only be used if you require compatibility with code for
-big-endian \s-1ARM\s0 processors generated by versions of the compiler prior to
-2.8.
-.Ip "\fB\-malignment-traps\fR" 4
-.IX Item "-malignment-traps"
-Generate code that will not trap if the \s-1MMU\s0 has alignment traps enabled.
-On \s-1ARM\s0 architectures prior to ARMv4, there were no instructions to
-access half-word objects stored in memory. However, when reading from
-memory a feature of the \s-1ARM\s0 architecture allows a word load to be used,
-even if the address is unaligned, and the processor core will rotate the
-data as it is being loaded. This option tells the compiler that such
-misaligned accesses will cause a \s-1MMU\s0 trap and that it should instead
-synthesise the access as a series of byte accesses. The compiler can
-still use word accesses to load half-word data if it knows that the
-address is aligned to a word boundary.
-.Sp
-This option is ignored when compiling for \s-1ARM\s0 architecture 4 or later,
-since these processors have instructions to directly access half-word
-objects in memory.
-.Ip "\fB\-mno-alignment-traps\fR" 4
-.IX Item "-mno-alignment-traps"
-Generate code that assumes that the \s-1MMU\s0 will not trap unaligned
-accesses. This produces better code when the target instruction set
-does not have half-word memory operations (i.e. implementations prior to
-ARMv4).
-.Sp
-Note that you cannot use this option to access unaligned word objects,
-since the processor will only fetch one 32\-bit aligned object from
-memory.
-.Sp
-The default setting for most targets is \fB\-mno-alignment-traps\fR, since
-this produces better code when there are no half-word memory
-instructions available.
-.Ip "\fB\-mshort-load-bytes\fR" 4
-.IX Item "-mshort-load-bytes"
-.PD 0
-.Ip "\fB\-mno-short-load-words\fR" 4
-.IX Item "-mno-short-load-words"
-.PD
-These are deprecated aliases for \fB\-malignment-traps\fR.
-.Ip "\fB\-mno-short-load-bytes\fR" 4
-.IX Item "-mno-short-load-bytes"
-.PD 0
-.Ip "\fB\-mshort-load-words\fR" 4
-.IX Item "-mshort-load-words"
-.PD
-This are deprecated aliases for \fB\-mno-alignment-traps\fR.
-.Ip "\fB\-mbsd\fR" 4
-.IX Item "-mbsd"
-This option only applies to \s-1RISC\s0 iX. Emulate the native BSD-mode
-compiler. This is the default if \fB\-ansi\fR is not specified.
-.Ip "\fB\-mxopen\fR" 4
-.IX Item "-mxopen"
-This option only applies to \s-1RISC\s0 iX. Emulate the native X/Open-mode
-compiler.
-.Ip "\fB\-mno-symrename\fR" 4
-.IX Item "-mno-symrename"
-This option only applies to \s-1RISC\s0 iX. Do not run the assembler
-post-processor, \fBsymrename\fR, after code has been assembled.
-Normally it is necessary to modify some of the standard symbols in
-preparation for linking with the \s-1RISC\s0 iX C library; this option
-suppresses this pass. The post-processor is never run when the
-compiler is built for cross-compilation.
-.Ip "\fB\-mcpu=\fR\fIname\fR" 4
-.IX Item "-mcpu=name"
-This specifies the name of the target \s-1ARM\s0 processor. \s-1GCC\s0 uses this name
-to determine what kind of instructions it can emit when generating
-assembly code. Permissible names are: \fBarm2\fR, \fBarm250\fR,
-\&\fBarm3\fR, \fBarm6\fR, \fBarm60\fR, \fBarm600\fR, \fBarm610\fR,
-\&\fBarm620\fR, \fBarm7\fR, \fBarm7m\fR, \fBarm7d\fR, \fBarm7dm\fR,
-\&\fBarm7di\fR, \fBarm7dmi\fR, \fBarm70\fR, \fBarm700\fR,
-\&\fBarm700i\fR, \fBarm710\fR, \fBarm710c\fR, \fBarm7100\fR,
-\&\fBarm7500\fR, \fBarm7500fe\fR, \fBarm7tdmi\fR, \fBarm8\fR,
-\&\fBstrongarm\fR, \fBstrongarm110\fR, \fBstrongarm1100\fR,
-\&\fBarm8\fR, \fBarm810\fR, \fBarm9\fR, \fBarm9e\fR, \fBarm920\fR,
-\&\fBarm920t\fR, \fBarm940t\fR, \fBarm9tdmi\fR, \fBarm10tdmi\fR,
-\&\fBarm1020t\fR, \fBxscale\fR.
-.Ip "\fB\-mtune=\fR\fIname\fR" 4
-.IX Item "-mtune=name"
-This option is very similar to the \fB\-mcpu=\fR option, except that
-instead of specifying the actual target processor type, and hence
-restricting which instructions can be used, it specifies that \s-1GCC\s0 should
-tune the performance of the code as if the target were of the type
-specified in this option, but still choosing the instructions that it
-will generate based on the cpu specified by a \fB\-mcpu=\fR option.
-For some \s-1ARM\s0 implementations better performance can be obtained by using
-this option.
-.Ip "\fB\-march=\fR\fIname\fR" 4
-.IX Item "-march=name"
-This specifies the name of the target \s-1ARM\s0 architecture. \s-1GCC\s0 uses this
-name to determine what kind of instructions it can emit when generating
-assembly code. This option can be used in conjunction with or instead
-of the \fB\-mcpu=\fR option. Permissible names are: \fBarmv2\fR,
-\&\fBarmv2a\fR, \fBarmv3\fR, \fBarmv3m\fR, \fBarmv4\fR, \fBarmv4t\fR,
-\&\fBarmv5\fR, \fBarmv5t\fR, \fBarmv5te\fR.
-.Ip "\fB\-mfpe=\fR\fInumber\fR" 4
-.IX Item "-mfpe=number"
-.PD 0
-.Ip "\fB\-mfp=\fR\fInumber\fR" 4
-.IX Item "-mfp=number"
-.PD
-This specifies the version of the floating point emulation available on
-the target. Permissible values are 2 and 3. \fB\-mfp=\fR is a synonym
-for \fB\-mfpe=\fR, for compatibility with older versions of \s-1GCC\s0.
-.Ip "\fB\-mstructure-size-boundary=\fR\fIn\fR" 4
-.IX Item "-mstructure-size-boundary=n"
-The size of all structures and unions will be rounded up to a multiple
-of the number of bits set by this option. Permissible values are 8 and
-32. The default value varies for different toolchains. For the \s-1COFF\s0
-targeted toolchain the default value is 8. Specifying the larger number
-can produce faster, more efficient code, but can also increase the size
-of the program. The two values are potentially incompatible. Code
-compiled with one value cannot necessarily expect to work with code or
-libraries compiled with the other value, if they exchange information
-using structures or unions.
-.Ip "\fB\-mabort-on-noreturn\fR" 4
-.IX Item "-mabort-on-noreturn"
-Generate a call to the function \f(CW\*(C`abort\*(C'\fR at the end of a
-\&\f(CW\*(C`noreturn\*(C'\fR function. It will be executed if the function tries to
-return.
-.Ip "\fB\-mlong-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.Ip "\fB\-mno-long-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Tells the compiler to perform function calls by first loading the
-address of the function into a register and then performing a subroutine
-call on this register. This switch is needed if the target function
-will lie outside of the 64 megabyte addressing range of the offset based
-version of subroutine call instruction.
-.Sp
-Even if this switch is enabled, not all function calls will be turned
-into long calls. The heuristic is that static functions, functions
-which have the \fBshort-call\fR attribute, functions that are inside
-the scope of a \fB#pragma no_long_calls\fR directive and functions whose
-definitions have already been compiled within the current compilation
-unit, will not be turned into long calls. The exception to this rule is
-that weak function definitions, functions with the \fBlong-call\fR
-attribute or the \fBsection\fR attribute, and functions that are within
-the scope of a \fB#pragma long_calls\fR directive, will always be
-turned into long calls.
-.Sp
-This feature is not enabled by default. Specifying
-\&\fB\-mno-long-calls\fR will restore the default behavior, as will
-placing the function calls within the scope of a \fB#pragma
-long_calls_off\fR directive. Note these switches have no effect on how
-the compiler generates code to handle function calls via function
-pointers.
-.Ip "\fB\-mnop-fun-dllimport\fR" 4
-.IX Item "-mnop-fun-dllimport"
-Disable support for the \f(CW\*(C`dllimport\*(C'\fR attribute.
-.Ip "\fB\-msingle-pic-base\fR" 4
-.IX Item "-msingle-pic-base"
-Treat the register used for \s-1PIC\s0 addressing as read-only, rather than
-loading it in the prologue for each function. The run-time system is
-responsible for initializing this register with an appropriate value
-before execution begins.
-.Ip "\fB\-mpic-register=\fR\fIreg\fR" 4
-.IX Item "-mpic-register=reg"
-Specify the register to be used for \s-1PIC\s0 addressing. The default is R10
-unless stack-checking is enabled, when R9 is used.
-.Ip "\fB\-mpoke-function-name\fR" 4
-.IX Item "-mpoke-function-name"
-Write the name of each function into the text section, directly
-preceding the function prologue. The generated code is similar to this:
-.Sp
-.Vb 9
-\& t0
-\& .ascii "arm_poke_function_name", 0
-\& .align
-\& t1
-\& .word 0xff000000 + (t1 - t0)
-\& arm_poke_function_name
-\& mov ip, sp
-\& stmfd sp!, {fp, ip, lr, pc}
-\& sub fp, ip, #4
-.Ve
-When performing a stack backtrace, code can inspect the value of
-\&\f(CW\*(C`pc\*(C'\fR stored at \f(CW\*(C`fp + 0\*(C'\fR. If the trace function then looks at
-location \f(CW\*(C`pc \- 12\*(C'\fR and the top 8 bits are set, then we know that
-there is a function name embedded immediately preceding this location
-and has length \f(CW\*(C`((pc[\-3]) & 0xff000000)\*(C'\fR.
-.Ip "\fB\-mthumb\fR" 4
-.IX Item "-mthumb"
-Generate code for the 16\-bit Thumb instruction set. The default is to
-use the 32\-bit \s-1ARM\s0 instruction set.
-.Ip "\fB\-mtpcs-frame\fR" 4
-.IX Item "-mtpcs-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all non-leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno-tpcs-frame\fR.
-.Ip "\fB\-mtpcs-leaf-frame\fR" 4
-.IX Item "-mtpcs-leaf-frame"
-Generate a stack frame that is compliant with the Thumb Procedure Call
-Standard for all leaf functions. (A leaf function is one that does
-not call any other functions.) The default is \fB\-mno-apcs-leaf-frame\fR.
-.Ip "\fB\-mcallee-super-interworking\fR" 4
-.IX Item "-mcallee-super-interworking"
-Gives all externally visible functions in the file being compiled an \s-1ARM\s0
-instruction set header which switches to Thumb mode before executing the
-rest of the function. This allows these functions to be called from
-non-interworking code.
-.Ip "\fB\-mcaller-super-interworking\fR" 4
-.IX Item "-mcaller-super-interworking"
-Allows calls via function pointers (including virtual functions) to
-execute correctly regardless of whether the target code has been
-compiled for interworking or not. There is a small overhead in the cost
-of executing a function pointer if this option is enabled.
-.PP
-.I "\s-1MN10200\s0 Options"
-.IX Subsection "MN10200 Options"
-.PP
-These \fB\-m\fR options are defined for Matsushita \s-1MN10200\s0 architectures:
-.Ip "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-.Sp
-This option makes symbolic debugging impossible.
-.PP
-.I "\s-1MN10300\s0 Options"
-.IX Subsection "MN10300 Options"
-.PP
-These \fB\-m\fR options are defined for Matsushita \s-1MN10300\s0 architectures:
-.Ip "\fB\-mmult-bug\fR" 4
-.IX Item "-mmult-bug"
-Generate code to avoid bugs in the multiply instructions for the \s-1MN10300\s0
-processors. This is the default.
-.Ip "\fB\-mno-mult-bug\fR" 4
-.IX Item "-mno-mult-bug"
-Do not generate code to avoid bugs in the multiply instructions for the
-\&\s-1MN10300\s0 processors.
-.Ip "\fB\-mam33\fR" 4
-.IX Item "-mam33"
-Generate code which uses features specific to the \s-1AM33\s0 processor.
-.Ip "\fB\-mno-am33\fR" 4
-.IX Item "-mno-am33"
-Do not generate code which uses features specific to the \s-1AM33\s0 processor. This
-is the default.
-.Ip "\fB\-mno-crt0\fR" 4
-.IX Item "-mno-crt0"
-Do not link in the C run-time initialization object file.
-.Ip "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Indicate to the linker that it should perform a relaxation optimization pass
-to shorten branches, calls and absolute memory addresses. This option only
-has an effect when used on the command line for the final link step.
-.Sp
-This option makes symbolic debugging impossible.
-.PP
-.I "M32R/D Options"
-.IX Subsection "M32R/D Options"
-.PP
-These \fB\-m\fR options are defined for Mitsubishi M32R/D architectures:
-.Ip "\fB\-m32rx\fR" 4
-.IX Item "-m32rx"
-Generate code for the M32R/X.
-.Ip "\fB\-m32r\fR" 4
-.IX Item "-m32r"
-Generate code for the M32R. This is the default.
-.Ip "\fB\-mcode-model=small\fR" 4
-.IX Item "-mcode-model=small"
-Assume all objects live in the lower 16MB of memory (so that their addresses
-can be loaded with the \f(CW\*(C`ld24\*(C'\fR instruction), and assume all subroutines
-are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-This is the default.
-.Sp
-The addressability of a particular object can be set with the
-\&\f(CW\*(C`model\*(C'\fR attribute.
-.Ip "\fB\-mcode-model=medium\fR" 4
-.IX Item "-mcode-model=medium"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-will generate \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume all subroutines are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
-.Ip "\fB\-mcode-model=large\fR" 4
-.IX Item "-mcode-model=large"
-Assume objects may be anywhere in the 32\-bit address space (the compiler
-will generate \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
-assume subroutines may not be reachable with the \f(CW\*(C`bl\*(C'\fR instruction
-(the compiler will generate the much slower \f(CW\*(C`seth/add3/jl\*(C'\fR
-instruction sequence).
-.Ip "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-Disable use of the small data area. Variables will be put into
-one of \fB.data\fR, \fBbss\fR, or \fB.rodata\fR (unless the
-\&\f(CW\*(C`section\*(C'\fR attribute has been specified).
-This is the default.
-.Sp
-The small data area consists of sections \fB.sdata\fR and \fB.sbss\fR.
-Objects may be explicitly put in the small data area with the
-\&\f(CW\*(C`section\*(C'\fR attribute using one of these sections.
-.Ip "\fB\-msdata=sdata\fR" 4
-.IX Item "-msdata=sdata"
-Put small global and static data in the small data area, but do not
-generate special code to reference them.
-.Ip "\fB\-msdata=use\fR" 4
-.IX Item "-msdata=use"
-Put small global and static data in the small data area, and generate
-special instructions to reference them.
-.Ip "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static objects less than or equal to \fInum\fR bytes
-into the small data or bss sections instead of the normal data or bss
-sections. The default value of \fInum\fR is 8.
-The \fB\-msdata\fR option must be set to one of \fBsdata\fR or \fBuse\fR
-for this option to have any effect.
-.Sp
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-Compiling with different values of \fInum\fR may or may not work; if it
-doesn't the linker will give an error message\-\-\-incorrect code will not be
-generated.
-.PP
-.I "M88K Options"
-.IX Subsection "M88K Options"
-.PP
-These \fB\-m\fR options are defined for Motorola 88k architectures:
-.Ip "\fB\-m88000\fR" 4
-.IX Item "-m88000"
-Generate code that works well on both the m88100 and the
-m88110.
-.Ip "\fB\-m88100\fR" 4
-.IX Item "-m88100"
-Generate code that works best for the m88100, but that also
-runs on the m88110.
-.Ip "\fB\-m88110\fR" 4
-.IX Item "-m88110"
-Generate code that works best for the m88110, and may not run
-on the m88100.
-.Ip "\fB\-mbig-pic\fR" 4
-.IX Item "-mbig-pic"
-Obsolete option to be removed from the next revision.
-Use \fB\-fPIC\fR.
-.Ip "\fB\-midentify-revision\fR" 4
-.IX Item "-midentify-revision"
-Include an \f(CW\*(C`ident\*(C'\fR directive in the assembler output recording the
-source file name, compiler name and version, timestamp, and compilation
-flags used.
-.Ip "\fB\-mno-underscores\fR" 4
-.IX Item "-mno-underscores"
-In assembler output, emit symbol names without adding an underscore
-character at the beginning of each name. The default is to use an
-underscore as prefix on each name.
-.Ip "\fB\-mocs-debug-info\fR" 4
-.IX Item "-mocs-debug-info"
-.PD 0
-.Ip "\fB\-mno-ocs-debug-info\fR" 4
-.IX Item "-mno-ocs-debug-info"
-.PD
-Include (or omit) additional debugging information (about registers used
-in each stack frame) as specified in the 88open Object Compatibility
-Standard, ``\s-1OCS\s0''. This extra information allows debugging of code that
-has had the frame pointer eliminated. The default for \s-1DG/UX\s0, SVr4, and
-Delta 88 SVr3.2 is to include this information; other 88k configurations
-omit this information by default.
-.Ip "\fB\-mocs-frame-position\fR" 4
-.IX Item "-mocs-frame-position"
-When emitting \s-1COFF\s0 debugging information for automatic variables and
-parameters stored on the stack, use the offset from the canonical frame
-address, which is the stack pointer (register 31) on entry to the
-function. The \s-1DG/UX\s0, SVr4, Delta88 SVr3.2, and \s-1BCS\s0 configurations use
-\&\fB\-mocs-frame-position\fR; other 88k configurations have the default
-\&\fB\-mno-ocs-frame-position\fR.
-.Ip "\fB\-mno-ocs-frame-position\fR" 4
-.IX Item "-mno-ocs-frame-position"
-When emitting \s-1COFF\s0 debugging information for automatic variables and
-parameters stored on the stack, use the offset from the frame pointer
-register (register 30). When this option is in effect, the frame
-pointer is not eliminated when debugging information is selected by the
-\&\-g switch.
-.Ip "\fB\-moptimize-arg-area\fR" 4
-.IX Item "-moptimize-arg-area"
-Save space by reorganizing the stack frame. This option generates code
-that does not agree with the 88open specifications, but uses less
-memory.
-.Ip "\fB\-mno-optimize-arg-area\fR" 4
-.IX Item "-mno-optimize-arg-area"
-Do not reorganize the stack frame to save space. This is the default.
-The generated conforms to the specification, but uses more memory.
-.Ip "\fB\-mshort-data-\fR\fInum\fR" 4
-.IX Item "-mshort-data-num"
-Generate smaller data references by making them relative to \f(CW\*(C`r0\*(C'\fR,
-which allows loading a value using a single instruction (rather than the
-usual two). You control which data references are affected by
-specifying \fInum\fR with this option. For example, if you specify
-\&\fB\-mshort-data-512\fR, then the data references affected are those
-involving displacements of less than 512 bytes.
-\&\fB\-mshort-data-\fR\fInum\fR is not effective for \fInum\fR greater
-than 64k.
-.Ip "\fB\-mserialize-volatile\fR" 4
-.IX Item "-mserialize-volatile"
-.PD 0
-.Ip "\fB\-mno-serialize-volatile\fR" 4
-.IX Item "-mno-serialize-volatile"
-.PD
-Do, or don't, generate code to guarantee sequential consistency
-of volatile memory references. By default, consistency is
-guaranteed.
-.Sp
-The order of memory references made by the \s-1MC88110\s0 processor does
-not always match the order of the instructions requesting those
-references. In particular, a load instruction may execute before
-a preceding store instruction. Such reordering violates
-sequential consistency of volatile memory references, when there
-are multiple processors. When consistency must be guaranteed,
-\&\s-1GCC\s0 generates special instructions, as needed, to force
-execution in the proper order.
-.Sp
-The \s-1MC88100\s0 processor does not reorder memory references and so
-always provides sequential consistency. However, by default, \s-1GCC\s0
-generates the special instructions to guarantee consistency
-even when you use \fB\-m88100\fR, so that the code may be run on an
-\&\s-1MC88110\s0 processor. If you intend to run your code only on the
-\&\s-1MC88100\s0 processor, you may use \fB\-mno-serialize-volatile\fR.
-.Sp
-The extra code generated to guarantee consistency may affect the
-performance of your application. If you know that you can safely
-forgo this guarantee, you may use \fB\-mno-serialize-volatile\fR.
-.Ip "\fB\-msvr4\fR" 4
-.IX Item "-msvr4"
-.PD 0
-.Ip "\fB\-msvr3\fR" 4
-.IX Item "-msvr3"
-.PD
-Turn on (\fB\-msvr4\fR) or off (\fB\-msvr3\fR) compiler extensions
-related to System V release 4 (SVr4). This controls the following:
-.RS 4
-.Ip "1." 4
-Which variant of the assembler syntax to emit.
-.Ip "2." 4
-\&\fB\-msvr4\fR makes the C preprocessor recognize \fB#pragma weak\fR
-that is used on System V release 4.
-.Ip "3." 4
-\&\fB\-msvr4\fR makes \s-1GCC\s0 issue additional declaration directives used in
-SVr4.
-.RE
-.RS 4
-.Sp
-\&\fB\-msvr4\fR is the default for the m88k-motorola-sysv4 and
-m88k-dg-dgux m88k configurations. \fB\-msvr3\fR is the default for all
-other m88k configurations.
-.RE
-.Ip "\fB\-mversion-03.00\fR" 4
-.IX Item "-mversion-03.00"
-This option is obsolete, and is ignored.
-.Ip "\fB\-mno-check-zero-division\fR" 4
-.IX Item "-mno-check-zero-division"
-.PD 0
-.Ip "\fB\-mcheck-zero-division\fR" 4
-.IX Item "-mcheck-zero-division"
-.PD
-Do, or don't, generate code to guarantee that integer division by
-zero will be detected. By default, detection is guaranteed.
-.Sp
-Some models of the \s-1MC88100\s0 processor fail to trap upon integer
-division by zero under certain conditions. By default, when
-compiling code that might be run on such a processor, \s-1GCC\s0
-generates code that explicitly checks for zero-valued divisors
-and traps with exception number 503 when one is detected. Use of
-\&\fB\-mno-check-zero-division\fR suppresses such checking for code
-generated to run on an \s-1MC88100\s0 processor.
-.Sp
-\&\s-1GCC\s0 assumes that the \s-1MC88110\s0 processor correctly detects all instances
-of integer division by zero. When \fB\-m88110\fR is specified, no
-explicit checks for zero-valued divisors are generated, and both
-\&\fB\-mcheck-zero-division\fR and \fB\-mno-check-zero-division\fR are
-ignored.
-.Ip "\fB\-muse-div-instruction\fR" 4
-.IX Item "-muse-div-instruction"
-Use the div instruction for signed integer division on the
-\&\s-1MC88100\s0 processor. By default, the div instruction is not used.
-.Sp
-On the \s-1MC88100\s0 processor the signed integer division instruction
-div) traps to the operating system on a negative operand. The
-operating system transparently completes the operation, but at a
-large cost in execution time. By default, when compiling code
-that might be run on an \s-1MC88100\s0 processor, \s-1GCC\s0 emulates signed
-integer division using the unsigned integer division instruction
-divu), thereby avoiding the large penalty of a trap to the
-operating system. Such emulation has its own, smaller, execution
-cost in both time and space. To the extent that your code's
-important signed integer division operations are performed on two
-nonnegative operands, it may be desirable to use the div
-instruction directly.
-.Sp
-On the \s-1MC88110\s0 processor the div instruction (also known as the
-divs instruction) processes negative operands without trapping to
-the operating system. When \fB\-m88110\fR is specified,
-\&\fB\-muse-div-instruction\fR is ignored, and the div instruction is used
-for signed integer division.
-.Sp
-Note that the result of dividing \f(CW\*(C`INT_MIN\*(C'\fR by \-1 is undefined. In
-particular, the behavior of such a division with and without
-\&\fB\-muse-div-instruction\fR may differ.
-.Ip "\fB\-mtrap-large-shift\fR" 4
-.IX Item "-mtrap-large-shift"
-.PD 0
-.Ip "\fB\-mhandle-large-shift\fR" 4
-.IX Item "-mhandle-large-shift"
-.PD
-Include code to detect bit-shifts of more than 31 bits; respectively,
-trap such shifts or emit code to handle them properly. By default \s-1GCC\s0
-makes no special provision for large bit shifts.
-.Ip "\fB\-mwarn-passed-structs\fR" 4
-.IX Item "-mwarn-passed-structs"
-Warn when a function passes a struct as an argument or result.
-Structure-passing conventions have changed during the evolution of the C
-language, and are often the source of portability problems. By default,
-\&\s-1GCC\s0 issues no such warning.
-.PP
-.I "\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options"
-.IX Subsection "IBM RS/6000 and PowerPC Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC:
-.Ip "\fB\-mpower\fR" 4
-.IX Item "-mpower"
-.PD 0
-.Ip "\fB\-mno-power\fR" 4
-.IX Item "-mno-power"
-.Ip "\fB\-mpower2\fR" 4
-.IX Item "-mpower2"
-.Ip "\fB\-mno-power2\fR" 4
-.IX Item "-mno-power2"
-.Ip "\fB\-mpowerpc\fR" 4
-.IX Item "-mpowerpc"
-.Ip "\fB\-mno-powerpc\fR" 4
-.IX Item "-mno-powerpc"
-.Ip "\fB\-mpowerpc-gpopt\fR" 4
-.IX Item "-mpowerpc-gpopt"
-.Ip "\fB\-mno-powerpc-gpopt\fR" 4
-.IX Item "-mno-powerpc-gpopt"
-.Ip "\fB\-mpowerpc-gfxopt\fR" 4
-.IX Item "-mpowerpc-gfxopt"
-.Ip "\fB\-mno-powerpc-gfxopt\fR" 4
-.IX Item "-mno-powerpc-gfxopt"
-.Ip "\fB\-mpowerpc64\fR" 4
-.IX Item "-mpowerpc64"
-.Ip "\fB\-mno-powerpc64\fR" 4
-.IX Item "-mno-powerpc64"
-.PD
-\&\s-1GCC\s0 supports two related instruction set architectures for the
-\&\s-1RS/6000\s0 and PowerPC. The \fI\s-1POWER\s0\fR instruction set are those
-instructions supported by the \fBrios\fR chip set used in the original
-\&\s-1RS/6000\s0 systems and the \fIPowerPC\fR instruction set is the
-architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
-the \s-1IBM\s0 4xx microprocessors.
-.Sp
-Neither architecture is a subset of the other. However there is a
-large common subset of instructions supported by both. An \s-1MQ\s0
-register is included in processors supporting the \s-1POWER\s0 architecture.
-.Sp
-You use these options to specify which instructions are available on the
-processor you are using. The default value of these options is
-determined when configuring \s-1GCC\s0. Specifying the
-\&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these
-options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option
-rather than the options listed above.
-.Sp
-The \fB\-mpower\fR option allows \s-1GCC\s0 to generate instructions that
-are found only in the \s-1POWER\s0 architecture and to use the \s-1MQ\s0 register.
-Specifying \fB\-mpower2\fR implies \fB\-power\fR and also allows \s-1GCC\s0
-to generate instructions that are present in the \s-1POWER2\s0 architecture but
-not the original \s-1POWER\s0 architecture.
-.Sp
-The \fB\-mpowerpc\fR option allows \s-1GCC\s0 to generate instructions that
-are found only in the 32\-bit subset of the PowerPC architecture.
-Specifying \fB\-mpowerpc-gpopt\fR implies \fB\-mpowerpc\fR and also allows
-\&\s-1GCC\s0 to use the optional PowerPC architecture instructions in the
-General Purpose group, including floating-point square root. Specifying
-\&\fB\-mpowerpc-gfxopt\fR implies \fB\-mpowerpc\fR and also allows \s-1GCC\s0 to
-use the optional PowerPC architecture instructions in the Graphics
-group, including floating-point select.
-.Sp
-The \fB\-mpowerpc64\fR option allows \s-1GCC\s0 to generate the additional
-64\-bit instructions that are found in the full PowerPC64 architecture
-and to treat GPRs as 64\-bit, doubleword quantities. \s-1GCC\s0 defaults to
-\&\fB\-mno-powerpc64\fR.
-.Sp
-If you specify both \fB\-mno-power\fR and \fB\-mno-powerpc\fR, \s-1GCC\s0
-will use only the instructions in the common subset of both
-architectures plus some special \s-1AIX\s0 common-mode calls, and will not use
-the \s-1MQ\s0 register. Specifying both \fB\-mpower\fR and \fB\-mpowerpc\fR
-permits \s-1GCC\s0 to use any instruction from either architecture and to
-allow use of the \s-1MQ\s0 register; specify this for the Motorola \s-1MPC601\s0.
-.Ip "\fB\-mnew-mnemonics\fR" 4
-.IX Item "-mnew-mnemonics"
-.PD 0
-.Ip "\fB\-mold-mnemonics\fR" 4
-.IX Item "-mold-mnemonics"
-.PD
-Select which mnemonics to use in the generated assembler code. With
-\&\fB\-mnew-mnemonics\fR, \s-1GCC\s0 uses the assembler mnemonics defined for
-the PowerPC architecture. With \fB\-mold-mnemonics\fR it uses the
-assembler mnemonics defined for the \s-1POWER\s0 architecture. Instructions
-defined in only one architecture have only one mnemonic; \s-1GCC\s0 uses that
-mnemonic irrespective of which of these options is specified.
-.Sp
-\&\s-1GCC\s0 defaults to the mnemonics appropriate for the architecture in
-use. Specifying \fB\-mcpu=\fR\fIcpu_type\fR sometimes overrides the
-value of these option. Unless you are building a cross-compiler, you
-should normally not specify either \fB\-mnew-mnemonics\fR or
-\&\fB\-mold-mnemonics\fR, but should instead accept the default.
-.Ip "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set architecture type, register usage, choice of mnemonics, and
-instruction scheduling parameters for machine type \fIcpu_type\fR.
-Supported values for \fIcpu_type\fR are \fBrios\fR, \fBrios1\fR,
-\&\fBrsc\fR, \fBrios2\fR, \fBrs64a\fR, \fB601\fR, \fB602\fR,
-\&\fB603\fR, \fB603e\fR, \fB604\fR, \fB604e\fR, \fB620\fR,
-\&\fB630\fR, \fB740\fR, \fB7400\fR, \fB7450\fR, \fB750\fR,
-\&\fBpower\fR, \fBpower2\fR, \fBpowerpc\fR, \fB403\fR, \fB505\fR,
-\&\fB801\fR, \fB821\fR, \fB823\fR, and \fB860\fR and \fBcommon\fR.
-.Sp
-\&\fB\-mcpu=common\fR selects a completely generic processor. Code
-generated under this option will run on any \s-1POWER\s0 or PowerPC processor.
-\&\s-1GCC\s0 will use only the instructions in the common subset of both
-architectures, and will not use the \s-1MQ\s0 register. \s-1GCC\s0 assumes a generic
-processor model for scheduling purposes.
-.Sp
-\&\fB\-mcpu=power\fR, \fB\-mcpu=power2\fR, \fB\-mcpu=powerpc\fR, and
-\&\fB\-mcpu=powerpc64\fR specify generic \s-1POWER\s0, \s-1POWER2\s0, pure 32\-bit
-PowerPC (i.e., not \s-1MPC601\s0), and 64\-bit PowerPC architecture machine
-types, with an appropriate, generic processor model assumed for
-scheduling purposes.
-.Sp
-The other options specify a specific processor. Code generated under
-those options will run best on that processor, and may not run at all on
-others.
-.Sp
-The \fB\-mcpu\fR options automatically enable or disable other
-\&\fB\-m\fR options as follows:
-.RS 4
-.Ip "\fBcommon\fR" 4
-.IX Item "common"
-\&\fB\-mno-power\fR, \fB\-mno-powerc\fR
-.Ip "\fBpower\fR" 4
-.IX Item "power"
-.PD 0
-.Ip "\fBpower2\fR" 4
-.IX Item "power2"
-.Ip "\fBrios1\fR" 4
-.IX Item "rios1"
-.Ip "\fBrios2\fR" 4
-.IX Item "rios2"
-.Ip "\fBrsc\fR" 4
-.IX Item "rsc"
-.PD
-\&\fB\-mpower\fR, \fB\-mno-powerpc\fR, \fB\-mno-new-mnemonics\fR
-.Ip "\fBpowerpc\fR" 4
-.IX Item "powerpc"
-.PD 0
-.Ip "\fBrs64a\fR" 4
-.IX Item "rs64a"
-.Ip "\fB602\fR" 4
-.IX Item "602"
-.Ip "\fB603\fR" 4
-.IX Item "603"
-.Ip "\fB603e\fR" 4
-.IX Item "603e"
-.Ip "\fB604\fR" 4
-.IX Item "604"
-.Ip "\fB620\fR" 4
-.IX Item "620"
-.Ip "\fB630\fR" 4
-.IX Item "630"
-.Ip "\fB740\fR" 4
-.IX Item "740"
-.Ip "\fB7400\fR" 4
-.IX Item "7400"
-.Ip "\fB7450\fR" 4
-.IX Item "7450"
-.Ip "\fB750\fR" 4
-.IX Item "750"
-.Ip "\fB505\fR" 4
-.IX Item "505"
-.PD
-\&\fB\-mno-power\fR, \fB\-mpowerpc\fR, \fB\-mnew-mnemonics\fR
-.Ip "\fB601\fR" 4
-.IX Item "601"
-\&\fB\-mpower\fR, \fB\-mpowerpc\fR, \fB\-mnew-mnemonics\fR
-.Ip "\fB403\fR" 4
-.IX Item "403"
-.PD 0
-.Ip "\fB821\fR" 4
-.IX Item "821"
-.Ip "\fB860\fR" 4
-.IX Item "860"
-.PD
-\&\fB\-mno-power\fR, \fB\-mpowerpc\fR, \fB\-mnew-mnemonics\fR, \fB\-msoft-float\fR
-.RE
-.RS 4
-.RE
-.Ip "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR, but do not set the architecture type, register usage, or
-choice of mnemonics, as \fB\-mcpu=\fR\fIcpu_type\fR would. The same
-values for \fIcpu_type\fR are used for \fB\-mtune\fR as for
-\&\fB\-mcpu\fR. If both are specified, the code generated will use the
-architecture, registers, and mnemonics set by \fB\-mcpu\fR, but the
-scheduling parameters set by \fB\-mtune\fR.
-.Ip "\fB\-maltivec\fR" 4
-.IX Item "-maltivec"
-.PD 0
-.Ip "\fB\-mno-altivec\fR" 4
-.IX Item "-mno-altivec"
-.PD
-These switches enable or disable the use of built-in functions that
-allow access to the AltiVec instruction set. You may also need to set
-\&\fB\-mabi=altivec\fR to adjust the current \s-1ABI\s0 with AltiVec \s-1ABI\s0
-enhancements.
-.Ip "\fB\-mfull-toc\fR" 4
-.IX Item "-mfull-toc"
-.PD 0
-.Ip "\fB\-mno-fp-in-toc\fR" 4
-.IX Item "-mno-fp-in-toc"
-.Ip "\fB\-mno-sum-in-toc\fR" 4
-.IX Item "-mno-sum-in-toc"
-.Ip "\fB\-mminimal-toc\fR" 4
-.IX Item "-mminimal-toc"
-.PD
-Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for
-every executable file. The \fB\-mfull-toc\fR option is selected by
-default. In that case, \s-1GCC\s0 will allocate at least one \s-1TOC\s0 entry for
-each unique non-automatic variable reference in your program. \s-1GCC\s0
-will also place floating-point constants in the \s-1TOC\s0. However, only
-16,384 entries are available in the \s-1TOC\s0.
-.Sp
-If you receive a linker error message that saying you have overflowed
-the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used
-with the \fB\-mno-fp-in-toc\fR and \fB\-mno-sum-in-toc\fR options.
-\&\fB\-mno-fp-in-toc\fR prevents \s-1GCC\s0 from putting floating-point
-constants in the \s-1TOC\s0 and \fB\-mno-sum-in-toc\fR forces \s-1GCC\s0 to
-generate code to calculate the sum of an address and a constant at
-run-time instead of putting that sum into the \s-1TOC\s0. You may specify one
-or both of these options. Each causes \s-1GCC\s0 to produce very slightly
-slower and larger code at the expense of conserving \s-1TOC\s0 space.
-.Sp
-If you still run out of space in the \s-1TOC\s0 even when you specify both of
-these options, specify \fB\-mminimal-toc\fR instead. This option causes
-\&\s-1GCC\s0 to make only one \s-1TOC\s0 entry for every file. When you specify this
-option, \s-1GCC\s0 will produce code that is slower and larger but which
-uses extremely little \s-1TOC\s0 space. You may wish to use this option
-only on files that contain less frequently executed code.
-.Ip "\fB\-maix64\fR" 4
-.IX Item "-maix64"
-.PD 0
-.Ip "\fB\-maix32\fR" 4
-.IX Item "-maix32"
-.PD
-Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit
-\&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them.
-Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR and
-\&\fB\-mpowerpc\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and
-implies \fB\-mno-powerpc64\fR. \s-1GCC\s0 defaults to \fB\-maix32\fR.
-.Ip "\fB\-mxl-call\fR" 4
-.IX Item "-mxl-call"
-.PD 0
-.Ip "\fB\-mno-xl-call\fR" 4
-.IX Item "-mno-xl-call"
-.PD
-On \s-1AIX\s0, pass floating-point arguments to prototyped functions beyond the
-register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. The
-\&\s-1AIX\s0 calling convention was extended but not initially documented to
-handle an obscure K&R C case of calling a function that takes the
-address of its arguments with fewer arguments than declared. \s-1AIX\s0 \s-1XL\s0
-compilers access floating point arguments which do not fit in the
-\&\s-1RSA\s0 from the stack when a subroutine is compiled without
-optimization. Because always storing floating-point arguments on the
-stack is inefficient and rarely needed, this option is not enabled by
-default and only is necessary when calling subroutines compiled by \s-1AIX\s0
-\&\s-1XL\s0 compilers without optimization.
-.Ip "\fB\-mpe\fR" 4
-.IX Item "-mpe"
-Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an
-application written to use message passing with special startup code to
-enable the application to run. The system must have \s-1PE\s0 installed in the
-standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file
-must be overridden with the \fB\-specs=\fR option to specify the
-appropriate directory location. The Parallel Environment does not
-support threads, so the \fB\-mpe\fR option and the \fB\-pthread\fR
-option are incompatible.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD 0
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-.PD
-Generate code that does not use (uses) the floating-point register set.
-Software floating point emulation is provided if you use the
-\&\fB\-msoft-float\fR option, and pass the option to \s-1GCC\s0 when linking.
-.Ip "\fB\-mmultiple\fR" 4
-.IX Item "-mmultiple"
-.PD 0
-.Ip "\fB\-mno-multiple\fR" 4
-.IX Item "-mno-multiple"
-.PD
-Generate code that uses (does not use) the load multiple word
-instructions and the store multiple word instructions. These
-instructions are generated by default on \s-1POWER\s0 systems, and not
-generated on PowerPC systems. Do not use \fB\-mmultiple\fR on little
-endian PowerPC systems, since those instructions do not work when the
-processor is in little endian mode. The exceptions are \s-1PPC740\s0 and
-\&\s-1PPC750\s0 which permit the instructions usage in little endian mode.
-.Ip "\fB\-mstring\fR" 4
-.IX Item "-mstring"
-.PD 0
-.Ip "\fB\-mno-string\fR" 4
-.IX Item "-mno-string"
-.PD
-Generate code that uses (does not use) the load string instructions
-and the store string word instructions to save multiple registers and
-do small block moves. These instructions are generated by default on
-\&\s-1POWER\s0 systems, and not generated on PowerPC systems. Do not use
-\&\fB\-mstring\fR on little endian PowerPC systems, since those
-instructions do not work when the processor is in little endian mode.
-The exceptions are \s-1PPC740\s0 and \s-1PPC750\s0 which permit the instructions
-usage in little endian mode.
-.Ip "\fB\-mupdate\fR" 4
-.IX Item "-mupdate"
-.PD 0
-.Ip "\fB\-mno-update\fR" 4
-.IX Item "-mno-update"
-.PD
-Generate code that uses (does not use) the load or store instructions
-that update the base register to the address of the calculated memory
-location. These instructions are generated by default. If you use
-\&\fB\-mno-update\fR, there is a small window between the time that the
-stack pointer is updated and the address of the previous frame is
-stored, which means code that walks the stack frame across interrupts or
-signals may get corrupted data.
-.Ip "\fB\-mfused-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.Ip "\fB\-mno-fused-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating point multiply and
-accumulate instructions. These instructions are generated by default if
-hardware floating is used.
-.Ip "\fB\-mno-bit-align\fR" 4
-.IX Item "-mno-bit-align"
-.PD 0
-.Ip "\fB\-mbit-align\fR" 4
-.IX Item "-mbit-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) force structures
-and unions that contain bit-fields to be aligned to the base type of the
-bit-field.
-.Sp
-For example, by default a structure containing nothing but 8
-\&\f(CW\*(C`unsigned\*(C'\fR bit-fields of length 1 would be aligned to a 4 byte
-boundary and have a size of 4 bytes. By using \fB\-mno-bit-align\fR,
-the structure would be aligned to a 1 byte boundary and be one byte in
-size.
-.Ip "\fB\-mno-strict-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD 0
-.Ip "\fB\-mstrict-align\fR" 4
-.IX Item "-mstrict-align"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-unaligned memory references will be handled by the system.
-.Ip "\fB\-mrelocatable\fR" 4
-.IX Item "-mrelocatable"
-.PD 0
-.Ip "\fB\-mno-relocatable\fR" 4
-.IX Item "-mno-relocatable"
-.PD
-On embedded PowerPC systems generate code that allows (does not allow)
-the program to be relocated to a different address at runtime. If you
-use \fB\-mrelocatable\fR on any module, all objects linked together must
-be compiled with \fB\-mrelocatable\fR or \fB\-mrelocatable-lib\fR.
-.Ip "\fB\-mrelocatable-lib\fR" 4
-.IX Item "-mrelocatable-lib"
-.PD 0
-.Ip "\fB\-mno-relocatable-lib\fR" 4
-.IX Item "-mno-relocatable-lib"
-.PD
-On embedded PowerPC systems generate code that allows (does not allow)
-the program to be relocated to a different address at runtime. Modules
-compiled with \fB\-mrelocatable-lib\fR can be linked with either modules
-compiled without \fB\-mrelocatable\fR and \fB\-mrelocatable-lib\fR or
-with modules compiled with the \fB\-mrelocatable\fR options.
-.Ip "\fB\-mno-toc\fR" 4
-.IX Item "-mno-toc"
-.PD 0
-.Ip "\fB\-mtoc\fR" 4
-.IX Item "-mtoc"
-.PD
-On System V.4 and embedded PowerPC systems do not (do) assume that
-register 2 contains a pointer to a global area pointing to the addresses
-used in the program.
-.Ip "\fB\-mlittle\fR" 4
-.IX Item "-mlittle"
-.PD 0
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in little endian mode. The \fB\-mlittle-endian\fR option is
-the same as \fB\-mlittle\fR.
-.Ip "\fB\-mbig\fR" 4
-.IX Item "-mbig"
-.PD 0
-.Ip "\fB\-mbig-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-On System V.4 and embedded PowerPC systems compile code for the
-processor in big endian mode. The \fB\-mbig-endian\fR option is
-the same as \fB\-mbig\fR.
-.Ip "\fB\-mcall-sysv\fR" 4
-.IX Item "-mcall-sysv"
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that adheres to the March 1995 draft of the System V
-Application Binary Interface, PowerPC processor supplement. This is the
-default unless you configured \s-1GCC\s0 using \fBpowerpc-*\-eabiaix\fR.
-.Ip "\fB\-mcall-sysv-eabi\fR" 4
-.IX Item "-mcall-sysv-eabi"
-Specify both \fB\-mcall-sysv\fR and \fB\-meabi\fR options.
-.Ip "\fB\-mcall-sysv-noeabi\fR" 4
-.IX Item "-mcall-sysv-noeabi"
-Specify both \fB\-mcall-sysv\fR and \fB\-mno-eabi\fR options.
-.Ip "\fB\-mcall-aix\fR" 4
-.IX Item "-mcall-aix"
-On System V.4 and embedded PowerPC systems compile code using calling
-conventions that are similar to those used on \s-1AIX\s0. This is the
-default if you configured \s-1GCC\s0 using \fBpowerpc-*\-eabiaix\fR.
-.Ip "\fB\-mcall-solaris\fR" 4
-.IX Item "-mcall-solaris"
-On System V.4 and embedded PowerPC systems compile code for the Solaris
-operating system.
-.Ip "\fB\-mcall-linux\fR" 4
-.IX Item "-mcall-linux"
-On System V.4 and embedded PowerPC systems compile code for the
-Linux-based \s-1GNU\s0 system.
-.Ip "\fB\-mcall-gnu\fR" 4
-.IX Item "-mcall-gnu"
-On System V.4 and embedded PowerPC systems compile code for the
-Hurd-based \s-1GNU\s0 system.
-.Ip "\fB\-mcall-netbsd\fR" 4
-.IX Item "-mcall-netbsd"
-On System V.4 and embedded PowerPC systems compile code for the
-NetBSD operating system.
-.Ip "\fB\-maix-struct-return\fR" 4
-.IX Item "-maix-struct-return"
-Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0).
-.Ip "\fB\-msvr4\-struct-return\fR" 4
-.IX Item "-msvr4-struct-return"
-Return structures smaller than 8 bytes in registers (as specified by the
-\&\s-1SVR4\s0 \s-1ABI\s0).
-.Ip "\fB\-mabi=altivec\fR" 4
-.IX Item "-mabi=altivec"
-Extend the current \s-1ABI\s0 with AltiVec \s-1ABI\s0 extensions. This does not
-change the default \s-1ABI\s0, instead it adds the AltiVec \s-1ABI\s0 extensions to
-the current \s-1ABI\s0.
-.Ip "\fB\-mabi=no-altivec\fR" 4
-.IX Item "-mabi=no-altivec"
-Disable AltiVec \s-1ABI\s0 extensions for the current \s-1ABI\s0.
-.Ip "\fB\-mprototype\fR" 4
-.IX Item "-mprototype"
-.PD 0
-.Ip "\fB\-mno-prototype\fR" 4
-.IX Item "-mno-prototype"
-.PD
-On System V.4 and embedded PowerPC systems assume that all calls to
-variable argument functions are properly prototyped. Otherwise, the
-compiler must insert an instruction before every non prototyped call to
-set or clear bit 6 of the condition code register (\fI\s-1CR\s0\fR) to
-indicate whether floating point values were passed in the floating point
-registers in case the function takes a variable arguments. With
-\&\fB\-mprototype\fR, only calls to prototyped variable argument functions
-will set or clear the bit.
-.Ip "\fB\-msim\fR" 4
-.IX Item "-msim"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIsim-crt0.o\fR and that the standard C libraries are \fIlibsim.a\fR and
-\&\fIlibc.a\fR. This is the default for \fBpowerpc-*\-eabisim\fR.
-configurations.
-.Ip "\fB\-mmvme\fR" 4
-.IX Item "-mmvme"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibmvme.a\fR and
-\&\fIlibc.a\fR.
-.Ip "\fB\-mads\fR" 4
-.IX Item "-mads"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibads.a\fR and
-\&\fIlibc.a\fR.
-.Ip "\fB\-myellowknife\fR" 4
-.IX Item "-myellowknife"
-On embedded PowerPC systems, assume that the startup module is called
-\&\fIcrt0.o\fR and the standard C libraries are \fIlibyk.a\fR and
-\&\fIlibc.a\fR.
-.Ip "\fB\-mvxworks\fR" 4
-.IX Item "-mvxworks"
-On System V.4 and embedded PowerPC systems, specify that you are
-compiling for a VxWorks system.
-.Ip "\fB\-memb\fR" 4
-.IX Item "-memb"
-On embedded PowerPC systems, set the \fI\s-1PPC_EMB\s0\fR bit in the \s-1ELF\s0 flags
-header to indicate that \fBeabi\fR extended relocations are used.
-.Ip "\fB\-meabi\fR" 4
-.IX Item "-meabi"
-.PD 0
-.Ip "\fB\-mno-eabi\fR" 4
-.IX Item "-mno-eabi"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) adhere to the
-Embedded Applications Binary Interface (eabi) which is a set of
-modifications to the System V.4 specifications. Selecting \fB\-meabi\fR
-means that the stack is aligned to an 8 byte boundary, a function
-\&\f(CW\*(C`_\|_eabi\*(C'\fR is called to from \f(CW\*(C`main\*(C'\fR to set up the eabi
-environment, and the \fB\-msdata\fR option can use both \f(CW\*(C`r2\*(C'\fR and
-\&\f(CW\*(C`r13\*(C'\fR to point to two separate small data areas. Selecting
-\&\fB\-mno-eabi\fR means that the stack is aligned to a 16 byte boundary,
-do not call an initialization function from \f(CW\*(C`main\*(C'\fR, and the
-\&\fB\-msdata\fR option will only use \f(CW\*(C`r13\*(C'\fR to point to a single
-small data area. The \fB\-meabi\fR option is on by default if you
-configured \s-1GCC\s0 using one of the \fBpowerpc*\-*\-eabi*\fR options.
-.Ip "\fB\-msdata=eabi\fR" 4
-.IX Item "-msdata=eabi"
-On System V.4 and embedded PowerPC systems, put small initialized
-\&\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata2\fR section, which
-is pointed to by register \f(CW\*(C`r2\*(C'\fR. Put small initialized
-non-\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata\fR section,
-which is pointed to by register \f(CW\*(C`r13\*(C'\fR. Put small uninitialized
-global and static data in the \fB.sbss\fR section, which is adjacent to
-the \fB.sdata\fR section. The \fB\-msdata=eabi\fR option is
-incompatible with the \fB\-mrelocatable\fR option. The
-\&\fB\-msdata=eabi\fR option also sets the \fB\-memb\fR option.
-.Ip "\fB\-msdata=sysv\fR" 4
-.IX Item "-msdata=sysv"
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the \fB.sdata\fR section, which is pointed to by register
-\&\f(CW\*(C`r13\*(C'\fR. Put small uninitialized global and static data in the
-\&\fB.sbss\fR section, which is adjacent to the \fB.sdata\fR section.
-The \fB\-msdata=sysv\fR option is incompatible with the
-\&\fB\-mrelocatable\fR option.
-.Ip "\fB\-msdata=default\fR" 4
-.IX Item "-msdata=default"
-.PD 0
-.Ip "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-On System V.4 and embedded PowerPC systems, if \fB\-meabi\fR is used,
-compile code the same as \fB\-msdata=eabi\fR, otherwise compile code the
-same as \fB\-msdata=sysv\fR.
-.Ip "\fB\-msdata-data\fR" 4
-.IX Item "-msdata-data"
-On System V.4 and embedded PowerPC systems, put small global and static
-data in the \fB.sdata\fR section. Put small uninitialized global and
-static data in the \fB.sbss\fR section. Do not use register \f(CW\*(C`r13\*(C'\fR
-to address small data however. This is the default behavior unless
-other \fB\-msdata\fR options are used.
-.Ip "\fB\-msdata=none\fR" 4
-.IX Item "-msdata=none"
-.PD 0
-.Ip "\fB\-mno-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD
-On embedded PowerPC systems, put all initialized global and static data
-in the \fB.data\fR section, and all uninitialized data in the
-\&\fB.bss\fR section.
-.Ip "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-On embedded PowerPC systems, put global and static items less than or
-equal to \fInum\fR bytes into the small data or bss sections instead of
-the normal data or bss section. By default, \fInum\fR is 8. The
-\&\fB\-G\fR \fInum\fR switch is also passed to the linker.
-All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
-.Ip "\fB\-mregnames\fR" 4
-.IX Item "-mregnames"
-.PD 0
-.Ip "\fB\-mno-regnames\fR" 4
-.IX Item "-mno-regnames"
-.PD
-On System V.4 and embedded PowerPC systems do (do not) emit register
-names in the assembly language output using symbolic forms.
-.Ip "\fB\-pthread\fR" 4
-.IX Item "-pthread"
-Adds support for multithreading with the \fIpthreads\fR library.
-This option sets flags for both the preprocessor and linker.
-.PP
-.I "\s-1IBM\s0 \s-1RT\s0 Options"
-.IX Subsection "IBM RT Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RT\s0 \s-1PC:\s0
-.Ip "\fB\-min-line-mul\fR" 4
-.IX Item "-min-line-mul"
-Use an in-line code sequence for integer multiplies. This is the
-default.
-.Ip "\fB\-mcall-lib-mul\fR" 4
-.IX Item "-mcall-lib-mul"
-Call \f(CW\*(C`lmul$$\*(C'\fR for integer multiples.
-.Ip "\fB\-mfull-fp-blocks\fR" 4
-.IX Item "-mfull-fp-blocks"
-Generate full-size floating point data blocks, including the minimum
-amount of scratch space recommended by \s-1IBM\s0. This is the default.
-.Ip "\fB\-mminimum-fp-blocks\fR" 4
-.IX Item "-mminimum-fp-blocks"
-Do not include extra scratch space in floating point data blocks. This
-results in smaller code, but slower execution, since scratch space must
-be allocated dynamically.
-.Ip "\fB\-mfp-arg-in-fpregs\fR" 4
-.IX Item "-mfp-arg-in-fpregs"
-Use a calling sequence incompatible with the \s-1IBM\s0 calling convention in
-which floating point arguments are passed in floating point registers.
-Note that \f(CW\*(C`varargs.h\*(C'\fR and \f(CW\*(C`stdarg.h\*(C'\fR will not work with
-floating point operands if this option is specified.
-.Ip "\fB\-mfp-arg-in-gregs\fR" 4
-.IX Item "-mfp-arg-in-gregs"
-Use the normal calling convention for floating point arguments. This is
-the default.
-.Ip "\fB\-mhc-struct-return\fR" 4
-.IX Item "-mhc-struct-return"
-Return structures of more than one word in memory, rather than in a
-register. This provides compatibility with the MetaWare HighC (hc)
-compiler. Use the option \fB\-fpcc-struct-return\fR for compatibility
-with the Portable C Compiler (pcc).
-.Ip "\fB\-mnohc-struct-return\fR" 4
-.IX Item "-mnohc-struct-return"
-Return some structures of more than one word in registers, when
-convenient. This is the default. For compatibility with the
-IBM-supplied compilers, use the option \fB\-fpcc-struct-return\fR or the
-option \fB\-mhc-struct-return\fR.
-.PP
-.I "\s-1MIPS\s0 Options"
-.IX Subsection "MIPS Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1MIPS\s0 family of computers:
-.Ip "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Assume the defaults for the machine type \fIcpu-type\fR when generating
-instructions. The choices for \fIcpu-type\fR are \fBr2000\fR, \fBr3000\fR,
-\&\fBr3900\fR, \fBr4000\fR, \fBr4100\fR, \fBr4300\fR, \fBr4400\fR,
-\&\fBr4600\fR, \fBr4650\fR, \fBr5000\fR, \fBr6000\fR, \fBr8000\fR,
-and \fBorion\fR. Additionally, the \fBr2000\fR, \fBr3000\fR,
-\&\fBr4000\fR, \fBr5000\fR, and \fBr6000\fR can be abbreviated as
-\&\fBr2k\fR (or \fBr2K\fR), \fBr3k\fR, etc.
-.Ip "\fB\-mtune=\fR\fIcpu-type\fR" 4
-.IX Item "-mtune=cpu-type"
-Assume the defaults for the machine type \fIcpu-type\fR when scheduling
-instructions. The choices for \fIcpu-type\fR are \fBr2000\fR, \fBr3000\fR,
-\&\fBr3900\fR, \fBr4000\fR, \fBr4100\fR, \fBr4300\fR, \fBr4400\fR,
-\&\fBr4600\fR, \fBr4650\fR, \fBr5000\fR, \fBr6000\fR, \fBr8000\fR,
-and \fBorion\fR. Additionally, the \fBr2000\fR, \fBr3000\fR,
-\&\fBr4000\fR, \fBr5000\fR, and \fBr6000\fR can be abbreviated as
-\&\fBr2k\fR (or \fBr2K\fR), \fBr3k\fR, etc. While picking a specific
-\&\fIcpu-type\fR will schedule things appropriately for that particular
-chip, the compiler will not generate any code that does not meet level 1
-of the \s-1MIPS\s0 \s-1ISA\s0 (instruction set architecture) without a \fB\-mipsX\fR
-or \fB\-mabi\fR switch being used.
-.Ip "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-This is identical to specifying both \fB\-march\fR and \fB\-mtune\fR.
-.Ip "\fB\-mips1\fR" 4
-.IX Item "-mips1"
-Issue instructions from level 1 of the \s-1MIPS\s0 \s-1ISA\s0. This is the default.
-\&\fBr3000\fR is the default \fIcpu-type\fR at this \s-1ISA\s0 level.
-.Ip "\fB\-mips2\fR" 4
-.IX Item "-mips2"
-Issue instructions from level 2 of the \s-1MIPS\s0 \s-1ISA\s0 (branch likely, square
-root instructions). \fBr6000\fR is the default \fIcpu-type\fR at this
-\&\s-1ISA\s0 level.
-.Ip "\fB\-mips3\fR" 4
-.IX Item "-mips3"
-Issue instructions from level 3 of the \s-1MIPS\s0 \s-1ISA\s0 (64\-bit instructions).
-\&\fBr4000\fR is the default \fIcpu-type\fR at this \s-1ISA\s0 level.
-.Ip "\fB\-mips4\fR" 4
-.IX Item "-mips4"
-Issue instructions from level 4 of the \s-1MIPS\s0 \s-1ISA\s0 (conditional move,
-prefetch, enhanced \s-1FPU\s0 instructions). \fBr8000\fR is the default
-\&\fIcpu-type\fR at this \s-1ISA\s0 level.
-.Ip "\fB\-mfp32\fR" 4
-.IX Item "-mfp32"
-Assume that 32 32\-bit floating point registers are available. This is
-the default.
-.Ip "\fB\-mfp64\fR" 4
-.IX Item "-mfp64"
-Assume that 32 64\-bit floating point registers are available. This is
-the default when the \fB\-mips3\fR option is used.
-.Ip "\fB\-mfused-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.Ip "\fB\-mno-fused-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Generate code that uses (does not use) the floating point multiply and
-accumulate instructions, when they are available. These instructions
-are generated by default if they are available, but this may be
-undesirable if the extra precision causes problems or on certain chips
-in the mode where denormals are rounded to zero where denormals
-generated by multiply and accumulate instructions cause exceptions
-anyway.
-.Ip "\fB\-mgp32\fR" 4
-.IX Item "-mgp32"
-Assume that 32 32\-bit general purpose registers are available. This is
-the default.
-.Ip "\fB\-mgp64\fR" 4
-.IX Item "-mgp64"
-Assume that 32 64\-bit general purpose registers are available. This is
-the default when the \fB\-mips3\fR option is used.
-.Ip "\fB\-mint64\fR" 4
-.IX Item "-mint64"
-Force int and long types to be 64 bits wide. See \fB\-mlong32\fR for an
-explanation of the default, and the width of pointers.
-.Ip "\fB\-mlong64\fR" 4
-.IX Item "-mlong64"
-Force long types to be 64 bits wide. See \fB\-mlong32\fR for an
-explanation of the default, and the width of pointers.
-.Ip "\fB\-mlong32\fR" 4
-.IX Item "-mlong32"
-Force long, int, and pointer types to be 32 bits wide.
-.Sp
-If none of \fB\-mlong32\fR, \fB\-mlong64\fR, or \fB\-mint64\fR are set,
-the size of ints, longs, and pointers depends on the \s-1ABI\s0 and \s-1ISA\s0 chosen.
-For \fB\-mabi=32\fR, and \fB\-mabi=n32\fR, ints and longs are 32 bits
-wide. For \fB\-mabi=64\fR, ints are 32 bits, and longs are 64 bits wide.
-For \fB\-mabi=eabi\fR and either \fB\-mips1\fR or \fB\-mips2\fR, ints
-and longs are 32 bits wide. For \fB\-mabi=eabi\fR and higher ISAs, ints
-are 32 bits, and longs are 64 bits wide. The width of pointer types is
-the smaller of the width of longs or the width of general purpose
-registers (which in turn depends on the \s-1ISA\s0).
-.Ip "\fB\-mabi=32\fR" 4
-.IX Item "-mabi=32"
-.PD 0
-.Ip "\fB\-mabi=o64\fR" 4
-.IX Item "-mabi=o64"
-.Ip "\fB\-mabi=n32\fR" 4
-.IX Item "-mabi=n32"
-.Ip "\fB\-mabi=64\fR" 4
-.IX Item "-mabi=64"
-.Ip "\fB\-mabi=eabi\fR" 4
-.IX Item "-mabi=eabi"
-.PD
-Generate code for the indicated \s-1ABI\s0. The default instruction level is
-\&\fB\-mips1\fR for \fB32\fR, \fB\-mips3\fR for \fBn32\fR, and
-\&\fB\-mips4\fR otherwise. Conversely, with \fB\-mips1\fR or
-\&\fB\-mips2\fR, the default \s-1ABI\s0 is \fB32\fR; otherwise, the default \s-1ABI\s0
-is \fB64\fR.
-.Ip "\fB\-mmips-as\fR" 4
-.IX Item "-mmips-as"
-Generate code for the \s-1MIPS\s0 assembler, and invoke \fImips-tfile\fR to
-add normal debug information. This is the default for all
-platforms except for the \s-1OSF/1\s0 reference platform, using the OSF/rose
-object format. If the either of the \fB\-gstabs\fR or \fB\-gstabs+\fR
-switches are used, the \fImips-tfile\fR program will encapsulate the
-stabs within \s-1MIPS\s0 \s-1ECOFF\s0.
-.Ip "\fB\-mgas\fR" 4
-.IX Item "-mgas"
-Generate code for the \s-1GNU\s0 assembler. This is the default on the \s-1OSF/1\s0
-reference platform, using the OSF/rose object format. Also, this is
-the default if the configure option \fB\*(--with-gnu-as\fR is used.
-.Ip "\fB\-msplit-addresses\fR" 4
-.IX Item "-msplit-addresses"
-.PD 0
-.Ip "\fB\-mno-split-addresses\fR" 4
-.IX Item "-mno-split-addresses"
-.PD
-Generate code to load the high and low parts of address constants separately.
-This allows \s-1GCC\s0 to optimize away redundant loads of the high order
-bits of addresses. This optimization requires \s-1GNU\s0 as and \s-1GNU\s0 ld.
-This optimization is enabled by default for some embedded targets where
-\&\s-1GNU\s0 as and \s-1GNU\s0 ld are standard.
-.Ip "\fB\-mrnames\fR" 4
-.IX Item "-mrnames"
-.PD 0
-.Ip "\fB\-mno-rnames\fR" 4
-.IX Item "-mno-rnames"
-.PD
-The \fB\-mrnames\fR switch says to output code using the \s-1MIPS\s0 software
-names for the registers, instead of the hardware names (ie, \fIa0\fR
-instead of \fI$4\fR). The only known assembler that supports this option
-is the Algorithmics assembler.
-.Ip "\fB\-mgpopt\fR" 4
-.IX Item "-mgpopt"
-.PD 0
-.Ip "\fB\-mno-gpopt\fR" 4
-.IX Item "-mno-gpopt"
-.PD
-The \fB\-mgpopt\fR switch says to write all of the data declarations
-before the instructions in the text section, this allows the \s-1MIPS\s0
-assembler to generate one word memory references instead of using two
-words for short global or static data items. This is on by default if
-optimization is selected.
-.Ip "\fB\-mstats\fR" 4
-.IX Item "-mstats"
-.PD 0
-.Ip "\fB\-mno-stats\fR" 4
-.IX Item "-mno-stats"
-.PD
-For each non-inline function processed, the \fB\-mstats\fR switch
-causes the compiler to emit one line to the standard error file to
-print statistics about the program (number of registers saved, stack
-size, etc.).
-.Ip "\fB\-mmemcpy\fR" 4
-.IX Item "-mmemcpy"
-.PD 0
-.Ip "\fB\-mno-memcpy\fR" 4
-.IX Item "-mno-memcpy"
-.PD
-The \fB\-mmemcpy\fR switch makes all block moves call the appropriate
-string function (\fBmemcpy\fR or \fBbcopy\fR) instead of possibly
-generating inline code.
-.Ip "\fB\-mmips-tfile\fR" 4
-.IX Item "-mmips-tfile"
-.PD 0
-.Ip "\fB\-mno-mips-tfile\fR" 4
-.IX Item "-mno-mips-tfile"
-.PD
-The \fB\-mno-mips-tfile\fR switch causes the compiler not
-postprocess the object file with the \fImips-tfile\fR program,
-after the \s-1MIPS\s0 assembler has generated it to add debug support. If
-\&\fImips-tfile\fR is not run, then no local variables will be
-available to the debugger. In addition, \fIstage2\fR and
-\&\fIstage3\fR objects will have the temporary file names passed to the
-assembler embedded in the object file, which means the objects will
-not compare the same. The \fB\-mno-mips-tfile\fR switch should only
-be used when there are bugs in the \fImips-tfile\fR program that
-prevents compilation.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-Generate output containing floating point instructions. This is the
-default if you use the unmodified sources.
-.Ip "\fB\-mabicalls\fR" 4
-.IX Item "-mabicalls"
-.PD 0
-.Ip "\fB\-mno-abicalls\fR" 4
-.IX Item "-mno-abicalls"
-.PD
-Emit (or do not emit) the pseudo operations \fB.abicalls\fR,
-\&\fB.cpload\fR, and \fB.cprestore\fR that some System V.4 ports use for
-position independent code.
-.Ip "\fB\-mlong-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.Ip "\fB\-mno-long-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Do all calls with the \fB\s-1JALR\s0\fR instruction, which requires
-loading up a function's address into a register before the call.
-You need to use this switch, if you call outside of the current
-512 megabyte segment to functions that are not through pointers.
-.Ip "\fB\-mhalf-pic\fR" 4
-.IX Item "-mhalf-pic"
-.PD 0
-.Ip "\fB\-mno-half-pic\fR" 4
-.IX Item "-mno-half-pic"
-.PD
-Put pointers to extern references into the data section and load them
-up, rather than put the references in the text section.
-.Ip "\fB\-membedded-pic\fR" 4
-.IX Item "-membedded-pic"
-.PD 0
-.Ip "\fB\-mno-embedded-pic\fR" 4
-.IX Item "-mno-embedded-pic"
-.PD
-Generate \s-1PIC\s0 code suitable for some embedded systems. All calls are
-made using \s-1PC\s0 relative address, and all data is addressed using the \f(CW$gp\fR
-register. No more than 65536 bytes of global data may be used. This
-requires \s-1GNU\s0 as and \s-1GNU\s0 ld which do most of the work. This currently
-only works on targets which use \s-1ECOFF\s0; it does not work with \s-1ELF\s0.
-.Ip "\fB\-membedded-data\fR" 4
-.IX Item "-membedded-data"
-.PD 0
-.Ip "\fB\-mno-embedded-data\fR" 4
-.IX Item "-mno-embedded-data"
-.PD
-Allocate variables to the read-only data section first if possible, then
-next in the small data section if possible, otherwise in data. This gives
-slightly slower code than the default, but reduces the amount of \s-1RAM\s0 required
-when executing, and thus may be preferred for some embedded systems.
-.Ip "\fB\-muninit-const-in-rodata\fR" 4
-.IX Item "-muninit-const-in-rodata"
-.PD 0
-.Ip "\fB\-mno-uninit-const-in-rodata\fR" 4
-.IX Item "-mno-uninit-const-in-rodata"
-.PD
-When used together with \fB\-membedded-data\fR, it will always store uninitialized
-const variables in the read-only data section.
-.Ip "\fB\-msingle-float\fR" 4
-.IX Item "-msingle-float"
-.PD 0
-.Ip "\fB\-mdouble-float\fR" 4
-.IX Item "-mdouble-float"
-.PD
-The \fB\-msingle-float\fR switch tells gcc to assume that the floating
-point coprocessor only supports single precision operations, as on the
-\&\fBr4650\fR chip. The \fB\-mdouble-float\fR switch permits gcc to use
-double precision operations. This is the default.
-.Ip "\fB\-mmad\fR" 4
-.IX Item "-mmad"
-.PD 0
-.Ip "\fB\-mno-mad\fR" 4
-.IX Item "-mno-mad"
-.PD
-Permit use of the \fBmad\fR, \fBmadu\fR and \fBmul\fR instructions,
-as on the \fBr4650\fR chip.
-.Ip "\fB\-m4650\fR" 4
-.IX Item "-m4650"
-Turns on \fB\-msingle-float\fR, \fB\-mmad\fR, and, at least for now,
-\&\fB\-mcpu=r4650\fR.
-.Ip "\fB\-mips16\fR" 4
-.IX Item "-mips16"
-.PD 0
-.Ip "\fB\-mno-mips16\fR" 4
-.IX Item "-mno-mips16"
-.PD
-Enable 16\-bit instructions.
-.Ip "\fB\-mentry\fR" 4
-.IX Item "-mentry"
-Use the entry and exit pseudo ops. This option can only be used with
-\&\fB\-mips16\fR.
-.Ip "\fB\-EL\fR" 4
-.IX Item "-EL"
-Compile code for the processor in little endian mode.
-The requisite libraries are assumed to exist.
-.Ip "\fB\-EB\fR" 4
-.IX Item "-EB"
-Compile code for the processor in big endian mode.
-The requisite libraries are assumed to exist.
-.Ip "\fB\-G\fR \fInum\fR" 4
-.IX Item "-G num"
-Put global and static items less than or equal to \fInum\fR bytes into
-the small data or bss sections instead of the normal data or bss
-section. This allows the assembler to emit one word memory reference
-instructions based on the global pointer (\fIgp\fR or \fI$28\fR),
-instead of the normal two words used. By default, \fInum\fR is 8 when
-the \s-1MIPS\s0 assembler is used, and 0 when the \s-1GNU\s0 assembler is used. The
-\&\fB\-G\fR \fInum\fR switch is also passed to the assembler and linker.
-All modules should be compiled with the same \fB\-G\fR \fInum\fR
-value.
-.Ip "\fB\-nocpp\fR" 4
-.IX Item "-nocpp"
-Tell the \s-1MIPS\s0 assembler to not run its preprocessor over user
-assembler files (with a \fB.s\fR suffix) when assembling them.
-.Ip "\fB\-mfix7000\fR" 4
-.IX Item "-mfix7000"
-Pass an option to gas which will cause nops to be inserted if
-the read of the destination register of an mfhi or mflo instruction
-occurs in the following two instructions.
-.Ip "\fB\-no-crt0\fR" 4
-.IX Item "-no-crt0"
-Do not include the default crt0.
-.Ip "\fB\-mflush-func=\fR\fIfunc\fR" 4
-.IX Item "-mflush-func=func"
-.PD 0
-.Ip "\fB\-mno-flush-func\fR" 4
-.IX Item "-mno-flush-func"
-.PD
-Specifies the function to call to flush the I and D caches, or to not
-call any such function. If called, the function must take the same
-arguments as the common \f(CW\*(C`_flush_func()\*(C'\fR, that is, the address of the
-memory range for which the cache is being flushed, the size of the
-memory range, and the number 3 (to flush both caches). The default
-depends on the target gcc was configured for, but commonly is either
-\&\fB_flush_func\fR or \fB_\|_cpu_flush\fR.
-.PP
-These options are defined by the macro
-\&\f(CW\*(C`TARGET_SWITCHES\*(C'\fR in the machine description. The default for the
-options is also defined by that macro, which enables you to change the
-defaults.
-.PP
-.I "Intel 386 and \s-1AMD\s0 x86\-64 Options"
-.IX Subsection "Intel 386 and AMD x86-64 Options"
-.PP
-These \fB\-m\fR options are defined for the i386 and x86\-64 family of
-computers:
-.Ip "\fB\-mcpu=\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu=cpu-type"
-Tune to \fIcpu-type\fR everything applicable about the generated code, except
-for the \s-1ABI\s0 and the set of available instructions. The choices for
-\&\fIcpu-type\fR are \fBi386\fR, \fBi486\fR, \fBi586\fR, \fBi686\fR,
-\&\fBpentium\fR, \fBpentium-mmx\fR, \fBpentiumpro\fR, \fBpentium2\fR,
-\&\fBpentium3\fR, \fBpentium4\fR, \fBk6\fR, \fBk6\-2\fR, \fBk6\-3\fR,
-\&\fBathlon\fR, \fBathlon-tbird\fR, \fBathlon-4\fR, \fBathlon-xp\fR
-and \fBathlon-mp\fR.
-.Sp
-While picking a specific \fIcpu-type\fR will schedule things appropriately
-for that particular chip, the compiler will not generate any code that
-does not run on the i386 without the \fB\-march=\fR\fIcpu-type\fR option
-being used. \fBi586\fR is equivalent to \fBpentium\fR and \fBi686\fR
-is equivalent to \fBpentiumpro\fR. \fBk6\fR and \fBathlon\fR are the
-\&\s-1AMD\s0 chips as opposed to the Intel ones.
-.Ip "\fB\-march=\fR\fIcpu-type\fR" 4
-.IX Item "-march=cpu-type"
-Generate instructions for the machine type \fIcpu-type\fR. The choices
-for \fIcpu-type\fR are the same as for \fB\-mcpu\fR. Moreover,
-specifying \fB\-march=\fR\fIcpu-type\fR implies \fB\-mcpu=\fR\fIcpu-type\fR.
-.Ip "\fB\-m386\fR" 4
-.IX Item "-m386"
-.PD 0
-.Ip "\fB\-m486\fR" 4
-.IX Item "-m486"
-.Ip "\fB\-mpentium\fR" 4
-.IX Item "-mpentium"
-.Ip "\fB\-mpentiumpro\fR" 4
-.IX Item "-mpentiumpro"
-.PD
-These options are synonyms for \fB\-mcpu=i386\fR, \fB\-mcpu=i486\fR,
-\&\fB\-mcpu=pentium\fR, and \fB\-mcpu=pentiumpro\fR respectively.
-These synonyms are deprecated.
-.Ip "\fB\-mfpmath=\fR\fIunit\fR" 4
-.IX Item "-mfpmath=unit"
-generate floating point arithmetics for selected unit \fIunit\fR. the choices
-for \fIunit\fR are:
-.RS 4
-.Ip "\fB387\fR" 4
-.IX Item "387"
-Use the standard 387 floating point coprocessor present majority of chips and
-emulated otherwise. Code compiled with this option will run almost everywhere.
-The temporary results are computed in 80bit precesion instead of precision
-specified by the type resulting in slightly different results compared to most
-of other chips. See \fB\-ffloat-store\fR for more detailed description.
-.Sp
-This is the default choice for i386 compiler.
-.Ip "\fBsse\fR" 4
-.IX Item "sse"
-Use scalar floating point instructions present in the \s-1SSE\s0 instruction set.
-This instruction set is supported by Pentium3 and newer chips, in the \s-1AMD\s0 line
-by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier version of \s-1SSE\s0
-instruction set supports only single precision arithmetics, thus the double and
-extended precision arithmetics is still done using 387. Later version, present
-only in Pentium4 and the future \s-1AMD\s0 x86\-64 chips supports double precision
-arithmetics too.
-.Sp
-For i387 you need to use \fB\-march=\fR\fIcpu-type\fR, \fB\-msse\fR or
-\&\fB\-msse2\fR switches to enable \s-1SSE\s0 extensions and make this option
-effective. For x86\-64 compiler, these extensions are enabled by default.
-.Sp
-The resulting code should be considerably faster in majority of cases and avoid
-the numerical instability problems of 387 code, but may break some existing
-code that expects temporaries to be 80bit.
-.Sp
-This is the default choice for x86\-64 compiler.
-.Ip "\fBsse,387\fR" 4
-.IX Item "sse,387"
-Attempt to utilize both instruction sets at once. This effectivly double the
-amount of available registers and on chips with separate execution units for
-387 and \s-1SSE\s0 the execution resources too. Use this option with care, as it is
-still experimental, because gcc register allocator does not model separate
-functional units well resulting in instable performance.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-masm=\fR\fIdialect\fR" 4
-.IX Item "-masm=dialect"
-Output asm instructions using selected \fIdialect\fR. Supported choices are
-\&\fBintel\fR or \fBatt\fR (the default one).
-.Ip "\fB\-mieee-fp\fR" 4
-.IX Item "-mieee-fp"
-.PD 0
-.Ip "\fB\-mno-ieee-fp\fR" 4
-.IX Item "-mno-ieee-fp"
-.PD
-Control whether or not the compiler uses \s-1IEEE\s0 floating point
-comparisons. These handle correctly the case where the result of a
-comparison is unordered.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-On machines where a function returns floating point results in the 80387
-register stack, some floating point opcodes may be emitted even if
-\&\fB\-msoft-float\fR is used.
-.Ip "\fB\-mno-fp-ret-in-387\fR" 4
-.IX Item "-mno-fp-ret-in-387"
-Do not use the \s-1FPU\s0 registers for return values of functions.
-.Sp
-The usual calling convention has functions return values of types
-\&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there
-is no \s-1FPU\s0. The idea is that the operating system should emulate
-an \s-1FPU\s0.
-.Sp
-The option \fB\-mno-fp-ret-in-387\fR causes such values to be returned
-in ordinary \s-1CPU\s0 registers instead.
-.Ip "\fB\-mno-fancy-math-387\fR" 4
-.IX Item "-mno-fancy-math-387"
-Some 387 emulators do not support the \f(CW\*(C`sin\*(C'\fR, \f(CW\*(C`cos\*(C'\fR and
-\&\f(CW\*(C`sqrt\*(C'\fR instructions for the 387. Specify this option to avoid
-generating those instructions. This option is the default on FreeBSD,
-OpenBSD and NetBSD. This option is overridden when \fB\-march\fR
-indicates that the target cpu will always have an \s-1FPU\s0 and so the
-instruction will not need emulation. As of revision 2.6.1, these
-instructions are not generated unless you also use the
-\&\fB\-funsafe-math-optimizations\fR switch.
-.Ip "\fB\-malign-double\fR" 4
-.IX Item "-malign-double"
-.PD 0
-.Ip "\fB\-mno-align-double\fR" 4
-.IX Item "-mno-align-double"
-.PD
-Control whether \s-1GCC\s0 aligns \f(CW\*(C`double\*(C'\fR, \f(CW\*(C`long double\*(C'\fR, and
-\&\f(CW\*(C`long long\*(C'\fR variables on a two word boundary or a one word
-boundary. Aligning \f(CW\*(C`double\*(C'\fR variables on a two word boundary will
-produce code that runs somewhat faster on a \fBPentium\fR at the
-expense of more memory.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-malign-double\fR switch,
-structures containing the above types will be aligned differently than
-the published application binary interface specifications for the 386
-and will not be binary compatible with structures in code compiled
-without that switch.
-.Ip "\fB\-m128bit-long-double\fR" 4
-.IX Item "-m128bit-long-double"
-Control the size of \f(CW\*(C`long double\*(C'\fR type. i386 application binary interface
-specify the size to be 12 bytes, while modern architectures (Pentium and newer)
-prefer \f(CW\*(C`long double\*(C'\fR aligned to 8 or 16 byte boundary. This is
-impossible to reach with 12 byte long doubles in the array accesses.
-.Sp
-\&\fBWarning:\fR if you use the \fB\-m128bit-long-double\fR switch, the
-structures and arrays containing \f(CW\*(C`long double\*(C'\fR will change their size as
-well as function calling convention for function taking \f(CW\*(C`long double\*(C'\fR
-will be modified.
-.Ip "\fB\-m96bit-long-double\fR" 4
-.IX Item "-m96bit-long-double"
-Set the size of \f(CW\*(C`long double\*(C'\fR to 96 bits as required by the i386
-application binary interface. This is the default.
-.Ip "\fB\-msvr3\-shlib\fR" 4
-.IX Item "-msvr3-shlib"
-.PD 0
-.Ip "\fB\-mno-svr3\-shlib\fR" 4
-.IX Item "-mno-svr3-shlib"
-.PD
-Control whether \s-1GCC\s0 places uninitialized local variables into the
-\&\f(CW\*(C`bss\*(C'\fR or \f(CW\*(C`data\*(C'\fR segments. \fB\-msvr3\-shlib\fR places them
-into \f(CW\*(C`bss\*(C'\fR. These options are meaningful only on System V Release 3.
-.Ip "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions that
-take a fixed number of arguments return with the \f(CW\*(C`ret\*(C'\fR \fInum\fR
-instruction, which pops their arguments while returning. This saves one
-instruction in the caller since there is no need to pop the arguments
-there.
-.Sp
-You can specify that an individual function is called with this calling
-sequence with the function attribute \fBstdcall\fR. You can also
-override the \fB\-mrtd\fR option by using the function attribute
-\&\fBcdecl\fR.
-.Sp
-\&\fBWarning:\fR this calling convention is incompatible with the one
-normally used on Unix, so you cannot use it if you need to call
-libraries compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code will be generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Ip "\fB\-mregparm=\fR\fInum\fR" 4
-.IX Item "-mregparm=num"
-Control how many registers are used to pass integer arguments. By
-default, no registers are used to pass arguments, and at most 3
-registers can be used. You can control this behavior for a specific
-function by using the function attribute \fBregparm\fR.
-.Sp
-\&\fBWarning:\fR if you use this switch, and
-\&\fInum\fR is nonzero, then you must build all modules with the same
-value, including any libraries. This includes the system libraries and
-startup modules.
-.Ip "\fB\-mpreferred-stack-boundary=\fR\fInum\fR" 4
-.IX Item "-mpreferred-stack-boundary=num"
-Attempt to keep the stack boundary aligned to a 2 raised to \fInum\fR
-byte boundary. If \fB\-mpreferred-stack-boundary\fR is not specified,
-the default is 4 (16 bytes or 128 bits), except when optimizing for code
-size (\fB\-Os\fR), in which case the default is the minimum correct
-alignment (4 bytes for x86, and 8 bytes for x86\-64).
-.Sp
-On Pentium and PentiumPro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values
-should be aligned to an 8 byte boundary (see \fB\-malign-double\fR) or
-suffer significant run time performance penalties. On Pentium \s-1III\s0, the
-Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR suffers similar
-penalties if it is not 16 byte aligned.
-.Sp
-To ensure proper alignment of this values on the stack, the stack boundary
-must be as aligned as that required by any value stored on the stack.
-Further, every function must be generated such that it keeps the stack
-aligned. Thus calling a function compiled with a higher preferred
-stack boundary from a function compiled with a lower preferred stack
-boundary will most likely misalign the stack. It is recommended that
-libraries that use callbacks always use the default setting.
-.Sp
-This extra alignment does consume extra stack space, and generally
-increases code size. Code that is sensitive to stack space usage, such
-as embedded systems and operating system kernels, may want to reduce the
-preferred alignment to \fB\-mpreferred-stack-boundary=2\fR.
-.Ip "\fB\-mmmx\fR" 4
-.IX Item "-mmmx"
-.PD 0
-.Ip "\fB\-mno-mmx\fR" 4
-.IX Item "-mno-mmx"
-.Ip "\fB\-msse\fR" 4
-.IX Item "-msse"
-.Ip "\fB\-mno-sse\fR" 4
-.IX Item "-mno-sse"
-.Ip "\fB\-msse2\fR" 4
-.IX Item "-msse2"
-.Ip "\fB\-mno-sse2\fR" 4
-.IX Item "-mno-sse2"
-.Ip "\fB\-m3dnow\fR" 4
-.IX Item "-m3dnow"
-.Ip "\fB\-mno-3dnow\fR" 4
-.IX Item "-mno-3dnow"
-.PD
-These switches enable or disable the use of built-in functions that allow
-direct access to the \s-1MMX\s0, \s-1SSE\s0 and 3Dnow extensions of the instruction set.
-.Sp
-To have \s-1SSE/SSE2\s0 instructions generated automatically from floating-point code,
-see \fB\-mfpmath=sse\fR.
-.Ip "\fB\-mpush-args\fR" 4
-.IX Item "-mpush-args"
-.PD 0
-.Ip "\fB\-mno-push-args\fR" 4
-.IX Item "-mno-push-args"
-.PD
-Use \s-1PUSH\s0 operations to store outgoing parameters. This method is shorter
-and usually equally fast as method using \s-1SUB/MOV\s0 operations and is enabled
-by default. In some cases disabling it may improve performance because of
-improved scheduling and reduced dependencies.
-.Ip "\fB\-maccumulate-outgoing-args\fR" 4
-.IX Item "-maccumulate-outgoing-args"
-If enabled, the maximum amount of space required for outgoing arguments will be
-computed in the function prologue. This is faster on most modern CPUs
-because of reduced dependencies, improved scheduling and reduced stack usage
-when preferred stack boundary is not equal to 2. The drawback is a notable
-increase in code size. This switch implies \fB\-mno-push-args\fR.
-.Ip "\fB\-mthreads\fR" 4
-.IX Item "-mthreads"
-Support thread-safe exception handling on \fBMingw32\fR. Code that relies
-on thread-safe exception handling must compile and link all code with the
-\&\fB\-mthreads\fR option. When compiling, \fB\-mthreads\fR defines
-\&\fB\-D_MT\fR; when linking, it links in a special thread helper library
-\&\fB\-lmingwthrd\fR which cleans up per thread exception handling data.
-.Ip "\fB\-mno-align-stringops\fR" 4
-.IX Item "-mno-align-stringops"
-Do not align destination of inlined string operations. This switch reduces
-code size and improves performance in case the destination is already aligned,
-but gcc don't know about it.
-.Ip "\fB\-minline-all-stringops\fR" 4
-.IX Item "-minline-all-stringops"
-By default \s-1GCC\s0 inlines string operations only when destination is known to be
-aligned at least to 4 byte boundary. This enables more inlining, increase code
-size, but may improve performance of code that depends on fast memcpy, strlen
-and memset for short lengths.
-.Ip "\fB\-momit-leaf-frame-pointer\fR" 4
-.IX Item "-momit-leaf-frame-pointer"
-Don't keep the frame pointer in a register for leaf functions. This
-avoids the instructions to save, set up and restore frame pointers and
-makes an extra register available in leaf functions. The option
-\&\fB\-fomit-frame-pointer\fR removes the frame pointer for all functions
-which might make debugging harder.
-.PP
-These \fB\-m\fR switches are supported in addition to the above
-on \s-1AMD\s0 x86\-64 processors in 64\-bit environments.
-.Ip "\fB\-m32\fR" 4
-.IX Item "-m32"
-.PD 0
-.Ip "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD
-Generate code for a 32\-bit or 64\-bit environment.
-The 32\-bit environment sets int, long and pointer to 32 bits and
-generates code that runs on any i386 system.
-The 64\-bit environment sets int to 32 bits and long and pointer
-to 64 bits and generates code for \s-1AMD\s0's x86\-64 architecture.
-.Ip "\fB\-mno-red-zone\fR" 4
-.IX Item "-mno-red-zone"
-Do not use a so called red zone for x86\-64 code. The red zone is mandated
-by the x86\-64 \s-1ABI\s0, it is a 128\-byte area beyond the location of the
-stack pointer that will not be modified by signal or interrupt handlers
-and therefore can be used for temporary data without adjusting the stack
-pointer. The flag \fB\-mno-red-zone\fR disables this red zone.
-.Ip "\fB\-mcmodel=small\fR" 4
-.IX Item "-mcmodel=small"
-Generate code for the small code model: the program and its symbols must
-be linked in the lower 2 \s-1GB\s0 of the address space. Pointers are 64 bits.
-Programs can be statically or dynamically linked. This is the default
-code model.
-.Ip "\fB\-mcmodel=kernel\fR" 4
-.IX Item "-mcmodel=kernel"
-Generate code for the kernel code model. The kernel runs in the
-negative 2 \s-1GB\s0 of the address space.
-This model has to be used for Linux kernel code.
-.Ip "\fB\-mcmodel=medium\fR" 4
-.IX Item "-mcmodel=medium"
-Generate code for the medium model: The program is linked in the lower 2
-\&\s-1GB\s0 of the address space but symbols can be located anywhere in the
-address space. Programs can be statically or dynamically linked, but
-building of shared libraries are not supported with the medium model.
-.Ip "\fB\-mcmodel=large\fR" 4
-.IX Item "-mcmodel=large"
-Generate code for the large model: This model makes no assumptions
-about addresses and sizes of sections. Currently \s-1GCC\s0 does not implement
-this model.
-.PP
-.I "\s-1HPPA\s0 Options"
-.IX Subsection "HPPA Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1HPPA\s0 family of computers:
-.Ip "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0
-1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors. Refer to
-\&\fI/usr/lib/sched.models\fR on an \s-1HP-UX\s0 system to determine the proper
-architecture option for your machine. Code compiled for lower numbered
-architectures will run on higher numbered architectures, but not the
-other way around.
-.Sp
-\&\s-1PA\s0 2.0 support currently requires gas snapshot 19990413 or later. The
-next release of binutils (current is 2.9.1) will probably contain \s-1PA\s0 2.0
-support.
-.Ip "\fB\-mpa-risc-1\-0\fR" 4
-.IX Item "-mpa-risc-1-0"
-.PD 0
-.Ip "\fB\-mpa-risc-1\-1\fR" 4
-.IX Item "-mpa-risc-1-1"
-.Ip "\fB\-mpa-risc-2\-0\fR" 4
-.IX Item "-mpa-risc-2-0"
-.PD
-Synonyms for \fB\-march=1.0\fR, \fB\-march=1.1\fR, and \fB\-march=2.0\fR respectively.
-.Ip "\fB\-mbig-switch\fR" 4
-.IX Item "-mbig-switch"
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-.Ip "\fB\-mjump-in-delay\fR" 4
-.IX Item "-mjump-in-delay"
-Fill delay slots of function calls with unconditional jump instructions
-by modifying the return pointer for the function call to be the target
-of the conditional jump.
-.Ip "\fB\-mdisable-fpregs\fR" 4
-.IX Item "-mdisable-fpregs"
-Prevent floating point registers from being used in any manner. This is
-necessary for compiling kernels which perform lazy context switching of
-floating point registers. If you use this option and attempt to perform
-floating point operations, the compiler will abort.
-.Ip "\fB\-mdisable-indexing\fR" 4
-.IX Item "-mdisable-indexing"
-Prevent the compiler from using indexing address modes. This avoids some
-rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0.
-.Ip "\fB\-mno-space-regs\fR" 4
-.IX Item "-mno-space-regs"
-Generate code that assumes the target has no space registers. This allows
-\&\s-1GCC\s0 to generate faster indirect calls and use unscaled index address modes.
-.Sp
-Such code is suitable for level 0 \s-1PA\s0 systems and kernels.
-.Ip "\fB\-mfast-indirect-calls\fR" 4
-.IX Item "-mfast-indirect-calls"
-Generate code that assumes calls never cross space boundaries. This
-allows \s-1GCC\s0 to emit code which performs faster indirect calls.
-.Sp
-This option will not work in the presence of shared libraries or nested
-functions.
-.Ip "\fB\-mlong-load-store\fR" 4
-.IX Item "-mlong-load-store"
-Generate 3\-instruction load and store sequences as sometimes required by
-the \s-1HP-UX\s0 10 linker. This is equivalent to the \fB+k\fR option to
-the \s-1HP\s0 compilers.
-.Ip "\fB\-mportable-runtime\fR" 4
-.IX Item "-mportable-runtime"
-Use the portable calling conventions proposed by \s-1HP\s0 for \s-1ELF\s0 systems.
-.Ip "\fB\-mgas\fR" 4
-.IX Item "-mgas"
-Enable the use of assembler directives only \s-1GAS\s0 understands.
-.Ip "\fB\-mschedule=\fR\fIcpu-type\fR" 4
-.IX Item "-mschedule=cpu-type"
-Schedule code according to the constraints for the machine type
-\&\fIcpu-type\fR. The choices for \fIcpu-type\fR are \fB700\fR
-\&\fB7100\fR, \fB7100LC\fR, \fB7200\fR, and \fB8000\fR. Refer to
-\&\fI/usr/lib/sched.models\fR on an \s-1HP-UX\s0 system to determine the
-proper scheduling option for your machine.
-.Ip "\fB\-mlinker-opt\fR" 4
-.IX Item "-mlinker-opt"
-Enable the optimization pass in the \s-1HPUX\s0 linker. Note this makes symbolic
-debugging impossible. It also triggers a bug in the \s-1HPUX\s0 8 and \s-1HPUX\s0 9 linkers
-in which they give bogus error messages when linking some programs.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries are not available for all \s-1HPPA\s0
-targets. Normally the facilities of the machine's usual C compiler are
-used, but this cannot be done directly in cross-compilation. You must make
-your own arrangements to provide suitable library functions for
-cross-compilation. The embedded target \fBhppa1.1\-*\-pro\fR
-does provide software floating point support.
-.Sp
-\&\fB\-msoft-float\fR changes the calling convention in the output file;
-therefore, it is only useful if you compile \fIall\fR of a program with
-this option. In particular, you need to compile \fIlibgcc.a\fR, the
-library that comes with \s-1GCC\s0, with \fB\-msoft-float\fR in order for
-this to work.
-.PP
-.I "Intel 960 Options"
-.IX Subsection "Intel 960 Options"
-.PP
-These \fB\-m\fR options are defined for the Intel 960 implementations:
-.Ip "\fB\-m\fR\fIcpu-type\fR" 4
-.IX Item "-mcpu-type"
-Assume the defaults for the machine type \fIcpu-type\fR for some of
-the other options, including instruction scheduling, floating point
-support, and addressing modes. The choices for \fIcpu-type\fR are
-\&\fBka\fR, \fBkb\fR, \fBmc\fR, \fBca\fR, \fBcf\fR,
-\&\fBsa\fR, and \fBsb\fR.
-The default is
-\&\fBkb\fR.
-.Ip "\fB\-mnumerics\fR" 4
-.IX Item "-mnumerics"
-.PD 0
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-The \fB\-mnumerics\fR option indicates that the processor does support
-floating-point instructions. The \fB\-msoft-float\fR option indicates
-that floating-point support should not be assumed.
-.Ip "\fB\-mleaf-procedures\fR" 4
-.IX Item "-mleaf-procedures"
-.PD 0
-.Ip "\fB\-mno-leaf-procedures\fR" 4
-.IX Item "-mno-leaf-procedures"
-.PD
-Do (or do not) attempt to alter leaf procedures to be callable with the
-\&\f(CW\*(C`bal\*(C'\fR instruction as well as \f(CW\*(C`call\*(C'\fR. This will result in more
-efficient code for explicit calls when the \f(CW\*(C`bal\*(C'\fR instruction can be
-substituted by the assembler or linker, but less efficient code in other
-cases, such as calls via function pointers, or using a linker that doesn't
-support this optimization.
-.Ip "\fB\-mtail-call\fR" 4
-.IX Item "-mtail-call"
-.PD 0
-.Ip "\fB\-mno-tail-call\fR" 4
-.IX Item "-mno-tail-call"
-.PD
-Do (or do not) make additional attempts (beyond those of the
-machine-independent portions of the compiler) to optimize tail-recursive
-calls into branches. You may not want to do this because the detection of
-cases where this is not valid is not totally complete. The default is
-\&\fB\-mno-tail-call\fR.
-.Ip "\fB\-mcomplex-addr\fR" 4
-.IX Item "-mcomplex-addr"
-.PD 0
-.Ip "\fB\-mno-complex-addr\fR" 4
-.IX Item "-mno-complex-addr"
-.PD
-Assume (or do not assume) that the use of a complex addressing mode is a
-win on this implementation of the i960. Complex addressing modes may not
-be worthwhile on the K-series, but they definitely are on the C-series.
-The default is currently \fB\-mcomplex-addr\fR for all processors except
-the \s-1CB\s0 and \s-1CC\s0.
-.Ip "\fB\-mcode-align\fR" 4
-.IX Item "-mcode-align"
-.PD 0
-.Ip "\fB\-mno-code-align\fR" 4
-.IX Item "-mno-code-align"
-.PD
-Align code to 8\-byte boundaries for faster fetching (or don't bother).
-Currently turned on by default for C-series implementations only.
-.Ip "\fB\-mic-compat\fR" 4
-.IX Item "-mic-compat"
-.PD 0
-.Ip "\fB\-mic2.0\-compat\fR" 4
-.IX Item "-mic2.0-compat"
-.Ip "\fB\-mic3.0\-compat\fR" 4
-.IX Item "-mic3.0-compat"
-.PD
-Enable compatibility with iC960 v2.0 or v3.0.
-.Ip "\fB\-masm-compat\fR" 4
-.IX Item "-masm-compat"
-.PD 0
-.Ip "\fB\-mintel-asm\fR" 4
-.IX Item "-mintel-asm"
-.PD
-Enable compatibility with the iC960 assembler.
-.Ip "\fB\-mstrict-align\fR" 4
-.IX Item "-mstrict-align"
-.PD 0
-.Ip "\fB\-mno-strict-align\fR" 4
-.IX Item "-mno-strict-align"
-.PD
-Do not permit (do permit) unaligned accesses.
-.Ip "\fB\-mold-align\fR" 4
-.IX Item "-mold-align"
-Enable structure-alignment compatibility with Intel's gcc release version
-1.3 (based on gcc 1.37). This option implies \fB\-mstrict-align\fR.
-.Ip "\fB\-mlong-double-64\fR" 4
-.IX Item "-mlong-double-64"
-Implement type \fBlong double\fR as 64\-bit floating point numbers.
-Without the option \fBlong double\fR is implemented by 80\-bit
-floating point numbers. The only reason we have it because there is
-no 128\-bit \fBlong double\fR support in \fBfp-bit.c\fR yet. So it
-is only useful for people using soft-float targets. Otherwise, we
-should recommend against use of it.
-.PP
-.I "\s-1DEC\s0 Alpha Options"
-.IX Subsection "DEC Alpha Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha implementations:
-.Ip "\fB\-mno-soft-float\fR" 4
-.IX Item "-mno-soft-float"
-.PD 0
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions for
-floating-point operations. When \fB\-msoft-float\fR is specified,
-functions in \fIlibgcc.a\fR will be used to perform floating-point
-operations. Unless they are replaced by routines that emulate the
-floating-point operations, or compiled in such a way as to call such
-emulations routines, these routines will issue floating-point
-operations. If you are compiling for an Alpha without floating-point
-operations, you must ensure that the library is built so as not to call
-them.
-.Sp
-Note that Alpha implementations without floating-point operations are
-required to have floating-point registers.
-.Ip "\fB\-mfp-reg\fR" 4
-.IX Item "-mfp-reg"
-.PD 0
-.Ip "\fB\-mno-fp-regs\fR" 4
-.IX Item "-mno-fp-regs"
-.PD
-Generate code that uses (does not use) the floating-point register set.
-\&\fB\-mno-fp-regs\fR implies \fB\-msoft-float\fR. If the floating-point
-register set is not used, floating point operands are passed in integer
-registers as if they were integers and floating-point results are passed
-in \f(CW\*(C`$0\*(C'\fR instead of \f(CW\*(C`$f0\*(C'\fR. This is a non-standard calling sequence,
-so any function with a floating-point argument or return value called by code
-compiled with \fB\-mno-fp-regs\fR must also be compiled with that
-option.
-.Sp
-A typical use of this option is building a kernel that does not use,
-and hence need not save and restore, any floating-point registers.
-.Ip "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-The Alpha architecture implements floating-point hardware optimized for
-maximum performance. It is mostly compliant with the \s-1IEEE\s0 floating
-point standard. However, for full compliance, software assistance is
-required. This option generates code fully \s-1IEEE\s0 compliant code
-\&\fIexcept\fR that the \fIinexact-flag\fR is not maintained (see below).
-If this option is turned on, the preprocessor macro \f(CW\*(C`_IEEE_FP\*(C'\fR is
-defined during compilation. The resulting code is less efficient but is
-able to correctly support denormalized numbers and exceptional \s-1IEEE\s0
-values such as not-a-number and plus/minus infinity. Other Alpha
-compilers call this option \fB\-ieee_with_no_inexact\fR.
-.Ip "\fB\-mieee-with-inexact\fR" 4
-.IX Item "-mieee-with-inexact"
-This is like \fB\-mieee\fR except the generated code also maintains
-the \s-1IEEE\s0 \fIinexact-flag\fR. Turning on this option causes the
-generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to
-\&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor
-macro. On some Alpha implementations the resulting code may execute
-significantly slower than the code generated by default. Since there is
-very little code that depends on the \fIinexact-flag\fR, you should
-normally not specify this option. Other Alpha compilers call this
-option \fB\-ieee_with_inexact\fR.
-.Ip "\fB\-mfp-trap-mode=\fR\fItrap-mode\fR" 4
-.IX Item "-mfp-trap-mode=trap-mode"
-This option controls what floating-point related traps are enabled.
-Other Alpha compilers call this option \fB\-fptm\fR \fItrap-mode\fR.
-The trap mode can be set to one of four values:
-.RS 4
-.Ip "\fBn\fR" 4
-.IX Item "n"
-This is the default (normal) setting. The only traps that are enabled
-are the ones that cannot be disabled in software (e.g., division by zero
-trap).
-.Ip "\fBu\fR" 4
-.IX Item "u"
-In addition to the traps enabled by \fBn\fR, underflow traps are enabled
-as well.
-.Ip "\fBsu\fR" 4
-.IX Item "su"
-Like \fBsu\fR, but the instructions are marked to be safe for software
-completion (see Alpha architecture manual for details).
-.Ip "\fBsui\fR" 4
-.IX Item "sui"
-Like \fBsu\fR, but inexact traps are enabled as well.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-mfp-rounding-mode=\fR\fIrounding-mode\fR" 4
-.IX Item "-mfp-rounding-mode=rounding-mode"
-Selects the \s-1IEEE\s0 rounding mode. Other Alpha compilers call this option
-\&\fB\-fprm\fR \fIrounding-mode\fR. The \fIrounding-mode\fR can be one
-of:
-.RS 4
-.Ip "\fBn\fR" 4
-.IX Item "n"
-Normal \s-1IEEE\s0 rounding mode. Floating point numbers are rounded towards
-the nearest machine number or towards the even machine number in case
-of a tie.
-.Ip "\fBm\fR" 4
-.IX Item "m"
-Round towards minus infinity.
-.Ip "\fBc\fR" 4
-.IX Item "c"
-Chopped rounding mode. Floating point numbers are rounded towards zero.
-.Ip "\fBd\fR" 4
-.IX Item "d"
-Dynamic rounding mode. A field in the floating point control register
-(\fIfpcr\fR, see Alpha architecture reference manual) controls the
-rounding mode in effect. The C library initializes this register for
-rounding towards plus infinity. Thus, unless your program modifies the
-\&\fIfpcr\fR, \fBd\fR corresponds to round towards plus infinity.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-mtrap-precision=\fR\fItrap-precision\fR" 4
-.IX Item "-mtrap-precision=trap-precision"
-In the Alpha architecture, floating point traps are imprecise. This
-means without software assistance it is impossible to recover from a
-floating trap and program execution normally needs to be terminated.
-\&\s-1GCC\s0 can generate code that can assist operating system trap handlers
-in determining the exact location that caused a floating point trap.
-Depending on the requirements of an application, different levels of
-precisions can be selected:
-.RS 4
-.Ip "\fBp\fR" 4
-.IX Item "p"
-Program precision. This option is the default and means a trap handler
-can only identify which program caused a floating point exception.
-.Ip "\fBf\fR" 4
-.IX Item "f"
-Function precision. The trap handler can determine the function that
-caused a floating point exception.
-.Ip "\fBi\fR" 4
-.IX Item "i"
-Instruction precision. The trap handler can determine the exact
-instruction that caused a floating point exception.
-.RE
-.RS 4
-.Sp
-Other Alpha compilers provide the equivalent options called
-\&\fB\-scope_safe\fR and \fB\-resumption_safe\fR.
-.RE
-.Ip "\fB\-mieee-conformant\fR" 4
-.IX Item "-mieee-conformant"
-This option marks the generated code as \s-1IEEE\s0 conformant. You must not
-use this option unless you also specify \fB\-mtrap-precision=i\fR and either
-\&\fB\-mfp-trap-mode=su\fR or \fB\-mfp-trap-mode=sui\fR. Its only effect
-is to emit the line \fB.eflag 48\fR in the function prologue of the
-generated assembly file. Under \s-1DEC\s0 Unix, this has the effect that
-IEEE-conformant math library routines will be linked in.
-.Ip "\fB\-mbuild-constants\fR" 4
-.IX Item "-mbuild-constants"
-Normally \s-1GCC\s0 examines a 32\- or 64\-bit integer constant to
-see if it can construct it from smaller constants in two or three
-instructions. If it cannot, it will output the constant as a literal and
-generate code to load it from the data segment at runtime.
-.Sp
-Use this option to require \s-1GCC\s0 to construct \fIall\fR integer constants
-using code, even if it takes more instructions (the maximum is six).
-.Sp
-You would typically use this option to build a shared library dynamic
-loader. Itself a shared library, it must relocate itself in memory
-before it can find the variables and constants in its own data segment.
-.Ip "\fB\-malpha-as\fR" 4
-.IX Item "-malpha-as"
-.PD 0
-.Ip "\fB\-mgas\fR" 4
-.IX Item "-mgas"
-.PD
-Select whether to generate code to be assembled by the vendor-supplied
-assembler (\fB\-malpha-as\fR) or by the \s-1GNU\s0 assembler \fB\-mgas\fR.
-.Ip "\fB\-mbwx\fR" 4
-.IX Item "-mbwx"
-.PD 0
-.Ip "\fB\-mno-bwx\fR" 4
-.IX Item "-mno-bwx"
-.Ip "\fB\-mcix\fR" 4
-.IX Item "-mcix"
-.Ip "\fB\-mno-cix\fR" 4
-.IX Item "-mno-cix"
-.Ip "\fB\-mfix\fR" 4
-.IX Item "-mfix"
-.Ip "\fB\-mno-fix\fR" 4
-.IX Item "-mno-fix"
-.Ip "\fB\-mmax\fR" 4
-.IX Item "-mmax"
-.Ip "\fB\-mno-max\fR" 4
-.IX Item "-mno-max"
-.PD
-Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0,
-\&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction
-sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that
-of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none was specified.
-.Ip "\fB\-mfloat-vax\fR" 4
-.IX Item "-mfloat-vax"
-.PD 0
-.Ip "\fB\-mfloat-ieee\fR" 4
-.IX Item "-mfloat-ieee"
-.PD
-Generate code that uses (does not use) \s-1VAX\s0 F and G floating point
-arithmetic instead of \s-1IEEE\s0 single and double precision.
-.Ip "\fB\-mexplicit-relocs\fR" 4
-.IX Item "-mexplicit-relocs"
-.PD 0
-.Ip "\fB\-mno-explicit-relocs\fR" 4
-.IX Item "-mno-explicit-relocs"
-.PD
-Older Alpha assemblers provided no way to generate symbol relocations
-except via assembler macros. Use of these macros does not allow
-optimial instruction scheduling. \s-1GNU\s0 binutils as of version 2.12
-supports a new syntax that allows the compiler to explicitly mark
-which relocations should apply to which instructions. This option
-is mostly useful for debugging, as \s-1GCC\s0 detects the capabilities of
-the assembler when it is built and sets the default accordingly.
-.Ip "\fB\-msmall-data\fR" 4
-.IX Item "-msmall-data"
-.PD 0
-.Ip "\fB\-mlarge-data\fR" 4
-.IX Item "-mlarge-data"
-.PD
-When \fB\-mexplicit-relocs\fR is in effect, static data is
-accessed via \fIgp-relative\fR relocations. When \fB\-msmall-data\fR
-is used, objects 8 bytes long or smaller are placed in a \fIsmall data area\fR
-(the \f(CW\*(C`.sdata\*(C'\fR and \f(CW\*(C`.sbss\*(C'\fR sections) and are accessed via
-16\-bit relocations off of the \f(CW\*(C`$gp\*(C'\fR register. This limits the
-size of the small data area to 64KB, but allows the variables to be
-directly accessed via a single instruction.
-.Sp
-The default is \fB\-mlarge-data\fR. With this option the data area
-is limited to just below 2GB. Programs that require more than 2GB of
-data must use \f(CW\*(C`malloc\*(C'\fR or \f(CW\*(C`mmap\*(C'\fR to allocate the data in the
-heap instead of in the program's data segment.
-.Sp
-When generating code for shared libraries, \fB\-fpic\fR implies
-\&\fB\-msmall-data\fR and \fB\-fPIC\fR implies \fB\-mlarge-data\fR.
-.Ip "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set and instruction scheduling parameters for
-machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR
-style name or the corresponding chip number. \s-1GCC\s0 supports scheduling
-parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and will
-choose the default values for the instruction set from the processor
-you specify. If you do not specify a processor type, \s-1GCC\s0 will default
-to the processor on which the compiler was built.
-.Sp
-Supported values for \fIcpu_type\fR are
-.RS 4
-.Ip "\fBev4\fR" 4
-.IX Item "ev4"
-.PD 0
-.Ip "\fBev45\fR" 4
-.IX Item "ev45"
-.Ip "\fB21064\fR" 4
-.IX Item "21064"
-.PD
-Schedules as an \s-1EV4\s0 and has no instruction set extensions.
-.Ip "\fBev5\fR" 4
-.IX Item "ev5"
-.PD 0
-.Ip "\fB21164\fR" 4
-.IX Item "21164"
-.PD
-Schedules as an \s-1EV5\s0 and has no instruction set extensions.
-.Ip "\fBev56\fR" 4
-.IX Item "ev56"
-.PD 0
-.Ip "\fB21164a\fR" 4
-.IX Item "21164a"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 extension.
-.Ip "\fBpca56\fR" 4
-.IX Item "pca56"
-.PD 0
-.Ip "\fB21164pc\fR" 4
-.IX Item "21164pc"
-.Ip "\fB21164PC\fR" 4
-.IX Item "21164PC"
-.PD
-Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 and \s-1MAX\s0 extensions.
-.Ip "\fBev6\fR" 4
-.IX Item "ev6"
-.PD 0
-.Ip "\fB21264\fR" 4
-.IX Item "21264"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions.
-.Ip "\fBev67\fR" 4
-.IX Item "ev67"
-.PD 0
-.Ip "\fB21264a\fR" 4
-.IX Item "21264a"
-.PD
-Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions.
-.RE
-.RS 4
-.RE
-.Ip "\fB\-mtune=\fR\fIcpu_type\fR" 4
-.IX Item "-mtune=cpu_type"
-Set only the instruction scheduling parameters for machine type
-\&\fIcpu_type\fR. The instruction set is not changed.
-.Ip "\fB\-mmemory-latency=\fR\fItime\fR" 4
-.IX Item "-mmemory-latency=time"
-Sets the latency the scheduler should assume for typical memory
-references as seen by the application. This number is highly
-dependent on the memory access patterns used by the application
-and the size of the external cache on the machine.
-.Sp
-Valid options for \fItime\fR are
-.RS 4
-.Ip "\fInumber\fR" 4
-.IX Item "number"
-A decimal number representing clock cycles.
-.Ip "\fBL1\fR" 4
-.IX Item "L1"
-.PD 0
-.Ip "\fBL2\fR" 4
-.IX Item "L2"
-.Ip "\fBL3\fR" 4
-.IX Item "L3"
-.Ip "\fBmain\fR" 4
-.IX Item "main"
-.PD
-The compiler contains estimates of the number of clock cycles for
-``typical'' \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches
-(also called Dcache, Scache, and Bcache), as well as to main memory.
-Note that L3 is only valid for \s-1EV5\s0.
-.RE
-.RS 4
-.RE
-.PP
-.I "\s-1DEC\s0 Alpha/VMS Options"
-.IX Subsection "DEC Alpha/VMS Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha/VMS implementations:
-.Ip "\fB\-mvms-return-codes\fR" 4
-.IX Item "-mvms-return-codes"
-Return \s-1VMS\s0 condition codes from main. The default is to return \s-1POSIX\s0
-style condition (e.g. error) codes.
-.PP
-.I "Clipper Options"
-.IX Subsection "Clipper Options"
-.PP
-These \fB\-m\fR options are defined for the Clipper implementations:
-.Ip "\fB\-mc300\fR" 4
-.IX Item "-mc300"
-Produce code for a C300 Clipper processor. This is the default.
-.Ip "\fB\-mc400\fR" 4
-.IX Item "-mc400"
-Produce code for a C400 Clipper processor, i.e. use floating point
-registers f8\*(--f15.
-.PP
-.I "H8/300 Options"
-.IX Subsection "H8/300 Options"
-.PP
-These \fB\-m\fR options are defined for the H8/300 implementations:
-.Ip "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.Ip "\fB\-mh\fR" 4
-.IX Item "-mh"
-Generate code for the H8/300H.
-.Ip "\fB\-ms\fR" 4
-.IX Item "-ms"
-Generate code for the H8/S.
-.Ip "\fB\-ms2600\fR" 4
-.IX Item "-ms2600"
-Generate code for the H8/S2600. This switch must be used with \fB\-ms\fR.
-.Ip "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-Make \f(CW\*(C`int\*(C'\fR data 32 bits by default.
-.Ip "\fB\-malign-300\fR" 4
-.IX Item "-malign-300"
-On the H8/300H and H8/S, use the same alignment rules as for the H8/300.
-The default for the H8/300H and H8/S is to align longs and floats on 4
-byte boundaries.
-\&\fB\-malign-300\fR causes them to be aligned on 2 byte boundaries.
-This option has no effect on the H8/300.
-.PP
-.I "\s-1SH\s0 Options"
-.IX Subsection "SH Options"
-.PP
-These \fB\-m\fR options are defined for the \s-1SH\s0 implementations:
-.Ip "\fB\-m1\fR" 4
-.IX Item "-m1"
-Generate code for the \s-1SH1\s0.
-.Ip "\fB\-m2\fR" 4
-.IX Item "-m2"
-Generate code for the \s-1SH2\s0.
-.Ip "\fB\-m3\fR" 4
-.IX Item "-m3"
-Generate code for the \s-1SH3\s0.
-.Ip "\fB\-m3e\fR" 4
-.IX Item "-m3e"
-Generate code for the SH3e.
-.Ip "\fB\-m4\-nofpu\fR" 4
-.IX Item "-m4-nofpu"
-Generate code for the \s-1SH4\s0 without a floating-point unit.
-.Ip "\fB\-m4\-single-only\fR" 4
-.IX Item "-m4-single-only"
-Generate code for the \s-1SH4\s0 with a floating-point unit that only
-supports single-precision arithmetic.
-.Ip "\fB\-m4\-single\fR" 4
-.IX Item "-m4-single"
-Generate code for the \s-1SH4\s0 assuming the floating-point unit is in
-single-precision mode by default.
-.Ip "\fB\-m4\fR" 4
-.IX Item "-m4"
-Generate code for the \s-1SH4\s0.
-.Ip "\fB\-mb\fR" 4
-.IX Item "-mb"
-Compile code for the processor in big endian mode.
-.Ip "\fB\-ml\fR" 4
-.IX Item "-ml"
-Compile code for the processor in little endian mode.
-.Ip "\fB\-mdalign\fR" 4
-.IX Item "-mdalign"
-Align doubles at 64\-bit boundaries. Note that this changes the calling
-conventions, and thus some functions from the standard C library will
-not work unless you recompile it first with \fB\-mdalign\fR.
-.Ip "\fB\-mrelax\fR" 4
-.IX Item "-mrelax"
-Shorten some address references at link time, when possible; uses the
-linker option \fB\-relax\fR.
-.Ip "\fB\-mbigtable\fR" 4
-.IX Item "-mbigtable"
-Use 32\-bit offsets in \f(CW\*(C`switch\*(C'\fR tables. The default is to use
-16\-bit offsets.
-.Ip "\fB\-mfmovd\fR" 4
-.IX Item "-mfmovd"
-Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR.
-.Ip "\fB\-mhitachi\fR" 4
-.IX Item "-mhitachi"
-Comply with the calling conventions defined by Hitachi.
-.Ip "\fB\-mnomacsave\fR" 4
-.IX Item "-mnomacsave"
-Mark the \f(CW\*(C`MAC\*(C'\fR register as call-clobbered, even if
-\&\fB\-mhitachi\fR is given.
-.Ip "\fB\-mieee\fR" 4
-.IX Item "-mieee"
-Increase IEEE-compliance of floating-point code.
-.Ip "\fB\-misize\fR" 4
-.IX Item "-misize"
-Dump instruction size and location in the assembly code.
-.Ip "\fB\-mpadstruct\fR" 4
-.IX Item "-mpadstruct"
-This option is deprecated. It pads structures to multiple of 4 bytes,
-which is incompatible with the \s-1SH\s0 \s-1ABI\s0.
-.Ip "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Optimize for space instead of speed. Implied by \fB\-Os\fR.
-.Ip "\fB\-mprefergot\fR" 4
-.IX Item "-mprefergot"
-When generating position-independent code, emit function calls using
-the Global Offset Table instead of the Procedure Linkage Table.
-.Ip "\fB\-musermode\fR" 4
-.IX Item "-musermode"
-Generate a library function call to invalidate instruction cache
-entries, after fixing up a trampoline. This library function call
-doesn't assume it can write to the whole memory address space. This
-is the default when the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
-.PP
-.I "Options for System V"
-.IX Subsection "Options for System V"
-.PP
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-.Ip "\fB\-G\fR" 4
-.IX Item "-G"
-Create a shared object.
-It is recommended that \fB\-symbolic\fR or \fB\-shared\fR be used instead.
-.Ip "\fB\-Qy\fR" 4
-.IX Item "-Qy"
-Identify the versions of each tool used by the compiler, in a
-\&\f(CW\*(C`.ident\*(C'\fR assembler directive in the output.
-.Ip "\fB\-Qn\fR" 4
-.IX Item "-Qn"
-Refrain from adding \f(CW\*(C`.ident\*(C'\fR directives to the output file (this is
-the default).
-.Ip "\fB\-YP,\fR\fIdirs\fR" 4
-.IX Item "-YP,dirs"
-Search the directories \fIdirs\fR, and no others, for libraries
-specified with \fB\-l\fR.
-.Ip "\fB\-Ym,\fR\fIdir\fR" 4
-.IX Item "-Ym,dir"
-Look in the directory \fIdir\fR to find the M4 preprocessor.
-The assembler uses this option.
-.PP
-.I "TMS320C3x/C4x Options"
-.IX Subsection "TMS320C3x/C4x Options"
-.PP
-These \fB\-m\fR options are defined for TMS320C3x/C4x implementations:
-.Ip "\fB\-mcpu=\fR\fIcpu_type\fR" 4
-.IX Item "-mcpu=cpu_type"
-Set the instruction set, register set, and instruction scheduling
-parameters for machine type \fIcpu_type\fR. Supported values for
-\&\fIcpu_type\fR are \fBc30\fR, \fBc31\fR, \fBc32\fR, \fBc40\fR, and
-\&\fBc44\fR. The default is \fBc40\fR to generate code for the
-\&\s-1TMS320C40\s0.
-.Ip "\fB\-mbig-memory\fR" 4
-.IX Item "-mbig-memory"
-.PD 0
-.Ip "\fB\-mbig\fR" 4
-.IX Item "-mbig"
-.Ip "\fB\-msmall-memory\fR" 4
-.IX Item "-msmall-memory"
-.Ip "\fB\-msmall\fR" 4
-.IX Item "-msmall"
-.PD
-Generates code for the big or small memory model. The small memory
-model assumed that all data fits into one 64K word page. At run-time
-the data page (\s-1DP\s0) register must be set to point to the 64K page
-containing the .bss and .data program sections. The big memory model is
-the default and requires reloading of the \s-1DP\s0 register for every direct
-memory access.
-.Ip "\fB\-mbk\fR" 4
-.IX Item "-mbk"
-.PD 0
-.Ip "\fB\-mno-bk\fR" 4
-.IX Item "-mno-bk"
-.PD
-Allow (disallow) allocation of general integer operands into the block
-count register \s-1BK\s0.
-.Ip "\fB\-mdb\fR" 4
-.IX Item "-mdb"
-.PD 0
-.Ip "\fB\-mno-db\fR" 4
-.IX Item "-mno-db"
-.PD
-Enable (disable) generation of code using decrement and branch,
-\&\fIDBcond\fR\|(D), instructions. This is enabled by default for the C4x. To be
-on the safe side, this is disabled for the C3x, since the maximum
-iteration count on the C3x is 2^{23 + 1} (but who iterates loops more than
-2^{23} times on the C3x?). Note that \s-1GCC\s0 will try to reverse a loop so
-that it can utilise the decrement and branch instruction, but will give
-up if there is more than one memory reference in the loop. Thus a loop
-where the loop counter is decremented can generate slightly more
-efficient code, in cases where the \s-1RPTB\s0 instruction cannot be utilised.
-.Ip "\fB\-mdp-isr-reload\fR" 4
-.IX Item "-mdp-isr-reload"
-.PD 0
-.Ip "\fB\-mparanoid\fR" 4
-.IX Item "-mparanoid"
-.PD
-Force the \s-1DP\s0 register to be saved on entry to an interrupt service
-routine (\s-1ISR\s0), reloaded to point to the data section, and restored on
-exit from the \s-1ISR\s0. This should not be required unless someone has
-violated the small memory model by modifying the \s-1DP\s0 register, say within
-an object library.
-.Ip "\fB\-mmpyi\fR" 4
-.IX Item "-mmpyi"
-.PD 0
-.Ip "\fB\-mno-mpyi\fR" 4
-.IX Item "-mno-mpyi"
-.PD
-For the C3x use the 24\-bit \s-1MPYI\s0 instruction for integer multiplies
-instead of a library call to guarantee 32\-bit results. Note that if one
-of the operands is a constant, then the multiplication will be performed
-using shifts and adds. If the \fB\-mmpyi\fR option is not specified for the C3x,
-then squaring operations are performed inline instead of a library call.
-.Ip "\fB\-mfast-fix\fR" 4
-.IX Item "-mfast-fix"
-.PD 0
-.Ip "\fB\-mno-fast-fix\fR" 4
-.IX Item "-mno-fast-fix"
-.PD
-The C3x/C4x \s-1FIX\s0 instruction to convert a floating point value to an
-integer value chooses the nearest integer less than or equal to the
-floating point value rather than to the nearest integer. Thus if the
-floating point number is negative, the result will be incorrectly
-truncated an additional code is necessary to detect and correct this
-case. This option can be used to disable generation of the additional
-code required to correct the result.
-.Ip "\fB\-mrptb\fR" 4
-.IX Item "-mrptb"
-.PD 0
-.Ip "\fB\-mno-rptb\fR" 4
-.IX Item "-mno-rptb"
-.PD
-Enable (disable) generation of repeat block sequences using the \s-1RPTB\s0
-instruction for zero overhead looping. The \s-1RPTB\s0 construct is only used
-for innermost loops that do not call functions or jump across the loop
-boundaries. There is no advantage having nested \s-1RPTB\s0 loops due to the
-overhead required to save and restore the \s-1RC\s0, \s-1RS\s0, and \s-1RE\s0 registers.
-This is enabled by default with \fB\-O2\fR.
-.Ip "\fB\-mrpts=\fR\fIcount\fR" 4
-.IX Item "-mrpts=count"
-.PD 0
-.Ip "\fB\-mno-rpts\fR" 4
-.IX Item "-mno-rpts"
-.PD
-Enable (disable) the use of the single instruction repeat instruction
-\&\s-1RPTS\s0. If a repeat block contains a single instruction, and the loop
-count can be guaranteed to be less than the value \fIcount\fR, \s-1GCC\s0 will
-emit a \s-1RPTS\s0 instruction instead of a \s-1RPTB\s0. If no value is specified,
-then a \s-1RPTS\s0 will be emitted even if the loop count cannot be determined
-at compile time. Note that the repeated instruction following \s-1RPTS\s0 does
-not have to be reloaded from memory each iteration, thus freeing up the
-\&\s-1CPU\s0 buses for operands. However, since interrupts are blocked by this
-instruction, it is disabled by default.
-.Ip "\fB\-mloop-unsigned\fR" 4
-.IX Item "-mloop-unsigned"
-.PD 0
-.Ip "\fB\-mno-loop-unsigned\fR" 4
-.IX Item "-mno-loop-unsigned"
-.PD
-The maximum iteration count when using \s-1RPTS\s0 and \s-1RPTB\s0 (and \s-1DB\s0 on the C40)
-is 2^{31 + 1} since these instructions test if the iteration count is
-negative to terminate the loop. If the iteration count is unsigned
-there is a possibility than the 2^{31 + 1} maximum iteration count may be
-exceeded. This switch allows an unsigned iteration count.
-.Ip "\fB\-mti\fR" 4
-.IX Item "-mti"
-Try to emit an assembler syntax that the \s-1TI\s0 assembler (asm30) is happy
-with. This also enforces compatibility with the \s-1API\s0 employed by the \s-1TI\s0
-C3x C compiler. For example, long doubles are passed as structures
-rather than in floating point registers.
-.Ip "\fB\-mregparm\fR" 4
-.IX Item "-mregparm"
-.PD 0
-.Ip "\fB\-mmemparm\fR" 4
-.IX Item "-mmemparm"
-.PD
-Generate code that uses registers (stack) for passing arguments to functions.
-By default, arguments are passed in registers where possible rather
-than by pushing arguments on to the stack.
-.Ip "\fB\-mparallel-insns\fR" 4
-.IX Item "-mparallel-insns"
-.PD 0
-.Ip "\fB\-mno-parallel-insns\fR" 4
-.IX Item "-mno-parallel-insns"
-.PD
-Allow the generation of parallel instructions. This is enabled by
-default with \fB\-O2\fR.
-.Ip "\fB\-mparallel-mpy\fR" 4
-.IX Item "-mparallel-mpy"
-.PD 0
-.Ip "\fB\-mno-parallel-mpy\fR" 4
-.IX Item "-mno-parallel-mpy"
-.PD
-Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
-provided \fB\-mparallel-insns\fR is also specified. These instructions have
-tight register constraints which can pessimize the code generation
-of large functions.
-.PP
-.I "V850 Options"
-.IX Subsection "V850 Options"
-.PP
-These \fB\-m\fR options are defined for V850 implementations:
-.Ip "\fB\-mlong-calls\fR" 4
-.IX Item "-mlong-calls"
-.PD 0
-.Ip "\fB\-mno-long-calls\fR" 4
-.IX Item "-mno-long-calls"
-.PD
-Treat all calls as being far away (near). If calls are assumed to be
-far away, the compiler will always load the functions address up into a
-register, and call indirect through the pointer.
-.Ip "\fB\-mno-ep\fR" 4
-.IX Item "-mno-ep"
-.PD 0
-.Ip "\fB\-mep\fR" 4
-.IX Item "-mep"
-.PD
-Do not optimize (do optimize) basic blocks that use the same index
-pointer 4 or more times to copy pointer into the \f(CW\*(C`ep\*(C'\fR register, and
-use the shorter \f(CW\*(C`sld\*(C'\fR and \f(CW\*(C`sst\*(C'\fR instructions. The \fB\-mep\fR
-option is on by default if you optimize.
-.Ip "\fB\-mno-prolog-function\fR" 4
-.IX Item "-mno-prolog-function"
-.PD 0
-.Ip "\fB\-mprolog-function\fR" 4
-.IX Item "-mprolog-function"
-.PD
-Do not use (do use) external functions to save and restore registers at
-the prolog and epilog of a function. The external functions are slower,
-but use less code space if more than one function saves the same number
-of registers. The \fB\-mprolog-function\fR option is on by default if
-you optimize.
-.Ip "\fB\-mspace\fR" 4
-.IX Item "-mspace"
-Try to make the code as small as possible. At present, this just turns
-on the \fB\-mep\fR and \fB\-mprolog-function\fR options.
-.Ip "\fB\-mtda=\fR\fIn\fR" 4
-.IX Item "-mtda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the tiny data area that register \f(CW\*(C`ep\*(C'\fR points to. The tiny data
-area can hold up to 256 bytes in total (128 bytes for byte references).
-.Ip "\fB\-msda=\fR\fIn\fR" 4
-.IX Item "-msda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the small data area that register \f(CW\*(C`gp\*(C'\fR points to. The small data
-area can hold up to 64 kilobytes.
-.Ip "\fB\-mzda=\fR\fIn\fR" 4
-.IX Item "-mzda=n"
-Put static or global variables whose size is \fIn\fR bytes or less into
-the first 32 kilobytes of memory.
-.Ip "\fB\-mv850\fR" 4
-.IX Item "-mv850"
-Specify that the target processor is the V850.
-.Ip "\fB\-mbig-switch\fR" 4
-.IX Item "-mbig-switch"
-Generate code suitable for big switch tables. Use this option only if
-the assembler/linker complain about out of range branches within a switch
-table.
-.PP
-.I "\s-1ARC\s0 Options"
-.IX Subsection "ARC Options"
-.PP
-These options are defined for \s-1ARC\s0 implementations:
-.Ip "\fB\-EL\fR" 4
-.IX Item "-EL"
-Compile code for little endian mode. This is the default.
-.Ip "\fB\-EB\fR" 4
-.IX Item "-EB"
-Compile code for big endian mode.
-.Ip "\fB\-mmangle-cpu\fR" 4
-.IX Item "-mmangle-cpu"
-Prepend the name of the cpu to all public symbol names.
-In multiple-processor systems, there are many \s-1ARC\s0 variants with different
-instruction and register set characteristics. This flag prevents code
-compiled for one cpu to be linked with code compiled for another.
-No facility exists for handling variants that are ``almost identical''.
-This is an all or nothing option.
-.Ip "\fB\-mcpu=\fR\fIcpu\fR" 4
-.IX Item "-mcpu=cpu"
-Compile code for \s-1ARC\s0 variant \fIcpu\fR.
-Which variants are supported depend on the configuration.
-All variants support \fB\-mcpu=base\fR, this is the default.
-.Ip "\fB\-mtext=\fR\fItext-section\fR" 4
-.IX Item "-mtext=text-section"
-.PD 0
-.Ip "\fB\-mdata=\fR\fIdata-section\fR" 4
-.IX Item "-mdata=data-section"
-.Ip "\fB\-mrodata=\fR\fIreadonly-data-section\fR" 4
-.IX Item "-mrodata=readonly-data-section"
-.PD
-Put functions, data, and readonly data in \fItext-section\fR,
-\&\fIdata-section\fR, and \fIreadonly-data-section\fR respectively
-by default. This can be overridden with the \f(CW\*(C`section\*(C'\fR attribute.
-.PP
-.I "\s-1NS32K\s0 Options"
-.IX Subsection "NS32K Options"
-.PP
-These are the \fB\-m\fR options defined for the 32000 series. The default
-values for these options depends on which style of 32000 was selected when
-the compiler was configured; the defaults for the most common choices are
-given below.
-.Ip "\fB\-m32032\fR" 4
-.IX Item "-m32032"
-.PD 0
-.Ip "\fB\-m32032\fR" 4
-.IX Item "-m32032"
-.PD
-Generate output for a 32032. This is the default
-when the compiler is configured for 32032 and 32016 based systems.
-.Ip "\fB\-m32332\fR" 4
-.IX Item "-m32332"
-.PD 0
-.Ip "\fB\-m32332\fR" 4
-.IX Item "-m32332"
-.PD
-Generate output for a 32332. This is the default
-when the compiler is configured for 32332\-based systems.
-.Ip "\fB\-m32532\fR" 4
-.IX Item "-m32532"
-.PD 0
-.Ip "\fB\-m32532\fR" 4
-.IX Item "-m32532"
-.PD
-Generate output for a 32532. This is the default
-when the compiler is configured for 32532\-based systems.
-.Ip "\fB\-m32081\fR" 4
-.IX Item "-m32081"
-Generate output containing 32081 instructions for floating point.
-This is the default for all systems.
-.Ip "\fB\-m32381\fR" 4
-.IX Item "-m32381"
-Generate output containing 32381 instructions for floating point. This
-also implies \fB\-m32081\fR. The 32381 is only compatible with the 32332
-and 32532 cpus. This is the default for the pc532\-netbsd configuration.
-.Ip "\fB\-mmulti-add\fR" 4
-.IX Item "-mmulti-add"
-Try and generate multiply-add floating point instructions \f(CW\*(C`polyF\*(C'\fR
-and \f(CW\*(C`dotF\*(C'\fR. This option is only available if the \fB\-m32381\fR
-option is in effect. Using these instructions requires changes to
-register allocation which generally has a negative impact on
-performance. This option should only be enabled when compiling code
-particularly likely to make heavy use of multiply-add instructions.
-.Ip "\fB\-mnomulti-add\fR" 4
-.IX Item "-mnomulti-add"
-Do not try and generate multiply-add floating point instructions
-\&\f(CW\*(C`polyF\*(C'\fR and \f(CW\*(C`dotF\*(C'\fR. This is the default on all platforms.
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Generate output containing library calls for floating point.
-\&\fBWarning:\fR the requisite libraries may not be available.
-.Ip "\fB\-mnobitfield\fR" 4
-.IX Item "-mnobitfield"
-Do not use the bit-field instructions. On some machines it is faster to
-use shifting and masking operations. This is the default for the pc532.
-.Ip "\fB\-mbitfield\fR" 4
-.IX Item "-mbitfield"
-Do use the bit-field instructions. This is the default for all platforms
-except the pc532.
-.Ip "\fB\-mrtd\fR" 4
-.IX Item "-mrtd"
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return pop their
-arguments on return with the \f(CW\*(C`ret\*(C'\fR instruction.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
-otherwise incorrect code will be generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Sp
-This option takes its name from the 680x0 \f(CW\*(C`rtd\*(C'\fR instruction.
-.Ip "\fB\-mregparam\fR" 4
-.IX Item "-mregparam"
-Use a different function-calling convention where the first two arguments
-are passed in registers.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Ip "\fB\-mnoregparam\fR" 4
-.IX Item "-mnoregparam"
-Do not pass any arguments in registers. This is the default for all
-targets.
-.Ip "\fB\-msb\fR" 4
-.IX Item "-msb"
-It is \s-1OK\s0 to use the sb as an index register which is always loaded with
-zero. This is the default for the pc532\-netbsd target.
-.Ip "\fB\-mnosb\fR" 4
-.IX Item "-mnosb"
-The sb register is not available for use or has not been initialized to
-zero by the run time system. This is the default for all targets except
-the pc532\-netbsd. It is also implied whenever \fB\-mhimem\fR or
-\&\fB\-fpic\fR is set.
-.Ip "\fB\-mhimem\fR" 4
-.IX Item "-mhimem"
-Many ns32000 series addressing modes use displacements of up to 512MB.
-If an address is above 512MB then displacements from zero can not be used.
-This option causes code to be generated which can be loaded above 512MB.
-This may be useful for operating systems or \s-1ROM\s0 code.
-.Ip "\fB\-mnohimem\fR" 4
-.IX Item "-mnohimem"
-Assume code will be loaded in the first 512MB of virtual address space.
-This is the default for all platforms.
-.PP
-.I "\s-1AVR\s0 Options"
-.IX Subsection "AVR Options"
-.PP
-These options are defined for \s-1AVR\s0 implementations:
-.Ip "\fB\-mmcu=\fR\fImcu\fR" 4
-.IX Item "-mmcu=mcu"
-Specify \s-1ATMEL\s0 \s-1AVR\s0 instruction set or \s-1MCU\s0 type.
-.Sp
-Instruction set avr1 is for the minimal \s-1AVR\s0 core, not supported by the C
-compiler, only for assembler programs (\s-1MCU\s0 types: at90s1200, attiny10,
-attiny11, attiny12, attiny15, attiny28).
-.Sp
-Instruction set avr2 (default) is for the classic \s-1AVR\s0 core with up to
-8K program memory space (\s-1MCU\s0 types: at90s2313, at90s2323, attiny22,
-at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
-at90c8534, at90s8535).
-.Sp
-Instruction set avr3 is for the classic \s-1AVR\s0 core with up to 128K program
-memory space (\s-1MCU\s0 types: atmega103, atmega603, at43usb320, at76c711).
-.Sp
-Instruction set avr4 is for the enhanced \s-1AVR\s0 core with up to 8K program
-memory space (\s-1MCU\s0 types: atmega8, atmega83, atmega85).
-.Sp
-Instruction set avr5 is for the enhanced \s-1AVR\s0 core with up to 128K program
-memory space (\s-1MCU\s0 types: atmega16, atmega161, atmega163, atmega32, atmega323,
-atmega64, atmega128, at43usb355, at94k).
-.Ip "\fB\-msize\fR" 4
-.IX Item "-msize"
-Output instruction sizes to the asm file.
-.Ip "\fB\-minit-stack=\fR\fIN\fR" 4
-.IX Item "-minit-stack=N"
-Specify the initial stack address, which may be a symbol or numeric value,
-\&\fB_\|_stack\fR is the default.
-.Ip "\fB\-mno-interrupts\fR" 4
-.IX Item "-mno-interrupts"
-Generated code is not compatible with hardware interrupts.
-Code size will be smaller.
-.Ip "\fB\-mcall-prologues\fR" 4
-.IX Item "-mcall-prologues"
-Functions prologues/epilogues expanded as call to appropriate
-subroutines. Code size will be smaller.
-.Ip "\fB\-mno-tablejump\fR" 4
-.IX Item "-mno-tablejump"
-Do not generate tablejump insns which sometimes increase code size.
-.Ip "\fB\-mtiny-stack\fR" 4
-.IX Item "-mtiny-stack"
-Change only the low 8 bits of the stack pointer.
-.PP
-.I "MCore Options"
-.IX Subsection "MCore Options"
-.PP
-These are the \fB\-m\fR options defined for the Motorola M*Core
-processors.
-.Ip "\fB\-mhardlit\fR" 4
-.IX Item "-mhardlit"
-.PD 0
-.Ip "\fB\-mhardlit\fR" 4
-.IX Item "-mhardlit"
-.Ip "\fB\-mno-hardlit\fR" 4
-.IX Item "-mno-hardlit"
-.PD
-Inline constants into the code stream if it can be done in two
-instructions or less.
-.Ip "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.PD 0
-.Ip "\fB\-mdiv\fR" 4
-.IX Item "-mdiv"
-.Ip "\fB\-mno-div\fR" 4
-.IX Item "-mno-div"
-.PD
-Use the divide instruction. (Enabled by default).
-.Ip "\fB\-mrelax-immediate\fR" 4
-.IX Item "-mrelax-immediate"
-.PD 0
-.Ip "\fB\-mrelax-immediate\fR" 4
-.IX Item "-mrelax-immediate"
-.Ip "\fB\-mno-relax-immediate\fR" 4
-.IX Item "-mno-relax-immediate"
-.PD
-Allow arbitrary sized immediates in bit operations.
-.Ip "\fB\-mwide-bitfields\fR" 4
-.IX Item "-mwide-bitfields"
-.PD 0
-.Ip "\fB\-mwide-bitfields\fR" 4
-.IX Item "-mwide-bitfields"
-.Ip "\fB\-mno-wide-bitfields\fR" 4
-.IX Item "-mno-wide-bitfields"
-.PD
-Always treat bit-fields as int-sized.
-.Ip "\fB\-m4byte-functions\fR" 4
-.IX Item "-m4byte-functions"
-.PD 0
-.Ip "\fB\-m4byte-functions\fR" 4
-.IX Item "-m4byte-functions"
-.Ip "\fB\-mno-4byte-functions\fR" 4
-.IX Item "-mno-4byte-functions"
-.PD
-Force all functions to be aligned to a four byte boundary.
-.Ip "\fB\-mcallgraph-data\fR" 4
-.IX Item "-mcallgraph-data"
-.PD 0
-.Ip "\fB\-mcallgraph-data\fR" 4
-.IX Item "-mcallgraph-data"
-.Ip "\fB\-mno-callgraph-data\fR" 4
-.IX Item "-mno-callgraph-data"
-.PD
-Emit callgraph information.
-.Ip "\fB\-mslow-bytes\fR" 4
-.IX Item "-mslow-bytes"
-.PD 0
-.Ip "\fB\-mslow-bytes\fR" 4
-.IX Item "-mslow-bytes"
-.Ip "\fB\-mno-slow-bytes\fR" 4
-.IX Item "-mno-slow-bytes"
-.PD
-Prefer word access when reading byte quantities.
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD 0
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-.Ip "\fB\-mbig-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD
-Generate code for a little endian target.
-.Ip "\fB\-m210\fR" 4
-.IX Item "-m210"
-.PD 0
-.Ip "\fB\-m210\fR" 4
-.IX Item "-m210"
-.Ip "\fB\-m340\fR" 4
-.IX Item "-m340"
-.PD
-Generate code for the 210 processor.
-.PP
-.I "\s-1IA-64\s0 Options"
-.IX Subsection "IA-64 Options"
-.PP
-These are the \fB\-m\fR options defined for the Intel \s-1IA-64\s0 architecture.
-.Ip "\fB\-mbig-endian\fR" 4
-.IX Item "-mbig-endian"
-Generate code for a big endian target. This is the default for \s-1HPUX\s0.
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-Generate code for a little endian target. This is the default for \s-1AIX5\s0
-and Linux.
-.Ip "\fB\-mgnu-as\fR" 4
-.IX Item "-mgnu-as"
-.PD 0
-.Ip "\fB\-mno-gnu-as\fR" 4
-.IX Item "-mno-gnu-as"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 assembler. This is the default.
-.Ip "\fB\-mgnu-ld\fR" 4
-.IX Item "-mgnu-ld"
-.PD 0
-.Ip "\fB\-mno-gnu-ld\fR" 4
-.IX Item "-mno-gnu-ld"
-.PD
-Generate (or don't) code for the \s-1GNU\s0 linker. This is the default.
-.Ip "\fB\-mno-pic\fR" 4
-.IX Item "-mno-pic"
-Generate code that does not use a global pointer register. The result
-is not position independent code, and violates the \s-1IA-64\s0 \s-1ABI\s0.
-.Ip "\fB\-mvolatile-asm-stop\fR" 4
-.IX Item "-mvolatile-asm-stop"
-.PD 0
-.Ip "\fB\-mno-volatile-asm-stop\fR" 4
-.IX Item "-mno-volatile-asm-stop"
-.PD
-Generate (or don't) a stop bit immediately before and after volatile asm
-statements.
-.Ip "\fB\-mb-step\fR" 4
-.IX Item "-mb-step"
-Generate code that works around Itanium B step errata.
-.Ip "\fB\-mregister-names\fR" 4
-.IX Item "-mregister-names"
-.PD 0
-.Ip "\fB\-mno-register-names\fR" 4
-.IX Item "-mno-register-names"
-.PD
-Generate (or don't) \fBin\fR, \fBloc\fR, and \fBout\fR register names for
-the stacked registers. This may make assembler output more readable.
-.Ip "\fB\-mno-sdata\fR" 4
-.IX Item "-mno-sdata"
-.PD 0
-.Ip "\fB\-msdata\fR" 4
-.IX Item "-msdata"
-.PD
-Disable (or enable) optimizations that use the small data section. This may
-be useful for working around optimizer bugs.
-.Ip "\fB\-mconstant-gp\fR" 4
-.IX Item "-mconstant-gp"
-Generate code that uses a single constant global pointer value. This is
-useful when compiling kernel code.
-.Ip "\fB\-mauto-pic\fR" 4
-.IX Item "-mauto-pic"
-Generate code that is self-relocatable. This implies \fB\-mconstant-gp\fR.
-This is useful when compiling firmware code.
-.Ip "\fB\-minline-divide-min-latency\fR" 4
-.IX Item "-minline-divide-min-latency"
-Generate code for inline divides using the minimum latency algorithm.
-.Ip "\fB\-minline-divide-max-throughput\fR" 4
-.IX Item "-minline-divide-max-throughput"
-Generate code for inline divides using the maximum throughput algorithm.
-.Ip "\fB\-mno-dwarf2\-asm\fR" 4
-.IX Item "-mno-dwarf2-asm"
-.PD 0
-.Ip "\fB\-mdwarf2\-asm\fR" 4
-.IX Item "-mdwarf2-asm"
-.PD
-Don't (or do) generate assembler code for the \s-1DWARF2\s0 line number debugging
-info. This may be useful when not using the \s-1GNU\s0 assembler.
-.Ip "\fB\-mfixed-range=\fR\fIregister-range\fR" 4
-.IX Item "-mfixed-range=register-range"
-Generate code treating the given register range as fixed registers.
-A fixed register is one that the register allocator can not use. This is
-useful when compiling kernel code. A register range is specified as
-two registers separated by a dash. Multiple register ranges can be
-specified separated by a comma.
-.PP
-.I "D30V Options"
-.IX Subsection "D30V Options"
-.PP
-These \fB\-m\fR options are defined for D30V implementations:
-.Ip "\fB\-mextmem\fR" 4
-.IX Item "-mextmem"
-Link the \fB.text\fR, \fB.data\fR, \fB.bss\fR, \fB.strings\fR,
-\&\fB.rodata\fR, \fB.rodata1\fR, \fB.data1\fR sections into external
-memory, which starts at location \f(CW\*(C`0x80000000\*(C'\fR.
-.Ip "\fB\-mextmemory\fR" 4
-.IX Item "-mextmemory"
-Same as the \fB\-mextmem\fR switch.
-.Ip "\fB\-monchip\fR" 4
-.IX Item "-monchip"
-Link the \fB.text\fR section into onchip text memory, which starts at
-location \f(CW\*(C`0x0\*(C'\fR. Also link \fB.data\fR, \fB.bss\fR,
-\&\fB.strings\fR, \fB.rodata\fR, \fB.rodata1\fR, \fB.data1\fR sections
-into onchip data memory, which starts at location \f(CW\*(C`0x20000000\*(C'\fR.
-.Ip "\fB\-mno-asm-optimize\fR" 4
-.IX Item "-mno-asm-optimize"
-.PD 0
-.Ip "\fB\-masm-optimize\fR" 4
-.IX Item "-masm-optimize"
-.PD
-Disable (enable) passing \fB\-O\fR to the assembler when optimizing.
-The assembler uses the \fB\-O\fR option to automatically parallelize
-adjacent short instructions where possible.
-.Ip "\fB\-mbranch-cost=\fR\fIn\fR" 4
-.IX Item "-mbranch-cost=n"
-Increase the internal costs of branches to \fIn\fR. Higher costs means
-that the compiler will issue more instructions to avoid doing a branch.
-The default is 2.
-.Ip "\fB\-mcond-exec=\fR\fIn\fR" 4
-.IX Item "-mcond-exec=n"
-Specify the maximum number of conditionally executed instructions that
-replace a branch. The default is 4.
-.PP
-.I "S/390 and zSeries Options"
-.IX Subsection "S/390 and zSeries Options"
-.PP
-These are the \fB\-m\fR options defined for the S/390 and zSeries architecture.
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Use (do not use) the hardware floating-point instructions and registers
-for floating-point operations. When \fB\-msoft-float\fR is specified,
-functions in \fIlibgcc.a\fR will be used to perform floating-point
-operations. When \fB\-mhard-float\fR is specified, the compiler
-generates \s-1IEEE\s0 floating-point instructions. This is the default.
-.Ip "\fB\-mbackchain\fR" 4
-.IX Item "-mbackchain"
-.PD 0
-.Ip "\fB\-mno-backchain\fR" 4
-.IX Item "-mno-backchain"
-.PD
-Generate (or do not generate) code which maintains an explicit
-backchain within the stack frame that points to the caller's frame.
-This is currently needed to allow debugging. The default is to
-generate the backchain.
-.Ip "\fB\-msmall-exec\fR" 4
-.IX Item "-msmall-exec"
-.PD 0
-.Ip "\fB\-mno-small-exec\fR" 4
-.IX Item "-mno-small-exec"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`bras\*(C'\fR instruction
-to do subroutine calls.
-This only works reliably if the total executable size does not
-exceed 64k. The default is to use the \f(CW\*(C`basr\*(C'\fR instruction instead,
-which does not have this limitation.
-.Ip "\fB\-m64\fR" 4
-.IX Item "-m64"
-.PD 0
-.Ip "\fB\-m31\fR" 4
-.IX Item "-m31"
-.PD
-When \fB\-m31\fR is specified, generate code compliant to the
-Linux for S/390 \s-1ABI\s0. When \fB\-m64\fR is specified, generate
-code compliant to the Linux for zSeries \s-1ABI\s0. This allows \s-1GCC\s0 in
-particular to generate 64\-bit instructions. For the \fBs390\fR
-targets, the default is \fB\-m31\fR, while the \fBs390x\fR
-targets default to \fB\-m64\fR.
-.Ip "\fB\-mmvcle\fR" 4
-.IX Item "-mmvcle"
-.PD 0
-.Ip "\fB\-mno-mvcle\fR" 4
-.IX Item "-mno-mvcle"
-.PD
-Generate (or do not generate) code using the \f(CW\*(C`mvcle\*(C'\fR instruction
-to perform block moves. When \fB\-mno-mvcle\fR is specifed,
-use a \f(CW\*(C`mvc\*(C'\fR loop instead. This is the default.
-.Ip "\fB\-mdebug\fR" 4
-.IX Item "-mdebug"
-.PD 0
-.Ip "\fB\-mno-debug\fR" 4
-.IX Item "-mno-debug"
-.PD
-Print (or do not print) additional debug information when compiling.
-The default is to not print debug information.
-.PP
-.I "\s-1CRIS\s0 Options"
-.IX Subsection "CRIS Options"
-.PP
-These options are defined specifically for the \s-1CRIS\s0 ports.
-.Ip "\fB\-march=\fR\fIarchitecture-type\fR" 4
-.IX Item "-march=architecture-type"
-.PD 0
-.Ip "\fB\-mcpu=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mcpu=architecture-type"
-.PD
-Generate code for the specified architecture. The choices for
-\&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for
-respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0.
-Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is
-\&\fBv10\fR.
-.Ip "\fB\-mtune=\fR\fIarchitecture-type\fR" 4
-.IX Item "-mtune=architecture-type"
-Tune to \fIarchitecture-type\fR everything applicable about the generated
-code, except for the \s-1ABI\s0 and the set of available instructions. The
-choices for \fIarchitecture-type\fR are the same as for
-\&\fB\-march=\fR\fIarchitecture-type\fR.
-.Ip "\fB\-mmax-stack-frame=\fR\fIn\fR" 4
-.IX Item "-mmax-stack-frame=n"
-Warn when the stack frame of a function exceeds \fIn\fR bytes.
-.Ip "\fB\-melinux-stacksize=\fR\fIn\fR" 4
-.IX Item "-melinux-stacksize=n"
-Only available with the \fBcris-axis-aout\fR target. Arranges for
-indications in the program to the kernel loader that the stack of the
-program should be set to \fIn\fR bytes.
-.Ip "\fB\-metrax4\fR" 4
-.IX Item "-metrax4"
-.PD 0
-.Ip "\fB\-metrax100\fR" 4
-.IX Item "-metrax100"
-.PD
-The options \fB\-metrax4\fR and \fB\-metrax100\fR are synonyms for
-\&\fB\-march=v3\fR and \fB\-march=v8\fR respectively.
-.Ip "\fB\-mpdebug\fR" 4
-.IX Item "-mpdebug"
-Enable CRIS-specific verbose debug-related information in the assembly
-code. This option also has the effect to turn off the \fB#NO_APP\fR
-formatted-code indicator to the assembler at the beginning of the
-assembly file.
-.Ip "\fB\-mcc-init\fR" 4
-.IX Item "-mcc-init"
-Do not use condition-code results from previous instruction; always emit
-compare and test instructions before use of condition codes.
-.Ip "\fB\-mno-side-effects\fR" 4
-.IX Item "-mno-side-effects"
-Do not emit instructions with side-effects in addressing modes other than
-post-increment.
-.Ip "\fB\-mstack-align\fR" 4
-.IX Item "-mstack-align"
-.PD 0
-.Ip "\fB\-mno-stack-align\fR" 4
-.IX Item "-mno-stack-align"
-.Ip "\fB\-mdata-align\fR" 4
-.IX Item "-mdata-align"
-.Ip "\fB\-mno-data-align\fR" 4
-.IX Item "-mno-data-align"
-.Ip "\fB\-mconst-align\fR" 4
-.IX Item "-mconst-align"
-.Ip "\fB\-mno-const-align\fR" 4
-.IX Item "-mno-const-align"
-.PD
-These options (no-options) arranges (eliminate arrangements) for the
-stack-frame, individual data and constants to be aligned for the maximum
-single data access size for the chosen \s-1CPU\s0 model. The default is to
-arrange for 32\-bit alignment. \s-1ABI\s0 details such as structure layout are
-not affected by these options.
-.Ip "\fB\-m32\-bit\fR" 4
-.IX Item "-m32-bit"
-.PD 0
-.Ip "\fB\-m16\-bit\fR" 4
-.IX Item "-m16-bit"
-.Ip "\fB\-m8\-bit\fR" 4
-.IX Item "-m8-bit"
-.PD
-Similar to the stack- data- and const-align options above, these options
-arrange for stack-frame, writable data and constants to all be 32\-bit,
-16\-bit or 8\-bit aligned. The default is 32\-bit alignment.
-.Ip "\fB\-mno-prologue-epilogue\fR" 4
-.IX Item "-mno-prologue-epilogue"
-.PD 0
-.Ip "\fB\-mprologue-epilogue\fR" 4
-.IX Item "-mprologue-epilogue"
-.PD
-With \fB\-mno-prologue-epilogue\fR, the normal function prologue and
-epilogue that sets up the stack-frame are omitted and no return
-instructions or return sequences are generated in the code. Use this
-option only together with visual inspection of the compiled code: no
-warnings or errors are generated when call-saved registers must be saved,
-or storage for local variable needs to be allocated.
-.Ip "\fB\-mno-gotplt\fR" 4
-.IX Item "-mno-gotplt"
-.PD 0
-.Ip "\fB\-mgotplt\fR" 4
-.IX Item "-mgotplt"
-.PD
-With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate)
-instruction sequences that load addresses for functions from the \s-1PLT\s0 part
-of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the
-\&\s-1PLT\s0. The default is \fB\-mgotplt\fR.
-.Ip "\fB\-maout\fR" 4
-.IX Item "-maout"
-Legacy no-op option only recognized with the cris-axis-aout target.
-.Ip "\fB\-melf\fR" 4
-.IX Item "-melf"
-Legacy no-op option only recognized with the cris-axis-elf and
-cris-axis-linux-gnu targets.
-.Ip "\fB\-melinux\fR" 4
-.IX Item "-melinux"
-Only recognized with the cris-axis-aout target, where it selects a
-GNU/linux-like multilib, include files and instruction set for
-\&\fB\-march=v8\fR.
-.Ip "\fB\-mlinux\fR" 4
-.IX Item "-mlinux"
-Legacy no-op option only recognized with the cris-axis-linux-gnu target.
-.Ip "\fB\-sim\fR" 4
-.IX Item "-sim"
-This option, recognized for the cris-axis-aout and cris-axis-elf arranges
-to link with input-output functions from a simulator library. Code,
-initialized data and zero-initialized data are allocated consecutively.
-.Ip "\fB\-sim2\fR" 4
-.IX Item "-sim2"
-Like \fB\-sim\fR, but pass linker options to locate initialized data at
-0x40000000 and zero-initialized data at 0x80000000.
-.PP
-.I "\s-1MMIX\s0 Options"
-.IX Subsection "MMIX Options"
-.PP
-These options are defined for the \s-1MMIX:\s0
-.Ip "\fB\-mlibfuncs\fR" 4
-.IX Item "-mlibfuncs"
-.PD 0
-.Ip "\fB\-mno-libfuncs\fR" 4
-.IX Item "-mno-libfuncs"
-.PD
-Specify that intrinsic library functions are being compiled, passing all
-values in registers, no matter the size.
-.Ip "\fB\-mepsilon\fR" 4
-.IX Item "-mepsilon"
-.PD 0
-.Ip "\fB\-mno-epsilon\fR" 4
-.IX Item "-mno-epsilon"
-.PD
-Generate floating-point comparison instructions that compare with respect
-to the \f(CW\*(C`rE\*(C'\fR epsilon register.
-.Ip "\fB\-mabi=mmixware\fR" 4
-.IX Item "-mabi=mmixware"
-.PD 0
-.Ip "\fB\-mabi=gnu\fR" 4
-.IX Item "-mabi=gnu"
-.PD
-Generate code that passes function parameters and return values that (in
-the called function) are seen as registers \f(CW\*(C`$0\*(C'\fR and up, as opposed to
-the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW\*(C`$231\*(C'\fR and up.
-.Ip "\fB\-mzero-extend\fR" 4
-.IX Item "-mzero-extend"
-.PD 0
-.Ip "\fB\-mno-zero-extend\fR" 4
-.IX Item "-mno-zero-extend"
-.PD
-When reading data from memory in sizes shorter than 64 bits, use (do not
-use) zero-extending load instructions by default, rather than
-sign-extending ones.
-.Ip "\fB\-mknuthdiv\fR" 4
-.IX Item "-mknuthdiv"
-.PD 0
-.Ip "\fB\-mno-knuthdiv\fR" 4
-.IX Item "-mno-knuthdiv"
-.PD
-Make the result of a division yielding a remainder have the same sign as
-the divisor. With the default, \fB\-mno-knuthdiv\fR, the sign of the
-remainder follows the sign of the dividend. Both methods are
-arithmetically valid, the latter being almost exclusively used.
-.Ip "\fB\-mtoplevel-symbols\fR" 4
-.IX Item "-mtoplevel-symbols"
-.PD 0
-.Ip "\fB\-mno-toplevel-symbols\fR" 4
-.IX Item "-mno-toplevel-symbols"
-.PD
-Prepend (do not prepend) a \fB:\fR to all global symbols, so the assembly
-code can be used with the \f(CW\*(C`PREFIX\*(C'\fR assembly directive.
-.Ip "\fB\-melf\fR" 4
-.IX Item "-melf"
-Generate an executable in the \s-1ELF\s0 format, rather than the default
-\&\fBmmo\fR format used by the \fBmmix\fR simulator.
-.Ip "\fB\-mbranch-predict\fR" 4
-.IX Item "-mbranch-predict"
-.PD 0
-.Ip "\fB\-mno-branch-predict\fR" 4
-.IX Item "-mno-branch-predict"
-.PD
-Use (do not use) the probable-branch instructions, when static branch
-prediction indicates a probable branch.
-.Ip "\fB\-mbase-addresses\fR" 4
-.IX Item "-mbase-addresses"
-.PD 0
-.Ip "\fB\-mno-base-addresses\fR" 4
-.IX Item "-mno-base-addresses"
-.PD
-Generate (do not generate) code that uses \fIbase addresses\fR. Using a
-base address automatically generates a request (handled by the assembler
-and the linker) for a constant to be set up in a global register. The
-register is used for one or more base address requests within the range 0
-to 255 from the value held in the register. The generally leads to short
-and fast code, but the number of different data items that can be
-addressed is limited. This means that a program that uses lots of static
-data may require \fB\-mno-base-addresses\fR.
-.PP
-.I "\s-1PDP-11\s0 Options"
-.IX Subsection "PDP-11 Options"
-.PP
-These options are defined for the \s-1PDP-11:\s0
-.Ip "\fB\-mfpu\fR" 4
-.IX Item "-mfpu"
-Use hardware \s-1FPP\s0 floating point. This is the default. (\s-1FIS\s0 floating
-point on the \s-1PDP-11/40\s0 is not supported.)
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-Do not use hardware floating point.
-.Ip "\fB\-mac0\fR" 4
-.IX Item "-mac0"
-Return floating-point results in ac0 (fr0 in Unix assembler syntax).
-.Ip "\fB\-mno-ac0\fR" 4
-.IX Item "-mno-ac0"
-Return floating-point results in memory. This is the default.
-.Ip "\fB\-m40\fR" 4
-.IX Item "-m40"
-Generate code for a \s-1PDP-11/40\s0.
-.Ip "\fB\-m45\fR" 4
-.IX Item "-m45"
-Generate code for a \s-1PDP-11/45\s0. This is the default.
-.Ip "\fB\-m10\fR" 4
-.IX Item "-m10"
-Generate code for a \s-1PDP-11/10\s0.
-.Ip "\fB\-mbcopy-builtin\fR" 4
-.IX Item "-mbcopy-builtin"
-Use inline \f(CW\*(C`movstrhi\*(C'\fR patterns for copying memory. This is the
-default.
-.Ip "\fB\-mbcopy\fR" 4
-.IX Item "-mbcopy"
-Do not use inline \f(CW\*(C`movstrhi\*(C'\fR patterns for copying memory.
-.Ip "\fB\-mint16\fR" 4
-.IX Item "-mint16"
-.PD 0
-.Ip "\fB\-mno-int32\fR" 4
-.IX Item "-mno-int32"
-.PD
-Use 16\-bit \f(CW\*(C`int\*(C'\fR. This is the default.
-.Ip "\fB\-mint32\fR" 4
-.IX Item "-mint32"
-.PD 0
-.Ip "\fB\-mno-int16\fR" 4
-.IX Item "-mno-int16"
-.PD
-Use 32\-bit \f(CW\*(C`int\*(C'\fR.
-.Ip "\fB\-mfloat64\fR" 4
-.IX Item "-mfloat64"
-.PD 0
-.Ip "\fB\-mno-float32\fR" 4
-.IX Item "-mno-float32"
-.PD
-Use 64\-bit \f(CW\*(C`float\*(C'\fR. This is the default.
-.Ip "\fB\-mfloat32\fR" 4
-.IX Item "-mfloat32"
-.PD 0
-.Ip "\fB\-mno-float64\fR" 4
-.IX Item "-mno-float64"
-.PD
-Use 32\-bit \f(CW\*(C`float\*(C'\fR.
-.Ip "\fB\-mabshi\fR" 4
-.IX Item "-mabshi"
-Use \f(CW\*(C`abshi2\*(C'\fR pattern. This is the default.
-.Ip "\fB\-mno-abshi\fR" 4
-.IX Item "-mno-abshi"
-Do not use \f(CW\*(C`abshi2\*(C'\fR pattern.
-.Ip "\fB\-mbranch-expensive\fR" 4
-.IX Item "-mbranch-expensive"
-Pretend that branches are expensive. This is for experimenting with
-code generation only.
-.Ip "\fB\-mbranch-cheap\fR" 4
-.IX Item "-mbranch-cheap"
-Do not pretend that branches are expensive. This is the default.
-.Ip "\fB\-msplit\fR" 4
-.IX Item "-msplit"
-Generate code for a system with split I&D.
-.Ip "\fB\-mno-split\fR" 4
-.IX Item "-mno-split"
-Generate code for a system without split I&D. This is the default.
-.Ip "\fB\-munix-asm\fR" 4
-.IX Item "-munix-asm"
-Use Unix assembler syntax. This is the default when configured for
-\&\fBpdp11\-*\-bsd\fR.
-.Ip "\fB\-mdec-asm\fR" 4
-.IX Item "-mdec-asm"
-Use \s-1DEC\s0 assembler syntax. This is the default when configured for any
-\&\s-1PDP-11\s0 target other than \fBpdp11\-*\-bsd\fR.
-.PP
-.I "Xstormy16 Options"
-.IX Subsection "Xstormy16 Options"
-.PP
-These options are defined for Xstormy16:
-.Ip "\fB\-msim\fR" 4
-.IX Item "-msim"
-Choose startup files and linker script suitable for the simulator.
-.PP
-.I "Xtensa Options"
-.IX Subsection "Xtensa Options"
-.PP
-The Xtensa architecture is designed to support many different
-configurations. The compiler's default options can be set to match a
-particular Xtensa configuration by copying a configuration file into the
-\&\s-1GCC\s0 sources when building \s-1GCC\s0. The options below may be used to
-override the default options.
-.Ip "\fB\-mbig-endian\fR" 4
-.IX Item "-mbig-endian"
-.PD 0
-.Ip "\fB\-mlittle-endian\fR" 4
-.IX Item "-mlittle-endian"
-.PD
-Specify big-endian or little-endian byte ordering for the target Xtensa
-processor.
-.Ip "\fB\-mdensity\fR" 4
-.IX Item "-mdensity"
-.PD 0
-.Ip "\fB\-mno-density\fR" 4
-.IX Item "-mno-density"
-.PD
-Enable or disable use of the optional Xtensa code density instructions.
-.Ip "\fB\-mmac16\fR" 4
-.IX Item "-mmac16"
-.PD 0
-.Ip "\fB\-mno-mac16\fR" 4
-.IX Item "-mno-mac16"
-.PD
-Enable or disable use of the Xtensa \s-1MAC16\s0 option. When enabled, \s-1GCC\s0
-will generate \s-1MAC16\s0 instructions from standard C code, with the
-limitation that it will use neither the \s-1MR\s0 register file nor any
-instruction that operates on the \s-1MR\s0 registers. When this option is
-disabled, \s-1GCC\s0 will translate 16\-bit multiply/accumulate operations to a
-combination of core instructions and library calls, depending on whether
-any other multiplier options are enabled.
-.Ip "\fB\-mmul16\fR" 4
-.IX Item "-mmul16"
-.PD 0
-.Ip "\fB\-mno-mul16\fR" 4
-.IX Item "-mno-mul16"
-.PD
-Enable or disable use of the 16\-bit integer multiplier option. When
-enabled, the compiler will generate 16\-bit multiply instructions for
-multiplications of 16 bits or smaller in standard C code. When this
-option is disabled, the compiler will either use 32\-bit multiply or
-\&\s-1MAC16\s0 instructions if they are available or generate library calls to
-perform the multiply operations using shifts and adds.
-.Ip "\fB\-mmul32\fR" 4
-.IX Item "-mmul32"
-.PD 0
-.Ip "\fB\-mno-mul32\fR" 4
-.IX Item "-mno-mul32"
-.PD
-Enable or disable use of the 32\-bit integer multiplier option. When
-enabled, the compiler will generate 32\-bit multiply instructions for
-multiplications of 32 bits or smaller in standard C code. When this
-option is disabled, the compiler will generate library calls to perform
-the multiply operations using either shifts and adds or 16\-bit multiply
-instructions if they are available.
-.Ip "\fB\-mnsa\fR" 4
-.IX Item "-mnsa"
-.PD 0
-.Ip "\fB\-mno-nsa\fR" 4
-.IX Item "-mno-nsa"
-.PD
-Enable or disable use of the optional normalization shift amount
-(\f(CW\*(C`NSA\*(C'\fR) instructions to implement the built-in \f(CW\*(C`ffs\*(C'\fR function.
-.Ip "\fB\-mminmax\fR" 4
-.IX Item "-mminmax"
-.PD 0
-.Ip "\fB\-mno-minmax\fR" 4
-.IX Item "-mno-minmax"
-.PD
-Enable or disable use of the optional minimum and maximum value
-instructions.
-.Ip "\fB\-msext\fR" 4
-.IX Item "-msext"
-.PD 0
-.Ip "\fB\-mno-sext\fR" 4
-.IX Item "-mno-sext"
-.PD
-Enable or disable use of the optional sign extend (\f(CW\*(C`SEXT\*(C'\fR)
-instruction.
-.Ip "\fB\-mbooleans\fR" 4
-.IX Item "-mbooleans"
-.PD 0
-.Ip "\fB\-mno-booleans\fR" 4
-.IX Item "-mno-booleans"
-.PD
-Enable or disable support for the boolean register file used by Xtensa
-coprocessors. This is not typically useful by itself but may be
-required for other options that make use of the boolean registers (e.g.,
-the floating-point option).
-.Ip "\fB\-mhard-float\fR" 4
-.IX Item "-mhard-float"
-.PD 0
-.Ip "\fB\-msoft-float\fR" 4
-.IX Item "-msoft-float"
-.PD
-Enable or disable use of the floating-point option. When enabled, \s-1GCC\s0
-generates floating-point instructions for 32\-bit \f(CW\*(C`float\*(C'\fR
-operations. When this option is disabled, \s-1GCC\s0 generates library calls
-to emulate 32\-bit floating-point operations using integer instructions.
-Regardless of this option, 64\-bit \f(CW\*(C`double\*(C'\fR operations are always
-emulated with calls to library functions.
-.Ip "\fB\-mfused-madd\fR" 4
-.IX Item "-mfused-madd"
-.PD 0
-.Ip "\fB\-mno-fused-madd\fR" 4
-.IX Item "-mno-fused-madd"
-.PD
-Enable or disable use of fused multiply/add and multiply/subtract
-instructions in the floating-point option. This has no effect if the
-floating-point option is not also enabled. Disabling fused multiply/add
-and multiply/subtract instructions forces the compiler to use separate
-instructions for the multiply and add/subtract operations. This may be
-desirable in some cases where strict \s-1IEEE\s0 754\-compliant results are
-required: the fused multiply add/subtract instructions do not round the
-intermediate result, thereby producing results with \fImore\fR bits of
-precision than specified by the \s-1IEEE\s0 standard. Disabling fused multiply
-add/subtract instructions also ensures that the program output is not
-sensitive to the compiler's ability to combine multiply and add/subtract
-operations.
-.Ip "\fB\-mserialize-volatile\fR" 4
-.IX Item "-mserialize-volatile"
-.PD 0
-.Ip "\fB\-mno-serialize-volatile\fR" 4
-.IX Item "-mno-serialize-volatile"
-.PD
-When this option is enabled, \s-1GCC\s0 inserts \f(CW\*(C`MEMW\*(C'\fR instructions before
-\&\f(CW\*(C`volatile\*(C'\fR memory references to guarantee sequential consistency.
-The default is \fB\-mserialize-volatile\fR. Use
-\&\fB\-mno-serialize-volatile\fR to omit the \f(CW\*(C`MEMW\*(C'\fR instructions.
-.Ip "\fB\-mtext-section-literals\fR" 4
-.IX Item "-mtext-section-literals"
-.PD 0
-.Ip "\fB\-mno-text-section-literals\fR" 4
-.IX Item "-mno-text-section-literals"
-.PD
-Control the treatment of literal pools. The default is
-\&\fB\-mno-text-section-literals\fR, which places literals in a separate
-section in the output file. This allows the literal pool to be placed
-in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal
-pools from separate object files to remove redundant literals and
-improve code size. With \fB\-mtext-section-literals\fR, the literals
-are interspersed in the text section in order to keep them as close as
-possible to their references. This may be necessary for large assembly
-files.
-.Ip "\fB\-mtarget-align\fR" 4
-.IX Item "-mtarget-align"
-.PD 0
-.Ip "\fB\-mno-target-align\fR" 4
-.IX Item "-mno-target-align"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to
-automatically align instructions to reduce branch penalties at the
-expense of some code density. The assembler attempts to widen density
-instructions to align branch targets and the instructions following call
-instructions. If there are not enough preceding safe density
-instructions to align a target, no widening will be performed. The
-default is \fB\-mtarget-align\fR. These options do not affect the
-treatment of auto-aligned instructions like \f(CW\*(C`LOOP\*(C'\fR, which the
-assembler will always align, either by widening density instructions or
-by inserting no-op instructions.
-.Ip "\fB\-mlongcalls\fR" 4
-.IX Item "-mlongcalls"
-.PD 0
-.Ip "\fB\-mno-longcalls\fR" 4
-.IX Item "-mno-longcalls"
-.PD
-When this option is enabled, \s-1GCC\s0 instructs the assembler to translate
-direct calls to indirect calls unless it can determine that the target
-of a direct call is in the range allowed by the call instruction. This
-translation typically occurs for calls to functions in other source
-files. Specifically, the assembler translates a direct \f(CW\*(C`CALL\*(C'\fR
-instruction into an \f(CW\*(C`L32R\*(C'\fR followed by a \f(CW\*(C`CALLX\*(C'\fR instruction.
-The default is \fB\-mno-longcalls\fR. This option should be used in
-programs where the call target can potentially be out of range. This
-option is implemented in the assembler, not the compiler, so the
-assembly code generated by \s-1GCC\s0 will still show direct call
-instructions\-\-\-look at the disassembled object code to see the actual
-instructions. Note that the assembler will use an indirect call for
-every cross-file call, not just those that really will be out of range.
-.Sh "Options for Code Generation Conventions"
-.IX Subsection "Options for Code Generation Conventions"
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them have both positive and negative forms; the negative form
-of \fB\-ffoo\fR would be \fB\-fno-foo\fR. In the table below, only
-one of the forms is listed\-\-\-the one which is not the default. You
-can figure out the other form by either removing \fBno-\fR or adding
-it.
-.Ip "\fB\-fexceptions\fR" 4
-.IX Item "-fexceptions"
-Enable exception handling. Generates extra code needed to propagate
-exceptions. For some targets, this implies \s-1GCC\s0 will generate frame
-unwind information for all functions, which can produce significant data
-size overhead, although it does not affect execution. If you do not
-specify this option, \s-1GCC\s0 will enable it by default for languages like
-\&\*(C+ which normally require exception handling, and disable it for
-languages like C that do not normally require it. However, you may need
-to enable this option when compiling C code that needs to interoperate
-properly with exception handlers written in \*(C+. You may also wish to
-disable this option if you are compiling older \*(C+ programs that don't
-use exception handling.
-.Ip "\fB\-fnon-call-exceptions\fR" 4
-.IX Item "-fnon-call-exceptions"
-Generate code that allows trapping instructions to throw exceptions.
-Note that this requires platform-specific runtime support that does
-not exist everywhere. Moreover, it only allows \fItrapping\fR
-instructions to throw exceptions, i.e. memory references or floating
-point instructions. It does not allow exceptions to be thrown from
-arbitrary signal handlers such as \f(CW\*(C`SIGALRM\*(C'\fR.
-.Ip "\fB\-funwind-tables\fR" 4
-.IX Item "-funwind-tables"
-Similar to \fB\-fexceptions\fR, except that it will just generate any needed
-static data, but will not affect the generated code in any other way.
-You will normally not enable this option; instead, a language processor
-that needs this handling would enable it on your behalf.
-.Ip "\fB\-fasynchronous-unwind-tables\fR" 4
-.IX Item "-fasynchronous-unwind-tables"
-Generate unwind table in dwarf2 format, if supported by target machine. The
-table is exact at each instruction boundary, so it can be used for stack
-unwinding from asynchronous events (such as debugger or garbage collector).
-.Ip "\fB\-fpcc-struct-return\fR" 4
-.IX Item "-fpcc-struct-return"
-Return ``short'' \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in memory like
-longer ones, rather than in registers. This convention is less
-efficient, but it has the advantage of allowing intercallability between
-GCC-compiled files and files compiled with other compilers, particularly
-the Portable C Compiler (pcc).
-.Sp
-The precise convention for returning structures in memory depends
-on the target configuration macros.
-.Sp
-Short structures and unions are those whose size and alignment match
-that of some integer type.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-fpcc-struct-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-freg-struct-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-freg-struct-return\fR" 4
-.IX Item "-freg-struct-return"
-Return \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in registers when possible.
-This is more efficient for small structures than
-\&\fB\-fpcc-struct-return\fR.
-.Sp
-If you specify neither \fB\-fpcc-struct-return\fR nor
-\&\fB\-freg-struct-return\fR, \s-1GCC\s0 defaults to whichever convention is
-standard for the target. If there is no standard convention, \s-1GCC\s0
-defaults to \fB\-fpcc-struct-return\fR, except on targets where \s-1GCC\s0 is
-the principal compiler. In those cases, we can choose the standard, and
-we chose the more efficient register return alternative.
-.Sp
-\&\fBWarning:\fR code compiled with the \fB\-freg-struct-return\fR
-switch is not binary compatible with code compiled with the
-\&\fB\-fpcc-struct-return\fR switch.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-fshort-enums\fR" 4
-.IX Item "-fshort-enums"
-Allocate to an \f(CW\*(C`enum\*(C'\fR type only as many bytes as it needs for the
-declared range of possible values. Specifically, the \f(CW\*(C`enum\*(C'\fR type
-will be equivalent to the smallest integer type which has enough room.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort-enums\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-fshort-double\fR" 4
-.IX Item "-fshort-double"
-Use the same size for \f(CW\*(C`double\*(C'\fR as for \f(CW\*(C`float\*(C'\fR.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort-double\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-fshort-wchar\fR" 4
-.IX Item "-fshort-wchar"
-Override the underlying type for \fBwchar_t\fR to be \fBshort
-unsigned int\fR instead of the default for the target. This option is
-useful for building programs to run under \s-1WINE\s0.
-.Sp
-\&\fBWarning:\fR the \fB\-fshort-wchar\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-fshared-data\fR" 4
-.IX Item "-fshared-data"
-Requests that the data and non-\f(CW\*(C`const\*(C'\fR variables of this
-compilation be shared data rather than private data. The distinction
-makes sense only on certain operating systems, where shared data is
-shared between processes running the same program, while private data
-exists in one copy per process.
-.Ip "\fB\-fno-common\fR" 4
-.IX Item "-fno-common"
-In C, allocate even uninitialized global variables in the data section of the
-object file, rather than generating them as common blocks. This has the
-effect that if the same variable is declared (without \f(CW\*(C`extern\*(C'\fR) in
-two different compilations, you will get an error when you link them.
-The only reason this might be useful is if you wish to verify that the
-program will work on other systems which always work this way.
-.Ip "\fB\-fno-ident\fR" 4
-.IX Item "-fno-ident"
-Ignore the \fB#ident\fR directive.
-.Ip "\fB\-fno-gnu-linker\fR" 4
-.IX Item "-fno-gnu-linker"
-Do not output global initializations (such as \*(C+ constructors and
-destructors) in the form used by the \s-1GNU\s0 linker (on systems where the \s-1GNU\s0
-linker is the standard method of handling them). Use this option when
-you want to use a non-GNU linker, which also requires using the
-\&\fBcollect2\fR program to make sure the system linker includes
-constructors and destructors. (\fBcollect2\fR is included in the \s-1GCC\s0
-distribution.) For systems which \fImust\fR use \fBcollect2\fR, the
-compiler driver \fBgcc\fR is configured to do this automatically.
-.Ip "\fB\-finhibit-size-directive\fR" 4
-.IX Item "-finhibit-size-directive"
-Don't output a \f(CW\*(C`.size\*(C'\fR assembler directive, or anything else that
-would cause trouble if the function is split in the middle, and the
-two halves are placed at locations far apart in memory. This option is
-used when compiling \fIcrtstuff.c\fR; you should not need to use it
-for anything else.
-.Ip "\fB\-fverbose-asm\fR" 4
-.IX Item "-fverbose-asm"
-Put extra commentary information in the generated assembly code to
-make it more readable. This option is generally only of use to those
-who actually need to read the generated assembly code (perhaps while
-debugging the compiler itself).
-.Sp
-\&\fB\-fno-verbose-asm\fR, the default, causes the
-extra information to be omitted and is useful when comparing two assembler
-files.
-.Ip "\fB\-fvolatile\fR" 4
-.IX Item "-fvolatile"
-Consider all memory references through pointers to be volatile.
-.Ip "\fB\-fvolatile-global\fR" 4
-.IX Item "-fvolatile-global"
-Consider all memory references to extern and global data items to
-be volatile. \s-1GCC\s0 does not consider static data items to be volatile
-because of this switch.
-.Ip "\fB\-fvolatile-static\fR" 4
-.IX Item "-fvolatile-static"
-Consider all memory references to static data to be volatile.
-.Ip "\fB\-fpic\fR" 4
-.IX Item "-fpic"
-Generate position-independent code (\s-1PIC\s0) suitable for use in a shared
-library, if supported for the target machine. Such code accesses all
-constant addresses through a global offset table (\s-1GOT\s0). The dynamic
-loader resolves the \s-1GOT\s0 entries when the program starts (the dynamic
-loader is not part of \s-1GCC\s0; it is part of the operating system). If
-the \s-1GOT\s0 size for the linked executable exceeds a machine-specific
-maximum size, you get an error message from the linker indicating that
-\&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR
-instead. (These maximums are 16k on the m88k, 8k on the Sparc, and 32k
-on the m68k and \s-1RS/6000\s0. The 386 has no such limit.)
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V
-but not for the Sun 386i. Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always
-position-independent.
-.Ip "\fB\-fPIC\fR" 4
-.IX Item "-fPIC"
-If supported for the target machine, emit position-independent code,
-suitable for dynamic linking and avoiding any limit on the size of the
-global offset table. This option makes a difference on the m68k, m88k,
-and the Sparc.
-.Sp
-Position-independent code requires special support, and therefore works
-only on certain machines.
-.Ip "\fB\-ffixed-\fR\fIreg\fR" 4
-.IX Item "-ffixed-reg"
-Treat the register named \fIreg\fR as a fixed register; generated code
-should never refer to it (except perhaps as a stack pointer, frame
-pointer or in some other fixed role).
-.Sp
-\&\fIreg\fR must be the name of a register. The register names accepted
-are machine-specific and are defined in the \f(CW\*(C`REGISTER_NAMES\*(C'\fR
-macro in the machine description macro file.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.Ip "\fB\-fcall-used-\fR\fIreg\fR" 4
-.IX Item "-fcall-used-reg"
-Treat the register named \fIreg\fR as an allocable register that is
-clobbered by function calls. It may be allocated for temporaries or
-variables that do not live across a call. Functions compiled this way
-will not save and restore the register \fIreg\fR.
-.Sp
-It is an error to used this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model will produce disastrous results.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.Ip "\fB\-fcall-saved-\fR\fIreg\fR" 4
-.IX Item "-fcall-saved-reg"
-Treat the register named \fIreg\fR as an allocable register saved by
-functions. It may be allocated even for temporaries or variables that
-live across a call. Functions compiled this way will save and restore
-the register \fIreg\fR if they use it.
-.Sp
-It is an error to used this flag with the frame pointer or stack pointer.
-Use of this flag for other registers that have fixed pervasive roles in
-the machine's execution model will produce disastrous results.
-.Sp
-A different sort of disaster will result from the use of this flag for
-a register in which function values may be returned.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.Ip "\fB\-fpack-struct\fR" 4
-.IX Item "-fpack-struct"
-Pack all structure members together without holes.
-.Sp
-\&\fBWarning:\fR the \fB\-fpack-struct\fR switch causes \s-1GCC\s0 to generate
-code that is not binary compatible with code generated without that switch.
-Additionally, it makes the code suboptimial.
-Use it to conform to a non-default application binary interface.
-.Ip "\fB\-finstrument-functions\fR" 4
-.IX Item "-finstrument-functions"
-Generate instrumentation calls for entry and exit to functions. Just
-after function entry and just before function exit, the following
-profiling functions will be called with the address of the current
-function and its call site. (On some platforms,
-\&\f(CW\*(C`_\|_builtin_return_address\*(C'\fR does not work beyond the current
-function, so the call site information may not be available to the
-profiling functions otherwise.)
-.Sp
-.Vb 4
-\& void __cyg_profile_func_enter (void *this_fn,
-\& void *call_site);
-\& void __cyg_profile_func_exit (void *this_fn,
-\& void *call_site);
-.Ve
-The first argument is the address of the start of the current function,
-which may be looked up exactly in the symbol table.
-.Sp
-This instrumentation is also done for functions expanded inline in other
-functions. The profiling calls will indicate where, conceptually, the
-inline function is entered and exited. This means that addressable
-versions of such functions must be available. If all your uses of a
-function are expanded inline, this may mean an additional expansion of
-code size. If you use \fBextern inline\fR in your C code, an
-addressable version of such functions must be provided. (This is
-normally the case anyways, but if you get lucky and the optimizer always
-expands the functions inline, you might have gotten away without
-providing static copies.)
-.Sp
-A function may be given the attribute \f(CW\*(C`no_instrument_function\*(C'\fR, in
-which case this instrumentation will not be done. This can be used, for
-example, for the profiling functions listed above, high-priority
-interrupt routines, and any functions from which the profiling functions
-cannot safely be called (perhaps signal handlers, if the profiling
-routines generate output or allocate memory).
-.Ip "\fB\-fstack-check\fR" 4
-.IX Item "-fstack-check"
-Generate code to verify that you do not go beyond the boundary of the
-stack. You should specify this flag if you are running in an
-environment with multiple threads, but only rarely need to specify it in
-a single-threaded environment since stack overflow is automatically
-detected on nearly all systems if there is only one stack.
-.Sp
-Note that this switch does not actually cause checking to be done; the
-operating system must do that. The switch causes generation of code
-to ensure that the operating system sees the stack being extended.
-.Ip "\fB\-fstack-limit-register=\fR\fIreg\fR" 4
-.IX Item "-fstack-limit-register=reg"
-.PD 0
-.Ip "\fB\-fstack-limit-symbol=\fR\fIsym\fR" 4
-.IX Item "-fstack-limit-symbol=sym"
-.Ip "\fB\-fno-stack-limit\fR" 4
-.IX Item "-fno-stack-limit"
-.PD
-Generate code to ensure that the stack does not grow beyond a certain value,
-either the value of a register or the address of a symbol. If the stack
-would grow beyond the value, a signal is raised. For most targets,
-the signal is raised before the stack overruns the boundary, so
-it is possible to catch the signal without taking special precautions.
-.Sp
-For instance, if the stack starts at absolute address \fB0x80000000\fR
-and grows downwards, you can use the flags
-\&\fB\-fstack-limit-symbol=_\|_stack_limit\fR and
-\&\fB\-Wl,\-\-defsym,_\|_stack_limit=0x7ffe0000\fR to enforce a stack limit
-of 128KB. Note that this may only work with the \s-1GNU\s0 linker.
-.Ip "\fB\-fargument-alias\fR" 4
-.IX Item "-fargument-alias"
-.PD 0
-.Ip "\fB\-fargument-noalias\fR" 4
-.IX Item "-fargument-noalias"
-.Ip "\fB\-fargument-noalias-global\fR" 4
-.IX Item "-fargument-noalias-global"
-.PD
-Specify the possible relationships among parameters and between
-parameters and global data.
-.Sp
-\&\fB\-fargument-alias\fR specifies that arguments (parameters) may
-alias each other and may alias global storage.\fB\-fargument-noalias\fR specifies that arguments do not alias
-each other, but may alias global storage.\fB\-fargument-noalias-global\fR specifies that arguments do not
-alias each other and do not alias global storage.
-.Sp
-Each language will automatically use whatever option is required by
-the language standard. You should not need to use these options yourself.
-.Ip "\fB\-fleading-underscore\fR" 4
-.IX Item "-fleading-underscore"
-This option and its counterpart, \fB\-fno-leading-underscore\fR, forcibly
-change the way C symbols are represented in the object file. One use
-is to help link with legacy assembly code.
-.Sp
-\&\fBWarning:\fR the \fB\-fleading-underscore\fR switch causes \s-1GCC\s0 to
-generate code that is not binary compatible with code generated without that
-switch. Use it to conform to a non-default application binary interface.
-Not all targets provide complete support for this switch.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-This section describes several environment variables that affect how \s-1GCC\s0
-operates. Some of them work by specifying directories or prefixes to use
-when searching for various kinds of files. Some are used to specify other
-aspects of the compilation environment.
-.PP
-Note that you can also specify places to search using options such as
-\&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These
-take precedence over places specified using environment variables, which
-in turn take precedence over those specified by the configuration of \s-1GCC\s0.
-.Ip "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-.PD 0
-.Ip "\fB\s-1LC_CTYPE\s0\fR" 4
-.IX Item "LC_CTYPE"
-.Ip "\fB\s-1LC_MESSAGES\s0\fR" 4
-.IX Item "LC_MESSAGES"
-.Ip "\fB\s-1LC_ALL\s0\fR" 4
-.IX Item "LC_ALL"
-.PD
-These environment variables control the way that \s-1GCC\s0 uses
-localization information that allow \s-1GCC\s0 to work with different
-national conventions. \s-1GCC\s0 inspects the locale categories
-\&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do
-so. These locale categories can be set to any value supported by your
-installation. A typical value is \fBen_UK\fR for English in the United
-Kingdom.
-.Sp
-The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character
-classification. \s-1GCC\s0 uses it to determine the character boundaries in
-a string; this is needed for some multibyte encodings that contain quote
-and escape characters that would otherwise be interpreted as a string
-end or escape.
-.Sp
-The \fB\s-1LC_MESSAGES\s0\fR environment variable specifies the language to
-use in diagnostic messages.
-.Sp
-If the \fB\s-1LC_ALL\s0\fR environment variable is set, it overrides the value
-of \fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR; otherwise, \fB\s-1LC_CTYPE\s0\fR
-and \fB\s-1LC_MESSAGES\s0\fR default to the value of the \fB\s-1LANG\s0\fR
-environment variable. If none of these variables are set, \s-1GCC\s0
-defaults to traditional C English behavior.
-.Ip "\fB\s-1TMPDIR\s0\fR" 4
-.IX Item "TMPDIR"
-If \fB\s-1TMPDIR\s0\fR is set, it specifies the directory to use for temporary
-files. \s-1GCC\s0 uses temporary files to hold the output of one stage of
-compilation which is to be used as input to the next stage: for example,
-the output of the preprocessor, which is the input to the compiler
-proper.
-.Ip "\fB\s-1GCC_EXEC_PREFIX\s0\fR" 4
-.IX Item "GCC_EXEC_PREFIX"
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is set, it specifies a prefix to use in the
-names of the subprograms executed by the compiler. No slash is added
-when this prefix is combined with the name of a subprogram, but you can
-specify a prefix that ends with a slash if you wish.
-.Sp
-If \fB\s-1GCC_EXEC_PREFIX\s0\fR is not set, \s-1GCC\s0 will attempt to figure out
-an appropriate prefix to use based on the pathname it was invoked with.
-.Sp
-If \s-1GCC\s0 cannot find the subprogram using the specified prefix, it
-tries looking in the usual places for the subprogram.
-.Sp
-The default value of \fB\s-1GCC_EXEC_PREFIX\s0\fR is
-\&\fI\fIprefix\fI/lib/gcc-lib/\fR where \fIprefix\fR is the value
-of \f(CW\*(C`prefix\*(C'\fR when you ran the \fIconfigure\fR script.
-.Sp
-Other prefixes specified with \fB\-B\fR take precedence over this prefix.
-.Sp
-This prefix is also used for finding files such as \fIcrt0.o\fR that are
-used for linking.
-.Sp
-In addition, the prefix is used in an unusual way in finding the
-directories to search for header files. For each of the standard
-directories whose name normally begins with \fB/usr/local/lib/gcc-lib\fR
-(more precisely, with the value of \fB\s-1GCC_INCLUDE_DIR\s0\fR), \s-1GCC\s0 tries
-replacing that beginning with the specified prefix to produce an
-alternate directory name. Thus, with \fB\-Bfoo/\fR, \s-1GCC\s0 will search
-\&\fIfoo/bar\fR where it would normally search \fI/usr/local/lib/bar\fR.
-These alternate directories are searched first; the standard directories
-come next.
-.Ip "\fB\s-1COMPILER_PATH\s0\fR" 4
-.IX Item "COMPILER_PATH"
-The value of \fB\s-1COMPILER_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. \s-1GCC\s0 tries the directories thus
-specified when searching for subprograms, if it can't find the
-subprograms using \fB\s-1GCC_EXEC_PREFIX\s0\fR.
-.Ip "\fB\s-1LIBRARY_PATH\s0\fR" 4
-.IX Item "LIBRARY_PATH"
-The value of \fB\s-1LIBRARY_PATH\s0\fR is a colon-separated list of
-directories, much like \fB\s-1PATH\s0\fR. When configured as a native compiler,
-\&\s-1GCC\s0 tries the directories thus specified when searching for special
-linker files, if it can't find them using \fB\s-1GCC_EXEC_PREFIX\s0\fR. Linking
-using \s-1GCC\s0 also uses these directories when searching for ordinary
-libraries for the \fB\-l\fR option (but directories specified with
-\&\fB\-L\fR come first).
-.Ip "\fB\s-1LANG\s0\fR" 4
-.IX Item "LANG"
-This variable is used to pass locale information to the compiler. One way in
-which this information is used is to determine the character set to be used
-when character literals, string literals and comments are parsed in C and \*(C+.
-When the compiler is configured to allow multibyte characters,
-the following values for \fB\s-1LANG\s0\fR are recognized:
-.RS 4
-.Ip "\fBC-JIS\fR" 4
-.IX Item "C-JIS"
-Recognize \s-1JIS\s0 characters.
-.Ip "\fBC-SJIS\fR" 4
-.IX Item "C-SJIS"
-Recognize \s-1SJIS\s0 characters.
-.Ip "\fBC-EUCJP\fR" 4
-.IX Item "C-EUCJP"
-Recognize \s-1EUCJP\s0 characters.
-.RE
-.RS 4
-.Sp
-If \fB\s-1LANG\s0\fR is not defined, or if it has some other value, then the
-compiler will use mblen and mbtowc as defined by the default locale to
-recognize and translate multibyte characters.
-.RE
-.PP
-Some additional environments variables affect the behavior of the
-preprocessor.
-.Ip "\fB\s-1CPATH\s0\fR" 4
-.IX Item "CPATH"
-.PD 0
-.Ip "\fBC_INCLUDE_PATH\fR" 4
-.IX Item "C_INCLUDE_PATH"
-.Ip "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
-.IX Item "CPLUS_INCLUDE_PATH"
-.Ip "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
-.IX Item "OBJC_INCLUDE_PATH"
-.PD
-Each variable's value is a list of directories separated by a special
-character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
-The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
-determined at \s-1GCC\s0 build time. For Windows-based targets it is a
-semicolon, and for almost all other targets it is a colon.
-.Sp
-\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
-specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
-options on the command line. The environment variable is used
-regardless of which language is being preprocessed.
-.Sp
-The remaining environment variables apply only when preprocessing the
-particular language indicated. Each specifies a list of directories
-to be searched as if specified with \fB\-isystem\fR, but after any
-paths given with \fB\-isystem\fR options on the command line.
-.Ip "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
-.IX Item "DEPENDENCIES_OUTPUT"
-@anchor{\s-1DEPENDENCIES_OUTPUT\s0}
-If this variable is set, its value specifies how to output
-dependencies for Make based on the non-system header files processed
-by the compiler. System header files are ignored in the dependency
-output.
-.Sp
-The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
-which case the Make rules are written to that file, guessing the target
-name from the source file name. Or the value can have the form
-\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
-file \fIfile\fR using \fItarget\fR as the target name.
-.Sp
-In other words, this environment variable is equivalent to combining
-the options \fB\-MM\fR and \fB\-MF\fR,
-with an optional \fB\-MT\fR switch too.
-.Ip "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
-.IX Item "SUNPRO_DEPENDENCIES"
-This variable is the same as the environment variable
-\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR, except that
-system header files are not ignored, so it implies \fB\-M\fR rather
-than \fB\-MM\fR. However, the dependence on the main input file is
-omitted.
-.SH "BUGS"
-.IX Header "BUGS"
-For instructions on reporting bugs, see
-<\fBhttp://gcc.gnu.org/bugs.html\fR>. Use of the \fBgccbug\fR
-script to report bugs is recommended.
-.SH "FOOTNOTES"
-.IX Header "FOOTNOTES"
-.Ip "1." 4
-On some systems, \fBgcc \-shared\fR
-needs to build supplementary stub code for constructors to work. On
-multi-libbed systems, \fBgcc \-shared\fR must select the correct support
-libraries to link against. Failing to supply the correct flags may lead
-to subtle defects. Supplying them in cases where they are not necessary
-is innocuous.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf-funding\fR\|(7),
-\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIg77\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
-and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIg77\fR, \fIas\fR,
-\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
-.SH "AUTHOR"
-.IX Header "AUTHOR"
-See the Info entry for \fBgcc\fR, or
-<\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>,
-for contributors to \s-1GCC\s0.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
-1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.1 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being ``\s-1GNU\s0 General Public License'' and ``Funding
-Free Software'', the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/contrib/gcc/doc/gcov.1 b/contrib/gcc/doc/gcov.1
deleted file mode 100644
index 44d1e33c8b74..000000000000
--- a/contrib/gcc/doc/gcov.1
+++ /dev/null
@@ -1,453 +0,0 @@
-.\" Automatically generated by Pod::Man version 1.15
-.\" Wed Feb 5 03:13:55 2003
-.\"
-.\" Standard preamble:
-.\" ======================================================================
-.de Sh \" Subsection heading
-.br
-.if t .Sp
-.ne 5
-.PP
-\fB\\$1\fR
-.PP
-..
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Ip \" List item
-.br
-.ie \\n(.$>=3 .ne \\$3
-.el .ne 3
-.IP "\\$1" \\$2
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. | will give a
-.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
-.\" to do unbreakable dashes and therefore won't be available. \*(C` and
-.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
-.tr \(*W-|\(bv\*(Tr
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-'br\}
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr
-.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
-.\" index entries marked with X<> in POD. Of course, you'll have to process
-.\" the output yourself in some meaningful fashion.
-.if \nF \{\
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. nr % 0
-. rr F
-.\}
-.\"
-.\" For nroff, turn off justification. Always turn off hyphenation; it
-.\" makes way too many mistakes in technical documents.
-.hy 0
-.if n .na
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-.bd B 3
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ======================================================================
-.\"
-.IX Title "GCOV 1"
-.TH GCOV 1 "gcc-3.2.2" "2003-02-05" "GNU"
-.UC
-.SH "NAME"
-gcov \- coverage testing tool
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-gcov [\fB\-v\fR|\fB\*(--version\fR] [\fB\-h\fR|\fB\*(--help\fR]
- [\fB\-b\fR|\fB\*(--branch-probabilities\fR] [\fB\-c\fR|\fB\*(--branch-counts\fR]
- [\fB\-n\fR|\fB\*(--no-output\fR] [\fB\-l\fR|\fB\*(--long-file-names\fR]
- [\fB\-f\fR|\fB\*(--function-summaries\fR]
- [\fB\-o\fR|\fB\*(--object-directory\fR \fIdirectory\fR] \fIsourcefile\fR
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-\&\fBgcov\fR is a test coverage program. Use it in concert with \s-1GCC\s0
-to analyze your programs to help create more efficient, faster
-running code. You can use \fBgcov\fR as a profiling tool to help
-discover where your optimization efforts will best affect your code. You
-can also use \fBgcov\fR along with the other profiling tool,
-\&\fBgprof\fR, to assess which parts of your code use the greatest amount
-of computing time.
-.PP
-Profiling tools help you analyze your code's performance. Using a
-profiler such as \fBgcov\fR or \fBgprof\fR, you can find out some
-basic performance statistics, such as:
-.Ip "\(bu" 4
-how often each line of code executes
-.Ip "\(bu" 4
-what lines of code are actually executed
-.Ip "\(bu" 4
-how much computing time each section of code uses
-.PP
-Once you know these things about how your code works when compiled, you
-can look at each module to see which modules should be optimized.
-\&\fBgcov\fR helps you determine where to work on optimization.
-.PP
-Software developers also use coverage testing in concert with
-testsuites, to make sure software is actually good enough for a release.
-Testsuites can verify that a program works as expected; a coverage
-program tests to see how much of the program is exercised by the
-testsuite. Developers can then determine what kinds of test cases need
-to be added to the testsuites to create both better testing and a better
-final product.
-.PP
-You should compile your code without optimization if you plan to use
-\&\fBgcov\fR because the optimization, by combining some lines of code
-into one function, may not give you as much information as you need to
-look for `hot spots' where the code is using a great deal of computer
-time. Likewise, because \fBgcov\fR accumulates statistics by line (at
-the lowest resolution), it works best with a programming style that
-places only one statement on each line. If you use complicated macros
-that expand to loops or to other control structures, the statistics are
-less helpful\-\-\-they only report on the line where the macro call
-appears. If your complex macros behave like functions, you can replace
-them with inline functions to solve this problem.
-.PP
-\&\fBgcov\fR creates a logfile called \fI\fIsourcefile\fI.gcov\fR which
-indicates how many times each line of a source file \fI\fIsourcefile\fI.c\fR
-has executed. You can use these logfiles along with \fBgprof\fR to aid
-in fine-tuning the performance of your programs. \fBgprof\fR gives
-timing information you can use along with the information you get from
-\&\fBgcov\fR.
-.PP
-\&\fBgcov\fR works only on code compiled with \s-1GCC\s0. It is not
-compatible with any other profiling or test coverage mechanism.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-.Ip "\fB\-h\fR" 4
-.IX Item "-h"
-.PD 0
-.Ip "\fB\*(--help\fR" 4
-.IX Item "help"
-.PD
-Display help about using \fBgcov\fR (on the standard output), and
-exit without doing any further processing.
-.Ip "\fB\-v\fR" 4
-.IX Item "-v"
-.PD 0
-.Ip "\fB\*(--version\fR" 4
-.IX Item "version"
-.PD
-Display the \fBgcov\fR version number (on the standard output),
-and exit without doing any further processing.
-.Ip "\fB\-b\fR" 4
-.IX Item "-b"
-.PD 0
-.Ip "\fB\*(--branch-probabilities\fR" 4
-.IX Item "branch-probabilities"
-.PD
-Write branch frequencies to the output file, and write branch summary
-info to the standard output. This option allows you to see how often
-each branch in your program was taken.
-.Ip "\fB\-c\fR" 4
-.IX Item "-c"
-.PD 0
-.Ip "\fB\*(--branch-counts\fR" 4
-.IX Item "branch-counts"
-.PD
-Write branch frequencies as the number of branches taken, rather than
-the percentage of branches taken.
-.Ip "\fB\-n\fR" 4
-.IX Item "-n"
-.PD 0
-.Ip "\fB\*(--no-output\fR" 4
-.IX Item "no-output"
-.PD
-Do not create the \fBgcov\fR output file.
-.Ip "\fB\-l\fR" 4
-.IX Item "-l"
-.PD 0
-.Ip "\fB\*(--long-file-names\fR" 4
-.IX Item "long-file-names"
-.PD
-Create long file names for included source files. For example, if the
-header file \fIx.h\fR contains code, and was included in the file
-\&\fIa.c\fR, then running \fBgcov\fR on the file \fIa.c\fR will produce
-an output file called \fIa.c.x.h.gcov\fR instead of \fIx.h.gcov\fR.
-This can be useful if \fIx.h\fR is included in multiple source files.
-.Ip "\fB\-f\fR" 4
-.IX Item "-f"
-.PD 0
-.Ip "\fB\*(--function-summaries\fR" 4
-.IX Item "function-summaries"
-.PD
-Output summaries for each function in addition to the file level summary.
-.Ip "\fB\-o\fR \fIdirectory\fR" 4
-.IX Item "-o directory"
-.PD 0
-.Ip "\fB\*(--object-directory\fR \fIdirectory\fR" 4
-.IX Item "object-directory directory"
-.PD
-The directory where the object files live. Gcov will search for \fI.bb\fR,
-\&\fI.bbg\fR, and \fI.da\fR files in this directory.
-.PP
-When using \fBgcov\fR, you must first compile your program with two
-special \s-1GCC\s0 options: \fB\-fprofile-arcs \-ftest-coverage\fR.
-This tells the compiler to generate additional information needed by
-gcov (basically a flow graph of the program) and also includes
-additional code in the object files for generating the extra profiling
-information needed by gcov. These additional files are placed in the
-directory where the source code is located.
-.PP
-Running the program will cause profile output to be generated. For each
-source file compiled with \fB\-fprofile-arcs\fR, an accompanying \fI.da\fR
-file will be placed in the source directory.
-.PP
-Running \fBgcov\fR with your program's source file names as arguments
-will now produce a listing of the code along with frequency of execution
-for each line. For example, if your program is called \fItmp.c\fR, this
-is what you see when you use the basic \fBgcov\fR facility:
-.PP
-.Vb 5
-\& $ gcc -fprofile-arcs -ftest-coverage tmp.c
-\& $ a.out
-\& $ gcov tmp.c
-\& 87.50% of 8 source lines executed in file tmp.c
-\& Creating tmp.c.gcov.
-.Ve
-The file \fItmp.c.gcov\fR contains output from \fBgcov\fR.
-Here is a sample:
-.PP
-.Vb 3
-\& main()
-\& {
-\& 1 int i, total;
-.Ve
-.Vb 1
-\& 1 total = 0;
-.Ve
-.Vb 2
-\& 11 for (i = 0; i < 10; i++)
-\& 10 total += i;
-.Ve
-.Vb 5
-\& 1 if (total != 45)
-\& ###### printf ("Failure\en");
-\& else
-\& 1 printf ("Success\en");
-\& 1 }
-.Ve
-When you use the \fB\-b\fR option, your output looks like this:
-.PP
-.Vb 6
-\& $ gcov -b tmp.c
-\& 87.50% of 8 source lines executed in file tmp.c
-\& 80.00% of 5 branches executed in file tmp.c
-\& 80.00% of 5 branches taken at least once in file tmp.c
-\& 50.00% of 2 calls executed in file tmp.c
-\& Creating tmp.c.gcov.
-.Ve
-Here is a sample of a resulting \fItmp.c.gcov\fR file:
-.PP
-.Vb 3
-\& main()
-\& {
-\& 1 int i, total;
-.Ve
-.Vb 1
-\& 1 total = 0;
-.Ve
-.Vb 5
-\& 11 for (i = 0; i < 10; i++)
-\& branch 0 taken = 91%
-\& branch 1 taken = 100%
-\& branch 2 taken = 100%
-\& 10 total += i;
-.Ve
-.Vb 9
-\& 1 if (total != 45)
-\& branch 0 taken = 100%
-\& ###### printf ("Failure\en");
-\& call 0 never executed
-\& branch 1 never executed
-\& else
-\& 1 printf ("Success\en");
-\& call 0 returns = 100%
-\& 1 }
-.Ve
-For each basic block, a line is printed after the last line of the basic
-block describing the branch or call that ends the basic block. There can
-be multiple branches and calls listed for a single source line if there
-are multiple basic blocks that end on that line. In this case, the
-branches and calls are each given a number. There is no simple way to map
-these branches and calls back to source constructs. In general, though,
-the lowest numbered branch or call will correspond to the leftmost construct
-on the source line.
-.PP
-For a branch, if it was executed at least once, then a percentage
-indicating the number of times the branch was taken divided by the
-number of times the branch was executed will be printed. Otherwise, the
-message ``never executed'' is printed.
-.PP
-For a call, if it was executed at least once, then a percentage
-indicating the number of times the call returned divided by the number
-of times the call was executed will be printed. This will usually be
-100%, but may be less for functions call \f(CW\*(C`exit\*(C'\fR or \f(CW\*(C`longjmp\*(C'\fR,
-and thus may not return every time they are called.
-.PP
-The execution counts are cumulative. If the example program were
-executed again without removing the \fI.da\fR file, the count for the
-number of times each line in the source was executed would be added to
-the results of the previous \fIrun\fR\|(s). This is potentially useful in
-several ways. For example, it could be used to accumulate data over a
-number of program runs as part of a test verification suite, or to
-provide more accurate long-term information over a large number of
-program runs.
-.PP
-The data in the \fI.da\fR files is saved immediately before the program
-exits. For each source file compiled with \fB\-fprofile-arcs\fR, the profiling
-code first attempts to read in an existing \fI.da\fR file; if the file
-doesn't match the executable (differing number of basic block counts) it
-will ignore the contents of the file. It then adds in the new execution
-counts and finally writes the data to the file.
-.Sh "Using \fBgcov\fP with \s-1GCC\s0 Optimization"
-.IX Subsection "Using gcov with GCC Optimization"
-If you plan to use \fBgcov\fR to help optimize your code, you must
-first compile your program with two special \s-1GCC\s0 options:
-\&\fB\-fprofile-arcs \-ftest-coverage\fR. Aside from that, you can use any
-other \s-1GCC\s0 options; but if you want to prove that every single line
-in your program was executed, you should not compile with optimization
-at the same time. On some machines the optimizer can eliminate some
-simple code lines by combining them with other lines. For example, code
-like this:
-.PP
-.Vb 4
-\& if (a != b)
-\& c = 1;
-\& else
-\& c = 0;
-.Ve
-can be compiled into one instruction on some machines. In this case,
-there is no way for \fBgcov\fR to calculate separate execution counts
-for each line because there isn't separate code for each line. Hence
-the \fBgcov\fR output looks like this if you compiled the program with
-optimization:
-.PP
-.Vb 4
-\& 100 if (a != b)
-\& 100 c = 1;
-\& 100 else
-\& 100 c = 0;
-.Ve
-The output shows that this block of code, combined by optimization,
-executed 100 times. In one sense this result is correct, because there
-was only one instruction representing all four of these lines. However,
-the output does not indicate how many times the result was 0 and how
-many times the result was 1.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf-funding\fR\|(7), \fIgcc\fR\|(1) and the Info entry for \fIgcc\fR.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1996, 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.1 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being ``\s-1GNU\s0 General Public License'' and ``Funding
-Free Software'', the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/contrib/gcc/f/BUGS b/contrib/gcc/f/BUGS
deleted file mode 100644
index acfe4abf4b93..000000000000
--- a/contrib/gcc/f/BUGS
+++ /dev/null
@@ -1,130 +0,0 @@
-_Note:_ This file is automatically generated from the files
-`bugs0.texi' and `bugs.texi'. `BUGS' is _not_ a source file, although
-it is normally included within source distributions.
-
- This file lists known bugs in the GCC-3.2 version of the GNU Fortran
-compiler. Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002 Free
-Software Foundation, Inc. You may copy, distribute, and modify it
-freely as long as you preserve this copyright notice and permission
-notice.
-
-Known Bugs In GNU Fortran
-*************************
-
- This section identifies bugs that `g77' _users_ might run into in
-the GCC-3.2 version of `g77'. This includes bugs that are actually in
-the `gcc' back end (GBE) or in `libf2c', because those sets of code are
-at least somewhat under the control of (and necessarily intertwined
-with) `g77', so it isn't worth separating them out.
-
- For information on bugs in _other_ versions of `g77', see
-`gcc/gcc/f/NEWS'. There, lists of bugs fixed in various versions of
-`g77' can help determine what bugs existed in prior versions.
-
- An online, "live" version of this document (derived directly from
-the mainline, development version of `g77' within `gcc') is available
-via `http://www.gnu.org/software/gcc/onlinedocs/g77/Trouble.html'.
-Follow the "Known Bugs" link.
-
- The following information was last updated on 2002-02-01:
-
- * `g77' fails to warn about use of a "live" iterative-DO variable as
- an implied-DO variable in a `WRITE' or `PRINT' statement (although
- it does warn about this in a `READ' statement).
-
- * Something about `g77''s straightforward handling of label
- references and definitions sometimes prevents the GBE from
- unrolling loops. Until this is solved, try inserting or removing
- `CONTINUE' statements as the terminal statement, using the `END DO'
- form instead, and so on.
-
- * Some confusion in diagnostics concerning failing `INCLUDE'
- statements from within `INCLUDE''d or `#include''d files.
-
- * `g77' assumes that `INTEGER(KIND=1)' constants range from `-2**31'
- to `2**31-1' (the range for two's-complement 32-bit values),
- instead of determining their range from the actual range of the
- type for the configuration (and, someday, for the constant).
-
- Further, it generally doesn't implement the handling of constants
- very well in that it makes assumptions about the configuration
- that it no longer makes regarding variables (types).
-
- Included with this item is the fact that `g77' doesn't recognize
- that, on IEEE-754/854-compliant systems, `0./0.' should produce a
- NaN and no warning instead of the value `0.' and a warning.
-
- * `g77' uses way too much memory and CPU time to process large
- aggregate areas having any initialized elements.
-
- For example, `REAL A(1000000)' followed by `DATA A(1)/1/' takes up
- way too much time and space, including the size of the generated
- assembler file.
-
- Version 0.5.18 improves cases like this--specifically, cases of
- _sparse_ initialization that leave large, contiguous areas
- uninitialized--significantly. However, even with the
- improvements, these cases still require too much memory and CPU
- time.
-
- (Version 0.5.18 also improves cases where the initial values are
- zero to a much greater degree, so if the above example ends with
- `DATA A(1)/0/', the compile-time performance will be about as good
- as it will ever get, aside from unrelated improvements to the
- compiler.)
-
- Note that `g77' does display a warning message to notify the user
- before the compiler appears to hang.
-
- * When debugging, after starting up the debugger but before being
- able to see the source code for the main program unit, the user
- must currently set a breakpoint at `MAIN__' (or `MAIN___' or
- `MAIN_' if `MAIN__' doesn't exist) and run the program until it
- hits the breakpoint. At that point, the main program unit is
- activated and about to execute its first executable statement, but
- that's the state in which the debugger should start up, as is the
- case for languages like C.
-
- * Debugging `g77'-compiled code using debuggers other than `gdb' is
- likely not to work.
-
- Getting `g77' and `gdb' to work together is a known
- problem--getting `g77' to work properly with other debuggers, for
- which source code often is unavailable to `g77' developers, seems
- like a much larger, unknown problem, and is a lower priority than
- making `g77' and `gdb' work together properly.
-
- On the other hand, information about problems other debuggers have
- with `g77' output might make it easier to properly fix `g77', and
- perhaps even improve `gdb', so it is definitely welcome. Such
- information might even lead to all relevant products working
- together properly sooner.
-
- * `g77' doesn't work perfectly on 64-bit configurations such as the
- Digital Semiconductor ("DEC") Alpha.
-
- This problem is largely resolved as of version 0.5.23.
-
- * `g77' currently inserts needless padding for things like `COMMON
- A,IPAD' where `A' is `CHARACTER*1' and `IPAD' is `INTEGER(KIND=1)'
- on machines like x86, because the back end insists that `IPAD' be
- aligned to a 4-byte boundary, but the processor has no such
- requirement (though it is usually good for performance).
-
- The `gcc' back end needs to provide a wider array of
- specifications of alignment requirements and preferences for
- targets, and front ends like `g77' should take advantage of this
- when it becomes available.
-
- * The `libf2c' routines that perform some run-time arithmetic on
- `COMPLEX' operands were modified circa version 0.5.20 of `g77' to
- work properly even in the presence of aliased operands.
-
- While the `g77' and `netlib' versions of `libf2c' differ on how
- this is accomplished, the main differences are that we believe the
- `g77' version works properly even in the presence of _partially_
- aliased operands.
-
- However, these modifications have reduced performance on targets
- such as x86, due to the extra copies of operands involved.
-
diff --git a/contrib/gcc/f/NEWS b/contrib/gcc/f/NEWS
deleted file mode 100644
index cc73668ebd7a..000000000000
--- a/contrib/gcc/f/NEWS
+++ /dev/null
@@ -1,531 +0,0 @@
-_Note:_ This file is automatically generated from the files
-`news0.texi' and `news.texi'. `NEWS' is _not_ a source file, although
-it is normally included within source distributions.
-
- This file lists news about the GCC-3.2 version (and some other
-versions) of the GNU Fortran compiler. Copyright (C)
-1995,1996,1997,1998,1999,2000,2001,2002 Free Software Foundation, Inc.
-You may copy, distribute, and modify it freely as long as you preserve
-this copyright notice and permission notice.
-
-News About GNU Fortran
-**********************
-
- Changes made to recent versions of GNU Fortran are listed below,
-with the most recent version first.
-
- The changes are generally listed in order:
-
- 1. Code-generation and run-time-library bug-fixes
-
- 2. Compiler and run-time-library crashes involving valid code that
- have been fixed
-
- 3. New features
-
- 4. Fixes and enhancements to existing features
-
- 5. New diagnostics
-
- 6. Internal improvements
-
- 7. Miscellany
-
- This order is not strict--for example, some items involve a
-combination of these elements.
-
- Note that two variants of `g77' are tracked below. The `egcs'
-variant is described vis-a-vis previous versions of `egcs' and/or an
-official FSF version, as appropriate. Note that all such variants are
-obsolete _as of July 1999_ - the information is retained here only for
-its historical value.
-
- Therefore, `egcs' versions sometimes have multiple listings to help
-clarify how they differ from other versions, though this can make
-getting a complete picture of what a particular `egcs' version contains
-somewhat more difficult.
-
- An online, "live" version of this document (derived directly from
-the mainline, development version of `g77' within `gcc') is available at
-`http://www.gnu.org/software/gcc/onlinedocs/g77/News.html'.
-
- The following information was last updated on 2002-10-28:
-
-In `GCC' 3.2 versus `GCC' 3.1:
-==============================
-
- * Problem Reports fixed (in chronological order of submission):
- `8308'
- gcc-3.x does not compile files with suffix .r (RATFOR) [Fixed
- in 3.2.1]
-
-In `GCC' 3.1 (formerly known as g77-0.5.27) versus `GCC' 3.0:
-=============================================================
-
- * Problem Reports fixed (in chronological order of submission):
- `947'
- Data statement initialization with subscript of kind INTEGER*2
-
- `3743'
- Reference to intrinsic `ISHFT' invalid
-
- `3807'
- Function BESJN(integer,double) problems
-
- `3957'
- g77 -pipe -xf77-cpp-input sends output to stdout
-
- `4279'
- g77 -h" gives bogus output
-
- `4730'
- ICE on valid input using CALL EXIT(%VAL(...))
-
- `4752'
- g77 -v -c -xf77-version /dev/null -xnone causes ice
-
- `4885'
- BACKSPACE example that doesn't work as of gcc/g77-3.0.x
-
- `5122'
- g77 rejects accepted use of INTEGER*2 as type of DATA
- statement loop index
-
- `5397'
- ICE on compiling source with 540 000 000 REAL array
-
- `5473'
- ICE on BESJN(integer*8,real)
-
- `5837'
- bug in loop unrolling
-
- * `g77' now has its man page generated from the texinfo
- documentation, to guarantee that it remains up to date.
-
- * `g77' used to reject the following program on 32-bit targets:
- PROGRAM PROG
- DIMENSION A(140 000 000)
- END
- with the message:
- prog.f: In program `prog':
- prog.f:2:
- DIMENSION A(140 000 000)
- ^
- Array `a' at (^) is too large to handle
- because 140 000 000 REALs is larger than the largest bit-extent
- that can be expressed in 32 bits. However, bit-sizes never play a
- role after offsets have been converted to byte addresses.
- Therefore this check has been removed, and the limit is now 2
- Gbyte of memory (around 530 000 000 REALs). Note: On GNU/Linux
- systems one has to compile programs that occupy more than 1 Gbyte
- statically, i.e. `g77 -static ...'.
-
- * Based on work done by Juergen Pfeifer (<juergen.pfeifer@gmx.net>)
- libf2c is now a shared library. One can still link in all objects
- with the program by specifying the `-static' option.
-
- * Robert Anderson (<rwa@alumni.princeton.edu>) thought up a two line
- change that enables g77 to compile such code as:
- SUBROUTINE SUB(A, N)
- DIMENSION N(2)
- DIMENSION A(N(1),N(2))
- A(1,1) = 1.
- END
- Note the use of array elements in the bounds of the adjustable
- array A.
-
- * George Helffrich (<george@geo.titech.ac.jp>) implemented a change
- in substring index checking (when specifying `-fbounds-check')
- that permits the use of zero length substrings of the form
- `string(1:0)'.
-
- * Based on code developed by Pedro Vazquez
- (<vazquez@penelope.iqm.unicamp.br>), the `libf2c' library is now
- able to read and write files larger than 2 Gbyte on 32-bit target
- machines, if the operating system supports this.
-
-In 0.5.26, `GCC' 3.0 versus `GCC' 2.95:
-=======================================
-
- * When a REWIND was issued after a WRITE statement on an unformatted
- file, the implicit truncation was performed by copying the
- truncated file to /tmp and copying the result back. This has been
- fixed by using the `ftruncate' OS function. Thanks go to the
- GAMESS developers for bringing this to our attention.
-
- * Using options `-g', `-ggdb' or `-gdwarf[-2]' (where appropriate
- for your target) now also enables debugging information for COMMON
- BLOCK and EQUIVALENCE items to be emitted. Thanks go to Andrew
- Vaught (<andy@xena.eas.asu.edu>) and George Helffrich
- (<george@geology.bristol.ac.uk>) for fixing this longstanding
- problem.
-
- * It is not necessary anymore to use the option `-femulate-complex'
- to compile Fortran code using COMPLEX arithmetic, even on 64-bit
- machines (like the Alpha). This will improve code generation.
-
- * INTRINSIC arithmetic functions are now treated as routines that do
- not depend on anything but their argument(s). This enables
- further instruction scheduling, because it is known that they
- cannot read or modify arbitrary locations.
-
- * Upgrade to `libf2c' as of 2000-12-05.
-
- This fixes a bug where a namelist containing initialization of
- LOGICAL items and a variable starting with T or F would be read
- incorrectly.
-
- * The `TtyNam' intrinsics now set NAME to all spaces (at run time)
- if the system has no `ttyname' implementation available.
-
- * Upgrade to `libf2c' as of 1999-06-28.
-
- This fixes a bug whereby input to a `NAMELIST' read involving a
- repeat count, such as `K(5)=10*3', was not properly handled by
- `libf2c'. The first item was written to `K(5)', but the remaining
- nine were written elsewhere (still within the array), not
- necessarily starting at `K(6)'.
-
-In 0.5.25, `GCC' 2.95 (`EGCS' 1.2) versus `EGCS' 1.1.2:
-=======================================================
-
- * `g77' no longer generates bad code for assignments, or other
- conversions, of `REAL' or `COMPLEX' constant expressions to type
- `INTEGER(KIND=2)' (often referred to as `INTEGER*8').
-
- For example, `INTEGER*8 J; J = 4E10' now works as documented.
-
- * `g77' no longer truncates `INTEGER(KIND=2)' (usually `INTEGER*8')
- subscript expressions when evaluating array references on systems
- with pointers widers than `INTEGER(KIND=1)' (such as Alphas).
-
- * `g77' no longer generates bad code for an assignment to a
- `COMPLEX' variable or array that partially overlaps one or more of
- the sources of the same assignment (a very rare construction). It
- now assigns through a temporary, in cases where such partial
- overlap is deemed possible.
-
- * `libg2c' (`libf2c') no longer loses track of the file being worked
- on during a `BACKSPACE' operation.
-
- * `libg2c' (`libf2c') fixes a bug whereby input to a `NAMELIST' read
- involving a repeat count, such as `K(5)=10*3', was not properly
- handled by `libf2c'. The first item was written to `K(5)', but
- the remaining nine were written elsewhere (still within the array),
- not necessarily starting at `K(6)'.
-
- * Automatic arrays now seem to be working on HP-UX systems.
-
- * The `Date' intrinsic now returns the correct result on big-endian
- systems.
-
- * Fix `g77' so it no longer crashes when compiling I/O statements
- using keywords that define `INTEGER' values, such as `IOSTAT=J',
- where J is other than default `INTEGER' (such as `INTEGER*2').
- Instead, it issues a diagnostic.
-
- * Fix `g77' so it properly handles `DATA A/RPT*VAL/', where RPT is
- not default `INTEGER', such as `INTEGER*2', instead of producing a
- spurious diagnostic. Also fix `DATA (A(I),I=1,N)', where `N' is
- not default `INTEGER' to work instead of crashing `g77'.
-
- * The `-ax' option is now obeyed when compiling Fortran programs.
- (It is passed to the `f771' driver.)
-
- * The new `-fbounds-check' option causes `g77' to compile run-time
- bounds checks of array subscripts, as well as of substring start
- and end points.
-
- * `libg2c' now supports building as multilibbed library, which
- provides better support for systems that require options such as
- `-mieee' to work properly.
-
- * Source file names with the suffixes `.FOR' and `.FPP' now are
- recognized by `g77' as if they ended in `.for' and `.fpp',
- respectively.
-
- * The order of arguments to the _subroutine_ forms of the `CTime',
- `DTime', `ETime', and `TtyNam' intrinsics has been swapped. The
- argument serving as the returned value for the corresponding
- function forms now is the _second_ argument, making these
- consistent with the other subroutine forms of `libU77' intrinsics.
-
- * `g77' now warns about a reference to an intrinsic that has an
- interface that is not Year 2000 (Y2K) compliant. Also, `libg2c'
- has been changed to increase the likelihood of catching references
- to the implementations of these intrinsics using the `EXTERNAL'
- mechanism (which would avoid the new warnings).
-
- * `g77' now warns about a reference to a function when the
- corresponding _subsequent_ function program unit disagrees with
- the reference concerning the type of the function.
-
- * `-fno-emulate-complex' is now the default option. This should
- result in improved performance of code that uses the `COMPLEX'
- data type.
-
- * The `-malign-double' option now reliably aligns _all_
- double-precision variables and arrays on Intel x86 targets.
-
- * Even without the `-malign-double' option, `g77' reliably aligns
- local double-precision variables that are not in `EQUIVALENCE'
- areas and not `SAVE''d.
-
- * `g77' now open-codes ("inlines") division of `COMPLEX' operands
- instead of generating a run-time call to the `libf2c' routines
- `c_div' or `z_div', unless the `-Os' option is specified.
-
- * `g77' no longer generates code to maintain `errno', a C-language
- concept, when performing operations such as the `SqRt' intrinsic.
-
- * `g77' developers can temporarily use the `-fflatten-arrays' option
- to compare how the compiler handles code generation using C-like
- constructs as compared to the Fortran-like method constructs
- normally used.
-
- * A substantial portion of the `g77' front end's code-generation
- component was rewritten. It now generates code using facilities
- more robustly supported by the `gcc' back end. One effect of this
- rewrite is that some codes no longer produce a spurious "label LAB
- used before containing binding contour" message.
-
- * Support for the `-fugly' option has been removed.
-
- * Improve documentation and indexing, including information on Year
- 2000 (Y2K) compliance, and providing more information on internals
- of the front end.
-
- * Upgrade to `libf2c' as of 1999-05-10.
-
-In 0.5.24 versus 0.5.23:
-========================
-
- There is no `g77' version 0.5.24 at this time, or planned. 0.5.24
-is the version number designated for bug fixes and, perhaps, some new
-features added, to 0.5.23. Version 0.5.23 requires `gcc' 2.8.1, as
-0.5.24 was planned to require.
-
- Due to `EGCS' becoming `GCC' (which is now an acronym for "GNU
-Compiler Collection"), and `EGCS' 1.2 becoming officially designated
-`GCC' 2.95, there seems to be no need for an actual 0.5.24 release.
-
- To reduce the confusion already resulting from use of 0.5.24 to
-designate `g77' versions within `EGCS' versions 1.0 and 1.1, as well as
-in versions of `g77' documentation and notices during that period,
-"mainline" `g77' version numbering resumes at 0.5.25 with `GCC' 2.95
-(`EGCS' 1.2), skipping over 0.5.24 as a placeholder version number.
-
- To repeat, there is no `g77' 0.5.24, but there is now a 0.5.25.
-Please remain calm and return to your keypunch units.
-
-In `EGCS' 1.1.2 versus `EGCS' 1.1.1:
-====================================
-
- * Fix the `IDate' intrinsic (VXT) (in `libg2c') so the returned year
- is in the documented, non-Y2K-compliant range of 0-99, instead of
- being returned as 100 in the year 2000.
-
- * Fix the `Date_and_Time' intrinsic (in `libg2c') to return the
- milliseconds value properly in VALUES(8).
-
- * Fix the `LStat' intrinsic (in `libg2c') to return device-ID
- information properly in SARRAY(7).
-
- * Improve documentation.
-
-In `EGCS' 1.1.1 versus `EGCS' 1.1:
-==================================
-
- * Fix `libg2c' so it performs an implicit `ENDFILE' operation (as
- appropriate) whenever a `REWIND' is done.
-
- (This bug was introduced in 0.5.23 and `egcs' 1.1 in `g77''s
- version of `libf2c'.)
-
- * Fix `libg2c' so it no longer crashes with a spurious diagnostic
- upon doing any I/O following a direct formatted write.
-
- (This bug was introduced in 0.5.23 and `egcs' 1.1 in `g77''s
- version of `libf2c'.)
-
- * Fix `g77' so it no longer crashes compiling references to the
- `Rand' intrinsic on some systems.
-
- * Fix `g77' portion of installation process so it works better on
- some systems (those with shells requiring `else true' clauses on
- `if' constructs for the completion code to be set properly).
-
-In `EGCS' 1.1 versus `EGCS' 1.0.3:
-==================================
-
- * Fix bugs in the `libU77' intrinsic `HostNm' that wrote one byte
- beyond the end of its `CHARACTER' argument, and in the `libU77'
- intrinsics `GMTime' and `LTime' that overwrote their arguments.
-
- * Assumed arrays with negative bounds (such as `REAL A(-1:*)') no
- longer elicit spurious diagnostics from `g77', even on systems
- with pointers having different sizes than integers.
-
- This bug is not known to have existed in any recent version of
- `gcc'. It was introduced in an early release of `egcs'.
-
- * Valid combinations of `EXTERNAL', passing that external as a dummy
- argument without explicitly giving it a type, and, in a subsequent
- program unit, referencing that external as an external function
- with a different type no longer crash `g77'.
-
- * `CASE DEFAULT' no longer crashes `g77'.
-
- * The `-Wunused' option no longer issues a spurious warning about
- the "master" procedure generated by `g77' for procedures
- containing `ENTRY' statements.
-
- * Support `FORMAT(I<EXPR>)' when EXPR is a compile-time constant
- `INTEGER' expression.
-
- * Fix `g77' `-g' option so procedures that use `ENTRY' can be
- stepped through, line by line, in `gdb'.
-
- * Allow any `REAL' argument to intrinsics `Second' and `CPU_Time'.
-
- * Use `tempnam', if available, to open scratch files (as in
- `OPEN(STATUS='SCRATCH')') so that the `TMPDIR' environment
- variable, if present, is used.
-
- * `g77''s version of `libf2c' separates out the setting of global
- state (such as command-line arguments and signal handling) from
- `main.o' into distinct, new library archive members.
-
- This should make it easier to write portable applications that
- have their own (non-Fortran) `main()' routine properly set up the
- `libf2c' environment, even when `libf2c' (now `libg2c') is a
- shared library.
-
- * `g77' no longer installs the `f77' command and `f77.1' man page in
- the `/usr' or `/usr/local' hierarchy, even if the `f77-install-ok'
- file exists in the source or build directory. See the
- installation documentation for more information.
-
- * `g77' no longer installs the `libf2c.a' library and `f2c.h'
- include file in the `/usr' or `/usr/local' hierarchy, even if the
- `f2c-install-ok' or `f2c-exists-ok' files exist in the source or
- build directory. See the installation documentation for more
- information.
-
- * The `libf2c.a' library produced by `g77' has been renamed to
- `libg2c.a'. It is installed only in the `gcc' "private" directory
- hierarchy, `gcc-lib'. This allows system administrators and users
- to choose which version of the `libf2c' library from `netlib' they
- wish to use on a case-by-case basis. See the installation
- documentation for more information.
-
- * The `f2c.h' include (header) file produced by `g77' has been
- renamed to `g2c.h'. It is installed only in the `gcc' "private"
- directory hierarchy, `gcc-lib'. This allows system administrators
- and users to choose which version of the include file from
- `netlib' they wish to use on a case-by-case basis. See the
- installation documentation for more information.
-
- * The `g77' command now expects the run-time library to be named
- `libg2c.a' instead of `libf2c.a', to ensure that a version other
- than the one built and installed as part of the same `g77' version
- is picked up.
-
- * During the configuration and build process, `g77' creates
- subdirectories it needs only as it needs them. Other cleaning up
- of the configuration and build process has been performed as well.
-
- * `install-info' now used to update the directory of Info
- documentation to contain an entry for `g77' (during installation).
-
- * Some diagnostics have been changed from warnings to errors, to
- prevent inadvertent use of the resulting, probably buggy, programs.
- These mostly include diagnostics about use of unsupported features
- in the `OPEN', `INQUIRE', `READ', and `WRITE' statements, and
- about truncations of various sorts of constants.
-
- * Improve compilation of `FORMAT' expressions so that a null byte is
- appended to the last operand if it is a constant. This provides a
- cleaner run-time diagnostic as provided by `libf2c' for statements
- like `PRINT '(I1', 42'.
-
- * Improve documentation and indexing.
-
- * The upgrade to `libf2c' as of 1998-06-18 should fix a variety of
- problems, including those involving some uses of the `T' format
- specifier, and perhaps some build (porting) problems as well.
-
-In `EGCS' 1.1 versus `g77' 0.5.23:
-==================================
-
- * Fix a code-generation bug that afflicted Intel x86 targets when
- `-O2' was specified compiling, for example, an old version of the
- `DNRM2' routine.
-
- The x87 coprocessor stack was being mismanaged in cases involving
- assigned `GOTO' and `ASSIGN'.
-
- * `g77' no longer produces incorrect code and initial values for
- `EQUIVALENCE' and `COMMON' aggregates that, due to "unnatural"
- ordering of members vis-a-vis their types, require initial padding.
-
- * Fix `g77' crash compiling code containing the construct
- `CMPLX(0.)' or similar.
-
- * `g77' no longer crashes when compiling code containing
- specification statements such as `INTEGER(KIND=7) PTR'.
-
- * `g77' no longer crashes when compiling code such as `J = SIGNAL(1,
- 2)'.
-
- * `g77' now treats `%LOC(EXPR)' and `LOC(EXPR)' as "ordinary"
- expressions when they are used as arguments in procedure calls.
- This change applies only to global (filewide) analysis, making it
- consistent with how `g77' actually generates code for these cases.
-
- Previously, `g77' treated these expressions as denoting special
- "pointer" arguments for the purposes of filewide analysis.
-
- * Fix `g77' crash (or apparently infinite run-time) when compiling
- certain complicated expressions involving `COMPLEX' arithmetic
- (especially multiplication).
-
- * Align static double-precision variables and arrays on Intel x86
- targets regardless of whether `-malign-double' is specified.
-
- Generally, this affects only local variables and arrays having the
- `SAVE' attribute or given initial values via `DATA'.
-
- * The `g77' driver now ensures that `-lg2c' is specified in the link
- phase prior to any occurrence of `-lm'. This prevents
- accidentally linking to a routine in the SunOS4 `-lm' library when
- the generated code wants to link to the one in `libf2c' (`libg2c').
-
- * `g77' emits more debugging information when `-g' is used.
-
- This new information allows, for example, `which __g77_length_a'
- to be used in `gdb' to determine the type of the phantom length
- argument supplied with `CHARACTER' variables.
-
- This information pertains to internally-generated type, variable,
- and other information, not to the longstanding deficiencies
- vis-a-vis `COMMON' and `EQUIVALENCE'.
-
- * The F90 `Date_and_Time' intrinsic now is supported.
-
- * The F90 `System_Clock' intrinsic allows the optional arguments
- (except for the `Count' argument) to be omitted.
-
- * Upgrade to `libf2c' as of 1998-06-18.
-
- * Improve documentation and indexing.
-
-In previous versions:
-=====================
-
- Information on previous versions is not provided in this
-`gcc/gcc/f/NEWS' file, to keep it short. See `gcc/gcc/f/news.texi', or
-any of its other derivations (Info, HTML, dvi forms) for such
-information.
-
diff --git a/contrib/gcc/f/g77.1 b/contrib/gcc/f/g77.1
deleted file mode 100644
index 91af9e0a5eca..000000000000
--- a/contrib/gcc/f/g77.1
+++ /dev/null
@@ -1,1719 +0,0 @@
-.\" Automatically generated by Pod::Man version 1.15
-.\" Wed Feb 5 03:13:59 2003
-.\"
-.\" Standard preamble:
-.\" ======================================================================
-.de Sh \" Subsection heading
-.br
-.if t .Sp
-.ne 5
-.PP
-\fB\\$1\fR
-.PP
-..
-.de Sp \" Vertical space (when we can't use .PP)
-.if t .sp .5v
-.if n .sp
-..
-.de Ip \" List item
-.br
-.ie \\n(.$>=3 .ne \\$3
-.el .ne 3
-.IP "\\$1" \\$2
-..
-.de Vb \" Begin verbatim text
-.ft CW
-.nf
-.ne \\$1
-..
-.de Ve \" End verbatim text
-.ft R
-
-.fi
-..
-.\" Set up some character translations and predefined strings. \*(-- will
-.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
-.\" double quote, and \*(R" will give a right double quote. | will give a
-.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
-.\" to do unbreakable dashes and therefore won't be available. \*(C` and
-.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
-.tr \(*W-|\(bv\*(Tr
-.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
-.ie n \{\
-. ds -- \(*W-
-. ds PI pi
-. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
-. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
-. ds L" ""
-. ds R" ""
-. ds C` ""
-. ds C' ""
-'br\}
-.el\{\
-. ds -- \|\(em\|
-. ds PI \(*p
-. ds L" ``
-. ds R" ''
-'br\}
-.\"
-.\" If the F register is turned on, we'll generate index entries on stderr
-.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
-.\" index entries marked with X<> in POD. Of course, you'll have to process
-.\" the output yourself in some meaningful fashion.
-.if \nF \{\
-. de IX
-. tm Index:\\$1\t\\n%\t"\\$2"
-..
-. nr % 0
-. rr F
-.\}
-.\"
-.\" For nroff, turn off justification. Always turn off hyphenation; it
-.\" makes way too many mistakes in technical documents.
-.hy 0
-.if n .na
-.\"
-.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
-.\" Fear. Run. Save yourself. No user-serviceable parts.
-.bd B 3
-. \" fudge factors for nroff and troff
-.if n \{\
-. ds #H 0
-. ds #V .8m
-. ds #F .3m
-. ds #[ \f1
-. ds #] \fP
-.\}
-.if t \{\
-. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
-. ds #V .6m
-. ds #F 0
-. ds #[ \&
-. ds #] \&
-.\}
-. \" simple accents for nroff and troff
-.if n \{\
-. ds ' \&
-. ds ` \&
-. ds ^ \&
-. ds , \&
-. ds ~ ~
-. ds /
-.\}
-.if t \{\
-. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
-. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
-. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
-. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
-. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
-. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
-.\}
-. \" troff and (daisy-wheel) nroff accents
-.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
-.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
-.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
-.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
-.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
-.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
-.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
-.ds ae a\h'-(\w'a'u*4/10)'e
-.ds Ae A\h'-(\w'A'u*4/10)'E
-. \" corrections for vroff
-.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
-.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
-. \" for low resolution devices (crt and lpr)
-.if \n(.H>23 .if \n(.V>19 \
-\{\
-. ds : e
-. ds 8 ss
-. ds o a
-. ds d- d\h'-1'\(ga
-. ds D- D\h'-1'\(hy
-. ds th \o'bp'
-. ds Th \o'LP'
-. ds ae ae
-. ds Ae AE
-.\}
-.rm #[ #] #H #V #F C
-.\" ======================================================================
-.\"
-.IX Title "G77 1"
-.TH G77 1 "gcc-3.2.2" "2003-02-05" "GNU"
-.UC
-.SH "NAME"
-g77 \- \s-1GNU\s0 project Fortran 77 compiler
-.SH "SYNOPSIS"
-.IX Header "SYNOPSIS"
-g77 [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR]
- [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
- [\fB\-W\fR\fIwarn\fR...] [\fB\-pedantic\fR]
- [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
- [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
- [\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
- [\fB\-o\fR \fIoutfile\fR] \fIinfile\fR...
-.PP
-Only the most useful options are listed here; see below for the
-remainder.
-.SH "DESCRIPTION"
-.IX Header "DESCRIPTION"
-The \fBg77\fR command supports all the options supported by the
-\&\fBgcc\fR command.
-.PP
-All \fBgcc\fR and \fBg77\fR options
-are accepted both by \fBg77\fR and by \fBgcc\fR
-(as well as any other drivers built at the same time,
-such as \fBg++\fR),
-since adding \fBg77\fR to the \fBgcc\fR distribution
-enables acceptance of \fBg77\fR options
-by all of the relevant drivers.
-.PP
-In some cases, options have positive and negative forms;
-the negative form of \fB\-ffoo\fR would be \fB\-fno-foo\fR.
-This manual documents only one of these two forms, whichever
-one is not the default.
-.SH "OPTIONS"
-.IX Header "OPTIONS"
-Here is a summary of all the options specific to \s-1GNU\s0 Fortran, grouped
-by type. Explanations are in the following sections.
-.Ip "\fIOverall Options\fR" 4
-.IX Item "Overall Options"
-\&\fB\-fversion \-fset-g77\-defaults \-fno-silent\fR
-.Ip "\fIShorthand Options\fR" 4
-.IX Item "Shorthand Options"
-\&\fB\-ff66 \-fno-f66 \-ff77 \-fno-f77 \-fno-ugly\fR
-.Ip "\fIFortran Language Options\fR" 4
-.IX Item "Fortran Language Options"
-\&\fB\-ffree-form \-fno-fixed-form \-ff90
-\&\-fvxt \-fdollar-ok \-fno-backslash
-\&\-fno-ugly-args \-fno-ugly-assign \-fno-ugly-assumed
-\&\-fugly-comma \-fugly-complex \-fugly-init \-fugly-logint
-\&\-fonetrip \-ftypeless-boz
-\&\-fintrin-case-initcap \-fintrin-case-upper
-\&\-fintrin-case-lower \-fintrin-case-any
-\&\-fmatch-case-initcap \-fmatch-case-upper
-\&\-fmatch-case-lower \-fmatch-case-any
-\&\-fsource-case-upper \-fsource-case-lower
-\&\-fsource-case-preserve
-\&\-fsymbol-case-initcap \-fsymbol-case-upper
-\&\-fsymbol-case-lower \-fsymbol-case-any
-\&\-fcase-strict-upper \-fcase-strict-lower
-\&\-fcase-initcap \-fcase-upper \-fcase-lower \-fcase-preserve
-\&\-ff2c-intrinsics-delete \-ff2c-intrinsics-hide
-\&\-ff2c-intrinsics-disable \-ff2c-intrinsics-enable
-\&\-fbadu77\-intrinsics-delete \-fbadu77\-intrinsics-hide
-\&\-fbadu77\-intrinsics-disable \-fbadu77\-intrinsics-enable
-\&\-ff90\-intrinsics-delete \-ff90\-intrinsics-hide
-\&\-ff90\-intrinsics-disable \-ff90\-intrinsics-enable
-\&\-fgnu-intrinsics-delete \-fgnu-intrinsics-hide
-\&\-fgnu-intrinsics-disable \-fgnu-intrinsics-enable
-\&\-fmil-intrinsics-delete \-fmil-intrinsics-hide
-\&\-fmil-intrinsics-disable \-fmil-intrinsics-enable
-\&\-funix-intrinsics-delete \-funix-intrinsics-hide
-\&\-funix-intrinsics-disable \-funix-intrinsics-enable
-\&\-fvxt-intrinsics-delete \-fvxt-intrinsics-hide
-\&\-fvxt-intrinsics-disable \-fvxt-intrinsics-enable
-\&\-ffixed-line-length-\fR\fIn\fR \fB\-ffixed-line-length-none\fR
-.Ip "\fIWarning Options\fR" 4
-.IX Item "Warning Options"
-\&\fB\-fsyntax-only \-pedantic \-pedantic-errors \-fpedantic
-\&\-w \-Wno-globals \-Wimplicit \-Wunused \-Wuninitialized
-\&\-Wall \-Wsurprising
-\&\-Werror \-W\fR
-.Ip "\fIDebugging Options\fR" 4
-.IX Item "Debugging Options"
-\&\fB\-g\fR
-.Ip "\fIOptimization Options\fR" 4
-.IX Item "Optimization Options"
-\&\fB\-malign-double
-\&\-ffloat-store \-fforce-mem \-fforce-addr \-fno-inline
-\&\-ffast-math \-fstrength-reduce \-frerun-cse-after-loop
-\&\-funsafe-math-optimizations \-fno-trapping-math
-\&\-fexpensive-optimizations \-fdelayed-branch
-\&\-fschedule-insns \-fschedule-insn2 \-fcaller-saves
-\&\-funroll-loops \-funroll-all-loops
-\&\-fno-move-all-movables \-fno-reduce-all-givs
-\&\-fno-rerun-loop-opt\fR
-.Ip "\fIDirectory Options\fR" 4
-.IX Item "Directory Options"
-\&\fB\-I\fR\fIdir\fR \fB\-I-\fR
-.Ip "\fICode Generation Options\fR" 4
-.IX Item "Code Generation Options"
-\&\fB\-fno-automatic \-finit-local-zero \-fno-f2c
-\&\-ff2c-library \-fno-underscoring \-fno-ident
-\&\-fpcc-struct-return \-freg-struct-return
-\&\-fshort-double \-fno-common \-fpack-struct
-\&\-fzeros \-fno-second-underscore
-\&\-femulate-complex
-\&\-falias-check \-fargument-alias
-\&\-fargument-noalias \-fno-argument-noalias-global
-\&\-fno-globals \-fflatten-arrays
-\&\-fbounds-check \-ffortran-bounds-check\fR
-.PP
-Compilation can involve as many as four stages: preprocessing, code
-generation (often what is really meant by the term ``compilation''),
-assembly, and linking, always in that order. The first three
-stages apply to an individual source file, and end by producing an
-object file; linking combines all the object files (those newly
-compiled, and those specified as input) into an executable file.
-.PP
-For any given input file, the file name suffix determines what kind of
-program is contained in the file\-\-\-that is, the language in which the
-program is written is generally indicated by the suffix.
-Suffixes specific to \s-1GNU\s0 Fortran are listed below.
-.Ip "\fIfile\fR\fB.f\fR" 4
-.IX Item "file.f"
-.PD 0
-.Ip "\fIfile\fR\fB.for\fR" 4
-.IX Item "file.for"
-.Ip "\fIfile\fR\fB.FOR\fR" 4
-.IX Item "file.FOR"
-.PD
-Fortran source code that should not be preprocessed.
-.Sp
-Such source code cannot contain any preprocessor directives, such
-as \f(CW\*(C`#include\*(C'\fR, \f(CW\*(C`#define\*(C'\fR, \f(CW\*(C`#if\*(C'\fR, and so on.
-.Sp
-You can force \fB.f\fR files to be preprocessed by \fBcpp\fR by using
-\&\fB\-x f77\-cpp-input\fR.
-.Ip "\fIfile\fR\fB.F\fR" 4
-.IX Item "file.F"
-.PD 0
-.Ip "\fIfile\fR\fB.fpp\fR" 4
-.IX Item "file.fpp"
-.Ip "\fIfile\fR\fB.FPP\fR" 4
-.IX Item "file.FPP"
-.PD
-Fortran source code that must be preprocessed (by the C preprocessor
-\&\fBcpp\fR, which is part of \s-1GNU\s0 \s-1CC\s0).
-.Sp
-Note that preprocessing is not extended to the contents of
-files included by the \f(CW\*(C`INCLUDE\*(C'\fR directive\-\-\-the \f(CW\*(C`#include\*(C'\fR
-preprocessor directive must be used instead.
-.Ip "\fIfile\fR\fB.r\fR" 4
-.IX Item "file.r"
-Ratfor source code, which must be preprocessed by the \fBratfor\fR
-command, which is available separately (as it is not yet part of the \s-1GNU\s0
-Fortran distribution).
-One version in Fortran, adapted for use with \fBg77\fR is at
-<\fBftp://members.aol.com/n8tm/rat7.uue\fR> (of uncertain copyright
-status). Another, public domain version in C is at
-<\fBhttp://sepwww.stanford.edu/sep/prof/ratfor.shar.2\fR>.
-.PP
-\&\s-1UNIX\s0 users typically use the \fI\fIfile\fI.f\fR and \fI\fIfile\fI.F\fR
-nomenclature.
-Users of other operating systems, especially those that cannot
-distinguish upper-case
-letters from lower-case letters in their file names, typically use
-the \fI\fIfile\fI.for\fR and \fI\fIfile\fI.fpp\fR nomenclature.
-.PP
-Use of the preprocessor \fBcpp\fR allows use of C-like
-constructs such as \f(CW\*(C`#define\*(C'\fR and \f(CW\*(C`#include\*(C'\fR, but can
-lead to unexpected, even mistaken, results due to Fortran's source file
-format.
-It is recommended that use of the C preprocessor
-be limited to \f(CW\*(C`#include\*(C'\fR and, in
-conjunction with \f(CW\*(C`#define\*(C'\fR, only \f(CW\*(C`#if\*(C'\fR and related directives,
-thus avoiding in-line macro expansion entirely.
-This recommendation applies especially
-when using the traditional fixed source form.
-With free source form,
-fewer unexpected transformations are likely to happen, but use of
-constructs such as Hollerith and character constants can nevertheless
-present problems, especially when these are continued across multiple
-source lines.
-These problems result, primarily, from differences between the way
-such constants are interpreted by the C preprocessor and by a Fortran
-compiler.
-.PP
-Another example of a problem that results from using the C preprocessor
-is that a Fortran comment line that happens to contain any
-characters ``interesting'' to the C preprocessor,
-such as a backslash at the end of the line,
-is not recognized by the preprocessor as a comment line,
-so instead of being passed through ``raw'',
-the line is edited according to the rules for the preprocessor.
-For example, the backslash at the end of the line is removed,
-along with the subsequent newline, resulting in the next
-line being effectively commented out\-\-\-unfortunate if that
-line is a non-comment line of important code!
-.PP
-\&\fINote:\fR The \fB\-traditional\fR and \fB\-undef\fR flags are supplied
-to \fBcpp\fR by default, to help avoid unpleasant surprises.
-.PP
-This means that \s-1ANSI\s0 C preprocessor features (such as the \fB#\fR
-operator) aren't available, and only variables in the C reserved
-namespace (generally, names with a leading underscore) are liable to
-substitution by C predefines.
-Thus, if you want to do system-specific
-tests, use, for example, \fB#ifdef _\|_linux_\|_\fR rather than \fB#ifdef linux\fR.
-Use the \fB\-v\fR option to see exactly how the preprocessor is invoked.
-.PP
-Unfortunately, the \fB\-traditional\fR flag will not avoid an error from
-anything that \fBcpp\fR sees as an unterminated C comment, such as:
-.PP
-.Vb 2
-\& C Some Fortran compilers accept /* as starting
-\& C an inline comment.
-.Ve
-The following options that affect overall processing are recognized
-by the \fBg77\fR and \fBgcc\fR commands in a \s-1GNU\s0 Fortran installation:
-.Ip "\fB\-fversion\fR" 4
-.IX Item "-fversion"
-Ensure that the \fBg77\fR version of the compiler phase is reported,
-if run,
-and, starting in \f(CW\*(C`egcs\*(C'\fR version 1.1,
-that internal consistency checks in the \fIf771\fR program are run.
-.Sp
-This option is supplied automatically when \fB\-v\fR or \fB\*(--verbose\fR
-is specified as a command-line option for \fBg77\fR or \fBgcc\fR
-and when the resulting commands compile Fortran source files.
-.Sp
-In \s-1GCC\s0 3.1, this is changed back to the behaviour \fBgcc\fR displays
-for \fB.c\fR files.
-.Ip "\fB\-fset-g77\-defaults\fR" 4
-.IX Item "-fset-g77-defaults"
-\&\fIVersion info:\fR
-This option was obsolete as of \f(CW\*(C`egcs\*(C'\fR
-version 1.1.
-The effect is instead achieved
-by the \f(CW\*(C`lang_init_options\*(C'\fR routine
-in \fIgcc/gcc/f/com.c\fR.
-.Sp
-Set up whatever \fBgcc\fR options are to apply to Fortran
-compilations, and avoid running internal consistency checks
-that might take some time.
-.Sp
-This option is supplied automatically when compiling Fortran code
-via the \fBg77\fR or \fBgcc\fR command.
-The description of this option is provided so that users seeing
-it in the output of, say, \fBg77 \-v\fR understand why it is
-there.
-.Sp
-Also, developers who run \f(CW\*(C`f771\*(C'\fR directly might want to specify it
-by hand to get the same defaults as they would running \f(CW\*(C`f771\*(C'\fR
-via \fBg77\fR or \fBgcc\fR
-However, such developers should, after linking a new \f(CW\*(C`f771\*(C'\fR
-executable, invoke it without this option once,
-e.g. via \f(CW\*(C`./f771 \-quiet < /dev/null\*(C'\fR,
-to ensure that they have not introduced any
-internal inconsistencies (such as in the table of
-intrinsics) before proceeding\-\--\fBg77\fR will crash
-with a diagnostic if it detects an inconsistency.
-.Ip "\fB\-fno-silent\fR" 4
-.IX Item "-fno-silent"
-Print (to \f(CW\*(C`stderr\*(C'\fR) the names of the program units as
-they are compiled, in a form similar to that used by popular
-\&\s-1UNIX\s0 \fBf77\fR implementations and \fBf2c\fR
-.Sh "Shorthand Options"
-.IX Subsection "Shorthand Options"
-The following options serve as ``shorthand''
-for other options accepted by the compiler:
-.Ip "\fB\-fugly\fR" 4
-.IX Item "-fugly"
-\&\fINote:\fR This option is no longer supported.
-The information, below, is provided to aid
-in the conversion of old scripts.
-.Sp
-Specify that certain ``ugly'' constructs are to be quietly accepted.
-Same as:
-.Sp
-.Vb 3
-\& -fugly-args -fugly-assign -fugly-assumed
-\& -fugly-comma -fugly-complex -fugly-init
-\& -fugly-logint
-.Ve
-These constructs are considered inappropriate to use in new
-or well-maintained portable Fortran code, but widely used
-in old code.
-.Ip "\fB\-fno-ugly\fR" 4
-.IX Item "-fno-ugly"
-Specify that all ``ugly'' constructs are to be noisily rejected.
-Same as:
-.Sp
-.Vb 3
-\& -fno-ugly-args -fno-ugly-assign -fno-ugly-assumed
-\& -fno-ugly-comma -fno-ugly-complex -fno-ugly-init
-\& -fno-ugly-logint
-.Ve
-.Ip "\fB\-ff66\fR" 4
-.IX Item "-ff66"
-Specify that the program is written in idiomatic \s-1FORTRAN\s0 66.
-Same as \fB\-fonetrip \-fugly-assumed\fR.
-.Sp
-The \fB\-fno-f66\fR option is the inverse of \fB\-ff66\fR.
-As such, it is the same as \fB\-fno-onetrip \-fno-ugly-assumed\fR.
-.Sp
-The meaning of this option is likely to be refined as future
-versions of \fBg77\fR provide more compatibility with other
-existing and obsolete Fortran implementations.
-.Ip "\fB\-ff77\fR" 4
-.IX Item "-ff77"
-Specify that the program is written in idiomatic \s-1UNIX\s0 \s-1FORTRAN\s0 77
-and/or the dialect accepted by the \fBf2c\fR product.
-Same as \fB\-fbackslash \-fno-typeless-boz\fR.
-.Sp
-The meaning of this option is likely to be refined as future
-versions of \fBg77\fR provide more compatibility with other
-existing and obsolete Fortran implementations.
-.Ip "\fB\-fno-f77\fR" 4
-.IX Item "-fno-f77"
-The \fB\-fno-f77\fR option is \fInot\fR the inverse
-of \fB\-ff77\fR.
-It specifies that the program is not written in idiomatic \s-1UNIX\s0
-\&\s-1FORTRAN\s0 77 or \fBf2c\fR but in a more widely portable dialect.
-\&\fB\-fno-f77\fR is the same as \fB\-fno-backslash\fR.
-.Sp
-The meaning of this option is likely to be refined as future
-versions of \fBg77\fR provide more compatibility with other
-existing and obsolete Fortran implementations.
-.Sh "Options Controlling Fortran Dialect"
-.IX Subsection "Options Controlling Fortran Dialect"
-The following options control the dialect of Fortran
-that the compiler accepts:
-.Ip "\fB\-ffree-form\fR" 4
-.IX Item "-ffree-form"
-.PD 0
-.Ip "\fB\-fno-fixed-form\fR" 4
-.IX Item "-fno-fixed-form"
-.PD
-Specify that the source file is written in free form
-(introduced in Fortran 90) instead of the more-traditional fixed form.
-.Ip "\fB\-ff90\fR" 4
-.IX Item "-ff90"
-Allow certain Fortran-90 constructs.
-.Sp
-This option controls whether certain
-Fortran 90 constructs are recognized.
-(Other Fortran 90 constructs
-might or might not be recognized depending on other options such as
-\&\fB\-fvxt\fR, \fB\-ff90\-intrinsics-enable\fR, and the
-current level of support for Fortran 90.)
-.Ip "\fB\-fvxt\fR" 4
-.IX Item "-fvxt"
-Specify the treatment of certain constructs that have different
-meanings depending on whether the code is written in
-\&\s-1GNU\s0 Fortran (based on \s-1FORTRAN\s0 77 and akin to Fortran 90)
-or \s-1VXT\s0 Fortran (more like \s-1VAX\s0 \s-1FORTRAN\s0).
-.Sp
-The default is \fB\-fno-vxt\fR.
-\&\fB\-fvxt\fR specifies that the \s-1VXT\s0 Fortran interpretations
-for those constructs are to be chosen.
-.Ip "\fB\-fdollar-ok\fR" 4
-.IX Item "-fdollar-ok"
-Allow \fB$\fR as a valid character in a symbol name.
-.Ip "\fB\-fno-backslash\fR" 4
-.IX Item "-fno-backslash"
-Specify that \fB\e\fR is not to be specially interpreted in character
-and Hollerith constants a la C and many \s-1UNIX\s0 Fortran compilers.
-.Sp
-For example, with \fB\-fbackslash\fR in effect, \fBA\enB\fR specifies
-three characters, with the second one being newline.
-With \fB\-fno-backslash\fR, it specifies four characters,
-\&\fBA\fR, \fB\e\fR, \fBn\fR, and \fBB\fR.
-.Sp
-Note that \fBg77\fR implements a fairly general form of backslash
-processing that is incompatible with the narrower forms supported
-by some other compilers.
-For example, \fB'A\e003B'\fR is a three-character string in \fBg77\fR
-whereas other compilers that support backslash might not support
-the three-octal-digit form, and thus treat that string as longer
-than three characters.
-.Ip "\fB\-fno-ugly-args\fR" 4
-.IX Item "-fno-ugly-args"
-Disallow passing Hollerith and typeless constants as actual
-arguments (for example, \fB\s-1CALL\s0 FOO(4HABCD)\fR).
-.Ip "\fB\-fugly-assign\fR" 4
-.IX Item "-fugly-assign"
-Use the same storage for a given variable regardless of
-whether it is used to hold an assigned-statement label
-(as in \fB\s-1ASSIGN\s0 10 \s-1TO\s0 I\fR) or used to hold numeric data
-(as in \fBI = 3\fR).
-.Ip "\fB\-fugly-assumed\fR" 4
-.IX Item "-fugly-assumed"
-Assume any dummy array with a final dimension specified as \fB1\fR
-is really an assumed-size array, as if \fB*\fR had been specified
-for the final dimension instead of \fB1\fR.
-.Sp
-For example, \fB\s-1DIMENSION\s0 X(1)\fR is treated as if it
-had read \fB\s-1DIMENSION\s0 X(*)\fR.
-.Ip "\fB\-fugly-comma\fR" 4
-.IX Item "-fugly-comma"
-In an external-procedure invocation,
-treat a trailing comma in the argument list
-as specification of a trailing null argument,
-and treat an empty argument list
-as specification of a single null argument.
-.Sp
-For example, \fB\s-1CALL\s0 \f(BIFOO\fB\|(,)\fR is treated as
-\&\fB\s-1CALL\s0 FOO(%\f(BIVAL\fB\|(0), %\f(BIVAL\fB\|(0))\fR.
-That is, \fItwo\fR null arguments are specified
-by the procedure call when \fB\-fugly-comma\fR is in force.
-And \fBF = \f(BIFUNC()\fB\fR is treated as \fBF = FUNC(%\f(BIVAL\fB\|(0))\fR.
-.Sp
-The default behavior, \fB\-fno-ugly-comma\fR, is to ignore
-a single trailing comma in an argument list.
-So, by default, \fB\s-1CALL\s0 FOO(X,)\fR is treated
-exactly the same as \fB\s-1CALL\s0 \f(BIFOO\fB\|(X)\fR.
-.Ip "\fB\-fugly-complex\fR" 4
-.IX Item "-fugly-complex"
-Do not complain about \fBREAL(\fR\fIexpr\fR\fB)\fR or
-\&\fBAIMAG(\fR\fIexpr\fR\fB)\fR when \fIexpr\fR is a \f(CW\*(C`COMPLEX\*(C'\fR
-type other than \f(CW\*(C`COMPLEX(KIND=1)\*(C'\fR\-\-\-usually
-this is used to permit \f(CW\*(C`COMPLEX(KIND=2)\*(C'\fR
-(\f(CW\*(C`DOUBLE COMPLEX\*(C'\fR) operands.
-.Sp
-The \fB\-ff90\fR option controls the interpretation
-of this construct.
-.Ip "\fB\-fno-ugly-init\fR" 4
-.IX Item "-fno-ugly-init"
-Disallow use of Hollerith and typeless constants as initial
-values (in \f(CW\*(C`PARAMETER\*(C'\fR and \f(CW\*(C`DATA\*(C'\fR statements), and
-use of character constants to
-initialize numeric types and vice versa.
-.Sp
-For example, \fB\s-1DATA\s0 I/'F'/, \s-1CHRVAR/65/\s0, J/4HABCD/\fR is disallowed by
-\&\fB\-fno-ugly-init\fR.
-.Ip "\fB\-fugly-logint\fR" 4
-.IX Item "-fugly-logint"
-Treat \f(CW\*(C`INTEGER\*(C'\fR and \f(CW\*(C`LOGICAL\*(C'\fR variables and
-expressions as potential stand-ins for each other.
-.Sp
-For example, automatic conversion between \f(CW\*(C`INTEGER\*(C'\fR and
-\&\f(CW\*(C`LOGICAL\*(C'\fR is enabled, for many contexts, via this option.
-.Ip "\fB\-fonetrip\fR" 4
-.IX Item "-fonetrip"
-Executable iterative \f(CW\*(C`DO\*(C'\fR loops are to be executed at
-least once each time they are reached.
-.Sp
-\&\s-1ANSI\s0 \s-1FORTRAN\s0 77 and more recent versions of the Fortran standard
-specify that the body of an iterative \f(CW\*(C`DO\*(C'\fR loop is not executed
-if the number of iterations calculated from the parameters of the
-loop is less than 1.
-(For example, \fB\s-1DO\s0 10 I = 1, 0\fR.)
-Such a loop is called a \fIzero-trip loop\fR.
-.Sp
-Prior to \s-1ANSI\s0 \s-1FORTRAN\s0 77, many compilers implemented \f(CW\*(C`DO\*(C'\fR loops
-such that the body of a loop would be executed at least once, even
-if the iteration count was zero.
-Fortran code written assuming this behavior is said to require
-\&\fIone-trip loops\fR.
-For example, some code written to the \s-1FORTRAN\s0 66 standard
-expects this behavior from its \f(CW\*(C`DO\*(C'\fR loops, although that
-standard did not specify this behavior.
-.Sp
-The \fB\-fonetrip\fR option specifies that the source \fIfile\fR\|(s) being
-compiled require one-trip loops.
-.Sp
-This option affects only those loops specified by the (iterative) \f(CW\*(C`DO\*(C'\fR
-statement and by implied-\f(CW\*(C`DO\*(C'\fR lists in I/O statements.
-Loops specified by implied-\f(CW\*(C`DO\*(C'\fR lists in \f(CW\*(C`DATA\*(C'\fR and
-specification (non-executable) statements are not affected.
-.Ip "\fB\-ftypeless-boz\fR" 4
-.IX Item "-ftypeless-boz"
-Specifies that prefix-radix non-decimal constants, such as
-\&\fBZ'\s-1ABCD\s0'\fR, are typeless instead of \f(CW\*(C`INTEGER(KIND=1)\*(C'\fR.
-.Sp
-You can test for yourself whether a particular compiler treats
-the prefix form as \f(CW\*(C`INTEGER(KIND=1)\*(C'\fR or typeless by running the
-following program:
-.Sp
-.Vb 6
-\& EQUIVALENCE (I, R)
-\& R = Z'ABCD1234'
-\& J = Z'ABCD1234'
-\& IF (J .EQ. I) PRINT *, 'Prefix form is TYPELESS'
-\& IF (J .NE. I) PRINT *, 'Prefix form is INTEGER'
-\& END
-.Ve
-Reports indicate that many compilers process this form as
-\&\f(CW\*(C`INTEGER(KIND=1)\*(C'\fR, though a few as typeless, and at least one
-based on a command-line option specifying some kind of
-compatibility.
-.Ip "\fB\-fintrin-case-initcap\fR" 4
-.IX Item "-fintrin-case-initcap"
-.PD 0
-.Ip "\fB\-fintrin-case-upper\fR" 4
-.IX Item "-fintrin-case-upper"
-.Ip "\fB\-fintrin-case-lower\fR" 4
-.IX Item "-fintrin-case-lower"
-.Ip "\fB\-fintrin-case-any\fR" 4
-.IX Item "-fintrin-case-any"
-.PD
-Specify expected case for intrinsic names.
-\&\fB\-fintrin-case-lower\fR is the default.
-.Ip "\fB\-fmatch-case-initcap\fR" 4
-.IX Item "-fmatch-case-initcap"
-.PD 0
-.Ip "\fB\-fmatch-case-upper\fR" 4
-.IX Item "-fmatch-case-upper"
-.Ip "\fB\-fmatch-case-lower\fR" 4
-.IX Item "-fmatch-case-lower"
-.Ip "\fB\-fmatch-case-any\fR" 4
-.IX Item "-fmatch-case-any"
-.PD
-Specify expected case for keywords.
-\&\fB\-fmatch-case-lower\fR is the default.
-.Ip "\fB\-fsource-case-upper\fR" 4
-.IX Item "-fsource-case-upper"
-.PD 0
-.Ip "\fB\-fsource-case-lower\fR" 4
-.IX Item "-fsource-case-lower"
-.Ip "\fB\-fsource-case-preserve\fR" 4
-.IX Item "-fsource-case-preserve"
-.PD
-Specify whether source text other than character and Hollerith constants
-is to be translated to uppercase, to lowercase, or preserved as is.
-\&\fB\-fsource-case-lower\fR is the default.
-.Ip "\fB\-fsymbol-case-initcap\fR" 4
-.IX Item "-fsymbol-case-initcap"
-.PD 0
-.Ip "\fB\-fsymbol-case-upper\fR" 4
-.IX Item "-fsymbol-case-upper"
-.Ip "\fB\-fsymbol-case-lower\fR" 4
-.IX Item "-fsymbol-case-lower"
-.Ip "\fB\-fsymbol-case-any\fR" 4
-.IX Item "-fsymbol-case-any"
-.PD
-Specify valid cases for user-defined symbol names.
-\&\fB\-fsymbol-case-any\fR is the default.
-.Ip "\fB\-fcase-strict-upper\fR" 4
-.IX Item "-fcase-strict-upper"
-Same as \fB\-fintrin-case-upper \-fmatch-case-upper \-fsource-case-preserve
-\&\-fsymbol-case-upper\fR.
-(Requires all pertinent source to be in uppercase.)
-.Ip "\fB\-fcase-strict-lower\fR" 4
-.IX Item "-fcase-strict-lower"
-Same as \fB\-fintrin-case-lower \-fmatch-case-lower \-fsource-case-preserve
-\&\-fsymbol-case-lower\fR.
-(Requires all pertinent source to be in lowercase.)
-.Ip "\fB\-fcase-initcap\fR" 4
-.IX Item "-fcase-initcap"
-Same as \fB\-fintrin-case-initcap \-fmatch-case-initcap \-fsource-case-preserve
-\&\-fsymbol-case-initcap\fR.
-(Requires all pertinent source to be in initial capitals,
-as in \fBPrint *,SqRt(Value)\fR.)
-.Ip "\fB\-fcase-upper\fR" 4
-.IX Item "-fcase-upper"
-Same as \fB\-fintrin-case-any \-fmatch-case-any \-fsource-case-upper
-\&\-fsymbol-case-any\fR.
-(Maps all pertinent source to uppercase.)
-.Ip "\fB\-fcase-lower\fR" 4
-.IX Item "-fcase-lower"
-Same as \fB\-fintrin-case-any \-fmatch-case-any \-fsource-case-lower
-\&\-fsymbol-case-any\fR.
-(Maps all pertinent source to lowercase.)
-.Ip "\fB\-fcase-preserve\fR" 4
-.IX Item "-fcase-preserve"
-Same as \fB\-fintrin-case-any \-fmatch-case-any \-fsource-case-preserve
-\&\-fsymbol-case-any\fR.
-(Preserves all case in user-defined symbols,
-while allowing any-case matching of intrinsics and keywords.
-For example, \fBcall Foo(i,I)\fR would pass two \fIdifferent\fR
-variables named \fBi\fR and \fBI\fR to a procedure named \fBFoo\fR.)
-.Ip "\fB\-fbadu77\-intrinsics-delete\fR" 4
-.IX Item "-fbadu77-intrinsics-delete"
-.PD 0
-.Ip "\fB\-fbadu77\-intrinsics-hide\fR" 4
-.IX Item "-fbadu77-intrinsics-hide"
-.Ip "\fB\-fbadu77\-intrinsics-disable\fR" 4
-.IX Item "-fbadu77-intrinsics-disable"
-.Ip "\fB\-fbadu77\-intrinsics-enable\fR" 4
-.IX Item "-fbadu77-intrinsics-enable"
-.PD
-Specify status of \s-1UNIX\s0 intrinsics having inappropriate forms.
-\&\fB\-fbadu77\-intrinsics-enable\fR is the default.
-.Ip "\fB\-ff2c-intrinsics-delete\fR" 4
-.IX Item "-ff2c-intrinsics-delete"
-.PD 0
-.Ip "\fB\-ff2c-intrinsics-hide\fR" 4
-.IX Item "-ff2c-intrinsics-hide"
-.Ip "\fB\-ff2c-intrinsics-disable\fR" 4
-.IX Item "-ff2c-intrinsics-disable"
-.Ip "\fB\-ff2c-intrinsics-enable\fR" 4
-.IX Item "-ff2c-intrinsics-enable"
-.PD
-Specify status of f2c-specific intrinsics.
-\&\fB\-ff2c-intrinsics-enable\fR is the default.
-.Ip "\fB\-ff90\-intrinsics-delete\fR" 4
-.IX Item "-ff90-intrinsics-delete"
-.PD 0
-.Ip "\fB\-ff90\-intrinsics-hide\fR" 4
-.IX Item "-ff90-intrinsics-hide"
-.Ip "\fB\-ff90\-intrinsics-disable\fR" 4
-.IX Item "-ff90-intrinsics-disable"
-.Ip "\fB\-ff90\-intrinsics-enable\fR" 4
-.IX Item "-ff90-intrinsics-enable"
-.PD
-Specify status of F90\-specific intrinsics.
-\&\fB\-ff90\-intrinsics-enable\fR is the default.
-.Ip "\fB\-fgnu-intrinsics-delete\fR" 4
-.IX Item "-fgnu-intrinsics-delete"
-.PD 0
-.Ip "\fB\-fgnu-intrinsics-hide\fR" 4
-.IX Item "-fgnu-intrinsics-hide"
-.Ip "\fB\-fgnu-intrinsics-disable\fR" 4
-.IX Item "-fgnu-intrinsics-disable"
-.Ip "\fB\-fgnu-intrinsics-enable\fR" 4
-.IX Item "-fgnu-intrinsics-enable"
-.PD
-Specify status of Digital's COMPLEX-related intrinsics.
-\&\fB\-fgnu-intrinsics-enable\fR is the default.
-.Ip "\fB\-fmil-intrinsics-delete\fR" 4
-.IX Item "-fmil-intrinsics-delete"
-.PD 0
-.Ip "\fB\-fmil-intrinsics-hide\fR" 4
-.IX Item "-fmil-intrinsics-hide"
-.Ip "\fB\-fmil-intrinsics-disable\fR" 4
-.IX Item "-fmil-intrinsics-disable"
-.Ip "\fB\-fmil-intrinsics-enable\fR" 4
-.IX Item "-fmil-intrinsics-enable"
-.PD
-Specify status of MIL-STD-1753\-specific intrinsics.
-\&\fB\-fmil-intrinsics-enable\fR is the default.
-.Ip "\fB\-funix-intrinsics-delete\fR" 4
-.IX Item "-funix-intrinsics-delete"
-.PD 0
-.Ip "\fB\-funix-intrinsics-hide\fR" 4
-.IX Item "-funix-intrinsics-hide"
-.Ip "\fB\-funix-intrinsics-disable\fR" 4
-.IX Item "-funix-intrinsics-disable"
-.Ip "\fB\-funix-intrinsics-enable\fR" 4
-.IX Item "-funix-intrinsics-enable"
-.PD
-Specify status of \s-1UNIX\s0 intrinsics.
-\&\fB\-funix-intrinsics-enable\fR is the default.
-.Ip "\fB\-fvxt-intrinsics-delete\fR" 4
-.IX Item "-fvxt-intrinsics-delete"
-.PD 0
-.Ip "\fB\-fvxt-intrinsics-hide\fR" 4
-.IX Item "-fvxt-intrinsics-hide"
-.Ip "\fB\-fvxt-intrinsics-disable\fR" 4
-.IX Item "-fvxt-intrinsics-disable"
-.Ip "\fB\-fvxt-intrinsics-enable\fR" 4
-.IX Item "-fvxt-intrinsics-enable"
-.PD
-Specify status of \s-1VXT\s0 intrinsics.
-\&\fB\-fvxt-intrinsics-enable\fR is the default.
-.Ip "\fB\-ffixed-line-length-\fR\fIn\fR" 4
-.IX Item "-ffixed-line-length-n"
-Set column after which characters are ignored in typical fixed-form
-lines in the source file, and through which spaces are assumed (as
-if padded to that length) after the ends of short fixed-form lines.
-.Sp
-Popular values for \fIn\fR include 72 (the
-standard and the default), 80 (card image), and 132 (corresponds
-to ``extended-source'' options in some popular compilers).
-\&\fIn\fR may be \fBnone\fR, meaning that the entire line is meaningful
-and that continued character constants never have implicit spaces appended
-to them to fill out the line.
-\&\fB\-ffixed-line-length-0\fR means the same thing as
-\&\fB\-ffixed-line-length-none\fR.
-.Sh "Options to Request or Suppress Warnings"
-.IX Subsection "Options to Request or Suppress Warnings"
-Warnings are diagnostic messages that report constructions which
-are not inherently erroneous but which are risky or suggest there
-might have been an error.
-.PP
-You can request many specific warnings with options beginning \fB\-W\fR,
-for example \fB\-Wimplicit\fR to request warnings on implicit
-declarations. Each of these specific warning options also has a
-negative form beginning \fB\-Wno-\fR to turn off warnings;
-for example, \fB\-Wno-implicit\fR. This manual lists only one of the
-two forms, whichever is not the default.
-.PP
-These options control the amount and kinds of warnings produced by \s-1GNU\s0
-Fortran:
-.Ip "\fB\-fsyntax-only\fR" 4
-.IX Item "-fsyntax-only"
-Check the code for syntax errors, but don't do anything beyond that.
-.Ip "\fB\-pedantic\fR" 4
-.IX Item "-pedantic"
-Issue warnings for uses of extensions to \s-1ANSI\s0 \s-1FORTRAN\s0 77.
-\&\fB\-pedantic\fR also applies to C-language constructs where they
-occur in \s-1GNU\s0 Fortran source files, such as use of \fB\ee\fR in a
-character constant within a directive like \fB#include\fR.
-.Sp
-Valid \s-1ANSI\s0 \s-1FORTRAN\s0 77 programs should compile properly with or without
-this option.
-However, without this option, certain \s-1GNU\s0 extensions and traditional
-Fortran features are supported as well.
-With this option, many of them are rejected.
-.Sp
-Some users try to use \fB\-pedantic\fR to check programs for strict \s-1ANSI\s0
-conformance.
-They soon find that it does not do quite what they want\-\-\-it finds some
-non-ANSI practices, but not all.
-However, improvements to \fBg77\fR in this area are welcome.
-.Ip "\fB\-pedantic-errors\fR" 4
-.IX Item "-pedantic-errors"
-Like \fB\-pedantic\fR, except that errors are produced rather than
-warnings.
-.Ip "\fB\-fpedantic\fR" 4
-.IX Item "-fpedantic"
-Like \fB\-pedantic\fR, but applies only to Fortran constructs.
-.Ip "\fB\-w\fR" 4
-.IX Item "-w"
-Inhibit all warning messages.
-.Ip "\fB\-Wno-globals\fR" 4
-.IX Item "-Wno-globals"
-Inhibit warnings about use of a name as both a global name
-(a subroutine, function, or block data program unit, or a
-common block) and implicitly as the name of an intrinsic
-in a source file.
-.Sp
-Also inhibit warnings about inconsistent invocations and/or
-definitions of global procedures (function and subroutines).
-Such inconsistencies include different numbers of arguments
-and different types of arguments.
-.Ip "\fB\-Wimplicit\fR" 4
-.IX Item "-Wimplicit"
-Warn whenever a variable, array, or function is implicitly
-declared.
-Has an effect similar to using the \f(CW\*(C`IMPLICIT NONE\*(C'\fR statement
-in every program unit.
-(Some Fortran compilers provide this feature by an option
-named \fB\-u\fR or \fB/WARNINGS=DECLARATIONS\fR.)
-.Ip "\fB\-Wunused\fR" 4
-.IX Item "-Wunused"
-Warn whenever a variable is unused aside from its declaration.
-.Ip "\fB\-Wuninitialized\fR" 4
-.IX Item "-Wuninitialized"
-Warn whenever an automatic variable is used without first being initialized.
-.Sp
-These warnings are possible only in optimizing compilation,
-because they require data-flow information that is computed only
-when optimizing. If you don't specify \fB\-O\fR, you simply won't
-get these warnings.
-.Sp
-These warnings occur only for variables that are candidates for
-register allocation. Therefore, they do not occur for a variable
-whose address is taken, or whose size
-is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
-arrays, even when they are in registers.
-.Sp
-Note that there might be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data-flow analysis before the warnings
-are printed.
-.Sp
-These warnings are made optional because \s-1GNU\s0 Fortran is not smart
-enough to see all the reasons why the code might be correct
-despite appearing to have an error. Here is one example of how
-this can happen:
-.Sp
-.Vb 6
-\& SUBROUTINE DISPAT(J)
-\& IF (J.EQ.1) I=1
-\& IF (J.EQ.2) I=4
-\& IF (J.EQ.3) I=5
-\& CALL FOO(I)
-\& END
-.Ve
-If the value of \f(CW\*(C`J\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`I\*(C'\fR is
-always initialized, but \s-1GNU\s0 Fortran doesn't know this. Here is
-another common case:
-.Sp
-.Vb 6
-\& SUBROUTINE MAYBE(FLAG)
-\& LOGICAL FLAG
-\& IF (FLAG) VALUE = 9.4
-\& ...
-\& IF (FLAG) PRINT *, VALUE
-\& END
-.Ve
-This has no bug because \f(CW\*(C`VALUE\*(C'\fR is used only if it is set.
-.Ip "\fB\-Wall\fR" 4
-.IX Item "-Wall"
-The \fB\-Wunused\fR and \fB\-Wuninitialized\fR options combined.
-These are all the
-options which pertain to usage that we recommend avoiding and that we
-believe is easy to avoid.
-(As more warnings are added to \fBg77\fR some might
-be added to the list enabled by \fB\-Wall\fR.)
-.PP
-The remaining \fB\-W...\fR options are not implied by \fB\-Wall\fR
-because they warn about constructions that we consider reasonable to
-use, on occasion, in clean programs.
-.Ip "\fB\-Wsurprising\fR" 4
-.IX Item "-Wsurprising"
-Warn about ``suspicious'' constructs that are interpreted
-by the compiler in a way that might well be surprising to
-someone reading the code.
-These differences can result in subtle, compiler-dependent
-(even machine-dependent) behavioral differences.
-The constructs warned about include:
-.RS 4
-.Ip "\(bu" 4
-Expressions having two arithmetic operators in a row, such
-as \fBX*\-Y\fR.
-Such a construct is nonstandard, and can produce
-unexpected results in more complicated situations such
-as \fBX**\-Y*Z\fR.
-\&\fBg77\fR along with many other compilers, interprets
-this example differently than many programmers, and a few
-other compilers.
-Specifically, \fBg77\fR interprets \fBX**\-Y*Z\fR as
-\&\fB(X**(\-Y))*Z\fR, while others might think it should
-be interpreted as \fBX**(\-(Y*Z))\fR.
-.Sp
-A revealing example is the constant expression \fB2**\-2*1.\fR,
-which \fBg77\fR evaluates to .25, while others might evaluate
-it to 0., the difference resulting from the way precedence affects
-type promotion.
-.Sp
-(The \fB\-fpedantic\fR option also warns about expressions
-having two arithmetic operators in a row.)
-.Ip "\(bu" 4
-Expressions with a unary minus followed by an operand and then
-a binary operator other than plus or minus.
-For example, \fB\-2**2\fR produces a warning, because
-the precedence is \fB\-(2**2)\fR, yielding \-4, not
-\&\fB(\-2)**2\fR, which yields 4, and which might represent
-what a programmer expects.
-.Sp
-An example of an expression producing different results
-in a surprising way is \fB\-I*S\fR, where \fII\fR holds
-the value \fB\-2147483648\fR and \fIS\fR holds \fB0.5\fR.
-On many systems, negating \fII\fR results in the same
-value, not a positive number, because it is already the
-lower bound of what an \f(CW\*(C`INTEGER(KIND=1)\*(C'\fR variable can hold.
-So, the expression evaluates to a positive number, while
-the ``expected'' interpretation, \fB(\-I)*S\fR, would
-evaluate to a negative number.
-.Sp
-Even cases such as \fB\-I*J\fR produce warnings,
-even though, in most configurations and situations,
-there is no computational difference between the
-results of the two interpretations\-\-\-the purpose
-of this warning is to warn about differing interpretations
-and encourage a better style of coding, not to identify
-only those places where bugs might exist in the user's
-code.
-.Ip "\(bu" 4
-\&\f(CW\*(C`DO\*(C'\fR loops with \f(CW\*(C`DO\*(C'\fR variables that are not
-of integral type\-\-\-that is, using \f(CW\*(C`REAL\*(C'\fR
-variables as loop control variables.
-Although such loops can be written to work in the
-``obvious'' way, the way \fBg77\fR is required by the
-Fortran standard to interpret such code is likely to
-be quite different from the way many programmers expect.
-(This is true of all \f(CW\*(C`DO\*(C'\fR loops, but the differences
-are pronounced for non-integral loop control variables.)
-.RE
-.RS 4
-.RE
-.Ip "\fB\-Werror\fR" 4
-.IX Item "-Werror"
-Make all warnings into errors.
-.Ip "\fB\-W\fR" 4
-.IX Item "-W"
-Turns on ``extra warnings'' and, if optimization is specified
-via \fB\-O\fR, the \fB\-Wuninitialized\fR option.
-(This might change in future versions of \fBg77\fR
-.Sp
-``Extra warnings'' are issued for:
-.RS 4
-.Ip "\(bu" 4
-Unused parameters to a procedure (when \fB\-Wunused\fR also is
-specified).
-.Ip "\(bu" 4
-Overflows involving floating-point constants (not available
-for certain configurations).
-.RE
-.RS 4
-.RE
-.PP
-Some of these have no effect when compiling programs written in Fortran:
-.Ip "\fB\-Wcomment\fR" 4
-.IX Item "-Wcomment"
-.PD 0
-.Ip "\fB\-Wformat\fR" 4
-.IX Item "-Wformat"
-.Ip "\fB\-Wparentheses\fR" 4
-.IX Item "-Wparentheses"
-.Ip "\fB\-Wswitch\fR" 4
-.IX Item "-Wswitch"
-.Ip "\fB\-Wtraditional\fR" 4
-.IX Item "-Wtraditional"
-.Ip "\fB\-Wshadow\fR" 4
-.IX Item "-Wshadow"
-.Ip "\fB\-Wid-clash-\fR\fIlen\fR" 4
-.IX Item "-Wid-clash-len"
-.Ip "\fB\-Wlarger-than-\fR\fIlen\fR" 4
-.IX Item "-Wlarger-than-len"
-.Ip "\fB\-Wconversion\fR" 4
-.IX Item "-Wconversion"
-.Ip "\fB\-Waggregate-return\fR" 4
-.IX Item "-Waggregate-return"
-.Ip "\fB\-Wredundant-decls\fR" 4
-.IX Item "-Wredundant-decls"
-.PD
-These options all could have some relevant meaning for
-\&\s-1GNU\s0 Fortran programs, but are not yet supported.
-.Sh "Options for Debugging Your Program or \s-1GNU\s0 Fortran"
-.IX Subsection "Options for Debugging Your Program or GNU Fortran"
-\&\s-1GNU\s0 Fortran has various special options that are used for debugging
-either your program or \fBg77\fR
-.Ip "\fB\-g\fR" 4
-.IX Item "-g"
-Produce debugging information in the operating system's native format
-(stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0). \s-1GDB\s0 can work with this debugging
-information.
-.Sp
-A sample debugging session looks like this (note the use of the breakpoint):
-.Sp
-.Vb 24
-\& $ cat gdb.f
-\& PROGRAM PROG
-\& DIMENSION A(10)
-\& DATA A /1.,2.,3.,4.,5.,6.,7.,8.,9.,10./
-\& A(5) = 4.
-\& PRINT*,A
-\& END
-\& $ g77 -g -O gdb.f
-\& $ gdb a.out
-\& ...
-\& (gdb) break MAIN__
-\& Breakpoint 1 at 0x8048e96: file gdb.f, line 4.
-\& (gdb) run
-\& Starting program: /home/toon/g77-bugs/./a.out
-\& Breakpoint 1, MAIN__ () at gdb.f:4
-\& 4 A(5) = 4.
-\& Current language: auto; currently fortran
-\& (gdb) print a(5)
-\& $1 = 5
-\& (gdb) step
-\& 5 PRINT*,A
-\& (gdb) print a(5)
-\& $2 = 4
-\& ...
-.Ve
-One could also add the setting of the breakpoint and the first run command
-to the file \fI.gdbinit\fR in the current directory, to simplify the debugging
-session.
-.Sh "Options That Control Optimization"
-.IX Subsection "Options That Control Optimization"
-Most Fortran users will want to use no optimization when
-developing and testing programs, and use \fB\-O\fR or \fB\-O2\fR when
-compiling programs for late-cycle testing and for production use.
-However, note that certain diagnostics\-\-\-such as for uninitialized
-variables\-\-\-depend on the flow analysis done by \fB\-O\fR, i.e. you
-must use \fB\-O\fR or \fB\-O2\fR to get such diagnostics.
-.PP
-The following flags have particular applicability when
-compiling Fortran programs:
-.Ip "\fB\-malign-double\fR" 4
-.IX Item "-malign-double"
-(Intel x86 architecture only.)
-.Sp
-Noticeably improves performance of \fBg77\fR programs making
-heavy use of \f(CW\*(C`REAL(KIND=2)\*(C'\fR (\f(CW\*(C`DOUBLE PRECISION\*(C'\fR) data
-on some systems.
-In particular, systems using Pentium, Pentium Pro, 586, and
-686 implementations
-of the i386 architecture execute programs faster when
-\&\f(CW\*(C`REAL(KIND=2)\*(C'\fR (\f(CW\*(C`DOUBLE PRECISION\*(C'\fR) data are
-aligned on 64\-bit boundaries
-in memory.
-.Sp
-This option can, at least, make benchmark results more consistent
-across various system configurations, versions of the program,
-and data sets.
-.Sp
-\&\fINote:\fR The warning in the \fBgcc\fR documentation about
-this option does not apply, generally speaking, to Fortran
-code compiled by \fBg77\fR
-.Sp
-\&\fIAlso also note:\fR The negative form of \fB\-malign-double\fR
-is \fB\-mno-align-double\fR, not \fB\-benign-double\fR.
-.Ip "\fB\-ffloat-store\fR" 4
-.IX Item "-ffloat-store"
-Might help a Fortran program that depends on exact \s-1IEEE\s0 conformance on
-some machines, but might slow down a program that doesn't.
-.Sp
-This option is effective when the floating-point unit is set to work in
-\&\s-1IEEE\s0 854 `extended precision'\-\-\-as it typically is on x86 and m68k \s-1GNU\s0
-systems\-\-\-rather than \s-1IEEE\s0 754 double precision. \fB\-ffloat-store\fR
-tries to remove the extra precision by spilling data from floating-point
-registers into memory and this typically involves a big performance
-hit. However, it doesn't affect intermediate results, so that it is
-only partially effective. `Excess precision' is avoided in code like:
-.Sp
-.Vb 2
-\& a = b + c
-\& d = a * e
-.Ve
-but not in code like:
-.Sp
-.Vb 1
-\& d = (b + c) * e
-.Ve
-For another, potentially better, way of controlling the precision,
-see \f(CW@ref\fR{Floating-point precision}.
-.Ip "\fB\-fforce-mem\fR" 4
-.IX Item "-fforce-mem"
-.PD 0
-.Ip "\fB\-fforce-addr\fR" 4
-.IX Item "-fforce-addr"
-.PD
-Might improve optimization of loops.
-.Ip "\fB\-fno-inline\fR" 4
-.IX Item "-fno-inline"
-Don't compile statement functions inline.
-Might reduce the size of a program unit\-\-\-which might be at
-expense of some speed (though it should compile faster).
-Note that if you are not optimizing, no functions can be expanded inline.
-.Ip "\fB\-ffast-math\fR" 4
-.IX Item "-ffast-math"
-Might allow some programs designed to not be too dependent
-on \s-1IEEE\s0 behavior for floating-point to run faster, or die trying.
-Sets \fB\-funsafe-math-optimizations\fR, and
-\&\fB\-fno-trapping-math\fR.
-.Ip "\fB\-funsafe-math-optimizations\fR" 4
-.IX Item "-funsafe-math-optimizations"
-Allow optimizations that may be give incorrect results
-for certain \s-1IEEE\s0 inputs.
-.Ip "\fB\-fno-trapping-math\fR" 4
-.IX Item "-fno-trapping-math"
-Allow the compiler to assume that floating-point arithmetic
-will not generate traps on any inputs. This is useful, for
-example, when running a program using \s-1IEEE\s0 \*(L"non-stop\*(R"
-floating-point arithmetic.
-.Ip "\fB\-fstrength-reduce\fR" 4
-.IX Item "-fstrength-reduce"
-Might make some loops run faster.
-.Ip "\fB\-frerun-cse-after-loop\fR" 4
-.IX Item "-frerun-cse-after-loop"
-.PD 0
-.Ip "\fB\-fexpensive-optimizations\fR" 4
-.IX Item "-fexpensive-optimizations"
-.Ip "\fB\-fdelayed-branch\fR" 4
-.IX Item "-fdelayed-branch"
-.Ip "\fB\-fschedule-insns\fR" 4
-.IX Item "-fschedule-insns"
-.Ip "\fB\-fschedule-insns2\fR" 4
-.IX Item "-fschedule-insns2"
-.Ip "\fB\-fcaller-saves\fR" 4
-.IX Item "-fcaller-saves"
-.PD
-Might improve performance on some code.
-.Ip "\fB\-funroll-loops\fR" 4
-.IX Item "-funroll-loops"
-Typically improves performance on code using iterative \f(CW\*(C`DO\*(C'\fR loops by
-unrolling them and is probably generally appropriate for Fortran, though
-it is not turned on at any optimization level.
-Note that outer loop unrolling isn't done specifically; decisions about
-whether to unroll a loop are made on the basis of its instruction count.
-.Sp
-Also, no `loop discovery'[1] is done, so only loops written with \f(CW\*(C`DO\*(C'\fR
-benefit from loop optimizations, including\-\-\-but not limited
-to\-\-\-unrolling. Loops written with \f(CW\*(C`IF\*(C'\fR and \f(CW\*(C`GOTO\*(C'\fR are not
-currently recognized as such. This option unrolls only iterative
-\&\f(CW\*(C`DO\*(C'\fR loops, not \f(CW\*(C`DO WHILE\*(C'\fR loops.
-.Ip "\fB\-funroll-all-loops\fR" 4
-.IX Item "-funroll-all-loops"
-Probably improves performance on code using \f(CW\*(C`DO WHILE\*(C'\fR loops by
-unrolling them in addition to iterative \f(CW\*(C`DO\*(C'\fR loops. In the absence
-of \f(CW\*(C`DO WHILE\*(C'\fR, this option is equivalent to \fB\-funroll-loops\fR
-but possibly slower.
-.Ip "\fB\-fno-move-all-movables\fR" 4
-.IX Item "-fno-move-all-movables"
-.PD 0
-.Ip "\fB\-fno-reduce-all-givs\fR" 4
-.IX Item "-fno-reduce-all-givs"
-.Ip "\fB\-fno-rerun-loop-opt\fR" 4
-.IX Item "-fno-rerun-loop-opt"
-.PD
-In general, the optimizations enabled with these options will lead to
-faster code being generated by \s-1GNU\s0 Fortran; hence they are enabled by default
-when issuing the \fBg77\fR command.
-.Sp
-\&\fB\-fmove-all-movables\fR and \fB\-freduce-all-givs\fR will enable
-loop optimization to move all loop-invariant index computations in nested
-loops over multi-rank array dummy arguments out of these loops.
-.Sp
-\&\fB\-frerun-loop-opt\fR will move offset calculations resulting
-from the fact that Fortran arrays by default have a lower bound of 1
-out of the loops.
-.Sp
-These three options are intended to be removed someday, once
-loop optimization is sufficiently advanced to perform all those
-transformations without help from these options.
-.Sh "Options Controlling the Preprocessor"
-.IX Subsection "Options Controlling the Preprocessor"
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-.PP
-Some of these options also affect how \fBg77\fR processes the
-\&\f(CW\*(C`INCLUDE\*(C'\fR directive.
-Since this directive is processed even when preprocessing
-is not requested, it is not described in this section.
-.PP
-However, the \f(CW\*(C`INCLUDE\*(C'\fR directive does not apply
-preprocessing to the contents of the included file itself.
-.PP
-Therefore, any file that contains preprocessor directives
-(such as \f(CW\*(C`#include\*(C'\fR, \f(CW\*(C`#define\*(C'\fR, and \f(CW\*(C`#if\*(C'\fR)
-must be included via the \f(CW\*(C`#include\*(C'\fR directive, not
-via the \f(CW\*(C`INCLUDE\*(C'\fR directive.
-Therefore, any file containing preprocessor directives,
-if included, is necessarily included by a file that itself
-contains preprocessor directives.
-.Sh "Options for Directory Search"
-.IX Subsection "Options for Directory Search"
-These options affect how the \fBcpp\fR preprocessor searches
-for files specified via the \f(CW\*(C`#include\*(C'\fR directive.
-Therefore, when compiling Fortran programs, they are meaningful
-when the preprocessor is used.
-.PP
-Some of these options also affect how \fBg77\fR searches
-for files specified via the \f(CW\*(C`INCLUDE\*(C'\fR directive,
-although files included by that directive are not,
-themselves, preprocessed.
-These options are:
-.Ip "\fB\-I-\fR" 4
-.IX Item "-I-"
-.PD 0
-.Ip "\fB\-I\fR\fIdir\fR" 4
-.IX Item "-Idir"
-.PD
-These affect interpretation of the \f(CW\*(C`INCLUDE\*(C'\fR directive
-(as well as of the \f(CW\*(C`#include\*(C'\fR directive of the \fBcpp\fR
-preprocessor).
-.Sp
-Note that \fB\-I\fR\fIdir\fR must be specified \fIwithout\fR any
-spaces between \fB\-I\fR and the directory name\-\-\-that is,
-\&\fB\-Ifoo/bar\fR is valid, but \fB\-I foo/bar\fR
-is rejected by the \fBg77\fR compiler (though the preprocessor supports
-the latter form).
-Also note that the general behavior of \fB\-I\fR and
-\&\f(CW\*(C`INCLUDE\*(C'\fR is pretty much the same as of \fB\-I\fR with
-\&\f(CW\*(C`#include\*(C'\fR in the \fBcpp\fR preprocessor, with regard to
-looking for \fIheader.gcc\fR files and other such things.
-.Sh "Options for Code Generation Conventions"
-.IX Subsection "Options for Code Generation Conventions"
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them have both positive and negative forms; the negative form
-of \fB\-ffoo\fR would be \fB\-fno-foo\fR. In the table below, only
-one of the forms is listed\-\-\-the one which is not the default. You
-can figure out the other form by either removing \fBno-\fR or adding
-it.
-.Ip "\fB\-fno-automatic\fR" 4
-.IX Item "-fno-automatic"
-Treat each program unit as if the \f(CW\*(C`SAVE\*(C'\fR statement was specified
-for every local variable and array referenced in it.
-Does not affect common blocks.
-(Some Fortran compilers provide this option under
-the name \fB\-static\fR.)
-.Ip "\fB\-finit-local-zero\fR" 4
-.IX Item "-finit-local-zero"
-Specify that variables and arrays that are local to a program unit
-(not in a common block and not passed as an argument) are to be initialized
-to binary zeros.
-.Sp
-Since there is a run-time penalty for initialization of variables
-that are not given the \f(CW\*(C`SAVE\*(C'\fR attribute, it might be a
-good idea to also use \fB\-fno-automatic\fR with \fB\-finit-local-zero\fR.
-.Ip "\fB\-fno-f2c\fR" 4
-.IX Item "-fno-f2c"
-Do not generate code designed to be compatible with code generated
-by \fBf2c\fR use the \s-1GNU\s0 calling conventions instead.
-.Sp
-The \fBf2c\fR calling conventions require functions that return
-type \f(CW\*(C`REAL(KIND=1)\*(C'\fR to actually return the C type \f(CW\*(C`double\*(C'\fR,
-and functions that return type \f(CW\*(C`COMPLEX\*(C'\fR to return the
-values via an extra argument in the calling sequence that points
-to where to store the return value.
-Under the \s-1GNU\s0 calling conventions, such functions simply return
-their results as they would in \s-1GNU\s0 C\-\--\f(CW\*(C`REAL(KIND=1)\*(C'\fR functions
-return the C type \f(CW\*(C`float\*(C'\fR, and \f(CW\*(C`COMPLEX\*(C'\fR functions
-return the \s-1GNU\s0 C type \f(CW\*(C`complex\*(C'\fR (or its \f(CW\*(C`struct\*(C'\fR
-equivalent).
-.Sp
-This does not affect the generation of code that interfaces with the
-\&\f(CW\*(C`libg2c\*(C'\fR library.
-.Sp
-However, because the \f(CW\*(C`libg2c\*(C'\fR library uses \fBf2c\fR
-calling conventions, \fBg77\fR rejects attempts to pass
-intrinsics implemented by routines in this library as actual
-arguments when \fB\-fno-f2c\fR is used, to avoid bugs when
-they are actually called by code expecting the \s-1GNU\s0 calling
-conventions to work.
-.Sp
-For example, \fB\s-1INTRINSIC\s0 \s-1ABS\s0;CALL FOO(\s-1ABS\s0)\fR is
-rejected when \fB\-fno-f2c\fR is in force.
-(Future versions of the \fBg77\fR run-time library might
-offer routines that provide GNU-callable versions of the
-routines that implement the \fBf2c\fR intrinsics
-that may be passed as actual arguments, so that
-valid programs need not be rejected when \fB\-fno-f2c\fR
-is used.)
-.Sp
-\&\fBCaution:\fR If \fB\-fno-f2c\fR is used when compiling any
-source file used in a program, it must be used when compiling
-\&\fIall\fR Fortran source files used in that program.
-.Ip "\fB\-ff2c-library\fR" 4
-.IX Item "-ff2c-library"
-Specify that use of \f(CW\*(C`libg2c\*(C'\fR (or the original \f(CW\*(C`libf2c\*(C'\fR)
-is required.
-This is the default for the current version of \fBg77\fR
-.Sp
-Currently it is not
-valid to specify \fB\-fno-f2c-library\fR.
-This option is provided so users can specify it in shell
-scripts that build programs and libraries that require the
-\&\f(CW\*(C`libf2c\*(C'\fR library, even when being compiled by future
-versions of \fBg77\fR that might otherwise default to
-generating code for an incompatible library.
-.Ip "\fB\-fno-underscoring\fR" 4
-.IX Item "-fno-underscoring"
-Do not transform names of entities specified in the Fortran
-source file by appending underscores to them.
-.Sp
-With \fB\-funderscoring\fR in effect, \fBg77\fR appends two underscores
-to names with underscores and one underscore to external names with
-no underscores. (\fBg77\fR also appends two underscores to internal
-names with underscores to avoid naming collisions with external names.
-The \fB\-fno-second-underscore\fR option disables appending of the
-second underscore in all cases.)
-.Sp
-This is done to ensure compatibility with code produced by many
-\&\s-1UNIX\s0 Fortran compilers, including \fBf2c\fR which perform the
-same transformations.
-.Sp
-Use of \fB\-fno-underscoring\fR is not recommended unless you are
-experimenting with issues such as integration of (\s-1GNU\s0) Fortran into
-existing system environments (vis-a-vis existing libraries, tools, and
-so on).
-.Sp
-For example, with \fB\-funderscoring\fR, and assuming other defaults like
-\&\fB\-fcase-lower\fR and that \fB\f(BIj()\fB\fR and \fB\f(BImax_count()\fB\fR are
-external functions while \fBmy_var\fR and \fBlvar\fR are local variables,
-a statement like
-.Sp
-.Vb 1
-\& I = J() + MAX_COUNT (MY_VAR, LVAR)
-.Ve
-is implemented as something akin to:
-.Sp
-.Vb 1
-\& i = j_() + max_count__(&my_var__, &lvar);
-.Ve
-With \fB\-fno-underscoring\fR, the same statement is implemented as:
-.Sp
-.Vb 1
-\& i = j() + max_count(&my_var, &lvar);
-.Ve
-Use of \fB\-fno-underscoring\fR allows direct specification of
-user-defined names while debugging and when interfacing \fBg77\fR
-code with other languages.
-.Sp
-Note that just because the names match does \fInot\fR mean that the
-interface implemented by \fBg77\fR for an external name matches the
-interface implemented by some other language for that same name.
-That is, getting code produced by \fBg77\fR to link to code produced
-by some other compiler using this or any other method can be only a
-small part of the overall solution\-\-\-getting the code generated by
-both compilers to agree on issues other than naming can require
-significant effort, and, unlike naming disagreements, linkers normally
-cannot detect disagreements in these other areas.
-.Sp
-Also, note that with \fB\-fno-underscoring\fR, the lack of appended
-underscores introduces the very real possibility that a user-defined
-external name will conflict with a name in a system library, which
-could make finding unresolved-reference bugs quite difficult in some
-cases\-\-\-they might occur at program run time, and show up only as
-buggy behavior at run time.
-.Sp
-In future versions of \fBg77\fR we hope to improve naming and linking
-issues so that debugging always involves using the names as they appear
-in the source, even if the names as seen by the linker are mangled to
-prevent accidental linking between procedures with incompatible
-interfaces.
-.Ip "\fB\-fno-second-underscore\fR" 4
-.IX Item "-fno-second-underscore"
-Do not append a second underscore to names of entities specified
-in the Fortran source file.
-.Sp
-This option has no effect if \fB\-fno-underscoring\fR is
-in effect.
-.Sp
-Otherwise, with this option, an external name such as \fB\s-1MAX_COUNT\s0\fR
-is implemented as a reference to the link-time external symbol
-\&\fBmax_count_\fR, instead of \fBmax_count_\|_\fR.
-.Ip "\fB\-fno-ident\fR" 4
-.IX Item "-fno-ident"
-Ignore the \fB#ident\fR directive.
-.Ip "\fB\-fzeros\fR" 4
-.IX Item "-fzeros"
-Treat initial values of zero as if they were any other value.
-.Sp
-As of version 0.5.18, \fBg77\fR normally treats \f(CW\*(C`DATA\*(C'\fR and
-other statements that are used to specify initial values of zero
-for variables and arrays as if no values were actually specified,
-in the sense that no diagnostics regarding multiple initializations
-are produced.
-.Sp
-This is done to speed up compiling of programs that initialize
-large arrays to zeros.
-.Sp
-Use \fB\-fzeros\fR to revert to the simpler, slower behavior
-that can catch multiple initializations by keeping track of
-all initializations, zero or otherwise.
-.Sp
-\&\fICaution:\fR Future versions of \fBg77\fR might disregard this option
-(and its negative form, the default) or interpret it somewhat
-differently.
-The interpretation changes will affect only non-standard
-programs; standard-conforming programs should not be affected.
-.Ip "\fB\-femulate-complex\fR" 4
-.IX Item "-femulate-complex"
-Implement \f(CW\*(C`COMPLEX\*(C'\fR arithmetic via emulation,
-instead of using the facilities of
-the \fBgcc\fR back end that provide direct support of
-\&\f(CW\*(C`complex\*(C'\fR arithmetic.
-.Sp
-(\fBgcc\fR had some bugs in its back-end support
-for \f(CW\*(C`complex\*(C'\fR arithmetic, due primarily to the support not being
-completed as of version 2.8.1 and \f(CW\*(C`egcs\*(C'\fR 1.1.2.)
-.Sp
-Use \fB\-femulate-complex\fR if you suspect code-generation bugs,
-or experience compiler crashes,
-that might result from \fBg77\fR using the \f(CW\*(C`COMPLEX\*(C'\fR support
-in the \fBgcc\fR back end.
-If using that option fixes the bugs or crashes you are seeing,
-that indicates a likely \fBg77\fR bugs
-(though, all compiler crashes are considered bugs),
-so, please report it.
-(Note that the known bugs, now believed fixed, produced compiler crashes
-rather than causing the generation of incorrect code.)
-.Sp
-Use of this option should not affect how Fortran code compiled
-by \fBg77\fR works in terms of its interfaces to other code,
-e.g. that compiled by \fBf2c\fR
-.Sp
-As of \s-1GCC\s0 version 3.0, this option is not necessary anymore.
-.Sp
-\&\fICaution:\fR Future versions of \fBg77\fR might ignore both forms
-of this option.
-.Ip "\fB\-falias-check\fR" 4
-.IX Item "-falias-check"
-.PD 0
-.Ip "\fB\-fargument-alias\fR" 4
-.IX Item "-fargument-alias"
-.Ip "\fB\-fargument-noalias\fR" 4
-.IX Item "-fargument-noalias"
-.Ip "\fB\-fno-argument-noalias-global\fR" 4
-.IX Item "-fno-argument-noalias-global"
-.PD
-\&\fIVersion info:\fR
-These options are not supported by
-versions of \fBg77\fR based on \fBgcc\fR version 2.8.
-.Sp
-These options specify to what degree aliasing
-(overlap)
-is permitted between
-arguments (passed as pointers) and \f(CW\*(C`COMMON\*(C'\fR (external, or
-public) storage.
-.Sp
-The default for Fortran code, as mandated by the \s-1FORTRAN\s0 77 and
-Fortran 90 standards, is \fB\-fargument-noalias-global\fR.
-The default for code written in the C language family is
-\&\fB\-fargument-alias\fR.
-.Sp
-Note that, on some systems, compiling with \fB\-fforce-addr\fR in
-effect can produce more optimal code when the default aliasing
-options are in effect (and when optimization is enabled).
-.Ip "\fB\-fno-globals\fR" 4
-.IX Item "-fno-globals"
-Disable diagnostics about inter-procedural
-analysis problems, such as disagreements about the
-type of a function or a procedure's argument,
-that might cause a compiler crash when attempting
-to inline a reference to a procedure within a
-program unit.
-(The diagnostics themselves are still produced, but
-as warnings, unless \fB\-Wno-globals\fR is specified,
-in which case no relevant diagnostics are produced.)
-.Sp
-Further, this option disables such inlining, to
-avoid compiler crashes resulting from incorrect
-code that would otherwise be diagnosed.
-.Sp
-As such, this option might be quite useful when
-compiling existing, ``working'' code that happens
-to have a few bugs that do not generally show themselves,
-but which \fBg77\fR diagnoses.
-.Sp
-Use of this option therefore has the effect of
-instructing \fBg77\fR to behave more like it did
-up through version 0.5.19.1, when it paid little or
-no attention to disagreements between program units
-about a procedure's type and argument information,
-and when it performed no inlining of procedures
-(except statement functions).
-.Sp
-Without this option, \fBg77\fR defaults to performing
-the potentially inlining procedures as it started doing
-in version 0.5.20, but as of version 0.5.21, it also
-diagnoses disagreements that might cause such inlining
-to crash the compiler as (fatal) errors,
-and warns about similar disagreements
-that are currently believed to not
-likely to result in the compiler later crashing
-or producing incorrect code.
-.Ip "\fB\-fflatten-arrays\fR" 4
-.IX Item "-fflatten-arrays"
-Use back end's C-like constructs
-(pointer plus offset)
-instead of its \f(CW\*(C`ARRAY_REF\*(C'\fR construct
-to handle all array references.
-.Sp
-\&\fINote:\fR This option is not supported.
-It is intended for use only by \fBg77\fR developers,
-to evaluate code-generation issues.
-It might be removed at any time.
-.Ip "\fB\-fbounds-check\fR" 4
-.IX Item "-fbounds-check"
-.PD 0
-.Ip "\fB\-ffortran-bounds-check\fR" 4
-.IX Item "-ffortran-bounds-check"
-.PD
-Enable generation of run-time checks for array subscripts
-and substring start and end points
-against the (locally) declared minimum and maximum values.
-.Sp
-The current implementation uses the \f(CW\*(C`libf2c\*(C'\fR
-library routine \f(CW\*(C`s_rnge\*(C'\fR to print the diagnostic.
-.Sp
-However, whereas \fBf2c\fR generates a single check per
-reference for a multi-dimensional array, of the computed
-offset against the valid offset range (0 through the size of the array),
-\&\fBg77\fR generates a single check per \fIsubscript\fR expression.
-This catches some cases of potential bugs that \fBf2c\fR does not,
-such as references to below the beginning of an assumed-size array.
-.Sp
-\&\fBg77\fR also generates checks for \f(CW\*(C`CHARACTER\*(C'\fR substring references,
-something \fBf2c\fR currently does not do.
-.Sp
-Use the new \fB\-ffortran-bounds-check\fR option
-to specify bounds-checking for only the Fortran code you are compiling,
-not necessarily for code written in other languages.
-.Sp
-\&\fINote:\fR To provide more detailed information on the offending subscript,
-\&\fBg77\fR provides the \f(CW\*(C`libg2c\*(C'\fR run-time library routine \f(CW\*(C`s_rnge\*(C'\fR
-with somewhat differently-formatted information.
-Here's a sample diagnostic:
-.Sp
-.Vb 3
-\& Subscript out of range on file line 4, procedure rnge.f/bf.
-\& Attempt to access the -6-th element of variable b[subscript-2-of-2].
-\& Aborted
-.Ve
-The above message indicates that the offending source line is
-line 4 of the file \fIrnge.f\fR,
-within the program unit (or statement function) named \fBbf\fR.
-The offended array is named \fBb\fR.
-The offended array dimension is the second for a two-dimensional array,
-and the offending, computed subscript expression was \fB\-6\fR.
-.Sp
-For a \f(CW\*(C`CHARACTER\*(C'\fR substring reference, the second line has
-this appearance:
-.Sp
-.Vb 1
-\& Attempt to access the 11-th element of variable a[start-substring].
-.Ve
-This indicates that the offended \f(CW\*(C`CHARACTER\*(C'\fR variable or array
-is named \fBa\fR,
-the offended substring position is the starting (leftmost) position,
-and the offending substring expression is \fB11\fR.
-.Sp
-(Though the verbage of \f(CW\*(C`s_rnge\*(C'\fR is not ideal
-for the purpose of the \fBg77\fR compiler,
-the above information should provide adequate diagnostic abilities
-to it users.)
-.PP
-Some of these do \fInot\fR work when compiling programs written in Fortran:
-.Ip "\fB\-fpcc-struct-return\fR" 4
-.IX Item "-fpcc-struct-return"
-.PD 0
-.Ip "\fB\-freg-struct-return\fR" 4
-.IX Item "-freg-struct-return"
-.PD
-You should not use these except strictly the same way as you
-used them to build the version of \f(CW\*(C`libg2c\*(C'\fR with which
-you will be linking all code compiled by \fBg77\fR with the
-same option.
-.Ip "\fB\-fshort-double\fR" 4
-.IX Item "-fshort-double"
-This probably either has no effect on Fortran programs, or
-makes them act loopy.
-.Ip "\fB\-fno-common\fR" 4
-.IX Item "-fno-common"
-Do not use this when compiling Fortran programs,
-or there will be Trouble.
-.Ip "\fB\-fpack-struct\fR" 4
-.IX Item "-fpack-struct"
-This probably will break any calls to the \f(CW\*(C`libg2c\*(C'\fR library,
-at the very least, even if it is built with the same option.
-.SH "ENVIRONMENT"
-.IX Header "ENVIRONMENT"
-\&\s-1GNU\s0 Fortran currently does not make use of any environment
-variables to control its operation above and beyond those
-that affect the operation of \fBgcc\fR.
-.SH "BUGS"
-.IX Header "BUGS"
-For instructions on reporting bugs, see
-<\fBhttp://gcc.gnu.org/bugs.html\fR>. Use of the \fBgccbug\fR
-script to report bugs is recommended.
-.SH "FOOTNOTES"
-.IX Header "FOOTNOTES"
-.Ip "1." 4
-\&\fIloop discovery\fR refers to the
-process by which a compiler, or indeed any reader of a program,
-determines which portions of the program are more likely to be executed
-repeatedly as it is being run. Such discovery typically is done early
-when compiling using optimization techniques, so the ``discovered''
-loops get more attention\-\-\-and more run-time resources, such as
-registers\-\-\-from the compiler. It is easy to ``discover'' loops that are
-constructed out of looping constructs in the language
-(such as Fortran's \f(CW\*(C`DO\*(C'\fR). For some programs, ``discovering'' loops
-constructed out of lower-level constructs (such as \f(CW\*(C`IF\*(C'\fR and
-\&\f(CW\*(C`GOTO\*(C'\fR) can lead to generation of more optimal code
-than otherwise.
-.SH "SEE ALSO"
-.IX Header "SEE ALSO"
-\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf-funding\fR\|(7),
-\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIgcc\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
-and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIg77\fR, \fIas\fR,
-\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
-.SH "AUTHOR"
-.IX Header "AUTHOR"
-See the Info entry for \fBg77\fR for contributors to \s-1GCC\s0 and G77.
-.SH "COPYRIGHT"
-.IX Header "COPYRIGHT"
-Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002
-Free Software Foundation, Inc.
-.PP
-Permission is granted to copy, distribute and/or modify this document
-under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.1 or
-any later version published by the Free Software Foundation; with the
-Invariant Sections being ``\s-1GNU\s0 General Public License'' and ``Funding
-Free Software'', the Front-Cover texts being (a) (see below), and with
-the Back-Cover Texts being (b) (see below). A copy of the license is
-included in the \fIgfdl\fR\|(7) man page.
-.PP
-(a) The \s-1FSF\s0's Front-Cover Text is:
-.PP
-.Vb 1
-\& A GNU Manual
-.Ve
-(b) The \s-1FSF\s0's Back-Cover Text is:
-.PP
-.Vb 3
-\& You have freedom to copy and modify this GNU Manual, like GNU
-\& software. Copies published by the Free Software Foundation raise
-\& funds for GNU development.
-.Ve
diff --git a/contrib/gcc/gcc.1 b/contrib/gcc/gcc.1
deleted file mode 100644
index 74200a1a169e..000000000000
--- a/contrib/gcc/gcc.1
+++ /dev/null
@@ -1,4191 +0,0 @@
-.\" Copyright (c) 1991, 1992, 1993, 1994 Free Software Foundation -*-Text-*-
-.\" See section COPYING for conditions for redistribution
-.\"
-.\" Set up \*(lq, \*(rq if -man hasn't already set it up.
-.if @@\*(lq@ \{\
-. ds lq "
-. if t .ds lq ``
-. if !@@\(lq@ .ds lq "\(lq
-.\}
-.if @@\*(rq@ \{\
-. ds rq "
-. if t .ds rq ''
-. if !@@\(rq@ .ds rq "\(rq
-.\}
-.de Id
-.ds Rv \\$3
-.ds Dt \\$4
-..
-.de Sp
-.if n .sp
-.if t .sp 0.4
-..
-.Id $Id: gcc.1,v 1.9 1998/12/16 20:55:57 law Exp $
-.TH GCC 1 "\*(Dt" "GNU Tools" "GNU Tools"
-.SH NAME
-gcc, g++ \- GNU project C and C++ Compiler (gcc-2.95)
-.SH SYNOPSIS
-.B gcc
-.RI "[ " option " | " filename " ].\|.\|."
-.br
-.B g++
-.RI "[ " option " | " filename " ].\|.\|."
-.SH WARNING
-The information in this man page is an extract from the full
-documentation of the GNU C compiler, and is limited to the meaning of
-the options.
-.PP
-This man page is not kept up to date except when volunteers want to
-maintain it. If you find a discrepancy between the man page and the
-software, please check the Info file, which is the authoritative
-documentation.
-.PP
-If we find that the things in this man page that are out of date cause
-significant confusion or complaints, we will stop distributing the man
-page. The alternative, updating the man page when we update the Info
-file, is impossible because the rest of the work of maintaining GNU CC
-leaves us no time for that. The GNU project regards man pages as
-obsolete and should not let them take time away from other things.
-.PP
-For complete and current documentation, refer to the Info file `\|\c
-.B gcc\c
-\&\|' or the manual
-.I
-Using and Porting GNU CC (for version 2.0)\c
-\&. Both are made from the Texinfo source file
-.BR gcc.texinfo .
-.SH DESCRIPTION
-The C and C++ compilers are integrated. Both process input files
-through one or more of four stages: preprocessing, compilation,
-assembly, and linking. Source filename suffixes identify the source
-language, but which name you use for the compiler governs default
-assumptions:
-.TP
-.B gcc
-assumes preprocessed (\c
-.B .i\c
-\&) files are C and assumes C style linking.
-.TP
-.B g++
-assumes preprocessed (\c
-.B .i\c
-\&) files are C++ and assumes C++ style linking.
-.PP
-Suffixes of source file names indicate the language and kind of
-processing to be done:
-.Sp
-.nf
-.ta \w'\fB.cxx\fP 'u
-\&\fB.c\fP C source; preprocess, compile, assemble
-\&\fB.C\fP C++ source; preprocess, compile, assemble
-\&\fB.cc\fP C++ source; preprocess, compile, assemble
-\&\fB.cxx\fP C++ source; preprocess, compile, assemble
-\&\fB.m\fP Objective-C source; preprocess, compile, assemble
-\&\fB.i\fP preprocessed C; compile, assemble
-\&\fB.ii\fP preprocessed C++; compile, assemble
-\&\fB.s\fP Assembler source; assemble
-\&\fB.S\fP Assembler source; preprocess, assemble
-\&\fB.h\fP Preprocessor file; not usually named on command line
-.Sp
-.fi
-Files with other suffixes are passed to the linker. Common cases include:
-.Sp
-.nf
-\&\fB.o\fP Object file
-\&\fB.a\fP Archive file
-.br
-.fi
-.Sp
-Linking is always the last stage unless you use one of the
-.BR \-c ,
-.BR \-S ,
-or
-.B \-E
-options to avoid it (or unless compilation errors stop the whole
-process). For the link stage, all
-.B .o
-files corresponding to source files,
-.B \-l
-libraries, unrecognized filenames (including named
-.B .o
-object files and
-.B .a
-archives)
-are passed to the linker in command-line order.
-.SH OPTIONS
-Options must be separate: `\|\c
-.B \-dr\c
-\&\|' is quite different from `\|\c
-.B \-d \-r
-\&\|'.
-.PP
-Most `\|\c
-.B \-f\c
-\&\|' and `\|\c
-.B \-W\c
-\&\|' options have two contrary forms:
-.BI \-f name
-and
-.BI \-fno\- name\c
-\& (or
-.BI \-W name
-and
-.BI \-Wno\- name\c
-\&). Only the non-default forms are shown here.
-.PP
-Here is a summary of all the options, grouped by type. Explanations are
-in the following sections.
-.hy 0
-.na
-.TP
-.B Overall Options
-.br
-\-c
-\-S
-\-E
-.RI "\-o " file
-\-pipe
-\-v
-.RI "\-x " language
-.TP
-.B Language Options
-\-ansi
-\-fall\-virtual
-\-fcond\-mismatch
-\-fdollars\-in\-identifiers
-\-fenum\-int\-equiv
-\-fexternal\-templates
-\-fno\-asm
-\-fno\-builtin
-\-fhosted
-\-fno\-hosted
-\-ffreestanding
-\-fno\-freestanding
-\-fno\-strict\-prototype
-\-fsigned\-bitfields
-\-fsigned\-char
-\-fthis\-is\-variable
-\-funsigned\-bitfields
-\-funsigned\-char
-\-fwritable\-strings
-\-traditional
-\-traditional\-cpp
-\-trigraphs
-.TP
-.B Warning Options
-\-fsyntax\-only
-\-pedantic
-\-pedantic\-errors
-\-w
-\-W
-\-Wall
-\-Waggregate\-return
-\-Wcast\-align
-\-Wcast\-qual
-\-Wchar\-subscript
-\-Wcomment
-\-Wconversion
-\-Wenum\-clash
-\-Werror
-\-Wformat
-.RI \-Wid\-clash\- len
-\-Wimplicit
-\-Wimplicit\-int
-\-Wimplicit\-function\-declaration
-\-Winline
-\-Wlong\-long
-\-Wmain
-\-Wmissing\-prototypes
-\-Wmissing\-declarations
-\-Wnested\-externs
-\-Wno\-import
-\-Wparentheses
-\-Wpointer\-arith
-\-Wredundant\-decls
-\-Wreturn\-type
-\-Wshadow
-\-Wstrict\-prototypes
-\-Wswitch
-\-Wtemplate\-debugging
-\-Wtraditional
-\-Wtrigraphs
-\-Wuninitialized
-\-Wunused
-\-Wwrite\-strings
-.TP
-.B Debugging Options
-\-a
-.RI \-d letters
-\-fpretend\-float
-\-g
-.RI \-g level
-\-gcoff
-\-gxcoff
-\-gxcoff+
-\-gdwarf
-\-gdwarf+
-\-gstabs
-\-gstabs+
-\-ggdb
-\-p
-\-pg
-\-save\-temps
-.RI \-print\-file\-name= library
-\-print\-libgcc\-file\-name
-.RI \-print\-prog\-name= program
-.TP
-.B Optimization Options
-\-fcaller\-saves
-\-fcse\-follow\-jumps
-\-fcse\-skip\-blocks
-\-fdelayed\-branch
-\-felide\-constructors
-\-fexpensive\-optimizations
-\-ffast\-math
-\-ffloat\-store
-\-fforce\-addr
-\-fforce\-mem
-\-finline\-functions
-\-fkeep\-inline\-functions
-\-fmemoize\-lookups
-\-fno\-default\-inline
-\-fno\-defer\-pop
-\-fno\-function\-cse
-\-fno\-inline
-\-fno\-peephole
-\-fomit\-frame\-pointer
-\-frerun\-cse\-after\-loop
-\-fschedule\-insns
-\-fschedule\-insns2
-\-fstrength\-reduce
-\-fthread\-jumps
-\-funroll\-all\-loops
-\-funroll\-loops
-\-O
-\-O2
-\-O3
-.TP
-.B Preprocessor Options
-.RI \-A assertion
-\-C
-\-dD
-\-dM
-\-dN
-.RI \-D macro [\|= defn \|]
-\-E
-\-H
-.RI "\-idirafter " dir
-.RI "\-include " file
-.RI "\-imacros " file
-.RI "\-iprefix " file
-.RI "\-iwithprefix " dir
-\-M
-\-MD
-\-MM
-\-MMD
-\-nostdinc
-\-P
-.RI \-U macro
-\-undef
-.TP
-.B Assembler Option
-.RI \-Wa, option
-.TP
-.B Linker Options
-.RI \-l library
-\-nostartfiles
-\-nostdlib
-\-static
-\-shared
-\-symbolic
-.RI "\-Xlinker\ " option
-.RI \-Wl, option
-.RI "\-u " symbol
-.TP
-.B Directory Options
-.RI \-B prefix
-.RI \-I dir
-\-I\-
-.RI \-L dir
-.TP
-.B Target Options
-.RI "\-b " machine
-.RI "\-V " version
-.TP
-.B Configuration Dependent Options
-.I M680x0\ Options
-.br
-\-m68000
-\-m68020
-\-m68020\-40
-\-m68030
-\-m68040
-\-m68881
-\-mbitfield
-\-mc68000
-\-mc68020
-\-mfpa
-\-mnobitfield
-\-mrtd
-\-mshort
-\-msoft\-float
-.Sp
-.I VAX Options
-.br
-\-mg
-\-mgnu
-\-munix
-.Sp
-.I SPARC Options
-.br
-\-mepilogue
-\-mfpu
-\-mhard\-float
-\-mno\-fpu
-\-mno\-epilogue
-\-msoft\-float
-\-msparclite
-\-mv8
-\-msupersparc
-\-mcypress
-.Sp
-.I Convex Options
-.br
-\-margcount
-\-mc1
-\-mc2
-\-mnoargcount
-.Sp
-.I AMD29K Options
-.br
-\-m29000
-\-m29050
-\-mbw
-\-mdw
-\-mkernel\-registers
-\-mlarge
-\-mnbw
-\-mnodw
-\-msmall
-\-mstack\-check
-\-muser\-registers
-.Sp
-.I M88K Options
-.br
-\-m88000
-\-m88100
-\-m88110
-\-mbig\-pic
-\-mcheck\-zero\-division
-\-mhandle\-large\-shift
-\-midentify\-revision
-\-mno\-check\-zero\-division
-\-mno\-ocs\-debug\-info
-\-mno\-ocs\-frame\-position
-\-mno\-optimize\-arg\-area
-\-mno\-serialize\-volatile
-\-mno\-underscores
-\-mocs\-debug\-info
-\-mocs\-frame\-position
-\-moptimize\-arg\-area
-\-mserialize\-volatile
-.RI \-mshort\-data\- num
-\-msvr3
-\-msvr4
-\-mtrap\-large\-shift
-\-muse\-div\-instruction
-\-mversion\-03.00
-\-mwarn\-passed\-structs
-.Sp
-.I RS6000 Options
-.br
-\-mfp\-in\-toc
-\-mno\-fop\-in\-toc
-.Sp
-.I RT Options
-.br
-\-mcall\-lib\-mul
-\-mfp\-arg\-in\-fpregs
-\-mfp\-arg\-in\-gregs
-\-mfull\-fp\-blocks
-\-mhc\-struct\-return
-\-min\-line\-mul
-\-mminimum\-fp\-blocks
-\-mnohc\-struct\-return
-.Sp
-.I MIPS Options
-.br
-\-mcpu=\fIcpu type\fP
-\-mips2
-\-mips3
-\-mint64
-\-mlong64
-\-mlonglong128
-\-mmips\-as
-\-mgas
-\-mrnames
-\-mno\-rnames
-\-mgpopt
-\-mno\-gpopt
-\-mstats
-\-mno\-stats
-\-mmemcpy
-\-mno\-memcpy
-\-mno\-mips\-tfile
-\-mmips\-tfile
-\-msoft\-float
-\-mhard\-float
-\-mabicalls
-\-mno\-abicalls
-\-mhalf\-pic
-\-mno\-half\-pic
-\-G \fInum\fP
-\-nocpp
-.Sp
-.I i386 Options
-.br
-\-m486
-\-mno\-486
-\-msoft\-float
-\-mno\-fp\-ret\-in\-387
-.Sp
-.I HPPA Options
-.br
-\-mpa\-risc\-1\-0
-\-mpa\-risc\-1\-1
-\-mkernel
-\-mshared\-libs
-\-mno\-shared\-libs
-\-mlong\-calls
-\-mdisable\-fpregs
-\-mdisable\-indexing
-\-mtrailing\-colon
-.Sp
-.I i960 Options
-.br
-\-m\fIcpu-type\fP
-\-mnumerics
-\-msoft\-float
-\-mleaf\-procedures
-\-mno\-leaf\-procedures
-\-mtail\-call
-\-mno\-tail\-call
-\-mcomplex\-addr
-\-mno\-complex\-addr
-\-mcode\-align
-\-mno\-code\-align
-\-mic\-compat
-\-mic2.0\-compat
-\-mic3.0\-compat
-\-masm\-compat
-\-mintel\-asm
-\-mstrict\-align
-\-mno\-strict\-align
-\-mold\-align
-\-mno\-old\-align
-.Sp
-.I DEC Alpha Options
-.br
-\-mfp\-regs
-\-mno\-fp\-regs
-\-mno\-soft\-float
-\-msoft\-float
-.Sp
-.I System V Options
-.br
-\-G
-\-Qy
-\-Qn
-.RI \-YP, paths
-.RI \-Ym, dir
-.TP
-.B Code Generation Options
-.RI \-fcall\-saved\- reg
-.RI \-fcall\-used\- reg
-.RI \-ffixed\- reg
-\-finhibit\-size\-directive
-\-fnonnull\-objects
-\-fno\-common
-\-fno\-ident
-\-fno\-gnu\-linker
-\-fpcc\-struct\-return
-\-fpic
-\-fPIC
-\-freg\-struct\-return
-\-fshared\-data
-\-fshort\-enums
-\-fshort\-double
-\-fvolatile
-\-fvolatile\-global
-\-fverbose\-asm
-.ad b
-.hy 1
-.SH OVERALL OPTIONS
-.TP
-.BI "\-x " "language"
-Specify explicitly the
-.I language\c
-\& for the following input files (rather than choosing a default based
-on the file name suffix) . This option applies to all following input
-files until the next `\|\c
-.B \-x\c
-\&\|' option. Possible values of \c
-.I language\c
-\& are
-`\|\c
-.B c\c
-\&\|', `\|\c
-.B objective\-c\c
-\&\|', `\|\c
-.B c\-header\c
-\&\|', `\|\c
-.B c++\c
-\&\|',
-`\|\c
-.B cpp\-output\c
-\&\|', `\|\c
-.B assembler\c
-\&\|', and `\|\c
-.B assembler\-with\-cpp\c
-\&\|'.
-.TP
-.B \-x none
-Turn off any specification of a language, so that subsequent files are
-handled according to their file name suffixes (as they are if `\|\c
-.B \-x\c
-\&\|'
-has not been used at all).
-.PP
-If you want only some of the four stages (preprocess, compile,
-assemble, link), you can use
-`\|\c
-.B \-x\c
-\&\|' (or filename suffixes) to tell \c
-.B gcc\c
-\& where to start, and
-one of the options `\|\c
-.B \-c\c
-\&\|', `\|\c
-.B \-S\c
-\&\|', or `\|\c
-.B \-E\c
-\&\|' to say where
-.B gcc\c
-\& is to stop. Note that some combinations (for example,
-`\|\c
-.B \-x cpp\-output \-E\c
-\&\|') instruct \c
-.B gcc\c
-\& to do nothing at all.
-.TP
-.B \-c
-Compile or assemble the source files, but do not link. The compiler
-output is an object file corresponding to each source file.
-.Sp
-By default, GCC makes the object file name for a source file by replacing
-the suffix `\|\c
-.B .c\c
-\&\|', `\|\c
-.B .i\c
-\&\|', `\|\c
-.B .s\c
-\&\|', etc., with `\|\c
-.B .o\c
-\&\|'. Use
-.B \-o\c
-\& to select another name.
-.Sp
-GCC ignores any unrecognized input files (those that do not require
-compilation or assembly) with the
-.B \-c
-option.
-.TP
-.B \-S
-Stop after the stage of compilation proper; do not assemble. The output
-is an assembler code file for each non-assembler input
-file specified.
-.Sp
-By default, GCC makes the assembler file name for a source file by
-replacing the suffix `\|\c
-.B .c\c
-\&\|', `\|\c
-.B .i\c
-\&\|', etc., with `\|\c
-.B .s\c
-\&\|'. Use
-.B \-o\c
-\& to select another name.
-.Sp
-GCC ignores any input files that don't require compilation.
-.TP
-.B \-E
-Stop after the preprocessing stage; do not run the compiler proper. The
-output is preprocessed source code, which is sent to the
-standard output.
-.Sp
-GCC ignores input files which don't require preprocessing.
-.TP
-.BI "\-o " file
-Place output in file \c
-.I file\c
-\&. This applies regardless to whatever
-sort of output GCC is producing, whether it be an executable file,
-an object file, an assembler file or preprocessed C code.
-.Sp
-Since only one output file can be specified, it does not make sense to
-use `\|\c
-.B \-o\c
-\&\|' when compiling more than one input file, unless you are
-producing an executable file as output.
-.Sp
-If you do not specify `\|\c
-.B \-o\c
-\&\|', the default is to put an executable file
-in `\|\c
-.B a.out\c
-\&\|', the object file for `\|\c
-.I source\c
-.B \&.\c
-.I suffix\c
-\&\c
-\&\|' in
-`\|\c
-.I source\c
-.B \&.o\c
-\&\|', its assembler file in `\|\c
-.I source\c
-.B \&.s\c
-\&\|', and
-all preprocessed C source on standard output.
-.TP
-.B \-v
-Print (on standard error output) the commands executed to run the stages
-of compilation. Also print the version number of the compiler driver
-program and of the preprocessor and the compiler proper.
-.TP
-.B \-pipe
-Use pipes rather than temporary files for communication between the
-various stages of compilation. This fails to work on some systems where
-the assembler cannot read from a pipe; but the GNU assembler has
-no trouble.
-.PP
-.SH LANGUAGE OPTIONS
-The following options control the dialect of C that the compiler
-accepts:
-.TP
-.B \-ansi
-Support all ANSI standard C programs.
-.Sp
-This turns off certain features of GNU C that are incompatible with
-ANSI C, such as the \c
-.B asm\c
-\&, \c
-.B inline\c
-\& and \c
-.B typeof
-keywords, and predefined macros such as \c
-.B unix\c
-\& and \c
-.B vax
-that identify the type of system you are using. It also enables the
-undesirable and rarely used ANSI trigraph feature, and disallows `\|\c
-.B $\c
-\&\|' as part of identifiers.
-.Sp
-The alternate keywords \c
-.B _\|_asm_\|_\c
-\&, \c
-.B _\|_extension_\|_\c
-\&,
-.B _\|_inline_\|_\c
-\& and \c
-.B _\|_typeof_\|_\c
-\& continue to work despite
-`\|\c
-.B \-ansi\c
-\&\|'. You would not want to use them in an ANSI C program, of
-course, but it is useful to put them in header files that might be included
-in compilations done with `\|\c
-.B \-ansi\c
-\&\|'. Alternate predefined macros
-such as \c
-.B _\|_unix_\|_\c
-\& and \c
-.B _\|_vax_\|_\c
-\& are also available, with or
-without `\|\c
-.B \-ansi\c
-\&\|'.
-.Sp
-The `\|\c
-.B \-ansi\c
-\&\|' option does not cause non-ANSI programs to be
-rejected gratuitously. For that, `\|\c
-.B \-pedantic\c
-\&\|' is required in
-addition to `\|\c
-.B \-ansi\c
-\&\|'.
-.Sp
-The preprocessor predefines a macro \c
-.B _\|_STRICT_ANSI_\|_\c
-\& when you use the `\|\c
-.B \-ansi\c
-\&\|'
-option. Some header files may notice this macro and refrain
-from declaring certain functions or defining certain macros that the
-ANSI standard doesn't call for; this is to avoid interfering with any
-programs that might use these names for other things.
-.TP
-.B \-fno\-asm
-Do not recognize \c
-.B asm\c
-\&, \c
-.B inline\c
-\& or \c
-.B typeof\c
-\& as a
-keyword. These words may then be used as identifiers. You can
-use \c
-.B _\|_asm_\|_\c
-\&, \c
-.B _\|_inline_\|_\c
-\& and \c
-.B _\|_typeof_\|_\c
-\& instead.
-`\|\c
-.B \-ansi\c
-\&\|' implies `\|\c
-.B \-fno\-asm\c
-\&\|'.
-.TP
-.B \-fno\-builtin
-Don't recognize built-in functions that do not begin with two leading
-underscores. Currently, the functions affected include \c
-.B _exit\c
-\&,
-.B abort\c
-\&, \c
-.B abs\c
-\&, \c
-.B alloca\c
-\&, \c
-.B cos\c
-\&, \c
-.B exit\c
-\&,
-.B fabs\c
-\&, \c
-.B labs\c
-\&, \c
-.B memcmp\c
-\&, \c
-.B memcpy\c
-\&, \c
-.B sin\c
-\&,
-.B sqrt\c
-\&, \c
-.B strcmp\c
-\&, \c
-.B strcpy\c
-\&, and \c
-.B strlen\c
-\&.
-.Sp
-The `\|\c
-.B \-ansi\c
-\&\|' option prevents \c
-.B alloca\c
-\& and \c
-.B _exit\c
-\& from
-being builtin functions.
-.TP
-.B \-fhosted
-Compile for a hosted environment; this implies the `\|\c
-.B \-fbuiltin\c
-\&\|' option, and implies that suspicious declarations of
-.B main\c
-\& should be warned about.
-.TP
-.B \-ffreestanding
-Compile for a freestanding environment; this implies the `\|\c
-.B \-fno-builtin\c
-\&\|' option, and implies that
-.B main\c
-\& has no special requirements.
-.TP
-.B \-fno\-strict\-prototype
-Treat a function declaration with no arguments, such as `\|\c
-.B int foo
-();\c
-\&\|', as C would treat it\(em\&as saying nothing about the number of
-arguments or their types (C++ only). Normally, such a declaration in
-C++ means that the function \c
-.B foo\c
-\& takes no arguments.
-.TP
-.B \-trigraphs
-Support ANSI C trigraphs. The `\|\c
-.B \-ansi\c
-\&\|' option implies `\|\c
-.B \-trigraphs\c
-\&\|'.
-.TP
-.B \-traditional
-Attempt to support some aspects of traditional C compilers.
-For details, see the GNU C Manual; the duplicate list here
-has been deleted so that we won't get complaints when it
-is out of date.
-.Sp
-But one note about C++ programs only (not C). `\|\c
-.B \-traditional\c
-\&\|' has one additional effect for C++: assignment to
-.B this
-is permitted. This is the same as the effect of `\|\c
-.B \-fthis\-is\-variable\c
-\&\|'.
-.TP
-.B \-traditional\-cpp
-Attempt to support some aspects of traditional C preprocessors.
-This includes the items that specifically mention the preprocessor above,
-but none of the other effects of `\|\c
-.B \-traditional\c
-\&\|'.
-.TP
-.B \-fdollars\-in\-identifiers
-Permit the use of `\|\c
-.B $\c
-\&\|' in identifiers (C++ only). You can also use
-`\|\c
-.B \-fno\-dollars\-in\-identifiers\c
-\&\|' to explicitly prohibit use of
-`\|\c
-.B $\c
-\&\|'. (GNU C++ allows `\|\c
-.B $\c
-\&\|' by default on some target systems
-but not others.)
-.TP
-.B \-fenum\-int\-equiv
-Permit implicit conversion of \c
-.B int\c
-\& to enumeration types (C++
-only). Normally GNU C++ allows conversion of \c
-.B enum\c
-\& to \c
-.B int\c
-\&,
-but not the other way around.
-.TP
-.B \-fexternal\-templates
-Produce smaller code for template declarations, by generating only a
-single copy of each template function where it is defined (C++ only).
-To use this option successfully, you must also mark all files that
-use templates with either `\|\c
-.B #pragma implementation\c
-\&\|' (the definition) or
-`\|\c
-.B #pragma interface\c
-\&\|' (declarations).
-
-When your code is compiled with `\|\c
-.B \-fexternal\-templates\c
-\&\|', all
-template instantiations are external. You must arrange for all
-necessary instantiations to appear in the implementation file; you can
-do this with a \c
-.B typedef\c
-\& that references each instantiation needed.
-Conversely, when you compile using the default option
-`\|\c
-.B \-fno\-external\-templates\c
-\&\|', all template instantiations are
-explicitly internal.
-.TP
-.B \-fall\-virtual
-Treat all possible member functions as virtual, implicitly. All
-member functions (except for constructor functions and
-.B new
-or
-.B delete
-member operators) are treated as virtual functions of the class where
-they appear.
-.Sp
-This does not mean that all calls to these member functions will be
-made through the internal table of virtual functions. Under some
-circumstances, the compiler can determine that a call to a given
-virtual function can be made directly; in these cases the calls are
-direct in any case.
-.TP
-.B \-fcond\-mismatch
-Allow conditional expressions with mismatched types in the second and
-third arguments. The value of such an expression is void.
-.TP
-.B \-fthis\-is\-variable
-Permit assignment to \c
-.B this\c
-\& (C++ only). The incorporation of
-user-defined free store management into C++ has made assignment to
-`\|\c
-.B this\c
-\&\|' an anachronism. Therefore, by default it is invalid to
-assign to \c
-.B this\c
-\& within a class member function. However, for
-backwards compatibility, you can make it valid with
-`\|\c
-.B \-fthis-is-variable\c
-\&\|'.
-.TP
-.B \-funsigned\-char
-Let the type \c
-.B char\c
-\& be unsigned, like \c
-.B unsigned char\c
-\&.
-.Sp
-Each kind of machine has a default for what \c
-.B char\c
-\& should
-be. It is either like \c
-.B unsigned char\c
-\& by default or like
-.B signed char\c
-\& by default.
-.Sp
-Ideally, a portable program should always use \c
-.B signed char\c
-\& or
-.B unsigned char\c
-\& when it depends on the signedness of an object.
-But many programs have been written to use plain \c
-.B char\c
-\& and
-expect it to be signed, or expect it to be unsigned, depending on the
-machines they were written for. This option, and its inverse, let you
-make such a program work with the opposite default.
-.Sp
-The type \c
-.B char\c
-\& is always a distinct type from each of
-.B signed char\c
-\& and \c
-.B unsigned char\c
-\&, even though its behavior
-is always just like one of those two.
-.TP
-.B \-fsigned\-char
-Let the type \c
-.B char\c
-\& be signed, like \c
-.B signed char\c
-\&.
-.Sp
-Note that this is equivalent to `\|\c
-.B \-fno\-unsigned\-char\c
-\&\|', which is
-the negative form of `\|\c
-.B \-funsigned\-char\c
-\&\|'. Likewise,
-`\|\c
-.B \-fno\-signed\-char\c
-\&\|' is equivalent to `\|\c
-.B \-funsigned\-char\c
-\&\|'.
-.TP
-.B \-fsigned\-bitfields
-.TP
-.B \-funsigned\-bitfields
-.TP
-.B \-fno\-signed\-bitfields
-.TP
-.B \-fno\-unsigned\-bitfields
-These options control whether a bitfield is
-signed or unsigned, when declared with no explicit `\|\c
-.B signed\c
-\&\|' or `\|\c
-.B unsigned\c
-\&\|' qualifier. By default, such a bitfield is
-signed, because this is consistent: the basic integer types such as
-.B int\c
-\& are signed types.
-.Sp
-However, when you specify `\|\c
-.B \-traditional\c
-\&\|', bitfields are all unsigned
-no matter what.
-.TP
-.B \-fwritable\-strings
-Store string constants in the writable data segment and don't uniquize
-them. This is for compatibility with old programs which assume they
-can write into string constants. `\|\c
-.B \-traditional\c
-\&\|' also has this
-effect.
-.Sp
-Writing into string constants is a very bad idea; \*(lqconstants\*(rq should
-be constant.
-.SH PREPROCESSOR OPTIONS
-These options control the C preprocessor, which is run on each C source
-file before actual compilation.
-.PP
-If you use the `\|\c
-.B \-E\c
-\&\|' option, GCC does nothing except preprocessing.
-Some of these options make sense only together with `\|\c
-.B \-E\c
-\&\|' because
-they cause the preprocessor output to be unsuitable for actual
-compilation.
-.TP
-.BI "\-include " "file"
-Process \c
-.I file\c
-\& as input before processing the regular input file.
-In effect, the contents of \c
-.I file\c
-\& are compiled first. Any `\|\c
-.B \-D\c
-\&\|'
-and `\|\c
-.B \-U\c
-\&\|' options on the command line are always processed before
-`\|\c
-.B \-include \c
-.I file\c
-\&\c
-\&\|', regardless of the order in which they are
-written. All the `\|\c
-.B \-include\c
-\&\|' and `\|\c
-.B \-imacros\c
-\&\|' options are
-processed in the order in which they are written.
-.TP
-.BI "\-imacros " file
-Process \c
-.I file\c
-\& as input, discarding the resulting output, before
-processing the regular input file. Because the output generated from
-.I file\c
-\& is discarded, the only effect of `\|\c
-.B \-imacros \c
-.I file\c
-\&\c
-\&\|' is to
-make the macros defined in \c
-.I file\c
-\& available for use in the main
-input. The preprocessor evaluates any `\|\c
-.B \-D\c
-\&\|' and `\|\c
-.B \-U\c
-\&\|' options
-on the command line before processing `\|\c
-.B \-imacros\c
-.I file\c
-\&\|', regardless of the order in
-which they are written. All the `\|\c
-.B \-include\c
-\&\|' and `\|\c
-.B \-imacros\c
-\&\|'
-options are processed in the order in which they are written.
-.TP
-.BI "\-idirafter " "dir"
-Add the directory \c
-.I dir\c
-\& to the second include path. The directories
-on the second include path are searched when a header file is not found
-in any of the directories in the main include path (the one that
-`\|\c
-.B \-I\c
-\&\|' adds to).
-.TP
-.BI "\-iprefix " "prefix"
-Specify \c
-.I prefix\c
-\& as the prefix for subsequent `\|\c
-.B \-iwithprefix\c
-\&\|'
-options.
-.TP
-.BI "\-iwithprefix " "dir"
-Add a directory to the second include path. The directory's name is
-made by concatenating \c
-.I prefix\c
-\& and \c
-.I dir\c
-\&, where \c
-.I prefix
-was specified previously with `\|\c
-.B \-iprefix\c
-\&\|'.
-.TP
-.B \-nostdinc
-Do not search the standard system directories for header files. Only
-the directories you have specified with `\|\c
-.B \-I\c
-\&\|' options (and the
-current directory, if appropriate) are searched.
-.Sp
-By using both `\|\c
-.B \-nostdinc\c
-\&\|' and `\|\c
-.B \-I\-\c
-\&\|', you can limit the include-file search file to only those
-directories you specify explicitly.
-.TP
-.B \-nostdinc++
-Do not search for header files in the C++\-specific standard directories,
-but do still search the other standard directories.
-(This option is used when building `\|\c
-.B libg++\c
-\&\|'.)
-.TP
-.B \-undef
-Do not predefine any nonstandard macros. (Including architecture flags).
-.TP
-.B \-E
-Run only the C preprocessor. Preprocess all the C source files
-specified and output the results to standard output or to the
-specified output file.
-.TP
-.B \-C
-Tell the preprocessor not to discard comments. Used with the
-`\|\c
-.B \-E\c
-\&\|' option.
-.TP
-.B \-P
-Tell the preprocessor not to generate `\|\c
-.B #line\c
-\&\|' commands.
-Used with the `\|\c
-.B \-E\c
-\&\|' option.
-.TP
-.B \-M\ [ \-MG ]
-Tell the preprocessor to output a rule suitable for \c
-.B make
-describing the dependencies of each object file. For each source file,
-the preprocessor outputs one \c
-.B make\c
-\&-rule whose target is the object
-file name for that source file and whose dependencies are all the files
-`\|\c
-.B #include\c
-\&\|'d in it. This rule may be a single line or may be
-continued with `\|\c
-.B \e\c
-\&\|'-newline if it is long. The list of rules is
-printed on standard output instead of the preprocessed C program.
-.Sp
-`\|\c
-.B \-M\c
-\&\|' implies `\|\c
-.B \-E\c
-\&\|'.
-.Sp
-`\|\c
-.B \-MG\c
-\&\|' says to treat missing header files as generated files and assume \c
-they live in the same directory as the source file. It must be specified \c
-in addition to `\|\c
-.B \-M\c
-\&\|'.
-.TP
-.B \-MM\ [ \-MG ]
-Like `\|\c
-.B \-M\c
-\&\|' but the output mentions only the user header files
-included with `\|\c
-.B #include "\c
-.I file\c
-\&"\c
-\&\|'. System header files
-included with `\|\c
-.B #include <\c
-.I file\c
-\&>\c
-\&\|' are omitted.
-.TP
-.B \-MD
-Like `\|\c
-.B \-M\c
-\&\|' but the dependency information is written to files with
-names made by replacing `\|\c
-.B .o\c
-\&\|' with `\|\c
-.B .d\c
-\&\|' at the end of the
-output file names. This is in addition to compiling the file as
-specified\(em\&`\|\c
-.B \-MD\c
-\&\|' does not inhibit ordinary compilation the way
-`\|\c
-.B \-M\c
-\&\|' does.
-.Sp
-The Mach utility `\|\c
-.B md\c
-\&\|' can be used to merge the `\|\c
-.B .d\c
-\&\|' files
-into a single dependency file suitable for using with the `\|\c
-.B make\c
-\&\|'
-command.
-.TP
-.B \-MMD
-Like `\|\c
-.B \-MD\c
-\&\|' except mention only user header files, not system
-header files.
-.TP
-.B \-H
-Print the name of each header file used, in addition to other normal
-activities.
-.TP
-.BI "\-A" "question" ( answer )
-Assert the answer
-.I answer
-for
-.I question\c
-\&, in case it is tested
-with a preprocessor conditional such as `\|\c
-.BI "#if #" question ( answer )\c
-\&\|'. `\|\c
-.B \-A\-\c
-\&\|' disables the standard
-assertions that normally describe the target machine.
-.TP
-.BI "\-A" "question"\c
-\&(\c
-.I answer\c
-\&)
-Assert the answer \c
-.I answer\c
-\& for \c
-.I question\c
-\&, in case it is tested
-with a preprocessor conditional such as `\|\c
-.B #if
-#\c
-.I question\c
-\&(\c
-.I answer\c
-\&)\c
-\&\|'. `\|\c
-.B \-A-\c
-\&\|' disables the standard
-assertions that normally describe the target machine.
-.TP
-.BI \-D macro
-Define macro \c
-.I macro\c
-\& with the string `\|\c
-.B 1\c
-\&\|' as its definition.
-.TP
-.BI \-D macro = defn
-Define macro \c
-.I macro\c
-\& as \c
-.I defn\c
-\&. All instances of `\|\c
-.B \-D\c
-\&\|' on
-the command line are processed before any `\|\c
-.B \-U\c
-\&\|' options.
-.TP
-.BI \-U macro
-Undefine macro \c
-.I macro\c
-\&. `\|\c
-.B \-U\c
-\&\|' options are evaluated after all `\|\c
-.B \-D\c
-\&\|' options, but before any `\|\c
-.B \-include\c
-\&\|' and `\|\c
-.B \-imacros\c
-\&\|' options.
-.TP
-.B \-dM
-Tell the preprocessor to output only a list of the macro definitions
-that are in effect at the end of preprocessing. Used with the `\|\c
-.B \-E\c
-\&\|'
-option.
-.TP
-.B \-dD
-Tell the preprocessor to pass all macro definitions into the output, in
-their proper sequence in the rest of the output.
-.TP
-.B \-dN
-Like `\|\c
-.B \-dD\c
-\&\|' except that the macro arguments and contents are omitted.
-Only `\|\c
-.B #define \c
-.I name\c
-\&\c
-\&\|' is included in the output.
-.SH ASSEMBLER OPTION
-.TP
-.BI "\-Wa," "option"
-Pass \c
-.I option\c
-\& as an option to the assembler. If \c
-.I option
-contains commas, it is split into multiple options at the commas.
-.SH LINKER OPTIONS
-These options come into play when the compiler links object files into
-an executable output file. They are meaningless if the compiler is
-not doing a link step.
-.TP
-.I object-file-name
-A file name that does not end in a special recognized suffix is
-considered to name an object file or library. (Object files are
-distinguished from libraries by the linker according to the file
-contents.) If GCC does a link step, these object files are used as input
-to the linker.
-.TP
-.BI \-l library
-Use the library named \c
-.I library\c
-\& when linking.
-.Sp
-The linker searches a standard list of directories for the library,
-which is actually a file named `\|\c
-.B lib\c
-.I library\c
-\&.a\c
-\&\|'. The linker
-then uses this file as if it had been specified precisely by name.
-.Sp
-The directories searched include several standard system directories
-plus any that you specify with `\|\c
-.B \-L\c
-\&\|'.
-.Sp
-Normally the files found this way are library files\(em\&archive files
-whose members are object files. The linker handles an archive file by
-scanning through it for members which define symbols that have so far
-been referenced but not defined. However, if the linker finds an
-ordinary object file rather than a library, the object file is linked
-in the usual fashion. The only difference between using an `\|\c
-.B \-l\c
-\&\|' option and specifying a file
-name is that `\|\c
-.B \-l\c
-\&\|' surrounds
-.I library
-with `\|\c
-.B lib\c
-\&\|' and `\|\c
-.B .a\c
-\&\|' and searches several directories.
-.TP
-.B \-lobjc
-You need this special case of the
-.B \-l
-option in order to link an Objective C program.
-.TP
-.B \-nostartfiles
-Do not use the standard system startup files when linking.
-The standard libraries are used normally.
-.TP
-.B \-nostdlib
-Don't use the standard system libraries and startup files when linking.
-Only the files you specify will be passed to the linker.
-.TP
-.B \-static
-On systems that support dynamic linking, this prevents linking with the shared
-libraries. On other systems, this option has no effect.
-.TP
-.B \-shared
-Produce a shared object which can then be linked with other objects to
-form an executable. Only a few systems support this option.
-.TP
-.B \-symbolic
-Bind references to global symbols when building a shared object. Warn
-about any unresolved references (unless overridden by the link editor
-option `\|\c
-.B
-\-Xlinker \-z \-Xlinker defs\c
-\&\|'). Only a few systems support
-this option.
-.TP
-.BI "\-Xlinker " "option"
-Pass \c
-.I option
-as an option to the linker. You can use this to
-supply system-specific linker options which GNU CC does not know how to
-recognize.
-.Sp
-If you want to pass an option that takes an argument, you must use
-`\|\c
-.B \-Xlinker\c
-\&\|' twice, once for the option and once for the argument.
-For example, to pass `\|\c
-.B
-\-assert definitions\c
-\&\|', you must write
-`\|\c
-.B
-\-Xlinker \-assert \-Xlinker definitions\c
-\&\|'. It does not work to write
-`\|\c
-.B
-\-Xlinker "\-assert definitions"\c
-\&\|', because this passes the entire
-string as a single argument, which is not what the linker expects.
-.TP
-.BI "\-Wl," "option"
-Pass \c
-.I option\c
-\& as an option to the linker. If \c
-.I option\c
-\& contains
-commas, it is split into multiple options at the commas.
-.TP
-.BI "\-u " "symbol"
-Pretend the symbol
-.I symbol
-is undefined, to force linking of
-library modules to define it. You can use `\|\c
-.B \-u\c
-\&\|' multiple times with
-different symbols to force loading of additional library modules.
-.SH DIRECTORY OPTIONS
-These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-.TP
-.BI "\-I" "dir"
-Append directory \c
-.I dir\c
-\& to the list of directories searched for include files.
-.TP
-.B \-I\-
-Any directories you specify with `\|\c
-.B \-I\c
-\&\|' options before the `\|\c
-.B \-I\-\c
-\&\|'
-option are searched only for the case of `\|\c
-.B
-#include "\c
-.I file\c
-.B
-\&"\c
-\&\|';
-they are not searched for `\|\c
-.B #include <\c
-.I file\c
-\&>\c
-\&\|'.
-.Sp
-If additional directories are specified with `\|\c
-.B \-I\c
-\&\|' options after
-the `\|\c
-.B \-I\-\c
-\&\|', these directories are searched for all `\|\c
-.B #include\c
-\&\|'
-directives. (Ordinarily \c
-.I all\c
-\& `\|\c
-.B \-I\c
-\&\|' directories are used
-this way.)
-.Sp
-In addition, the `\|\c
-.B \-I\-\c
-\&\|' option inhibits the use of the current
-directory (where the current input file came from) as the first search
-directory for `\|\c
-.B
-#include "\c
-.I file\c
-.B
-\&"\c
-\&\|'. There is no way to
-override this effect of `\|\c
-.B \-I\-\c
-\&\|'. With `\|\c
-.B \-I.\c
-\&\|' you can specify
-searching the directory which was current when the compiler was
-invoked. That is not exactly the same as what the preprocessor does
-by default, but it is often satisfactory.
-.Sp
-`\|\c
-.B \-I\-\c
-\&\|' does not inhibit the use of the standard system directories
-for header files. Thus, `\|\c
-.B \-I\-\c
-\&\|' and `\|\c
-.B \-nostdinc\c
-\&\|' are
-independent.
-.TP
-.BI "\-L" "dir"
-Add directory \c
-.I dir\c
-\& to the list of directories to be searched
-for `\|\c
-.B \-l\c
-\&\|'.
-.TP
-.BI "\-B" "prefix"
-This option specifies where to find the executables, libraries and
-data files of the compiler itself.
-.Sp
-The compiler driver program runs one or more of the subprograms
-`\|\c
-.B cpp\c
-\&\|', `\|\c
-.B cc1\c
-\&\|' (or, for C++, `\|\c
-.B cc1plus\c
-\&\|'), `\|\c
-.B as\c
-\&\|' and `\|\c
-.B ld\c
-\&\|'. It tries
-.I prefix\c
-\& as a prefix for each program it tries to run, both with and
-without `\|\c
-.I machine\c
-.B /\c
-.I version\c
-.B /\c
-\&\|'.
-.Sp
-For each subprogram to be run, the compiler driver first tries the
-`\|\c
-.B \-B\c
-\&\|' prefix, if any. If that name is not found, or if `\|\c
-.B \-B\c
-\&\|'
-was not specified, the driver tries two standard prefixes, which are
-`\|\c
-.B /usr/lib/gcc/\c
-\&\|' and `\|\c
-.B /usr/local/lib/gcc-lib/\c
-\&\|'. If neither of
-those results in a file name that is found, the compiler driver
-searches for the unmodified program
-name, using the directories specified in your
-`\|\c
-.B PATH\c
-\&\|' environment variable.
-.Sp
-The run-time support file `\|\c
-.B libgcc.a\c
-\&\|' is also searched for using the
-`\|\c
-.B \-B\c
-\&\|' prefix, if needed. If it is not found there, the two
-standard prefixes above are tried, and that is all. The file is left
-out of the link if it is not found by those means. Most of the time,
-on most machines, `\|\c
-.B libgcc.a\c
-\&\|' is not actually necessary.
-.Sp
-You can get a similar result from the environment variable
-.B GCC_EXEC_PREFIX\c
-\&; if it is defined, its value is used as a prefix
-in the same way. If both the `\|\c
-.B \-B\c
-\&\|' option and the
-.B GCC_EXEC_PREFIX\c
-\& variable are present, the `\|\c
-.B \-B\c
-\&\|' option is
-used first and the environment variable value second.
-.SH WARNING OPTIONS
-Warnings are diagnostic messages that report constructions which
-are not inherently erroneous but which are risky or suggest there
-may have been an error.
-.Sp
-These options control the amount and kinds of warnings produced by GNU
-CC:
-.TP
-.B \-fsyntax\-only
-Check the code for syntax errors, but don't emit any output.
-.TP
-.B \-w
-Inhibit all warning messages.
-.TP
-.B \-Wno\-import
-Inhibit warning messages about the use of
-.BR #import .
-.TP
-.B \-pedantic
-Issue all the warnings demanded by strict ANSI standard C; reject
-all programs that use forbidden extensions.
-.Sp
-Valid ANSI standard C programs should compile properly with or without
-this option (though a rare few will require `\|\c
-.B \-ansi\c
-\&\|'). However,
-without this option, certain GNU extensions and traditional C features
-are supported as well. With this option, they are rejected. There is
-no reason to \c
-.I use\c
-\& this option; it exists only to satisfy pedants.
-.Sp
-`\|\c
-.B \-pedantic\c
-\&\|' does not cause warning messages for use of the
-alternate keywords whose names begin and end with `\|\c
-.B _\|_\c
-\&\|'. Pedantic
-warnings are also disabled in the expression that follows
-.B _\|_extension_\|_\c
-\&. However, only system header files should use
-these escape routes; application programs should avoid them.
-.TP
-.B \-pedantic\-errors
-Like `\|\c
-.B \-pedantic\c
-\&\|', except that errors are produced rather than
-warnings.
-.TP
-.B \-W
-Print extra warning messages for these events:
-.TP
-\ \ \ \(bu
-A nonvolatile automatic variable might be changed by a call to
-.B longjmp\c
-\&. These warnings are possible only in
-optimizing compilation.
-.Sp
-The compiler sees only the calls to \c
-.B setjmp\c
-\&. It cannot know
-where \c
-.B longjmp\c
-\& will be called; in fact, a signal handler could
-call it at any point in the code. As a result, you may get a warning
-even when there is in fact no problem because \c
-.B longjmp\c
-\& cannot
-in fact be called at the place which would cause a problem.
-.TP
-\ \ \ \(bu
-A function can return either with or without a value. (Falling
-off the end of the function body is considered returning without
-a value.) For example, this function would evoke such a
-warning:
-.Sp
-.nf
-foo (a)
-{
- if (a > 0)
- return a;
-}
-.Sp
-.fi
-Spurious warnings can occur because GNU CC does not realize that
-certain functions (including \c
-.B abort\c
-\& and \c
-.B longjmp\c
-\&)
-will never return.
-.TP
-\ \ \ \(bu
-An expression-statement or the left-hand side of a comma expression
-contains no side effects.
-To suppress the warning, cast the unused expression to void.
-For example, an expression such as `\|\c
-.B x[i,j]\c
-\&\|' will cause a warning,
-but `\|\c
-.B x[(void)i,j]\c
-\&\|' will not.
-.TP
-\ \ \ \(bu
-An unsigned value is compared against zero with `\|\c
-.B >\c
-\&\|' or `\|\c
-.B <=\c
-\&\|'.
-.PP
-.TP
-.B \-Wimplicit-int
-Warn whenever a declaration does not specify a type.
-.TP
-.B \-Wimplicit-function-declaration
-Warn whenever a function is used before being declared.
-.TP
-.B \-Wimplicit
-Same as -Wimplicit-int and -Wimplicit-function-declaration.
-.TP
-.B \-Wmain
-Warn if the
-.B main
-function is declared or defined with a suspicious type.
-Typically, it is a function with external linkage, returning
-.B int\c
-\&, and
-taking zero or two arguments.
-
-.TP
-.B \-Wreturn\-type
-Warn whenever a function is defined with a return-type that defaults
-to \c
-.B int\c
-\&. Also warn about any \c
-.B return\c
-\& statement with no
-return-value in a function whose return-type is not \c
-.B void\c
-\&.
-.TP
-.B \-Wunused
-Warn whenever a local variable is unused aside from its declaration,
-whenever a function is declared static but never defined, and whenever
-a statement computes a result that is explicitly not used.
-.TP
-.B \-Wswitch
-Warn whenever a \c
-.B switch\c
-\& statement has an index of enumeral type
-and lacks a \c
-.B case\c
-\& for one or more of the named codes of that
-enumeration. (The presence of a \c
-.B default\c
-\& label prevents this
-warning.) \c
-.B case\c
-\& labels outside the enumeration range also
-provoke warnings when this option is used.
-.TP
-.B \-Wcomment
-Warn whenever a comment-start sequence `\|\c
-.B /\(**\c
-\&\|' appears in a comment.
-.TP
-.B \-Wtrigraphs
-Warn if any trigraphs are encountered (assuming they are enabled).
-.TP
-.B \-Wformat
-Check calls to \c
-.B printf\c
-\& and \c
-.B scanf\c
-\&, etc., to make sure that
-the arguments supplied have types appropriate to the format string
-specified.
-.TP
-.B \-Wchar\-subscripts
-Warn if an array subscript has type
-.BR char .
-This is a common cause of error, as programmers often forget that this
-type is signed on some machines.
-.TP
-.B \-Wuninitialized
-An automatic variable is used without first being initialized.
-.Sp
-These warnings are possible only in optimizing compilation,
-because they require data flow information that is computed only
-when optimizing. If you don't specify `\|\c
-.B \-O\c
-\&\|', you simply won't
-get these warnings.
-.Sp
-These warnings occur only for variables that are candidates for
-register allocation. Therefore, they do not occur for a variable that
-is declared \c
-.B volatile\c
-\&, or whose address is taken, or whose size
-is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
-structures, unions or arrays, even when they are in registers.
-.Sp
-Note that there may be no warning about a variable that is used only
-to compute a value that itself is never used, because such
-computations may be deleted by data flow analysis before the warnings
-are printed.
-.Sp
-These warnings are made optional because GNU CC is not smart
-enough to see all the reasons why the code might be correct
-despite appearing to have an error. Here is one example of how
-this can happen:
-.Sp
-.nf
-{
- int x;
- switch (y)
- {
- case 1: x = 1;
- break;
- case 2: x = 4;
- break;
- case 3: x = 5;
- }
- foo (x);
-}
-.Sp
-.fi
-If the value of \c
-.B y\c
-\& is always 1, 2 or 3, then \c
-.B x\c
-\& is
-always initialized, but GNU CC doesn't know this. Here is
-another common case:
-.Sp
-.nf
-{
- int save_y;
- if (change_y) save_y = y, y = new_y;
- .\|.\|.
- if (change_y) y = save_y;
-}
-.Sp
-.fi
-This has no bug because \c
-.B save_y\c
-\& is used only if it is set.
-.Sp
-Some spurious warnings can be avoided if you declare as
-.B volatile\c
-\& all the functions you use that never return.
-.TP
-.B \-Wparentheses
-Warn if parentheses are omitted in certain contexts.
-.TP
-.B \-Wtemplate\-debugging
-When using templates in a C++ program, warn if debugging is not yet
-fully available (C++ only).
-.TP
-.B \-Wall
-All of the above `\|\c
-.B \-W\c
-\&\|' options combined. These are all the
-options which pertain to usage that we recommend avoiding and that we
-believe is easy to avoid, even in conjunction with macros.
-.PP
-The remaining `\|\c
-.B \-W.\|.\|.\c
-\&\|' options are not implied by `\|\c
-.B \-Wall\c
-\&\|'
-because they warn about constructions that we consider reasonable to
-use, on occasion, in clean programs.
-.TP
-.B \-Wtraditional
-Warn about certain constructs that behave differently in traditional and
-ANSI C.
-.TP
-\ \ \ \(bu
-Macro arguments occurring within string constants in the macro body.
-These would substitute the argument in traditional C, but are part of
-the constant in ANSI C.
-.TP
-\ \ \ \(bu
-A function declared external in one block and then used after the end of
-the block.
-.TP
-\ \ \ \(bu
-A \c
-.B switch\c
-\& statement has an operand of type \c
-.B long\c
-\&.
-.PP
-.TP
-.B \-Wshadow
-Warn whenever a local variable shadows another local variable.
-.TP
-.BI "\-Wid\-clash\-" "len"
-Warn whenever two distinct identifiers match in the first \c
-.I len
-characters. This may help you prepare a program that will compile
-with certain obsolete, brain-damaged compilers.
-.TP
-.B \-Wpointer\-arith
-Warn about anything that depends on the \*(lqsize of\*(rq a function type or
-of \c
-.B void\c
-\&. GNU C assigns these types a size of 1, for
-convenience in calculations with \c
-.B void \(**\c
-\& pointers and pointers
-to functions.
-.TP
-.B \-Wcast\-qual
-Warn whenever a pointer is cast so as to remove a type qualifier from
-the target type. For example, warn if a \c
-.B const char \(**\c
-\& is cast
-to an ordinary \c
-.B char \(**\c
-\&.
-.TP
-.B \-Wcast\-align
-Warn whenever a pointer is cast such that the required alignment of the
-target is increased. For example, warn if a \c
-.B char \(**\c
-\& is cast to
-an \c
-.B int \(**\c
-\& on machines where integers can only be accessed at
-two- or four-byte boundaries.
-.TP
-.B \-Wwrite\-strings
-Give string constants the type \c
-.B const char[\c
-.I length\c
-.B ]\c
-\& so that
-copying the address of one into a non-\c
-.B const\c
-\& \c
-.B char \(**
-pointer will get a warning. These warnings will help you find at
-compile time code that can try to write into a string constant, but
-only if you have been very careful about using \c
-.B const\c
-\& in
-declarations and prototypes. Otherwise, it will just be a nuisance;
-this is why we did not make `\|\c
-.B \-Wall\c
-\&\|' request these warnings.
-.TP
-.B \-Wconversion
-Warn if a prototype causes a type conversion that is different from what
-would happen to the same argument in the absence of a prototype. This
-includes conversions of fixed point to floating and vice versa, and
-conversions changing the width or signedness of a fixed point argument
-except when the same as the default promotion.
-.TP
-.B \-Waggregate\-return
-Warn if any functions that return structures or unions are defined or
-called. (In languages where you can return an array, this also elicits
-a warning.)
-.TP
-.B \-Wstrict\-prototypes
-Warn if a function is declared or defined without specifying the
-argument types. (An old-style function definition is permitted without
-a warning if preceded by a declaration which specifies the argument
-types.)
-.TP
-.B \-Wmissing\-prototypes
-Warn if a global function is defined without a previous prototype
-declaration. This warning is issued even if the definition itself
-provides a prototype. The aim is to detect global functions that fail
-to be declared in header files.
-.TP
-.B \-Wmissing\-declarations
-Warn if a global function is defined without a previous declaration.
-Do so even if the definition itself provides a prototype.
-Use this option to detect global functions that are not declared in
-header files.
-.TP
-.B \-Wredundant-decls
-Warn if anything is declared more than once in the same scope, even in
-cases where multiple declaration is valid and changes nothing.
-.TP
-.B \-Wnested-externs
-Warn if an \c
-.B extern\c
-\& declaration is encountered within an function.
-.TP
-.B \-Wenum\-clash
-Warn about conversion between different enumeration types (C++ only).
-.TP
-.B \-Wlong-long
-Warn if
-.B long long \c
-type is used. This is default. To inhibit
-the warning messages, use flag `\|\c
-.B \-Wno\-long\-long\c
-\&\|'. Flags `\|\c
-.B \-W\-long\-long\c
-\&\|' and `\|\c
-.B \-Wno\-long\-long\c
-\&\|' are taken into account only when flag `\|\c
-.B \-pedantic\c
-\&\|' is used.
-.TP
-.B \-Woverloaded\-virtual
-(C++ only.)
-In a derived class, the definitions of virtual functions must match
-the type signature of a virtual function declared in the base class.
-Use this option to request warnings when a derived class declares a
-function that may be an erroneous attempt to define a virtual
-function: that is, warn when a function with the same name as a
-virtual function in the base class, but with a type signature that
-doesn't match any virtual functions from the base class.
-.TP
-.B \-Winline
-Warn if a function can not be inlined, and either it was declared as inline,
-or else the
-.B \-finline\-functions
-option was given.
-.TP
-.B \-Werror
-Treat warnings as errors; abort compilation after any warning.
-.SH DEBUGGING OPTIONS
-GNU CC has various special options that are used for debugging
-either your program or GCC:
-.TP
-.B \-g
-Produce debugging information in the operating system's native format
-(stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging
-information.
-.Sp
-On most systems that use stabs format, `\|\c
-.B \-g\c
-\&\|' enables use of extra
-debugging information that only GDB can use; this extra information
-makes debugging work better in GDB but will probably make other debuggers
-crash or
-refuse to read the program. If you want to control for certain whether
-to generate the extra information, use `\|\c
-.B \-gstabs+\c
-\&\|', `\|\c
-.B \-gstabs\c
-\&\|',
-`\|\c
-.B \-gxcoff+\c
-\&\|', `\|\c
-.B \-gxcoff\c
-\&\|', `\|\c
-.B \-gdwarf+\c
-\&\|', or `\|\c
-.B \-gdwarf\c
-\&\|'
-(see below).
-.Sp
-Unlike most other C compilers, GNU CC allows you to use `\|\c
-.B \-g\c
-\&\|' with
-`\|\c
-.B \-O\c
-\&\|'. The shortcuts taken by optimized code may occasionally
-produce surprising results: some variables you declared may not exist
-at all; flow of control may briefly move where you did not expect it;
-some statements may not be executed because they compute constant
-results or their values were already at hand; some statements may
-execute in different places because they were moved out of loops.
-.Sp
-Nevertheless it proves possible to debug optimized output. This makes
-it reasonable to use the optimizer for programs that might have bugs.
-.PP
-The following options are useful when GNU CC is generated with the
-capability for more than one debugging format.
-.TP
-.B \-ggdb
-Produce debugging information in the native format (if that is supported),
-including GDB extensions if at all possible.
-.TP
-.B \-gstabs
-Produce debugging information in stabs format (if that is supported),
-without GDB extensions. This is the format used by DBX on most BSD
-systems.
-.TP
-.B \-gstabs+
-Produce debugging information in stabs format (if that is supported),
-using GNU extensions understood only by the GNU debugger (GDB). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.TP
-.B \-gcoff
-Produce debugging information in COFF format (if that is supported).
-This is the format used by SDB on most System V systems prior to
-System V Release 4.
-.TP
-.B \-gxcoff
-Produce debugging information in XCOFF format (if that is supported).
-This is the format used by the DBX debugger on IBM RS/6000 systems.
-.TP
-.B \-gxcoff+
-Produce debugging information in XCOFF format (if that is supported),
-using GNU extensions understood only by the GNU debugger (GDB). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.TP
-.B \-gdwarf
-Produce debugging information in DWARF format (if that is supported).
-This is the format used by SDB on most System V Release 4 systems.
-.TP
-.B \-gdwarf+
-Produce debugging information in DWARF format (if that is supported),
-using GNU extensions understood only by the GNU debugger (GDB). The
-use of these extensions is likely to make other debuggers crash or
-refuse to read the program.
-.PP
-.BI "\-g" "level"
-.br
-.BI "\-ggdb" "level"
-.br
-.BI "\-gstabs" "level"
-.br
-.BI "\-gcoff" "level"
-.BI "\-gxcoff" "level"
-.TP
-.BI "\-gdwarf" "level"
-Request debugging information and also use \c
-.I level\c
-\& to specify how
-much information. The default level is 2.
-.Sp
-Level 1 produces minimal information, enough for making backtraces in
-parts of the program that you don't plan to debug. This includes
-descriptions of functions and external variables, but no information
-about local variables and no line numbers.
-.Sp
-Level 3 includes extra information, such as all the macro definitions
-present in the program. Some debuggers support macro expansion when
-you use `\|\c
-.B \-g3\c
-\&\|'.
-.TP
-.B \-p
-Generate extra code to write profile information suitable for the
-analysis program \c
-.B prof\c
-\&.
-.TP
-.B \-pg
-Generate extra code to write profile information suitable for the
-analysis program \c
-.B gprof\c
-\&.
-.TP
-.B \-a
-Generate extra code to write profile information for basic blocks,
-which will record the number of times each basic block is executed.
-This data could be analyzed by a program like \c
-.B tcov\c
-\&. Note,
-however, that the format of the data is not what \c
-.B tcov\c
-\& expects.
-Eventually GNU \c
-.B gprof\c
-\& should be extended to process this data.
-.TP
-.B \-ax
-Generate extra code to read basic block profiling parameters from
-file `bb.in' and write profiling results to file `bb.out'.
-`bb.in' contains a list of functions. Whenever a function on the list
-is entered, profiling is turned on. When the outmost function is left,
-profiling is turned off. If a function name is prefixed with `-'
-the function is excluded from profiling. If a function name is not
-unique it can be disambiguated by writing
-`/path/filename.d:functionname'. `bb.out' will list some available
-filenames.
-Four function names have a special meaning:
-`__bb_jumps__' will cause jump frequencies to be written to `bb.out'.
-`__bb_trace__' will cause the sequence of basic blocks to be piped
-into `gzip' and written to file `bbtrace.gz'.
-`__bb_hidecall__' will cause call instructions to be excluded from
-the trace.
-`__bb_showret__' will cause return instructions to be included in
-the trace.
-.TP
-.BI "\-d" "letters"
-Says to make debugging dumps during compilation at times specified by
-.I letters\c
-\&. This is used for debugging the compiler. The file names
-for most of the dumps are made by appending a word to the source file
-name (e.g. `\|\c
-.B foo.c.rtl\c
-\&\|' or `\|\c
-.B foo.c.jump\c
-\&\|').
-.TP
-.B \-dM
-Dump all macro definitions, at the end of preprocessing, and write no
-output.
-.TP
-.B \-dN
-Dump all macro names, at the end of preprocessing.
-.TP
-.B \-dD
-Dump all macro definitions, at the end of preprocessing, in addition to
-normal output.
-.TP
-.B \-dy
-Dump debugging information during parsing, to standard error.
-.TP
-.B \-dr
-Dump after RTL generation, to `\|\c
-.I file\c
-.B \&.rtl\c
-\&\|'.
-.TP
-.B \-dx
-Just generate RTL for a function instead of compiling it. Usually used
-with `\|\c
-.B r\c
-\&\|'.
-.TP
-.B \-dj
-Dump after first jump optimization, to `\|\c
-.I file\c
-.B \&.jump\c
-\&\|'.
-.TP
-.B \-ds
-Dump after CSE (including the jump optimization that sometimes
-follows CSE), to `\|\c
-.I file\c
-.B \&.cse\c
-\&\|'.
-.TP
-.B \-dL
-Dump after loop optimization, to `\|\c
-.I file\c
-.B \&.loop\c
-\&\|'.
-.TP
-.B \-dt
-Dump after the second CSE pass (including the jump optimization that
-sometimes follows CSE), to `\|\c
-.I file\c
-.B \&.cse2\c
-\&\|'.
-.TP
-.B \-df
-Dump after flow analysis, to `\|\c
-.I file\c
-.B \&.flow\c
-\&\|'.
-.TP
-.B \-dc
-Dump after instruction combination, to `\|\c
-.I file\c
-.B \&.combine\c
-\&\|'.
-.TP
-.B \-dS
-Dump after the first instruction scheduling pass, to
-`\|\c
-.I file\c
-.B \&.sched\c
-\&\|'.
-.TP
-.B \-dl
-Dump after local register allocation, to `\|\c
-.I file\c
-.B \&.lreg\c
-\&\|'.
-.TP
-.B \-dg
-Dump after global register allocation, to `\|\c
-.I file\c
-.B \&.greg\c
-\&\|'.
-.TP
-.B \-dR
-Dump after the second instruction scheduling pass, to
-`\|\c
-.I file\c
-.B \&.sched2\c
-\&\|'.
-.TP
-.B \-dJ
-Dump after last jump optimization, to `\|\c
-.I file\c
-.B \&.jump2\c
-\&\|'.
-.TP
-.B \-dd
-Dump after delayed branch scheduling, to `\|\c
-.I file\c
-.B \&.dbr\c
-\&\|'.
-.TP
-.B \-dk
-Dump after conversion from registers to stack, to `\|\c
-.I file\c
-.B \&.stack\c
-\&\|'.
-.TP
-.B \-da
-Produce all the dumps listed above.
-.TP
-.B \-dm
-Print statistics on memory usage, at the end of the run, to
-standard error.
-.TP
-.B \-dp
-Annotate the assembler output with a comment indicating which
-pattern and alternative was used.
-.TP
-.B \-fpretend\-float
-When running a cross-compiler, pretend that the target machine uses the
-same floating point format as the host machine. This causes incorrect
-output of the actual floating constants, but the actual instruction
-sequence will probably be the same as GNU CC would make when running on
-the target machine.
-.TP
-.B \-save\-temps
-Store the usual \*(lqtemporary\*(rq intermediate files permanently; place them
-in the current directory and name them based on the source file. Thus,
-compiling `\|\c
-.B foo.c\c
-\&\|' with `\|\c
-.B \-c \-save\-temps\c
-\&\|' would produce files
-`\|\c
-.B foo.cpp\c
-\&\|' and `\|\c
-.B foo.s\c
-\&\|', as well as `\|\c
-.B foo.o\c
-\&\|'.
-.TP
-.BI "\-print\-file\-name=" "library"
-Print the full absolute name of the library file \|\c
-.nh
-.I library
-.hy
-\&\| that
-would be used when linking\(em\&and do not do anything else. With this
-option, GNU CC does not compile or link anything; it just prints the
-file name.
-.TP
-.B \-print\-libgcc\-file\-name
-Same as `\|\c
-.B \-print\-file\-name=libgcc.a\c
-\&\|'.
-.TP
-.BI "\-print\-prog\-name=" "program"
-Like `\|\c
-.B \-print\-file\-name\c
-\&\|', but searches for a program such as `\|\c
-cpp\c
-\&\|'.
-.SH OPTIMIZATION OPTIONS
-These options control various sorts of optimizations:
-.TP
-.B \-O
-.TP
-.B \-O1
-Optimize. Optimizing compilation takes somewhat more time, and a lot
-more memory for a large function.
-.Sp
-Without `\|\c
-.B \-O\c
-\&\|', the compiler's goal is to reduce the cost of
-compilation and to make debugging produce the expected results.
-Statements are independent: if you stop the program with a breakpoint
-between statements, you can then assign a new value to any variable or
-change the program counter to any other statement in the function and
-get exactly the results you would expect from the source code.
-.Sp
-Without `\|\c
-.B \-O\c
-\&\|', only variables declared \c
-.B register\c
-\& are
-allocated in registers. The resulting compiled code is a little worse
-than produced by PCC without `\|\c
-.B \-O\c
-\&\|'.
-.Sp
-With `\|\c
-.B \-O\c
-\&\|', the compiler tries to reduce code size and execution
-time.
-.Sp
-When you specify `\|\c
-.B \-O\c
-\&\|', the two options `\|\c
-.B \-fthread\-jumps\c
-\&\|' and `\|\c
-.B \-fdefer\-pop\c
-\&\|' are turned on. On machines that have delay slots, the `\|\c
-.B \-fdelayed\-branch\c
-\&\|' option is turned on. For those machines that can support debugging even
-without a frame pointer, the `\|\c
-.B \-fomit\-frame\-pointer\c
-\&\|' option is turned on. On some machines other flags may also be turned on.
-.TP
-.B \-O2
-Optimize even more. Nearly all supported optimizations that do not
-involve a space-speed tradeoff are performed. Loop unrolling and function
-inlining are not done, for example. As compared to
-.B \-O\c
-\&,
-this option increases both compilation time and the performance of the
-generated code.
-.TP
-.B \-O3
-Optimize yet more. This turns on everything
-.B \-O2
-does, along with also turning on
-.B \-finline\-functions.
-.TP
-.B \-O0
-Do not optimize.
-.Sp
-If you use multiple
-.B \-O
-options, with or without level numbers, the last such option is the
-one that is effective.
-.PP
-Options of the form `\|\c
-.B \-f\c
-.I flag\c
-\&\c
-\&\|' specify machine-independent
-flags. Most flags have both positive and negative forms; the negative
-form of `\|\c
-.B \-ffoo\c
-\&\|' would be `\|\c
-.B \-fno\-foo\c
-\&\|'. The following list shows
-only one form\(em\&the one which is not the default.
-You can figure out the other form by either removing `\|\c
-.B no\-\c
-\&\|' or
-adding it.
-.TP
-.B \-ffloat\-store
-Do not store floating point variables in registers. This
-prevents undesirable excess precision on machines such as the
-68000 where the floating registers (of the 68881) keep more
-precision than a \c
-.B double\c
-\& is supposed to have.
-.Sp
-For most programs, the excess precision does only good, but a few
-programs rely on the precise definition of IEEE floating point.
-Use `\|\c
-.B \-ffloat\-store\c
-\&\|' for such programs.
-.TP
-.B \-fmemoize\-lookups
-.TP
-.B \-fsave\-memoized
-Use heuristics to compile faster (C++ only). These heuristics are not
-enabled by default, since they are only effective for certain input
-files. Other input files compile more slowly.
-.Sp
-The first time the compiler must build a call to a member function (or
-reference to a data member), it must (1) determine whether the class
-implements member functions of that name; (2) resolve which member
-function to call (which involves figuring out what sorts of type
-conversions need to be made); and (3) check the visibility of the member
-function to the caller. All of this adds up to slower compilation.
-Normally, the second time a call is made to that member function (or
-reference to that data member), it must go through the same lengthy
-process again. This means that code like this
-.Sp
-\& cout << "This " << p << " has " << n << " legs.\en";
-.Sp
-makes six passes through all three steps. By using a software cache,
-a \*(lqhit\*(rq significantly reduces this cost. Unfortunately, using the
-cache introduces another layer of mechanisms which must be implemented,
-and so incurs its own overhead. `\|\c
-.B \-fmemoize\-lookups\c
-\&\|' enables
-the software cache.
-.Sp
-Because access privileges (visibility) to members and member functions
-may differ from one function context to the next,
-.B g++
-may need to flush the cache. With the `\|\c
-.B \-fmemoize\-lookups\c
-\&\|' flag, the cache is flushed after every
-function that is compiled. The `\|\c
-\-fsave\-memoized\c
-\&\|' flag enables the same software cache, but when the compiler
-determines that the context of the last function compiled would yield
-the same access privileges of the next function to compile, it
-preserves the cache.
-This is most helpful when defining many member functions for the same
-class: with the exception of member functions which are friends of
-other classes, each member function has exactly the same access
-privileges as every other, and the cache need not be flushed.
-.TP
-.B \-fno\-default\-inline
-Don't make member functions inline by default merely because they are
-defined inside the class scope (C++ only).
-.TP
-.B \-fno\-defer\-pop
-Always pop the arguments to each function call as soon as that
-function returns. For machines which must pop arguments after a
-function call, the compiler normally lets arguments accumulate on the
-stack for several function calls and pops them all at once.
-.TP
-.B \-fforce\-mem
-Force memory operands to be copied into registers before doing
-arithmetic on them. This may produce better code by making all
-memory references potential common subexpressions. When they are
-not common subexpressions, instruction combination should
-eliminate the separate register-load. I am interested in hearing
-about the difference this makes.
-.TP
-.B \-fforce\-addr
-Force memory address constants to be copied into registers before
-doing arithmetic on them. This may produce better code just as
-`\|\c
-.B \-fforce\-mem\c
-\&\|' may. I am interested in hearing about the
-difference this makes.
-.TP
-.B \-fomit\-frame\-pointer
-Don't keep the frame pointer in a register for functions that
-don't need one. This avoids the instructions to save, set up and
-restore frame pointers; it also makes an extra register available
-in many functions. \c
-.I It also makes debugging impossible on most machines\c
-\&.
-.Sp
-On some machines, such as the Vax, this flag has no effect, because
-the standard calling sequence automatically handles the frame pointer
-and nothing is saved by pretending it doesn't exist. The
-machine-description macro \c
-.B FRAME_POINTER_REQUIRED\c
-\& controls
-whether a target machine supports this flag.
-.TP
-.B \-finline\-functions
-Integrate all simple functions into their callers. The compiler
-heuristically decides which functions are simple enough to be worth
-integrating in this way.
-.Sp
-If all calls to a given function are integrated, and the function is
-declared \c
-.B static\c
-\&, then GCC normally does not output the function as
-assembler code in its own right.
-.TP
-.B \-fcaller\-saves
-Enable values to be allocated in registers that will be clobbered by
-function calls, by emitting extra instructions to save and restore the
-registers around such calls. Such allocation is done only when it
-seems to result in better code than would otherwise be produced.
-.Sp
-This option is enabled by default on certain machines, usually those
-which have no call-preserved registers to use instead.
-.TP
-.B \-fkeep\-inline\-functions
-Even if all calls to a given function are integrated, and the function
-is declared \c
-.B static\c
-\&, nevertheless output a separate run-time
-callable version of the function.
-.TP
-.B \-fno\-function\-cse
-Do not put function addresses in registers; make each instruction that
-calls a constant function contain the function's address explicitly.
-.Sp
-This option results in less efficient code, but some strange hacks
-that alter the assembler output may be confused by the optimizations
-performed when this option is not used.
-.TP
-.B \-fno\-peephole
-Disable any machine-specific peephole optimizations.
-.TP
-.B \-ffast-math
-This option allows GCC to violate some ANSI or IEEE rules/specifications
-in the interest of optimizing code for speed. For example, it allows
-the compiler to assume arguments to the \c
-.B sqrt\c
-\& function are
-non-negative numbers.
-.Sp
-This option should never be turned on by any `\|\c
-.B \-O\c
-\&\|' option since
-it can result in incorrect output for programs which depend on
-an exact implementation of IEEE or ANSI rules/specifications for
-math functions.
-.PP
-The following options control specific optimizations. The `\|\c
-.B \-O2\c
-\&\|'
-option turns on all of these optimizations except `\|\c
-.B \-funroll\-loops\c
-\&\|'
-and `\|\c
-.B \-funroll\-all\-loops\c
-\&\|'.
-.PP
-The `\|\c
-.B \-O\c
-\&\|' option usually turns on
-the `\|\c
-.B \-fthread\-jumps\c
-\&\|' and `\|\c
-.B \-fdelayed\-branch\c
-\&\|' options, but
-specific machines may change the default optimizations.
-.PP
-You can use the following flags in the rare cases when \*(lqfine-tuning\*(rq
-of optimizations to be performed is desired.
-.TP
-.B \-fstrength\-reduce
-Perform the optimizations of loop strength reduction and
-elimination of iteration variables.
-.TP
-.B \-fthread\-jumps
-Perform optimizations where we check to see if a jump branches to a
-location where another comparison subsumed by the first is found. If
-so, the first branch is redirected to either the destination of the
-second branch or a point immediately following it, depending on whether
-the condition is known to be true or false.
-.TP
-.B \-funroll\-loops
-Perform the optimization of loop unrolling. This is only done for loops
-whose number of iterations can be determined at compile time or run time.
-.TP
-.B \-funroll\-all\-loops
-Perform the optimization of loop unrolling. This is done for all loops.
-This usually makes programs run more slowly.
-.TP
-.B \-fcse\-follow\-jumps
-In common subexpression elimination, scan through jump instructions
-when the target of the jump is not reached by any other path. For
-example, when CSE encounters an \c
-.B if\c
-\& statement with an
-.B else\c
-\& clause, CSE will follow the jump when the condition
-tested is false.
-.TP
-.B \-fcse\-skip\-blocks
-This is similar to `\|\c
-.B \-fcse\-follow\-jumps\c
-\&\|', but causes CSE to
-follow jumps which conditionally skip over blocks. When CSE
-encounters a simple \c
-.B if\c
-\& statement with no else clause,
-`\|\c
-.B \-fcse\-skip\-blocks\c
-\&\|' causes CSE to follow the jump around the
-body of the \c
-.B if\c
-\&.
-.TP
-.B \-frerun\-cse\-after\-loop
-Re-run common subexpression elimination after loop optimizations has been
-performed.
-.TP
-.B \-felide\-constructors
-Elide constructors when this seems plausible (C++ only). With this
-flag, GNU C++ initializes \c
-.B y\c
-\& directly from the call to \c
-.B foo
-without going through a temporary in the following code:
-.Sp
-A foo ();
-A y = foo ();
-.Sp
-Without this option, GNU C++ first initializes \c
-.B y\c
-\& by calling the
-appropriate constructor for type \c
-.B A\c
-\&; then assigns the result of
-.B foo\c
-\& to a temporary; and, finally, replaces the initial value of
-`\|\c
-.B y\c
-\&\|' with the temporary.
-.Sp
-The default behavior (`\|\c
-.B \-fno\-elide\-constructors\c
-\&\|') is specified by
-the draft ANSI C++ standard. If your program's constructors have side
-effects, using `\|\c
-.B \-felide-constructors\c
-\&\|' can make your program act
-differently, since some constructor calls may be omitted.
-.TP
-.B \-fexpensive\-optimizations
-Perform a number of minor optimizations that are relatively expensive.
-.TP
-.B \-fdelayed\-branch
-If supported for the target machine, attempt to reorder instructions
-to exploit instruction slots available after delayed branch
-instructions.
-.TP
-.B \-fschedule\-insns
-If supported for the target machine, attempt to reorder instructions to
-eliminate execution stalls due to required data being unavailable. This
-helps machines that have slow floating point or memory load instructions
-by allowing other instructions to be issued until the result of the load
-or floating point instruction is required.
-.TP
-.B \-fschedule\-insns2
-Similar to `\|\c
-.B \-fschedule\-insns\c
-\&\|', but requests an additional pass of
-instruction scheduling after register allocation has been done. This is
-especially useful on machines with a relatively small number of
-registers and where memory load instructions take more than one cycle.
-.SH TARGET OPTIONS
-By default, GNU CC compiles code for the same type of machine that you
-are using. However, it can also be installed as a cross-compiler, to
-compile for some other type of machine. In fact, several different
-configurations of GNU CC, for different target machines, can be
-installed side by side. Then you specify which one to use with the
-`\|\c
-.B \-b\c
-\&\|' option.
-.PP
-In addition, older and newer versions of GNU CC can be installed side
-by side. One of them (probably the newest) will be the default, but
-you may sometimes wish to use another.
-.TP
-.BI "\-b " "machine"
-The argument \c
-.I machine\c
-\& specifies the target machine for compilation.
-This is useful when you have installed GNU CC as a cross-compiler.
-.Sp
-The value to use for \c
-.I machine\c
-\& is the same as was specified as the
-machine type when configuring GNU CC as a cross-compiler. For
-example, if a cross-compiler was configured with `\|\c
-.B configure
-i386v\c
-\&\|', meaning to compile for an 80386 running System V, then you
-would specify `\|\c
-.B \-b i386v\c
-\&\|' to run that cross compiler.
-.Sp
-When you do not specify `\|\c
-.B \-b\c
-\&\|', it normally means to compile for
-the same type of machine that you are using.
-.TP
-.BI "\-V " "version"
-The argument \c
-.I version\c
-\& specifies which version of GNU CC to run.
-This is useful when multiple versions are installed. For example,
-.I version\c
-\& might be `\|\c
-.B 2.0\c
-\&\|', meaning to run GNU CC version 2.0.
-.Sp
-The default version, when you do not specify `\|\c
-.B \-V\c
-\&\|', is controlled
-by the way GNU CC is installed. Normally, it will be a version that
-is recommended for general use.
-.SH MACHINE DEPENDENT OPTIONS
-Each of the target machine types can have its own special options,
-starting with `\|\c
-.B \-m\c
-\&\|', to choose among various hardware models or
-configurations\(em\&for example, 68010 vs 68020, floating coprocessor or
-none. A single installed version of the compiler can compile for any
-model or configuration, according to the options specified.
-.PP
-Some configurations of the compiler also support additional special
-options, usually for command-line compatibility with other compilers on
-the same platform.
-.PP
-These are the `\|\c
-.B \-m\c
-\&\|' options defined for the 68000 series:
-.TP
-.B \-m68000
-.TP
-.B \-mc68000
-Generate output for a 68000. This is the default when the compiler is
-configured for 68000-based systems.
-.TP
-.B \-m68020
-.TP
-.B \-mc68020
-Generate output for a 68020 (rather than a 68000). This is the
-default when the compiler is configured for 68020-based systems.
-.TP
-.B \-m68881
-Generate output containing 68881 instructions for floating point.
-This is the default for most 68020-based systems unless
-.B \-nfp
-was specified when the compiler was configured.
-.TP
-.B \-m68030
-Generate output for a 68030. This is the default when the compiler is
-configured for 68030-based systems.
-.TP
-.B \-m68040
-Generate output for a 68040. This is the default when the compiler is
-configured for 68040-based systems.
-.TP
-.B \-m68020\-40
-Generate output for a 68040, without using any of the new instructions.
-This results in code which can run relatively efficiently on either a
-68020/68881 or a 68030 or a 68040.
-.TP
-.B \-mfpa
-Generate output containing Sun FPA instructions for floating point.
-.TP
-.B \-msoft\-float
-Generate output containing library calls for floating point.
-.I
-WARNING:
-the requisite libraries are not part of GNU CC. Normally the
-facilities of the machine's usual C compiler are used, but this can't
-be done directly in cross-compilation. You must make your own
-arrangements to provide suitable library functions for cross-compilation.
-.TP
-.B \-mshort
-Consider type \c
-.B int\c
-\& to be 16 bits wide, like \c
-.B short int\c
-\&.
-.TP
-.B \-mnobitfield
-Do not use the bit-field instructions. `\|\c
-.B \-m68000\c
-\&\|' implies
-`\|\c
-.B \-mnobitfield\c
-\&\|'.
-.TP
-.B \-mbitfield
-Do use the bit-field instructions. `\|\c
-.B \-m68020\c
-\&\|' implies
-`\|\c
-.B \-mbitfield\c
-\&\|'. This is the default if you use the unmodified
-sources.
-.TP
-.B \-mrtd
-Use a different function-calling convention, in which functions
-that take a fixed number of arguments return with the \c
-.B rtd
-instruction, which pops their arguments while returning. This
-saves one instruction in the caller since there is no need to pop
-the arguments there.
-.Sp
-This calling convention is incompatible with the one normally
-used on Unix, so you cannot use it if you need to call libraries
-compiled with the Unix compiler.
-.Sp
-Also, you must provide function prototypes for all functions that
-take variable numbers of arguments (including \c
-.B printf\c
-\&);
-otherwise incorrect code will be generated for calls to those
-functions.
-.Sp
-In addition, seriously incorrect code will result if you call a
-function with too many arguments. (Normally, extra arguments are
-harmlessly ignored.)
-.Sp
-The \c
-.B rtd\c
-\& instruction is supported by the 68010 and 68020
-processors, but not by the 68000.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the Vax:
-.TP
-.B \-munix
-Do not output certain jump instructions (\c
-.B aobleq\c
-\& and so on)
-that the Unix assembler for the Vax cannot handle across long
-ranges.
-.TP
-.B \-mgnu
-Do output those jump instructions, on the assumption that you
-will assemble with the GNU assembler.
-.TP
-.B \-mg
-Output code for g-format floating point numbers instead of d-format.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' switches are supported on the SPARC:
-.PP
-.B \-mfpu
-.TP
-.B \-mhard\-float
-Generate output containing floating point instructions. This is the
-default.
-.PP
-.B \-mno\-fpu
-.TP
-.B \-msoft\-float
-Generate output containing library calls for floating point.
-.I Warning:
-there is no GNU floating-point library for SPARC.
-Normally the facilities of the machine's usual C compiler are used, but
-this cannot be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-.B \-msoft\-float
-changes the calling convention in the output file;
-therefore, it is only useful if you compile
-.I all
-of a program with this option.
-.PP
-.B \-mno\-epilogue
-.TP
-.B \-mepilogue
-With
-.B \-mepilogue
-(the default), the compiler always emits code for
-function exit at the end of each function. Any function exit in
-the middle of the function (such as a return statement in C) will
-generate a jump to the exit code at the end of the function.
-.Sp
-With
-.BR \-mno\-epilogue ,
-the compiler tries to emit exit code inline at every function exit.
-.PP
-.B \-mno\-v8
-.TP
-.B \-mv8
-.TP
-.B \-msparclite
-These three options select variations on the SPARC architecture.
-.Sp
-By default (unless specifically configured for the Fujitsu SPARClite),
-GCC generates code for the v7 variant of the SPARC architecture.
-.Sp
-.B \-mv8
-will give you SPARC v8 code. The only difference from v7
-code is that the compiler emits the integer multiply and integer
-divide instructions which exist in SPARC v8 but not in SPARC v7.
-.Sp
-.B \-msparclite
-will give you SPARClite code. This adds the integer
-multiply, integer divide step and scan (ffs) instructions which
-exist in SPARClite but not in SPARC v7.
-.PP
-.B \-mcypress
-.TP
-.B \-msupersparc
-These two options select the processor for which the code is optimised.
-.Sp
-With
-.B \-mcypress
-(the default), the compiler optimises code for the Cypress CY7C602 chip, as
-used in the SparcStation/SparcServer 3xx series. This is also appropriate for
-the older SparcStation 1, 2, IPX etc.
-.Sp
-With
-.B \-msupersparc
-the compiler optimises code for the SuperSparc cpu, as used in the SparcStation
-10, 1000 and 2000 series. This flag also enables use of the full SPARC v8
-instruction set.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the Convex:
-.TP
-.B \-mc1
-Generate output for a C1. This is the default when the compiler is
-configured for a C1.
-.TP
-.B \-mc2
-Generate output for a C2. This is the default when the compiler is
-configured for a C2.
-.TP
-.B \-margcount
-Generate code which puts an argument count in the word preceding each
-argument list. Some nonportable Convex and Vax programs need this word.
-(Debuggers don't, except for functions with variable-length argument
-lists; this info is in the symbol table.)
-.TP
-.B \-mnoargcount
-Omit the argument count word. This is the default if you use the
-unmodified sources.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the AMD Am29000:
-.TP
-.B \-mdw
-Generate code that assumes the DW bit is set, i.e., that byte and
-halfword operations are directly supported by the hardware. This is the
-default.
-.TP
-.B \-mnodw
-Generate code that assumes the DW bit is not set.
-.TP
-.B \-mbw
-Generate code that assumes the system supports byte and halfword write
-operations. This is the default.
-.TP
-.B \-mnbw
-Generate code that assumes the systems does not support byte and
-halfword write operations. This implies `\|\c
-.B \-mnodw\c
-\&\|'.
-.TP
-.B \-msmall
-Use a small memory model that assumes that all function addresses are
-either within a single 256 KB segment or at an absolute address of less
-than 256K. This allows the \c
-.B call\c
-\& instruction to be used instead
-of a \c
-.B const\c
-\&, \c
-.B consth\c
-\&, \c
-.B calli\c
-\& sequence.
-.TP
-.B \-mlarge
-Do not assume that the \c
-.B call\c
-\& instruction can be used; this is the
-default.
-.TP
-.B \-m29050
-Generate code for the Am29050.
-.TP
-.B \-m29000
-Generate code for the Am29000. This is the default.
-.TP
-.B \-mkernel\-registers
-Generate references to registers \c
-.B gr64-gr95\c
-\& instead of
-.B gr96-gr127\c
-\&. This option can be used when compiling kernel code
-that wants a set of global registers disjoint from that used by
-user-mode code.
-.Sp
-Note that when this option is used, register names in `\|\c
-.B \-f\c
-\&\|' flags
-must use the normal, user-mode, names.
-.TP
-.B \-muser\-registers
-Use the normal set of global registers, \c
-.B gr96-gr127\c
-\&. This is the
-default.
-.TP
-.B \-mstack\-check
-Insert a call to \c
-.B _\|_msp_check\c
-\& after each stack adjustment. This
-is often used for kernel code.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for Motorola 88K architectures:
-.TP
-.B \-m88000
-Generate code that works well on both the m88100 and the
-m88110.
-.TP
-.B \-m88100
-Generate code that works best for the m88100, but that also
-runs on the m88110.
-.TP
-.B \-m88110
-Generate code that works best for the m88110, and may not run
-on the m88100.
-.TP
-.B \-midentify\-revision
-Include an \c
-.B ident\c
-\& directive in the assembler output recording the
-source file name, compiler name and version, timestamp, and compilation
-flags used.
-.TP
-.B \-mno\-underscores
-In assembler output, emit symbol names without adding an underscore
-character at the beginning of each name. The default is to use an
-underscore as prefix on each name.
-.TP
-.B \-mno\-check\-zero\-division
-.TP
-.B \-mcheck\-zero\-division
-Early models of the 88K architecture had problems with division by zero;
-in particular, many of them didn't trap. Use these options to avoid
-including (or to include explicitly) additional code to detect division
-by zero and signal an exception. All GCC configurations for the 88K use
-`\|\c
-.B \-mcheck\-zero\-division\c
-\&\|' by default.
-.TP
-.B \-mocs\-debug\-info
-.TP
-.B \-mno\-ocs\-debug\-info
-Include (or omit) additional debugging information (about
-registers used in each stack frame) as specified in the 88Open Object
-Compatibility Standard, \*(lqOCS\*(rq. This extra information is not needed
-by GDB. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to
-include this information; other 88k configurations omit this information
-by default.
-.TP
-.B \-mocs\-frame\-position
-.TP
-.B \-mno\-ocs\-frame\-position
-Force (or do not require) register values to be stored in a particular
-place in stack frames, as specified in OCS. The DG/UX, Delta88 SVr3.2,
-and BCS configurations use `\|\c
-.B \-mocs\-frame\-position\c
-\&\|'; other 88k
-configurations have the default `\|\c
-.B \-mno\-ocs\-frame\-position\c
-\&\|'.
-.TP
-.B \-moptimize\-arg\-area
-.TP
-.B \-mno\-optimize\-arg\-area
-Control how to store function arguments in stack frames.
-`\|\c
-.B \-moptimize\-arg\-area\c
-\&\|' saves space, but may break some
-debuggers (not GDB). `\|\c
-.B \-mno\-optimize\-arg\-area\c
-\&\|' conforms better to
-standards. By default GCC does not optimize the argument area.
-.TP
-.BI "\-mshort\-data\-" "num"
-.I num
-Generate smaller data references by making them relative to \c
-.B r0\c
-\&,
-which allows loading a value using a single instruction (rather than the
-usual two). You control which data references are affected by
-specifying \c
-.I num\c
-\& with this option. For example, if you specify
-`\|\c
-.B \-mshort\-data\-512\c
-\&\|', then the data references affected are those
-involving displacements of less than 512 bytes.
-`\|\c
-.B \-mshort\-data\-\c
-.I num\c
-\&\c
-\&\|' is not effective for \c
-.I num\c
-\& greater
-than 64K.
-.PP
-.B \-mserialize-volatile
-.TP
-.B \-mno-serialize-volatile
-Do, or do not, generate code to guarantee sequential consistency of
-volatile memory references.
-.Sp
-GNU CC always guarantees consistency by default, for the preferred
-processor submodel. How this is done depends on the submodel.
-.Sp
-The m88100 processor does not reorder memory references and so always
-provides sequential consistency. If you use `\|\c
-.B \-m88100\c
-\&\|', GNU CC does
-not generate any special instructions for sequential consistency.
-.Sp
-The order of memory references made by the m88110 processor does not
-always match the order of the instructions requesting those references.
-In particular, a load instruction may execute before a preceding store
-instruction. Such reordering violates sequential consistency of
-volatile memory references, when there are multiple processors. When
-you use `\|\c
-.B \-m88000\c
-\&\|' or `\|\c
-.B \-m88110\c
-\&\|', GNU CC generates special
-instructions when appropriate, to force execution in the proper order.
-.Sp
-The extra code generated to guarantee consistency may affect the
-performance of your application. If you know that you can safely forgo
-this guarantee, you may use the option `\|\c
-.B \-mno-serialize-volatile\c
-\&\|'.
-.Sp
-If you use the `\|\c
-.B \-m88100\c
-\&\|' option but require sequential consistency
-when running on the m88110 processor, you should use
-`\|\c
-.B \-mserialize-volatile\c
-\&\|'.
-.PP
-.B \-msvr4
-.TP
-.B \-msvr3
-Turn on (`\|\c
-.B \-msvr4\c
-\&\|') or off (`\|\c
-.B \-msvr3\c
-\&\|') compiler extensions
-related to System V release 4 (SVr4). This controls the following:
-.TP
-\ \ \ \(bu
-Which variant of the assembler syntax to emit (which you can select
-independently using `\|\c
-.B \-mversion\-03.00\c
-\&\|').
-.TP
-\ \ \ \(bu
-`\|\c
-.B \-msvr4\c
-\&\|' makes the C preprocessor recognize `\|\c
-.B #pragma weak\c
-\&\|'
-.TP
-\ \ \ \(bu
-`\|\c
-.B \-msvr4\c
-\&\|' makes GCC issue additional declaration directives used in
-SVr4.
-.PP
-`\|\c
-.B \-msvr3\c
-\&\|' is the default for all m88K configurations except
-the SVr4 configuration.
-.TP
-.B \-mtrap\-large\-shift
-.TP
-.B \-mhandle\-large\-shift
-Include code to detect bit-shifts of more than 31 bits; respectively,
-trap such shifts or emit code to handle them properly. By default GCC
-makes no special provision for large bit shifts.
-.TP
-.B \-muse\-div\-instruction
-Very early models of the 88K architecture didn't have a divide
-instruction, so GCC avoids that instruction by default. Use this option
-to specify that it's safe to use the divide instruction.
-.TP
-.B \-mversion\-03.00
-In the DG/UX configuration, there are two flavors of SVr4. This option
-modifies
-.B \-msvr4
-to select whether the hybrid-COFF or real-ELF
-flavor is used. All other configurations ignore this option.
-.TP
-.B \-mwarn\-passed\-structs
-Warn when a function passes a struct as an argument or result.
-Structure-passing conventions have changed during the evolution of the C
-language, and are often the source of portability problems. By default,
-GCC issues no such warning.
-.PP
-These options are defined for the IBM RS6000:
-.PP
-.B \-mfp\-in\-toc
-.TP
-.B \-mno\-fp\-in\-toc
-Control whether or not floating-point constants go in the Table of
-Contents (TOC), a table of all global variable and function addresses. By
-default GCC puts floating-point constants there; if the TOC overflows,
-`\|\c
-.B \-mno\-fp\-in\-toc\c
-\&\|' will reduce the size of the TOC, which may avoid
-the overflow.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the IBM RT PC:
-.TP
-.B \-min\-line\-mul
-Use an in-line code sequence for integer multiplies. This is the
-default.
-.TP
-.B \-mcall\-lib\-mul
-Call \c
-.B lmul$$\c
-\& for integer multiples.
-.TP
-.B \-mfull\-fp\-blocks
-Generate full-size floating point data blocks, including the minimum
-amount of scratch space recommended by IBM. This is the default.
-.TP
-.B \-mminimum\-fp\-blocks
-Do not include extra scratch space in floating point data blocks. This
-results in smaller code, but slower execution, since scratch space must
-be allocated dynamically.
-.TP
-.B \-mfp\-arg\-in\-fpregs
-Use a calling sequence incompatible with the IBM calling convention in
-which floating point arguments are passed in floating point registers.
-Note that \c
-.B varargs.h\c
-\& and \c
-.B stdargs.h\c
-\& will not work with
-floating point operands if this option is specified.
-.TP
-.B \-mfp\-arg\-in\-gregs
-Use the normal calling convention for floating point arguments. This is
-the default.
-.TP
-.B \-mhc\-struct\-return
-Return structures of more than one word in memory, rather than in a
-register. This provides compatibility with the MetaWare HighC (hc)
-compiler. Use `\|\c
-.B \-fpcc\-struct\-return\c
-\&\|' for compatibility with the
-Portable C Compiler (pcc).
-.TP
-.B \-mnohc\-struct\-return
-Return some structures of more than one word in registers, when
-convenient. This is the default. For compatibility with the
-IBM-supplied compilers, use either `\|\c
-.B \-fpcc\-struct\-return\c
-\&\|' or
-`\|\c
-.B \-mhc\-struct\-return\c
-\&\|'.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the MIPS family of computers:
-.TP
-.BI "\-mcpu=" "cpu-type"
-Assume the defaults for the machine type
-.I cpu-type
-when
-scheduling instructions. The default
-.I cpu-type
-is
-.BR default ,
-which picks the longest cycles times for any of the machines, in order
-that the code run at reasonable rates on all MIPS cpu's. Other
-choices for
-.I cpu-type
-are
-.BR r2000 ,
-.BR r3000 ,
-.BR r4000 ,
-and
-.BR r6000 .
-While picking a specific
-.I cpu-type
-will schedule things appropriately for that particular chip, the
-compiler will not generate any code that does not meet level 1 of the
-MIPS ISA (instruction set architecture) without the
-.B \-mips2
-or
-.B \-mips3
-switches being used.
-.TP
-.B \-mips2
-Issue instructions from level 2 of the MIPS ISA (branch likely, square
-root instructions). The
-.B \-mcpu=r4000
-or
-.B \-mcpu=r6000
-switch must be used in conjunction with
-.BR \-mips2 .
-.TP
-.B \-mips3
-Issue instructions from level 3 of the MIPS ISA (64 bit instructions).
-The
-.B \-mcpu=r4000
-switch must be used in conjunction with
-.BR \-mips2 .
-.TP
-.B \-mint64
-.TP
-.B \-mlong64
-.TP
-.B \-mlonglong128
-These options don't work at present.
-.TP
-.B \-mmips\-as
-Generate code for the MIPS assembler, and invoke
-.B mips\-tfile
-to add normal debug information. This is the default for all
-platforms except for the OSF/1 reference platform, using the OSF/rose
-object format. If any of the
-.BR \-ggdb ,
-.BR \-gstabs ,
-or
-.B \-gstabs+
-switches are used, the
-.B mips\-tfile
-program will encapsulate the stabs within MIPS ECOFF.
-.TP
-.B \-mgas
-Generate code for the GNU assembler. This is the default on the OSF/1
-reference platform, using the OSF/rose object format.
-.TP
-.B \-mrnames
-.TP
-.B \-mno\-rnames
-The
-.B \-mrnames
-switch says to output code using the MIPS software names for the
-registers, instead of the hardware names (ie,
-.B a0
-instead of
-.BR $4 ).
-The GNU assembler does not support the
-.B \-mrnames
-switch, and the MIPS assembler will be instructed to run the MIPS C
-preprocessor over the source file. The
-.B \-mno\-rnames
-switch is default.
-.TP
-.B \-mgpopt
-.TP
-.B \-mno\-gpopt
-The
-.B \-mgpopt
-switch says to write all of the data declarations before the
-instructions in the text section, to all the MIPS assembler to
-generate one word memory references instead of using two words for
-short global or static data items. This is on by default if
-optimization is selected.
-.TP
-.B \-mstats
-.TP
-.B \-mno\-stats
-For each non-inline function processed, the
-.B \-mstats
-switch causes the compiler to emit one line to the standard error file
-to print statistics about the program (number of registers saved,
-stack size, etc.).
-.TP
-.B \-mmemcpy
-.TP
-.B \-mno\-memcpy
-The
-.B \-mmemcpy
-switch makes all block moves call the appropriate string function
-.RB ( memcpy
-or
-.BR bcopy )
-instead of possibly generating inline code.
-.TP
-.B \-mmips\-tfile
-.TP
-.B \-mno\-mips\-tfile
-The
-.B \-mno\-mips\-tfile
-switch causes the compiler not postprocess the object file with the
-.B mips\-tfile
-program, after the MIPS assembler has generated it to add debug
-support. If
-.B mips\-tfile
-is not run, then no local variables will be available to the debugger.
-In addition,
-.B stage2
-and
-.B stage3
-objects will have the temporary file names passed to the assembler
-embedded in the object file, which means the objects will not compare
-the same.
-.TP
-.B \-msoft\-float
-Generate output containing library calls for floating point.
-.I
-WARNING:
-the requisite libraries are not part of GNU CC. Normally the
-facilities of the machine's usual C compiler are used, but this can't
-be done directly in cross-compilation. You must make your own
-arrangements to provide suitable library functions for cross-compilation.
-.TP
-.B \-mhard\-float
-Generate output containing floating point instructions. This is the
-default if you use the unmodified sources.
-.TP
-.B \-mfp64
-Assume that the
-.B FR
-bit in the status word is on, and that there are 32 64-bit floating
-point registers, instead of 32 32-bit floating point registers. You
-must also specify the
-.B \-mcpu=r4000
-and
-.B \-mips3
-switches.
-.TP
-.B \-mfp32
-Assume that there are 32 32-bit floating point registers. This is the
-default.
-.PP
-.B \-mabicalls
-.TP
-.B \-mno\-abicalls
-Emit (or do not emit) the
-.BR \&.abicalls ,
-.BR \&.cpload ,
-and
-.B \&.cprestore
-pseudo operations that some System V.4 ports use for position
-independent code.
-.TP
-.B \-mhalf\-pic
-.TP
-.B \-mno\-half\-pic
-The
-.B \-mhalf\-pic
-switch says to put pointers to extern references into the data section
-and load them up, rather than put the references in the text section.
-This option does not work at present.
-.B
-.BI \-G num
-Put global and static items less than or equal to
-.I num
-bytes into the small data or bss sections instead of the normal data
-or bss section. This allows the assembler to emit one word memory
-reference instructions based on the global pointer
-.RB ( gp
-or
-.BR $28 ),
-instead of the normal two words used. By default,
-.I num
-is 8 when the MIPS assembler is used, and 0 when the GNU
-assembler is used. The
-.BI \-G num
-switch is also passed to the assembler and linker. All modules should
-be compiled with the same
-.BI \-G num
-value.
-.TP
-.B \-nocpp
-Tell the MIPS assembler to not run its preprocessor over user
-assembler files (with a `\|\c
-.B .s\c
-\&\|' suffix) when assembling them.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the Intel 80386 family of computers:
-.B \-m486
-.TP
-.B \-mno\-486
-Control whether or not code is optimized for a 486 instead of an
-386. Code generated for a 486 will run on a 386 and vice versa.
-.TP
-.B \-msoft\-float
-Generate output containing library calls for floating point.
-.I Warning:
-the requisite libraries are not part of GNU CC.
-Normally the facilities of the machine's usual C compiler are used, but
-this can't be done directly in cross-compilation. You must make your
-own arrangements to provide suitable library functions for
-cross-compilation.
-.Sp
-On machines where a function returns floating point results in the 80387
-register stack, some floating point opcodes may be emitted even if
-`\|\c
-.B \-msoft-float\c
-\&\|' is used.
-.TP
-.B \-mno-fp-ret-in-387
-Do not use the FPU registers for return values of functions.
-.Sp
-The usual calling convention has functions return values of types
-.B float\c
-\& and \c
-.B double\c
-\& in an FPU register, even if there
-is no FPU. The idea is that the operating system should emulate
-an FPU.
-.Sp
-The option `\|\c
-.B \-mno-fp-ret-in-387\c
-\&\|' causes such values to be returned
-in ordinary CPU registers instead.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the HPPA family of computers:
-.TP
-.B \-mpa-risc-1-0
-Generate code for a PA 1.0 processor.
-.TP
-.B \-mpa-risc-1-1
-Generate code for a PA 1.1 processor.
-.TP
-.B \-mkernel
-Generate code which is suitable for use in kernels. Specifically, avoid
-.B add\c
-\& instructions in which one of the arguments is the DP register;
-generate \c
-.B addil\c
-\& instructions instead. This avoids a rather serious
-bug in the HP-UX linker.
-.TP
-.B \-mshared-libs
-Generate code that can be linked against HP-UX shared libraries. This option
-is not fully function yet, and is not on by default for any PA target. Using
-this option can cause incorrect code to be generated by the compiler.
-.TP
-.B \-mno-shared-libs
-Don't generate code that will be linked against shared libraries. This is
-the default for all PA targets.
-.TP
-.B \-mlong-calls
-Generate code which allows calls to functions greater than 256K away from
-the caller when the caller and callee are in the same source file. Do
-not turn this option on unless code refuses to link with \*(lqbranch out of
-range errors\*('' from the linker.
-.TP
-.B \-mdisable-fpregs
-Prevent floating point registers from being used in any manner. This is
-necessary for compiling kernels which perform lazy context switching of
-floating point registers. If you use this option and attempt to perform
-floating point operations, the compiler will abort.
-.TP
-.B \-mdisable-indexing
-Prevent the compiler from using indexing address modes. This avoids some
-rather obscure problems when compiling MIG generated code under MACH.
-.TP
-.B \-mtrailing-colon
-Add a colon to the end of label definitions (for ELF assemblers).
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the Intel 80960 family of computers:
-.TP
-.BI "\-m" "cpu-type"
-Assume the defaults for the machine type
-.I cpu-type
-for instruction and addressing-mode availability and alignment.
-The default
-.I cpu-type
-is
-.BR kb ;
-other choices are
-.BR ka ,
-.BR mc ,
-.BR ca ,
-.BR cf ,
-.BR sa ,
-and
-.BR sb .
-.TP
-.B \-mnumerics
-.TP
-.B \-msoft\-float
-The
-.B \-mnumerics
-option indicates that the processor does support
-floating-point instructions. The
-.B \-msoft\-float
-option indicates
-that floating-point support should not be assumed.
-.TP
-.B \-mleaf\-procedures
-.TP
-.B \-mno\-leaf\-procedures
-Do (or do not) attempt to alter leaf procedures to be callable with the
-.I bal
-instruction as well as
-.IR call .
-This will result in more
-efficient code for explicit calls when the
-.I bal
-instruction can be
-substituted by the assembler or linker, but less efficient code in other
-cases, such as calls via function pointers, or using a linker that doesn't
-support this optimization.
-.TP
-.B \-mtail\-call
-.TP
-.B \-mno\-tail\-call
-Do (or do not) make additional attempts (beyond those of the
-machine-independent portions of the compiler) to optimize tail-recursive
-calls into branches. You may not want to do this because the detection of
-cases where this is not valid is not totally complete. The default is
-.BR \-mno\-tail\-call .
-.TP
-.B \-mcomplex\-addr
-.TP
-.B \-mno\-complex\-addr
-Assume (or do not assume) that the use of a complex addressing mode is a
-win on this implementation of the i960. Complex addressing modes may not
-be worthwhile on the K-series, but they definitely are on the C-series.
-The default is currently
-.B \-mcomplex\-addr
-for all processors except
-the CB and CC.
-.TP
-.B \-mcode\-align
-.TP
-.B \-mno\-code\-align
-Align code to 8-byte boundaries for faster fetching (or don't bother).
-Currently turned on by default for C-series implementations only.
-.TP
-.B \-mic\-compat
-.TP
-.B \-mic2.0\-compat
-.TP
-.B \-mic3.0\-compat
-Enable compatibility with iC960 v2.0 or v3.0.
-.TP
-.B \-masm\-compat
-.TP
-.B \-mintel\-asm
-Enable compatibility with the iC960 assembler.
-.TP
-.B \-mstrict\-align
-.TP
-.B \-mno\-strict\-align
-Do not permit (do permit) unaligned accesses.
-.TP
-.B \-mold\-align
-Enable structure-alignment compatibility with Intel's gcc release version
-1.3 (based on gcc 1.37). Currently this is buggy in that
-.B #pragma align 1
-is always assumed as well, and cannot be turned off.
-.PP
-These `\|\c
-.B \-m\c
-\&\|' options are defined for the DEC Alpha implementations:
-.TP
-.B \-mno-soft-float
-.TP
-.B \-msoft-float
-Use (do not use) the hardware floating-point instructions for
-floating-point operations. When \c
-.B \-msoft-float\c
-\& is specified,
-functions in `\|\c
-.B libgcc1.c\c
-\&\|' will be used to perform floating-point
-operations. Unless they are replaced by routines that emulate the
-floating-point operations, or compiled in such a way as to call such
-emulations routines, these routines will issue floating-point
-operations. If you are compiling for an Alpha without floating-point
-operations, you must ensure that the library is built so as not to call
-them.
-.Sp
-Note that Alpha implementations without floating-point operations are
-required to have floating-point registers.
-.TP
-.B \-mfp-reg
-.TP
-.B \-mno-fp-regs
-Generate code that uses (does not use) the floating-point register set.
-.B \-mno-fp-regs\c
-\& implies \c
-.B \-msoft-float\c
-\&. If the floating-point
-register set is not used, floating point operands are passed in integer
-registers as if they were integers and floating-point results are passed
-in $0 instead of $f0. This is a non-standard calling sequence, so any
-function with a floating-point argument or return value called by code
-compiled with \c
-.B \-mno-fp-regs\c
-\& must also be compiled with that
-option.
-.Sp
-A typical use of this option is building a kernel that does not use,
-and hence need not save and restore, any floating-point registers.
-.PP
-These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-.TP
-.B \-G
-On SVr4 systems, \c
-.B gcc\c
-\& accepts the option `\|\c
-.B \-G\c
-\&\|' (and passes
-it to the system linker), for compatibility with other compilers.
-However, we suggest you use `\|\c
-.B \-symbolic\c
-\&\|' or `\|\c
-.B \-shared\c
-\&\|' as
-appropriate, instead of supplying linker options on the \c
-.B gcc
-command line.
-.TP
-.B \-Qy
-Identify the versions of each tool used by the compiler, in a
-.B .ident\c
-\& assembler directive in the output.
-.TP
-.B \-Qn
-Refrain from adding \c
-.B .ident\c
-\& directives to the output file (this is
-the default).
-.TP
-.BI "\-YP," "dirs"
-Search the directories \c
-.I dirs\c
-\&, and no others, for libraries
-specified with `\|\c
-.B \-l\c
-\&\|'. You can separate directory entries in
-.I dirs\c
-\& from one another with colons.
-.TP
-.BI "\-Ym," "dir"
-Look in the directory \c
-.I dir\c
-\& to find the M4 preprocessor.
-The assembler uses this option.
-.SH CODE GENERATION OPTIONS
-These machine-independent options control the interface conventions
-used in code generation.
-.PP
-Most of them begin with `\|\c
-\-f\c
-\&\|'. These options have both positive and negative forms; the negative form
-of `\|\c
-.B \-ffoo\c
-\&\|' would be `\|\c
-.B \-fno\-foo\c
-\&\|'. In the table below, only
-one of the forms is listed\(em\&the one which is not the default. You
-can figure out the other form by either removing `\|\c
-.B no\-\c
-\&\|' or adding
-it.
-.TP
-.B \-fnonnull\-objects
-Assume that objects reached through references are not null
-(C++ only).
-.Sp
-Normally, GNU C++ makes conservative assumptions about objects reached
-through references. For example, the compiler must check that \c
-.B a
-is not null in code like the following:
-.Sp
-obj &a = g ();
-a.f (2);
-.Sp
-Checking that references of this sort have non-null values requires
-extra code, however, and it is unnecessary for many programs. You can
-use `\|\c
-.B \-fnonnull-objects\c
-\&\|' to omit the checks for null, if your
-program doesn't require checking.
-.TP
-.B \-fpcc\-struct\-return
-Use the same convention for returning \c
-.B struct\c
-\& and \c
-.B union
-values that is used by the usual C compiler on your system. This
-convention is less efficient for small structures, and on many
-machines it fails to be reentrant; but it has the advantage of
-allowing intercallability between GCC-compiled code and PCC-compiled
-code.
-.TP
-.B \-freg\-struct\-return
-Use the convention that
-.B struct
-and
-.B union
-values are returned in registers when possible. This is more
-efficient for small structures than
-.BR \-fpcc\-struct\-return .
-.Sp
-If you specify neither
-.B \-fpcc\-struct\-return
-nor
-.BR \-freg\-struct\-return ,
-GNU CC defaults to whichever convention is standard for the target.
-If there is no standard convention, GNU CC defaults to
-.BR \-fpcc\-struct\-return .
-.TP
-.B \-fshort\-enums
-Allocate to an \c
-.B enum\c
-\& type only as many bytes as it needs for the
-declared range of possible values. Specifically, the \c
-.B enum\c
-\& type
-will be equivalent to the smallest integer type which has enough room.
-.TP
-.B \-fshort\-double
-Use the same size for
-.B double
-as for
-.B float
-\&.
-.TP
-.B \-fshared\-data
-Requests that the data and non-\c
-.B const\c
-\& variables of this
-compilation be shared data rather than private data. The distinction
-makes sense only on certain operating systems, where shared data is
-shared between processes running the same program, while private data
-exists in one copy per process.
-.TP
-.B \-fno\-common
-Allocate even uninitialized global variables in the bss section of the
-object file, rather than generating them as common blocks. This has the
-effect that if the same variable is declared (without \c
-.B extern\c
-\&) in
-two different compilations, you will get an error when you link them.
-The only reason this might be useful is if you wish to verify that the
-program will work on other systems which always work this way.
-.TP
-.B \-fno\-ident
-Ignore the `\|\c
-.B #ident\c
-\&\|' directive.
-.TP
-.B \-fno\-gnu\-linker
-Do not output global initializations (such as C++ constructors and
-destructors) in the form used by the GNU linker (on systems where the GNU
-linker is the standard method of handling them). Use this option when
-you want to use a non-GNU linker, which also requires using the
-.B collect2\c
-\& program to make sure the system linker includes
-constructors and destructors. (\c
-.B collect2\c
-\& is included in the GNU CC
-distribution.) For systems which \c
-.I must\c
-\& use \c
-.B collect2\c
-\&, the
-compiler driver \c
-.B gcc\c
-\& is configured to do this automatically.
-.TP
-.B \-finhibit-size-directive
-Don't output a \c
-.B .size\c
-\& assembler directive, or anything else that
-would cause trouble if the function is split in the middle, and the
-two halves are placed at locations far apart in memory. This option is
-used when compiling `\|\c
-.B crtstuff.c\c
-\&\|'; you should not need to use it
-for anything else.
-.TP
-.B \-fverbose-asm
-Put extra commentary information in the generated assembly code to
-make it more readable. This option is generally only of use to those
-who actually need to read the generated assembly code (perhaps while
-debugging the compiler itself).
-.TP
-.B \-fvolatile
-Consider all memory references through pointers to be volatile.
-.TP
-.B \-fvolatile\-global
-Consider all memory references to extern and global data items to
-be volatile.
-.TP
-.B \-fpic
-If supported for the target machines, generate position-independent code,
-suitable for use in a shared library.
-.TP
-.B \-fPIC
-If supported for the target machine, emit position-independent code,
-suitable for dynamic linking, even if branches need large displacements.
-.TP
-.BI "\-ffixed\-" "reg"
-Treat the register named \c
-.I reg\c
-\& as a fixed register; generated code
-should never refer to it (except perhaps as a stack pointer, frame
-pointer or in some other fixed role).
-.Sp
-.I reg\c
-\& must be the name of a register. The register names accepted
-are machine-specific and are defined in the \c
-.B REGISTER_NAMES
-macro in the machine description macro file.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.TP
-.BI "\-fcall\-used\-" "reg"
-Treat the register named \c
-.I reg\c
-\& as an allocable register that is
-clobbered by function calls. It may be allocated for temporaries or
-variables that do not live across a call. Functions compiled this way
-will not save and restore the register \c
-.I reg\c
-\&.
-.Sp
-Use of this flag for a register that has a fixed pervasive role in the
-machine's execution model, such as the stack pointer or frame pointer,
-will produce disastrous results.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.TP
-.BI "\-fcall\-saved\-" "reg"
-Treat the register named \c
-.I reg\c
-\& as an allocable register saved by
-functions. It may be allocated even for temporaries or variables that
-live across a call. Functions compiled this way will save and restore
-the register \c
-.I reg\c
-\& if they use it.
-.Sp
-Use of this flag for a register that has a fixed pervasive role in the
-machine's execution model, such as the stack pointer or frame pointer,
-will produce disastrous results.
-.Sp
-A different sort of disaster will result from the use of this flag for
-a register in which function values may be returned.
-.Sp
-This flag does not have a negative form, because it specifies a
-three-way choice.
-.SH PRAGMAS
-Two `\|\c
-.B #pragma\c
-\&\|' directives are supported for GNU C++, to permit using the same
-header file for two purposes: as a definition of interfaces to a given
-object class, and as the full definition of the contents of that object class.
-.TP
-.B #pragma interface
-(C++ only.)
-Use this directive in header files that define object classes, to save
-space in most of the object files that use those classes. Normally,
-local copies of certain information (backup copies of inline member
-functions, debugging information, and the internal tables that
-implement virtual functions) must be kept in each object file that
-includes class definitions. You can use this pragma to avoid such
-duplication. When a header file containing `\|\c
-.B #pragma interface\c
-\&\|' is included in a compilation, this auxiliary information
-will not be generated (unless the main input source file itself uses
-`\|\c
-.B #pragma implementation\c
-\&\|'). Instead, the object files will contain references to be
-resolved at link time.
-.TP
-.B #pragma implementation
-.TP
-\fB#pragma implementation "\fP\fIobjects\fP\fB.h"\fP
-(C++ only.)
-Use this pragma in a main input file, when you want full output from
-included header files to be generated (and made globally visible).
-The included header file, in turn, should use `\|\c
-.B #pragma interface\c
-\&\|'.
-Backup copies of inline member functions, debugging information, and
-the internal tables used to implement virtual functions are all
-generated in implementation files.
-.Sp
-If you use `\|\c
-.B #pragma implementation\c
-\&\|' with no argument, it applies to an include file with the same
-basename as your source file; for example, in `\|\c
-.B allclass.cc\c
-\&\|', `\|\c
-.B #pragma implementation\c
-\&\|' by itself is equivalent to `\|\c
-.B
-#pragma implementation "allclass.h"\c
-\&\|'. Use the string argument if you want a single implementation
-file to include code from multiple header files.
-.Sp
-There is no way to split up the contents of a single header file into
-multiple implementation files.
-.SH FILES
-.nf
-.ta \w'LIBDIR/g++\-include 'u
-file.c C source file
-file.h C header (preprocessor) file
-file.i preprocessed C source file
-file.C C++ source file
-file.cc C++ source file
-file.cxx C++ source file
-file.m Objective-C source file
-file.s assembly language file
-file.o object file
-a.out link edited output
-\fITMPDIR\fR/cc\(** temporary files
-\fILIBDIR\fR/cpp preprocessor
-\fILIBDIR\fR/cc1 compiler for C
-\fILIBDIR\fR/cc1plus compiler for C++
-\fILIBDIR\fR/collect linker front end needed on some machines
-\fILIBDIR\fR/libgcc.a GCC subroutine library
-/lib/crt[01n].o start-up routine
-\fILIBDIR\fR/ccrt0 additional start-up routine for C++
-/lib/libc.a standard C library, see
-.IR intro (3)
-/usr/include standard directory for \fB#include\fP files
-\fILIBDIR\fR/include standard gcc directory for \fB#include\fP files
-\fILIBDIR\fR/g++\-include additional g++ directory for \fB#include\fP
-.Sp
-.fi
-.I LIBDIR
-is usually
-.B /usr/local/lib/\c
-.IR machine / version .
-.br
-.I TMPDIR
-comes from the environment variable
-.B TMPDIR
-(default
-.B /usr/tmp
-if available, else
-.B /tmp\c
-\&).
-.SH "SEE ALSO"
-cpp(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1).
-.br
-.RB "`\|" gcc "\|', `\|" cpp \|',
-.RB "`\|" as "\|', `\|" ld \|',
-and
-.RB `\| gdb \|'
-entries in
-.B info\c
-\&.
-.br
-.I
-Using and Porting GNU CC (for version 2.0)\c
-, Richard M. Stallman;
-.I
-The C Preprocessor\c
-, Richard M. Stallman;
-.I
-Debugging with GDB: the GNU Source-Level Debugger\c
-, Richard M. Stallman and Roland H. Pesch;
-.I
-Using as: the GNU Assembler\c
-, Dean Elsner, Jay Fenlason & friends;
-.I
-ld: the GNU linker\c
-, Steve Chamberlain and Roland Pesch.
-.SH BUGS
-For instructions on reporting bugs, see the GCC manual.
-.SH COPYING
-Copyright
-.if t \(co
-1991, 1992, 1993 Free Software Foundation, Inc.
-.PP
-Permission is granted to make and distribute verbatim copies of
-this manual provided the copyright notice and this permission notice
-are preserved on all copies.
-.PP
-Permission is granted to copy and distribute modified versions of this
-manual under the conditions for verbatim copying, provided that the
-entire resulting derived work is distributed under the terms of a
-permission notice identical to this one.
-.PP
-Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that this permission notice may be included in
-translations approved by the Free Software Foundation instead of in
-the original English.
-.SH AUTHORS
-See the GNU CC Manual for the contributors to GNU CC.