diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp | 15587 |
1 files changed, 15587 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp b/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp new file mode 100644 index 000000000000..509d88e25000 --- /dev/null +++ b/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp @@ -0,0 +1,15587 @@ +//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements extra semantic analysis beyond what is enforced +// by the C type system. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/AttrIterator.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclBase.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclarationName.h" +#include "clang/AST/EvaluatedExprVisitor.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/ExprOpenMP.h" +#include "clang/AST/FormatString.h" +#include "clang/AST/NSAPI.h" +#include "clang/AST/NonTrivialTypeVisitor.h" +#include "clang/AST/OperationKinds.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/TemplateBase.h" +#include "clang/AST/Type.h" +#include "clang/AST/TypeLoc.h" +#include "clang/AST/UnresolvedSet.h" +#include "clang/Basic/AddressSpaces.h" +#include "clang/Basic/CharInfo.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/IdentifierTable.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/LangOptions.h" +#include "clang/Basic/OpenCLOptions.h" +#include "clang/Basic/OperatorKinds.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/Specifiers.h" +#include "clang/Basic/SyncScope.h" +#include "clang/Basic/TargetBuiltins.h" +#include "clang/Basic/TargetCXXABI.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Basic/TypeTraits.h" +#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. +#include "clang/Sema/Initialization.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/Ownership.h" +#include "clang/Sema/Scope.h" +#include "clang/Sema/ScopeInfo.h" +#include "clang/Sema/Sema.h" +#include "clang/Sema/SemaInternal.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ConvertUTF.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/Locale.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/SaveAndRestore.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <bitset> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <functional> +#include <limits> +#include <string> +#include <tuple> +#include <utility> + +using namespace clang; +using namespace sema; + +SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, + unsigned ByteNo) const { + return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, + Context.getTargetInfo()); +} + +/// Checks that a call expression's argument count is the desired number. +/// This is useful when doing custom type-checking. Returns true on error. +static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { + unsigned argCount = call->getNumArgs(); + if (argCount == desiredArgCount) return false; + + if (argCount < desiredArgCount) + return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 /*function call*/ << desiredArgCount << argCount + << call->getSourceRange(); + + // Highlight all the excess arguments. + SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), + call->getArg(argCount - 1)->getEndLoc()); + + return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << desiredArgCount << argCount + << call->getArg(1)->getSourceRange(); +} + +/// Check that the first argument to __builtin_annotation is an integer +/// and the second argument is a non-wide string literal. +static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 2)) + return true; + + // First argument should be an integer. + Expr *ValArg = TheCall->getArg(0); + QualType Ty = ValArg->getType(); + if (!Ty->isIntegerType()) { + S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) + << ValArg->getSourceRange(); + return true; + } + + // Second argument should be a constant string. + Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); + StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); + if (!Literal || !Literal->isAscii()) { + S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) + << StrArg->getSourceRange(); + return true; + } + + TheCall->setType(Ty); + return false; +} + +static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { + // We need at least one argument. + if (TheCall->getNumArgs() < 1) { + S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) + << 0 << 1 << TheCall->getNumArgs() + << TheCall->getCallee()->getSourceRange(); + return true; + } + + // All arguments should be wide string literals. + for (Expr *Arg : TheCall->arguments()) { + auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); + if (!Literal || !Literal->isWide()) { + S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) + << Arg->getSourceRange(); + return true; + } + } + + return false; +} + +/// Check that the argument to __builtin_addressof is a glvalue, and set the +/// result type to the corresponding pointer type. +static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 1)) + return true; + + ExprResult Arg(TheCall->getArg(0)); + QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); + if (ResultType.isNull()) + return true; + + TheCall->setArg(0, Arg.get()); + TheCall->setType(ResultType); + return false; +} + +/// Check the number of arguments and set the result type to +/// the argument type. +static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 1)) + return true; + + TheCall->setType(TheCall->getArg(0)->getType()); + return false; +} + +/// Check that the value argument for __builtin_is_aligned(value, alignment) and +/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer +/// type (but not a function pointer) and that the alignment is a power-of-two. +static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { + if (checkArgCount(S, TheCall, 2)) + return true; + + clang::Expr *Source = TheCall->getArg(0); + bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; + + auto IsValidIntegerType = [](QualType Ty) { + return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); + }; + QualType SrcTy = Source->getType(); + // We should also be able to use it with arrays (but not functions!). + if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { + SrcTy = S.Context.getDecayedType(SrcTy); + } + if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || + SrcTy->isFunctionPointerType()) { + // FIXME: this is not quite the right error message since we don't allow + // floating point types, or member pointers. + S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) + << SrcTy; + return true; + } + + clang::Expr *AlignOp = TheCall->getArg(1); + if (!IsValidIntegerType(AlignOp->getType())) { + S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) + << AlignOp->getType(); + return true; + } + Expr::EvalResult AlignResult; + unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; + // We can't check validity of alignment if it is value dependent. + if (!AlignOp->isValueDependent() && + AlignOp->EvaluateAsInt(AlignResult, S.Context, + Expr::SE_AllowSideEffects)) { + llvm::APSInt AlignValue = AlignResult.Val.getInt(); + llvm::APSInt MaxValue( + llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); + if (AlignValue < 1) { + S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; + return true; + } + if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { + S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) + << MaxValue.toString(10); + return true; + } + if (!AlignValue.isPowerOf2()) { + S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); + return true; + } + if (AlignValue == 1) { + S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) + << IsBooleanAlignBuiltin; + } + } + + ExprResult SrcArg = S.PerformCopyInitialization( + InitializedEntity::InitializeParameter(S.Context, SrcTy, false), + SourceLocation(), Source); + if (SrcArg.isInvalid()) + return true; + TheCall->setArg(0, SrcArg.get()); + ExprResult AlignArg = + S.PerformCopyInitialization(InitializedEntity::InitializeParameter( + S.Context, AlignOp->getType(), false), + SourceLocation(), AlignOp); + if (AlignArg.isInvalid()) + return true; + TheCall->setArg(1, AlignArg.get()); + // For align_up/align_down, the return type is the same as the (potentially + // decayed) argument type including qualifiers. For is_aligned(), the result + // is always bool. + TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); + return false; +} + +static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, + unsigned BuiltinID) { + if (checkArgCount(S, TheCall, 3)) + return true; + + // First two arguments should be integers. + for (unsigned I = 0; I < 2; ++I) { + ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); + if (Arg.isInvalid()) return true; + TheCall->setArg(I, Arg.get()); + + QualType Ty = Arg.get()->getType(); + if (!Ty->isIntegerType()) { + S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) + << Ty << Arg.get()->getSourceRange(); + return true; + } + } + + // Third argument should be a pointer to a non-const integer. + // IRGen correctly handles volatile, restrict, and address spaces, and + // the other qualifiers aren't possible. + { + ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); + if (Arg.isInvalid()) return true; + TheCall->setArg(2, Arg.get()); + + QualType Ty = Arg.get()->getType(); + const auto *PtrTy = Ty->getAs<PointerType>(); + if (!PtrTy || + !PtrTy->getPointeeType()->isIntegerType() || + PtrTy->getPointeeType().isConstQualified()) { + S.Diag(Arg.get()->getBeginLoc(), + diag::err_overflow_builtin_must_be_ptr_int) + << Ty << Arg.get()->getSourceRange(); + return true; + } + } + + // Disallow signed ExtIntType args larger than 128 bits to mul function until + // we improve backend support. + if (BuiltinID == Builtin::BI__builtin_mul_overflow) { + for (unsigned I = 0; I < 3; ++I) { + const auto Arg = TheCall->getArg(I); + // Third argument will be a pointer. + auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); + if (Ty->isExtIntType() && Ty->isSignedIntegerType() && + S.getASTContext().getIntWidth(Ty) > 128) + return S.Diag(Arg->getBeginLoc(), + diag::err_overflow_builtin_ext_int_max_size) + << 128; + } + } + + return false; +} + +static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { + if (checkArgCount(S, BuiltinCall, 2)) + return true; + + SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); + Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); + Expr *Call = BuiltinCall->getArg(0); + Expr *Chain = BuiltinCall->getArg(1); + + if (Call->getStmtClass() != Stmt::CallExprClass) { + S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) + << Call->getSourceRange(); + return true; + } + + auto CE = cast<CallExpr>(Call); + if (CE->getCallee()->getType()->isBlockPointerType()) { + S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) + << Call->getSourceRange(); + return true; + } + + const Decl *TargetDecl = CE->getCalleeDecl(); + if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) + if (FD->getBuiltinID()) { + S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) + << Call->getSourceRange(); + return true; + } + + if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { + S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) + << Call->getSourceRange(); + return true; + } + + ExprResult ChainResult = S.UsualUnaryConversions(Chain); + if (ChainResult.isInvalid()) + return true; + if (!ChainResult.get()->getType()->isPointerType()) { + S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) + << Chain->getSourceRange(); + return true; + } + + QualType ReturnTy = CE->getCallReturnType(S.Context); + QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; + QualType BuiltinTy = S.Context.getFunctionType( + ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); + QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); + + Builtin = + S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); + + BuiltinCall->setType(CE->getType()); + BuiltinCall->setValueKind(CE->getValueKind()); + BuiltinCall->setObjectKind(CE->getObjectKind()); + BuiltinCall->setCallee(Builtin); + BuiltinCall->setArg(1, ChainResult.get()); + + return false; +} + +namespace { + +class EstimateSizeFormatHandler + : public analyze_format_string::FormatStringHandler { + size_t Size; + +public: + EstimateSizeFormatHandler(StringRef Format) + : Size(std::min(Format.find(0), Format.size()) + + 1 /* null byte always written by sprintf */) {} + + bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, + const char *, unsigned SpecifierLen) override { + + const size_t FieldWidth = computeFieldWidth(FS); + const size_t Precision = computePrecision(FS); + + // The actual format. + switch (FS.getConversionSpecifier().getKind()) { + // Just a char. + case analyze_format_string::ConversionSpecifier::cArg: + case analyze_format_string::ConversionSpecifier::CArg: + Size += std::max(FieldWidth, (size_t)1); + break; + // Just an integer. + case analyze_format_string::ConversionSpecifier::dArg: + case analyze_format_string::ConversionSpecifier::DArg: + case analyze_format_string::ConversionSpecifier::iArg: + case analyze_format_string::ConversionSpecifier::oArg: + case analyze_format_string::ConversionSpecifier::OArg: + case analyze_format_string::ConversionSpecifier::uArg: + case analyze_format_string::ConversionSpecifier::UArg: + case analyze_format_string::ConversionSpecifier::xArg: + case analyze_format_string::ConversionSpecifier::XArg: + Size += std::max(FieldWidth, Precision); + break; + + // %g style conversion switches between %f or %e style dynamically. + // %f always takes less space, so default to it. + case analyze_format_string::ConversionSpecifier::gArg: + case analyze_format_string::ConversionSpecifier::GArg: + + // Floating point number in the form '[+]ddd.ddd'. + case analyze_format_string::ConversionSpecifier::fArg: + case analyze_format_string::ConversionSpecifier::FArg: + Size += std::max(FieldWidth, 1 /* integer part */ + + (Precision ? 1 + Precision + : 0) /* period + decimal */); + break; + + // Floating point number in the form '[-]d.ddde[+-]dd'. + case analyze_format_string::ConversionSpecifier::eArg: + case analyze_format_string::ConversionSpecifier::EArg: + Size += + std::max(FieldWidth, + 1 /* integer part */ + + (Precision ? 1 + Precision : 0) /* period + decimal */ + + 1 /* e or E letter */ + 2 /* exponent */); + break; + + // Floating point number in the form '[-]0xh.hhhhp±dd'. + case analyze_format_string::ConversionSpecifier::aArg: + case analyze_format_string::ConversionSpecifier::AArg: + Size += + std::max(FieldWidth, + 2 /* 0x */ + 1 /* integer part */ + + (Precision ? 1 + Precision : 0) /* period + decimal */ + + 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); + break; + + // Just a string. + case analyze_format_string::ConversionSpecifier::sArg: + case analyze_format_string::ConversionSpecifier::SArg: + Size += FieldWidth; + break; + + // Just a pointer in the form '0xddd'. + case analyze_format_string::ConversionSpecifier::pArg: + Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); + break; + + // A plain percent. + case analyze_format_string::ConversionSpecifier::PercentArg: + Size += 1; + break; + + default: + break; + } + + Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); + + if (FS.hasAlternativeForm()) { + switch (FS.getConversionSpecifier().getKind()) { + default: + break; + // Force a leading '0'. + case analyze_format_string::ConversionSpecifier::oArg: + Size += 1; + break; + // Force a leading '0x'. + case analyze_format_string::ConversionSpecifier::xArg: + case analyze_format_string::ConversionSpecifier::XArg: + Size += 2; + break; + // Force a period '.' before decimal, even if precision is 0. + case analyze_format_string::ConversionSpecifier::aArg: + case analyze_format_string::ConversionSpecifier::AArg: + case analyze_format_string::ConversionSpecifier::eArg: + case analyze_format_string::ConversionSpecifier::EArg: + case analyze_format_string::ConversionSpecifier::fArg: + case analyze_format_string::ConversionSpecifier::FArg: + case analyze_format_string::ConversionSpecifier::gArg: + case analyze_format_string::ConversionSpecifier::GArg: + Size += (Precision ? 0 : 1); + break; + } + } + assert(SpecifierLen <= Size && "no underflow"); + Size -= SpecifierLen; + return true; + } + + size_t getSizeLowerBound() const { return Size; } + +private: + static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { + const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); + size_t FieldWidth = 0; + if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) + FieldWidth = FW.getConstantAmount(); + return FieldWidth; + } + + static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { + const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); + size_t Precision = 0; + + // See man 3 printf for default precision value based on the specifier. + switch (FW.getHowSpecified()) { + case analyze_format_string::OptionalAmount::NotSpecified: + switch (FS.getConversionSpecifier().getKind()) { + default: + break; + case analyze_format_string::ConversionSpecifier::dArg: // %d + case analyze_format_string::ConversionSpecifier::DArg: // %D + case analyze_format_string::ConversionSpecifier::iArg: // %i + Precision = 1; + break; + case analyze_format_string::ConversionSpecifier::oArg: // %d + case analyze_format_string::ConversionSpecifier::OArg: // %D + case analyze_format_string::ConversionSpecifier::uArg: // %d + case analyze_format_string::ConversionSpecifier::UArg: // %D + case analyze_format_string::ConversionSpecifier::xArg: // %d + case analyze_format_string::ConversionSpecifier::XArg: // %D + Precision = 1; + break; + case analyze_format_string::ConversionSpecifier::fArg: // %f + case analyze_format_string::ConversionSpecifier::FArg: // %F + case analyze_format_string::ConversionSpecifier::eArg: // %e + case analyze_format_string::ConversionSpecifier::EArg: // %E + case analyze_format_string::ConversionSpecifier::gArg: // %g + case analyze_format_string::ConversionSpecifier::GArg: // %G + Precision = 6; + break; + case analyze_format_string::ConversionSpecifier::pArg: // %d + Precision = 1; + break; + } + break; + case analyze_format_string::OptionalAmount::Constant: + Precision = FW.getConstantAmount(); + break; + default: + break; + } + return Precision; + } +}; + +} // namespace + +/// Check a call to BuiltinID for buffer overflows. If BuiltinID is a +/// __builtin_*_chk function, then use the object size argument specified in the +/// source. Otherwise, infer the object size using __builtin_object_size. +void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, + CallExpr *TheCall) { + // FIXME: There are some more useful checks we could be doing here: + // - Evaluate strlen of strcpy arguments, use as object size. + + if (TheCall->isValueDependent() || TheCall->isTypeDependent() || + isConstantEvaluated()) + return; + + unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); + if (!BuiltinID) + return; + + const TargetInfo &TI = getASTContext().getTargetInfo(); + unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); + + unsigned DiagID = 0; + bool IsChkVariant = false; + Optional<llvm::APSInt> UsedSize; + unsigned SizeIndex, ObjectIndex; + switch (BuiltinID) { + default: + return; + case Builtin::BIsprintf: + case Builtin::BI__builtin___sprintf_chk: { + size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; + auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); + + if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { + + if (!Format->isAscii() && !Format->isUTF8()) + return; + + StringRef FormatStrRef = Format->getString(); + EstimateSizeFormatHandler H(FormatStrRef); + const char *FormatBytes = FormatStrRef.data(); + const ConstantArrayType *T = + Context.getAsConstantArrayType(Format->getType()); + assert(T && "String literal not of constant array type!"); + size_t TypeSize = T->getSize().getZExtValue(); + + // In case there's a null byte somewhere. + size_t StrLen = + std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); + if (!analyze_format_string::ParsePrintfString( + H, FormatBytes, FormatBytes + StrLen, getLangOpts(), + Context.getTargetInfo(), false)) { + DiagID = diag::warn_fortify_source_format_overflow; + UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) + .extOrTrunc(SizeTypeWidth); + if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { + IsChkVariant = true; + ObjectIndex = 2; + } else { + IsChkVariant = false; + ObjectIndex = 0; + } + break; + } + } + return; + } + case Builtin::BI__builtin___memcpy_chk: + case Builtin::BI__builtin___memmove_chk: + case Builtin::BI__builtin___memset_chk: + case Builtin::BI__builtin___strlcat_chk: + case Builtin::BI__builtin___strlcpy_chk: + case Builtin::BI__builtin___strncat_chk: + case Builtin::BI__builtin___strncpy_chk: + case Builtin::BI__builtin___stpncpy_chk: + case Builtin::BI__builtin___memccpy_chk: + case Builtin::BI__builtin___mempcpy_chk: { + DiagID = diag::warn_builtin_chk_overflow; + IsChkVariant = true; + SizeIndex = TheCall->getNumArgs() - 2; + ObjectIndex = TheCall->getNumArgs() - 1; + break; + } + + case Builtin::BI__builtin___snprintf_chk: + case Builtin::BI__builtin___vsnprintf_chk: { + DiagID = diag::warn_builtin_chk_overflow; + IsChkVariant = true; + SizeIndex = 1; + ObjectIndex = 3; + break; + } + + case Builtin::BIstrncat: + case Builtin::BI__builtin_strncat: + case Builtin::BIstrncpy: + case Builtin::BI__builtin_strncpy: + case Builtin::BIstpncpy: + case Builtin::BI__builtin_stpncpy: { + // Whether these functions overflow depends on the runtime strlen of the + // string, not just the buffer size, so emitting the "always overflow" + // diagnostic isn't quite right. We should still diagnose passing a buffer + // size larger than the destination buffer though; this is a runtime abort + // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. + DiagID = diag::warn_fortify_source_size_mismatch; + SizeIndex = TheCall->getNumArgs() - 1; + ObjectIndex = 0; + break; + } + + case Builtin::BImemcpy: + case Builtin::BI__builtin_memcpy: + case Builtin::BImemmove: + case Builtin::BI__builtin_memmove: + case Builtin::BImemset: + case Builtin::BI__builtin_memset: + case Builtin::BImempcpy: + case Builtin::BI__builtin_mempcpy: { + DiagID = diag::warn_fortify_source_overflow; + SizeIndex = TheCall->getNumArgs() - 1; + ObjectIndex = 0; + break; + } + case Builtin::BIsnprintf: + case Builtin::BI__builtin_snprintf: + case Builtin::BIvsnprintf: + case Builtin::BI__builtin_vsnprintf: { + DiagID = diag::warn_fortify_source_size_mismatch; + SizeIndex = 1; + ObjectIndex = 0; + break; + } + } + + llvm::APSInt ObjectSize; + // For __builtin___*_chk, the object size is explicitly provided by the caller + // (usually using __builtin_object_size). Use that value to check this call. + if (IsChkVariant) { + Expr::EvalResult Result; + Expr *SizeArg = TheCall->getArg(ObjectIndex); + if (!SizeArg->EvaluateAsInt(Result, getASTContext())) + return; + ObjectSize = Result.Val.getInt(); + + // Otherwise, try to evaluate an imaginary call to __builtin_object_size. + } else { + // If the parameter has a pass_object_size attribute, then we should use its + // (potentially) more strict checking mode. Otherwise, conservatively assume + // type 0. + int BOSType = 0; + if (const auto *POS = + FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) + BOSType = POS->getType(); + + Expr *ObjArg = TheCall->getArg(ObjectIndex); + uint64_t Result; + if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) + return; + // Get the object size in the target's size_t width. + ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); + } + + // Evaluate the number of bytes of the object that this call will use. + if (!UsedSize) { + Expr::EvalResult Result; + Expr *UsedSizeArg = TheCall->getArg(SizeIndex); + if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) + return; + UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); + } + + if (UsedSize.getValue().ule(ObjectSize)) + return; + + StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); + // Skim off the details of whichever builtin was called to produce a better + // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. + if (IsChkVariant) { + FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); + FunctionName = FunctionName.drop_back(std::strlen("_chk")); + } else if (FunctionName.startswith("__builtin_")) { + FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); + } + + DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, + PDiag(DiagID) + << FunctionName << ObjectSize.toString(/*Radix=*/10) + << UsedSize.getValue().toString(/*Radix=*/10)); +} + +static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, + Scope::ScopeFlags NeededScopeFlags, + unsigned DiagID) { + // Scopes aren't available during instantiation. Fortunately, builtin + // functions cannot be template args so they cannot be formed through template + // instantiation. Therefore checking once during the parse is sufficient. + if (SemaRef.inTemplateInstantiation()) + return false; + + Scope *S = SemaRef.getCurScope(); + while (S && !S->isSEHExceptScope()) + S = S->getParent(); + if (!S || !(S->getFlags() & NeededScopeFlags)) { + auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); + SemaRef.Diag(TheCall->getExprLoc(), DiagID) + << DRE->getDecl()->getIdentifier(); + return true; + } + + return false; +} + +static inline bool isBlockPointer(Expr *Arg) { + return Arg->getType()->isBlockPointerType(); +} + +/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local +/// void*, which is a requirement of device side enqueue. +static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { + const BlockPointerType *BPT = + cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); + ArrayRef<QualType> Params = + BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); + unsigned ArgCounter = 0; + bool IllegalParams = false; + // Iterate through the block parameters until either one is found that is not + // a local void*, or the block is valid. + for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); + I != E; ++I, ++ArgCounter) { + if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || + (*I)->getPointeeType().getQualifiers().getAddressSpace() != + LangAS::opencl_local) { + // Get the location of the error. If a block literal has been passed + // (BlockExpr) then we can point straight to the offending argument, + // else we just point to the variable reference. + SourceLocation ErrorLoc; + if (isa<BlockExpr>(BlockArg)) { + BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); + ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); + } else if (isa<DeclRefExpr>(BlockArg)) { + ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); + } + S.Diag(ErrorLoc, + diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); + IllegalParams = true; + } + } + + return IllegalParams; +} + +static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { + if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) + << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; + return true; + } + return false; +} + +static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 2)) + return true; + + if (checkOpenCLSubgroupExt(S, TheCall)) + return true; + + // First argument is an ndrange_t type. + Expr *NDRangeArg = TheCall->getArg(0); + if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { + S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "'ndrange_t'"; + return true; + } + + Expr *BlockArg = TheCall->getArg(1); + if (!isBlockPointer(BlockArg)) { + S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "block"; + return true; + } + return checkOpenCLBlockArgs(S, BlockArg); +} + +/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the +/// get_kernel_work_group_size +/// and get_kernel_preferred_work_group_size_multiple builtin functions. +static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 1)) + return true; + + Expr *BlockArg = TheCall->getArg(0); + if (!isBlockPointer(BlockArg)) { + S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "block"; + return true; + } + return checkOpenCLBlockArgs(S, BlockArg); +} + +/// Diagnose integer type and any valid implicit conversion to it. +static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, + const QualType &IntType); + +static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, + unsigned Start, unsigned End) { + bool IllegalParams = false; + for (unsigned I = Start; I <= End; ++I) + IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), + S.Context.getSizeType()); + return IllegalParams; +} + +/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all +/// 'local void*' parameter of passed block. +static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, + Expr *BlockArg, + unsigned NumNonVarArgs) { + const BlockPointerType *BPT = + cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); + unsigned NumBlockParams = + BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); + unsigned TotalNumArgs = TheCall->getNumArgs(); + + // For each argument passed to the block, a corresponding uint needs to + // be passed to describe the size of the local memory. + if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { + S.Diag(TheCall->getBeginLoc(), + diag::err_opencl_enqueue_kernel_local_size_args); + return true; + } + + // Check that the sizes of the local memory are specified by integers. + return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, + TotalNumArgs - 1); +} + +/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different +/// overload formats specified in Table 6.13.17.1. +/// int enqueue_kernel(queue_t queue, +/// kernel_enqueue_flags_t flags, +/// const ndrange_t ndrange, +/// void (^block)(void)) +/// int enqueue_kernel(queue_t queue, +/// kernel_enqueue_flags_t flags, +/// const ndrange_t ndrange, +/// uint num_events_in_wait_list, +/// clk_event_t *event_wait_list, +/// clk_event_t *event_ret, +/// void (^block)(void)) +/// int enqueue_kernel(queue_t queue, +/// kernel_enqueue_flags_t flags, +/// const ndrange_t ndrange, +/// void (^block)(local void*, ...), +/// uint size0, ...) +/// int enqueue_kernel(queue_t queue, +/// kernel_enqueue_flags_t flags, +/// const ndrange_t ndrange, +/// uint num_events_in_wait_list, +/// clk_event_t *event_wait_list, +/// clk_event_t *event_ret, +/// void (^block)(local void*, ...), +/// uint size0, ...) +static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { + unsigned NumArgs = TheCall->getNumArgs(); + + if (NumArgs < 4) { + S.Diag(TheCall->getBeginLoc(), + diag::err_typecheck_call_too_few_args_at_least) + << 0 << 4 << NumArgs; + return true; + } + + Expr *Arg0 = TheCall->getArg(0); + Expr *Arg1 = TheCall->getArg(1); + Expr *Arg2 = TheCall->getArg(2); + Expr *Arg3 = TheCall->getArg(3); + + // First argument always needs to be a queue_t type. + if (!Arg0->getType()->isQueueT()) { + S.Diag(TheCall->getArg(0)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << S.Context.OCLQueueTy; + return true; + } + + // Second argument always needs to be a kernel_enqueue_flags_t enum value. + if (!Arg1->getType()->isIntegerType()) { + S.Diag(TheCall->getArg(1)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; + return true; + } + + // Third argument is always an ndrange_t type. + if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { + S.Diag(TheCall->getArg(2)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "'ndrange_t'"; + return true; + } + + // With four arguments, there is only one form that the function could be + // called in: no events and no variable arguments. + if (NumArgs == 4) { + // check that the last argument is the right block type. + if (!isBlockPointer(Arg3)) { + S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "block"; + return true; + } + // we have a block type, check the prototype + const BlockPointerType *BPT = + cast<BlockPointerType>(Arg3->getType().getCanonicalType()); + if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { + S.Diag(Arg3->getBeginLoc(), + diag::err_opencl_enqueue_kernel_blocks_no_args); + return true; + } + return false; + } + // we can have block + varargs. + if (isBlockPointer(Arg3)) + return (checkOpenCLBlockArgs(S, Arg3) || + checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); + // last two cases with either exactly 7 args or 7 args and varargs. + if (NumArgs >= 7) { + // check common block argument. + Expr *Arg6 = TheCall->getArg(6); + if (!isBlockPointer(Arg6)) { + S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "block"; + return true; + } + if (checkOpenCLBlockArgs(S, Arg6)) + return true; + + // Forth argument has to be any integer type. + if (!Arg3->getType()->isIntegerType()) { + S.Diag(TheCall->getArg(3)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() << "integer"; + return true; + } + // check remaining common arguments. + Expr *Arg4 = TheCall->getArg(4); + Expr *Arg5 = TheCall->getArg(5); + + // Fifth argument is always passed as a pointer to clk_event_t. + if (!Arg4->isNullPointerConstant(S.Context, + Expr::NPC_ValueDependentIsNotNull) && + !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { + S.Diag(TheCall->getArg(4)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() + << S.Context.getPointerType(S.Context.OCLClkEventTy); + return true; + } + + // Sixth argument is always passed as a pointer to clk_event_t. + if (!Arg5->isNullPointerConstant(S.Context, + Expr::NPC_ValueDependentIsNotNull) && + !(Arg5->getType()->isPointerType() && + Arg5->getType()->getPointeeType()->isClkEventT())) { + S.Diag(TheCall->getArg(5)->getBeginLoc(), + diag::err_opencl_builtin_expected_type) + << TheCall->getDirectCallee() + << S.Context.getPointerType(S.Context.OCLClkEventTy); + return true; + } + + if (NumArgs == 7) + return false; + + return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); + } + + // None of the specific case has been detected, give generic error + S.Diag(TheCall->getBeginLoc(), + diag::err_opencl_enqueue_kernel_incorrect_args); + return true; +} + +/// Returns OpenCL access qual. +static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { + return D->getAttr<OpenCLAccessAttr>(); +} + +/// Returns true if pipe element type is different from the pointer. +static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { + const Expr *Arg0 = Call->getArg(0); + // First argument type should always be pipe. + if (!Arg0->getType()->isPipeType()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) + << Call->getDirectCallee() << Arg0->getSourceRange(); + return true; + } + OpenCLAccessAttr *AccessQual = + getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); + // Validates the access qualifier is compatible with the call. + // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be + // read_only and write_only, and assumed to be read_only if no qualifier is + // specified. + switch (Call->getDirectCallee()->getBuiltinID()) { + case Builtin::BIread_pipe: + case Builtin::BIreserve_read_pipe: + case Builtin::BIcommit_read_pipe: + case Builtin::BIwork_group_reserve_read_pipe: + case Builtin::BIsub_group_reserve_read_pipe: + case Builtin::BIwork_group_commit_read_pipe: + case Builtin::BIsub_group_commit_read_pipe: + if (!(!AccessQual || AccessQual->isReadOnly())) { + S.Diag(Arg0->getBeginLoc(), + diag::err_opencl_builtin_pipe_invalid_access_modifier) + << "read_only" << Arg0->getSourceRange(); + return true; + } + break; + case Builtin::BIwrite_pipe: + case Builtin::BIreserve_write_pipe: + case Builtin::BIcommit_write_pipe: + case Builtin::BIwork_group_reserve_write_pipe: + case Builtin::BIsub_group_reserve_write_pipe: + case Builtin::BIwork_group_commit_write_pipe: + case Builtin::BIsub_group_commit_write_pipe: + if (!(AccessQual && AccessQual->isWriteOnly())) { + S.Diag(Arg0->getBeginLoc(), + diag::err_opencl_builtin_pipe_invalid_access_modifier) + << "write_only" << Arg0->getSourceRange(); + return true; + } + break; + default: + break; + } + return false; +} + +/// Returns true if pipe element type is different from the pointer. +static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { + const Expr *Arg0 = Call->getArg(0); + const Expr *ArgIdx = Call->getArg(Idx); + const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); + const QualType EltTy = PipeTy->getElementType(); + const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); + // The Idx argument should be a pointer and the type of the pointer and + // the type of pipe element should also be the same. + if (!ArgTy || + !S.Context.hasSameType( + EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) + << Call->getDirectCallee() << S.Context.getPointerType(EltTy) + << ArgIdx->getType() << ArgIdx->getSourceRange(); + return true; + } + return false; +} + +// Performs semantic analysis for the read/write_pipe call. +// \param S Reference to the semantic analyzer. +// \param Call A pointer to the builtin call. +// \return True if a semantic error has been found, false otherwise. +static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { + // OpenCL v2.0 s6.13.16.2 - The built-in read/write + // functions have two forms. + switch (Call->getNumArgs()) { + case 2: + if (checkOpenCLPipeArg(S, Call)) + return true; + // The call with 2 arguments should be + // read/write_pipe(pipe T, T*). + // Check packet type T. + if (checkOpenCLPipePacketType(S, Call, 1)) + return true; + break; + + case 4: { + if (checkOpenCLPipeArg(S, Call)) + return true; + // The call with 4 arguments should be + // read/write_pipe(pipe T, reserve_id_t, uint, T*). + // Check reserve_id_t. + if (!Call->getArg(1)->getType()->isReserveIDT()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) + << Call->getDirectCallee() << S.Context.OCLReserveIDTy + << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); + return true; + } + + // Check the index. + const Expr *Arg2 = Call->getArg(2); + if (!Arg2->getType()->isIntegerType() && + !Arg2->getType()->isUnsignedIntegerType()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) + << Call->getDirectCallee() << S.Context.UnsignedIntTy + << Arg2->getType() << Arg2->getSourceRange(); + return true; + } + + // Check packet type T. + if (checkOpenCLPipePacketType(S, Call, 3)) + return true; + } break; + default: + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) + << Call->getDirectCallee() << Call->getSourceRange(); + return true; + } + + return false; +} + +// Performs a semantic analysis on the {work_group_/sub_group_ +// /_}reserve_{read/write}_pipe +// \param S Reference to the semantic analyzer. +// \param Call The call to the builtin function to be analyzed. +// \return True if a semantic error was found, false otherwise. +static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { + if (checkArgCount(S, Call, 2)) + return true; + + if (checkOpenCLPipeArg(S, Call)) + return true; + + // Check the reserve size. + if (!Call->getArg(1)->getType()->isIntegerType() && + !Call->getArg(1)->getType()->isUnsignedIntegerType()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) + << Call->getDirectCallee() << S.Context.UnsignedIntTy + << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); + return true; + } + + // Since return type of reserve_read/write_pipe built-in function is + // reserve_id_t, which is not defined in the builtin def file , we used int + // as return type and need to override the return type of these functions. + Call->setType(S.Context.OCLReserveIDTy); + + return false; +} + +// Performs a semantic analysis on {work_group_/sub_group_ +// /_}commit_{read/write}_pipe +// \param S Reference to the semantic analyzer. +// \param Call The call to the builtin function to be analyzed. +// \return True if a semantic error was found, false otherwise. +static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { + if (checkArgCount(S, Call, 2)) + return true; + + if (checkOpenCLPipeArg(S, Call)) + return true; + + // Check reserve_id_t. + if (!Call->getArg(1)->getType()->isReserveIDT()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) + << Call->getDirectCallee() << S.Context.OCLReserveIDTy + << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); + return true; + } + + return false; +} + +// Performs a semantic analysis on the call to built-in Pipe +// Query Functions. +// \param S Reference to the semantic analyzer. +// \param Call The call to the builtin function to be analyzed. +// \return True if a semantic error was found, false otherwise. +static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { + if (checkArgCount(S, Call, 1)) + return true; + + if (!Call->getArg(0)->getType()->isPipeType()) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) + << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); + return true; + } + + return false; +} + +// OpenCL v2.0 s6.13.9 - Address space qualifier functions. +// Performs semantic analysis for the to_global/local/private call. +// \param S Reference to the semantic analyzer. +// \param BuiltinID ID of the builtin function. +// \param Call A pointer to the builtin call. +// \return True if a semantic error has been found, false otherwise. +static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, + CallExpr *Call) { + if (Call->getNumArgs() != 1) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) + << Call->getDirectCallee() << Call->getSourceRange(); + return true; + } + + auto RT = Call->getArg(0)->getType(); + if (!RT->isPointerType() || RT->getPointeeType() + .getAddressSpace() == LangAS::opencl_constant) { + S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) + << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); + return true; + } + + if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { + S.Diag(Call->getArg(0)->getBeginLoc(), + diag::warn_opencl_generic_address_space_arg) + << Call->getDirectCallee()->getNameInfo().getAsString() + << Call->getArg(0)->getSourceRange(); + } + + RT = RT->getPointeeType(); + auto Qual = RT.getQualifiers(); + switch (BuiltinID) { + case Builtin::BIto_global: + Qual.setAddressSpace(LangAS::opencl_global); + break; + case Builtin::BIto_local: + Qual.setAddressSpace(LangAS::opencl_local); + break; + case Builtin::BIto_private: + Qual.setAddressSpace(LangAS::opencl_private); + break; + default: + llvm_unreachable("Invalid builtin function"); + } + Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( + RT.getUnqualifiedType(), Qual))); + + return false; +} + +static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { + if (checkArgCount(S, TheCall, 1)) + return ExprError(); + + // Compute __builtin_launder's parameter type from the argument. + // The parameter type is: + // * The type of the argument if it's not an array or function type, + // Otherwise, + // * The decayed argument type. + QualType ParamTy = [&]() { + QualType ArgTy = TheCall->getArg(0)->getType(); + if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) + return S.Context.getPointerType(Ty->getElementType()); + if (ArgTy->isFunctionType()) { + return S.Context.getPointerType(ArgTy); + } + return ArgTy; + }(); + + TheCall->setType(ParamTy); + + auto DiagSelect = [&]() -> llvm::Optional<unsigned> { + if (!ParamTy->isPointerType()) + return 0; + if (ParamTy->isFunctionPointerType()) + return 1; + if (ParamTy->isVoidPointerType()) + return 2; + return llvm::Optional<unsigned>{}; + }(); + if (DiagSelect.hasValue()) { + S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) + << DiagSelect.getValue() << TheCall->getSourceRange(); + return ExprError(); + } + + // We either have an incomplete class type, or we have a class template + // whose instantiation has not been forced. Example: + // + // template <class T> struct Foo { T value; }; + // Foo<int> *p = nullptr; + // auto *d = __builtin_launder(p); + if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), + diag::err_incomplete_type)) + return ExprError(); + + assert(ParamTy->getPointeeType()->isObjectType() && + "Unhandled non-object pointer case"); + + InitializedEntity Entity = + InitializedEntity::InitializeParameter(S.Context, ParamTy, false); + ExprResult Arg = + S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); + if (Arg.isInvalid()) + return ExprError(); + TheCall->setArg(0, Arg.get()); + + return TheCall; +} + +// Emit an error and return true if the current architecture is not in the list +// of supported architectures. +static bool +CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, + ArrayRef<llvm::Triple::ArchType> SupportedArchs) { + llvm::Triple::ArchType CurArch = + S.getASTContext().getTargetInfo().getTriple().getArch(); + if (llvm::is_contained(SupportedArchs, CurArch)) + return false; + S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) + << TheCall->getSourceRange(); + return true; +} + +static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, + SourceLocation CallSiteLoc); + +bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + switch (TI.getTriple().getArch()) { + default: + // Some builtins don't require additional checking, so just consider these + // acceptable. + return false; + case llvm::Triple::arm: + case llvm::Triple::armeb: + case llvm::Triple::thumb: + case llvm::Triple::thumbeb: + return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); + case llvm::Triple::aarch64: + case llvm::Triple::aarch64_32: + case llvm::Triple::aarch64_be: + return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); + case llvm::Triple::bpfeb: + case llvm::Triple::bpfel: + return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); + case llvm::Triple::hexagon: + return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); + case llvm::Triple::mips: + case llvm::Triple::mipsel: + case llvm::Triple::mips64: + case llvm::Triple::mips64el: + return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); + case llvm::Triple::systemz: + return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); + case llvm::Triple::x86: + case llvm::Triple::x86_64: + return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); + case llvm::Triple::ppc: + case llvm::Triple::ppc64: + case llvm::Triple::ppc64le: + return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); + case llvm::Triple::amdgcn: + return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); + } +} + +ExprResult +Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, + CallExpr *TheCall) { + ExprResult TheCallResult(TheCall); + + // Find out if any arguments are required to be integer constant expressions. + unsigned ICEArguments = 0; + ASTContext::GetBuiltinTypeError Error; + Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); + if (Error != ASTContext::GE_None) + ICEArguments = 0; // Don't diagnose previously diagnosed errors. + + // If any arguments are required to be ICE's, check and diagnose. + for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { + // Skip arguments not required to be ICE's. + if ((ICEArguments & (1 << ArgNo)) == 0) continue; + + llvm::APSInt Result; + if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) + return true; + ICEArguments &= ~(1 << ArgNo); + } + + switch (BuiltinID) { + case Builtin::BI__builtin___CFStringMakeConstantString: + assert(TheCall->getNumArgs() == 1 && + "Wrong # arguments to builtin CFStringMakeConstantString"); + if (CheckObjCString(TheCall->getArg(0))) + return ExprError(); + break; + case Builtin::BI__builtin_ms_va_start: + case Builtin::BI__builtin_stdarg_start: + case Builtin::BI__builtin_va_start: + if (SemaBuiltinVAStart(BuiltinID, TheCall)) + return ExprError(); + break; + case Builtin::BI__va_start: { + switch (Context.getTargetInfo().getTriple().getArch()) { + case llvm::Triple::aarch64: + case llvm::Triple::arm: + case llvm::Triple::thumb: + if (SemaBuiltinVAStartARMMicrosoft(TheCall)) + return ExprError(); + break; + default: + if (SemaBuiltinVAStart(BuiltinID, TheCall)) + return ExprError(); + break; + } + break; + } + + // The acquire, release, and no fence variants are ARM and AArch64 only. + case Builtin::BI_interlockedbittestandset_acq: + case Builtin::BI_interlockedbittestandset_rel: + case Builtin::BI_interlockedbittestandset_nf: + case Builtin::BI_interlockedbittestandreset_acq: + case Builtin::BI_interlockedbittestandreset_rel: + case Builtin::BI_interlockedbittestandreset_nf: + if (CheckBuiltinTargetSupport( + *this, BuiltinID, TheCall, + {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) + return ExprError(); + break; + + // The 64-bit bittest variants are x64, ARM, and AArch64 only. + case Builtin::BI_bittest64: + case Builtin::BI_bittestandcomplement64: + case Builtin::BI_bittestandreset64: + case Builtin::BI_bittestandset64: + case Builtin::BI_interlockedbittestandreset64: + case Builtin::BI_interlockedbittestandset64: + if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, + {llvm::Triple::x86_64, llvm::Triple::arm, + llvm::Triple::thumb, llvm::Triple::aarch64})) + return ExprError(); + break; + + case Builtin::BI__builtin_isgreater: + case Builtin::BI__builtin_isgreaterequal: + case Builtin::BI__builtin_isless: + case Builtin::BI__builtin_islessequal: + case Builtin::BI__builtin_islessgreater: + case Builtin::BI__builtin_isunordered: + if (SemaBuiltinUnorderedCompare(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_fpclassify: + if (SemaBuiltinFPClassification(TheCall, 6)) + return ExprError(); + break; + case Builtin::BI__builtin_isfinite: + case Builtin::BI__builtin_isinf: + case Builtin::BI__builtin_isinf_sign: + case Builtin::BI__builtin_isnan: + case Builtin::BI__builtin_isnormal: + case Builtin::BI__builtin_signbit: + case Builtin::BI__builtin_signbitf: + case Builtin::BI__builtin_signbitl: + if (SemaBuiltinFPClassification(TheCall, 1)) + return ExprError(); + break; + case Builtin::BI__builtin_shufflevector: + return SemaBuiltinShuffleVector(TheCall); + // TheCall will be freed by the smart pointer here, but that's fine, since + // SemaBuiltinShuffleVector guts it, but then doesn't release it. + case Builtin::BI__builtin_prefetch: + if (SemaBuiltinPrefetch(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_alloca_with_align: + if (SemaBuiltinAllocaWithAlign(TheCall)) + return ExprError(); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_alloca: + Diag(TheCall->getBeginLoc(), diag::warn_alloca) + << TheCall->getDirectCallee(); + break; + case Builtin::BI__assume: + case Builtin::BI__builtin_assume: + if (SemaBuiltinAssume(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_assume_aligned: + if (SemaBuiltinAssumeAligned(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_dynamic_object_size: + case Builtin::BI__builtin_object_size: + if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) + return ExprError(); + break; + case Builtin::BI__builtin_longjmp: + if (SemaBuiltinLongjmp(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_setjmp: + if (SemaBuiltinSetjmp(TheCall)) + return ExprError(); + break; + case Builtin::BI_setjmp: + case Builtin::BI_setjmpex: + if (checkArgCount(*this, TheCall, 1)) + return true; + break; + case Builtin::BI__builtin_classify_type: + if (checkArgCount(*this, TheCall, 1)) return true; + TheCall->setType(Context.IntTy); + break; + case Builtin::BI__builtin_constant_p: { + if (checkArgCount(*this, TheCall, 1)) return true; + ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); + if (Arg.isInvalid()) return true; + TheCall->setArg(0, Arg.get()); + TheCall->setType(Context.IntTy); + break; + } + case Builtin::BI__builtin_launder: + return SemaBuiltinLaunder(*this, TheCall); + case Builtin::BI__sync_fetch_and_add: + case Builtin::BI__sync_fetch_and_add_1: + case Builtin::BI__sync_fetch_and_add_2: + case Builtin::BI__sync_fetch_and_add_4: + case Builtin::BI__sync_fetch_and_add_8: + case Builtin::BI__sync_fetch_and_add_16: + case Builtin::BI__sync_fetch_and_sub: + case Builtin::BI__sync_fetch_and_sub_1: + case Builtin::BI__sync_fetch_and_sub_2: + case Builtin::BI__sync_fetch_and_sub_4: + case Builtin::BI__sync_fetch_and_sub_8: + case Builtin::BI__sync_fetch_and_sub_16: + case Builtin::BI__sync_fetch_and_or: + case Builtin::BI__sync_fetch_and_or_1: + case Builtin::BI__sync_fetch_and_or_2: + case Builtin::BI__sync_fetch_and_or_4: + case Builtin::BI__sync_fetch_and_or_8: + case Builtin::BI__sync_fetch_and_or_16: + case Builtin::BI__sync_fetch_and_and: + case Builtin::BI__sync_fetch_and_and_1: + case Builtin::BI__sync_fetch_and_and_2: + case Builtin::BI__sync_fetch_and_and_4: + case Builtin::BI__sync_fetch_and_and_8: + case Builtin::BI__sync_fetch_and_and_16: + case Builtin::BI__sync_fetch_and_xor: + case Builtin::BI__sync_fetch_and_xor_1: + case Builtin::BI__sync_fetch_and_xor_2: + case Builtin::BI__sync_fetch_and_xor_4: + case Builtin::BI__sync_fetch_and_xor_8: + case Builtin::BI__sync_fetch_and_xor_16: + case Builtin::BI__sync_fetch_and_nand: + case Builtin::BI__sync_fetch_and_nand_1: + case Builtin::BI__sync_fetch_and_nand_2: + case Builtin::BI__sync_fetch_and_nand_4: + case Builtin::BI__sync_fetch_and_nand_8: + case Builtin::BI__sync_fetch_and_nand_16: + case Builtin::BI__sync_add_and_fetch: + case Builtin::BI__sync_add_and_fetch_1: + case Builtin::BI__sync_add_and_fetch_2: + case Builtin::BI__sync_add_and_fetch_4: + case Builtin::BI__sync_add_and_fetch_8: + case Builtin::BI__sync_add_and_fetch_16: + case Builtin::BI__sync_sub_and_fetch: + case Builtin::BI__sync_sub_and_fetch_1: + case Builtin::BI__sync_sub_and_fetch_2: + case Builtin::BI__sync_sub_and_fetch_4: + case Builtin::BI__sync_sub_and_fetch_8: + case Builtin::BI__sync_sub_and_fetch_16: + case Builtin::BI__sync_and_and_fetch: + case Builtin::BI__sync_and_and_fetch_1: + case Builtin::BI__sync_and_and_fetch_2: + case Builtin::BI__sync_and_and_fetch_4: + case Builtin::BI__sync_and_and_fetch_8: + case Builtin::BI__sync_and_and_fetch_16: + case Builtin::BI__sync_or_and_fetch: + case Builtin::BI__sync_or_and_fetch_1: + case Builtin::BI__sync_or_and_fetch_2: + case Builtin::BI__sync_or_and_fetch_4: + case Builtin::BI__sync_or_and_fetch_8: + case Builtin::BI__sync_or_and_fetch_16: + case Builtin::BI__sync_xor_and_fetch: + case Builtin::BI__sync_xor_and_fetch_1: + case Builtin::BI__sync_xor_and_fetch_2: + case Builtin::BI__sync_xor_and_fetch_4: + case Builtin::BI__sync_xor_and_fetch_8: + case Builtin::BI__sync_xor_and_fetch_16: + case Builtin::BI__sync_nand_and_fetch: + case Builtin::BI__sync_nand_and_fetch_1: + case Builtin::BI__sync_nand_and_fetch_2: + case Builtin::BI__sync_nand_and_fetch_4: + case Builtin::BI__sync_nand_and_fetch_8: + case Builtin::BI__sync_nand_and_fetch_16: + case Builtin::BI__sync_val_compare_and_swap: + case Builtin::BI__sync_val_compare_and_swap_1: + case Builtin::BI__sync_val_compare_and_swap_2: + case Builtin::BI__sync_val_compare_and_swap_4: + case Builtin::BI__sync_val_compare_and_swap_8: + case Builtin::BI__sync_val_compare_and_swap_16: + case Builtin::BI__sync_bool_compare_and_swap: + case Builtin::BI__sync_bool_compare_and_swap_1: + case Builtin::BI__sync_bool_compare_and_swap_2: + case Builtin::BI__sync_bool_compare_and_swap_4: + case Builtin::BI__sync_bool_compare_and_swap_8: + case Builtin::BI__sync_bool_compare_and_swap_16: + case Builtin::BI__sync_lock_test_and_set: + case Builtin::BI__sync_lock_test_and_set_1: + case Builtin::BI__sync_lock_test_and_set_2: + case Builtin::BI__sync_lock_test_and_set_4: + case Builtin::BI__sync_lock_test_and_set_8: + case Builtin::BI__sync_lock_test_and_set_16: + case Builtin::BI__sync_lock_release: + case Builtin::BI__sync_lock_release_1: + case Builtin::BI__sync_lock_release_2: + case Builtin::BI__sync_lock_release_4: + case Builtin::BI__sync_lock_release_8: + case Builtin::BI__sync_lock_release_16: + case Builtin::BI__sync_swap: + case Builtin::BI__sync_swap_1: + case Builtin::BI__sync_swap_2: + case Builtin::BI__sync_swap_4: + case Builtin::BI__sync_swap_8: + case Builtin::BI__sync_swap_16: + return SemaBuiltinAtomicOverloaded(TheCallResult); + case Builtin::BI__sync_synchronize: + Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) + << TheCall->getCallee()->getSourceRange(); + break; + case Builtin::BI__builtin_nontemporal_load: + case Builtin::BI__builtin_nontemporal_store: + return SemaBuiltinNontemporalOverloaded(TheCallResult); + case Builtin::BI__builtin_memcpy_inline: { + clang::Expr *SizeOp = TheCall->getArg(2); + // We warn about copying to or from `nullptr` pointers when `size` is + // greater than 0. When `size` is value dependent we cannot evaluate its + // value so we bail out. + if (SizeOp->isValueDependent()) + break; + if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { + CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); + CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); + } + break; + } +#define BUILTIN(ID, TYPE, ATTRS) +#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ + case Builtin::BI##ID: \ + return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); +#include "clang/Basic/Builtins.def" + case Builtin::BI__annotation: + if (SemaBuiltinMSVCAnnotation(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_annotation: + if (SemaBuiltinAnnotation(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_addressof: + if (SemaBuiltinAddressof(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_is_aligned: + case Builtin::BI__builtin_align_up: + case Builtin::BI__builtin_align_down: + if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) + return ExprError(); + break; + case Builtin::BI__builtin_add_overflow: + case Builtin::BI__builtin_sub_overflow: + case Builtin::BI__builtin_mul_overflow: + if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) + return ExprError(); + break; + case Builtin::BI__builtin_operator_new: + case Builtin::BI__builtin_operator_delete: { + bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; + ExprResult Res = + SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); + if (Res.isInvalid()) + CorrectDelayedTyposInExpr(TheCallResult.get()); + return Res; + } + case Builtin::BI__builtin_dump_struct: { + // We first want to ensure we are called with 2 arguments + if (checkArgCount(*this, TheCall, 2)) + return ExprError(); + // Ensure that the first argument is of type 'struct XX *' + const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); + const QualType PtrArgType = PtrArg->getType(); + if (!PtrArgType->isPointerType() || + !PtrArgType->getPointeeType()->isRecordType()) { + Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType + << "structure pointer"; + return ExprError(); + } + + // Ensure that the second argument is of type 'FunctionType' + const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); + const QualType FnPtrArgType = FnPtrArg->getType(); + if (!FnPtrArgType->isPointerType()) { + Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 + << FnPtrArgType << "'int (*)(const char *, ...)'"; + return ExprError(); + } + + const auto *FuncType = + FnPtrArgType->getPointeeType()->getAs<FunctionType>(); + + if (!FuncType) { + Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 + << FnPtrArgType << "'int (*)(const char *, ...)'"; + return ExprError(); + } + + if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { + if (!FT->getNumParams()) { + Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 + << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; + return ExprError(); + } + QualType PT = FT->getParamType(0); + if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || + !PT->isPointerType() || !PT->getPointeeType()->isCharType() || + !PT->getPointeeType().isConstQualified()) { + Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 + << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; + return ExprError(); + } + } + + TheCall->setType(Context.IntTy); + break; + } + case Builtin::BI__builtin_expect_with_probability: { + // We first want to ensure we are called with 3 arguments + if (checkArgCount(*this, TheCall, 3)) + return ExprError(); + // then check probability is constant float in range [0.0, 1.0] + const Expr *ProbArg = TheCall->getArg(2); + SmallVector<PartialDiagnosticAt, 8> Notes; + Expr::EvalResult Eval; + Eval.Diag = &Notes; + if ((!ProbArg->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen, + Context)) || + !Eval.Val.isFloat()) { + Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) + << ProbArg->getSourceRange(); + for (const PartialDiagnosticAt &PDiag : Notes) + Diag(PDiag.first, PDiag.second); + return ExprError(); + } + llvm::APFloat Probability = Eval.Val.getFloat(); + bool LoseInfo = false; + Probability.convert(llvm::APFloat::IEEEdouble(), + llvm::RoundingMode::Dynamic, &LoseInfo); + if (!(Probability >= llvm::APFloat(0.0) && + Probability <= llvm::APFloat(1.0))) { + Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) + << ProbArg->getSourceRange(); + return ExprError(); + } + break; + } + case Builtin::BI__builtin_preserve_access_index: + if (SemaBuiltinPreserveAI(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_call_with_static_chain: + if (SemaBuiltinCallWithStaticChain(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__exception_code: + case Builtin::BI_exception_code: + if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, + diag::err_seh___except_block)) + return ExprError(); + break; + case Builtin::BI__exception_info: + case Builtin::BI_exception_info: + if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, + diag::err_seh___except_filter)) + return ExprError(); + break; + case Builtin::BI__GetExceptionInfo: + if (checkArgCount(*this, TheCall, 1)) + return ExprError(); + + if (CheckCXXThrowOperand( + TheCall->getBeginLoc(), + Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), + TheCall)) + return ExprError(); + + TheCall->setType(Context.VoidPtrTy); + break; + // OpenCL v2.0, s6.13.16 - Pipe functions + case Builtin::BIread_pipe: + case Builtin::BIwrite_pipe: + // Since those two functions are declared with var args, we need a semantic + // check for the argument. + if (SemaBuiltinRWPipe(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIreserve_read_pipe: + case Builtin::BIreserve_write_pipe: + case Builtin::BIwork_group_reserve_read_pipe: + case Builtin::BIwork_group_reserve_write_pipe: + if (SemaBuiltinReserveRWPipe(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIsub_group_reserve_read_pipe: + case Builtin::BIsub_group_reserve_write_pipe: + if (checkOpenCLSubgroupExt(*this, TheCall) || + SemaBuiltinReserveRWPipe(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIcommit_read_pipe: + case Builtin::BIcommit_write_pipe: + case Builtin::BIwork_group_commit_read_pipe: + case Builtin::BIwork_group_commit_write_pipe: + if (SemaBuiltinCommitRWPipe(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIsub_group_commit_read_pipe: + case Builtin::BIsub_group_commit_write_pipe: + if (checkOpenCLSubgroupExt(*this, TheCall) || + SemaBuiltinCommitRWPipe(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIget_pipe_num_packets: + case Builtin::BIget_pipe_max_packets: + if (SemaBuiltinPipePackets(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIto_global: + case Builtin::BIto_local: + case Builtin::BIto_private: + if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) + return ExprError(); + break; + // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. + case Builtin::BIenqueue_kernel: + if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIget_kernel_work_group_size: + case Builtin::BIget_kernel_preferred_work_group_size_multiple: + if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) + return ExprError(); + break; + case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: + case Builtin::BIget_kernel_sub_group_count_for_ndrange: + if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_os_log_format: + Cleanup.setExprNeedsCleanups(true); + LLVM_FALLTHROUGH; + case Builtin::BI__builtin_os_log_format_buffer_size: + if (SemaBuiltinOSLogFormat(TheCall)) + return ExprError(); + break; + case Builtin::BI__builtin_frame_address: + case Builtin::BI__builtin_return_address: { + if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) + return ExprError(); + + // -Wframe-address warning if non-zero passed to builtin + // return/frame address. + Expr::EvalResult Result; + if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && + Result.Val.getInt() != 0) + Diag(TheCall->getBeginLoc(), diag::warn_frame_address) + << ((BuiltinID == Builtin::BI__builtin_return_address) + ? "__builtin_return_address" + : "__builtin_frame_address") + << TheCall->getSourceRange(); + break; + } + + case Builtin::BI__builtin_matrix_transpose: + return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); + + case Builtin::BI__builtin_matrix_column_major_load: + return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); + + case Builtin::BI__builtin_matrix_column_major_store: + return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); + } + + // Since the target specific builtins for each arch overlap, only check those + // of the arch we are compiling for. + if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { + if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { + assert(Context.getAuxTargetInfo() && + "Aux Target Builtin, but not an aux target?"); + + if (CheckTSBuiltinFunctionCall( + *Context.getAuxTargetInfo(), + Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) + return ExprError(); + } else { + if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, + TheCall)) + return ExprError(); + } + } + + return TheCallResult; +} + +// Get the valid immediate range for the specified NEON type code. +static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { + NeonTypeFlags Type(t); + int IsQuad = ForceQuad ? true : Type.isQuad(); + switch (Type.getEltType()) { + case NeonTypeFlags::Int8: + case NeonTypeFlags::Poly8: + return shift ? 7 : (8 << IsQuad) - 1; + case NeonTypeFlags::Int16: + case NeonTypeFlags::Poly16: + return shift ? 15 : (4 << IsQuad) - 1; + case NeonTypeFlags::Int32: + return shift ? 31 : (2 << IsQuad) - 1; + case NeonTypeFlags::Int64: + case NeonTypeFlags::Poly64: + return shift ? 63 : (1 << IsQuad) - 1; + case NeonTypeFlags::Poly128: + return shift ? 127 : (1 << IsQuad) - 1; + case NeonTypeFlags::Float16: + assert(!shift && "cannot shift float types!"); + return (4 << IsQuad) - 1; + case NeonTypeFlags::Float32: + assert(!shift && "cannot shift float types!"); + return (2 << IsQuad) - 1; + case NeonTypeFlags::Float64: + assert(!shift && "cannot shift float types!"); + return (1 << IsQuad) - 1; + case NeonTypeFlags::BFloat16: + assert(!shift && "cannot shift float types!"); + return (4 << IsQuad) - 1; + } + llvm_unreachable("Invalid NeonTypeFlag!"); +} + +/// getNeonEltType - Return the QualType corresponding to the elements of +/// the vector type specified by the NeonTypeFlags. This is used to check +/// the pointer arguments for Neon load/store intrinsics. +static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, + bool IsPolyUnsigned, bool IsInt64Long) { + switch (Flags.getEltType()) { + case NeonTypeFlags::Int8: + return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; + case NeonTypeFlags::Int16: + return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; + case NeonTypeFlags::Int32: + return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; + case NeonTypeFlags::Int64: + if (IsInt64Long) + return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; + else + return Flags.isUnsigned() ? Context.UnsignedLongLongTy + : Context.LongLongTy; + case NeonTypeFlags::Poly8: + return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; + case NeonTypeFlags::Poly16: + return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; + case NeonTypeFlags::Poly64: + if (IsInt64Long) + return Context.UnsignedLongTy; + else + return Context.UnsignedLongLongTy; + case NeonTypeFlags::Poly128: + break; + case NeonTypeFlags::Float16: + return Context.HalfTy; + case NeonTypeFlags::Float32: + return Context.FloatTy; + case NeonTypeFlags::Float64: + return Context.DoubleTy; + case NeonTypeFlags::BFloat16: + return Context.BFloat16Ty; + } + llvm_unreachable("Invalid NeonTypeFlag!"); +} + +bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { + // Range check SVE intrinsics that take immediate values. + SmallVector<std::tuple<int,int,int>, 3> ImmChecks; + + switch (BuiltinID) { + default: + return false; +#define GET_SVE_IMMEDIATE_CHECK +#include "clang/Basic/arm_sve_sema_rangechecks.inc" +#undef GET_SVE_IMMEDIATE_CHECK + } + + // Perform all the immediate checks for this builtin call. + bool HasError = false; + for (auto &I : ImmChecks) { + int ArgNum, CheckTy, ElementSizeInBits; + std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; + + typedef bool(*OptionSetCheckFnTy)(int64_t Value); + + // Function that checks whether the operand (ArgNum) is an immediate + // that is one of the predefined values. + auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, + int ErrDiag) -> bool { + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + llvm::APSInt Imm; + if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) + return true; + + if (!CheckImm(Imm.getSExtValue())) + return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); + return false; + }; + + switch ((SVETypeFlags::ImmCheckType)CheckTy) { + case SVETypeFlags::ImmCheck0_31: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) + HasError = true; + break; + case SVETypeFlags::ImmCheck0_13: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) + HasError = true; + break; + case SVETypeFlags::ImmCheck1_16: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) + HasError = true; + break; + case SVETypeFlags::ImmCheck0_7: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) + HasError = true; + break; + case SVETypeFlags::ImmCheckExtract: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, + (2048 / ElementSizeInBits) - 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheckShiftRight: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) + HasError = true; + break; + case SVETypeFlags::ImmCheckShiftRightNarrow: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, + ElementSizeInBits / 2)) + HasError = true; + break; + case SVETypeFlags::ImmCheckShiftLeft: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, + ElementSizeInBits - 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheckLaneIndex: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, + (128 / (1 * ElementSizeInBits)) - 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheckLaneIndexCompRotate: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, + (128 / (2 * ElementSizeInBits)) - 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheckLaneIndexDot: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, + (128 / (4 * ElementSizeInBits)) - 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheckComplexRot90_270: + if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, + diag::err_rotation_argument_to_cadd)) + HasError = true; + break; + case SVETypeFlags::ImmCheckComplexRotAll90: + if (CheckImmediateInSet( + [](int64_t V) { + return V == 0 || V == 90 || V == 180 || V == 270; + }, + diag::err_rotation_argument_to_cmla)) + HasError = true; + break; + case SVETypeFlags::ImmCheck0_1: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) + HasError = true; + break; + case SVETypeFlags::ImmCheck0_2: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) + HasError = true; + break; + case SVETypeFlags::ImmCheck0_3: + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) + HasError = true; + break; + } + } + + return HasError; +} + +bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, + unsigned BuiltinID, CallExpr *TheCall) { + llvm::APSInt Result; + uint64_t mask = 0; + unsigned TV = 0; + int PtrArgNum = -1; + bool HasConstPtr = false; + switch (BuiltinID) { +#define GET_NEON_OVERLOAD_CHECK +#include "clang/Basic/arm_neon.inc" +#include "clang/Basic/arm_fp16.inc" +#undef GET_NEON_OVERLOAD_CHECK + } + + // For NEON intrinsics which are overloaded on vector element type, validate + // the immediate which specifies which variant to emit. + unsigned ImmArg = TheCall->getNumArgs()-1; + if (mask) { + if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) + return true; + + TV = Result.getLimitedValue(64); + if ((TV > 63) || (mask & (1ULL << TV)) == 0) + return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) + << TheCall->getArg(ImmArg)->getSourceRange(); + } + + if (PtrArgNum >= 0) { + // Check that pointer arguments have the specified type. + Expr *Arg = TheCall->getArg(PtrArgNum); + if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) + Arg = ICE->getSubExpr(); + ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); + QualType RHSTy = RHS.get()->getType(); + + llvm::Triple::ArchType Arch = TI.getTriple().getArch(); + bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || + Arch == llvm::Triple::aarch64_32 || + Arch == llvm::Triple::aarch64_be; + bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; + QualType EltTy = + getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); + if (HasConstPtr) + EltTy = EltTy.withConst(); + QualType LHSTy = Context.getPointerType(EltTy); + AssignConvertType ConvTy; + ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); + if (RHS.isInvalid()) + return true; + if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, + RHS.get(), AA_Assigning)) + return true; + } + + // For NEON intrinsics which take an immediate value as part of the + // instruction, range check them here. + unsigned i = 0, l = 0, u = 0; + switch (BuiltinID) { + default: + return false; + #define GET_NEON_IMMEDIATE_CHECK + #include "clang/Basic/arm_neon.inc" + #include "clang/Basic/arm_fp16.inc" + #undef GET_NEON_IMMEDIATE_CHECK + } + + return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); +} + +bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { + switch (BuiltinID) { + default: + return false; + #include "clang/Basic/arm_mve_builtin_sema.inc" + } +} + +bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + bool Err = false; + switch (BuiltinID) { + default: + return false; +#include "clang/Basic/arm_cde_builtin_sema.inc" + } + + if (Err) + return true; + + return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); +} + +bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, + const Expr *CoprocArg, bool WantCDE) { + if (isConstantEvaluated()) + return false; + + // We can't check the value of a dependent argument. + if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) + return false; + + llvm::APSInt CoprocNoAP; + bool IsICE = CoprocArg->isIntegerConstantExpr(CoprocNoAP, Context); + (void)IsICE; + assert(IsICE && "Coprocossor immediate is not a constant expression"); + int64_t CoprocNo = CoprocNoAP.getExtValue(); + assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); + + uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); + bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); + + if (IsCDECoproc != WantCDE) + return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) + << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); + + return false; +} + +bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, + unsigned MaxWidth) { + assert((BuiltinID == ARM::BI__builtin_arm_ldrex || + BuiltinID == ARM::BI__builtin_arm_ldaex || + BuiltinID == ARM::BI__builtin_arm_strex || + BuiltinID == ARM::BI__builtin_arm_stlex || + BuiltinID == AArch64::BI__builtin_arm_ldrex || + BuiltinID == AArch64::BI__builtin_arm_ldaex || + BuiltinID == AArch64::BI__builtin_arm_strex || + BuiltinID == AArch64::BI__builtin_arm_stlex) && + "unexpected ARM builtin"); + bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || + BuiltinID == ARM::BI__builtin_arm_ldaex || + BuiltinID == AArch64::BI__builtin_arm_ldrex || + BuiltinID == AArch64::BI__builtin_arm_ldaex; + + DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); + + // Ensure that we have the proper number of arguments. + if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) + return true; + + // Inspect the pointer argument of the atomic builtin. This should always be + // a pointer type, whose element is an integral scalar or pointer type. + // Because it is a pointer type, we don't have to worry about any implicit + // casts here. + Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); + ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); + if (PointerArgRes.isInvalid()) + return true; + PointerArg = PointerArgRes.get(); + + const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); + if (!pointerType) { + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) + << PointerArg->getType() << PointerArg->getSourceRange(); + return true; + } + + // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next + // task is to insert the appropriate casts into the AST. First work out just + // what the appropriate type is. + QualType ValType = pointerType->getPointeeType(); + QualType AddrType = ValType.getUnqualifiedType().withVolatile(); + if (IsLdrex) + AddrType.addConst(); + + // Issue a warning if the cast is dodgy. + CastKind CastNeeded = CK_NoOp; + if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { + CastNeeded = CK_BitCast; + Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) + << PointerArg->getType() << Context.getPointerType(AddrType) + << AA_Passing << PointerArg->getSourceRange(); + } + + // Finally, do the cast and replace the argument with the corrected version. + AddrType = Context.getPointerType(AddrType); + PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); + if (PointerArgRes.isInvalid()) + return true; + PointerArg = PointerArgRes.get(); + + TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); + + // In general, we allow ints, floats and pointers to be loaded and stored. + if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && + !ValType->isBlockPointerType() && !ValType->isFloatingType()) { + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) + << PointerArg->getType() << PointerArg->getSourceRange(); + return true; + } + + // But ARM doesn't have instructions to deal with 128-bit versions. + if (Context.getTypeSize(ValType) > MaxWidth) { + assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); + Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) + << PointerArg->getType() << PointerArg->getSourceRange(); + return true; + } + + switch (ValType.getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + // okay + break; + + case Qualifiers::OCL_Weak: + case Qualifiers::OCL_Strong: + case Qualifiers::OCL_Autoreleasing: + Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) + << ValType << PointerArg->getSourceRange(); + return true; + } + + if (IsLdrex) { + TheCall->setType(ValType); + return false; + } + + // Initialize the argument to be stored. + ExprResult ValArg = TheCall->getArg(0); + InitializedEntity Entity = InitializedEntity::InitializeParameter( + Context, ValType, /*consume*/ false); + ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); + if (ValArg.isInvalid()) + return true; + TheCall->setArg(0, ValArg.get()); + + // __builtin_arm_strex always returns an int. It's marked as such in the .def, + // but the custom checker bypasses all default analysis. + TheCall->setType(Context.IntTy); + return false; +} + +bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + if (BuiltinID == ARM::BI__builtin_arm_ldrex || + BuiltinID == ARM::BI__builtin_arm_ldaex || + BuiltinID == ARM::BI__builtin_arm_strex || + BuiltinID == ARM::BI__builtin_arm_stlex) { + return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); + } + + if (BuiltinID == ARM::BI__builtin_arm_prefetch) { + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || + SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); + } + + if (BuiltinID == ARM::BI__builtin_arm_rsr64 || + BuiltinID == ARM::BI__builtin_arm_wsr64) + return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); + + if (BuiltinID == ARM::BI__builtin_arm_rsr || + BuiltinID == ARM::BI__builtin_arm_rsrp || + BuiltinID == ARM::BI__builtin_arm_wsr || + BuiltinID == ARM::BI__builtin_arm_wsrp) + return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); + + if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) + return true; + if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) + return true; + if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) + return true; + + // For intrinsics which take an immediate value as part of the instruction, + // range check them here. + // FIXME: VFP Intrinsics should error if VFP not present. + switch (BuiltinID) { + default: return false; + case ARM::BI__builtin_arm_ssat: + return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); + case ARM::BI__builtin_arm_usat: + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); + case ARM::BI__builtin_arm_ssat16: + return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); + case ARM::BI__builtin_arm_usat16: + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); + case ARM::BI__builtin_arm_vcvtr_f: + case ARM::BI__builtin_arm_vcvtr_d: + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); + case ARM::BI__builtin_arm_dmb: + case ARM::BI__builtin_arm_dsb: + case ARM::BI__builtin_arm_isb: + case ARM::BI__builtin_arm_dbg: + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); + case ARM::BI__builtin_arm_cdp: + case ARM::BI__builtin_arm_cdp2: + case ARM::BI__builtin_arm_mcr: + case ARM::BI__builtin_arm_mcr2: + case ARM::BI__builtin_arm_mrc: + case ARM::BI__builtin_arm_mrc2: + case ARM::BI__builtin_arm_mcrr: + case ARM::BI__builtin_arm_mcrr2: + case ARM::BI__builtin_arm_mrrc: + case ARM::BI__builtin_arm_mrrc2: + case ARM::BI__builtin_arm_ldc: + case ARM::BI__builtin_arm_ldcl: + case ARM::BI__builtin_arm_ldc2: + case ARM::BI__builtin_arm_ldc2l: + case ARM::BI__builtin_arm_stc: + case ARM::BI__builtin_arm_stcl: + case ARM::BI__builtin_arm_stc2: + case ARM::BI__builtin_arm_stc2l: + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || + CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), + /*WantCDE*/ false); + } +} + +bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, + unsigned BuiltinID, + CallExpr *TheCall) { + if (BuiltinID == AArch64::BI__builtin_arm_ldrex || + BuiltinID == AArch64::BI__builtin_arm_ldaex || + BuiltinID == AArch64::BI__builtin_arm_strex || + BuiltinID == AArch64::BI__builtin_arm_stlex) { + return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); + } + + if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || + SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || + SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || + SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); + } + + if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || + BuiltinID == AArch64::BI__builtin_arm_wsr64) + return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); + + // Memory Tagging Extensions (MTE) Intrinsics + if (BuiltinID == AArch64::BI__builtin_arm_irg || + BuiltinID == AArch64::BI__builtin_arm_addg || + BuiltinID == AArch64::BI__builtin_arm_gmi || + BuiltinID == AArch64::BI__builtin_arm_ldg || + BuiltinID == AArch64::BI__builtin_arm_stg || + BuiltinID == AArch64::BI__builtin_arm_subp) { + return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); + } + + if (BuiltinID == AArch64::BI__builtin_arm_rsr || + BuiltinID == AArch64::BI__builtin_arm_rsrp || + BuiltinID == AArch64::BI__builtin_arm_wsr || + BuiltinID == AArch64::BI__builtin_arm_wsrp) + return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); + + // Only check the valid encoding range. Any constant in this range would be + // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw + // an exception for incorrect registers. This matches MSVC behavior. + if (BuiltinID == AArch64::BI_ReadStatusReg || + BuiltinID == AArch64::BI_WriteStatusReg) + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); + + if (BuiltinID == AArch64::BI__getReg) + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); + + if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) + return true; + + if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) + return true; + + // For intrinsics which take an immediate value as part of the instruction, + // range check them here. + unsigned i = 0, l = 0, u = 0; + switch (BuiltinID) { + default: return false; + case AArch64::BI__builtin_arm_dmb: + case AArch64::BI__builtin_arm_dsb: + case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; + case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; + } + + return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); +} + +bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, + CallExpr *TheCall) { + assert((BuiltinID == BPF::BI__builtin_preserve_field_info || + BuiltinID == BPF::BI__builtin_btf_type_id) && + "unexpected ARM builtin"); + + if (checkArgCount(*this, TheCall, 2)) + return true; + + Expr *Arg; + if (BuiltinID == BPF::BI__builtin_btf_type_id) { + // The second argument needs to be a constant int + llvm::APSInt Value; + Arg = TheCall->getArg(1); + if (!Arg->isIntegerConstantExpr(Value, Context)) { + Diag(Arg->getBeginLoc(), diag::err_btf_type_id_not_const) + << 2 << Arg->getSourceRange(); + return true; + } + + TheCall->setType(Context.UnsignedIntTy); + return false; + } + + // The first argument needs to be a record field access. + // If it is an array element access, we delay decision + // to BPF backend to check whether the access is a + // field access or not. + Arg = TheCall->getArg(0); + if (Arg->getType()->getAsPlaceholderType() || + (Arg->IgnoreParens()->getObjectKind() != OK_BitField && + !dyn_cast<MemberExpr>(Arg->IgnoreParens()) && + !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) { + Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field) + << 1 << Arg->getSourceRange(); + return true; + } + + // The second argument needs to be a constant int + Arg = TheCall->getArg(1); + llvm::APSInt Value; + if (!Arg->isIntegerConstantExpr(Value, Context)) { + Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const) + << 2 << Arg->getSourceRange(); + return true; + } + + TheCall->setType(Context.UnsignedIntTy); + return false; +} + +bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { + struct ArgInfo { + uint8_t OpNum; + bool IsSigned; + uint8_t BitWidth; + uint8_t Align; + }; + struct BuiltinInfo { + unsigned BuiltinID; + ArgInfo Infos[2]; + }; + + static BuiltinInfo Infos[] = { + { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, + { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, + { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, + { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, + { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, + { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, + { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, + { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, + { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, + { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, + { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, + + { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, + { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, + { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, + { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, + + { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, + {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, + {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, + { 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, + { 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, + { 3, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, + { 3, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, + {{ 2, false, 4, 0 }, + { 3, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, + {{ 2, false, 4, 0 }, + { 3, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, + {{ 2, false, 4, 0 }, + { 3, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, + {{ 2, false, 4, 0 }, + { 3, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, + { 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, + { 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, + {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, + {{ 1, false, 4, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, + {{ 3, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, + {{ 3, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, + { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, + {{ 3, false, 1, 0 }} }, + }; + + // Use a dynamically initialized static to sort the table exactly once on + // first run. + static const bool SortOnce = + (llvm::sort(Infos, + [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { + return LHS.BuiltinID < RHS.BuiltinID; + }), + true); + (void)SortOnce; + + const BuiltinInfo *F = llvm::partition_point( + Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); + if (F == std::end(Infos) || F->BuiltinID != BuiltinID) + return false; + + bool Error = false; + + for (const ArgInfo &A : F->Infos) { + // Ignore empty ArgInfo elements. + if (A.BitWidth == 0) + continue; + + int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; + int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; + if (!A.Align) { + Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); + } else { + unsigned M = 1 << A.Align; + Min *= M; + Max *= M; + Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | + SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); + } + } + return Error; +} + +bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, + CallExpr *TheCall) { + return CheckHexagonBuiltinArgument(BuiltinID, TheCall); +} + +bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, + unsigned BuiltinID, CallExpr *TheCall) { + return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || + CheckMipsBuiltinArgument(BuiltinID, TheCall); +} + +bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + + if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && + BuiltinID <= Mips::BI__builtin_mips_lwx) { + if (!TI.hasFeature("dsp")) + return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); + } + + if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && + BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { + if (!TI.hasFeature("dspr2")) + return Diag(TheCall->getBeginLoc(), + diag::err_mips_builtin_requires_dspr2); + } + + if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && + BuiltinID <= Mips::BI__builtin_msa_xori_b) { + if (!TI.hasFeature("msa")) + return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); + } + + return false; +} + +// CheckMipsBuiltinArgument - Checks the constant value passed to the +// intrinsic is correct. The switch statement is ordered by DSP, MSA. The +// ordering for DSP is unspecified. MSA is ordered by the data format used +// by the underlying instruction i.e., df/m, df/n and then by size. +// +// FIXME: The size tests here should instead be tablegen'd along with the +// definitions from include/clang/Basic/BuiltinsMips.def. +// FIXME: GCC is strict on signedness for some of these intrinsics, we should +// be too. +bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { + unsigned i = 0, l = 0, u = 0, m = 0; + switch (BuiltinID) { + default: return false; + case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; + case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; + case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; + case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; + case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; + case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; + case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; + // MSA intrinsics. Instructions (which the intrinsics maps to) which use the + // df/m field. + // These intrinsics take an unsigned 3 bit immediate. + case Mips::BI__builtin_msa_bclri_b: + case Mips::BI__builtin_msa_bnegi_b: + case Mips::BI__builtin_msa_bseti_b: + case Mips::BI__builtin_msa_sat_s_b: + case Mips::BI__builtin_msa_sat_u_b: + case Mips::BI__builtin_msa_slli_b: + case Mips::BI__builtin_msa_srai_b: + case Mips::BI__builtin_msa_srari_b: + case Mips::BI__builtin_msa_srli_b: + case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; + case Mips::BI__builtin_msa_binsli_b: + case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; + // These intrinsics take an unsigned 4 bit immediate. + case Mips::BI__builtin_msa_bclri_h: + case Mips::BI__builtin_msa_bnegi_h: + case Mips::BI__builtin_msa_bseti_h: + case Mips::BI__builtin_msa_sat_s_h: + case Mips::BI__builtin_msa_sat_u_h: + case Mips::BI__builtin_msa_slli_h: + case Mips::BI__builtin_msa_srai_h: + case Mips::BI__builtin_msa_srari_h: + case Mips::BI__builtin_msa_srli_h: + case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; + case Mips::BI__builtin_msa_binsli_h: + case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; + // These intrinsics take an unsigned 5 bit immediate. + // The first block of intrinsics actually have an unsigned 5 bit field, + // not a df/n field. + case Mips::BI__builtin_msa_cfcmsa: + case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; + case Mips::BI__builtin_msa_clei_u_b: + case Mips::BI__builtin_msa_clei_u_h: + case Mips::BI__builtin_msa_clei_u_w: + case Mips::BI__builtin_msa_clei_u_d: + case Mips::BI__builtin_msa_clti_u_b: + case Mips::BI__builtin_msa_clti_u_h: + case Mips::BI__builtin_msa_clti_u_w: + case Mips::BI__builtin_msa_clti_u_d: + case Mips::BI__builtin_msa_maxi_u_b: + case Mips::BI__builtin_msa_maxi_u_h: + case Mips::BI__builtin_msa_maxi_u_w: + case Mips::BI__builtin_msa_maxi_u_d: + case Mips::BI__builtin_msa_mini_u_b: + case Mips::BI__builtin_msa_mini_u_h: + case Mips::BI__builtin_msa_mini_u_w: + case Mips::BI__builtin_msa_mini_u_d: + case Mips::BI__builtin_msa_addvi_b: + case Mips::BI__builtin_msa_addvi_h: + case Mips::BI__builtin_msa_addvi_w: + case Mips::BI__builtin_msa_addvi_d: + case Mips::BI__builtin_msa_bclri_w: + case Mips::BI__builtin_msa_bnegi_w: + case Mips::BI__builtin_msa_bseti_w: + case Mips::BI__builtin_msa_sat_s_w: + case Mips::BI__builtin_msa_sat_u_w: + case Mips::BI__builtin_msa_slli_w: + case Mips::BI__builtin_msa_srai_w: + case Mips::BI__builtin_msa_srari_w: + case Mips::BI__builtin_msa_srli_w: + case Mips::BI__builtin_msa_srlri_w: + case Mips::BI__builtin_msa_subvi_b: + case Mips::BI__builtin_msa_subvi_h: + case Mips::BI__builtin_msa_subvi_w: + case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; + case Mips::BI__builtin_msa_binsli_w: + case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; + // These intrinsics take an unsigned 6 bit immediate. + case Mips::BI__builtin_msa_bclri_d: + case Mips::BI__builtin_msa_bnegi_d: + case Mips::BI__builtin_msa_bseti_d: + case Mips::BI__builtin_msa_sat_s_d: + case Mips::BI__builtin_msa_sat_u_d: + case Mips::BI__builtin_msa_slli_d: + case Mips::BI__builtin_msa_srai_d: + case Mips::BI__builtin_msa_srari_d: + case Mips::BI__builtin_msa_srli_d: + case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; + case Mips::BI__builtin_msa_binsli_d: + case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; + // These intrinsics take a signed 5 bit immediate. + case Mips::BI__builtin_msa_ceqi_b: + case Mips::BI__builtin_msa_ceqi_h: + case Mips::BI__builtin_msa_ceqi_w: + case Mips::BI__builtin_msa_ceqi_d: + case Mips::BI__builtin_msa_clti_s_b: + case Mips::BI__builtin_msa_clti_s_h: + case Mips::BI__builtin_msa_clti_s_w: + case Mips::BI__builtin_msa_clti_s_d: + case Mips::BI__builtin_msa_clei_s_b: + case Mips::BI__builtin_msa_clei_s_h: + case Mips::BI__builtin_msa_clei_s_w: + case Mips::BI__builtin_msa_clei_s_d: + case Mips::BI__builtin_msa_maxi_s_b: + case Mips::BI__builtin_msa_maxi_s_h: + case Mips::BI__builtin_msa_maxi_s_w: + case Mips::BI__builtin_msa_maxi_s_d: + case Mips::BI__builtin_msa_mini_s_b: + case Mips::BI__builtin_msa_mini_s_h: + case Mips::BI__builtin_msa_mini_s_w: + case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; + // These intrinsics take an unsigned 8 bit immediate. + case Mips::BI__builtin_msa_andi_b: + case Mips::BI__builtin_msa_nori_b: + case Mips::BI__builtin_msa_ori_b: + case Mips::BI__builtin_msa_shf_b: + case Mips::BI__builtin_msa_shf_h: + case Mips::BI__builtin_msa_shf_w: + case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; + case Mips::BI__builtin_msa_bseli_b: + case Mips::BI__builtin_msa_bmnzi_b: + case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; + // df/n format + // These intrinsics take an unsigned 4 bit immediate. + case Mips::BI__builtin_msa_copy_s_b: + case Mips::BI__builtin_msa_copy_u_b: + case Mips::BI__builtin_msa_insve_b: + case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; + case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; + // These intrinsics take an unsigned 3 bit immediate. + case Mips::BI__builtin_msa_copy_s_h: + case Mips::BI__builtin_msa_copy_u_h: + case Mips::BI__builtin_msa_insve_h: + case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; + case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; + // These intrinsics take an unsigned 2 bit immediate. + case Mips::BI__builtin_msa_copy_s_w: + case Mips::BI__builtin_msa_copy_u_w: + case Mips::BI__builtin_msa_insve_w: + case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; + case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; + // These intrinsics take an unsigned 1 bit immediate. + case Mips::BI__builtin_msa_copy_s_d: + case Mips::BI__builtin_msa_copy_u_d: + case Mips::BI__builtin_msa_insve_d: + case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; + case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; + // Memory offsets and immediate loads. + // These intrinsics take a signed 10 bit immediate. + case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; + case Mips::BI__builtin_msa_ldi_h: + case Mips::BI__builtin_msa_ldi_w: + case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; + case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; + case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; + case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; + case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; + case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; + case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; + case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; + case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; + case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; + case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; + case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; + case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; + } + + if (!m) + return SemaBuiltinConstantArgRange(TheCall, i, l, u); + + return SemaBuiltinConstantArgRange(TheCall, i, l, u) || + SemaBuiltinConstantArgMultiple(TheCall, i, m); +} + +bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + unsigned i = 0, l = 0, u = 0; + bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || + BuiltinID == PPC::BI__builtin_divdeu || + BuiltinID == PPC::BI__builtin_bpermd; + bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; + bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || + BuiltinID == PPC::BI__builtin_divweu || + BuiltinID == PPC::BI__builtin_divde || + BuiltinID == PPC::BI__builtin_divdeu; + + if (Is64BitBltin && !IsTarget64Bit) + return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) + << TheCall->getSourceRange(); + + if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || + (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) + return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) + << TheCall->getSourceRange(); + + auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { + if (!TI.hasFeature("vsx")) + return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) + << TheCall->getSourceRange(); + return false; + }; + + switch (BuiltinID) { + default: return false; + case PPC::BI__builtin_altivec_crypto_vshasigmaw: + case PPC::BI__builtin_altivec_crypto_vshasigmad: + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || + SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); + case PPC::BI__builtin_altivec_dss: + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); + case PPC::BI__builtin_tbegin: + case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; + case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; + case PPC::BI__builtin_tabortwc: + case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; + case PPC::BI__builtin_tabortwci: + case PPC::BI__builtin_tabortdci: + return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || + SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); + case PPC::BI__builtin_altivec_dst: + case PPC::BI__builtin_altivec_dstt: + case PPC::BI__builtin_altivec_dstst: + case PPC::BI__builtin_altivec_dststt: + return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); + case PPC::BI__builtin_vsx_xxpermdi: + case PPC::BI__builtin_vsx_xxsldwi: + return SemaBuiltinVSX(TheCall); + case PPC::BI__builtin_unpack_vector_int128: + return SemaVSXCheck(TheCall) || + SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); + case PPC::BI__builtin_pack_vector_int128: + return SemaVSXCheck(TheCall); + case PPC::BI__builtin_altivec_vgnb: + return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); + case PPC::BI__builtin_vsx_xxeval: + return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); + case PPC::BI__builtin_altivec_vsldbi: + return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); + case PPC::BI__builtin_altivec_vsrdbi: + return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); + case PPC::BI__builtin_vsx_xxpermx: + return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); + } + return SemaBuiltinConstantArgRange(TheCall, i, l, u); +} + +bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, + CallExpr *TheCall) { + // position of memory order and scope arguments in the builtin + unsigned OrderIndex, ScopeIndex; + switch (BuiltinID) { + case AMDGPU::BI__builtin_amdgcn_atomic_inc32: + case AMDGPU::BI__builtin_amdgcn_atomic_inc64: + case AMDGPU::BI__builtin_amdgcn_atomic_dec32: + case AMDGPU::BI__builtin_amdgcn_atomic_dec64: + OrderIndex = 2; + ScopeIndex = 3; + break; + case AMDGPU::BI__builtin_amdgcn_fence: + OrderIndex = 0; + ScopeIndex = 1; + break; + default: + return false; + } + + ExprResult Arg = TheCall->getArg(OrderIndex); + auto ArgExpr = Arg.get(); + Expr::EvalResult ArgResult; + + if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) + return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) + << ArgExpr->getType(); + int ord = ArgResult.Val.getInt().getZExtValue(); + + // Check valididty of memory ordering as per C11 / C++11's memody model. + switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { + case llvm::AtomicOrderingCABI::acquire: + case llvm::AtomicOrderingCABI::release: + case llvm::AtomicOrderingCABI::acq_rel: + case llvm::AtomicOrderingCABI::seq_cst: + break; + default: { + return Diag(ArgExpr->getBeginLoc(), + diag::warn_atomic_op_has_invalid_memory_order) + << ArgExpr->getSourceRange(); + } + } + + Arg = TheCall->getArg(ScopeIndex); + ArgExpr = Arg.get(); + Expr::EvalResult ArgResult1; + // Check that sync scope is a constant literal + if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Expr::EvaluateForCodeGen, + Context)) + return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) + << ArgExpr->getType(); + + return false; +} + +bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, + CallExpr *TheCall) { + if (BuiltinID == SystemZ::BI__builtin_tabort) { + Expr *Arg = TheCall->getArg(0); + llvm::APSInt AbortCode(32); + if (Arg->isIntegerConstantExpr(AbortCode, Context) && + AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) + return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) + << Arg->getSourceRange(); + } + + // For intrinsics which take an immediate value as part of the instruction, + // range check them here. + unsigned i = 0, l = 0, u = 0; + switch (BuiltinID) { + default: return false; + case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_verimb: + case SystemZ::BI__builtin_s390_verimh: + case SystemZ::BI__builtin_s390_verimf: + case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; + case SystemZ::BI__builtin_s390_vfaeb: + case SystemZ::BI__builtin_s390_vfaeh: + case SystemZ::BI__builtin_s390_vfaef: + case SystemZ::BI__builtin_s390_vfaebs: + case SystemZ::BI__builtin_s390_vfaehs: + case SystemZ::BI__builtin_s390_vfaefs: + case SystemZ::BI__builtin_s390_vfaezb: + case SystemZ::BI__builtin_s390_vfaezh: + case SystemZ::BI__builtin_s390_vfaezf: + case SystemZ::BI__builtin_s390_vfaezbs: + case SystemZ::BI__builtin_s390_vfaezhs: + case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vfisb: + case SystemZ::BI__builtin_s390_vfidb: + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || + SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); + case SystemZ::BI__builtin_s390_vftcisb: + case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; + case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vstrcb: + case SystemZ::BI__builtin_s390_vstrch: + case SystemZ::BI__builtin_s390_vstrcf: + case SystemZ::BI__builtin_s390_vstrczb: + case SystemZ::BI__builtin_s390_vstrczh: + case SystemZ::BI__builtin_s390_vstrczf: + case SystemZ::BI__builtin_s390_vstrcbs: + case SystemZ::BI__builtin_s390_vstrchs: + case SystemZ::BI__builtin_s390_vstrcfs: + case SystemZ::BI__builtin_s390_vstrczbs: + case SystemZ::BI__builtin_s390_vstrczhs: + case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vfminsb: + case SystemZ::BI__builtin_s390_vfmaxsb: + case SystemZ::BI__builtin_s390_vfmindb: + case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; + case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; + case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; + } + return SemaBuiltinConstantArgRange(TheCall, i, l, u); +} + +/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). +/// This checks that the target supports __builtin_cpu_supports and +/// that the string argument is constant and valid. +static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, + CallExpr *TheCall) { + Expr *Arg = TheCall->getArg(0); + + // Check if the argument is a string literal. + if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) + return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) + << Arg->getSourceRange(); + + // Check the contents of the string. + StringRef Feature = + cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); + if (!TI.validateCpuSupports(Feature)) + return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) + << Arg->getSourceRange(); + return false; +} + +/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). +/// This checks that the target supports __builtin_cpu_is and +/// that the string argument is constant and valid. +static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { + Expr *Arg = TheCall->getArg(0); + + // Check if the argument is a string literal. + if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) + return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) + << Arg->getSourceRange(); + + // Check the contents of the string. + StringRef Feature = + cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); + if (!TI.validateCpuIs(Feature)) + return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) + << Arg->getSourceRange(); + return false; +} + +// Check if the rounding mode is legal. +bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { + // Indicates if this instruction has rounding control or just SAE. + bool HasRC = false; + + unsigned ArgNum = 0; + switch (BuiltinID) { + default: + return false; + case X86::BI__builtin_ia32_vcvttsd2si32: + case X86::BI__builtin_ia32_vcvttsd2si64: + case X86::BI__builtin_ia32_vcvttsd2usi32: + case X86::BI__builtin_ia32_vcvttsd2usi64: + case X86::BI__builtin_ia32_vcvttss2si32: + case X86::BI__builtin_ia32_vcvttss2si64: + case X86::BI__builtin_ia32_vcvttss2usi32: + case X86::BI__builtin_ia32_vcvttss2usi64: + ArgNum = 1; + break; + case X86::BI__builtin_ia32_maxpd512: + case X86::BI__builtin_ia32_maxps512: + case X86::BI__builtin_ia32_minpd512: + case X86::BI__builtin_ia32_minps512: + ArgNum = 2; + break; + case X86::BI__builtin_ia32_cvtps2pd512_mask: + case X86::BI__builtin_ia32_cvttpd2dq512_mask: + case X86::BI__builtin_ia32_cvttpd2qq512_mask: + case X86::BI__builtin_ia32_cvttpd2udq512_mask: + case X86::BI__builtin_ia32_cvttpd2uqq512_mask: + case X86::BI__builtin_ia32_cvttps2dq512_mask: + case X86::BI__builtin_ia32_cvttps2qq512_mask: + case X86::BI__builtin_ia32_cvttps2udq512_mask: + case X86::BI__builtin_ia32_cvttps2uqq512_mask: + case X86::BI__builtin_ia32_exp2pd_mask: + case X86::BI__builtin_ia32_exp2ps_mask: + case X86::BI__builtin_ia32_getexppd512_mask: + case X86::BI__builtin_ia32_getexpps512_mask: + case X86::BI__builtin_ia32_rcp28pd_mask: + case X86::BI__builtin_ia32_rcp28ps_mask: + case X86::BI__builtin_ia32_rsqrt28pd_mask: + case X86::BI__builtin_ia32_rsqrt28ps_mask: + case X86::BI__builtin_ia32_vcomisd: + case X86::BI__builtin_ia32_vcomiss: + case X86::BI__builtin_ia32_vcvtph2ps512_mask: + ArgNum = 3; + break; + case X86::BI__builtin_ia32_cmppd512_mask: + case X86::BI__builtin_ia32_cmpps512_mask: + case X86::BI__builtin_ia32_cmpsd_mask: + case X86::BI__builtin_ia32_cmpss_mask: + case X86::BI__builtin_ia32_cvtss2sd_round_mask: + case X86::BI__builtin_ia32_getexpsd128_round_mask: + case X86::BI__builtin_ia32_getexpss128_round_mask: + case X86::BI__builtin_ia32_getmantpd512_mask: + case X86::BI__builtin_ia32_getmantps512_mask: + case X86::BI__builtin_ia32_maxsd_round_mask: + case X86::BI__builtin_ia32_maxss_round_mask: + case X86::BI__builtin_ia32_minsd_round_mask: + case X86::BI__builtin_ia32_minss_round_mask: + case X86::BI__builtin_ia32_rcp28sd_round_mask: + case X86::BI__builtin_ia32_rcp28ss_round_mask: + case X86::BI__builtin_ia32_reducepd512_mask: + case X86::BI__builtin_ia32_reduceps512_mask: + case X86::BI__builtin_ia32_rndscalepd_mask: + case X86::BI__builtin_ia32_rndscaleps_mask: + case X86::BI__builtin_ia32_rsqrt28sd_round_mask: + case X86::BI__builtin_ia32_rsqrt28ss_round_mask: + ArgNum = 4; + break; + case X86::BI__builtin_ia32_fixupimmpd512_mask: + case X86::BI__builtin_ia32_fixupimmpd512_maskz: + case X86::BI__builtin_ia32_fixupimmps512_mask: + case X86::BI__builtin_ia32_fixupimmps512_maskz: + case X86::BI__builtin_ia32_fixupimmsd_mask: + case X86::BI__builtin_ia32_fixupimmsd_maskz: + case X86::BI__builtin_ia32_fixupimmss_mask: + case X86::BI__builtin_ia32_fixupimmss_maskz: + case X86::BI__builtin_ia32_getmantsd_round_mask: + case X86::BI__builtin_ia32_getmantss_round_mask: + case X86::BI__builtin_ia32_rangepd512_mask: + case X86::BI__builtin_ia32_rangeps512_mask: + case X86::BI__builtin_ia32_rangesd128_round_mask: + case X86::BI__builtin_ia32_rangess128_round_mask: + case X86::BI__builtin_ia32_reducesd_mask: + case X86::BI__builtin_ia32_reducess_mask: + case X86::BI__builtin_ia32_rndscalesd_round_mask: + case X86::BI__builtin_ia32_rndscaless_round_mask: + ArgNum = 5; + break; + case X86::BI__builtin_ia32_vcvtsd2si64: + case X86::BI__builtin_ia32_vcvtsd2si32: + case X86::BI__builtin_ia32_vcvtsd2usi32: + case X86::BI__builtin_ia32_vcvtsd2usi64: + case X86::BI__builtin_ia32_vcvtss2si32: + case X86::BI__builtin_ia32_vcvtss2si64: + case X86::BI__builtin_ia32_vcvtss2usi32: + case X86::BI__builtin_ia32_vcvtss2usi64: + case X86::BI__builtin_ia32_sqrtpd512: + case X86::BI__builtin_ia32_sqrtps512: + ArgNum = 1; + HasRC = true; + break; + case X86::BI__builtin_ia32_addpd512: + case X86::BI__builtin_ia32_addps512: + case X86::BI__builtin_ia32_divpd512: + case X86::BI__builtin_ia32_divps512: + case X86::BI__builtin_ia32_mulpd512: + case X86::BI__builtin_ia32_mulps512: + case X86::BI__builtin_ia32_subpd512: + case X86::BI__builtin_ia32_subps512: + case X86::BI__builtin_ia32_cvtsi2sd64: + case X86::BI__builtin_ia32_cvtsi2ss32: + case X86::BI__builtin_ia32_cvtsi2ss64: + case X86::BI__builtin_ia32_cvtusi2sd64: + case X86::BI__builtin_ia32_cvtusi2ss32: + case X86::BI__builtin_ia32_cvtusi2ss64: + ArgNum = 2; + HasRC = true; + break; + case X86::BI__builtin_ia32_cvtdq2ps512_mask: + case X86::BI__builtin_ia32_cvtudq2ps512_mask: + case X86::BI__builtin_ia32_cvtpd2ps512_mask: + case X86::BI__builtin_ia32_cvtpd2dq512_mask: + case X86::BI__builtin_ia32_cvtpd2qq512_mask: + case X86::BI__builtin_ia32_cvtpd2udq512_mask: + case X86::BI__builtin_ia32_cvtpd2uqq512_mask: + case X86::BI__builtin_ia32_cvtps2dq512_mask: + case X86::BI__builtin_ia32_cvtps2qq512_mask: + case X86::BI__builtin_ia32_cvtps2udq512_mask: + case X86::BI__builtin_ia32_cvtps2uqq512_mask: + case X86::BI__builtin_ia32_cvtqq2pd512_mask: + case X86::BI__builtin_ia32_cvtqq2ps512_mask: + case X86::BI__builtin_ia32_cvtuqq2pd512_mask: + case X86::BI__builtin_ia32_cvtuqq2ps512_mask: + ArgNum = 3; + HasRC = true; + break; + case X86::BI__builtin_ia32_addss_round_mask: + case X86::BI__builtin_ia32_addsd_round_mask: + case X86::BI__builtin_ia32_divss_round_mask: + case X86::BI__builtin_ia32_divsd_round_mask: + case X86::BI__builtin_ia32_mulss_round_mask: + case X86::BI__builtin_ia32_mulsd_round_mask: + case X86::BI__builtin_ia32_subss_round_mask: + case X86::BI__builtin_ia32_subsd_round_mask: + case X86::BI__builtin_ia32_scalefpd512_mask: + case X86::BI__builtin_ia32_scalefps512_mask: + case X86::BI__builtin_ia32_scalefsd_round_mask: + case X86::BI__builtin_ia32_scalefss_round_mask: + case X86::BI__builtin_ia32_cvtsd2ss_round_mask: + case X86::BI__builtin_ia32_sqrtsd_round_mask: + case X86::BI__builtin_ia32_sqrtss_round_mask: + case X86::BI__builtin_ia32_vfmaddsd3_mask: + case X86::BI__builtin_ia32_vfmaddsd3_maskz: + case X86::BI__builtin_ia32_vfmaddsd3_mask3: + case X86::BI__builtin_ia32_vfmaddss3_mask: + case X86::BI__builtin_ia32_vfmaddss3_maskz: + case X86::BI__builtin_ia32_vfmaddss3_mask3: + case X86::BI__builtin_ia32_vfmaddpd512_mask: + case X86::BI__builtin_ia32_vfmaddpd512_maskz: + case X86::BI__builtin_ia32_vfmaddpd512_mask3: + case X86::BI__builtin_ia32_vfmsubpd512_mask3: + case X86::BI__builtin_ia32_vfmaddps512_mask: + case X86::BI__builtin_ia32_vfmaddps512_maskz: + case X86::BI__builtin_ia32_vfmaddps512_mask3: + case X86::BI__builtin_ia32_vfmsubps512_mask3: + case X86::BI__builtin_ia32_vfmaddsubpd512_mask: + case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: + case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: + case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: + case X86::BI__builtin_ia32_vfmaddsubps512_mask: + case X86::BI__builtin_ia32_vfmaddsubps512_maskz: + case X86::BI__builtin_ia32_vfmaddsubps512_mask3: + case X86::BI__builtin_ia32_vfmsubaddps512_mask3: + ArgNum = 4; + HasRC = true; + break; + } + + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit + // is set. If the intrinsic has rounding control(bits 1:0), make sure its only + // combined with ROUND_NO_EXC. If the intrinsic does not have rounding + // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. + if (Result == 4/*ROUND_CUR_DIRECTION*/ || + Result == 8/*ROUND_NO_EXC*/ || + (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || + (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) + return false; + + return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) + << Arg->getSourceRange(); +} + +// Check if the gather/scatter scale is legal. +bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, + CallExpr *TheCall) { + unsigned ArgNum = 0; + switch (BuiltinID) { + default: + return false; + case X86::BI__builtin_ia32_gatherpfdpd: + case X86::BI__builtin_ia32_gatherpfdps: + case X86::BI__builtin_ia32_gatherpfqpd: + case X86::BI__builtin_ia32_gatherpfqps: + case X86::BI__builtin_ia32_scatterpfdpd: + case X86::BI__builtin_ia32_scatterpfdps: + case X86::BI__builtin_ia32_scatterpfqpd: + case X86::BI__builtin_ia32_scatterpfqps: + ArgNum = 3; + break; + case X86::BI__builtin_ia32_gatherd_pd: + case X86::BI__builtin_ia32_gatherd_pd256: + case X86::BI__builtin_ia32_gatherq_pd: + case X86::BI__builtin_ia32_gatherq_pd256: + case X86::BI__builtin_ia32_gatherd_ps: + case X86::BI__builtin_ia32_gatherd_ps256: + case X86::BI__builtin_ia32_gatherq_ps: + case X86::BI__builtin_ia32_gatherq_ps256: + case X86::BI__builtin_ia32_gatherd_q: + case X86::BI__builtin_ia32_gatherd_q256: + case X86::BI__builtin_ia32_gatherq_q: + case X86::BI__builtin_ia32_gatherq_q256: + case X86::BI__builtin_ia32_gatherd_d: + case X86::BI__builtin_ia32_gatherd_d256: + case X86::BI__builtin_ia32_gatherq_d: + case X86::BI__builtin_ia32_gatherq_d256: + case X86::BI__builtin_ia32_gather3div2df: + case X86::BI__builtin_ia32_gather3div2di: + case X86::BI__builtin_ia32_gather3div4df: + case X86::BI__builtin_ia32_gather3div4di: + case X86::BI__builtin_ia32_gather3div4sf: + case X86::BI__builtin_ia32_gather3div4si: + case X86::BI__builtin_ia32_gather3div8sf: + case X86::BI__builtin_ia32_gather3div8si: + case X86::BI__builtin_ia32_gather3siv2df: + case X86::BI__builtin_ia32_gather3siv2di: + case X86::BI__builtin_ia32_gather3siv4df: + case X86::BI__builtin_ia32_gather3siv4di: + case X86::BI__builtin_ia32_gather3siv4sf: + case X86::BI__builtin_ia32_gather3siv4si: + case X86::BI__builtin_ia32_gather3siv8sf: + case X86::BI__builtin_ia32_gather3siv8si: + case X86::BI__builtin_ia32_gathersiv8df: + case X86::BI__builtin_ia32_gathersiv16sf: + case X86::BI__builtin_ia32_gatherdiv8df: + case X86::BI__builtin_ia32_gatherdiv16sf: + case X86::BI__builtin_ia32_gathersiv8di: + case X86::BI__builtin_ia32_gathersiv16si: + case X86::BI__builtin_ia32_gatherdiv8di: + case X86::BI__builtin_ia32_gatherdiv16si: + case X86::BI__builtin_ia32_scatterdiv2df: + case X86::BI__builtin_ia32_scatterdiv2di: + case X86::BI__builtin_ia32_scatterdiv4df: + case X86::BI__builtin_ia32_scatterdiv4di: + case X86::BI__builtin_ia32_scatterdiv4sf: + case X86::BI__builtin_ia32_scatterdiv4si: + case X86::BI__builtin_ia32_scatterdiv8sf: + case X86::BI__builtin_ia32_scatterdiv8si: + case X86::BI__builtin_ia32_scattersiv2df: + case X86::BI__builtin_ia32_scattersiv2di: + case X86::BI__builtin_ia32_scattersiv4df: + case X86::BI__builtin_ia32_scattersiv4di: + case X86::BI__builtin_ia32_scattersiv4sf: + case X86::BI__builtin_ia32_scattersiv4si: + case X86::BI__builtin_ia32_scattersiv8sf: + case X86::BI__builtin_ia32_scattersiv8si: + case X86::BI__builtin_ia32_scattersiv8df: + case X86::BI__builtin_ia32_scattersiv16sf: + case X86::BI__builtin_ia32_scatterdiv8df: + case X86::BI__builtin_ia32_scatterdiv16sf: + case X86::BI__builtin_ia32_scattersiv8di: + case X86::BI__builtin_ia32_scattersiv16si: + case X86::BI__builtin_ia32_scatterdiv8di: + case X86::BI__builtin_ia32_scatterdiv16si: + ArgNum = 4; + break; + } + + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + if (Result == 1 || Result == 2 || Result == 4 || Result == 8) + return false; + + return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) + << Arg->getSourceRange(); +} + +enum { TileRegLow = 0, TileRegHigh = 7 }; + +bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, + ArrayRef<int> ArgNums) { + for (int ArgNum : ArgNums) { + if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) + return true; + } + return false; +} + +bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, int ArgNum) { + return SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh); +} + +bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, + ArrayRef<int> ArgNums) { + // Because the max number of tile register is TileRegHigh + 1, so here we use + // each bit to represent the usage of them in bitset. + std::bitset<TileRegHigh + 1> ArgValues; + for (int ArgNum : ArgNums) { + llvm::APSInt Arg; + SemaBuiltinConstantArg(TheCall, ArgNum, Arg); + int ArgExtValue = Arg.getExtValue(); + assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && + "Incorrect tile register num."); + if (ArgValues.test(ArgExtValue)) + return Diag(TheCall->getBeginLoc(), + diag::err_x86_builtin_tile_arg_duplicate) + << TheCall->getArg(ArgNum)->getSourceRange(); + ArgValues.set(ArgExtValue); + } + return false; +} + +bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, + ArrayRef<int> ArgNums) { + return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || + CheckX86BuiltinTileDuplicate(TheCall, ArgNums); +} + +bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { + switch (BuiltinID) { + default: + return false; + case X86::BI__builtin_ia32_tileloadd64: + case X86::BI__builtin_ia32_tileloaddt164: + case X86::BI__builtin_ia32_tilestored64: + case X86::BI__builtin_ia32_tilezero: + return CheckX86BuiltinTileArgumentsRange(TheCall, 0); + case X86::BI__builtin_ia32_tdpbssd: + case X86::BI__builtin_ia32_tdpbsud: + case X86::BI__builtin_ia32_tdpbusd: + case X86::BI__builtin_ia32_tdpbuud: + case X86::BI__builtin_ia32_tdpbf16ps: + return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); + } +} +static bool isX86_32Builtin(unsigned BuiltinID) { + // These builtins only work on x86-32 targets. + switch (BuiltinID) { + case X86::BI__builtin_ia32_readeflags_u32: + case X86::BI__builtin_ia32_writeeflags_u32: + return true; + } + + return false; +} + +bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, + CallExpr *TheCall) { + if (BuiltinID == X86::BI__builtin_cpu_supports) + return SemaBuiltinCpuSupports(*this, TI, TheCall); + + if (BuiltinID == X86::BI__builtin_cpu_is) + return SemaBuiltinCpuIs(*this, TI, TheCall); + + // Check for 32-bit only builtins on a 64-bit target. + const llvm::Triple &TT = TI.getTriple(); + if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) + return Diag(TheCall->getCallee()->getBeginLoc(), + diag::err_32_bit_builtin_64_bit_tgt); + + // If the intrinsic has rounding or SAE make sure its valid. + if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) + return true; + + // If the intrinsic has a gather/scatter scale immediate make sure its valid. + if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) + return true; + + // If the intrinsic has a tile arguments, make sure they are valid. + if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) + return true; + + // For intrinsics which take an immediate value as part of the instruction, + // range check them here. + int i = 0, l = 0, u = 0; + switch (BuiltinID) { + default: + return false; + case X86::BI__builtin_ia32_vec_ext_v2si: + case X86::BI__builtin_ia32_vec_ext_v2di: + case X86::BI__builtin_ia32_vextractf128_pd256: + case X86::BI__builtin_ia32_vextractf128_ps256: + case X86::BI__builtin_ia32_vextractf128_si256: + case X86::BI__builtin_ia32_extract128i256: + case X86::BI__builtin_ia32_extractf64x4_mask: + case X86::BI__builtin_ia32_extracti64x4_mask: + case X86::BI__builtin_ia32_extractf32x8_mask: + case X86::BI__builtin_ia32_extracti32x8_mask: + case X86::BI__builtin_ia32_extractf64x2_256_mask: + case X86::BI__builtin_ia32_extracti64x2_256_mask: + case X86::BI__builtin_ia32_extractf32x4_256_mask: + case X86::BI__builtin_ia32_extracti32x4_256_mask: + i = 1; l = 0; u = 1; + break; + case X86::BI__builtin_ia32_vec_set_v2di: + case X86::BI__builtin_ia32_vinsertf128_pd256: + case X86::BI__builtin_ia32_vinsertf128_ps256: + case X86::BI__builtin_ia32_vinsertf128_si256: + case X86::BI__builtin_ia32_insert128i256: + case X86::BI__builtin_ia32_insertf32x8: + case X86::BI__builtin_ia32_inserti32x8: + case X86::BI__builtin_ia32_insertf64x4: + case X86::BI__builtin_ia32_inserti64x4: + case X86::BI__builtin_ia32_insertf64x2_256: + case X86::BI__builtin_ia32_inserti64x2_256: + case X86::BI__builtin_ia32_insertf32x4_256: + case X86::BI__builtin_ia32_inserti32x4_256: + i = 2; l = 0; u = 1; + break; + case X86::BI__builtin_ia32_vpermilpd: + case X86::BI__builtin_ia32_vec_ext_v4hi: + case X86::BI__builtin_ia32_vec_ext_v4si: + case X86::BI__builtin_ia32_vec_ext_v4sf: + case X86::BI__builtin_ia32_vec_ext_v4di: + case X86::BI__builtin_ia32_extractf32x4_mask: + case X86::BI__builtin_ia32_extracti32x4_mask: + case X86::BI__builtin_ia32_extractf64x2_512_mask: + case X86::BI__builtin_ia32_extracti64x2_512_mask: + i = 1; l = 0; u = 3; + break; + case X86::BI_mm_prefetch: + case X86::BI__builtin_ia32_vec_ext_v8hi: + case X86::BI__builtin_ia32_vec_ext_v8si: + i = 1; l = 0; u = 7; + break; + case X86::BI__builtin_ia32_sha1rnds4: + case X86::BI__builtin_ia32_blendpd: + case X86::BI__builtin_ia32_shufpd: + case X86::BI__builtin_ia32_vec_set_v4hi: + case X86::BI__builtin_ia32_vec_set_v4si: + case X86::BI__builtin_ia32_vec_set_v4di: + case X86::BI__builtin_ia32_shuf_f32x4_256: + case X86::BI__builtin_ia32_shuf_f64x2_256: + case X86::BI__builtin_ia32_shuf_i32x4_256: + case X86::BI__builtin_ia32_shuf_i64x2_256: + case X86::BI__builtin_ia32_insertf64x2_512: + case X86::BI__builtin_ia32_inserti64x2_512: + case X86::BI__builtin_ia32_insertf32x4: + case X86::BI__builtin_ia32_inserti32x4: + i = 2; l = 0; u = 3; + break; + case X86::BI__builtin_ia32_vpermil2pd: + case X86::BI__builtin_ia32_vpermil2pd256: + case X86::BI__builtin_ia32_vpermil2ps: + case X86::BI__builtin_ia32_vpermil2ps256: + i = 3; l = 0; u = 3; + break; + case X86::BI__builtin_ia32_cmpb128_mask: + case X86::BI__builtin_ia32_cmpw128_mask: + case X86::BI__builtin_ia32_cmpd128_mask: + case X86::BI__builtin_ia32_cmpq128_mask: + case X86::BI__builtin_ia32_cmpb256_mask: + case X86::BI__builtin_ia32_cmpw256_mask: + case X86::BI__builtin_ia32_cmpd256_mask: + case X86::BI__builtin_ia32_cmpq256_mask: + case X86::BI__builtin_ia32_cmpb512_mask: + case X86::BI__builtin_ia32_cmpw512_mask: + case X86::BI__builtin_ia32_cmpd512_mask: + case X86::BI__builtin_ia32_cmpq512_mask: + case X86::BI__builtin_ia32_ucmpb128_mask: + case X86::BI__builtin_ia32_ucmpw128_mask: + case X86::BI__builtin_ia32_ucmpd128_mask: + case X86::BI__builtin_ia32_ucmpq128_mask: + case X86::BI__builtin_ia32_ucmpb256_mask: + case X86::BI__builtin_ia32_ucmpw256_mask: + case X86::BI__builtin_ia32_ucmpd256_mask: + case X86::BI__builtin_ia32_ucmpq256_mask: + case X86::BI__builtin_ia32_ucmpb512_mask: + case X86::BI__builtin_ia32_ucmpw512_mask: + case X86::BI__builtin_ia32_ucmpd512_mask: + case X86::BI__builtin_ia32_ucmpq512_mask: + case X86::BI__builtin_ia32_vpcomub: + case X86::BI__builtin_ia32_vpcomuw: + case X86::BI__builtin_ia32_vpcomud: + case X86::BI__builtin_ia32_vpcomuq: + case X86::BI__builtin_ia32_vpcomb: + case X86::BI__builtin_ia32_vpcomw: + case X86::BI__builtin_ia32_vpcomd: + case X86::BI__builtin_ia32_vpcomq: + case X86::BI__builtin_ia32_vec_set_v8hi: + case X86::BI__builtin_ia32_vec_set_v8si: + i = 2; l = 0; u = 7; + break; + case X86::BI__builtin_ia32_vpermilpd256: + case X86::BI__builtin_ia32_roundps: + case X86::BI__builtin_ia32_roundpd: + case X86::BI__builtin_ia32_roundps256: + case X86::BI__builtin_ia32_roundpd256: + case X86::BI__builtin_ia32_getmantpd128_mask: + case X86::BI__builtin_ia32_getmantpd256_mask: + case X86::BI__builtin_ia32_getmantps128_mask: + case X86::BI__builtin_ia32_getmantps256_mask: + case X86::BI__builtin_ia32_getmantpd512_mask: + case X86::BI__builtin_ia32_getmantps512_mask: + case X86::BI__builtin_ia32_vec_ext_v16qi: + case X86::BI__builtin_ia32_vec_ext_v16hi: + i = 1; l = 0; u = 15; + break; + case X86::BI__builtin_ia32_pblendd128: + case X86::BI__builtin_ia32_blendps: + case X86::BI__builtin_ia32_blendpd256: + case X86::BI__builtin_ia32_shufpd256: + case X86::BI__builtin_ia32_roundss: + case X86::BI__builtin_ia32_roundsd: + case X86::BI__builtin_ia32_rangepd128_mask: + case X86::BI__builtin_ia32_rangepd256_mask: + case X86::BI__builtin_ia32_rangepd512_mask: + case X86::BI__builtin_ia32_rangeps128_mask: + case X86::BI__builtin_ia32_rangeps256_mask: + case X86::BI__builtin_ia32_rangeps512_mask: + case X86::BI__builtin_ia32_getmantsd_round_mask: + case X86::BI__builtin_ia32_getmantss_round_mask: + case X86::BI__builtin_ia32_vec_set_v16qi: + case X86::BI__builtin_ia32_vec_set_v16hi: + i = 2; l = 0; u = 15; + break; + case X86::BI__builtin_ia32_vec_ext_v32qi: + i = 1; l = 0; u = 31; + break; + case X86::BI__builtin_ia32_cmpps: + case X86::BI__builtin_ia32_cmpss: + case X86::BI__builtin_ia32_cmppd: + case X86::BI__builtin_ia32_cmpsd: + case X86::BI__builtin_ia32_cmpps256: + case X86::BI__builtin_ia32_cmppd256: + case X86::BI__builtin_ia32_cmpps128_mask: + case X86::BI__builtin_ia32_cmppd128_mask: + case X86::BI__builtin_ia32_cmpps256_mask: + case X86::BI__builtin_ia32_cmppd256_mask: + case X86::BI__builtin_ia32_cmpps512_mask: + case X86::BI__builtin_ia32_cmppd512_mask: + case X86::BI__builtin_ia32_cmpsd_mask: + case X86::BI__builtin_ia32_cmpss_mask: + case X86::BI__builtin_ia32_vec_set_v32qi: + i = 2; l = 0; u = 31; + break; + case X86::BI__builtin_ia32_permdf256: + case X86::BI__builtin_ia32_permdi256: + case X86::BI__builtin_ia32_permdf512: + case X86::BI__builtin_ia32_permdi512: + case X86::BI__builtin_ia32_vpermilps: + case X86::BI__builtin_ia32_vpermilps256: + case X86::BI__builtin_ia32_vpermilpd512: + case X86::BI__builtin_ia32_vpermilps512: + case X86::BI__builtin_ia32_pshufd: + case X86::BI__builtin_ia32_pshufd256: + case X86::BI__builtin_ia32_pshufd512: + case X86::BI__builtin_ia32_pshufhw: + case X86::BI__builtin_ia32_pshufhw256: + case X86::BI__builtin_ia32_pshufhw512: + case X86::BI__builtin_ia32_pshuflw: + case X86::BI__builtin_ia32_pshuflw256: + case X86::BI__builtin_ia32_pshuflw512: + case X86::BI__builtin_ia32_vcvtps2ph: + case X86::BI__builtin_ia32_vcvtps2ph_mask: + case X86::BI__builtin_ia32_vcvtps2ph256: + case X86::BI__builtin_ia32_vcvtps2ph256_mask: + case X86::BI__builtin_ia32_vcvtps2ph512_mask: + case X86::BI__builtin_ia32_rndscaleps_128_mask: + case X86::BI__builtin_ia32_rndscalepd_128_mask: + case X86::BI__builtin_ia32_rndscaleps_256_mask: + case X86::BI__builtin_ia32_rndscalepd_256_mask: + case X86::BI__builtin_ia32_rndscaleps_mask: + case X86::BI__builtin_ia32_rndscalepd_mask: + case X86::BI__builtin_ia32_reducepd128_mask: + case X86::BI__builtin_ia32_reducepd256_mask: + case X86::BI__builtin_ia32_reducepd512_mask: + case X86::BI__builtin_ia32_reduceps128_mask: + case X86::BI__builtin_ia32_reduceps256_mask: + case X86::BI__builtin_ia32_reduceps512_mask: + case X86::BI__builtin_ia32_prold512: + case X86::BI__builtin_ia32_prolq512: + case X86::BI__builtin_ia32_prold128: + case X86::BI__builtin_ia32_prold256: + case X86::BI__builtin_ia32_prolq128: + case X86::BI__builtin_ia32_prolq256: + case X86::BI__builtin_ia32_prord512: + case X86::BI__builtin_ia32_prorq512: + case X86::BI__builtin_ia32_prord128: + case X86::BI__builtin_ia32_prord256: + case X86::BI__builtin_ia32_prorq128: + case X86::BI__builtin_ia32_prorq256: + case X86::BI__builtin_ia32_fpclasspd128_mask: + case X86::BI__builtin_ia32_fpclasspd256_mask: + case X86::BI__builtin_ia32_fpclassps128_mask: + case X86::BI__builtin_ia32_fpclassps256_mask: + case X86::BI__builtin_ia32_fpclassps512_mask: + case X86::BI__builtin_ia32_fpclasspd512_mask: + case X86::BI__builtin_ia32_fpclasssd_mask: + case X86::BI__builtin_ia32_fpclassss_mask: + case X86::BI__builtin_ia32_pslldqi128_byteshift: + case X86::BI__builtin_ia32_pslldqi256_byteshift: + case X86::BI__builtin_ia32_pslldqi512_byteshift: + case X86::BI__builtin_ia32_psrldqi128_byteshift: + case X86::BI__builtin_ia32_psrldqi256_byteshift: + case X86::BI__builtin_ia32_psrldqi512_byteshift: + case X86::BI__builtin_ia32_kshiftliqi: + case X86::BI__builtin_ia32_kshiftlihi: + case X86::BI__builtin_ia32_kshiftlisi: + case X86::BI__builtin_ia32_kshiftlidi: + case X86::BI__builtin_ia32_kshiftriqi: + case X86::BI__builtin_ia32_kshiftrihi: + case X86::BI__builtin_ia32_kshiftrisi: + case X86::BI__builtin_ia32_kshiftridi: + i = 1; l = 0; u = 255; + break; + case X86::BI__builtin_ia32_vperm2f128_pd256: + case X86::BI__builtin_ia32_vperm2f128_ps256: + case X86::BI__builtin_ia32_vperm2f128_si256: + case X86::BI__builtin_ia32_permti256: + case X86::BI__builtin_ia32_pblendw128: + case X86::BI__builtin_ia32_pblendw256: + case X86::BI__builtin_ia32_blendps256: + case X86::BI__builtin_ia32_pblendd256: + case X86::BI__builtin_ia32_palignr128: + case X86::BI__builtin_ia32_palignr256: + case X86::BI__builtin_ia32_palignr512: + case X86::BI__builtin_ia32_alignq512: + case X86::BI__builtin_ia32_alignd512: + case X86::BI__builtin_ia32_alignd128: + case X86::BI__builtin_ia32_alignd256: + case X86::BI__builtin_ia32_alignq128: + case X86::BI__builtin_ia32_alignq256: + case X86::BI__builtin_ia32_vcomisd: + case X86::BI__builtin_ia32_vcomiss: + case X86::BI__builtin_ia32_shuf_f32x4: + case X86::BI__builtin_ia32_shuf_f64x2: + case X86::BI__builtin_ia32_shuf_i32x4: + case X86::BI__builtin_ia32_shuf_i64x2: + case X86::BI__builtin_ia32_shufpd512: + case X86::BI__builtin_ia32_shufps: + case X86::BI__builtin_ia32_shufps256: + case X86::BI__builtin_ia32_shufps512: + case X86::BI__builtin_ia32_dbpsadbw128: + case X86::BI__builtin_ia32_dbpsadbw256: + case X86::BI__builtin_ia32_dbpsadbw512: + case X86::BI__builtin_ia32_vpshldd128: + case X86::BI__builtin_ia32_vpshldd256: + case X86::BI__builtin_ia32_vpshldd512: + case X86::BI__builtin_ia32_vpshldq128: + case X86::BI__builtin_ia32_vpshldq256: + case X86::BI__builtin_ia32_vpshldq512: + case X86::BI__builtin_ia32_vpshldw128: + case X86::BI__builtin_ia32_vpshldw256: + case X86::BI__builtin_ia32_vpshldw512: + case X86::BI__builtin_ia32_vpshrdd128: + case X86::BI__builtin_ia32_vpshrdd256: + case X86::BI__builtin_ia32_vpshrdd512: + case X86::BI__builtin_ia32_vpshrdq128: + case X86::BI__builtin_ia32_vpshrdq256: + case X86::BI__builtin_ia32_vpshrdq512: + case X86::BI__builtin_ia32_vpshrdw128: + case X86::BI__builtin_ia32_vpshrdw256: + case X86::BI__builtin_ia32_vpshrdw512: + i = 2; l = 0; u = 255; + break; + case X86::BI__builtin_ia32_fixupimmpd512_mask: + case X86::BI__builtin_ia32_fixupimmpd512_maskz: + case X86::BI__builtin_ia32_fixupimmps512_mask: + case X86::BI__builtin_ia32_fixupimmps512_maskz: + case X86::BI__builtin_ia32_fixupimmsd_mask: + case X86::BI__builtin_ia32_fixupimmsd_maskz: + case X86::BI__builtin_ia32_fixupimmss_mask: + case X86::BI__builtin_ia32_fixupimmss_maskz: + case X86::BI__builtin_ia32_fixupimmpd128_mask: + case X86::BI__builtin_ia32_fixupimmpd128_maskz: + case X86::BI__builtin_ia32_fixupimmpd256_mask: + case X86::BI__builtin_ia32_fixupimmpd256_maskz: + case X86::BI__builtin_ia32_fixupimmps128_mask: + case X86::BI__builtin_ia32_fixupimmps128_maskz: + case X86::BI__builtin_ia32_fixupimmps256_mask: + case X86::BI__builtin_ia32_fixupimmps256_maskz: + case X86::BI__builtin_ia32_pternlogd512_mask: + case X86::BI__builtin_ia32_pternlogd512_maskz: + case X86::BI__builtin_ia32_pternlogq512_mask: + case X86::BI__builtin_ia32_pternlogq512_maskz: + case X86::BI__builtin_ia32_pternlogd128_mask: + case X86::BI__builtin_ia32_pternlogd128_maskz: + case X86::BI__builtin_ia32_pternlogd256_mask: + case X86::BI__builtin_ia32_pternlogd256_maskz: + case X86::BI__builtin_ia32_pternlogq128_mask: + case X86::BI__builtin_ia32_pternlogq128_maskz: + case X86::BI__builtin_ia32_pternlogq256_mask: + case X86::BI__builtin_ia32_pternlogq256_maskz: + i = 3; l = 0; u = 255; + break; + case X86::BI__builtin_ia32_gatherpfdpd: + case X86::BI__builtin_ia32_gatherpfdps: + case X86::BI__builtin_ia32_gatherpfqpd: + case X86::BI__builtin_ia32_gatherpfqps: + case X86::BI__builtin_ia32_scatterpfdpd: + case X86::BI__builtin_ia32_scatterpfdps: + case X86::BI__builtin_ia32_scatterpfqpd: + case X86::BI__builtin_ia32_scatterpfqps: + i = 4; l = 2; u = 3; + break; + case X86::BI__builtin_ia32_reducesd_mask: + case X86::BI__builtin_ia32_reducess_mask: + case X86::BI__builtin_ia32_rndscalesd_round_mask: + case X86::BI__builtin_ia32_rndscaless_round_mask: + i = 4; l = 0; u = 255; + break; + } + + // Note that we don't force a hard error on the range check here, allowing + // template-generated or macro-generated dead code to potentially have out-of- + // range values. These need to code generate, but don't need to necessarily + // make any sense. We use a warning that defaults to an error. + return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); +} + +/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo +/// parameter with the FormatAttr's correct format_idx and firstDataArg. +/// Returns true when the format fits the function and the FormatStringInfo has +/// been populated. +bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, + FormatStringInfo *FSI) { + FSI->HasVAListArg = Format->getFirstArg() == 0; + FSI->FormatIdx = Format->getFormatIdx() - 1; + FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; + + // The way the format attribute works in GCC, the implicit this argument + // of member functions is counted. However, it doesn't appear in our own + // lists, so decrement format_idx in that case. + if (IsCXXMember) { + if(FSI->FormatIdx == 0) + return false; + --FSI->FormatIdx; + if (FSI->FirstDataArg != 0) + --FSI->FirstDataArg; + } + return true; +} + +/// Checks if a the given expression evaluates to null. +/// +/// Returns true if the value evaluates to null. +static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { + // If the expression has non-null type, it doesn't evaluate to null. + if (auto nullability + = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { + if (*nullability == NullabilityKind::NonNull) + return false; + } + + // As a special case, transparent unions initialized with zero are + // considered null for the purposes of the nonnull attribute. + if (const RecordType *UT = Expr->getType()->getAsUnionType()) { + if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) + if (const CompoundLiteralExpr *CLE = + dyn_cast<CompoundLiteralExpr>(Expr)) + if (const InitListExpr *ILE = + dyn_cast<InitListExpr>(CLE->getInitializer())) + Expr = ILE->getInit(0); + } + + bool Result; + return (!Expr->isValueDependent() && + Expr->EvaluateAsBooleanCondition(Result, S.Context) && + !Result); +} + +static void CheckNonNullArgument(Sema &S, + const Expr *ArgExpr, + SourceLocation CallSiteLoc) { + if (CheckNonNullExpr(S, ArgExpr)) + S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, + S.PDiag(diag::warn_null_arg) + << ArgExpr->getSourceRange()); +} + +bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { + FormatStringInfo FSI; + if ((GetFormatStringType(Format) == FST_NSString) && + getFormatStringInfo(Format, false, &FSI)) { + Idx = FSI.FormatIdx; + return true; + } + return false; +} + +/// Diagnose use of %s directive in an NSString which is being passed +/// as formatting string to formatting method. +static void +DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, + const NamedDecl *FDecl, + Expr **Args, + unsigned NumArgs) { + unsigned Idx = 0; + bool Format = false; + ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); + if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { + Idx = 2; + Format = true; + } + else + for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { + if (S.GetFormatNSStringIdx(I, Idx)) { + Format = true; + break; + } + } + if (!Format || NumArgs <= Idx) + return; + const Expr *FormatExpr = Args[Idx]; + if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) + FormatExpr = CSCE->getSubExpr(); + const StringLiteral *FormatString; + if (const ObjCStringLiteral *OSL = + dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) + FormatString = OSL->getString(); + else + FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); + if (!FormatString) + return; + if (S.FormatStringHasSArg(FormatString)) { + S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) + << "%s" << 1 << 1; + S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) + << FDecl->getDeclName(); + } +} + +/// Determine whether the given type has a non-null nullability annotation. +static bool isNonNullType(ASTContext &ctx, QualType type) { + if (auto nullability = type->getNullability(ctx)) + return *nullability == NullabilityKind::NonNull; + + return false; +} + +static void CheckNonNullArguments(Sema &S, + const NamedDecl *FDecl, + const FunctionProtoType *Proto, + ArrayRef<const Expr *> Args, + SourceLocation CallSiteLoc) { + assert((FDecl || Proto) && "Need a function declaration or prototype"); + + // Already checked by by constant evaluator. + if (S.isConstantEvaluated()) + return; + // Check the attributes attached to the method/function itself. + llvm::SmallBitVector NonNullArgs; + if (FDecl) { + // Handle the nonnull attribute on the function/method declaration itself. + for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { + if (!NonNull->args_size()) { + // Easy case: all pointer arguments are nonnull. + for (const auto *Arg : Args) + if (S.isValidPointerAttrType(Arg->getType())) + CheckNonNullArgument(S, Arg, CallSiteLoc); + return; + } + + for (const ParamIdx &Idx : NonNull->args()) { + unsigned IdxAST = Idx.getASTIndex(); + if (IdxAST >= Args.size()) + continue; + if (NonNullArgs.empty()) + NonNullArgs.resize(Args.size()); + NonNullArgs.set(IdxAST); + } + } + } + + if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { + // Handle the nonnull attribute on the parameters of the + // function/method. + ArrayRef<ParmVarDecl*> parms; + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) + parms = FD->parameters(); + else + parms = cast<ObjCMethodDecl>(FDecl)->parameters(); + + unsigned ParamIndex = 0; + for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); + I != E; ++I, ++ParamIndex) { + const ParmVarDecl *PVD = *I; + if (PVD->hasAttr<NonNullAttr>() || + isNonNullType(S.Context, PVD->getType())) { + if (NonNullArgs.empty()) + NonNullArgs.resize(Args.size()); + + NonNullArgs.set(ParamIndex); + } + } + } else { + // If we have a non-function, non-method declaration but no + // function prototype, try to dig out the function prototype. + if (!Proto) { + if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { + QualType type = VD->getType().getNonReferenceType(); + if (auto pointerType = type->getAs<PointerType>()) + type = pointerType->getPointeeType(); + else if (auto blockType = type->getAs<BlockPointerType>()) + type = blockType->getPointeeType(); + // FIXME: data member pointers? + + // Dig out the function prototype, if there is one. + Proto = type->getAs<FunctionProtoType>(); + } + } + + // Fill in non-null argument information from the nullability + // information on the parameter types (if we have them). + if (Proto) { + unsigned Index = 0; + for (auto paramType : Proto->getParamTypes()) { + if (isNonNullType(S.Context, paramType)) { + if (NonNullArgs.empty()) + NonNullArgs.resize(Args.size()); + + NonNullArgs.set(Index); + } + + ++Index; + } + } + } + + // Check for non-null arguments. + for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); + ArgIndex != ArgIndexEnd; ++ArgIndex) { + if (NonNullArgs[ArgIndex]) + CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); + } +} + +/// Handles the checks for format strings, non-POD arguments to vararg +/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if +/// attributes. +void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, + const Expr *ThisArg, ArrayRef<const Expr *> Args, + bool IsMemberFunction, SourceLocation Loc, + SourceRange Range, VariadicCallType CallType) { + // FIXME: We should check as much as we can in the template definition. + if (CurContext->isDependentContext()) + return; + + // Printf and scanf checking. + llvm::SmallBitVector CheckedVarArgs; + if (FDecl) { + for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { + // Only create vector if there are format attributes. + CheckedVarArgs.resize(Args.size()); + + CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, + CheckedVarArgs); + } + } + + // Refuse POD arguments that weren't caught by the format string + // checks above. + auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); + if (CallType != VariadicDoesNotApply && + (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { + unsigned NumParams = Proto ? Proto->getNumParams() + : FDecl && isa<FunctionDecl>(FDecl) + ? cast<FunctionDecl>(FDecl)->getNumParams() + : FDecl && isa<ObjCMethodDecl>(FDecl) + ? cast<ObjCMethodDecl>(FDecl)->param_size() + : 0; + + for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { + // Args[ArgIdx] can be null in malformed code. + if (const Expr *Arg = Args[ArgIdx]) { + if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) + checkVariadicArgument(Arg, CallType); + } + } + } + + if (FDecl || Proto) { + CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); + + // Type safety checking. + if (FDecl) { + for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) + CheckArgumentWithTypeTag(I, Args, Loc); + } + } + + if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { + auto *AA = FDecl->getAttr<AllocAlignAttr>(); + const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; + if (!Arg->isValueDependent()) { + Expr::EvalResult Align; + if (Arg->EvaluateAsInt(Align, Context)) { + const llvm::APSInt &I = Align.Val.getInt(); + if (!I.isPowerOf2()) + Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) + << Arg->getSourceRange(); + + if (I > Sema::MaximumAlignment) + Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) + << Arg->getSourceRange() << Sema::MaximumAlignment; + } + } + } + + if (FD) + diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); +} + +/// CheckConstructorCall - Check a constructor call for correctness and safety +/// properties not enforced by the C type system. +void Sema::CheckConstructorCall(FunctionDecl *FDecl, + ArrayRef<const Expr *> Args, + const FunctionProtoType *Proto, + SourceLocation Loc) { + VariadicCallType CallType = + Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; + checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, + Loc, SourceRange(), CallType); +} + +/// CheckFunctionCall - Check a direct function call for various correctness +/// and safety properties not strictly enforced by the C type system. +bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, + const FunctionProtoType *Proto) { + bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && + isa<CXXMethodDecl>(FDecl); + bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || + IsMemberOperatorCall; + VariadicCallType CallType = getVariadicCallType(FDecl, Proto, + TheCall->getCallee()); + Expr** Args = TheCall->getArgs(); + unsigned NumArgs = TheCall->getNumArgs(); + + Expr *ImplicitThis = nullptr; + if (IsMemberOperatorCall) { + // If this is a call to a member operator, hide the first argument + // from checkCall. + // FIXME: Our choice of AST representation here is less than ideal. + ImplicitThis = Args[0]; + ++Args; + --NumArgs; + } else if (IsMemberFunction) + ImplicitThis = + cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); + + checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), + IsMemberFunction, TheCall->getRParenLoc(), + TheCall->getCallee()->getSourceRange(), CallType); + + IdentifierInfo *FnInfo = FDecl->getIdentifier(); + // None of the checks below are needed for functions that don't have + // simple names (e.g., C++ conversion functions). + if (!FnInfo) + return false; + + CheckAbsoluteValueFunction(TheCall, FDecl); + CheckMaxUnsignedZero(TheCall, FDecl); + + if (getLangOpts().ObjC) + DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); + + unsigned CMId = FDecl->getMemoryFunctionKind(); + if (CMId == 0) + return false; + + // Handle memory setting and copying functions. + if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) + CheckStrlcpycatArguments(TheCall, FnInfo); + else if (CMId == Builtin::BIstrncat) + CheckStrncatArguments(TheCall, FnInfo); + else + CheckMemaccessArguments(TheCall, CMId, FnInfo); + + return false; +} + +bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, + ArrayRef<const Expr *> Args) { + VariadicCallType CallType = + Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; + + checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, + /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), + CallType); + + return false; +} + +bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, + const FunctionProtoType *Proto) { + QualType Ty; + if (const auto *V = dyn_cast<VarDecl>(NDecl)) + Ty = V->getType().getNonReferenceType(); + else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) + Ty = F->getType().getNonReferenceType(); + else + return false; + + if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && + !Ty->isFunctionProtoType()) + return false; + + VariadicCallType CallType; + if (!Proto || !Proto->isVariadic()) { + CallType = VariadicDoesNotApply; + } else if (Ty->isBlockPointerType()) { + CallType = VariadicBlock; + } else { // Ty->isFunctionPointerType() + CallType = VariadicFunction; + } + + checkCall(NDecl, Proto, /*ThisArg=*/nullptr, + llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), + /*IsMemberFunction=*/false, TheCall->getRParenLoc(), + TheCall->getCallee()->getSourceRange(), CallType); + + return false; +} + +/// Checks function calls when a FunctionDecl or a NamedDecl is not available, +/// such as function pointers returned from functions. +bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { + VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, + TheCall->getCallee()); + checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, + llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), + /*IsMemberFunction=*/false, TheCall->getRParenLoc(), + TheCall->getCallee()->getSourceRange(), CallType); + + return false; +} + +static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { + if (!llvm::isValidAtomicOrderingCABI(Ordering)) + return false; + + auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; + switch (Op) { + case AtomicExpr::AO__c11_atomic_init: + case AtomicExpr::AO__opencl_atomic_init: + llvm_unreachable("There is no ordering argument for an init"); + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__opencl_atomic_load: + case AtomicExpr::AO__atomic_load_n: + case AtomicExpr::AO__atomic_load: + return OrderingCABI != llvm::AtomicOrderingCABI::release && + OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; + + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__opencl_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: + return OrderingCABI != llvm::AtomicOrderingCABI::consume && + OrderingCABI != llvm::AtomicOrderingCABI::acquire && + OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; + + default: + return true; + } +} + +ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, + AtomicExpr::AtomicOp Op) { + CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); + DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); + MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; + return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, + DRE->getSourceRange(), TheCall->getRParenLoc(), Args, + Op); +} + +ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, + SourceLocation RParenLoc, MultiExprArg Args, + AtomicExpr::AtomicOp Op, + AtomicArgumentOrder ArgOrder) { + // All the non-OpenCL operations take one of the following forms. + // The OpenCL operations take the __c11 forms with one extra argument for + // synchronization scope. + enum { + // C __c11_atomic_init(A *, C) + Init, + + // C __c11_atomic_load(A *, int) + Load, + + // void __atomic_load(A *, CP, int) + LoadCopy, + + // void __atomic_store(A *, CP, int) + Copy, + + // C __c11_atomic_add(A *, M, int) + Arithmetic, + + // C __atomic_exchange_n(A *, CP, int) + Xchg, + + // void __atomic_exchange(A *, C *, CP, int) + GNUXchg, + + // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) + C11CmpXchg, + + // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) + GNUCmpXchg + } Form = Init; + + const unsigned NumForm = GNUCmpXchg + 1; + const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; + const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; + // where: + // C is an appropriate type, + // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, + // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, + // M is C if C is an integer, and ptrdiff_t if C is a pointer, and + // the int parameters are for orderings. + + static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm + && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, + "need to update code for modified forms"); + static_assert(AtomicExpr::AO__c11_atomic_init == 0 && + AtomicExpr::AO__c11_atomic_fetch_min + 1 == + AtomicExpr::AO__atomic_load, + "need to update code for modified C11 atomics"); + bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && + Op <= AtomicExpr::AO__opencl_atomic_fetch_max; + bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && + Op <= AtomicExpr::AO__c11_atomic_fetch_min) || + IsOpenCL; + bool IsN = Op == AtomicExpr::AO__atomic_load_n || + Op == AtomicExpr::AO__atomic_store_n || + Op == AtomicExpr::AO__atomic_exchange_n || + Op == AtomicExpr::AO__atomic_compare_exchange_n; + bool IsAddSub = false; + + switch (Op) { + case AtomicExpr::AO__c11_atomic_init: + case AtomicExpr::AO__opencl_atomic_init: + Form = Init; + break; + + case AtomicExpr::AO__c11_atomic_load: + case AtomicExpr::AO__opencl_atomic_load: + case AtomicExpr::AO__atomic_load_n: + Form = Load; + break; + + case AtomicExpr::AO__atomic_load: + Form = LoadCopy; + break; + + case AtomicExpr::AO__c11_atomic_store: + case AtomicExpr::AO__opencl_atomic_store: + case AtomicExpr::AO__atomic_store: + case AtomicExpr::AO__atomic_store_n: + Form = Copy; + break; + + case AtomicExpr::AO__c11_atomic_fetch_add: + case AtomicExpr::AO__c11_atomic_fetch_sub: + case AtomicExpr::AO__opencl_atomic_fetch_add: + case AtomicExpr::AO__opencl_atomic_fetch_sub: + case AtomicExpr::AO__atomic_fetch_add: + case AtomicExpr::AO__atomic_fetch_sub: + case AtomicExpr::AO__atomic_add_fetch: + case AtomicExpr::AO__atomic_sub_fetch: + IsAddSub = true; + LLVM_FALLTHROUGH; + case AtomicExpr::AO__c11_atomic_fetch_and: + case AtomicExpr::AO__c11_atomic_fetch_or: + case AtomicExpr::AO__c11_atomic_fetch_xor: + case AtomicExpr::AO__opencl_atomic_fetch_and: + case AtomicExpr::AO__opencl_atomic_fetch_or: + case AtomicExpr::AO__opencl_atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_and: + case AtomicExpr::AO__atomic_fetch_or: + case AtomicExpr::AO__atomic_fetch_xor: + case AtomicExpr::AO__atomic_fetch_nand: + case AtomicExpr::AO__atomic_and_fetch: + case AtomicExpr::AO__atomic_or_fetch: + case AtomicExpr::AO__atomic_xor_fetch: + case AtomicExpr::AO__atomic_nand_fetch: + case AtomicExpr::AO__c11_atomic_fetch_min: + case AtomicExpr::AO__c11_atomic_fetch_max: + case AtomicExpr::AO__opencl_atomic_fetch_min: + case AtomicExpr::AO__opencl_atomic_fetch_max: + case AtomicExpr::AO__atomic_min_fetch: + case AtomicExpr::AO__atomic_max_fetch: + case AtomicExpr::AO__atomic_fetch_min: + case AtomicExpr::AO__atomic_fetch_max: + Form = Arithmetic; + break; + + case AtomicExpr::AO__c11_atomic_exchange: + case AtomicExpr::AO__opencl_atomic_exchange: + case AtomicExpr::AO__atomic_exchange_n: + Form = Xchg; + break; + + case AtomicExpr::AO__atomic_exchange: + Form = GNUXchg; + break; + + case AtomicExpr::AO__c11_atomic_compare_exchange_strong: + case AtomicExpr::AO__c11_atomic_compare_exchange_weak: + case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: + case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: + Form = C11CmpXchg; + break; + + case AtomicExpr::AO__atomic_compare_exchange: + case AtomicExpr::AO__atomic_compare_exchange_n: + Form = GNUCmpXchg; + break; + } + + unsigned AdjustedNumArgs = NumArgs[Form]; + if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) + ++AdjustedNumArgs; + // Check we have the right number of arguments. + if (Args.size() < AdjustedNumArgs) { + Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) + << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) + << ExprRange; + return ExprError(); + } else if (Args.size() > AdjustedNumArgs) { + Diag(Args[AdjustedNumArgs]->getBeginLoc(), + diag::err_typecheck_call_too_many_args) + << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) + << ExprRange; + return ExprError(); + } + + // Inspect the first argument of the atomic operation. + Expr *Ptr = Args[0]; + ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); + if (ConvertedPtr.isInvalid()) + return ExprError(); + + Ptr = ConvertedPtr.get(); + const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); + if (!pointerType) { + Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) + << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + + // For a __c11 builtin, this should be a pointer to an _Atomic type. + QualType AtomTy = pointerType->getPointeeType(); // 'A' + QualType ValType = AtomTy; // 'C' + if (IsC11) { + if (!AtomTy->isAtomicType()) { + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) + << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || + AtomTy.getAddressSpace() == LangAS::opencl_constant) { + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) + << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() + << Ptr->getSourceRange(); + return ExprError(); + } + ValType = AtomTy->castAs<AtomicType>()->getValueType(); + } else if (Form != Load && Form != LoadCopy) { + if (ValType.isConstQualified()) { + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) + << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + } + + // For an arithmetic operation, the implied arithmetic must be well-formed. + if (Form == Arithmetic) { + // gcc does not enforce these rules for GNU atomics, but we do so for sanity. + if (IsAddSub && !ValType->isIntegerType() + && !ValType->isPointerType()) { + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) + << IsC11 << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + if (!IsAddSub && !ValType->isIntegerType()) { + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) + << IsC11 << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + if (IsC11 && ValType->isPointerType() && + RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), + diag::err_incomplete_type)) { + return ExprError(); + } + } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { + // For __atomic_*_n operations, the value type must be a scalar integral or + // pointer type which is 1, 2, 4, 8 or 16 bytes in length. + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) + << IsC11 << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + + if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && + !AtomTy->isScalarType()) { + // For GNU atomics, require a trivially-copyable type. This is not part of + // the GNU atomics specification, but we enforce it for sanity. + Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) + << Ptr->getType() << Ptr->getSourceRange(); + return ExprError(); + } + + switch (ValType.getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + // okay + break; + + case Qualifiers::OCL_Weak: + case Qualifiers::OCL_Strong: + case Qualifiers::OCL_Autoreleasing: + // FIXME: Can this happen? By this point, ValType should be known + // to be trivially copyable. + Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) + << ValType << Ptr->getSourceRange(); + return ExprError(); + } + + // All atomic operations have an overload which takes a pointer to a volatile + // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself + // into the result or the other operands. Similarly atomic_load takes a + // pointer to a const 'A'. + ValType.removeLocalVolatile(); + ValType.removeLocalConst(); + QualType ResultType = ValType; + if (Form == Copy || Form == LoadCopy || Form == GNUXchg || + Form == Init) + ResultType = Context.VoidTy; + else if (Form == C11CmpXchg || Form == GNUCmpXchg) + ResultType = Context.BoolTy; + + // The type of a parameter passed 'by value'. In the GNU atomics, such + // arguments are actually passed as pointers. + QualType ByValType = ValType; // 'CP' + bool IsPassedByAddress = false; + if (!IsC11 && !IsN) { + ByValType = Ptr->getType(); + IsPassedByAddress = true; + } + + SmallVector<Expr *, 5> APIOrderedArgs; + if (ArgOrder == Sema::AtomicArgumentOrder::AST) { + APIOrderedArgs.push_back(Args[0]); + switch (Form) { + case Init: + case Load: + APIOrderedArgs.push_back(Args[1]); // Val1/Order + break; + case LoadCopy: + case Copy: + case Arithmetic: + case Xchg: + APIOrderedArgs.push_back(Args[2]); // Val1 + APIOrderedArgs.push_back(Args[1]); // Order + break; + case GNUXchg: + APIOrderedArgs.push_back(Args[2]); // Val1 + APIOrderedArgs.push_back(Args[3]); // Val2 + APIOrderedArgs.push_back(Args[1]); // Order + break; + case C11CmpXchg: + APIOrderedArgs.push_back(Args[2]); // Val1 + APIOrderedArgs.push_back(Args[4]); // Val2 + APIOrderedArgs.push_back(Args[1]); // Order + APIOrderedArgs.push_back(Args[3]); // OrderFail + break; + case GNUCmpXchg: + APIOrderedArgs.push_back(Args[2]); // Val1 + APIOrderedArgs.push_back(Args[4]); // Val2 + APIOrderedArgs.push_back(Args[5]); // Weak + APIOrderedArgs.push_back(Args[1]); // Order + APIOrderedArgs.push_back(Args[3]); // OrderFail + break; + } + } else + APIOrderedArgs.append(Args.begin(), Args.end()); + + // The first argument's non-CV pointer type is used to deduce the type of + // subsequent arguments, except for: + // - weak flag (always converted to bool) + // - memory order (always converted to int) + // - scope (always converted to int) + for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { + QualType Ty; + if (i < NumVals[Form] + 1) { + switch (i) { + case 0: + // The first argument is always a pointer. It has a fixed type. + // It is always dereferenced, a nullptr is undefined. + CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); + // Nothing else to do: we already know all we want about this pointer. + continue; + case 1: + // The second argument is the non-atomic operand. For arithmetic, this + // is always passed by value, and for a compare_exchange it is always + // passed by address. For the rest, GNU uses by-address and C11 uses + // by-value. + assert(Form != Load); + if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) + Ty = ValType; + else if (Form == Copy || Form == Xchg) { + if (IsPassedByAddress) { + // The value pointer is always dereferenced, a nullptr is undefined. + CheckNonNullArgument(*this, APIOrderedArgs[i], + ExprRange.getBegin()); + } + Ty = ByValType; + } else if (Form == Arithmetic) + Ty = Context.getPointerDiffType(); + else { + Expr *ValArg = APIOrderedArgs[i]; + // The value pointer is always dereferenced, a nullptr is undefined. + CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); + LangAS AS = LangAS::Default; + // Keep address space of non-atomic pointer type. + if (const PointerType *PtrTy = + ValArg->getType()->getAs<PointerType>()) { + AS = PtrTy->getPointeeType().getAddressSpace(); + } + Ty = Context.getPointerType( + Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); + } + break; + case 2: + // The third argument to compare_exchange / GNU exchange is the desired + // value, either by-value (for the C11 and *_n variant) or as a pointer. + if (IsPassedByAddress) + CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); + Ty = ByValType; + break; + case 3: + // The fourth argument to GNU compare_exchange is a 'weak' flag. + Ty = Context.BoolTy; + break; + } + } else { + // The order(s) and scope are always converted to int. + Ty = Context.IntTy; + } + + InitializedEntity Entity = + InitializedEntity::InitializeParameter(Context, Ty, false); + ExprResult Arg = APIOrderedArgs[i]; + Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (Arg.isInvalid()) + return true; + APIOrderedArgs[i] = Arg.get(); + } + + // Permute the arguments into a 'consistent' order. + SmallVector<Expr*, 5> SubExprs; + SubExprs.push_back(Ptr); + switch (Form) { + case Init: + // Note, AtomicExpr::getVal1() has a special case for this atomic. + SubExprs.push_back(APIOrderedArgs[1]); // Val1 + break; + case Load: + SubExprs.push_back(APIOrderedArgs[1]); // Order + break; + case LoadCopy: + case Copy: + case Arithmetic: + case Xchg: + SubExprs.push_back(APIOrderedArgs[2]); // Order + SubExprs.push_back(APIOrderedArgs[1]); // Val1 + break; + case GNUXchg: + // Note, AtomicExpr::getVal2() has a special case for this atomic. + SubExprs.push_back(APIOrderedArgs[3]); // Order + SubExprs.push_back(APIOrderedArgs[1]); // Val1 + SubExprs.push_back(APIOrderedArgs[2]); // Val2 + break; + case C11CmpXchg: + SubExprs.push_back(APIOrderedArgs[3]); // Order + SubExprs.push_back(APIOrderedArgs[1]); // Val1 + SubExprs.push_back(APIOrderedArgs[4]); // OrderFail + SubExprs.push_back(APIOrderedArgs[2]); // Val2 + break; + case GNUCmpXchg: + SubExprs.push_back(APIOrderedArgs[4]); // Order + SubExprs.push_back(APIOrderedArgs[1]); // Val1 + SubExprs.push_back(APIOrderedArgs[5]); // OrderFail + SubExprs.push_back(APIOrderedArgs[2]); // Val2 + SubExprs.push_back(APIOrderedArgs[3]); // Weak + break; + } + + if (SubExprs.size() >= 2 && Form != Init) { + llvm::APSInt Result(32); + if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && + !isValidOrderingForOp(Result.getSExtValue(), Op)) + Diag(SubExprs[1]->getBeginLoc(), + diag::warn_atomic_op_has_invalid_memory_order) + << SubExprs[1]->getSourceRange(); + } + + if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { + auto *Scope = Args[Args.size() - 1]; + llvm::APSInt Result(32); + if (Scope->isIntegerConstantExpr(Result, Context) && + !ScopeModel->isValid(Result.getZExtValue())) { + Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) + << Scope->getSourceRange(); + } + SubExprs.push_back(Scope); + } + + AtomicExpr *AE = new (Context) + AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); + + if ((Op == AtomicExpr::AO__c11_atomic_load || + Op == AtomicExpr::AO__c11_atomic_store || + Op == AtomicExpr::AO__opencl_atomic_load || + Op == AtomicExpr::AO__opencl_atomic_store ) && + Context.AtomicUsesUnsupportedLibcall(AE)) + Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) + << ((Op == AtomicExpr::AO__c11_atomic_load || + Op == AtomicExpr::AO__opencl_atomic_load) + ? 0 + : 1); + + return AE; +} + +/// checkBuiltinArgument - Given a call to a builtin function, perform +/// normal type-checking on the given argument, updating the call in +/// place. This is useful when a builtin function requires custom +/// type-checking for some of its arguments but not necessarily all of +/// them. +/// +/// Returns true on error. +static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { + FunctionDecl *Fn = E->getDirectCallee(); + assert(Fn && "builtin call without direct callee!"); + + ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); + InitializedEntity Entity = + InitializedEntity::InitializeParameter(S.Context, Param); + + ExprResult Arg = E->getArg(0); + Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (Arg.isInvalid()) + return true; + + E->setArg(ArgIndex, Arg.get()); + return false; +} + +/// We have a call to a function like __sync_fetch_and_add, which is an +/// overloaded function based on the pointer type of its first argument. +/// The main BuildCallExpr routines have already promoted the types of +/// arguments because all of these calls are prototyped as void(...). +/// +/// This function goes through and does final semantic checking for these +/// builtins, as well as generating any warnings. +ExprResult +Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { + CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); + Expr *Callee = TheCall->getCallee(); + DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); + FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); + + // Ensure that we have at least one argument to do type inference from. + if (TheCall->getNumArgs() < 1) { + Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) + << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); + return ExprError(); + } + + // Inspect the first argument of the atomic builtin. This should always be + // a pointer type, whose element is an integral scalar or pointer type. + // Because it is a pointer type, we don't have to worry about any implicit + // casts here. + // FIXME: We don't allow floating point scalars as input. + Expr *FirstArg = TheCall->getArg(0); + ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); + if (FirstArgResult.isInvalid()) + return ExprError(); + FirstArg = FirstArgResult.get(); + TheCall->setArg(0, FirstArg); + + const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); + if (!pointerType) { + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) + << FirstArg->getType() << FirstArg->getSourceRange(); + return ExprError(); + } + + QualType ValType = pointerType->getPointeeType(); + if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && + !ValType->isBlockPointerType()) { + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) + << FirstArg->getType() << FirstArg->getSourceRange(); + return ExprError(); + } + + if (ValType.isConstQualified()) { + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) + << FirstArg->getType() << FirstArg->getSourceRange(); + return ExprError(); + } + + switch (ValType.getObjCLifetime()) { + case Qualifiers::OCL_None: + case Qualifiers::OCL_ExplicitNone: + // okay + break; + + case Qualifiers::OCL_Weak: + case Qualifiers::OCL_Strong: + case Qualifiers::OCL_Autoreleasing: + Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) + << ValType << FirstArg->getSourceRange(); + return ExprError(); + } + + // Strip any qualifiers off ValType. + ValType = ValType.getUnqualifiedType(); + + // The majority of builtins return a value, but a few have special return + // types, so allow them to override appropriately below. + QualType ResultType = ValType; + + // We need to figure out which concrete builtin this maps onto. For example, + // __sync_fetch_and_add with a 2 byte object turns into + // __sync_fetch_and_add_2. +#define BUILTIN_ROW(x) \ + { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ + Builtin::BI##x##_8, Builtin::BI##x##_16 } + + static const unsigned BuiltinIndices[][5] = { + BUILTIN_ROW(__sync_fetch_and_add), + BUILTIN_ROW(__sync_fetch_and_sub), + BUILTIN_ROW(__sync_fetch_and_or), + BUILTIN_ROW(__sync_fetch_and_and), + BUILTIN_ROW(__sync_fetch_and_xor), + BUILTIN_ROW(__sync_fetch_and_nand), + + BUILTIN_ROW(__sync_add_and_fetch), + BUILTIN_ROW(__sync_sub_and_fetch), + BUILTIN_ROW(__sync_and_and_fetch), + BUILTIN_ROW(__sync_or_and_fetch), + BUILTIN_ROW(__sync_xor_and_fetch), + BUILTIN_ROW(__sync_nand_and_fetch), + + BUILTIN_ROW(__sync_val_compare_and_swap), + BUILTIN_ROW(__sync_bool_compare_and_swap), + BUILTIN_ROW(__sync_lock_test_and_set), + BUILTIN_ROW(__sync_lock_release), + BUILTIN_ROW(__sync_swap) + }; +#undef BUILTIN_ROW + + // Determine the index of the size. + unsigned SizeIndex; + switch (Context.getTypeSizeInChars(ValType).getQuantity()) { + case 1: SizeIndex = 0; break; + case 2: SizeIndex = 1; break; + case 4: SizeIndex = 2; break; + case 8: SizeIndex = 3; break; + case 16: SizeIndex = 4; break; + default: + Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) + << FirstArg->getType() << FirstArg->getSourceRange(); + return ExprError(); + } + + // Each of these builtins has one pointer argument, followed by some number of + // values (0, 1 or 2) followed by a potentially empty varags list of stuff + // that we ignore. Find out which row of BuiltinIndices to read from as well + // as the number of fixed args. + unsigned BuiltinID = FDecl->getBuiltinID(); + unsigned BuiltinIndex, NumFixed = 1; + bool WarnAboutSemanticsChange = false; + switch (BuiltinID) { + default: llvm_unreachable("Unknown overloaded atomic builtin!"); + case Builtin::BI__sync_fetch_and_add: + case Builtin::BI__sync_fetch_and_add_1: + case Builtin::BI__sync_fetch_and_add_2: + case Builtin::BI__sync_fetch_and_add_4: + case Builtin::BI__sync_fetch_and_add_8: + case Builtin::BI__sync_fetch_and_add_16: + BuiltinIndex = 0; + break; + + case Builtin::BI__sync_fetch_and_sub: + case Builtin::BI__sync_fetch_and_sub_1: + case Builtin::BI__sync_fetch_and_sub_2: + case Builtin::BI__sync_fetch_and_sub_4: + case Builtin::BI__sync_fetch_and_sub_8: + case Builtin::BI__sync_fetch_and_sub_16: + BuiltinIndex = 1; + break; + + case Builtin::BI__sync_fetch_and_or: + case Builtin::BI__sync_fetch_and_or_1: + case Builtin::BI__sync_fetch_and_or_2: + case Builtin::BI__sync_fetch_and_or_4: + case Builtin::BI__sync_fetch_and_or_8: + case Builtin::BI__sync_fetch_and_or_16: + BuiltinIndex = 2; + break; + + case Builtin::BI__sync_fetch_and_and: + case Builtin::BI__sync_fetch_and_and_1: + case Builtin::BI__sync_fetch_and_and_2: + case Builtin::BI__sync_fetch_and_and_4: + case Builtin::BI__sync_fetch_and_and_8: + case Builtin::BI__sync_fetch_and_and_16: + BuiltinIndex = 3; + break; + + case Builtin::BI__sync_fetch_and_xor: + case Builtin::BI__sync_fetch_and_xor_1: + case Builtin::BI__sync_fetch_and_xor_2: + case Builtin::BI__sync_fetch_and_xor_4: + case Builtin::BI__sync_fetch_and_xor_8: + case Builtin::BI__sync_fetch_and_xor_16: + BuiltinIndex = 4; + break; + + case Builtin::BI__sync_fetch_and_nand: + case Builtin::BI__sync_fetch_and_nand_1: + case Builtin::BI__sync_fetch_and_nand_2: + case Builtin::BI__sync_fetch_and_nand_4: + case Builtin::BI__sync_fetch_and_nand_8: + case Builtin::BI__sync_fetch_and_nand_16: + BuiltinIndex = 5; + WarnAboutSemanticsChange = true; + break; + + case Builtin::BI__sync_add_and_fetch: + case Builtin::BI__sync_add_and_fetch_1: + case Builtin::BI__sync_add_and_fetch_2: + case Builtin::BI__sync_add_and_fetch_4: + case Builtin::BI__sync_add_and_fetch_8: + case Builtin::BI__sync_add_and_fetch_16: + BuiltinIndex = 6; + break; + + case Builtin::BI__sync_sub_and_fetch: + case Builtin::BI__sync_sub_and_fetch_1: + case Builtin::BI__sync_sub_and_fetch_2: + case Builtin::BI__sync_sub_and_fetch_4: + case Builtin::BI__sync_sub_and_fetch_8: + case Builtin::BI__sync_sub_and_fetch_16: + BuiltinIndex = 7; + break; + + case Builtin::BI__sync_and_and_fetch: + case Builtin::BI__sync_and_and_fetch_1: + case Builtin::BI__sync_and_and_fetch_2: + case Builtin::BI__sync_and_and_fetch_4: + case Builtin::BI__sync_and_and_fetch_8: + case Builtin::BI__sync_and_and_fetch_16: + BuiltinIndex = 8; + break; + + case Builtin::BI__sync_or_and_fetch: + case Builtin::BI__sync_or_and_fetch_1: + case Builtin::BI__sync_or_and_fetch_2: + case Builtin::BI__sync_or_and_fetch_4: + case Builtin::BI__sync_or_and_fetch_8: + case Builtin::BI__sync_or_and_fetch_16: + BuiltinIndex = 9; + break; + + case Builtin::BI__sync_xor_and_fetch: + case Builtin::BI__sync_xor_and_fetch_1: + case Builtin::BI__sync_xor_and_fetch_2: + case Builtin::BI__sync_xor_and_fetch_4: + case Builtin::BI__sync_xor_and_fetch_8: + case Builtin::BI__sync_xor_and_fetch_16: + BuiltinIndex = 10; + break; + + case Builtin::BI__sync_nand_and_fetch: + case Builtin::BI__sync_nand_and_fetch_1: + case Builtin::BI__sync_nand_and_fetch_2: + case Builtin::BI__sync_nand_and_fetch_4: + case Builtin::BI__sync_nand_and_fetch_8: + case Builtin::BI__sync_nand_and_fetch_16: + BuiltinIndex = 11; + WarnAboutSemanticsChange = true; + break; + + case Builtin::BI__sync_val_compare_and_swap: + case Builtin::BI__sync_val_compare_and_swap_1: + case Builtin::BI__sync_val_compare_and_swap_2: + case Builtin::BI__sync_val_compare_and_swap_4: + case Builtin::BI__sync_val_compare_and_swap_8: + case Builtin::BI__sync_val_compare_and_swap_16: + BuiltinIndex = 12; + NumFixed = 2; + break; + + case Builtin::BI__sync_bool_compare_and_swap: + case Builtin::BI__sync_bool_compare_and_swap_1: + case Builtin::BI__sync_bool_compare_and_swap_2: + case Builtin::BI__sync_bool_compare_and_swap_4: + case Builtin::BI__sync_bool_compare_and_swap_8: + case Builtin::BI__sync_bool_compare_and_swap_16: + BuiltinIndex = 13; + NumFixed = 2; + ResultType = Context.BoolTy; + break; + + case Builtin::BI__sync_lock_test_and_set: + case Builtin::BI__sync_lock_test_and_set_1: + case Builtin::BI__sync_lock_test_and_set_2: + case Builtin::BI__sync_lock_test_and_set_4: + case Builtin::BI__sync_lock_test_and_set_8: + case Builtin::BI__sync_lock_test_and_set_16: + BuiltinIndex = 14; + break; + + case Builtin::BI__sync_lock_release: + case Builtin::BI__sync_lock_release_1: + case Builtin::BI__sync_lock_release_2: + case Builtin::BI__sync_lock_release_4: + case Builtin::BI__sync_lock_release_8: + case Builtin::BI__sync_lock_release_16: + BuiltinIndex = 15; + NumFixed = 0; + ResultType = Context.VoidTy; + break; + + case Builtin::BI__sync_swap: + case Builtin::BI__sync_swap_1: + case Builtin::BI__sync_swap_2: + case Builtin::BI__sync_swap_4: + case Builtin::BI__sync_swap_8: + case Builtin::BI__sync_swap_16: + BuiltinIndex = 16; + break; + } + + // Now that we know how many fixed arguments we expect, first check that we + // have at least that many. + if (TheCall->getNumArgs() < 1+NumFixed) { + Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) + << 0 << 1 + NumFixed << TheCall->getNumArgs() + << Callee->getSourceRange(); + return ExprError(); + } + + Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) + << Callee->getSourceRange(); + + if (WarnAboutSemanticsChange) { + Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) + << Callee->getSourceRange(); + } + + // Get the decl for the concrete builtin from this, we can tell what the + // concrete integer type we should convert to is. + unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; + const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); + FunctionDecl *NewBuiltinDecl; + if (NewBuiltinID == BuiltinID) + NewBuiltinDecl = FDecl; + else { + // Perform builtin lookup to avoid redeclaring it. + DeclarationName DN(&Context.Idents.get(NewBuiltinName)); + LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); + LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); + assert(Res.getFoundDecl()); + NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); + if (!NewBuiltinDecl) + return ExprError(); + } + + // The first argument --- the pointer --- has a fixed type; we + // deduce the types of the rest of the arguments accordingly. Walk + // the remaining arguments, converting them to the deduced value type. + for (unsigned i = 0; i != NumFixed; ++i) { + ExprResult Arg = TheCall->getArg(i+1); + + // GCC does an implicit conversion to the pointer or integer ValType. This + // can fail in some cases (1i -> int**), check for this error case now. + // Initialize the argument. + InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, + ValType, /*consume*/ false); + Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (Arg.isInvalid()) + return ExprError(); + + // Okay, we have something that *can* be converted to the right type. Check + // to see if there is a potentially weird extension going on here. This can + // happen when you do an atomic operation on something like an char* and + // pass in 42. The 42 gets converted to char. This is even more strange + // for things like 45.123 -> char, etc. + // FIXME: Do this check. + TheCall->setArg(i+1, Arg.get()); + } + + // Create a new DeclRefExpr to refer to the new decl. + DeclRefExpr *NewDRE = DeclRefExpr::Create( + Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, + /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, + DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); + + // Set the callee in the CallExpr. + // FIXME: This loses syntactic information. + QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); + ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, + CK_BuiltinFnToFnPtr); + TheCall->setCallee(PromotedCall.get()); + + // Change the result type of the call to match the original value type. This + // is arbitrary, but the codegen for these builtins ins design to handle it + // gracefully. + TheCall->setType(ResultType); + + // Prohibit use of _ExtInt with atomic builtins. + // The arguments would have already been converted to the first argument's + // type, so only need to check the first argument. + const auto *ExtIntValType = ValType->getAs<ExtIntType>(); + if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { + Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); + return ExprError(); + } + + return TheCallResult; +} + +/// SemaBuiltinNontemporalOverloaded - We have a call to +/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an +/// overloaded function based on the pointer type of its last argument. +/// +/// This function goes through and does final semantic checking for these +/// builtins. +ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { + CallExpr *TheCall = (CallExpr *)TheCallResult.get(); + DeclRefExpr *DRE = + cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); + FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); + unsigned BuiltinID = FDecl->getBuiltinID(); + assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || + BuiltinID == Builtin::BI__builtin_nontemporal_load) && + "Unexpected nontemporal load/store builtin!"); + bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; + unsigned numArgs = isStore ? 2 : 1; + + // Ensure that we have the proper number of arguments. + if (checkArgCount(*this, TheCall, numArgs)) + return ExprError(); + + // Inspect the last argument of the nontemporal builtin. This should always + // be a pointer type, from which we imply the type of the memory access. + // Because it is a pointer type, we don't have to worry about any implicit + // casts here. + Expr *PointerArg = TheCall->getArg(numArgs - 1); + ExprResult PointerArgResult = + DefaultFunctionArrayLvalueConversion(PointerArg); + + if (PointerArgResult.isInvalid()) + return ExprError(); + PointerArg = PointerArgResult.get(); + TheCall->setArg(numArgs - 1, PointerArg); + + const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); + if (!pointerType) { + Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) + << PointerArg->getType() << PointerArg->getSourceRange(); + return ExprError(); + } + + QualType ValType = pointerType->getPointeeType(); + + // Strip any qualifiers off ValType. + ValType = ValType.getUnqualifiedType(); + if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && + !ValType->isBlockPointerType() && !ValType->isFloatingType() && + !ValType->isVectorType()) { + Diag(DRE->getBeginLoc(), + diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) + << PointerArg->getType() << PointerArg->getSourceRange(); + return ExprError(); + } + + if (!isStore) { + TheCall->setType(ValType); + return TheCallResult; + } + + ExprResult ValArg = TheCall->getArg(0); + InitializedEntity Entity = InitializedEntity::InitializeParameter( + Context, ValType, /*consume*/ false); + ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); + if (ValArg.isInvalid()) + return ExprError(); + + TheCall->setArg(0, ValArg.get()); + TheCall->setType(Context.VoidTy); + return TheCallResult; +} + +/// CheckObjCString - Checks that the argument to the builtin +/// CFString constructor is correct +/// Note: It might also make sense to do the UTF-16 conversion here (would +/// simplify the backend). +bool Sema::CheckObjCString(Expr *Arg) { + Arg = Arg->IgnoreParenCasts(); + StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); + + if (!Literal || !Literal->isAscii()) { + Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) + << Arg->getSourceRange(); + return true; + } + + if (Literal->containsNonAsciiOrNull()) { + StringRef String = Literal->getString(); + unsigned NumBytes = String.size(); + SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); + const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); + llvm::UTF16 *ToPtr = &ToBuf[0]; + + llvm::ConversionResult Result = + llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, + ToPtr + NumBytes, llvm::strictConversion); + // Check for conversion failure. + if (Result != llvm::conversionOK) + Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) + << Arg->getSourceRange(); + } + return false; +} + +/// CheckObjCString - Checks that the format string argument to the os_log() +/// and os_trace() functions is correct, and converts it to const char *. +ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { + Arg = Arg->IgnoreParenCasts(); + auto *Literal = dyn_cast<StringLiteral>(Arg); + if (!Literal) { + if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { + Literal = ObjcLiteral->getString(); + } + } + + if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { + return ExprError( + Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) + << Arg->getSourceRange()); + } + + ExprResult Result(Literal); + QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); + InitializedEntity Entity = + InitializedEntity::InitializeParameter(Context, ResultTy, false); + Result = PerformCopyInitialization(Entity, SourceLocation(), Result); + return Result; +} + +/// Check that the user is calling the appropriate va_start builtin for the +/// target and calling convention. +static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { + const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); + bool IsX64 = TT.getArch() == llvm::Triple::x86_64; + bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || + TT.getArch() == llvm::Triple::aarch64_32); + bool IsWindows = TT.isOSWindows(); + bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; + if (IsX64 || IsAArch64) { + CallingConv CC = CC_C; + if (const FunctionDecl *FD = S.getCurFunctionDecl()) + CC = FD->getType()->castAs<FunctionType>()->getCallConv(); + if (IsMSVAStart) { + // Don't allow this in System V ABI functions. + if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) + return S.Diag(Fn->getBeginLoc(), + diag::err_ms_va_start_used_in_sysv_function); + } else { + // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. + // On x64 Windows, don't allow this in System V ABI functions. + // (Yes, that means there's no corresponding way to support variadic + // System V ABI functions on Windows.) + if ((IsWindows && CC == CC_X86_64SysV) || + (!IsWindows && CC == CC_Win64)) + return S.Diag(Fn->getBeginLoc(), + diag::err_va_start_used_in_wrong_abi_function) + << !IsWindows; + } + return false; + } + + if (IsMSVAStart) + return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); + return false; +} + +static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, + ParmVarDecl **LastParam = nullptr) { + // Determine whether the current function, block, or obj-c method is variadic + // and get its parameter list. + bool IsVariadic = false; + ArrayRef<ParmVarDecl *> Params; + DeclContext *Caller = S.CurContext; + if (auto *Block = dyn_cast<BlockDecl>(Caller)) { + IsVariadic = Block->isVariadic(); + Params = Block->parameters(); + } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { + IsVariadic = FD->isVariadic(); + Params = FD->parameters(); + } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { + IsVariadic = MD->isVariadic(); + // FIXME: This isn't correct for methods (results in bogus warning). + Params = MD->parameters(); + } else if (isa<CapturedDecl>(Caller)) { + // We don't support va_start in a CapturedDecl. + S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); + return true; + } else { + // This must be some other declcontext that parses exprs. + S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); + return true; + } + + if (!IsVariadic) { + S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); + return true; + } + + if (LastParam) + *LastParam = Params.empty() ? nullptr : Params.back(); + + return false; +} + +/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' +/// for validity. Emit an error and return true on failure; return false +/// on success. +bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { + Expr *Fn = TheCall->getCallee(); + + if (checkVAStartABI(*this, BuiltinID, Fn)) + return true; + + if (TheCall->getNumArgs() > 2) { + Diag(TheCall->getArg(2)->getBeginLoc(), + diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << 2 << TheCall->getNumArgs() + << Fn->getSourceRange() + << SourceRange(TheCall->getArg(2)->getBeginLoc(), + (*(TheCall->arg_end() - 1))->getEndLoc()); + return true; + } + + if (TheCall->getNumArgs() < 2) { + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_few_args_at_least) + << 0 /*function call*/ << 2 << TheCall->getNumArgs(); + } + + // Type-check the first argument normally. + if (checkBuiltinArgument(*this, TheCall, 0)) + return true; + + // Check that the current function is variadic, and get its last parameter. + ParmVarDecl *LastParam; + if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) + return true; + + // Verify that the second argument to the builtin is the last argument of the + // current function or method. + bool SecondArgIsLastNamedArgument = false; + const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); + + // These are valid if SecondArgIsLastNamedArgument is false after the next + // block. + QualType Type; + SourceLocation ParamLoc; + bool IsCRegister = false; + + if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { + if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { + SecondArgIsLastNamedArgument = PV == LastParam; + + Type = PV->getType(); + ParamLoc = PV->getLocation(); + IsCRegister = + PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; + } + } + + if (!SecondArgIsLastNamedArgument) + Diag(TheCall->getArg(1)->getBeginLoc(), + diag::warn_second_arg_of_va_start_not_last_named_param); + else if (IsCRegister || Type->isReferenceType() || + Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { + // Promotable integers are UB, but enumerations need a bit of + // extra checking to see what their promotable type actually is. + if (!Type->isPromotableIntegerType()) + return false; + if (!Type->isEnumeralType()) + return true; + const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); + return !(ED && + Context.typesAreCompatible(ED->getPromotionType(), Type)); + }()) { + unsigned Reason = 0; + if (Type->isReferenceType()) Reason = 1; + else if (IsCRegister) Reason = 2; + Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; + Diag(ParamLoc, diag::note_parameter_type) << Type; + } + + TheCall->setType(Context.VoidTy); + return false; +} + +bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { + // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, + // const char *named_addr); + + Expr *Func = Call->getCallee(); + + if (Call->getNumArgs() < 3) + return Diag(Call->getEndLoc(), + diag::err_typecheck_call_too_few_args_at_least) + << 0 /*function call*/ << 3 << Call->getNumArgs(); + + // Type-check the first argument normally. + if (checkBuiltinArgument(*this, Call, 0)) + return true; + + // Check that the current function is variadic. + if (checkVAStartIsInVariadicFunction(*this, Func)) + return true; + + // __va_start on Windows does not validate the parameter qualifiers + + const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); + const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); + + const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); + const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); + + const QualType &ConstCharPtrTy = + Context.getPointerType(Context.CharTy.withConst()); + if (!Arg1Ty->isPointerType() || + Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) + Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ + << 0 /* qualifier difference */ + << 3 /* parameter mismatch */ + << 2 << Arg1->getType() << ConstCharPtrTy; + + const QualType SizeTy = Context.getSizeType(); + if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) + Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) + << Arg2->getType() << SizeTy << 1 /* different class */ + << 0 /* qualifier difference */ + << 3 /* parameter mismatch */ + << 3 << Arg2->getType() << SizeTy; + + return false; +} + +/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and +/// friends. This is declared to take (...), so we have to check everything. +bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { + if (TheCall->getNumArgs() < 2) + return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 << 2 << TheCall->getNumArgs() /*function call*/; + if (TheCall->getNumArgs() > 2) + return Diag(TheCall->getArg(2)->getBeginLoc(), + diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << 2 << TheCall->getNumArgs() + << SourceRange(TheCall->getArg(2)->getBeginLoc(), + (*(TheCall->arg_end() - 1))->getEndLoc()); + + ExprResult OrigArg0 = TheCall->getArg(0); + ExprResult OrigArg1 = TheCall->getArg(1); + + // Do standard promotions between the two arguments, returning their common + // type. + QualType Res = UsualArithmeticConversions( + OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); + if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) + return true; + + // Make sure any conversions are pushed back into the call; this is + // type safe since unordered compare builtins are declared as "_Bool + // foo(...)". + TheCall->setArg(0, OrigArg0.get()); + TheCall->setArg(1, OrigArg1.get()); + + if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) + return false; + + // If the common type isn't a real floating type, then the arguments were + // invalid for this operation. + if (Res.isNull() || !Res->isRealFloatingType()) + return Diag(OrigArg0.get()->getBeginLoc(), + diag::err_typecheck_call_invalid_ordered_compare) + << OrigArg0.get()->getType() << OrigArg1.get()->getType() + << SourceRange(OrigArg0.get()->getBeginLoc(), + OrigArg1.get()->getEndLoc()); + + return false; +} + +/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like +/// __builtin_isnan and friends. This is declared to take (...), so we have +/// to check everything. We expect the last argument to be a floating point +/// value. +bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { + if (TheCall->getNumArgs() < NumArgs) + return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; + if (TheCall->getNumArgs() > NumArgs) + return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), + diag::err_typecheck_call_too_many_args) + << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() + << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), + (*(TheCall->arg_end() - 1))->getEndLoc()); + + // __builtin_fpclassify is the only case where NumArgs != 1, so we can count + // on all preceding parameters just being int. Try all of those. + for (unsigned i = 0; i < NumArgs - 1; ++i) { + Expr *Arg = TheCall->getArg(i); + + if (Arg->isTypeDependent()) + return false; + + ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); + + if (Res.isInvalid()) + return true; + TheCall->setArg(i, Res.get()); + } + + Expr *OrigArg = TheCall->getArg(NumArgs-1); + + if (OrigArg->isTypeDependent()) + return false; + + // Usual Unary Conversions will convert half to float, which we want for + // machines that use fp16 conversion intrinsics. Else, we wnat to leave the + // type how it is, but do normal L->Rvalue conversions. + if (Context.getTargetInfo().useFP16ConversionIntrinsics()) + OrigArg = UsualUnaryConversions(OrigArg).get(); + else + OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); + TheCall->setArg(NumArgs - 1, OrigArg); + + // This operation requires a non-_Complex floating-point number. + if (!OrigArg->getType()->isRealFloatingType()) + return Diag(OrigArg->getBeginLoc(), + diag::err_typecheck_call_invalid_unary_fp) + << OrigArg->getType() << OrigArg->getSourceRange(); + + return false; +} + +// Customized Sema Checking for VSX builtins that have the following signature: +// vector [...] builtinName(vector [...], vector [...], const int); +// Which takes the same type of vectors (any legal vector type) for the first +// two arguments and takes compile time constant for the third argument. +// Example builtins are : +// vector double vec_xxpermdi(vector double, vector double, int); +// vector short vec_xxsldwi(vector short, vector short, int); +bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { + unsigned ExpectedNumArgs = 3; + if (TheCall->getNumArgs() < ExpectedNumArgs) + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_few_args_at_least) + << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() + << TheCall->getSourceRange(); + + if (TheCall->getNumArgs() > ExpectedNumArgs) + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_many_args_at_most) + << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() + << TheCall->getSourceRange(); + + // Check the third argument is a compile time constant + llvm::APSInt Value; + if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) + return Diag(TheCall->getBeginLoc(), + diag::err_vsx_builtin_nonconstant_argument) + << 3 /* argument index */ << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(2)->getBeginLoc(), + TheCall->getArg(2)->getEndLoc()); + + QualType Arg1Ty = TheCall->getArg(0)->getType(); + QualType Arg2Ty = TheCall->getArg(1)->getType(); + + // Check the type of argument 1 and argument 2 are vectors. + SourceLocation BuiltinLoc = TheCall->getBeginLoc(); + if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || + (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { + return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) + << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(0)->getBeginLoc(), + TheCall->getArg(1)->getEndLoc()); + } + + // Check the first two arguments are the same type. + if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { + return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) + << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(0)->getBeginLoc(), + TheCall->getArg(1)->getEndLoc()); + } + + // When default clang type checking is turned off and the customized type + // checking is used, the returning type of the function must be explicitly + // set. Otherwise it is _Bool by default. + TheCall->setType(Arg1Ty); + + return false; +} + +/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. +// This is declared to take (...), so we have to check everything. +ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { + if (TheCall->getNumArgs() < 2) + return ExprError(Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_few_args_at_least) + << 0 /*function call*/ << 2 << TheCall->getNumArgs() + << TheCall->getSourceRange()); + + // Determine which of the following types of shufflevector we're checking: + // 1) unary, vector mask: (lhs, mask) + // 2) binary, scalar mask: (lhs, rhs, index, ..., index) + QualType resType = TheCall->getArg(0)->getType(); + unsigned numElements = 0; + + if (!TheCall->getArg(0)->isTypeDependent() && + !TheCall->getArg(1)->isTypeDependent()) { + QualType LHSType = TheCall->getArg(0)->getType(); + QualType RHSType = TheCall->getArg(1)->getType(); + + if (!LHSType->isVectorType() || !RHSType->isVectorType()) + return ExprError( + Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) + << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(0)->getBeginLoc(), + TheCall->getArg(1)->getEndLoc())); + + numElements = LHSType->castAs<VectorType>()->getNumElements(); + unsigned numResElements = TheCall->getNumArgs() - 2; + + // Check to see if we have a call with 2 vector arguments, the unary shuffle + // with mask. If so, verify that RHS is an integer vector type with the + // same number of elts as lhs. + if (TheCall->getNumArgs() == 2) { + if (!RHSType->hasIntegerRepresentation() || + RHSType->castAs<VectorType>()->getNumElements() != numElements) + return ExprError(Diag(TheCall->getBeginLoc(), + diag::err_vec_builtin_incompatible_vector) + << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(1)->getBeginLoc(), + TheCall->getArg(1)->getEndLoc())); + } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { + return ExprError(Diag(TheCall->getBeginLoc(), + diag::err_vec_builtin_incompatible_vector) + << TheCall->getDirectCallee() + << SourceRange(TheCall->getArg(0)->getBeginLoc(), + TheCall->getArg(1)->getEndLoc())); + } else if (numElements != numResElements) { + QualType eltType = LHSType->castAs<VectorType>()->getElementType(); + resType = Context.getVectorType(eltType, numResElements, + VectorType::GenericVector); + } + } + + for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { + if (TheCall->getArg(i)->isTypeDependent() || + TheCall->getArg(i)->isValueDependent()) + continue; + + llvm::APSInt Result(32); + if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) + return ExprError(Diag(TheCall->getBeginLoc(), + diag::err_shufflevector_nonconstant_argument) + << TheCall->getArg(i)->getSourceRange()); + + // Allow -1 which will be translated to undef in the IR. + if (Result.isSigned() && Result.isAllOnesValue()) + continue; + + if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) + return ExprError(Diag(TheCall->getBeginLoc(), + diag::err_shufflevector_argument_too_large) + << TheCall->getArg(i)->getSourceRange()); + } + + SmallVector<Expr*, 32> exprs; + + for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { + exprs.push_back(TheCall->getArg(i)); + TheCall->setArg(i, nullptr); + } + + return new (Context) ShuffleVectorExpr(Context, exprs, resType, + TheCall->getCallee()->getBeginLoc(), + TheCall->getRParenLoc()); +} + +/// SemaConvertVectorExpr - Handle __builtin_convertvector +ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, + SourceLocation BuiltinLoc, + SourceLocation RParenLoc) { + ExprValueKind VK = VK_RValue; + ExprObjectKind OK = OK_Ordinary; + QualType DstTy = TInfo->getType(); + QualType SrcTy = E->getType(); + + if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) + return ExprError(Diag(BuiltinLoc, + diag::err_convertvector_non_vector) + << E->getSourceRange()); + if (!DstTy->isVectorType() && !DstTy->isDependentType()) + return ExprError(Diag(BuiltinLoc, + diag::err_convertvector_non_vector_type)); + + if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { + unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); + unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); + if (SrcElts != DstElts) + return ExprError(Diag(BuiltinLoc, + diag::err_convertvector_incompatible_vector) + << E->getSourceRange()); + } + + return new (Context) + ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); +} + +/// SemaBuiltinPrefetch - Handle __builtin_prefetch. +// This is declared to take (const void*, ...) and can take two +// optional constant int args. +bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { + unsigned NumArgs = TheCall->getNumArgs(); + + if (NumArgs > 3) + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_many_args_at_most) + << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); + + // Argument 0 is checked for us and the remaining arguments must be + // constant integers. + for (unsigned i = 1; i != NumArgs; ++i) + if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) + return true; + + return false; +} + +/// SemaBuiltinAssume - Handle __assume (MS Extension). +// __assume does not evaluate its arguments, and should warn if its argument +// has side effects. +bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { + Expr *Arg = TheCall->getArg(0); + if (Arg->isInstantiationDependent()) return false; + + if (Arg->HasSideEffects(Context)) + Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) + << Arg->getSourceRange() + << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); + + return false; +} + +/// Handle __builtin_alloca_with_align. This is declared +/// as (size_t, size_t) where the second size_t must be a power of 2 greater +/// than 8. +bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { + // The alignment must be a constant integer. + Expr *Arg = TheCall->getArg(1); + + // We can't check the value of a dependent argument. + if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { + if (const auto *UE = + dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) + if (UE->getKind() == UETT_AlignOf || + UE->getKind() == UETT_PreferredAlignOf) + Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) + << Arg->getSourceRange(); + + llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); + + if (!Result.isPowerOf2()) + return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) + << Arg->getSourceRange(); + + if (Result < Context.getCharWidth()) + return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) + << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); + + if (Result > std::numeric_limits<int32_t>::max()) + return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) + << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); + } + + return false; +} + +/// Handle __builtin_assume_aligned. This is declared +/// as (const void*, size_t, ...) and can take one optional constant int arg. +bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { + unsigned NumArgs = TheCall->getNumArgs(); + + if (NumArgs > 3) + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_many_args_at_most) + << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); + + // The alignment must be a constant integer. + Expr *Arg = TheCall->getArg(1); + + // We can't check the value of a dependent argument. + if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { + llvm::APSInt Result; + if (SemaBuiltinConstantArg(TheCall, 1, Result)) + return true; + + if (!Result.isPowerOf2()) + return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) + << Arg->getSourceRange(); + + if (Result > Sema::MaximumAlignment) + Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) + << Arg->getSourceRange() << Sema::MaximumAlignment; + } + + if (NumArgs > 2) { + ExprResult Arg(TheCall->getArg(2)); + InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, + Context.getSizeType(), false); + Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (Arg.isInvalid()) return true; + TheCall->setArg(2, Arg.get()); + } + + return false; +} + +bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { + unsigned BuiltinID = + cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); + bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; + + unsigned NumArgs = TheCall->getNumArgs(); + unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; + if (NumArgs < NumRequiredArgs) { + return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) + << 0 /* function call */ << NumRequiredArgs << NumArgs + << TheCall->getSourceRange(); + } + if (NumArgs >= NumRequiredArgs + 0x100) { + return Diag(TheCall->getEndLoc(), + diag::err_typecheck_call_too_many_args_at_most) + << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs + << TheCall->getSourceRange(); + } + unsigned i = 0; + + // For formatting call, check buffer arg. + if (!IsSizeCall) { + ExprResult Arg(TheCall->getArg(i)); + InitializedEntity Entity = InitializedEntity::InitializeParameter( + Context, Context.VoidPtrTy, false); + Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); + if (Arg.isInvalid()) + return true; + TheCall->setArg(i, Arg.get()); + i++; + } + + // Check string literal arg. + unsigned FormatIdx = i; + { + ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); + if (Arg.isInvalid()) + return true; + TheCall->setArg(i, Arg.get()); + i++; + } + + // Make sure variadic args are scalar. + unsigned FirstDataArg = i; + while (i < NumArgs) { + ExprResult Arg = DefaultVariadicArgumentPromotion( + TheCall->getArg(i), VariadicFunction, nullptr); + if (Arg.isInvalid()) + return true; + CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); + if (ArgSize.getQuantity() >= 0x100) { + return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) + << i << (int)ArgSize.getQuantity() << 0xff + << TheCall->getSourceRange(); + } + TheCall->setArg(i, Arg.get()); + i++; + } + + // Check formatting specifiers. NOTE: We're only doing this for the non-size + // call to avoid duplicate diagnostics. + if (!IsSizeCall) { + llvm::SmallBitVector CheckedVarArgs(NumArgs, false); + ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); + bool Success = CheckFormatArguments( + Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, + VariadicFunction, TheCall->getBeginLoc(), SourceRange(), + CheckedVarArgs); + if (!Success) + return true; + } + + if (IsSizeCall) { + TheCall->setType(Context.getSizeType()); + } else { + TheCall->setType(Context.VoidPtrTy); + } + return false; +} + +/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr +/// TheCall is a constant expression. +bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, + llvm::APSInt &Result) { + Expr *Arg = TheCall->getArg(ArgNum); + DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); + FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); + + if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; + + if (!Arg->isIntegerConstantExpr(Result, Context)) + return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) + << FDecl->getDeclName() << Arg->getSourceRange(); + + return false; +} + +/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr +/// TheCall is a constant expression in the range [Low, High]. +bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, + int Low, int High, bool RangeIsError) { + if (isConstantEvaluated()) + return false; + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { + if (RangeIsError) + return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) + << Result.toString(10) << Low << High << Arg->getSourceRange(); + else + // Defer the warning until we know if the code will be emitted so that + // dead code can ignore this. + DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, + PDiag(diag::warn_argument_invalid_range) + << Result.toString(10) << Low << High + << Arg->getSourceRange()); + } + + return false; +} + +/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr +/// TheCall is a constant expression is a multiple of Num.. +bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, + unsigned Num) { + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + if (Result.getSExtValue() % Num != 0) + return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) + << Num << Arg->getSourceRange(); + + return false; +} + +/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a +/// constant expression representing a power of 2. +bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if + // and only if x is a power of 2. + if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) + return false; + + return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) + << Arg->getSourceRange(); +} + +static bool IsShiftedByte(llvm::APSInt Value) { + if (Value.isNegative()) + return false; + + // Check if it's a shifted byte, by shifting it down + while (true) { + // If the value fits in the bottom byte, the check passes. + if (Value < 0x100) + return true; + + // Otherwise, if the value has _any_ bits in the bottom byte, the check + // fails. + if ((Value & 0xFF) != 0) + return false; + + // If the bottom 8 bits are all 0, but something above that is nonzero, + // then shifting the value right by 8 bits won't affect whether it's a + // shifted byte or not. So do that, and go round again. + Value >>= 8; + } +} + +/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is +/// a constant expression representing an arbitrary byte value shifted left by +/// a multiple of 8 bits. +bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, + unsigned ArgBits) { + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + // Truncate to the given size. + Result = Result.getLoBits(ArgBits); + Result.setIsUnsigned(true); + + if (IsShiftedByte(Result)) + return false; + + return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) + << Arg->getSourceRange(); +} + +/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of +/// TheCall is a constant expression representing either a shifted byte value, +/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression +/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some +/// Arm MVE intrinsics. +bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, + int ArgNum, + unsigned ArgBits) { + llvm::APSInt Result; + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check constant-ness first. + if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) + return true; + + // Truncate to the given size. + Result = Result.getLoBits(ArgBits); + Result.setIsUnsigned(true); + + // Check to see if it's in either of the required forms. + if (IsShiftedByte(Result) || + (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) + return false; + + return Diag(TheCall->getBeginLoc(), + diag::err_argument_not_shifted_byte_or_xxff) + << Arg->getSourceRange(); +} + +/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions +bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { + if (BuiltinID == AArch64::BI__builtin_arm_irg) { + if (checkArgCount(*this, TheCall, 2)) + return true; + Expr *Arg0 = TheCall->getArg(0); + Expr *Arg1 = TheCall->getArg(1); + + ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); + if (FirstArg.isInvalid()) + return true; + QualType FirstArgType = FirstArg.get()->getType(); + if (!FirstArgType->isAnyPointerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) + << "first" << FirstArgType << Arg0->getSourceRange(); + TheCall->setArg(0, FirstArg.get()); + + ExprResult SecArg = DefaultLvalueConversion(Arg1); + if (SecArg.isInvalid()) + return true; + QualType SecArgType = SecArg.get()->getType(); + if (!SecArgType->isIntegerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) + << "second" << SecArgType << Arg1->getSourceRange(); + + // Derive the return type from the pointer argument. + TheCall->setType(FirstArgType); + return false; + } + + if (BuiltinID == AArch64::BI__builtin_arm_addg) { + if (checkArgCount(*this, TheCall, 2)) + return true; + + Expr *Arg0 = TheCall->getArg(0); + ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); + if (FirstArg.isInvalid()) + return true; + QualType FirstArgType = FirstArg.get()->getType(); + if (!FirstArgType->isAnyPointerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) + << "first" << FirstArgType << Arg0->getSourceRange(); + TheCall->setArg(0, FirstArg.get()); + + // Derive the return type from the pointer argument. + TheCall->setType(FirstArgType); + + // Second arg must be an constant in range [0,15] + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); + } + + if (BuiltinID == AArch64::BI__builtin_arm_gmi) { + if (checkArgCount(*this, TheCall, 2)) + return true; + Expr *Arg0 = TheCall->getArg(0); + Expr *Arg1 = TheCall->getArg(1); + + ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); + if (FirstArg.isInvalid()) + return true; + QualType FirstArgType = FirstArg.get()->getType(); + if (!FirstArgType->isAnyPointerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) + << "first" << FirstArgType << Arg0->getSourceRange(); + + QualType SecArgType = Arg1->getType(); + if (!SecArgType->isIntegerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) + << "second" << SecArgType << Arg1->getSourceRange(); + TheCall->setType(Context.IntTy); + return false; + } + + if (BuiltinID == AArch64::BI__builtin_arm_ldg || + BuiltinID == AArch64::BI__builtin_arm_stg) { + if (checkArgCount(*this, TheCall, 1)) + return true; + Expr *Arg0 = TheCall->getArg(0); + ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); + if (FirstArg.isInvalid()) + return true; + + QualType FirstArgType = FirstArg.get()->getType(); + if (!FirstArgType->isAnyPointerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) + << "first" << FirstArgType << Arg0->getSourceRange(); + TheCall->setArg(0, FirstArg.get()); + + // Derive the return type from the pointer argument. + if (BuiltinID == AArch64::BI__builtin_arm_ldg) + TheCall->setType(FirstArgType); + return false; + } + + if (BuiltinID == AArch64::BI__builtin_arm_subp) { + Expr *ArgA = TheCall->getArg(0); + Expr *ArgB = TheCall->getArg(1); + + ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); + ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); + + if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) + return true; + + QualType ArgTypeA = ArgExprA.get()->getType(); + QualType ArgTypeB = ArgExprB.get()->getType(); + + auto isNull = [&] (Expr *E) -> bool { + return E->isNullPointerConstant( + Context, Expr::NPC_ValueDependentIsNotNull); }; + + // argument should be either a pointer or null + if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) + << "first" << ArgTypeA << ArgA->getSourceRange(); + + if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) + << "second" << ArgTypeB << ArgB->getSourceRange(); + + // Ensure Pointee types are compatible + if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && + ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { + QualType pointeeA = ArgTypeA->getPointeeType(); + QualType pointeeB = ArgTypeB->getPointeeType(); + if (!Context.typesAreCompatible( + Context.getCanonicalType(pointeeA).getUnqualifiedType(), + Context.getCanonicalType(pointeeB).getUnqualifiedType())) { + return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) + << ArgTypeA << ArgTypeB << ArgA->getSourceRange() + << ArgB->getSourceRange(); + } + } + + // at least one argument should be pointer type + if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) + return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) + << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); + + if (isNull(ArgA)) // adopt type of the other pointer + ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); + + if (isNull(ArgB)) + ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); + + TheCall->setArg(0, ArgExprA.get()); + TheCall->setArg(1, ArgExprB.get()); + TheCall->setType(Context.LongLongTy); + return false; + } + assert(false && "Unhandled ARM MTE intrinsic"); + return true; +} + +/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr +/// TheCall is an ARM/AArch64 special register string literal. +bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, + int ArgNum, unsigned ExpectedFieldNum, + bool AllowName) { + bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || + BuiltinID == ARM::BI__builtin_arm_wsr64 || + BuiltinID == ARM::BI__builtin_arm_rsr || + BuiltinID == ARM::BI__builtin_arm_rsrp || + BuiltinID == ARM::BI__builtin_arm_wsr || + BuiltinID == ARM::BI__builtin_arm_wsrp; + bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || + BuiltinID == AArch64::BI__builtin_arm_wsr64 || + BuiltinID == AArch64::BI__builtin_arm_rsr || + BuiltinID == AArch64::BI__builtin_arm_rsrp || + BuiltinID == AArch64::BI__builtin_arm_wsr || + BuiltinID == AArch64::BI__builtin_arm_wsrp; + assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); + + // We can't check the value of a dependent argument. + Expr *Arg = TheCall->getArg(ArgNum); + if (Arg->isTypeDependent() || Arg->isValueDependent()) + return false; + + // Check if the argument is a string literal. + if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) + return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) + << Arg->getSourceRange(); + + // Check the type of special register given. + StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); + SmallVector<StringRef, 6> Fields; + Reg.split(Fields, ":"); + + if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) + return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) + << Arg->getSourceRange(); + + // If the string is the name of a register then we cannot check that it is + // valid here but if the string is of one the forms described in ACLE then we + // can check that the supplied fields are integers and within the valid + // ranges. + if (Fields.size() > 1) { + bool FiveFields = Fields.size() == 5; + + bool ValidString = true; + if (IsARMBuiltin) { + ValidString &= Fields[0].startswith_lower("cp") || + Fields[0].startswith_lower("p"); + if (ValidString) + Fields[0] = + Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); + + ValidString &= Fields[2].startswith_lower("c"); + if (ValidString) + Fields[2] = Fields[2].drop_front(1); + + if (FiveFields) { + ValidString &= Fields[3].startswith_lower("c"); + if (ValidString) + Fields[3] = Fields[3].drop_front(1); + } + } + + SmallVector<int, 5> Ranges; + if (FiveFields) + Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); + else + Ranges.append({15, 7, 15}); + + for (unsigned i=0; i<Fields.size(); ++i) { + int IntField; + ValidString &= !Fields[i].getAsInteger(10, IntField); + ValidString &= (IntField >= 0 && IntField <= Ranges[i]); + } + + if (!ValidString) + return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) + << Arg->getSourceRange(); + } else if (IsAArch64Builtin && Fields.size() == 1) { + // If the register name is one of those that appear in the condition below + // and the special register builtin being used is one of the write builtins, + // then we require that the argument provided for writing to the register + // is an integer constant expression. This is because it will be lowered to + // an MSR (immediate) instruction, so we need to know the immediate at + // compile time. + if (TheCall->getNumArgs() != 2) + return false; + + std::string RegLower = Reg.lower(); + if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && + RegLower != "pan" && RegLower != "uao") + return false; + + return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); + } + + return false; +} + +/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). +/// This checks that the target supports __builtin_longjmp and +/// that val is a constant 1. +bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { + if (!Context.getTargetInfo().hasSjLjLowering()) + return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) + << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); + + Expr *Arg = TheCall->getArg(1); + llvm::APSInt Result; + + // TODO: This is less than ideal. Overload this to take a value. + if (SemaBuiltinConstantArg(TheCall, 1, Result)) + return true; + + if (Result != 1) + return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) + << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); + + return false; +} + +/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). +/// This checks that the target supports __builtin_setjmp. +bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { + if (!Context.getTargetInfo().hasSjLjLowering()) + return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) + << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); + return false; +} + +namespace { + +class UncoveredArgHandler { + enum { Unknown = -1, AllCovered = -2 }; + + signed FirstUncoveredArg = Unknown; + SmallVector<const Expr *, 4> DiagnosticExprs; + +public: + UncoveredArgHandler() = default; + + bool hasUncoveredArg() const { + return (FirstUncoveredArg >= 0); + } + + unsigned getUncoveredArg() const { + assert(hasUncoveredArg() && "no uncovered argument"); + return FirstUncoveredArg; + } + + void setAllCovered() { + // A string has been found with all arguments covered, so clear out + // the diagnostics. + DiagnosticExprs.clear(); + FirstUncoveredArg = AllCovered; + } + + void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { + assert(NewFirstUncoveredArg >= 0 && "Outside range"); + + // Don't update if a previous string covers all arguments. + if (FirstUncoveredArg == AllCovered) + return; + + // UncoveredArgHandler tracks the highest uncovered argument index + // and with it all the strings that match this index. + if (NewFirstUncoveredArg == FirstUncoveredArg) + DiagnosticExprs.push_back(StrExpr); + else if (NewFirstUncoveredArg > FirstUncoveredArg) { + DiagnosticExprs.clear(); + DiagnosticExprs.push_back(StrExpr); + FirstUncoveredArg = NewFirstUncoveredArg; + } + } + + void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); +}; + +enum StringLiteralCheckType { + SLCT_NotALiteral, + SLCT_UncheckedLiteral, + SLCT_CheckedLiteral +}; + +} // namespace + +static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, + BinaryOperatorKind BinOpKind, + bool AddendIsRight) { + unsigned BitWidth = Offset.getBitWidth(); + unsigned AddendBitWidth = Addend.getBitWidth(); + // There might be negative interim results. + if (Addend.isUnsigned()) { + Addend = Addend.zext(++AddendBitWidth); + Addend.setIsSigned(true); + } + // Adjust the bit width of the APSInts. + if (AddendBitWidth > BitWidth) { + Offset = Offset.sext(AddendBitWidth); + BitWidth = AddendBitWidth; + } else if (BitWidth > AddendBitWidth) { + Addend = Addend.sext(BitWidth); + } + + bool Ov = false; + llvm::APSInt ResOffset = Offset; + if (BinOpKind == BO_Add) + ResOffset = Offset.sadd_ov(Addend, Ov); + else { + assert(AddendIsRight && BinOpKind == BO_Sub && + "operator must be add or sub with addend on the right"); + ResOffset = Offset.ssub_ov(Addend, Ov); + } + + // We add an offset to a pointer here so we should support an offset as big as + // possible. + if (Ov) { + assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && + "index (intermediate) result too big"); + Offset = Offset.sext(2 * BitWidth); + sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); + return; + } + + Offset = ResOffset; +} + +namespace { + +// This is a wrapper class around StringLiteral to support offsetted string +// literals as format strings. It takes the offset into account when returning +// the string and its length or the source locations to display notes correctly. +class FormatStringLiteral { + const StringLiteral *FExpr; + int64_t Offset; + + public: + FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) + : FExpr(fexpr), Offset(Offset) {} + + StringRef getString() const { + return FExpr->getString().drop_front(Offset); + } + + unsigned getByteLength() const { + return FExpr->getByteLength() - getCharByteWidth() * Offset; + } + + unsigned getLength() const { return FExpr->getLength() - Offset; } + unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } + + StringLiteral::StringKind getKind() const { return FExpr->getKind(); } + + QualType getType() const { return FExpr->getType(); } + + bool isAscii() const { return FExpr->isAscii(); } + bool isWide() const { return FExpr->isWide(); } + bool isUTF8() const { return FExpr->isUTF8(); } + bool isUTF16() const { return FExpr->isUTF16(); } + bool isUTF32() const { return FExpr->isUTF32(); } + bool isPascal() const { return FExpr->isPascal(); } + + SourceLocation getLocationOfByte( + unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, + const TargetInfo &Target, unsigned *StartToken = nullptr, + unsigned *StartTokenByteOffset = nullptr) const { + return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, + StartToken, StartTokenByteOffset); + } + + SourceLocation getBeginLoc() const LLVM_READONLY { + return FExpr->getBeginLoc().getLocWithOffset(Offset); + } + + SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } +}; + +} // namespace + +static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, + const Expr *OrigFormatExpr, + ArrayRef<const Expr *> Args, + bool HasVAListArg, unsigned format_idx, + unsigned firstDataArg, + Sema::FormatStringType Type, + bool inFunctionCall, + Sema::VariadicCallType CallType, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg, + bool IgnoreStringsWithoutSpecifiers); + +// Determine if an expression is a string literal or constant string. +// If this function returns false on the arguments to a function expecting a +// format string, we will usually need to emit a warning. +// True string literals are then checked by CheckFormatString. +static StringLiteralCheckType +checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, + bool HasVAListArg, unsigned format_idx, + unsigned firstDataArg, Sema::FormatStringType Type, + Sema::VariadicCallType CallType, bool InFunctionCall, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg, + llvm::APSInt Offset, + bool IgnoreStringsWithoutSpecifiers = false) { + if (S.isConstantEvaluated()) + return SLCT_NotALiteral; + tryAgain: + assert(Offset.isSigned() && "invalid offset"); + + if (E->isTypeDependent() || E->isValueDependent()) + return SLCT_NotALiteral; + + E = E->IgnoreParenCasts(); + + if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) + // Technically -Wformat-nonliteral does not warn about this case. + // The behavior of printf and friends in this case is implementation + // dependent. Ideally if the format string cannot be null then + // it should have a 'nonnull' attribute in the function prototype. + return SLCT_UncheckedLiteral; + + switch (E->getStmtClass()) { + case Stmt::BinaryConditionalOperatorClass: + case Stmt::ConditionalOperatorClass: { + // The expression is a literal if both sub-expressions were, and it was + // completely checked only if both sub-expressions were checked. + const AbstractConditionalOperator *C = + cast<AbstractConditionalOperator>(E); + + // Determine whether it is necessary to check both sub-expressions, for + // example, because the condition expression is a constant that can be + // evaluated at compile time. + bool CheckLeft = true, CheckRight = true; + + bool Cond; + if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), + S.isConstantEvaluated())) { + if (Cond) + CheckRight = false; + else + CheckLeft = false; + } + + // We need to maintain the offsets for the right and the left hand side + // separately to check if every possible indexed expression is a valid + // string literal. They might have different offsets for different string + // literals in the end. + StringLiteralCheckType Left; + if (!CheckLeft) + Left = SLCT_UncheckedLiteral; + else { + Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, + HasVAListArg, format_idx, firstDataArg, + Type, CallType, InFunctionCall, + CheckedVarArgs, UncoveredArg, Offset, + IgnoreStringsWithoutSpecifiers); + if (Left == SLCT_NotALiteral || !CheckRight) { + return Left; + } + } + + StringLiteralCheckType Right = checkFormatStringExpr( + S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, + Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, + IgnoreStringsWithoutSpecifiers); + + return (CheckLeft && Left < Right) ? Left : Right; + } + + case Stmt::ImplicitCastExprClass: + E = cast<ImplicitCastExpr>(E)->getSubExpr(); + goto tryAgain; + + case Stmt::OpaqueValueExprClass: + if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { + E = src; + goto tryAgain; + } + return SLCT_NotALiteral; + + case Stmt::PredefinedExprClass: + // While __func__, etc., are technically not string literals, they + // cannot contain format specifiers and thus are not a security + // liability. + return SLCT_UncheckedLiteral; + + case Stmt::DeclRefExprClass: { + const DeclRefExpr *DR = cast<DeclRefExpr>(E); + + // As an exception, do not flag errors for variables binding to + // const string literals. + if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { + bool isConstant = false; + QualType T = DR->getType(); + + if (const ArrayType *AT = S.Context.getAsArrayType(T)) { + isConstant = AT->getElementType().isConstant(S.Context); + } else if (const PointerType *PT = T->getAs<PointerType>()) { + isConstant = T.isConstant(S.Context) && + PT->getPointeeType().isConstant(S.Context); + } else if (T->isObjCObjectPointerType()) { + // In ObjC, there is usually no "const ObjectPointer" type, + // so don't check if the pointee type is constant. + isConstant = T.isConstant(S.Context); + } + + if (isConstant) { + if (const Expr *Init = VD->getAnyInitializer()) { + // Look through initializers like const char c[] = { "foo" } + if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { + if (InitList->isStringLiteralInit()) + Init = InitList->getInit(0)->IgnoreParenImpCasts(); + } + return checkFormatStringExpr(S, Init, Args, + HasVAListArg, format_idx, + firstDataArg, Type, CallType, + /*InFunctionCall*/ false, CheckedVarArgs, + UncoveredArg, Offset); + } + } + + // For vprintf* functions (i.e., HasVAListArg==true), we add a + // special check to see if the format string is a function parameter + // of the function calling the printf function. If the function + // has an attribute indicating it is a printf-like function, then we + // should suppress warnings concerning non-literals being used in a call + // to a vprintf function. For example: + // + // void + // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ + // va_list ap; + // va_start(ap, fmt); + // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". + // ... + // } + if (HasVAListArg) { + if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { + if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { + int PVIndex = PV->getFunctionScopeIndex() + 1; + for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { + // adjust for implicit parameter + if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) + if (MD->isInstance()) + ++PVIndex; + // We also check if the formats are compatible. + // We can't pass a 'scanf' string to a 'printf' function. + if (PVIndex == PVFormat->getFormatIdx() && + Type == S.GetFormatStringType(PVFormat)) + return SLCT_UncheckedLiteral; + } + } + } + } + } + + return SLCT_NotALiteral; + } + + case Stmt::CallExprClass: + case Stmt::CXXMemberCallExprClass: { + const CallExpr *CE = cast<CallExpr>(E); + if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { + bool IsFirst = true; + StringLiteralCheckType CommonResult; + for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { + const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); + StringLiteralCheckType Result = checkFormatStringExpr( + S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, + CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, + IgnoreStringsWithoutSpecifiers); + if (IsFirst) { + CommonResult = Result; + IsFirst = false; + } + } + if (!IsFirst) + return CommonResult; + + if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { + unsigned BuiltinID = FD->getBuiltinID(); + if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || + BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { + const Expr *Arg = CE->getArg(0); + return checkFormatStringExpr(S, Arg, Args, + HasVAListArg, format_idx, + firstDataArg, Type, CallType, + InFunctionCall, CheckedVarArgs, + UncoveredArg, Offset, + IgnoreStringsWithoutSpecifiers); + } + } + } + + return SLCT_NotALiteral; + } + case Stmt::ObjCMessageExprClass: { + const auto *ME = cast<ObjCMessageExpr>(E); + if (const auto *MD = ME->getMethodDecl()) { + if (const auto *FA = MD->getAttr<FormatArgAttr>()) { + // As a special case heuristic, if we're using the method -[NSBundle + // localizedStringForKey:value:table:], ignore any key strings that lack + // format specifiers. The idea is that if the key doesn't have any + // format specifiers then its probably just a key to map to the + // localized strings. If it does have format specifiers though, then its + // likely that the text of the key is the format string in the + // programmer's language, and should be checked. + const ObjCInterfaceDecl *IFace; + if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && + IFace->getIdentifier()->isStr("NSBundle") && + MD->getSelector().isKeywordSelector( + {"localizedStringForKey", "value", "table"})) { + IgnoreStringsWithoutSpecifiers = true; + } + + const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); + return checkFormatStringExpr( + S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, + CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, + IgnoreStringsWithoutSpecifiers); + } + } + + return SLCT_NotALiteral; + } + case Stmt::ObjCStringLiteralClass: + case Stmt::StringLiteralClass: { + const StringLiteral *StrE = nullptr; + + if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) + StrE = ObjCFExpr->getString(); + else + StrE = cast<StringLiteral>(E); + + if (StrE) { + if (Offset.isNegative() || Offset > StrE->getLength()) { + // TODO: It would be better to have an explicit warning for out of + // bounds literals. + return SLCT_NotALiteral; + } + FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); + CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, + firstDataArg, Type, InFunctionCall, CallType, + CheckedVarArgs, UncoveredArg, + IgnoreStringsWithoutSpecifiers); + return SLCT_CheckedLiteral; + } + + return SLCT_NotALiteral; + } + case Stmt::BinaryOperatorClass: { + const BinaryOperator *BinOp = cast<BinaryOperator>(E); + + // A string literal + an int offset is still a string literal. + if (BinOp->isAdditiveOp()) { + Expr::EvalResult LResult, RResult; + + bool LIsInt = BinOp->getLHS()->EvaluateAsInt( + LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); + bool RIsInt = BinOp->getRHS()->EvaluateAsInt( + RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); + + if (LIsInt != RIsInt) { + BinaryOperatorKind BinOpKind = BinOp->getOpcode(); + + if (LIsInt) { + if (BinOpKind == BO_Add) { + sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); + E = BinOp->getRHS(); + goto tryAgain; + } + } else { + sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); + E = BinOp->getLHS(); + goto tryAgain; + } + } + } + + return SLCT_NotALiteral; + } + case Stmt::UnaryOperatorClass: { + const UnaryOperator *UnaOp = cast<UnaryOperator>(E); + auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); + if (UnaOp->getOpcode() == UO_AddrOf && ASE) { + Expr::EvalResult IndexResult; + if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, + Expr::SE_NoSideEffects, + S.isConstantEvaluated())) { + sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, + /*RHS is int*/ true); + E = ASE->getBase(); + goto tryAgain; + } + } + + return SLCT_NotALiteral; + } + + default: + return SLCT_NotALiteral; + } +} + +Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { + return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) + .Case("scanf", FST_Scanf) + .Cases("printf", "printf0", FST_Printf) + .Cases("NSString", "CFString", FST_NSString) + .Case("strftime", FST_Strftime) + .Case("strfmon", FST_Strfmon) + .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) + .Case("freebsd_kprintf", FST_FreeBSDKPrintf) + .Case("os_trace", FST_OSLog) + .Case("os_log", FST_OSLog) + .Default(FST_Unknown); +} + +/// CheckFormatArguments - Check calls to printf and scanf (and similar +/// functions) for correct use of format strings. +/// Returns true if a format string has been fully checked. +bool Sema::CheckFormatArguments(const FormatAttr *Format, + ArrayRef<const Expr *> Args, + bool IsCXXMember, + VariadicCallType CallType, + SourceLocation Loc, SourceRange Range, + llvm::SmallBitVector &CheckedVarArgs) { + FormatStringInfo FSI; + if (getFormatStringInfo(Format, IsCXXMember, &FSI)) + return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, + FSI.FirstDataArg, GetFormatStringType(Format), + CallType, Loc, Range, CheckedVarArgs); + return false; +} + +bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, + bool HasVAListArg, unsigned format_idx, + unsigned firstDataArg, FormatStringType Type, + VariadicCallType CallType, + SourceLocation Loc, SourceRange Range, + llvm::SmallBitVector &CheckedVarArgs) { + // CHECK: printf/scanf-like function is called with no format string. + if (format_idx >= Args.size()) { + Diag(Loc, diag::warn_missing_format_string) << Range; + return false; + } + + const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); + + // CHECK: format string is not a string literal. + // + // Dynamically generated format strings are difficult to + // automatically vet at compile time. Requiring that format strings + // are string literals: (1) permits the checking of format strings by + // the compiler and thereby (2) can practically remove the source of + // many format string exploits. + + // Format string can be either ObjC string (e.g. @"%d") or + // C string (e.g. "%d") + // ObjC string uses the same format specifiers as C string, so we can use + // the same format string checking logic for both ObjC and C strings. + UncoveredArgHandler UncoveredArg; + StringLiteralCheckType CT = + checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, + format_idx, firstDataArg, Type, CallType, + /*IsFunctionCall*/ true, CheckedVarArgs, + UncoveredArg, + /*no string offset*/ llvm::APSInt(64, false) = 0); + + // Generate a diagnostic where an uncovered argument is detected. + if (UncoveredArg.hasUncoveredArg()) { + unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; + assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); + UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); + } + + if (CT != SLCT_NotALiteral) + // Literal format string found, check done! + return CT == SLCT_CheckedLiteral; + + // Strftime is particular as it always uses a single 'time' argument, + // so it is safe to pass a non-literal string. + if (Type == FST_Strftime) + return false; + + // Do not emit diag when the string param is a macro expansion and the + // format is either NSString or CFString. This is a hack to prevent + // diag when using the NSLocalizedString and CFCopyLocalizedString macros + // which are usually used in place of NS and CF string literals. + SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); + if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) + return false; + + // If there are no arguments specified, warn with -Wformat-security, otherwise + // warn only with -Wformat-nonliteral. + if (Args.size() == firstDataArg) { + Diag(FormatLoc, diag::warn_format_nonliteral_noargs) + << OrigFormatExpr->getSourceRange(); + switch (Type) { + default: + break; + case FST_Kprintf: + case FST_FreeBSDKPrintf: + case FST_Printf: + Diag(FormatLoc, diag::note_format_security_fixit) + << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); + break; + case FST_NSString: + Diag(FormatLoc, diag::note_format_security_fixit) + << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); + break; + } + } else { + Diag(FormatLoc, diag::warn_format_nonliteral) + << OrigFormatExpr->getSourceRange(); + } + return false; +} + +namespace { + +class CheckFormatHandler : public analyze_format_string::FormatStringHandler { +protected: + Sema &S; + const FormatStringLiteral *FExpr; + const Expr *OrigFormatExpr; + const Sema::FormatStringType FSType; + const unsigned FirstDataArg; + const unsigned NumDataArgs; + const char *Beg; // Start of format string. + const bool HasVAListArg; + ArrayRef<const Expr *> Args; + unsigned FormatIdx; + llvm::SmallBitVector CoveredArgs; + bool usesPositionalArgs = false; + bool atFirstArg = true; + bool inFunctionCall; + Sema::VariadicCallType CallType; + llvm::SmallBitVector &CheckedVarArgs; + UncoveredArgHandler &UncoveredArg; + +public: + CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, + const Expr *origFormatExpr, + const Sema::FormatStringType type, unsigned firstDataArg, + unsigned numDataArgs, const char *beg, bool hasVAListArg, + ArrayRef<const Expr *> Args, unsigned formatIdx, + bool inFunctionCall, Sema::VariadicCallType callType, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg) + : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), + FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), + HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), + inFunctionCall(inFunctionCall), CallType(callType), + CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { + CoveredArgs.resize(numDataArgs); + CoveredArgs.reset(); + } + + void DoneProcessing(); + + void HandleIncompleteSpecifier(const char *startSpecifier, + unsigned specifierLen) override; + + void HandleInvalidLengthModifier( + const analyze_format_string::FormatSpecifier &FS, + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen, + unsigned DiagID); + + void HandleNonStandardLengthModifier( + const analyze_format_string::FormatSpecifier &FS, + const char *startSpecifier, unsigned specifierLen); + + void HandleNonStandardConversionSpecifier( + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen); + + void HandlePosition(const char *startPos, unsigned posLen) override; + + void HandleInvalidPosition(const char *startSpecifier, + unsigned specifierLen, + analyze_format_string::PositionContext p) override; + + void HandleZeroPosition(const char *startPos, unsigned posLen) override; + + void HandleNullChar(const char *nullCharacter) override; + + template <typename Range> + static void + EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, + const PartialDiagnostic &PDiag, SourceLocation StringLoc, + bool IsStringLocation, Range StringRange, + ArrayRef<FixItHint> Fixit = None); + +protected: + bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, + const char *startSpec, + unsigned specifierLen, + const char *csStart, unsigned csLen); + + void HandlePositionalNonpositionalArgs(SourceLocation Loc, + const char *startSpec, + unsigned specifierLen); + + SourceRange getFormatStringRange(); + CharSourceRange getSpecifierRange(const char *startSpecifier, + unsigned specifierLen); + SourceLocation getLocationOfByte(const char *x); + + const Expr *getDataArg(unsigned i) const; + + bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen, + unsigned argIndex); + + template <typename Range> + void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, + bool IsStringLocation, Range StringRange, + ArrayRef<FixItHint> Fixit = None); +}; + +} // namespace + +SourceRange CheckFormatHandler::getFormatStringRange() { + return OrigFormatExpr->getSourceRange(); +} + +CharSourceRange CheckFormatHandler:: +getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { + SourceLocation Start = getLocationOfByte(startSpecifier); + SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); + + // Advance the end SourceLocation by one due to half-open ranges. + End = End.getLocWithOffset(1); + + return CharSourceRange::getCharRange(Start, End); +} + +SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { + return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), + S.getLangOpts(), S.Context.getTargetInfo()); +} + +void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, + unsigned specifierLen){ + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), + getLocationOfByte(startSpecifier), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); +} + +void CheckFormatHandler::HandleInvalidLengthModifier( + const analyze_format_string::FormatSpecifier &FS, + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { + using namespace analyze_format_string; + + const LengthModifier &LM = FS.getLengthModifier(); + CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); + + // See if we know how to fix this length modifier. + Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); + if (FixedLM) { + EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), + getLocationOfByte(LM.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + + S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) + << FixedLM->toString() + << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); + + } else { + FixItHint Hint; + if (DiagID == diag::warn_format_nonsensical_length) + Hint = FixItHint::CreateRemoval(LMRange); + + EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), + getLocationOfByte(LM.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen), + Hint); + } +} + +void CheckFormatHandler::HandleNonStandardLengthModifier( + const analyze_format_string::FormatSpecifier &FS, + const char *startSpecifier, unsigned specifierLen) { + using namespace analyze_format_string; + + const LengthModifier &LM = FS.getLengthModifier(); + CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); + + // See if we know how to fix this length modifier. + Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); + if (FixedLM) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) + << LM.toString() << 0, + getLocationOfByte(LM.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + + S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) + << FixedLM->toString() + << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); + + } else { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) + << LM.toString() << 0, + getLocationOfByte(LM.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + } +} + +void CheckFormatHandler::HandleNonStandardConversionSpecifier( + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen) { + using namespace analyze_format_string; + + // See if we know how to fix this conversion specifier. + Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); + if (FixedCS) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) + << CS.toString() << /*conversion specifier*/1, + getLocationOfByte(CS.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + + CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); + S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) + << FixedCS->toString() + << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); + } else { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) + << CS.toString() << /*conversion specifier*/1, + getLocationOfByte(CS.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + } +} + +void CheckFormatHandler::HandlePosition(const char *startPos, + unsigned posLen) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), + getLocationOfByte(startPos), + /*IsStringLocation*/true, + getSpecifierRange(startPos, posLen)); +} + +void +CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, + analyze_format_string::PositionContext p) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) + << (unsigned) p, + getLocationOfByte(startPos), /*IsStringLocation*/true, + getSpecifierRange(startPos, posLen)); +} + +void CheckFormatHandler::HandleZeroPosition(const char *startPos, + unsigned posLen) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), + getLocationOfByte(startPos), + /*IsStringLocation*/true, + getSpecifierRange(startPos, posLen)); +} + +void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { + if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { + // The presence of a null character is likely an error. + EmitFormatDiagnostic( + S.PDiag(diag::warn_printf_format_string_contains_null_char), + getLocationOfByte(nullCharacter), /*IsStringLocation*/true, + getFormatStringRange()); + } +} + +// Note that this may return NULL if there was an error parsing or building +// one of the argument expressions. +const Expr *CheckFormatHandler::getDataArg(unsigned i) const { + return Args[FirstDataArg + i]; +} + +void CheckFormatHandler::DoneProcessing() { + // Does the number of data arguments exceed the number of + // format conversions in the format string? + if (!HasVAListArg) { + // Find any arguments that weren't covered. + CoveredArgs.flip(); + signed notCoveredArg = CoveredArgs.find_first(); + if (notCoveredArg >= 0) { + assert((unsigned)notCoveredArg < NumDataArgs); + UncoveredArg.Update(notCoveredArg, OrigFormatExpr); + } else { + UncoveredArg.setAllCovered(); + } + } +} + +void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, + const Expr *ArgExpr) { + assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && + "Invalid state"); + + if (!ArgExpr) + return; + + SourceLocation Loc = ArgExpr->getBeginLoc(); + + if (S.getSourceManager().isInSystemMacro(Loc)) + return; + + PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); + for (auto E : DiagnosticExprs) + PDiag << E->getSourceRange(); + + CheckFormatHandler::EmitFormatDiagnostic( + S, IsFunctionCall, DiagnosticExprs[0], + PDiag, Loc, /*IsStringLocation*/false, + DiagnosticExprs[0]->getSourceRange()); +} + +bool +CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, + SourceLocation Loc, + const char *startSpec, + unsigned specifierLen, + const char *csStart, + unsigned csLen) { + bool keepGoing = true; + if (argIndex < NumDataArgs) { + // Consider the argument coverered, even though the specifier doesn't + // make sense. + CoveredArgs.set(argIndex); + } + else { + // If argIndex exceeds the number of data arguments we + // don't issue a warning because that is just a cascade of warnings (and + // they may have intended '%%' anyway). We don't want to continue processing + // the format string after this point, however, as we will like just get + // gibberish when trying to match arguments. + keepGoing = false; + } + + StringRef Specifier(csStart, csLen); + + // If the specifier in non-printable, it could be the first byte of a UTF-8 + // sequence. In that case, print the UTF-8 code point. If not, print the byte + // hex value. + std::string CodePointStr; + if (!llvm::sys::locale::isPrint(*csStart)) { + llvm::UTF32 CodePoint; + const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); + const llvm::UTF8 *E = + reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); + llvm::ConversionResult Result = + llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); + + if (Result != llvm::conversionOK) { + unsigned char FirstChar = *csStart; + CodePoint = (llvm::UTF32)FirstChar; + } + + llvm::raw_string_ostream OS(CodePointStr); + if (CodePoint < 256) + OS << "\\x" << llvm::format("%02x", CodePoint); + else if (CodePoint <= 0xFFFF) + OS << "\\u" << llvm::format("%04x", CodePoint); + else + OS << "\\U" << llvm::format("%08x", CodePoint); + OS.flush(); + Specifier = CodePointStr; + } + + EmitFormatDiagnostic( + S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, + /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); + + return keepGoing; +} + +void +CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, + const char *startSpec, + unsigned specifierLen) { + EmitFormatDiagnostic( + S.PDiag(diag::warn_format_mix_positional_nonpositional_args), + Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); +} + +bool +CheckFormatHandler::CheckNumArgs( + const analyze_format_string::FormatSpecifier &FS, + const analyze_format_string::ConversionSpecifier &CS, + const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { + + if (argIndex >= NumDataArgs) { + PartialDiagnostic PDiag = FS.usesPositionalArg() + ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) + << (argIndex+1) << NumDataArgs) + : S.PDiag(diag::warn_printf_insufficient_data_args); + EmitFormatDiagnostic( + PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + + // Since more arguments than conversion tokens are given, by extension + // all arguments are covered, so mark this as so. + UncoveredArg.setAllCovered(); + return false; + } + return true; +} + +template<typename Range> +void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, + SourceLocation Loc, + bool IsStringLocation, + Range StringRange, + ArrayRef<FixItHint> FixIt) { + EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, + Loc, IsStringLocation, StringRange, FixIt); +} + +/// If the format string is not within the function call, emit a note +/// so that the function call and string are in diagnostic messages. +/// +/// \param InFunctionCall if true, the format string is within the function +/// call and only one diagnostic message will be produced. Otherwise, an +/// extra note will be emitted pointing to location of the format string. +/// +/// \param ArgumentExpr the expression that is passed as the format string +/// argument in the function call. Used for getting locations when two +/// diagnostics are emitted. +/// +/// \param PDiag the callee should already have provided any strings for the +/// diagnostic message. This function only adds locations and fixits +/// to diagnostics. +/// +/// \param Loc primary location for diagnostic. If two diagnostics are +/// required, one will be at Loc and a new SourceLocation will be created for +/// the other one. +/// +/// \param IsStringLocation if true, Loc points to the format string should be +/// used for the note. Otherwise, Loc points to the argument list and will +/// be used with PDiag. +/// +/// \param StringRange some or all of the string to highlight. This is +/// templated so it can accept either a CharSourceRange or a SourceRange. +/// +/// \param FixIt optional fix it hint for the format string. +template <typename Range> +void CheckFormatHandler::EmitFormatDiagnostic( + Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, + const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, + Range StringRange, ArrayRef<FixItHint> FixIt) { + if (InFunctionCall) { + const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); + D << StringRange; + D << FixIt; + } else { + S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) + << ArgumentExpr->getSourceRange(); + + const Sema::SemaDiagnosticBuilder &Note = + S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), + diag::note_format_string_defined); + + Note << StringRange; + Note << FixIt; + } +} + +//===--- CHECK: Printf format string checking ------------------------------===// + +namespace { + +class CheckPrintfHandler : public CheckFormatHandler { +public: + CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, + const Expr *origFormatExpr, + const Sema::FormatStringType type, unsigned firstDataArg, + unsigned numDataArgs, bool isObjC, const char *beg, + bool hasVAListArg, ArrayRef<const Expr *> Args, + unsigned formatIdx, bool inFunctionCall, + Sema::VariadicCallType CallType, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg) + : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, + numDataArgs, beg, hasVAListArg, Args, formatIdx, + inFunctionCall, CallType, CheckedVarArgs, + UncoveredArg) {} + + bool isObjCContext() const { return FSType == Sema::FST_NSString; } + + /// Returns true if '%@' specifiers are allowed in the format string. + bool allowsObjCArg() const { + return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || + FSType == Sema::FST_OSTrace; + } + + bool HandleInvalidPrintfConversionSpecifier( + const analyze_printf::PrintfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) override; + + void handleInvalidMaskType(StringRef MaskType) override; + + bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) override; + bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, + const char *StartSpecifier, + unsigned SpecifierLen, + const Expr *E); + + bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, + const char *startSpecifier, unsigned specifierLen); + void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalAmount &Amt, + unsigned type, + const char *startSpecifier, unsigned specifierLen); + void HandleFlag(const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalFlag &flag, + const char *startSpecifier, unsigned specifierLen); + void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalFlag &ignoredFlag, + const analyze_printf::OptionalFlag &flag, + const char *startSpecifier, unsigned specifierLen); + bool checkForCStrMembers(const analyze_printf::ArgType &AT, + const Expr *E); + + void HandleEmptyObjCModifierFlag(const char *startFlag, + unsigned flagLen) override; + + void HandleInvalidObjCModifierFlag(const char *startFlag, + unsigned flagLen) override; + + void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, + const char *flagsEnd, + const char *conversionPosition) + override; +}; + +} // namespace + +bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( + const analyze_printf::PrintfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) { + const analyze_printf::PrintfConversionSpecifier &CS = + FS.getConversionSpecifier(); + + return HandleInvalidConversionSpecifier(FS.getArgIndex(), + getLocationOfByte(CS.getStart()), + startSpecifier, specifierLen, + CS.getStart(), CS.getLength()); +} + +void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { + S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); +} + +bool CheckPrintfHandler::HandleAmount( + const analyze_format_string::OptionalAmount &Amt, + unsigned k, const char *startSpecifier, + unsigned specifierLen) { + if (Amt.hasDataArgument()) { + if (!HasVAListArg) { + unsigned argIndex = Amt.getArgIndex(); + if (argIndex >= NumDataArgs) { + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) + << k, + getLocationOfByte(Amt.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + // Don't do any more checking. We will just emit + // spurious errors. + return false; + } + + // Type check the data argument. It should be an 'int'. + // Although not in conformance with C99, we also allow the argument to be + // an 'unsigned int' as that is a reasonably safe case. GCC also + // doesn't emit a warning for that case. + CoveredArgs.set(argIndex); + const Expr *Arg = getDataArg(argIndex); + if (!Arg) + return false; + + QualType T = Arg->getType(); + + const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); + assert(AT.isValid()); + + if (!AT.matchesType(S.Context, T)) { + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) + << k << AT.getRepresentativeTypeName(S.Context) + << T << Arg->getSourceRange(), + getLocationOfByte(Amt.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen)); + // Don't do any more checking. We will just emit + // spurious errors. + return false; + } + } + } + return true; +} + +void CheckPrintfHandler::HandleInvalidAmount( + const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalAmount &Amt, + unsigned type, + const char *startSpecifier, + unsigned specifierLen) { + const analyze_printf::PrintfConversionSpecifier &CS = + FS.getConversionSpecifier(); + + FixItHint fixit = + Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant + ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), + Amt.getConstantLength())) + : FixItHint(); + + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) + << type << CS.toString(), + getLocationOfByte(Amt.getStart()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen), + fixit); +} + +void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalFlag &flag, + const char *startSpecifier, + unsigned specifierLen) { + // Warn about pointless flag with a fixit removal. + const analyze_printf::PrintfConversionSpecifier &CS = + FS.getConversionSpecifier(); + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) + << flag.toString() << CS.toString(), + getLocationOfByte(flag.getPosition()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen), + FixItHint::CreateRemoval( + getSpecifierRange(flag.getPosition(), 1))); +} + +void CheckPrintfHandler::HandleIgnoredFlag( + const analyze_printf::PrintfSpecifier &FS, + const analyze_printf::OptionalFlag &ignoredFlag, + const analyze_printf::OptionalFlag &flag, + const char *startSpecifier, + unsigned specifierLen) { + // Warn about ignored flag with a fixit removal. + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) + << ignoredFlag.toString() << flag.toString(), + getLocationOfByte(ignoredFlag.getPosition()), + /*IsStringLocation*/true, + getSpecifierRange(startSpecifier, specifierLen), + FixItHint::CreateRemoval( + getSpecifierRange(ignoredFlag.getPosition(), 1))); +} + +void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, + unsigned flagLen) { + // Warn about an empty flag. + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), + getLocationOfByte(startFlag), + /*IsStringLocation*/true, + getSpecifierRange(startFlag, flagLen)); +} + +void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, + unsigned flagLen) { + // Warn about an invalid flag. + auto Range = getSpecifierRange(startFlag, flagLen); + StringRef flag(startFlag, flagLen); + EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, + getLocationOfByte(startFlag), + /*IsStringLocation*/true, + Range, FixItHint::CreateRemoval(Range)); +} + +void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( + const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { + // Warn about using '[...]' without a '@' conversion. + auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); + auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; + EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), + getLocationOfByte(conversionPosition), + /*IsStringLocation*/true, + Range, FixItHint::CreateRemoval(Range)); +} + +// Determines if the specified is a C++ class or struct containing +// a member with the specified name and kind (e.g. a CXXMethodDecl named +// "c_str()"). +template<typename MemberKind> +static llvm::SmallPtrSet<MemberKind*, 1> +CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { + const RecordType *RT = Ty->getAs<RecordType>(); + llvm::SmallPtrSet<MemberKind*, 1> Results; + + if (!RT) + return Results; + const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); + if (!RD || !RD->getDefinition()) + return Results; + + LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), + Sema::LookupMemberName); + R.suppressDiagnostics(); + + // We just need to include all members of the right kind turned up by the + // filter, at this point. + if (S.LookupQualifiedName(R, RT->getDecl())) + for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { + NamedDecl *decl = (*I)->getUnderlyingDecl(); + if (MemberKind *FK = dyn_cast<MemberKind>(decl)) + Results.insert(FK); + } + return Results; +} + +/// Check if we could call '.c_str()' on an object. +/// +/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't +/// allow the call, or if it would be ambiguous). +bool Sema::hasCStrMethod(const Expr *E) { + using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; + + MethodSet Results = + CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); + for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); + MI != ME; ++MI) + if ((*MI)->getMinRequiredArguments() == 0) + return true; + return false; +} + +// Check if a (w)string was passed when a (w)char* was needed, and offer a +// better diagnostic if so. AT is assumed to be valid. +// Returns true when a c_str() conversion method is found. +bool CheckPrintfHandler::checkForCStrMembers( + const analyze_printf::ArgType &AT, const Expr *E) { + using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; + + MethodSet Results = + CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); + + for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); + MI != ME; ++MI) { + const CXXMethodDecl *Method = *MI; + if (Method->getMinRequiredArguments() == 0 && + AT.matchesType(S.Context, Method->getReturnType())) { + // FIXME: Suggest parens if the expression needs them. + SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); + S.Diag(E->getBeginLoc(), diag::note_printf_c_str) + << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); + return true; + } + } + + return false; +} + +bool +CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier + &FS, + const char *startSpecifier, + unsigned specifierLen) { + using namespace analyze_format_string; + using namespace analyze_printf; + + const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); + + if (FS.consumesDataArgument()) { + if (atFirstArg) { + atFirstArg = false; + usesPositionalArgs = FS.usesPositionalArg(); + } + else if (usesPositionalArgs != FS.usesPositionalArg()) { + HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), + startSpecifier, specifierLen); + return false; + } + } + + // First check if the field width, precision, and conversion specifier + // have matching data arguments. + if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, + startSpecifier, specifierLen)) { + return false; + } + + if (!HandleAmount(FS.getPrecision(), /* precision */ 1, + startSpecifier, specifierLen)) { + return false; + } + + if (!CS.consumesDataArgument()) { + // FIXME: Technically specifying a precision or field width here + // makes no sense. Worth issuing a warning at some point. + return true; + } + + // Consume the argument. + unsigned argIndex = FS.getArgIndex(); + if (argIndex < NumDataArgs) { + // The check to see if the argIndex is valid will come later. + // We set the bit here because we may exit early from this + // function if we encounter some other error. + CoveredArgs.set(argIndex); + } + + // FreeBSD kernel extensions. + if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || + CS.getKind() == ConversionSpecifier::FreeBSDDArg) { + // We need at least two arguments. + if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) + return false; + + // Claim the second argument. + CoveredArgs.set(argIndex + 1); + + // Type check the first argument (int for %b, pointer for %D) + const Expr *Ex = getDataArg(argIndex); + const analyze_printf::ArgType &AT = + (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? + ArgType(S.Context.IntTy) : ArgType::CPointerTy; + if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) + EmitFormatDiagnostic( + S.PDiag(diag::warn_format_conversion_argument_type_mismatch) + << AT.getRepresentativeTypeName(S.Context) << Ex->getType() + << false << Ex->getSourceRange(), + Ex->getBeginLoc(), /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + + // Type check the second argument (char * for both %b and %D) + Ex = getDataArg(argIndex + 1); + const analyze_printf::ArgType &AT2 = ArgType::CStrTy; + if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) + EmitFormatDiagnostic( + S.PDiag(diag::warn_format_conversion_argument_type_mismatch) + << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() + << false << Ex->getSourceRange(), + Ex->getBeginLoc(), /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + + return true; + } + + // Check for using an Objective-C specific conversion specifier + // in a non-ObjC literal. + if (!allowsObjCArg() && CS.isObjCArg()) { + return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, + specifierLen); + } + + // %P can only be used with os_log. + if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { + return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, + specifierLen); + } + + // %n is not allowed with os_log. + if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { + EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), + getLocationOfByte(CS.getStart()), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + + return true; + } + + // Only scalars are allowed for os_trace. + if (FSType == Sema::FST_OSTrace && + (CS.getKind() == ConversionSpecifier::PArg || + CS.getKind() == ConversionSpecifier::sArg || + CS.getKind() == ConversionSpecifier::ObjCObjArg)) { + return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, + specifierLen); + } + + // Check for use of public/private annotation outside of os_log(). + if (FSType != Sema::FST_OSLog) { + if (FS.isPublic().isSet()) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) + << "public", + getLocationOfByte(FS.isPublic().getPosition()), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + } + if (FS.isPrivate().isSet()) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) + << "private", + getLocationOfByte(FS.isPrivate().getPosition()), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + } + } + + // Check for invalid use of field width + if (!FS.hasValidFieldWidth()) { + HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, + startSpecifier, specifierLen); + } + + // Check for invalid use of precision + if (!FS.hasValidPrecision()) { + HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, + startSpecifier, specifierLen); + } + + // Precision is mandatory for %P specifier. + if (CS.getKind() == ConversionSpecifier::PArg && + FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { + EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), + getLocationOfByte(startSpecifier), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + } + + // Check each flag does not conflict with any other component. + if (!FS.hasValidThousandsGroupingPrefix()) + HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); + if (!FS.hasValidLeadingZeros()) + HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); + if (!FS.hasValidPlusPrefix()) + HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); + if (!FS.hasValidSpacePrefix()) + HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); + if (!FS.hasValidAlternativeForm()) + HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); + if (!FS.hasValidLeftJustified()) + HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); + + // Check that flags are not ignored by another flag + if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' + HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), + startSpecifier, specifierLen); + if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' + HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), + startSpecifier, specifierLen); + + // Check the length modifier is valid with the given conversion specifier. + if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), + S.getLangOpts())) + HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, + diag::warn_format_nonsensical_length); + else if (!FS.hasStandardLengthModifier()) + HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); + else if (!FS.hasStandardLengthConversionCombination()) + HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, + diag::warn_format_non_standard_conversion_spec); + + if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) + HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); + + // The remaining checks depend on the data arguments. + if (HasVAListArg) + return true; + + if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) + return false; + + const Expr *Arg = getDataArg(argIndex); + if (!Arg) + return true; + + return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); +} + +static bool requiresParensToAddCast(const Expr *E) { + // FIXME: We should have a general way to reason about operator + // precedence and whether parens are actually needed here. + // Take care of a few common cases where they aren't. + const Expr *Inside = E->IgnoreImpCasts(); + if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) + Inside = POE->getSyntacticForm()->IgnoreImpCasts(); + + switch (Inside->getStmtClass()) { + case Stmt::ArraySubscriptExprClass: + case Stmt::CallExprClass: + case Stmt::CharacterLiteralClass: + case Stmt::CXXBoolLiteralExprClass: + case Stmt::DeclRefExprClass: + case Stmt::FloatingLiteralClass: + case Stmt::IntegerLiteralClass: + case Stmt::MemberExprClass: + case Stmt::ObjCArrayLiteralClass: + case Stmt::ObjCBoolLiteralExprClass: + case Stmt::ObjCBoxedExprClass: + case Stmt::ObjCDictionaryLiteralClass: + case Stmt::ObjCEncodeExprClass: + case Stmt::ObjCIvarRefExprClass: + case Stmt::ObjCMessageExprClass: + case Stmt::ObjCPropertyRefExprClass: + case Stmt::ObjCStringLiteralClass: + case Stmt::ObjCSubscriptRefExprClass: + case Stmt::ParenExprClass: + case Stmt::StringLiteralClass: + case Stmt::UnaryOperatorClass: + return false; + default: + return true; + } +} + +static std::pair<QualType, StringRef> +shouldNotPrintDirectly(const ASTContext &Context, + QualType IntendedTy, + const Expr *E) { + // Use a 'while' to peel off layers of typedefs. + QualType TyTy = IntendedTy; + while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { + StringRef Name = UserTy->getDecl()->getName(); + QualType CastTy = llvm::StringSwitch<QualType>(Name) + .Case("CFIndex", Context.getNSIntegerType()) + .Case("NSInteger", Context.getNSIntegerType()) + .Case("NSUInteger", Context.getNSUIntegerType()) + .Case("SInt32", Context.IntTy) + .Case("UInt32", Context.UnsignedIntTy) + .Default(QualType()); + + if (!CastTy.isNull()) + return std::make_pair(CastTy, Name); + + TyTy = UserTy->desugar(); + } + + // Strip parens if necessary. + if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) + return shouldNotPrintDirectly(Context, + PE->getSubExpr()->getType(), + PE->getSubExpr()); + + // If this is a conditional expression, then its result type is constructed + // via usual arithmetic conversions and thus there might be no necessary + // typedef sugar there. Recurse to operands to check for NSInteger & + // Co. usage condition. + if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { + QualType TrueTy, FalseTy; + StringRef TrueName, FalseName; + + std::tie(TrueTy, TrueName) = + shouldNotPrintDirectly(Context, + CO->getTrueExpr()->getType(), + CO->getTrueExpr()); + std::tie(FalseTy, FalseName) = + shouldNotPrintDirectly(Context, + CO->getFalseExpr()->getType(), + CO->getFalseExpr()); + + if (TrueTy == FalseTy) + return std::make_pair(TrueTy, TrueName); + else if (TrueTy.isNull()) + return std::make_pair(FalseTy, FalseName); + else if (FalseTy.isNull()) + return std::make_pair(TrueTy, TrueName); + } + + return std::make_pair(QualType(), StringRef()); +} + +/// Return true if \p ICE is an implicit argument promotion of an arithmetic +/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked +/// type do not count. +static bool +isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { + QualType From = ICE->getSubExpr()->getType(); + QualType To = ICE->getType(); + // It's an integer promotion if the destination type is the promoted + // source type. + if (ICE->getCastKind() == CK_IntegralCast && + From->isPromotableIntegerType() && + S.Context.getPromotedIntegerType(From) == To) + return true; + // Look through vector types, since we do default argument promotion for + // those in OpenCL. + if (const auto *VecTy = From->getAs<ExtVectorType>()) + From = VecTy->getElementType(); + if (const auto *VecTy = To->getAs<ExtVectorType>()) + To = VecTy->getElementType(); + // It's a floating promotion if the source type is a lower rank. + return ICE->getCastKind() == CK_FloatingCast && + S.Context.getFloatingTypeOrder(From, To) < 0; +} + +bool +CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, + const char *StartSpecifier, + unsigned SpecifierLen, + const Expr *E) { + using namespace analyze_format_string; + using namespace analyze_printf; + + // Now type check the data expression that matches the + // format specifier. + const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); + if (!AT.isValid()) + return true; + + QualType ExprTy = E->getType(); + while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { + ExprTy = TET->getUnderlyingExpr()->getType(); + } + + // Diagnose attempts to print a boolean value as a character. Unlike other + // -Wformat diagnostics, this is fine from a type perspective, but it still + // doesn't make sense. + if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && + E->isKnownToHaveBooleanValue()) { + const CharSourceRange &CSR = + getSpecifierRange(StartSpecifier, SpecifierLen); + SmallString<4> FSString; + llvm::raw_svector_ostream os(FSString); + FS.toString(os); + EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) + << FSString, + E->getExprLoc(), false, CSR); + return true; + } + + analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); + if (Match == analyze_printf::ArgType::Match) + return true; + + // Look through argument promotions for our error message's reported type. + // This includes the integral and floating promotions, but excludes array + // and function pointer decay (seeing that an argument intended to be a + // string has type 'char [6]' is probably more confusing than 'char *') and + // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). + if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (isArithmeticArgumentPromotion(S, ICE)) { + E = ICE->getSubExpr(); + ExprTy = E->getType(); + + // Check if we didn't match because of an implicit cast from a 'char' + // or 'short' to an 'int'. This is done because printf is a varargs + // function. + if (ICE->getType() == S.Context.IntTy || + ICE->getType() == S.Context.UnsignedIntTy) { + // All further checking is done on the subexpression + const analyze_printf::ArgType::MatchKind ImplicitMatch = + AT.matchesType(S.Context, ExprTy); + if (ImplicitMatch == analyze_printf::ArgType::Match) + return true; + if (ImplicitMatch == ArgType::NoMatchPedantic || + ImplicitMatch == ArgType::NoMatchTypeConfusion) + Match = ImplicitMatch; + } + } + } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { + // Special case for 'a', which has type 'int' in C. + // Note, however, that we do /not/ want to treat multibyte constants like + // 'MooV' as characters! This form is deprecated but still exists. + if (ExprTy == S.Context.IntTy) + if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) + ExprTy = S.Context.CharTy; + } + + // Look through enums to their underlying type. + bool IsEnum = false; + if (auto EnumTy = ExprTy->getAs<EnumType>()) { + ExprTy = EnumTy->getDecl()->getIntegerType(); + IsEnum = true; + } + + // %C in an Objective-C context prints a unichar, not a wchar_t. + // If the argument is an integer of some kind, believe the %C and suggest + // a cast instead of changing the conversion specifier. + QualType IntendedTy = ExprTy; + if (isObjCContext() && + FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { + if (ExprTy->isIntegralOrUnscopedEnumerationType() && + !ExprTy->isCharType()) { + // 'unichar' is defined as a typedef of unsigned short, but we should + // prefer using the typedef if it is visible. + IntendedTy = S.Context.UnsignedShortTy; + + // While we are here, check if the value is an IntegerLiteral that happens + // to be within the valid range. + if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { + const llvm::APInt &V = IL->getValue(); + if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) + return true; + } + + LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), + Sema::LookupOrdinaryName); + if (S.LookupName(Result, S.getCurScope())) { + NamedDecl *ND = Result.getFoundDecl(); + if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) + if (TD->getUnderlyingType() == IntendedTy) + IntendedTy = S.Context.getTypedefType(TD); + } + } + } + + // Special-case some of Darwin's platform-independence types by suggesting + // casts to primitive types that are known to be large enough. + bool ShouldNotPrintDirectly = false; StringRef CastTyName; + if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { + QualType CastTy; + std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); + if (!CastTy.isNull()) { + // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int + // (long in ASTContext). Only complain to pedants. + if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && + (AT.isSizeT() || AT.isPtrdiffT()) && + AT.matchesType(S.Context, CastTy)) + Match = ArgType::NoMatchPedantic; + IntendedTy = CastTy; + ShouldNotPrintDirectly = true; + } + } + + // We may be able to offer a FixItHint if it is a supported type. + PrintfSpecifier fixedFS = FS; + bool Success = + fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); + + if (Success) { + // Get the fix string from the fixed format specifier + SmallString<16> buf; + llvm::raw_svector_ostream os(buf); + fixedFS.toString(os); + + CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); + + if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { + unsigned Diag; + switch (Match) { + case ArgType::Match: llvm_unreachable("expected non-matching"); + case ArgType::NoMatchPedantic: + Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; + break; + case ArgType::NoMatchTypeConfusion: + Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; + break; + case ArgType::NoMatch: + Diag = diag::warn_format_conversion_argument_type_mismatch; + break; + } + + // In this case, the specifier is wrong and should be changed to match + // the argument. + EmitFormatDiagnostic(S.PDiag(Diag) + << AT.getRepresentativeTypeName(S.Context) + << IntendedTy << IsEnum << E->getSourceRange(), + E->getBeginLoc(), + /*IsStringLocation*/ false, SpecRange, + FixItHint::CreateReplacement(SpecRange, os.str())); + } else { + // The canonical type for formatting this value is different from the + // actual type of the expression. (This occurs, for example, with Darwin's + // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but + // should be printed as 'long' for 64-bit compatibility.) + // Rather than emitting a normal format/argument mismatch, we want to + // add a cast to the recommended type (and correct the format string + // if necessary). + SmallString<16> CastBuf; + llvm::raw_svector_ostream CastFix(CastBuf); + CastFix << "("; + IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); + CastFix << ")"; + + SmallVector<FixItHint,4> Hints; + if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) + Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); + + if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { + // If there's already a cast present, just replace it. + SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); + Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); + + } else if (!requiresParensToAddCast(E)) { + // If the expression has high enough precedence, + // just write the C-style cast. + Hints.push_back( + FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); + } else { + // Otherwise, add parens around the expression as well as the cast. + CastFix << "("; + Hints.push_back( + FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); + + SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); + Hints.push_back(FixItHint::CreateInsertion(After, ")")); + } + + if (ShouldNotPrintDirectly) { + // The expression has a type that should not be printed directly. + // We extract the name from the typedef because we don't want to show + // the underlying type in the diagnostic. + StringRef Name; + if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) + Name = TypedefTy->getDecl()->getName(); + else + Name = CastTyName; + unsigned Diag = Match == ArgType::NoMatchPedantic + ? diag::warn_format_argument_needs_cast_pedantic + : diag::warn_format_argument_needs_cast; + EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum + << E->getSourceRange(), + E->getBeginLoc(), /*IsStringLocation=*/false, + SpecRange, Hints); + } else { + // In this case, the expression could be printed using a different + // specifier, but we've decided that the specifier is probably correct + // and we should cast instead. Just use the normal warning message. + EmitFormatDiagnostic( + S.PDiag(diag::warn_format_conversion_argument_type_mismatch) + << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum + << E->getSourceRange(), + E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); + } + } + } else { + const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, + SpecifierLen); + // Since the warning for passing non-POD types to variadic functions + // was deferred until now, we emit a warning for non-POD + // arguments here. + switch (S.isValidVarArgType(ExprTy)) { + case Sema::VAK_Valid: + case Sema::VAK_ValidInCXX11: { + unsigned Diag; + switch (Match) { + case ArgType::Match: llvm_unreachable("expected non-matching"); + case ArgType::NoMatchPedantic: + Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; + break; + case ArgType::NoMatchTypeConfusion: + Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; + break; + case ArgType::NoMatch: + Diag = diag::warn_format_conversion_argument_type_mismatch; + break; + } + + EmitFormatDiagnostic( + S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy + << IsEnum << CSR << E->getSourceRange(), + E->getBeginLoc(), /*IsStringLocation*/ false, CSR); + break; + } + case Sema::VAK_Undefined: + case Sema::VAK_MSVCUndefined: + EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) + << S.getLangOpts().CPlusPlus11 << ExprTy + << CallType + << AT.getRepresentativeTypeName(S.Context) << CSR + << E->getSourceRange(), + E->getBeginLoc(), /*IsStringLocation*/ false, CSR); + checkForCStrMembers(AT, E); + break; + + case Sema::VAK_Invalid: + if (ExprTy->isObjCObjectType()) + EmitFormatDiagnostic( + S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) + << S.getLangOpts().CPlusPlus11 << ExprTy << CallType + << AT.getRepresentativeTypeName(S.Context) << CSR + << E->getSourceRange(), + E->getBeginLoc(), /*IsStringLocation*/ false, CSR); + else + // FIXME: If this is an initializer list, suggest removing the braces + // or inserting a cast to the target type. + S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) + << isa<InitListExpr>(E) << ExprTy << CallType + << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); + break; + } + + assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && + "format string specifier index out of range"); + CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; + } + + return true; +} + +//===--- CHECK: Scanf format string checking ------------------------------===// + +namespace { + +class CheckScanfHandler : public CheckFormatHandler { +public: + CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, + const Expr *origFormatExpr, Sema::FormatStringType type, + unsigned firstDataArg, unsigned numDataArgs, + const char *beg, bool hasVAListArg, + ArrayRef<const Expr *> Args, unsigned formatIdx, + bool inFunctionCall, Sema::VariadicCallType CallType, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg) + : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, + numDataArgs, beg, hasVAListArg, Args, formatIdx, + inFunctionCall, CallType, CheckedVarArgs, + UncoveredArg) {} + + bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) override; + + bool HandleInvalidScanfConversionSpecifier( + const analyze_scanf::ScanfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) override; + + void HandleIncompleteScanList(const char *start, const char *end) override; +}; + +} // namespace + +void CheckScanfHandler::HandleIncompleteScanList(const char *start, + const char *end) { + EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), + getLocationOfByte(end), /*IsStringLocation*/true, + getSpecifierRange(start, end - start)); +} + +bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( + const analyze_scanf::ScanfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) { + const analyze_scanf::ScanfConversionSpecifier &CS = + FS.getConversionSpecifier(); + + return HandleInvalidConversionSpecifier(FS.getArgIndex(), + getLocationOfByte(CS.getStart()), + startSpecifier, specifierLen, + CS.getStart(), CS.getLength()); +} + +bool CheckScanfHandler::HandleScanfSpecifier( + const analyze_scanf::ScanfSpecifier &FS, + const char *startSpecifier, + unsigned specifierLen) { + using namespace analyze_scanf; + using namespace analyze_format_string; + + const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); + + // Handle case where '%' and '*' don't consume an argument. These shouldn't + // be used to decide if we are using positional arguments consistently. + if (FS.consumesDataArgument()) { + if (atFirstArg) { + atFirstArg = false; + usesPositionalArgs = FS.usesPositionalArg(); + } + else if (usesPositionalArgs != FS.usesPositionalArg()) { + HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), + startSpecifier, specifierLen); + return false; + } + } + + // Check if the field with is non-zero. + const OptionalAmount &Amt = FS.getFieldWidth(); + if (Amt.getHowSpecified() == OptionalAmount::Constant) { + if (Amt.getConstantAmount() == 0) { + const CharSourceRange &R = getSpecifierRange(Amt.getStart(), + Amt.getConstantLength()); + EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), + getLocationOfByte(Amt.getStart()), + /*IsStringLocation*/true, R, + FixItHint::CreateRemoval(R)); + } + } + + if (!FS.consumesDataArgument()) { + // FIXME: Technically specifying a precision or field width here + // makes no sense. Worth issuing a warning at some point. + return true; + } + + // Consume the argument. + unsigned argIndex = FS.getArgIndex(); + if (argIndex < NumDataArgs) { + // The check to see if the argIndex is valid will come later. + // We set the bit here because we may exit early from this + // function if we encounter some other error. + CoveredArgs.set(argIndex); + } + + // Check the length modifier is valid with the given conversion specifier. + if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), + S.getLangOpts())) + HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, + diag::warn_format_nonsensical_length); + else if (!FS.hasStandardLengthModifier()) + HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); + else if (!FS.hasStandardLengthConversionCombination()) + HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, + diag::warn_format_non_standard_conversion_spec); + + if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) + HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); + + // The remaining checks depend on the data arguments. + if (HasVAListArg) + return true; + + if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) + return false; + + // Check that the argument type matches the format specifier. + const Expr *Ex = getDataArg(argIndex); + if (!Ex) + return true; + + const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); + + if (!AT.isValid()) { + return true; + } + + analyze_format_string::ArgType::MatchKind Match = + AT.matchesType(S.Context, Ex->getType()); + bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; + if (Match == analyze_format_string::ArgType::Match) + return true; + + ScanfSpecifier fixedFS = FS; + bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), + S.getLangOpts(), S.Context); + + unsigned Diag = + Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic + : diag::warn_format_conversion_argument_type_mismatch; + + if (Success) { + // Get the fix string from the fixed format specifier. + SmallString<128> buf; + llvm::raw_svector_ostream os(buf); + fixedFS.toString(os); + + EmitFormatDiagnostic( + S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) + << Ex->getType() << false << Ex->getSourceRange(), + Ex->getBeginLoc(), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen), + FixItHint::CreateReplacement( + getSpecifierRange(startSpecifier, specifierLen), os.str())); + } else { + EmitFormatDiagnostic(S.PDiag(Diag) + << AT.getRepresentativeTypeName(S.Context) + << Ex->getType() << false << Ex->getSourceRange(), + Ex->getBeginLoc(), + /*IsStringLocation*/ false, + getSpecifierRange(startSpecifier, specifierLen)); + } + + return true; +} + +static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, + const Expr *OrigFormatExpr, + ArrayRef<const Expr *> Args, + bool HasVAListArg, unsigned format_idx, + unsigned firstDataArg, + Sema::FormatStringType Type, + bool inFunctionCall, + Sema::VariadicCallType CallType, + llvm::SmallBitVector &CheckedVarArgs, + UncoveredArgHandler &UncoveredArg, + bool IgnoreStringsWithoutSpecifiers) { + // CHECK: is the format string a wide literal? + if (!FExpr->isAscii() && !FExpr->isUTF8()) { + CheckFormatHandler::EmitFormatDiagnostic( + S, inFunctionCall, Args[format_idx], + S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), + /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); + return; + } + + // Str - The format string. NOTE: this is NOT null-terminated! + StringRef StrRef = FExpr->getString(); + const char *Str = StrRef.data(); + // Account for cases where the string literal is truncated in a declaration. + const ConstantArrayType *T = + S.Context.getAsConstantArrayType(FExpr->getType()); + assert(T && "String literal not of constant array type!"); + size_t TypeSize = T->getSize().getZExtValue(); + size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); + const unsigned numDataArgs = Args.size() - firstDataArg; + + if (IgnoreStringsWithoutSpecifiers && + !analyze_format_string::parseFormatStringHasFormattingSpecifiers( + Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) + return; + + // Emit a warning if the string literal is truncated and does not contain an + // embedded null character. + if (TypeSize <= StrRef.size() && + StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { + CheckFormatHandler::EmitFormatDiagnostic( + S, inFunctionCall, Args[format_idx], + S.PDiag(diag::warn_printf_format_string_not_null_terminated), + FExpr->getBeginLoc(), + /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); + return; + } + + // CHECK: empty format string? + if (StrLen == 0 && numDataArgs > 0) { + CheckFormatHandler::EmitFormatDiagnostic( + S, inFunctionCall, Args[format_idx], + S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), + /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); + return; + } + + if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || + Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || + Type == Sema::FST_OSTrace) { + CheckPrintfHandler H( + S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, + (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, + HasVAListArg, Args, format_idx, inFunctionCall, CallType, + CheckedVarArgs, UncoveredArg); + + if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, + S.getLangOpts(), + S.Context.getTargetInfo(), + Type == Sema::FST_FreeBSDKPrintf)) + H.DoneProcessing(); + } else if (Type == Sema::FST_Scanf) { + CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, + numDataArgs, Str, HasVAListArg, Args, format_idx, + inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); + + if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, + S.getLangOpts(), + S.Context.getTargetInfo())) + H.DoneProcessing(); + } // TODO: handle other formats +} + +bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { + // Str - The format string. NOTE: this is NOT null-terminated! + StringRef StrRef = FExpr->getString(); + const char *Str = StrRef.data(); + // Account for cases where the string literal is truncated in a declaration. + const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); + assert(T && "String literal not of constant array type!"); + size_t TypeSize = T->getSize().getZExtValue(); + size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); + return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, + getLangOpts(), + Context.getTargetInfo()); +} + +//===--- CHECK: Warn on use of wrong absolute value function. -------------===// + +// Returns the related absolute value function that is larger, of 0 if one +// does not exist. +static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { + switch (AbsFunction) { + default: + return 0; + + case Builtin::BI__builtin_abs: + return Builtin::BI__builtin_labs; + case Builtin::BI__builtin_labs: + return Builtin::BI__builtin_llabs; + case Builtin::BI__builtin_llabs: + return 0; + + case Builtin::BI__builtin_fabsf: + return Builtin::BI__builtin_fabs; + case Builtin::BI__builtin_fabs: + return Builtin::BI__builtin_fabsl; + case Builtin::BI__builtin_fabsl: + return 0; + + case Builtin::BI__builtin_cabsf: + return Builtin::BI__builtin_cabs; + case Builtin::BI__builtin_cabs: + return Builtin::BI__builtin_cabsl; + case Builtin::BI__builtin_cabsl: + return 0; + + case Builtin::BIabs: + return Builtin::BIlabs; + case Builtin::BIlabs: + return Builtin::BIllabs; + case Builtin::BIllabs: + return 0; + + case Builtin::BIfabsf: + return Builtin::BIfabs; + case Builtin::BIfabs: + return Builtin::BIfabsl; + case Builtin::BIfabsl: + return 0; + + case Builtin::BIcabsf: + return Builtin::BIcabs; + case Builtin::BIcabs: + return Builtin::BIcabsl; + case Builtin::BIcabsl: + return 0; + } +} + +// Returns the argument type of the absolute value function. +static QualType getAbsoluteValueArgumentType(ASTContext &Context, + unsigned AbsType) { + if (AbsType == 0) + return QualType(); + + ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; + QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); + if (Error != ASTContext::GE_None) + return QualType(); + + const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); + if (!FT) + return QualType(); + + if (FT->getNumParams() != 1) + return QualType(); + + return FT->getParamType(0); +} + +// Returns the best absolute value function, or zero, based on type and +// current absolute value function. +static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, + unsigned AbsFunctionKind) { + unsigned BestKind = 0; + uint64_t ArgSize = Context.getTypeSize(ArgType); + for (unsigned Kind = AbsFunctionKind; Kind != 0; + Kind = getLargerAbsoluteValueFunction(Kind)) { + QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); + if (Context.getTypeSize(ParamType) >= ArgSize) { + if (BestKind == 0) + BestKind = Kind; + else if (Context.hasSameType(ParamType, ArgType)) { + BestKind = Kind; + break; + } + } + } + return BestKind; +} + +enum AbsoluteValueKind { + AVK_Integer, + AVK_Floating, + AVK_Complex +}; + +static AbsoluteValueKind getAbsoluteValueKind(QualType T) { + if (T->isIntegralOrEnumerationType()) + return AVK_Integer; + if (T->isRealFloatingType()) + return AVK_Floating; + if (T->isAnyComplexType()) + return AVK_Complex; + + llvm_unreachable("Type not integer, floating, or complex"); +} + +// Changes the absolute value function to a different type. Preserves whether +// the function is a builtin. +static unsigned changeAbsFunction(unsigned AbsKind, + AbsoluteValueKind ValueKind) { + switch (ValueKind) { + case AVK_Integer: + switch (AbsKind) { + default: + return 0; + case Builtin::BI__builtin_fabsf: + case Builtin::BI__builtin_fabs: + case Builtin::BI__builtin_fabsl: + case Builtin::BI__builtin_cabsf: + case Builtin::BI__builtin_cabs: + case Builtin::BI__builtin_cabsl: + return Builtin::BI__builtin_abs; + case Builtin::BIfabsf: + case Builtin::BIfabs: + case Builtin::BIfabsl: + case Builtin::BIcabsf: + case Builtin::BIcabs: + case Builtin::BIcabsl: + return Builtin::BIabs; + } + case AVK_Floating: + switch (AbsKind) { + default: + return 0; + case Builtin::BI__builtin_abs: + case Builtin::BI__builtin_labs: + case Builtin::BI__builtin_llabs: + case Builtin::BI__builtin_cabsf: + case Builtin::BI__builtin_cabs: + case Builtin::BI__builtin_cabsl: + return Builtin::BI__builtin_fabsf; + case Builtin::BIabs: + case Builtin::BIlabs: + case Builtin::BIllabs: + case Builtin::BIcabsf: + case Builtin::BIcabs: + case Builtin::BIcabsl: + return Builtin::BIfabsf; + } + case AVK_Complex: + switch (AbsKind) { + default: + return 0; + case Builtin::BI__builtin_abs: + case Builtin::BI__builtin_labs: + case Builtin::BI__builtin_llabs: + case Builtin::BI__builtin_fabsf: + case Builtin::BI__builtin_fabs: + case Builtin::BI__builtin_fabsl: + return Builtin::BI__builtin_cabsf; + case Builtin::BIabs: + case Builtin::BIlabs: + case Builtin::BIllabs: + case Builtin::BIfabsf: + case Builtin::BIfabs: + case Builtin::BIfabsl: + return Builtin::BIcabsf; + } + } + llvm_unreachable("Unable to convert function"); +} + +static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { + const IdentifierInfo *FnInfo = FDecl->getIdentifier(); + if (!FnInfo) + return 0; + + switch (FDecl->getBuiltinID()) { + default: + return 0; + case Builtin::BI__builtin_abs: + case Builtin::BI__builtin_fabs: + case Builtin::BI__builtin_fabsf: + case Builtin::BI__builtin_fabsl: + case Builtin::BI__builtin_labs: + case Builtin::BI__builtin_llabs: + case Builtin::BI__builtin_cabs: + case Builtin::BI__builtin_cabsf: + case Builtin::BI__builtin_cabsl: + case Builtin::BIabs: + case Builtin::BIlabs: + case Builtin::BIllabs: + case Builtin::BIfabs: + case Builtin::BIfabsf: + case Builtin::BIfabsl: + case Builtin::BIcabs: + case Builtin::BIcabsf: + case Builtin::BIcabsl: + return FDecl->getBuiltinID(); + } + llvm_unreachable("Unknown Builtin type"); +} + +// If the replacement is valid, emit a note with replacement function. +// Additionally, suggest including the proper header if not already included. +static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, + unsigned AbsKind, QualType ArgType) { + bool EmitHeaderHint = true; + const char *HeaderName = nullptr; + const char *FunctionName = nullptr; + if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { + FunctionName = "std::abs"; + if (ArgType->isIntegralOrEnumerationType()) { + HeaderName = "cstdlib"; + } else if (ArgType->isRealFloatingType()) { + HeaderName = "cmath"; + } else { + llvm_unreachable("Invalid Type"); + } + + // Lookup all std::abs + if (NamespaceDecl *Std = S.getStdNamespace()) { + LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); + R.suppressDiagnostics(); + S.LookupQualifiedName(R, Std); + + for (const auto *I : R) { + const FunctionDecl *FDecl = nullptr; + if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { + FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); + } else { + FDecl = dyn_cast<FunctionDecl>(I); + } + if (!FDecl) + continue; + + // Found std::abs(), check that they are the right ones. + if (FDecl->getNumParams() != 1) + continue; + + // Check that the parameter type can handle the argument. + QualType ParamType = FDecl->getParamDecl(0)->getType(); + if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && + S.Context.getTypeSize(ArgType) <= + S.Context.getTypeSize(ParamType)) { + // Found a function, don't need the header hint. + EmitHeaderHint = false; + break; + } + } + } + } else { + FunctionName = S.Context.BuiltinInfo.getName(AbsKind); + HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); + + if (HeaderName) { + DeclarationName DN(&S.Context.Idents.get(FunctionName)); + LookupResult R(S, DN, Loc, Sema::LookupAnyName); + R.suppressDiagnostics(); + S.LookupName(R, S.getCurScope()); + + if (R.isSingleResult()) { + FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); + if (FD && FD->getBuiltinID() == AbsKind) { + EmitHeaderHint = false; + } else { + return; + } + } else if (!R.empty()) { + return; + } + } + } + + S.Diag(Loc, diag::note_replace_abs_function) + << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); + + if (!HeaderName) + return; + + if (!EmitHeaderHint) + return; + + S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName + << FunctionName; +} + +template <std::size_t StrLen> +static bool IsStdFunction(const FunctionDecl *FDecl, + const char (&Str)[StrLen]) { + if (!FDecl) + return false; + if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) + return false; + if (!FDecl->isInStdNamespace()) + return false; + + return true; +} + +// Warn when using the wrong abs() function. +void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, + const FunctionDecl *FDecl) { + if (Call->getNumArgs() != 1) + return; + + unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); + bool IsStdAbs = IsStdFunction(FDecl, "abs"); + if (AbsKind == 0 && !IsStdAbs) + return; + + QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); + QualType ParamType = Call->getArg(0)->getType(); + + // Unsigned types cannot be negative. Suggest removing the absolute value + // function call. + if (ArgType->isUnsignedIntegerType()) { + const char *FunctionName = + IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); + Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; + Diag(Call->getExprLoc(), diag::note_remove_abs) + << FunctionName + << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); + return; + } + + // Taking the absolute value of a pointer is very suspicious, they probably + // wanted to index into an array, dereference a pointer, call a function, etc. + if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { + unsigned DiagType = 0; + if (ArgType->isFunctionType()) + DiagType = 1; + else if (ArgType->isArrayType()) + DiagType = 2; + + Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; + return; + } + + // std::abs has overloads which prevent most of the absolute value problems + // from occurring. + if (IsStdAbs) + return; + + AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); + AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); + + // The argument and parameter are the same kind. Check if they are the right + // size. + if (ArgValueKind == ParamValueKind) { + if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) + return; + + unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); + Diag(Call->getExprLoc(), diag::warn_abs_too_small) + << FDecl << ArgType << ParamType; + + if (NewAbsKind == 0) + return; + + emitReplacement(*this, Call->getExprLoc(), + Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); + return; + } + + // ArgValueKind != ParamValueKind + // The wrong type of absolute value function was used. Attempt to find the + // proper one. + unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); + NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); + if (NewAbsKind == 0) + return; + + Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) + << FDecl << ParamValueKind << ArgValueKind; + + emitReplacement(*this, Call->getExprLoc(), + Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); +} + +//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// +void Sema::CheckMaxUnsignedZero(const CallExpr *Call, + const FunctionDecl *FDecl) { + if (!Call || !FDecl) return; + + // Ignore template specializations and macros. + if (inTemplateInstantiation()) return; + if (Call->getExprLoc().isMacroID()) return; + + // Only care about the one template argument, two function parameter std::max + if (Call->getNumArgs() != 2) return; + if (!IsStdFunction(FDecl, "max")) return; + const auto * ArgList = FDecl->getTemplateSpecializationArgs(); + if (!ArgList) return; + if (ArgList->size() != 1) return; + + // Check that template type argument is unsigned integer. + const auto& TA = ArgList->get(0); + if (TA.getKind() != TemplateArgument::Type) return; + QualType ArgType = TA.getAsType(); + if (!ArgType->isUnsignedIntegerType()) return; + + // See if either argument is a literal zero. + auto IsLiteralZeroArg = [](const Expr* E) -> bool { + const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); + if (!MTE) return false; + const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); + if (!Num) return false; + if (Num->getValue() != 0) return false; + return true; + }; + + const Expr *FirstArg = Call->getArg(0); + const Expr *SecondArg = Call->getArg(1); + const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); + const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); + + // Only warn when exactly one argument is zero. + if (IsFirstArgZero == IsSecondArgZero) return; + + SourceRange FirstRange = FirstArg->getSourceRange(); + SourceRange SecondRange = SecondArg->getSourceRange(); + + SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; + + Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) + << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; + + // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". + SourceRange RemovalRange; + if (IsFirstArgZero) { + RemovalRange = SourceRange(FirstRange.getBegin(), + SecondRange.getBegin().getLocWithOffset(-1)); + } else { + RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), + SecondRange.getEnd()); + } + + Diag(Call->getExprLoc(), diag::note_remove_max_call) + << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) + << FixItHint::CreateRemoval(RemovalRange); +} + +//===--- CHECK: Standard memory functions ---------------------------------===// + +/// Takes the expression passed to the size_t parameter of functions +/// such as memcmp, strncat, etc and warns if it's a comparison. +/// +/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. +static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, + IdentifierInfo *FnName, + SourceLocation FnLoc, + SourceLocation RParenLoc) { + const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); + if (!Size) + return false; + + // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: + if (!Size->isComparisonOp() && !Size->isLogicalOp()) + return false; + + SourceRange SizeRange = Size->getSourceRange(); + S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) + << SizeRange << FnName; + S.Diag(FnLoc, diag::note_memsize_comparison_paren) + << FnName + << FixItHint::CreateInsertion( + S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") + << FixItHint::CreateRemoval(RParenLoc); + S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) + << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") + << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), + ")"); + + return true; +} + +/// Determine whether the given type is or contains a dynamic class type +/// (e.g., whether it has a vtable). +static const CXXRecordDecl *getContainedDynamicClass(QualType T, + bool &IsContained) { + // Look through array types while ignoring qualifiers. + const Type *Ty = T->getBaseElementTypeUnsafe(); + IsContained = false; + + const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); + RD = RD ? RD->getDefinition() : nullptr; + if (!RD || RD->isInvalidDecl()) + return nullptr; + + if (RD->isDynamicClass()) + return RD; + + // Check all the fields. If any bases were dynamic, the class is dynamic. + // It's impossible for a class to transitively contain itself by value, so + // infinite recursion is impossible. + for (auto *FD : RD->fields()) { + bool SubContained; + if (const CXXRecordDecl *ContainedRD = + getContainedDynamicClass(FD->getType(), SubContained)) { + IsContained = true; + return ContainedRD; + } + } + + return nullptr; +} + +static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { + if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) + if (Unary->getKind() == UETT_SizeOf) + return Unary; + return nullptr; +} + +/// If E is a sizeof expression, returns its argument expression, +/// otherwise returns NULL. +static const Expr *getSizeOfExprArg(const Expr *E) { + if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) + if (!SizeOf->isArgumentType()) + return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); + return nullptr; +} + +/// If E is a sizeof expression, returns its argument type. +static QualType getSizeOfArgType(const Expr *E) { + if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) + return SizeOf->getTypeOfArgument(); + return QualType(); +} + +namespace { + +struct SearchNonTrivialToInitializeField + : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { + using Super = + DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; + + SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} + + void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, + SourceLocation SL) { + if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { + asDerived().visitArray(PDIK, AT, SL); + return; + } + + Super::visitWithKind(PDIK, FT, SL); + } + + void visitARCStrong(QualType FT, SourceLocation SL) { + S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); + } + void visitARCWeak(QualType FT, SourceLocation SL) { + S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); + } + void visitStruct(QualType FT, SourceLocation SL) { + for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) + visit(FD->getType(), FD->getLocation()); + } + void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, + const ArrayType *AT, SourceLocation SL) { + visit(getContext().getBaseElementType(AT), SL); + } + void visitTrivial(QualType FT, SourceLocation SL) {} + + static void diag(QualType RT, const Expr *E, Sema &S) { + SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); + } + + ASTContext &getContext() { return S.getASTContext(); } + + const Expr *E; + Sema &S; +}; + +struct SearchNonTrivialToCopyField + : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { + using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; + + SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} + + void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, + SourceLocation SL) { + if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { + asDerived().visitArray(PCK, AT, SL); + return; + } + + Super::visitWithKind(PCK, FT, SL); + } + + void visitARCStrong(QualType FT, SourceLocation SL) { + S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); + } + void visitARCWeak(QualType FT, SourceLocation SL) { + S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); + } + void visitStruct(QualType FT, SourceLocation SL) { + for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) + visit(FD->getType(), FD->getLocation()); + } + void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, + SourceLocation SL) { + visit(getContext().getBaseElementType(AT), SL); + } + void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, + SourceLocation SL) {} + void visitTrivial(QualType FT, SourceLocation SL) {} + void visitVolatileTrivial(QualType FT, SourceLocation SL) {} + + static void diag(QualType RT, const Expr *E, Sema &S) { + SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); + } + + ASTContext &getContext() { return S.getASTContext(); } + + const Expr *E; + Sema &S; +}; + +} + +/// Detect if \c SizeofExpr is likely to calculate the sizeof an object. +static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { + SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); + + if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { + if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) + return false; + + return doesExprLikelyComputeSize(BO->getLHS()) || + doesExprLikelyComputeSize(BO->getRHS()); + } + + return getAsSizeOfExpr(SizeofExpr) != nullptr; +} + +/// Check if the ArgLoc originated from a macro passed to the call at CallLoc. +/// +/// \code +/// #define MACRO 0 +/// foo(MACRO); +/// foo(0); +/// \endcode +/// +/// This should return true for the first call to foo, but not for the second +/// (regardless of whether foo is a macro or function). +static bool isArgumentExpandedFromMacro(SourceManager &SM, + SourceLocation CallLoc, + SourceLocation ArgLoc) { + if (!CallLoc.isMacroID()) + return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); + + return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != + SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); +} + +/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the +/// last two arguments transposed. +static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { + if (BId != Builtin::BImemset && BId != Builtin::BIbzero) + return; + + const Expr *SizeArg = + Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); + + auto isLiteralZero = [](const Expr *E) { + return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; + }; + + // If we're memsetting or bzeroing 0 bytes, then this is likely an error. + SourceLocation CallLoc = Call->getRParenLoc(); + SourceManager &SM = S.getSourceManager(); + if (isLiteralZero(SizeArg) && + !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { + + SourceLocation DiagLoc = SizeArg->getExprLoc(); + + // Some platforms #define bzero to __builtin_memset. See if this is the + // case, and if so, emit a better diagnostic. + if (BId == Builtin::BIbzero || + (CallLoc.isMacroID() && Lexer::getImmediateMacroName( + CallLoc, SM, S.getLangOpts()) == "bzero")) { + S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); + S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); + } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { + S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; + S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; + } + return; + } + + // If the second argument to a memset is a sizeof expression and the third + // isn't, this is also likely an error. This should catch + // 'memset(buf, sizeof(buf), 0xff)'. + if (BId == Builtin::BImemset && + doesExprLikelyComputeSize(Call->getArg(1)) && + !doesExprLikelyComputeSize(Call->getArg(2))) { + SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); + S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; + S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; + return; + } +} + +/// Check for dangerous or invalid arguments to memset(). +/// +/// This issues warnings on known problematic, dangerous or unspecified +/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' +/// function calls. +/// +/// \param Call The call expression to diagnose. +void Sema::CheckMemaccessArguments(const CallExpr *Call, + unsigned BId, + IdentifierInfo *FnName) { + assert(BId != 0); + + // It is possible to have a non-standard definition of memset. Validate + // we have enough arguments, and if not, abort further checking. + unsigned ExpectedNumArgs = + (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); + if (Call->getNumArgs() < ExpectedNumArgs) + return; + + unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || + BId == Builtin::BIstrndup ? 1 : 2); + unsigned LenArg = + (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); + const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); + + if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, + Call->getBeginLoc(), Call->getRParenLoc())) + return; + + // Catch cases like 'memset(buf, sizeof(buf), 0)'. + CheckMemaccessSize(*this, BId, Call); + + // We have special checking when the length is a sizeof expression. + QualType SizeOfArgTy = getSizeOfArgType(LenExpr); + const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); + llvm::FoldingSetNodeID SizeOfArgID; + + // Although widely used, 'bzero' is not a standard function. Be more strict + // with the argument types before allowing diagnostics and only allow the + // form bzero(ptr, sizeof(...)). + QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); + if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) + return; + + for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { + const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); + SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); + + QualType DestTy = Dest->getType(); + QualType PointeeTy; + if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { + PointeeTy = DestPtrTy->getPointeeType(); + + // Never warn about void type pointers. This can be used to suppress + // false positives. + if (PointeeTy->isVoidType()) + continue; + + // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by + // actually comparing the expressions for equality. Because computing the + // expression IDs can be expensive, we only do this if the diagnostic is + // enabled. + if (SizeOfArg && + !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, + SizeOfArg->getExprLoc())) { + // We only compute IDs for expressions if the warning is enabled, and + // cache the sizeof arg's ID. + if (SizeOfArgID == llvm::FoldingSetNodeID()) + SizeOfArg->Profile(SizeOfArgID, Context, true); + llvm::FoldingSetNodeID DestID; + Dest->Profile(DestID, Context, true); + if (DestID == SizeOfArgID) { + // TODO: For strncpy() and friends, this could suggest sizeof(dst) + // over sizeof(src) as well. + unsigned ActionIdx = 0; // Default is to suggest dereferencing. + StringRef ReadableName = FnName->getName(); + + if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) + if (UnaryOp->getOpcode() == UO_AddrOf) + ActionIdx = 1; // If its an address-of operator, just remove it. + if (!PointeeTy->isIncompleteType() && + (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) + ActionIdx = 2; // If the pointee's size is sizeof(char), + // suggest an explicit length. + + // If the function is defined as a builtin macro, do not show macro + // expansion. + SourceLocation SL = SizeOfArg->getExprLoc(); + SourceRange DSR = Dest->getSourceRange(); + SourceRange SSR = SizeOfArg->getSourceRange(); + SourceManager &SM = getSourceManager(); + + if (SM.isMacroArgExpansion(SL)) { + ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); + SL = SM.getSpellingLoc(SL); + DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), + SM.getSpellingLoc(DSR.getEnd())); + SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), + SM.getSpellingLoc(SSR.getEnd())); + } + + DiagRuntimeBehavior(SL, SizeOfArg, + PDiag(diag::warn_sizeof_pointer_expr_memaccess) + << ReadableName + << PointeeTy + << DestTy + << DSR + << SSR); + DiagRuntimeBehavior(SL, SizeOfArg, + PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) + << ActionIdx + << SSR); + + break; + } + } + + // Also check for cases where the sizeof argument is the exact same + // type as the memory argument, and where it points to a user-defined + // record type. + if (SizeOfArgTy != QualType()) { + if (PointeeTy->isRecordType() && + Context.typesAreCompatible(SizeOfArgTy, DestTy)) { + DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, + PDiag(diag::warn_sizeof_pointer_type_memaccess) + << FnName << SizeOfArgTy << ArgIdx + << PointeeTy << Dest->getSourceRange() + << LenExpr->getSourceRange()); + break; + } + } + } else if (DestTy->isArrayType()) { + PointeeTy = DestTy; + } + + if (PointeeTy == QualType()) + continue; + + // Always complain about dynamic classes. + bool IsContained; + if (const CXXRecordDecl *ContainedRD = + getContainedDynamicClass(PointeeTy, IsContained)) { + + unsigned OperationType = 0; + const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; + // "overwritten" if we're warning about the destination for any call + // but memcmp; otherwise a verb appropriate to the call. + if (ArgIdx != 0 || IsCmp) { + if (BId == Builtin::BImemcpy) + OperationType = 1; + else if(BId == Builtin::BImemmove) + OperationType = 2; + else if (IsCmp) + OperationType = 3; + } + + DiagRuntimeBehavior(Dest->getExprLoc(), Dest, + PDiag(diag::warn_dyn_class_memaccess) + << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName + << IsContained << ContainedRD << OperationType + << Call->getCallee()->getSourceRange()); + } else if (PointeeTy.hasNonTrivialObjCLifetime() && + BId != Builtin::BImemset) + DiagRuntimeBehavior( + Dest->getExprLoc(), Dest, + PDiag(diag::warn_arc_object_memaccess) + << ArgIdx << FnName << PointeeTy + << Call->getCallee()->getSourceRange()); + else if (const auto *RT = PointeeTy->getAs<RecordType>()) { + if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && + RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { + DiagRuntimeBehavior(Dest->getExprLoc(), Dest, + PDiag(diag::warn_cstruct_memaccess) + << ArgIdx << FnName << PointeeTy << 0); + SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); + } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && + RT->getDecl()->isNonTrivialToPrimitiveCopy()) { + DiagRuntimeBehavior(Dest->getExprLoc(), Dest, + PDiag(diag::warn_cstruct_memaccess) + << ArgIdx << FnName << PointeeTy << 1); + SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); + } else { + continue; + } + } else + continue; + + DiagRuntimeBehavior( + Dest->getExprLoc(), Dest, + PDiag(diag::note_bad_memaccess_silence) + << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); + break; + } +} + +// A little helper routine: ignore addition and subtraction of integer literals. +// This intentionally does not ignore all integer constant expressions because +// we don't want to remove sizeof(). +static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { + Ex = Ex->IgnoreParenCasts(); + + while (true) { + const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); + if (!BO || !BO->isAdditiveOp()) + break; + + const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); + const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); + + if (isa<IntegerLiteral>(RHS)) + Ex = LHS; + else if (isa<IntegerLiteral>(LHS)) + Ex = RHS; + else + break; + } + + return Ex; +} + +static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, + ASTContext &Context) { + // Only handle constant-sized or VLAs, but not flexible members. + if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { + // Only issue the FIXIT for arrays of size > 1. + if (CAT->getSize().getSExtValue() <= 1) + return false; + } else if (!Ty->isVariableArrayType()) { + return false; + } + return true; +} + +// Warn if the user has made the 'size' argument to strlcpy or strlcat +// be the size of the source, instead of the destination. +void Sema::CheckStrlcpycatArguments(const CallExpr *Call, + IdentifierInfo *FnName) { + + // Don't crash if the user has the wrong number of arguments + unsigned NumArgs = Call->getNumArgs(); + if ((NumArgs != 3) && (NumArgs != 4)) + return; + + const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); + const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); + const Expr *CompareWithSrc = nullptr; + + if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, + Call->getBeginLoc(), Call->getRParenLoc())) + return; + + // Look for 'strlcpy(dst, x, sizeof(x))' + if (const Expr *Ex = getSizeOfExprArg(SizeArg)) + CompareWithSrc = Ex; + else { + // Look for 'strlcpy(dst, x, strlen(x))' + if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { + if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && + SizeCall->getNumArgs() == 1) + CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); + } + } + + if (!CompareWithSrc) + return; + + // Determine if the argument to sizeof/strlen is equal to the source + // argument. In principle there's all kinds of things you could do + // here, for instance creating an == expression and evaluating it with + // EvaluateAsBooleanCondition, but this uses a more direct technique: + const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); + if (!SrcArgDRE) + return; + + const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); + if (!CompareWithSrcDRE || + SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) + return; + + const Expr *OriginalSizeArg = Call->getArg(2); + Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) + << OriginalSizeArg->getSourceRange() << FnName; + + // Output a FIXIT hint if the destination is an array (rather than a + // pointer to an array). This could be enhanced to handle some + // pointers if we know the actual size, like if DstArg is 'array+2' + // we could say 'sizeof(array)-2'. + const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); + if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) + return; + + SmallString<128> sizeString; + llvm::raw_svector_ostream OS(sizeString); + OS << "sizeof("; + DstArg->printPretty(OS, nullptr, getPrintingPolicy()); + OS << ")"; + + Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) + << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), + OS.str()); +} + +/// Check if two expressions refer to the same declaration. +static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { + if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) + if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) + return D1->getDecl() == D2->getDecl(); + return false; +} + +static const Expr *getStrlenExprArg(const Expr *E) { + if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { + const FunctionDecl *FD = CE->getDirectCallee(); + if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) + return nullptr; + return CE->getArg(0)->IgnoreParenCasts(); + } + return nullptr; +} + +// Warn on anti-patterns as the 'size' argument to strncat. +// The correct size argument should look like following: +// strncat(dst, src, sizeof(dst) - strlen(dest) - 1); +void Sema::CheckStrncatArguments(const CallExpr *CE, + IdentifierInfo *FnName) { + // Don't crash if the user has the wrong number of arguments. + if (CE->getNumArgs() < 3) + return; + const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); + const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); + const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); + + if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), + CE->getRParenLoc())) + return; + + // Identify common expressions, which are wrongly used as the size argument + // to strncat and may lead to buffer overflows. + unsigned PatternType = 0; + if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { + // - sizeof(dst) + if (referToTheSameDecl(SizeOfArg, DstArg)) + PatternType = 1; + // - sizeof(src) + else if (referToTheSameDecl(SizeOfArg, SrcArg)) + PatternType = 2; + } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { + if (BE->getOpcode() == BO_Sub) { + const Expr *L = BE->getLHS()->IgnoreParenCasts(); + const Expr *R = BE->getRHS()->IgnoreParenCasts(); + // - sizeof(dst) - strlen(dst) + if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && + referToTheSameDecl(DstArg, getStrlenExprArg(R))) + PatternType = 1; + // - sizeof(src) - (anything) + else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) + PatternType = 2; + } + } + + if (PatternType == 0) + return; + + // Generate the diagnostic. + SourceLocation SL = LenArg->getBeginLoc(); + SourceRange SR = LenArg->getSourceRange(); + SourceManager &SM = getSourceManager(); + + // If the function is defined as a builtin macro, do not show macro expansion. + if (SM.isMacroArgExpansion(SL)) { + SL = SM.getSpellingLoc(SL); + SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), + SM.getSpellingLoc(SR.getEnd())); + } + + // Check if the destination is an array (rather than a pointer to an array). + QualType DstTy = DstArg->getType(); + bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, + Context); + if (!isKnownSizeArray) { + if (PatternType == 1) + Diag(SL, diag::warn_strncat_wrong_size) << SR; + else + Diag(SL, diag::warn_strncat_src_size) << SR; + return; + } + + if (PatternType == 1) + Diag(SL, diag::warn_strncat_large_size) << SR; + else + Diag(SL, diag::warn_strncat_src_size) << SR; + + SmallString<128> sizeString; + llvm::raw_svector_ostream OS(sizeString); + OS << "sizeof("; + DstArg->printPretty(OS, nullptr, getPrintingPolicy()); + OS << ") - "; + OS << "strlen("; + DstArg->printPretty(OS, nullptr, getPrintingPolicy()); + OS << ") - 1"; + + Diag(SL, diag::note_strncat_wrong_size) + << FixItHint::CreateReplacement(SR, OS.str()); +} + +void +Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, + SourceLocation ReturnLoc, + bool isObjCMethod, + const AttrVec *Attrs, + const FunctionDecl *FD) { + // Check if the return value is null but should not be. + if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || + (!isObjCMethod && isNonNullType(Context, lhsType))) && + CheckNonNullExpr(*this, RetValExp)) + Diag(ReturnLoc, diag::warn_null_ret) + << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); + + // C++11 [basic.stc.dynamic.allocation]p4: + // If an allocation function declared with a non-throwing + // exception-specification fails to allocate storage, it shall return + // a null pointer. Any other allocation function that fails to allocate + // storage shall indicate failure only by throwing an exception [...] + if (FD) { + OverloadedOperatorKind Op = FD->getOverloadedOperator(); + if (Op == OO_New || Op == OO_Array_New) { + const FunctionProtoType *Proto + = FD->getType()->castAs<FunctionProtoType>(); + if (!Proto->isNothrow(/*ResultIfDependent*/true) && + CheckNonNullExpr(*this, RetValExp)) + Diag(ReturnLoc, diag::warn_operator_new_returns_null) + << FD << getLangOpts().CPlusPlus11; + } + } +} + +//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// + +/// Check for comparisons of floating point operands using != and ==. +/// Issue a warning if these are no self-comparisons, as they are not likely +/// to do what the programmer intended. +void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { + Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); + Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); + + // Special case: check for x == x (which is OK). + // Do not emit warnings for such cases. + if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) + if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) + if (DRL->getDecl() == DRR->getDecl()) + return; + + // Special case: check for comparisons against literals that can be exactly + // represented by APFloat. In such cases, do not emit a warning. This + // is a heuristic: often comparison against such literals are used to + // detect if a value in a variable has not changed. This clearly can + // lead to false negatives. + if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { + if (FLL->isExact()) + return; + } else + if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) + if (FLR->isExact()) + return; + + // Check for comparisons with builtin types. + if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) + if (CL->getBuiltinCallee()) + return; + + if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) + if (CR->getBuiltinCallee()) + return; + + // Emit the diagnostic. + Diag(Loc, diag::warn_floatingpoint_eq) + << LHS->getSourceRange() << RHS->getSourceRange(); +} + +//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// +//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// + +namespace { + +/// Structure recording the 'active' range of an integer-valued +/// expression. +struct IntRange { + /// The number of bits active in the int. + unsigned Width; + + /// True if the int is known not to have negative values. + bool NonNegative; + + IntRange(unsigned Width, bool NonNegative) + : Width(Width), NonNegative(NonNegative) {} + + /// Returns the range of the bool type. + static IntRange forBoolType() { + return IntRange(1, true); + } + + /// Returns the range of an opaque value of the given integral type. + static IntRange forValueOfType(ASTContext &C, QualType T) { + return forValueOfCanonicalType(C, + T->getCanonicalTypeInternal().getTypePtr()); + } + + /// Returns the range of an opaque value of a canonical integral type. + static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { + assert(T->isCanonicalUnqualified()); + + if (const VectorType *VT = dyn_cast<VectorType>(T)) + T = VT->getElementType().getTypePtr(); + if (const ComplexType *CT = dyn_cast<ComplexType>(T)) + T = CT->getElementType().getTypePtr(); + if (const AtomicType *AT = dyn_cast<AtomicType>(T)) + T = AT->getValueType().getTypePtr(); + + if (!C.getLangOpts().CPlusPlus) { + // For enum types in C code, use the underlying datatype. + if (const EnumType *ET = dyn_cast<EnumType>(T)) + T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); + } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { + // For enum types in C++, use the known bit width of the enumerators. + EnumDecl *Enum = ET->getDecl(); + // In C++11, enums can have a fixed underlying type. Use this type to + // compute the range. + if (Enum->isFixed()) { + return IntRange(C.getIntWidth(QualType(T, 0)), + !ET->isSignedIntegerOrEnumerationType()); + } + + unsigned NumPositive = Enum->getNumPositiveBits(); + unsigned NumNegative = Enum->getNumNegativeBits(); + + if (NumNegative == 0) + return IntRange(NumPositive, true/*NonNegative*/); + else + return IntRange(std::max(NumPositive + 1, NumNegative), + false/*NonNegative*/); + } + + if (const auto *EIT = dyn_cast<ExtIntType>(T)) + return IntRange(EIT->getNumBits(), EIT->isUnsigned()); + + const BuiltinType *BT = cast<BuiltinType>(T); + assert(BT->isInteger()); + + return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); + } + + /// Returns the "target" range of a canonical integral type, i.e. + /// the range of values expressible in the type. + /// + /// This matches forValueOfCanonicalType except that enums have the + /// full range of their type, not the range of their enumerators. + static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { + assert(T->isCanonicalUnqualified()); + + if (const VectorType *VT = dyn_cast<VectorType>(T)) + T = VT->getElementType().getTypePtr(); + if (const ComplexType *CT = dyn_cast<ComplexType>(T)) + T = CT->getElementType().getTypePtr(); + if (const AtomicType *AT = dyn_cast<AtomicType>(T)) + T = AT->getValueType().getTypePtr(); + if (const EnumType *ET = dyn_cast<EnumType>(T)) + T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); + + if (const auto *EIT = dyn_cast<ExtIntType>(T)) + return IntRange(EIT->getNumBits(), EIT->isUnsigned()); + + const BuiltinType *BT = cast<BuiltinType>(T); + assert(BT->isInteger()); + + return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); + } + + /// Returns the supremum of two ranges: i.e. their conservative merge. + static IntRange join(IntRange L, IntRange R) { + return IntRange(std::max(L.Width, R.Width), + L.NonNegative && R.NonNegative); + } + + /// Returns the infinum of two ranges: i.e. their aggressive merge. + static IntRange meet(IntRange L, IntRange R) { + return IntRange(std::min(L.Width, R.Width), + L.NonNegative || R.NonNegative); + } +}; + +} // namespace + +static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, + unsigned MaxWidth) { + if (value.isSigned() && value.isNegative()) + return IntRange(value.getMinSignedBits(), false); + + if (value.getBitWidth() > MaxWidth) + value = value.trunc(MaxWidth); + + // isNonNegative() just checks the sign bit without considering + // signedness. + return IntRange(value.getActiveBits(), true); +} + +static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, + unsigned MaxWidth) { + if (result.isInt()) + return GetValueRange(C, result.getInt(), MaxWidth); + + if (result.isVector()) { + IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); + for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { + IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); + R = IntRange::join(R, El); + } + return R; + } + + if (result.isComplexInt()) { + IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); + IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); + return IntRange::join(R, I); + } + + // This can happen with lossless casts to intptr_t of "based" lvalues. + // Assume it might use arbitrary bits. + // FIXME: The only reason we need to pass the type in here is to get + // the sign right on this one case. It would be nice if APValue + // preserved this. + assert(result.isLValue() || result.isAddrLabelDiff()); + return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); +} + +static QualType GetExprType(const Expr *E) { + QualType Ty = E->getType(); + if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) + Ty = AtomicRHS->getValueType(); + return Ty; +} + +/// Pseudo-evaluate the given integer expression, estimating the +/// range of values it might take. +/// +/// \param MaxWidth - the width to which the value will be truncated +static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, + bool InConstantContext) { + E = E->IgnoreParens(); + + // Try a full evaluation first. + Expr::EvalResult result; + if (E->EvaluateAsRValue(result, C, InConstantContext)) + return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); + + // I think we only want to look through implicit casts here; if the + // user has an explicit widening cast, we should treat the value as + // being of the new, wider type. + if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { + if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) + return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext); + + IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); + + bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || + CE->getCastKind() == CK_BooleanToSignedIntegral; + + // Assume that non-integer casts can span the full range of the type. + if (!isIntegerCast) + return OutputTypeRange; + + IntRange SubRange = GetExprRange(C, CE->getSubExpr(), + std::min(MaxWidth, OutputTypeRange.Width), + InConstantContext); + + // Bail out if the subexpr's range is as wide as the cast type. + if (SubRange.Width >= OutputTypeRange.Width) + return OutputTypeRange; + + // Otherwise, we take the smaller width, and we're non-negative if + // either the output type or the subexpr is. + return IntRange(SubRange.Width, + SubRange.NonNegative || OutputTypeRange.NonNegative); + } + + if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { + // If we can fold the condition, just take that operand. + bool CondResult; + if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) + return GetExprRange(C, + CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), + MaxWidth, InConstantContext); + + // Otherwise, conservatively merge. + IntRange L = + GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext); + IntRange R = + GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext); + return IntRange::join(L, R); + } + + if (const auto *BO = dyn_cast<BinaryOperator>(E)) { + switch (BO->getOpcode()) { + case BO_Cmp: + llvm_unreachable("builtin <=> should have class type"); + + // Boolean-valued operations are single-bit and positive. + case BO_LAnd: + case BO_LOr: + case BO_LT: + case BO_GT: + case BO_LE: + case BO_GE: + case BO_EQ: + case BO_NE: + return IntRange::forBoolType(); + + // The type of the assignments is the type of the LHS, so the RHS + // is not necessarily the same type. + case BO_MulAssign: + case BO_DivAssign: + case BO_RemAssign: + case BO_AddAssign: + case BO_SubAssign: + case BO_XorAssign: + case BO_OrAssign: + // TODO: bitfields? + return IntRange::forValueOfType(C, GetExprType(E)); + + // Simple assignments just pass through the RHS, which will have + // been coerced to the LHS type. + case BO_Assign: + // TODO: bitfields? + return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); + + // Operations with opaque sources are black-listed. + case BO_PtrMemD: + case BO_PtrMemI: + return IntRange::forValueOfType(C, GetExprType(E)); + + // Bitwise-and uses the *infinum* of the two source ranges. + case BO_And: + case BO_AndAssign: + return IntRange::meet( + GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext), + GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext)); + + // Left shift gets black-listed based on a judgement call. + case BO_Shl: + // ...except that we want to treat '1 << (blah)' as logically + // positive. It's an important idiom. + if (IntegerLiteral *I + = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { + if (I->getValue() == 1) { + IntRange R = IntRange::forValueOfType(C, GetExprType(E)); + return IntRange(R.Width, /*NonNegative*/ true); + } + } + LLVM_FALLTHROUGH; + + case BO_ShlAssign: + return IntRange::forValueOfType(C, GetExprType(E)); + + // Right shift by a constant can narrow its left argument. + case BO_Shr: + case BO_ShrAssign: { + IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); + + // If the shift amount is a positive constant, drop the width by + // that much. + llvm::APSInt shift; + if (BO->getRHS()->isIntegerConstantExpr(shift, C) && + shift.isNonNegative()) { + unsigned zext = shift.getZExtValue(); + if (zext >= L.Width) + L.Width = (L.NonNegative ? 0 : 1); + else + L.Width -= zext; + } + + return L; + } + + // Comma acts as its right operand. + case BO_Comma: + return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); + + // Black-list pointer subtractions. + case BO_Sub: + if (BO->getLHS()->getType()->isPointerType()) + return IntRange::forValueOfType(C, GetExprType(E)); + break; + + // The width of a division result is mostly determined by the size + // of the LHS. + case BO_Div: { + // Don't 'pre-truncate' the operands. + unsigned opWidth = C.getIntWidth(GetExprType(E)); + IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); + + // If the divisor is constant, use that. + llvm::APSInt divisor; + if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { + unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) + if (log2 >= L.Width) + L.Width = (L.NonNegative ? 0 : 1); + else + L.Width = std::min(L.Width - log2, MaxWidth); + return L; + } + + // Otherwise, just use the LHS's width. + IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); + return IntRange(L.Width, L.NonNegative && R.NonNegative); + } + + // The result of a remainder can't be larger than the result of + // either side. + case BO_Rem: { + // Don't 'pre-truncate' the operands. + unsigned opWidth = C.getIntWidth(GetExprType(E)); + IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); + IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); + + IntRange meet = IntRange::meet(L, R); + meet.Width = std::min(meet.Width, MaxWidth); + return meet; + } + + // The default behavior is okay for these. + case BO_Mul: + case BO_Add: + case BO_Xor: + case BO_Or: + break; + } + + // The default case is to treat the operation as if it were closed + // on the narrowest type that encompasses both operands. + IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); + IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); + return IntRange::join(L, R); + } + + if (const auto *UO = dyn_cast<UnaryOperator>(E)) { + switch (UO->getOpcode()) { + // Boolean-valued operations are white-listed. + case UO_LNot: + return IntRange::forBoolType(); + + // Operations with opaque sources are black-listed. + case UO_Deref: + case UO_AddrOf: // should be impossible + return IntRange::forValueOfType(C, GetExprType(E)); + + default: + return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext); + } + } + + if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) + return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext); + + if (const auto *BitField = E->getSourceBitField()) + return IntRange(BitField->getBitWidthValue(C), + BitField->getType()->isUnsignedIntegerOrEnumerationType()); + + return IntRange::forValueOfType(C, GetExprType(E)); +} + +static IntRange GetExprRange(ASTContext &C, const Expr *E, + bool InConstantContext) { + return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext); +} + +/// Checks whether the given value, which currently has the given +/// source semantics, has the same value when coerced through the +/// target semantics. +static bool IsSameFloatAfterCast(const llvm::APFloat &value, + const llvm::fltSemantics &Src, + const llvm::fltSemantics &Tgt) { + llvm::APFloat truncated = value; + + bool ignored; + truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); + truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); + + return truncated.bitwiseIsEqual(value); +} + +/// Checks whether the given value, which currently has the given +/// source semantics, has the same value when coerced through the +/// target semantics. +/// +/// The value might be a vector of floats (or a complex number). +static bool IsSameFloatAfterCast(const APValue &value, + const llvm::fltSemantics &Src, + const llvm::fltSemantics &Tgt) { + if (value.isFloat()) + return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); + + if (value.isVector()) { + for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) + if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) + return false; + return true; + } + + assert(value.isComplexFloat()); + return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && + IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); +} + +static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, + bool IsListInit = false); + +static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { + // Suppress cases where we are comparing against an enum constant. + if (const DeclRefExpr *DR = + dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) + if (isa<EnumConstantDecl>(DR->getDecl())) + return true; + + // Suppress cases where the value is expanded from a macro, unless that macro + // is how a language represents a boolean literal. This is the case in both C + // and Objective-C. + SourceLocation BeginLoc = E->getBeginLoc(); + if (BeginLoc.isMacroID()) { + StringRef MacroName = Lexer::getImmediateMacroName( + BeginLoc, S.getSourceManager(), S.getLangOpts()); + return MacroName != "YES" && MacroName != "NO" && + MacroName != "true" && MacroName != "false"; + } + + return false; +} + +static bool isKnownToHaveUnsignedValue(Expr *E) { + return E->getType()->isIntegerType() && + (!E->getType()->isSignedIntegerType() || + !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); +} + +namespace { +/// The promoted range of values of a type. In general this has the +/// following structure: +/// +/// |-----------| . . . |-----------| +/// ^ ^ ^ ^ +/// Min HoleMin HoleMax Max +/// +/// ... where there is only a hole if a signed type is promoted to unsigned +/// (in which case Min and Max are the smallest and largest representable +/// values). +struct PromotedRange { + // Min, or HoleMax if there is a hole. + llvm::APSInt PromotedMin; + // Max, or HoleMin if there is a hole. + llvm::APSInt PromotedMax; + + PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { + if (R.Width == 0) + PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); + else if (R.Width >= BitWidth && !Unsigned) { + // Promotion made the type *narrower*. This happens when promoting + // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. + // Treat all values of 'signed int' as being in range for now. + PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); + PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); + } else { + PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) + .extOrTrunc(BitWidth); + PromotedMin.setIsUnsigned(Unsigned); + + PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) + .extOrTrunc(BitWidth); + PromotedMax.setIsUnsigned(Unsigned); + } + } + + // Determine whether this range is contiguous (has no hole). + bool isContiguous() const { return PromotedMin <= PromotedMax; } + + // Where a constant value is within the range. + enum ComparisonResult { + LT = 0x1, + LE = 0x2, + GT = 0x4, + GE = 0x8, + EQ = 0x10, + NE = 0x20, + InRangeFlag = 0x40, + + Less = LE | LT | NE, + Min = LE | InRangeFlag, + InRange = InRangeFlag, + Max = GE | InRangeFlag, + Greater = GE | GT | NE, + + OnlyValue = LE | GE | EQ | InRangeFlag, + InHole = NE + }; + + ComparisonResult compare(const llvm::APSInt &Value) const { + assert(Value.getBitWidth() == PromotedMin.getBitWidth() && + Value.isUnsigned() == PromotedMin.isUnsigned()); + if (!isContiguous()) { + assert(Value.isUnsigned() && "discontiguous range for signed compare"); + if (Value.isMinValue()) return Min; + if (Value.isMaxValue()) return Max; + if (Value >= PromotedMin) return InRange; + if (Value <= PromotedMax) return InRange; + return InHole; + } + + switch (llvm::APSInt::compareValues(Value, PromotedMin)) { + case -1: return Less; + case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; + case 1: + switch (llvm::APSInt::compareValues(Value, PromotedMax)) { + case -1: return InRange; + case 0: return Max; + case 1: return Greater; + } + } + + llvm_unreachable("impossible compare result"); + } + + static llvm::Optional<StringRef> + constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { + if (Op == BO_Cmp) { + ComparisonResult LTFlag = LT, GTFlag = GT; + if (ConstantOnRHS) std::swap(LTFlag, GTFlag); + + if (R & EQ) return StringRef("'std::strong_ordering::equal'"); + if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); + if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); + return llvm::None; + } + + ComparisonResult TrueFlag, FalseFlag; + if (Op == BO_EQ) { + TrueFlag = EQ; + FalseFlag = NE; + } else if (Op == BO_NE) { + TrueFlag = NE; + FalseFlag = EQ; + } else { + if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { + TrueFlag = LT; + FalseFlag = GE; + } else { + TrueFlag = GT; + FalseFlag = LE; + } + if (Op == BO_GE || Op == BO_LE) + std::swap(TrueFlag, FalseFlag); + } + if (R & TrueFlag) + return StringRef("true"); + if (R & FalseFlag) + return StringRef("false"); + return llvm::None; + } +}; +} + +static bool HasEnumType(Expr *E) { + // Strip off implicit integral promotions. + while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { + if (ICE->getCastKind() != CK_IntegralCast && + ICE->getCastKind() != CK_NoOp) + break; + E = ICE->getSubExpr(); + } + + return E->getType()->isEnumeralType(); +} + +static int classifyConstantValue(Expr *Constant) { + // The values of this enumeration are used in the diagnostics + // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. + enum ConstantValueKind { + Miscellaneous = 0, + LiteralTrue, + LiteralFalse + }; + if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) + return BL->getValue() ? ConstantValueKind::LiteralTrue + : ConstantValueKind::LiteralFalse; + return ConstantValueKind::Miscellaneous; +} + +static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, + Expr *Constant, Expr *Other, + const llvm::APSInt &Value, + bool RhsConstant) { + if (S.inTemplateInstantiation()) + return false; + + Expr *OriginalOther = Other; + + Constant = Constant->IgnoreParenImpCasts(); + Other = Other->IgnoreParenImpCasts(); + + // Suppress warnings on tautological comparisons between values of the same + // enumeration type. There are only two ways we could warn on this: + // - If the constant is outside the range of representable values of + // the enumeration. In such a case, we should warn about the cast + // to enumeration type, not about the comparison. + // - If the constant is the maximum / minimum in-range value. For an + // enumeratin type, such comparisons can be meaningful and useful. + if (Constant->getType()->isEnumeralType() && + S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) + return false; + + // TODO: Investigate using GetExprRange() to get tighter bounds + // on the bit ranges. + QualType OtherT = Other->getType(); + if (const auto *AT = OtherT->getAs<AtomicType>()) + OtherT = AT->getValueType(); + IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); + + // Special case for ObjC BOOL on targets where its a typedef for a signed char + // (Namely, macOS). + bool IsObjCSignedCharBool = S.getLangOpts().ObjC && + S.NSAPIObj->isObjCBOOLType(OtherT) && + OtherT->isSpecificBuiltinType(BuiltinType::SChar); + + // Whether we're treating Other as being a bool because of the form of + // expression despite it having another type (typically 'int' in C). + bool OtherIsBooleanDespiteType = + !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); + if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) + OtherRange = IntRange::forBoolType(); + + // Determine the promoted range of the other type and see if a comparison of + // the constant against that range is tautological. + PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), + Value.isUnsigned()); + auto Cmp = OtherPromotedRange.compare(Value); + auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); + if (!Result) + return false; + + // Suppress the diagnostic for an in-range comparison if the constant comes + // from a macro or enumerator. We don't want to diagnose + // + // some_long_value <= INT_MAX + // + // when sizeof(int) == sizeof(long). + bool InRange = Cmp & PromotedRange::InRangeFlag; + if (InRange && IsEnumConstOrFromMacro(S, Constant)) + return false; + + // If this is a comparison to an enum constant, include that + // constant in the diagnostic. + const EnumConstantDecl *ED = nullptr; + if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) + ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); + + // Should be enough for uint128 (39 decimal digits) + SmallString<64> PrettySourceValue; + llvm::raw_svector_ostream OS(PrettySourceValue); + if (ED) { + OS << '\'' << *ED << "' (" << Value << ")"; + } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( + Constant->IgnoreParenImpCasts())) { + OS << (BL->getValue() ? "YES" : "NO"); + } else { + OS << Value; + } + + if (IsObjCSignedCharBool) { + S.DiagRuntimeBehavior(E->getOperatorLoc(), E, + S.PDiag(diag::warn_tautological_compare_objc_bool) + << OS.str() << *Result); + return true; + } + + // FIXME: We use a somewhat different formatting for the in-range cases and + // cases involving boolean values for historical reasons. We should pick a + // consistent way of presenting these diagnostics. + if (!InRange || Other->isKnownToHaveBooleanValue()) { + + S.DiagRuntimeBehavior( + E->getOperatorLoc(), E, + S.PDiag(!InRange ? diag::warn_out_of_range_compare + : diag::warn_tautological_bool_compare) + << OS.str() << classifyConstantValue(Constant) << OtherT + << OtherIsBooleanDespiteType << *Result + << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); + } else { + unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) + ? (HasEnumType(OriginalOther) + ? diag::warn_unsigned_enum_always_true_comparison + : diag::warn_unsigned_always_true_comparison) + : diag::warn_tautological_constant_compare; + + S.Diag(E->getOperatorLoc(), Diag) + << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result + << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); + } + + return true; +} + +/// Analyze the operands of the given comparison. Implements the +/// fallback case from AnalyzeComparison. +static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { + AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); + AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); +} + +/// Implements -Wsign-compare. +/// +/// \param E the binary operator to check for warnings +static void AnalyzeComparison(Sema &S, BinaryOperator *E) { + // The type the comparison is being performed in. + QualType T = E->getLHS()->getType(); + + // Only analyze comparison operators where both sides have been converted to + // the same type. + if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) + return AnalyzeImpConvsInComparison(S, E); + + // Don't analyze value-dependent comparisons directly. + if (E->isValueDependent()) + return AnalyzeImpConvsInComparison(S, E); + + Expr *LHS = E->getLHS(); + Expr *RHS = E->getRHS(); + + if (T->isIntegralType(S.Context)) { + llvm::APSInt RHSValue; + llvm::APSInt LHSValue; + + bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); + bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); + + // We don't care about expressions whose result is a constant. + if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) + return AnalyzeImpConvsInComparison(S, E); + + // We only care about expressions where just one side is literal + if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { + // Is the constant on the RHS or LHS? + const bool RhsConstant = IsRHSIntegralLiteral; + Expr *Const = RhsConstant ? RHS : LHS; + Expr *Other = RhsConstant ? LHS : RHS; + const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; + + // Check whether an integer constant comparison results in a value + // of 'true' or 'false'. + if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) + return AnalyzeImpConvsInComparison(S, E); + } + } + + if (!T->hasUnsignedIntegerRepresentation()) { + // We don't do anything special if this isn't an unsigned integral + // comparison: we're only interested in integral comparisons, and + // signed comparisons only happen in cases we don't care to warn about. + return AnalyzeImpConvsInComparison(S, E); + } + + LHS = LHS->IgnoreParenImpCasts(); + RHS = RHS->IgnoreParenImpCasts(); + + if (!S.getLangOpts().CPlusPlus) { + // Avoid warning about comparison of integers with different signs when + // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of + // the type of `E`. + if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) + LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); + if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) + RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); + } + + // Check to see if one of the (unmodified) operands is of different + // signedness. + Expr *signedOperand, *unsignedOperand; + if (LHS->getType()->hasSignedIntegerRepresentation()) { + assert(!RHS->getType()->hasSignedIntegerRepresentation() && + "unsigned comparison between two signed integer expressions?"); + signedOperand = LHS; + unsignedOperand = RHS; + } else if (RHS->getType()->hasSignedIntegerRepresentation()) { + signedOperand = RHS; + unsignedOperand = LHS; + } else { + return AnalyzeImpConvsInComparison(S, E); + } + + // Otherwise, calculate the effective range of the signed operand. + IntRange signedRange = + GetExprRange(S.Context, signedOperand, S.isConstantEvaluated()); + + // Go ahead and analyze implicit conversions in the operands. Note + // that we skip the implicit conversions on both sides. + AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); + AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); + + // If the signed range is non-negative, -Wsign-compare won't fire. + if (signedRange.NonNegative) + return; + + // For (in)equality comparisons, if the unsigned operand is a + // constant which cannot collide with a overflowed signed operand, + // then reinterpreting the signed operand as unsigned will not + // change the result of the comparison. + if (E->isEqualityOp()) { + unsigned comparisonWidth = S.Context.getIntWidth(T); + IntRange unsignedRange = + GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated()); + + // We should never be unable to prove that the unsigned operand is + // non-negative. + assert(unsignedRange.NonNegative && "unsigned range includes negative?"); + + if (unsignedRange.Width < comparisonWidth) + return; + } + + S.DiagRuntimeBehavior(E->getOperatorLoc(), E, + S.PDiag(diag::warn_mixed_sign_comparison) + << LHS->getType() << RHS->getType() + << LHS->getSourceRange() << RHS->getSourceRange()); +} + +/// Analyzes an attempt to assign the given value to a bitfield. +/// +/// Returns true if there was something fishy about the attempt. +static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, + SourceLocation InitLoc) { + assert(Bitfield->isBitField()); + if (Bitfield->isInvalidDecl()) + return false; + + // White-list bool bitfields. + QualType BitfieldType = Bitfield->getType(); + if (BitfieldType->isBooleanType()) + return false; + + if (BitfieldType->isEnumeralType()) { + EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); + // If the underlying enum type was not explicitly specified as an unsigned + // type and the enum contain only positive values, MSVC++ will cause an + // inconsistency by storing this as a signed type. + if (S.getLangOpts().CPlusPlus11 && + !BitfieldEnumDecl->getIntegerTypeSourceInfo() && + BitfieldEnumDecl->getNumPositiveBits() > 0 && + BitfieldEnumDecl->getNumNegativeBits() == 0) { + S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) + << BitfieldEnumDecl->getNameAsString(); + } + } + + if (Bitfield->getType()->isBooleanType()) + return false; + + // Ignore value- or type-dependent expressions. + if (Bitfield->getBitWidth()->isValueDependent() || + Bitfield->getBitWidth()->isTypeDependent() || + Init->isValueDependent() || + Init->isTypeDependent()) + return false; + + Expr *OriginalInit = Init->IgnoreParenImpCasts(); + unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); + + Expr::EvalResult Result; + if (!OriginalInit->EvaluateAsInt(Result, S.Context, + Expr::SE_AllowSideEffects)) { + // The RHS is not constant. If the RHS has an enum type, make sure the + // bitfield is wide enough to hold all the values of the enum without + // truncation. + if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { + EnumDecl *ED = EnumTy->getDecl(); + bool SignedBitfield = BitfieldType->isSignedIntegerType(); + + // Enum types are implicitly signed on Windows, so check if there are any + // negative enumerators to see if the enum was intended to be signed or + // not. + bool SignedEnum = ED->getNumNegativeBits() > 0; + + // Check for surprising sign changes when assigning enum values to a + // bitfield of different signedness. If the bitfield is signed and we + // have exactly the right number of bits to store this unsigned enum, + // suggest changing the enum to an unsigned type. This typically happens + // on Windows where unfixed enums always use an underlying type of 'int'. + unsigned DiagID = 0; + if (SignedEnum && !SignedBitfield) { + DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; + } else if (SignedBitfield && !SignedEnum && + ED->getNumPositiveBits() == FieldWidth) { + DiagID = diag::warn_signed_bitfield_enum_conversion; + } + + if (DiagID) { + S.Diag(InitLoc, DiagID) << Bitfield << ED; + TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); + SourceRange TypeRange = + TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); + S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) + << SignedEnum << TypeRange; + } + + // Compute the required bitwidth. If the enum has negative values, we need + // one more bit than the normal number of positive bits to represent the + // sign bit. + unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, + ED->getNumNegativeBits()) + : ED->getNumPositiveBits(); + + // Check the bitwidth. + if (BitsNeeded > FieldWidth) { + Expr *WidthExpr = Bitfield->getBitWidth(); + S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) + << Bitfield << ED; + S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) + << BitsNeeded << ED << WidthExpr->getSourceRange(); + } + } + + return false; + } + + llvm::APSInt Value = Result.Val.getInt(); + + unsigned OriginalWidth = Value.getBitWidth(); + + if (!Value.isSigned() || Value.isNegative()) + if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) + if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) + OriginalWidth = Value.getMinSignedBits(); + + if (OriginalWidth <= FieldWidth) + return false; + + // Compute the value which the bitfield will contain. + llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); + TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); + + // Check whether the stored value is equal to the original value. + TruncatedValue = TruncatedValue.extend(OriginalWidth); + if (llvm::APSInt::isSameValue(Value, TruncatedValue)) + return false; + + // Special-case bitfields of width 1: booleans are naturally 0/1, and + // therefore don't strictly fit into a signed bitfield of width 1. + if (FieldWidth == 1 && Value == 1) + return false; + + std::string PrettyValue = Value.toString(10); + std::string PrettyTrunc = TruncatedValue.toString(10); + + S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) + << PrettyValue << PrettyTrunc << OriginalInit->getType() + << Init->getSourceRange(); + + return true; +} + +/// Analyze the given simple or compound assignment for warning-worthy +/// operations. +static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { + // Just recurse on the LHS. + AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); + + // We want to recurse on the RHS as normal unless we're assigning to + // a bitfield. + if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { + if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), + E->getOperatorLoc())) { + // Recurse, ignoring any implicit conversions on the RHS. + return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), + E->getOperatorLoc()); + } + } + + AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); + + // Diagnose implicitly sequentially-consistent atomic assignment. + if (E->getLHS()->getType()->isAtomicType()) + S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); +} + +/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. +static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, + SourceLocation CContext, unsigned diag, + bool pruneControlFlow = false) { + if (pruneControlFlow) { + S.DiagRuntimeBehavior(E->getExprLoc(), E, + S.PDiag(diag) + << SourceType << T << E->getSourceRange() + << SourceRange(CContext)); + return; + } + S.Diag(E->getExprLoc(), diag) + << SourceType << T << E->getSourceRange() << SourceRange(CContext); +} + +/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. +static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, + SourceLocation CContext, + unsigned diag, bool pruneControlFlow = false) { + DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); +} + +static bool isObjCSignedCharBool(Sema &S, QualType Ty) { + return Ty->isSpecificBuiltinType(BuiltinType::SChar) && + S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); +} + +static void adornObjCBoolConversionDiagWithTernaryFixit( + Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { + Expr *Ignored = SourceExpr->IgnoreImplicit(); + if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) + Ignored = OVE->getSourceExpr(); + bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || + isa<BinaryOperator>(Ignored) || + isa<CXXOperatorCallExpr>(Ignored); + SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); + if (NeedsParens) + Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") + << FixItHint::CreateInsertion(EndLoc, ")"); + Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); +} + +/// Diagnose an implicit cast from a floating point value to an integer value. +static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, + SourceLocation CContext) { + const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); + const bool PruneWarnings = S.inTemplateInstantiation(); + + Expr *InnerE = E->IgnoreParenImpCasts(); + // We also want to warn on, e.g., "int i = -1.234" + if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) + if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) + InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); + + const bool IsLiteral = + isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); + + llvm::APFloat Value(0.0); + bool IsConstant = + E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); + if (!IsConstant) { + if (isObjCSignedCharBool(S, T)) { + return adornObjCBoolConversionDiagWithTernaryFixit( + S, E, + S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) + << E->getType()); + } + + return DiagnoseImpCast(S, E, T, CContext, + diag::warn_impcast_float_integer, PruneWarnings); + } + + bool isExact = false; + + llvm::APSInt IntegerValue(S.Context.getIntWidth(T), + T->hasUnsignedIntegerRepresentation()); + llvm::APFloat::opStatus Result = Value.convertToInteger( + IntegerValue, llvm::APFloat::rmTowardZero, &isExact); + + // FIXME: Force the precision of the source value down so we don't print + // digits which are usually useless (we don't really care here if we + // truncate a digit by accident in edge cases). Ideally, APFloat::toString + // would automatically print the shortest representation, but it's a bit + // tricky to implement. + SmallString<16> PrettySourceValue; + unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); + precision = (precision * 59 + 195) / 196; + Value.toString(PrettySourceValue, precision); + + if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { + return adornObjCBoolConversionDiagWithTernaryFixit( + S, E, + S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) + << PrettySourceValue); + } + + if (Result == llvm::APFloat::opOK && isExact) { + if (IsLiteral) return; + return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, + PruneWarnings); + } + + // Conversion of a floating-point value to a non-bool integer where the + // integral part cannot be represented by the integer type is undefined. + if (!IsBool && Result == llvm::APFloat::opInvalidOp) + return DiagnoseImpCast( + S, E, T, CContext, + IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range + : diag::warn_impcast_float_to_integer_out_of_range, + PruneWarnings); + + unsigned DiagID = 0; + if (IsLiteral) { + // Warn on floating point literal to integer. + DiagID = diag::warn_impcast_literal_float_to_integer; + } else if (IntegerValue == 0) { + if (Value.isZero()) { // Skip -0.0 to 0 conversion. + return DiagnoseImpCast(S, E, T, CContext, + diag::warn_impcast_float_integer, PruneWarnings); + } + // Warn on non-zero to zero conversion. + DiagID = diag::warn_impcast_float_to_integer_zero; + } else { + if (IntegerValue.isUnsigned()) { + if (!IntegerValue.isMaxValue()) { + return DiagnoseImpCast(S, E, T, CContext, + diag::warn_impcast_float_integer, PruneWarnings); + } + } else { // IntegerValue.isSigned() + if (!IntegerValue.isMaxSignedValue() && + !IntegerValue.isMinSignedValue()) { + return DiagnoseImpCast(S, E, T, CContext, + diag::warn_impcast_float_integer, PruneWarnings); + } + } + // Warn on evaluatable floating point expression to integer conversion. + DiagID = diag::warn_impcast_float_to_integer; + } + + SmallString<16> PrettyTargetValue; + if (IsBool) + PrettyTargetValue = Value.isZero() ? "false" : "true"; + else + IntegerValue.toString(PrettyTargetValue); + + if (PruneWarnings) { + S.DiagRuntimeBehavior(E->getExprLoc(), E, + S.PDiag(DiagID) + << E->getType() << T.getUnqualifiedType() + << PrettySourceValue << PrettyTargetValue + << E->getSourceRange() << SourceRange(CContext)); + } else { + S.Diag(E->getExprLoc(), DiagID) + << E->getType() << T.getUnqualifiedType() << PrettySourceValue + << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); + } +} + +/// Analyze the given compound assignment for the possible losing of +/// floating-point precision. +static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { + assert(isa<CompoundAssignOperator>(E) && + "Must be compound assignment operation"); + // Recurse on the LHS and RHS in here + AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); + AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); + + if (E->getLHS()->getType()->isAtomicType()) + S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); + + // Now check the outermost expression + const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); + const auto *RBT = cast<CompoundAssignOperator>(E) + ->getComputationResultType() + ->getAs<BuiltinType>(); + + // The below checks assume source is floating point. + if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; + + // If source is floating point but target is an integer. + if (ResultBT->isInteger()) + return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), + E->getExprLoc(), diag::warn_impcast_float_integer); + + if (!ResultBT->isFloatingPoint()) + return; + + // If both source and target are floating points, warn about losing precision. + int Order = S.getASTContext().getFloatingTypeSemanticOrder( + QualType(ResultBT, 0), QualType(RBT, 0)); + if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) + // warn about dropping FP rank. + DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), + diag::warn_impcast_float_result_precision); +} + +static std::string PrettyPrintInRange(const llvm::APSInt &Value, + IntRange Range) { + if (!Range.Width) return "0"; + + llvm::APSInt ValueInRange = Value; + ValueInRange.setIsSigned(!Range.NonNegative); + ValueInRange = ValueInRange.trunc(Range.Width); + return ValueInRange.toString(10); +} + +static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { + if (!isa<ImplicitCastExpr>(Ex)) + return false; + + Expr *InnerE = Ex->IgnoreParenImpCasts(); + const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); + const Type *Source = + S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); + if (Target->isDependentType()) + return false; + + const BuiltinType *FloatCandidateBT = + dyn_cast<BuiltinType>(ToBool ? Source : Target); + const Type *BoolCandidateType = ToBool ? Target : Source; + + return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && + FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); +} + +static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, + SourceLocation CC) { + unsigned NumArgs = TheCall->getNumArgs(); + for (unsigned i = 0; i < NumArgs; ++i) { + Expr *CurrA = TheCall->getArg(i); + if (!IsImplicitBoolFloatConversion(S, CurrA, true)) + continue; + + bool IsSwapped = ((i > 0) && + IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); + IsSwapped |= ((i < (NumArgs - 1)) && + IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); + if (IsSwapped) { + // Warn on this floating-point to bool conversion. + DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), + CurrA->getType(), CC, + diag::warn_impcast_floating_point_to_bool); + } + } +} + +static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, + SourceLocation CC) { + if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, + E->getExprLoc())) + return; + + // Don't warn on functions which have return type nullptr_t. + if (isa<CallExpr>(E)) + return; + + // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). + const Expr::NullPointerConstantKind NullKind = + E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); + if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) + return; + + // Return if target type is a safe conversion. + if (T->isAnyPointerType() || T->isBlockPointerType() || + T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) + return; + + SourceLocation Loc = E->getSourceRange().getBegin(); + + // Venture through the macro stacks to get to the source of macro arguments. + // The new location is a better location than the complete location that was + // passed in. + Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); + CC = S.SourceMgr.getTopMacroCallerLoc(CC); + + // __null is usually wrapped in a macro. Go up a macro if that is the case. + if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { + StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( + Loc, S.SourceMgr, S.getLangOpts()); + if (MacroName == "NULL") + Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); + } + + // Only warn if the null and context location are in the same macro expansion. + if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) + return; + + S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) + << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) + << FixItHint::CreateReplacement(Loc, + S.getFixItZeroLiteralForType(T, Loc)); +} + +static void checkObjCArrayLiteral(Sema &S, QualType TargetType, + ObjCArrayLiteral *ArrayLiteral); + +static void +checkObjCDictionaryLiteral(Sema &S, QualType TargetType, + ObjCDictionaryLiteral *DictionaryLiteral); + +/// Check a single element within a collection literal against the +/// target element type. +static void checkObjCCollectionLiteralElement(Sema &S, + QualType TargetElementType, + Expr *Element, + unsigned ElementKind) { + // Skip a bitcast to 'id' or qualified 'id'. + if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { + if (ICE->getCastKind() == CK_BitCast && + ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) + Element = ICE->getSubExpr(); + } + + QualType ElementType = Element->getType(); + ExprResult ElementResult(Element); + if (ElementType->getAs<ObjCObjectPointerType>() && + S.CheckSingleAssignmentConstraints(TargetElementType, + ElementResult, + false, false) + != Sema::Compatible) { + S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) + << ElementType << ElementKind << TargetElementType + << Element->getSourceRange(); + } + + if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) + checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); + else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) + checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); +} + +/// Check an Objective-C array literal being converted to the given +/// target type. +static void checkObjCArrayLiteral(Sema &S, QualType TargetType, + ObjCArrayLiteral *ArrayLiteral) { + if (!S.NSArrayDecl) + return; + + const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); + if (!TargetObjCPtr) + return; + + if (TargetObjCPtr->isUnspecialized() || + TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() + != S.NSArrayDecl->getCanonicalDecl()) + return; + + auto TypeArgs = TargetObjCPtr->getTypeArgs(); + if (TypeArgs.size() != 1) + return; + + QualType TargetElementType = TypeArgs[0]; + for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { + checkObjCCollectionLiteralElement(S, TargetElementType, + ArrayLiteral->getElement(I), + 0); + } +} + +/// Check an Objective-C dictionary literal being converted to the given +/// target type. +static void +checkObjCDictionaryLiteral(Sema &S, QualType TargetType, + ObjCDictionaryLiteral *DictionaryLiteral) { + if (!S.NSDictionaryDecl) + return; + + const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); + if (!TargetObjCPtr) + return; + + if (TargetObjCPtr->isUnspecialized() || + TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() + != S.NSDictionaryDecl->getCanonicalDecl()) + return; + + auto TypeArgs = TargetObjCPtr->getTypeArgs(); + if (TypeArgs.size() != 2) + return; + + QualType TargetKeyType = TypeArgs[0]; + QualType TargetObjectType = TypeArgs[1]; + for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { + auto Element = DictionaryLiteral->getKeyValueElement(I); + checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); + checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); + } +} + +// Helper function to filter out cases for constant width constant conversion. +// Don't warn on char array initialization or for non-decimal values. +static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, + SourceLocation CC) { + // If initializing from a constant, and the constant starts with '0', + // then it is a binary, octal, or hexadecimal. Allow these constants + // to fill all the bits, even if there is a sign change. + if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { + const char FirstLiteralCharacter = + S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; + if (FirstLiteralCharacter == '0') + return false; + } + + // If the CC location points to a '{', and the type is char, then assume + // assume it is an array initialization. + if (CC.isValid() && T->isCharType()) { + const char FirstContextCharacter = + S.getSourceManager().getCharacterData(CC)[0]; + if (FirstContextCharacter == '{') + return false; + } + + return true; +} + +static const IntegerLiteral *getIntegerLiteral(Expr *E) { + const auto *IL = dyn_cast<IntegerLiteral>(E); + if (!IL) { + if (auto *UO = dyn_cast<UnaryOperator>(E)) { + if (UO->getOpcode() == UO_Minus) + return dyn_cast<IntegerLiteral>(UO->getSubExpr()); + } + } + + return IL; +} + +static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { + E = E->IgnoreParenImpCasts(); + SourceLocation ExprLoc = E->getExprLoc(); + + if (const auto *BO = dyn_cast<BinaryOperator>(E)) { + BinaryOperator::Opcode Opc = BO->getOpcode(); + Expr::EvalResult Result; + // Do not diagnose unsigned shifts. + if (Opc == BO_Shl) { + const auto *LHS = getIntegerLiteral(BO->getLHS()); + const auto *RHS = getIntegerLiteral(BO->getRHS()); + if (LHS && LHS->getValue() == 0) + S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; + else if (!E->isValueDependent() && LHS && RHS && + RHS->getValue().isNonNegative() && + E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) + S.Diag(ExprLoc, diag::warn_left_shift_always) + << (Result.Val.getInt() != 0); + else if (E->getType()->isSignedIntegerType()) + S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; + } + } + + if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { + const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); + const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); + if (!LHS || !RHS) + return; + if ((LHS->getValue() == 0 || LHS->getValue() == 1) && + (RHS->getValue() == 0 || RHS->getValue() == 1)) + // Do not diagnose common idioms. + return; + if (LHS->getValue() != 0 && RHS->getValue() != 0) + S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); + } +} + +static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, + SourceLocation CC, + bool *ICContext = nullptr, + bool IsListInit = false) { + if (E->isTypeDependent() || E->isValueDependent()) return; + + const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); + const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); + if (Source == Target) return; + if (Target->isDependentType()) return; + + // If the conversion context location is invalid don't complain. We also + // don't want to emit a warning if the issue occurs from the expansion of + // a system macro. The problem is that 'getSpellingLoc()' is slow, so we + // delay this check as long as possible. Once we detect we are in that + // scenario, we just return. + if (CC.isInvalid()) + return; + + if (Source->isAtomicType()) + S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); + + // Diagnose implicit casts to bool. + if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { + if (isa<StringLiteral>(E)) + // Warn on string literal to bool. Checks for string literals in logical + // and expressions, for instance, assert(0 && "error here"), are + // prevented by a check in AnalyzeImplicitConversions(). + return DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_string_literal_to_bool); + if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || + isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { + // This covers the literal expressions that evaluate to Objective-C + // objects. + return DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_objective_c_literal_to_bool); + } + if (Source->isPointerType() || Source->canDecayToPointerType()) { + // Warn on pointer to bool conversion that is always true. + S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, + SourceRange(CC)); + } + } + + // If the we're converting a constant to an ObjC BOOL on a platform where BOOL + // is a typedef for signed char (macOS), then that constant value has to be 1 + // or 0. + if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { + Expr::EvalResult Result; + if (E->EvaluateAsInt(Result, S.getASTContext(), + Expr::SE_AllowSideEffects)) { + if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { + adornObjCBoolConversionDiagWithTernaryFixit( + S, E, + S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) + << Result.Val.getInt().toString(10)); + } + return; + } + } + + // Check implicit casts from Objective-C collection literals to specialized + // collection types, e.g., NSArray<NSString *> *. + if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) + checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); + else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) + checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); + + // Strip vector types. + if (isa<VectorType>(Source)) { + if (!isa<VectorType>(Target)) { + if (S.SourceMgr.isInSystemMacro(CC)) + return; + return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); + } + + // If the vector cast is cast between two vectors of the same size, it is + // a bitcast, not a conversion. + if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) + return; + + Source = cast<VectorType>(Source)->getElementType().getTypePtr(); + Target = cast<VectorType>(Target)->getElementType().getTypePtr(); + } + if (auto VecTy = dyn_cast<VectorType>(Target)) + Target = VecTy->getElementType().getTypePtr(); + + // Strip complex types. + if (isa<ComplexType>(Source)) { + if (!isa<ComplexType>(Target)) { + if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) + return; + + return DiagnoseImpCast(S, E, T, CC, + S.getLangOpts().CPlusPlus + ? diag::err_impcast_complex_scalar + : diag::warn_impcast_complex_scalar); + } + + Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); + Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); + } + + const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); + const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); + + // If the source is floating point... + if (SourceBT && SourceBT->isFloatingPoint()) { + // ...and the target is floating point... + if (TargetBT && TargetBT->isFloatingPoint()) { + // ...then warn if we're dropping FP rank. + + int Order = S.getASTContext().getFloatingTypeSemanticOrder( + QualType(SourceBT, 0), QualType(TargetBT, 0)); + if (Order > 0) { + // Don't warn about float constants that are precisely + // representable in the target type. + Expr::EvalResult result; + if (E->EvaluateAsRValue(result, S.Context)) { + // Value might be a float, a float vector, or a float complex. + if (IsSameFloatAfterCast(result.Val, + S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), + S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) + return; + } + + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); + } + // ... or possibly if we're increasing rank, too + else if (Order < 0) { + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); + } + return; + } + + // If the target is integral, always warn. + if (TargetBT && TargetBT->isInteger()) { + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + DiagnoseFloatingImpCast(S, E, T, CC); + } + + // Detect the case where a call result is converted from floating-point to + // to bool, and the final argument to the call is converted from bool, to + // discover this typo: + // + // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" + // + // FIXME: This is an incredibly special case; is there some more general + // way to detect this class of misplaced-parentheses bug? + if (Target->isBooleanType() && isa<CallExpr>(E)) { + // Check last argument of function call to see if it is an + // implicit cast from a type matching the type the result + // is being cast to. + CallExpr *CEx = cast<CallExpr>(E); + if (unsigned NumArgs = CEx->getNumArgs()) { + Expr *LastA = CEx->getArg(NumArgs - 1); + Expr *InnerE = LastA->IgnoreParenImpCasts(); + if (isa<ImplicitCastExpr>(LastA) && + InnerE->getType()->isBooleanType()) { + // Warn on this floating-point to bool conversion + DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_floating_point_to_bool); + } + } + } + return; + } + + // Valid casts involving fixed point types should be accounted for here. + if (Source->isFixedPointType()) { + if (Target->isUnsaturatedFixedPointType()) { + Expr::EvalResult Result; + if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, + S.isConstantEvaluated())) { + APFixedPoint Value = Result.Val.getFixedPoint(); + APFixedPoint MaxVal = S.Context.getFixedPointMax(T); + APFixedPoint MinVal = S.Context.getFixedPointMin(T); + if (Value > MaxVal || Value < MinVal) { + S.DiagRuntimeBehavior(E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_fixed_point_range) + << Value.toString() << T + << E->getSourceRange() + << clang::SourceRange(CC)); + return; + } + } + } else if (Target->isIntegerType()) { + Expr::EvalResult Result; + if (!S.isConstantEvaluated() && + E->EvaluateAsFixedPoint(Result, S.Context, + Expr::SE_AllowSideEffects)) { + APFixedPoint FXResult = Result.Val.getFixedPoint(); + + bool Overflowed; + llvm::APSInt IntResult = FXResult.convertToInt( + S.Context.getIntWidth(T), + Target->isSignedIntegerOrEnumerationType(), &Overflowed); + + if (Overflowed) { + S.DiagRuntimeBehavior(E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_fixed_point_range) + << FXResult.toString() << T + << E->getSourceRange() + << clang::SourceRange(CC)); + return; + } + } + } + } else if (Target->isUnsaturatedFixedPointType()) { + if (Source->isIntegerType()) { + Expr::EvalResult Result; + if (!S.isConstantEvaluated() && + E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { + llvm::APSInt Value = Result.Val.getInt(); + + bool Overflowed; + APFixedPoint IntResult = APFixedPoint::getFromIntValue( + Value, S.Context.getFixedPointSemantics(T), &Overflowed); + + if (Overflowed) { + S.DiagRuntimeBehavior(E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_fixed_point_range) + << Value.toString(/*Radix=*/10) << T + << E->getSourceRange() + << clang::SourceRange(CC)); + return; + } + } + } + } + + // If we are casting an integer type to a floating point type without + // initialization-list syntax, we might lose accuracy if the floating + // point type has a narrower significand than the integer type. + if (SourceBT && TargetBT && SourceBT->isIntegerType() && + TargetBT->isFloatingType() && !IsListInit) { + // Determine the number of precision bits in the source integer type. + IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); + unsigned int SourcePrecision = SourceRange.Width; + + // Determine the number of precision bits in the + // target floating point type. + unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( + S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); + + if (SourcePrecision > 0 && TargetPrecision > 0 && + SourcePrecision > TargetPrecision) { + + llvm::APSInt SourceInt; + if (E->isIntegerConstantExpr(SourceInt, S.Context)) { + // If the source integer is a constant, convert it to the target + // floating point type. Issue a warning if the value changes + // during the whole conversion. + llvm::APFloat TargetFloatValue( + S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); + llvm::APFloat::opStatus ConversionStatus = + TargetFloatValue.convertFromAPInt( + SourceInt, SourceBT->isSignedInteger(), + llvm::APFloat::rmNearestTiesToEven); + + if (ConversionStatus != llvm::APFloat::opOK) { + std::string PrettySourceValue = SourceInt.toString(10); + SmallString<32> PrettyTargetValue; + TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); + + S.DiagRuntimeBehavior( + E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_integer_float_precision_constant) + << PrettySourceValue << PrettyTargetValue << E->getType() << T + << E->getSourceRange() << clang::SourceRange(CC)); + } + } else { + // Otherwise, the implicit conversion may lose precision. + DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_integer_float_precision); + } + } + } + + DiagnoseNullConversion(S, E, T, CC); + + S.DiscardMisalignedMemberAddress(Target, E); + + if (Target->isBooleanType()) + DiagnoseIntInBoolContext(S, E); + + if (!Source->isIntegerType() || !Target->isIntegerType()) + return; + + // TODO: remove this early return once the false positives for constant->bool + // in templates, macros, etc, are reduced or removed. + if (Target->isSpecificBuiltinType(BuiltinType::Bool)) + return; + + if (isObjCSignedCharBool(S, T) && !Source->isCharType() && + !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { + return adornObjCBoolConversionDiagWithTernaryFixit( + S, E, + S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) + << E->getType()); + } + + IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); + IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); + + if (SourceRange.Width > TargetRange.Width) { + // If the source is a constant, use a default-on diagnostic. + // TODO: this should happen for bitfield stores, too. + Expr::EvalResult Result; + if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, + S.isConstantEvaluated())) { + llvm::APSInt Value(32); + Value = Result.Val.getInt(); + + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + std::string PrettySourceValue = Value.toString(10); + std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); + + S.DiagRuntimeBehavior( + E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_integer_precision_constant) + << PrettySourceValue << PrettyTargetValue << E->getType() << T + << E->getSourceRange() << clang::SourceRange(CC)); + return; + } + + // People want to build with -Wshorten-64-to-32 and not -Wconversion. + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) + return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, + /* pruneControlFlow */ true); + return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); + } + + if (TargetRange.Width > SourceRange.Width) { + if (auto *UO = dyn_cast<UnaryOperator>(E)) + if (UO->getOpcode() == UO_Minus) + if (Source->isUnsignedIntegerType()) { + if (Target->isUnsignedIntegerType()) + return DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_high_order_zero_bits); + if (Target->isSignedIntegerType()) + return DiagnoseImpCast(S, E, T, CC, + diag::warn_impcast_nonnegative_result); + } + } + + if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && + SourceRange.NonNegative && Source->isSignedIntegerType()) { + // Warn when doing a signed to signed conversion, warn if the positive + // source value is exactly the width of the target type, which will + // cause a negative value to be stored. + + Expr::EvalResult Result; + if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && + !S.SourceMgr.isInSystemMacro(CC)) { + llvm::APSInt Value = Result.Val.getInt(); + if (isSameWidthConstantConversion(S, E, T, CC)) { + std::string PrettySourceValue = Value.toString(10); + std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); + + S.DiagRuntimeBehavior( + E->getExprLoc(), E, + S.PDiag(diag::warn_impcast_integer_precision_constant) + << PrettySourceValue << PrettyTargetValue << E->getType() << T + << E->getSourceRange() << clang::SourceRange(CC)); + return; + } + } + + // Fall through for non-constants to give a sign conversion warning. + } + + if ((TargetRange.NonNegative && !SourceRange.NonNegative) || + (!TargetRange.NonNegative && SourceRange.NonNegative && + SourceRange.Width == TargetRange.Width)) { + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + unsigned DiagID = diag::warn_impcast_integer_sign; + + // Traditionally, gcc has warned about this under -Wsign-compare. + // We also want to warn about it in -Wconversion. + // So if -Wconversion is off, use a completely identical diagnostic + // in the sign-compare group. + // The conditional-checking code will + if (ICContext) { + DiagID = diag::warn_impcast_integer_sign_conditional; + *ICContext = true; + } + + return DiagnoseImpCast(S, E, T, CC, DiagID); + } + + // Diagnose conversions between different enumeration types. + // In C, we pretend that the type of an EnumConstantDecl is its enumeration + // type, to give us better diagnostics. + QualType SourceType = E->getType(); + if (!S.getLangOpts().CPlusPlus) { + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) + if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { + EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); + SourceType = S.Context.getTypeDeclType(Enum); + Source = S.Context.getCanonicalType(SourceType).getTypePtr(); + } + } + + if (const EnumType *SourceEnum = Source->getAs<EnumType>()) + if (const EnumType *TargetEnum = Target->getAs<EnumType>()) + if (SourceEnum->getDecl()->hasNameForLinkage() && + TargetEnum->getDecl()->hasNameForLinkage() && + SourceEnum != TargetEnum) { + if (S.SourceMgr.isInSystemMacro(CC)) + return; + + return DiagnoseImpCast(S, E, SourceType, T, CC, + diag::warn_impcast_different_enum_types); + } +} + +static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, + SourceLocation CC, QualType T); + +static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, + SourceLocation CC, bool &ICContext) { + E = E->IgnoreParenImpCasts(); + + if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) + return CheckConditionalOperator(S, CO, CC, T); + + AnalyzeImplicitConversions(S, E, CC); + if (E->getType() != T) + return CheckImplicitConversion(S, E, T, CC, &ICContext); +} + +static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, + SourceLocation CC, QualType T) { + AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); + + Expr *TrueExpr = E->getTrueExpr(); + if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) + TrueExpr = BCO->getCommon(); + + bool Suspicious = false; + CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); + CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); + + if (T->isBooleanType()) + DiagnoseIntInBoolContext(S, E); + + // If -Wconversion would have warned about either of the candidates + // for a signedness conversion to the context type... + if (!Suspicious) return; + + // ...but it's currently ignored... + if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) + return; + + // ...then check whether it would have warned about either of the + // candidates for a signedness conversion to the condition type. + if (E->getType() == T) return; + + Suspicious = false; + CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), + E->getType(), CC, &Suspicious); + if (!Suspicious) + CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), + E->getType(), CC, &Suspicious); +} + +/// Check conversion of given expression to boolean. +/// Input argument E is a logical expression. +static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { + if (S.getLangOpts().Bool) + return; + if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) + return; + CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); +} + +namespace { +struct AnalyzeImplicitConversionsWorkItem { + Expr *E; + SourceLocation CC; + bool IsListInit; +}; +} + +/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions +/// that should be visited are added to WorkList. +static void AnalyzeImplicitConversions( + Sema &S, AnalyzeImplicitConversionsWorkItem Item, + llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { + Expr *OrigE = Item.E; + SourceLocation CC = Item.CC; + + QualType T = OrigE->getType(); + Expr *E = OrigE->IgnoreParenImpCasts(); + + // Propagate whether we are in a C++ list initialization expression. + // If so, we do not issue warnings for implicit int-float conversion + // precision loss, because C++11 narrowing already handles it. + bool IsListInit = Item.IsListInit || + (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); + + if (E->isTypeDependent() || E->isValueDependent()) + return; + + Expr *SourceExpr = E; + // Examine, but don't traverse into the source expression of an + // OpaqueValueExpr, since it may have multiple parents and we don't want to + // emit duplicate diagnostics. Its fine to examine the form or attempt to + // evaluate it in the context of checking the specific conversion to T though. + if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) + if (auto *Src = OVE->getSourceExpr()) + SourceExpr = Src; + + if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) + if (UO->getOpcode() == UO_Not && + UO->getSubExpr()->isKnownToHaveBooleanValue()) + S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) + << OrigE->getSourceRange() << T->isBooleanType() + << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); + + // For conditional operators, we analyze the arguments as if they + // were being fed directly into the output. + if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { + CheckConditionalOperator(S, CO, CC, T); + return; + } + + // Check implicit argument conversions for function calls. + if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) + CheckImplicitArgumentConversions(S, Call, CC); + + // Go ahead and check any implicit conversions we might have skipped. + // The non-canonical typecheck is just an optimization; + // CheckImplicitConversion will filter out dead implicit conversions. + if (SourceExpr->getType() != T) + CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); + + // Now continue drilling into this expression. + + if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { + // The bound subexpressions in a PseudoObjectExpr are not reachable + // as transitive children. + // FIXME: Use a more uniform representation for this. + for (auto *SE : POE->semantics()) + if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) + WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); + } + + // Skip past explicit casts. + if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { + E = CE->getSubExpr()->IgnoreParenImpCasts(); + if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) + S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); + WorkList.push_back({E, CC, IsListInit}); + return; + } + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + // Do a somewhat different check with comparison operators. + if (BO->isComparisonOp()) + return AnalyzeComparison(S, BO); + + // And with simple assignments. + if (BO->getOpcode() == BO_Assign) + return AnalyzeAssignment(S, BO); + // And with compound assignments. + if (BO->isAssignmentOp()) + return AnalyzeCompoundAssignment(S, BO); + } + + // These break the otherwise-useful invariant below. Fortunately, + // we don't really need to recurse into them, because any internal + // expressions should have been analyzed already when they were + // built into statements. + if (isa<StmtExpr>(E)) return; + + // Don't descend into unevaluated contexts. + if (isa<UnaryExprOrTypeTraitExpr>(E)) return; + + // Now just recurse over the expression's children. + CC = E->getExprLoc(); + BinaryOperator *BO = dyn_cast<BinaryOperator>(E); + bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; + for (Stmt *SubStmt : E->children()) { + Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); + if (!ChildExpr) + continue; + + if (IsLogicalAndOperator && + isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) + // Ignore checking string literals that are in logical and operators. + // This is a common pattern for asserts. + continue; + WorkList.push_back({ChildExpr, CC, IsListInit}); + } + + if (BO && BO->isLogicalOp()) { + Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); + if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) + ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); + + SubExpr = BO->getRHS()->IgnoreParenImpCasts(); + if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) + ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); + } + + if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { + if (U->getOpcode() == UO_LNot) { + ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); + } else if (U->getOpcode() != UO_AddrOf) { + if (U->getSubExpr()->getType()->isAtomicType()) + S.Diag(U->getSubExpr()->getBeginLoc(), + diag::warn_atomic_implicit_seq_cst); + } + } +} + +/// AnalyzeImplicitConversions - Find and report any interesting +/// implicit conversions in the given expression. There are a couple +/// of competing diagnostics here, -Wconversion and -Wsign-compare. +static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, + bool IsListInit/*= false*/) { + llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; + WorkList.push_back({OrigE, CC, IsListInit}); + while (!WorkList.empty()) + AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); +} + +/// Diagnose integer type and any valid implicit conversion to it. +static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { + // Taking into account implicit conversions, + // allow any integer. + if (!E->getType()->isIntegerType()) { + S.Diag(E->getBeginLoc(), + diag::err_opencl_enqueue_kernel_invalid_local_size_type); + return true; + } + // Potentially emit standard warnings for implicit conversions if enabled + // using -Wconversion. + CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); + return false; +} + +// Helper function for Sema::DiagnoseAlwaysNonNullPointer. +// Returns true when emitting a warning about taking the address of a reference. +static bool CheckForReference(Sema &SemaRef, const Expr *E, + const PartialDiagnostic &PD) { + E = E->IgnoreParenImpCasts(); + + const FunctionDecl *FD = nullptr; + + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { + if (!DRE->getDecl()->getType()->isReferenceType()) + return false; + } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { + if (!M->getMemberDecl()->getType()->isReferenceType()) + return false; + } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { + if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) + return false; + FD = Call->getDirectCallee(); + } else { + return false; + } + + SemaRef.Diag(E->getExprLoc(), PD); + + // If possible, point to location of function. + if (FD) { + SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; + } + + return true; +} + +// Returns true if the SourceLocation is expanded from any macro body. +// Returns false if the SourceLocation is invalid, is from not in a macro +// expansion, or is from expanded from a top-level macro argument. +static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { + if (Loc.isInvalid()) + return false; + + while (Loc.isMacroID()) { + if (SM.isMacroBodyExpansion(Loc)) + return true; + Loc = SM.getImmediateMacroCallerLoc(Loc); + } + + return false; +} + +/// Diagnose pointers that are always non-null. +/// \param E the expression containing the pointer +/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is +/// compared to a null pointer +/// \param IsEqual True when the comparison is equal to a null pointer +/// \param Range Extra SourceRange to highlight in the diagnostic +void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, + Expr::NullPointerConstantKind NullKind, + bool IsEqual, SourceRange Range) { + if (!E) + return; + + // Don't warn inside macros. + if (E->getExprLoc().isMacroID()) { + const SourceManager &SM = getSourceManager(); + if (IsInAnyMacroBody(SM, E->getExprLoc()) || + IsInAnyMacroBody(SM, Range.getBegin())) + return; + } + E = E->IgnoreImpCasts(); + + const bool IsCompare = NullKind != Expr::NPCK_NotNull; + + if (isa<CXXThisExpr>(E)) { + unsigned DiagID = IsCompare ? diag::warn_this_null_compare + : diag::warn_this_bool_conversion; + Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; + return; + } + + bool IsAddressOf = false; + + if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { + if (UO->getOpcode() != UO_AddrOf) + return; + IsAddressOf = true; + E = UO->getSubExpr(); + } + + if (IsAddressOf) { + unsigned DiagID = IsCompare + ? diag::warn_address_of_reference_null_compare + : diag::warn_address_of_reference_bool_conversion; + PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range + << IsEqual; + if (CheckForReference(*this, E, PD)) { + return; + } + } + + auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { + bool IsParam = isa<NonNullAttr>(NonnullAttr); + std::string Str; + llvm::raw_string_ostream S(Str); + E->printPretty(S, nullptr, getPrintingPolicy()); + unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare + : diag::warn_cast_nonnull_to_bool; + Diag(E->getExprLoc(), DiagID) << IsParam << S.str() + << E->getSourceRange() << Range << IsEqual; + Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; + }; + + // If we have a CallExpr that is tagged with returns_nonnull, we can complain. + if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { + if (auto *Callee = Call->getDirectCallee()) { + if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { + ComplainAboutNonnullParamOrCall(A); + return; + } + } + } + + // Expect to find a single Decl. Skip anything more complicated. + ValueDecl *D = nullptr; + if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { + D = R->getDecl(); + } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { + D = M->getMemberDecl(); + } + + // Weak Decls can be null. + if (!D || D->isWeak()) + return; + + // Check for parameter decl with nonnull attribute + if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { + if (getCurFunction() && + !getCurFunction()->ModifiedNonNullParams.count(PV)) { + if (const Attr *A = PV->getAttr<NonNullAttr>()) { + ComplainAboutNonnullParamOrCall(A); + return; + } + + if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { + // Skip function template not specialized yet. + if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) + return; + auto ParamIter = llvm::find(FD->parameters(), PV); + assert(ParamIter != FD->param_end()); + unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); + + for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { + if (!NonNull->args_size()) { + ComplainAboutNonnullParamOrCall(NonNull); + return; + } + + for (const ParamIdx &ArgNo : NonNull->args()) { + if (ArgNo.getASTIndex() == ParamNo) { + ComplainAboutNonnullParamOrCall(NonNull); + return; + } + } + } + } + } + } + + QualType T = D->getType(); + const bool IsArray = T->isArrayType(); + const bool IsFunction = T->isFunctionType(); + + // Address of function is used to silence the function warning. + if (IsAddressOf && IsFunction) { + return; + } + + // Found nothing. + if (!IsAddressOf && !IsFunction && !IsArray) + return; + + // Pretty print the expression for the diagnostic. + std::string Str; + llvm::raw_string_ostream S(Str); + E->printPretty(S, nullptr, getPrintingPolicy()); + + unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare + : diag::warn_impcast_pointer_to_bool; + enum { + AddressOf, + FunctionPointer, + ArrayPointer + } DiagType; + if (IsAddressOf) + DiagType = AddressOf; + else if (IsFunction) + DiagType = FunctionPointer; + else if (IsArray) + DiagType = ArrayPointer; + else + llvm_unreachable("Could not determine diagnostic."); + Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() + << Range << IsEqual; + + if (!IsFunction) + return; + + // Suggest '&' to silence the function warning. + Diag(E->getExprLoc(), diag::note_function_warning_silence) + << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); + + // Check to see if '()' fixit should be emitted. + QualType ReturnType; + UnresolvedSet<4> NonTemplateOverloads; + tryExprAsCall(*E, ReturnType, NonTemplateOverloads); + if (ReturnType.isNull()) + return; + + if (IsCompare) { + // There are two cases here. If there is null constant, the only suggest + // for a pointer return type. If the null is 0, then suggest if the return + // type is a pointer or an integer type. + if (!ReturnType->isPointerType()) { + if (NullKind == Expr::NPCK_ZeroExpression || + NullKind == Expr::NPCK_ZeroLiteral) { + if (!ReturnType->isIntegerType()) + return; + } else { + return; + } + } + } else { // !IsCompare + // For function to bool, only suggest if the function pointer has bool + // return type. + if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) + return; + } + Diag(E->getExprLoc(), diag::note_function_to_function_call) + << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); +} + +/// Diagnoses "dangerous" implicit conversions within the given +/// expression (which is a full expression). Implements -Wconversion +/// and -Wsign-compare. +/// +/// \param CC the "context" location of the implicit conversion, i.e. +/// the most location of the syntactic entity requiring the implicit +/// conversion +void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { + // Don't diagnose in unevaluated contexts. + if (isUnevaluatedContext()) + return; + + // Don't diagnose for value- or type-dependent expressions. + if (E->isTypeDependent() || E->isValueDependent()) + return; + + // Check for array bounds violations in cases where the check isn't triggered + // elsewhere for other Expr types (like BinaryOperators), e.g. when an + // ArraySubscriptExpr is on the RHS of a variable initialization. + CheckArrayAccess(E); + + // This is not the right CC for (e.g.) a variable initialization. + AnalyzeImplicitConversions(*this, E, CC); +} + +/// CheckBoolLikeConversion - Check conversion of given expression to boolean. +/// Input argument E is a logical expression. +void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { + ::CheckBoolLikeConversion(*this, E, CC); +} + +/// Diagnose when expression is an integer constant expression and its evaluation +/// results in integer overflow +void Sema::CheckForIntOverflow (Expr *E) { + // Use a work list to deal with nested struct initializers. + SmallVector<Expr *, 2> Exprs(1, E); + + do { + Expr *OriginalE = Exprs.pop_back_val(); + Expr *E = OriginalE->IgnoreParenCasts(); + + if (isa<BinaryOperator>(E)) { + E->EvaluateForOverflow(Context); + continue; + } + + if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) + Exprs.append(InitList->inits().begin(), InitList->inits().end()); + else if (isa<ObjCBoxedExpr>(OriginalE)) + E->EvaluateForOverflow(Context); + else if (auto Call = dyn_cast<CallExpr>(E)) + Exprs.append(Call->arg_begin(), Call->arg_end()); + else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) + Exprs.append(Message->arg_begin(), Message->arg_end()); + } while (!Exprs.empty()); +} + +namespace { + +/// Visitor for expressions which looks for unsequenced operations on the +/// same object. +class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { + using Base = ConstEvaluatedExprVisitor<SequenceChecker>; + + /// A tree of sequenced regions within an expression. Two regions are + /// unsequenced if one is an ancestor or a descendent of the other. When we + /// finish processing an expression with sequencing, such as a comma + /// expression, we fold its tree nodes into its parent, since they are + /// unsequenced with respect to nodes we will visit later. + class SequenceTree { + struct Value { + explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} + unsigned Parent : 31; + unsigned Merged : 1; + }; + SmallVector<Value, 8> Values; + + public: + /// A region within an expression which may be sequenced with respect + /// to some other region. + class Seq { + friend class SequenceTree; + + unsigned Index; + + explicit Seq(unsigned N) : Index(N) {} + + public: + Seq() : Index(0) {} + }; + + SequenceTree() { Values.push_back(Value(0)); } + Seq root() const { return Seq(0); } + + /// Create a new sequence of operations, which is an unsequenced + /// subset of \p Parent. This sequence of operations is sequenced with + /// respect to other children of \p Parent. + Seq allocate(Seq Parent) { + Values.push_back(Value(Parent.Index)); + return Seq(Values.size() - 1); + } + + /// Merge a sequence of operations into its parent. + void merge(Seq S) { + Values[S.Index].Merged = true; + } + + /// Determine whether two operations are unsequenced. This operation + /// is asymmetric: \p Cur should be the more recent sequence, and \p Old + /// should have been merged into its parent as appropriate. + bool isUnsequenced(Seq Cur, Seq Old) { + unsigned C = representative(Cur.Index); + unsigned Target = representative(Old.Index); + while (C >= Target) { + if (C == Target) + return true; + C = Values[C].Parent; + } + return false; + } + + private: + /// Pick a representative for a sequence. + unsigned representative(unsigned K) { + if (Values[K].Merged) + // Perform path compression as we go. + return Values[K].Parent = representative(Values[K].Parent); + return K; + } + }; + + /// An object for which we can track unsequenced uses. + using Object = const NamedDecl *; + + /// Different flavors of object usage which we track. We only track the + /// least-sequenced usage of each kind. + enum UsageKind { + /// A read of an object. Multiple unsequenced reads are OK. + UK_Use, + + /// A modification of an object which is sequenced before the value + /// computation of the expression, such as ++n in C++. + UK_ModAsValue, + + /// A modification of an object which is not sequenced before the value + /// computation of the expression, such as n++. + UK_ModAsSideEffect, + + UK_Count = UK_ModAsSideEffect + 1 + }; + + /// Bundle together a sequencing region and the expression corresponding + /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. + struct Usage { + const Expr *UsageExpr; + SequenceTree::Seq Seq; + + Usage() : UsageExpr(nullptr), Seq() {} + }; + + struct UsageInfo { + Usage Uses[UK_Count]; + + /// Have we issued a diagnostic for this object already? + bool Diagnosed; + + UsageInfo() : Uses(), Diagnosed(false) {} + }; + using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; + + Sema &SemaRef; + + /// Sequenced regions within the expression. + SequenceTree Tree; + + /// Declaration modifications and references which we have seen. + UsageInfoMap UsageMap; + + /// The region we are currently within. + SequenceTree::Seq Region; + + /// Filled in with declarations which were modified as a side-effect + /// (that is, post-increment operations). + SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; + + /// Expressions to check later. We defer checking these to reduce + /// stack usage. + SmallVectorImpl<const Expr *> &WorkList; + + /// RAII object wrapping the visitation of a sequenced subexpression of an + /// expression. At the end of this process, the side-effects of the evaluation + /// become sequenced with respect to the value computation of the result, so + /// we downgrade any UK_ModAsSideEffect within the evaluation to + /// UK_ModAsValue. + struct SequencedSubexpression { + SequencedSubexpression(SequenceChecker &Self) + : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { + Self.ModAsSideEffect = &ModAsSideEffect; + } + + ~SequencedSubexpression() { + for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { + // Add a new usage with usage kind UK_ModAsValue, and then restore + // the previous usage with UK_ModAsSideEffect (thus clearing it if + // the previous one was empty). + UsageInfo &UI = Self.UsageMap[M.first]; + auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; + Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); + SideEffectUsage = M.second; + } + Self.ModAsSideEffect = OldModAsSideEffect; + } + + SequenceChecker &Self; + SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; + SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; + }; + + /// RAII object wrapping the visitation of a subexpression which we might + /// choose to evaluate as a constant. If any subexpression is evaluated and + /// found to be non-constant, this allows us to suppress the evaluation of + /// the outer expression. + class EvaluationTracker { + public: + EvaluationTracker(SequenceChecker &Self) + : Self(Self), Prev(Self.EvalTracker) { + Self.EvalTracker = this; + } + + ~EvaluationTracker() { + Self.EvalTracker = Prev; + if (Prev) + Prev->EvalOK &= EvalOK; + } + + bool evaluate(const Expr *E, bool &Result) { + if (!EvalOK || E->isValueDependent()) + return false; + EvalOK = E->EvaluateAsBooleanCondition( + Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); + return EvalOK; + } + + private: + SequenceChecker &Self; + EvaluationTracker *Prev; + bool EvalOK = true; + } *EvalTracker = nullptr; + + /// Find the object which is produced by the specified expression, + /// if any. + Object getObject(const Expr *E, bool Mod) const { + E = E->IgnoreParenCasts(); + if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { + if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) + return getObject(UO->getSubExpr(), Mod); + } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Comma) + return getObject(BO->getRHS(), Mod); + if (Mod && BO->isAssignmentOp()) + return getObject(BO->getLHS(), Mod); + } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { + // FIXME: Check for more interesting cases, like "x.n = ++x.n". + if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) + return ME->getMemberDecl(); + } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) + // FIXME: If this is a reference, map through to its value. + return DRE->getDecl(); + return nullptr; + } + + /// Note that an object \p O was modified or used by an expression + /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for + /// the object \p O as obtained via the \p UsageMap. + void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { + // Get the old usage for the given object and usage kind. + Usage &U = UI.Uses[UK]; + if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { + // If we have a modification as side effect and are in a sequenced + // subexpression, save the old Usage so that we can restore it later + // in SequencedSubexpression::~SequencedSubexpression. + if (UK == UK_ModAsSideEffect && ModAsSideEffect) + ModAsSideEffect->push_back(std::make_pair(O, U)); + // Then record the new usage with the current sequencing region. + U.UsageExpr = UsageExpr; + U.Seq = Region; + } + } + + /// Check whether a modification or use of an object \p O in an expression + /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is + /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. + /// \p IsModMod is true when we are checking for a mod-mod unsequenced + /// usage and false we are checking for a mod-use unsequenced usage. + void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, + UsageKind OtherKind, bool IsModMod) { + if (UI.Diagnosed) + return; + + const Usage &U = UI.Uses[OtherKind]; + if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) + return; + + const Expr *Mod = U.UsageExpr; + const Expr *ModOrUse = UsageExpr; + if (OtherKind == UK_Use) + std::swap(Mod, ModOrUse); + + SemaRef.DiagRuntimeBehavior( + Mod->getExprLoc(), {Mod, ModOrUse}, + SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod + : diag::warn_unsequenced_mod_use) + << O << SourceRange(ModOrUse->getExprLoc())); + UI.Diagnosed = true; + } + + // A note on note{Pre, Post}{Use, Mod}: + // + // (It helps to follow the algorithm with an expression such as + // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced + // operations before C++17 and both are well-defined in C++17). + // + // When visiting a node which uses/modify an object we first call notePreUse + // or notePreMod before visiting its sub-expression(s). At this point the + // children of the current node have not yet been visited and so the eventual + // uses/modifications resulting from the children of the current node have not + // been recorded yet. + // + // We then visit the children of the current node. After that notePostUse or + // notePostMod is called. These will 1) detect an unsequenced modification + // as side effect (as in "k++ + k") and 2) add a new usage with the + // appropriate usage kind. + // + // We also have to be careful that some operation sequences modification as + // side effect as well (for example: || or ,). To account for this we wrap + // the visitation of such a sub-expression (for example: the LHS of || or ,) + // with SequencedSubexpression. SequencedSubexpression is an RAII object + // which record usages which are modifications as side effect, and then + // downgrade them (or more accurately restore the previous usage which was a + // modification as side effect) when exiting the scope of the sequenced + // subexpression. + + void notePreUse(Object O, const Expr *UseExpr) { + UsageInfo &UI = UsageMap[O]; + // Uses conflict with other modifications. + checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); + } + + void notePostUse(Object O, const Expr *UseExpr) { + UsageInfo &UI = UsageMap[O]; + checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, + /*IsModMod=*/false); + addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); + } + + void notePreMod(Object O, const Expr *ModExpr) { + UsageInfo &UI = UsageMap[O]; + // Modifications conflict with other modifications and with uses. + checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); + checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); + } + + void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { + UsageInfo &UI = UsageMap[O]; + checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, + /*IsModMod=*/true); + addUsage(O, UI, ModExpr, /*UsageKind=*/UK); + } + +public: + SequenceChecker(Sema &S, const Expr *E, + SmallVectorImpl<const Expr *> &WorkList) + : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { + Visit(E); + // Silence a -Wunused-private-field since WorkList is now unused. + // TODO: Evaluate if it can be used, and if not remove it. + (void)this->WorkList; + } + + void VisitStmt(const Stmt *S) { + // Skip all statements which aren't expressions for now. + } + + void VisitExpr(const Expr *E) { + // By default, just recurse to evaluated subexpressions. + Base::VisitStmt(E); + } + + void VisitCastExpr(const CastExpr *E) { + Object O = Object(); + if (E->getCastKind() == CK_LValueToRValue) + O = getObject(E->getSubExpr(), false); + + if (O) + notePreUse(O, E); + VisitExpr(E); + if (O) + notePostUse(O, E); + } + + void VisitSequencedExpressions(const Expr *SequencedBefore, + const Expr *SequencedAfter) { + SequenceTree::Seq BeforeRegion = Tree.allocate(Region); + SequenceTree::Seq AfterRegion = Tree.allocate(Region); + SequenceTree::Seq OldRegion = Region; + + { + SequencedSubexpression SeqBefore(*this); + Region = BeforeRegion; + Visit(SequencedBefore); + } + + Region = AfterRegion; + Visit(SequencedAfter); + + Region = OldRegion; + + Tree.merge(BeforeRegion); + Tree.merge(AfterRegion); + } + + void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { + // C++17 [expr.sub]p1: + // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The + // expression E1 is sequenced before the expression E2. + if (SemaRef.getLangOpts().CPlusPlus17) + VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); + else { + Visit(ASE->getLHS()); + Visit(ASE->getRHS()); + } + } + + void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } + void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } + void VisitBinPtrMem(const BinaryOperator *BO) { + // C++17 [expr.mptr.oper]p4: + // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] + // the expression E1 is sequenced before the expression E2. + if (SemaRef.getLangOpts().CPlusPlus17) + VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); + else { + Visit(BO->getLHS()); + Visit(BO->getRHS()); + } + } + + void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } + void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } + void VisitBinShlShr(const BinaryOperator *BO) { + // C++17 [expr.shift]p4: + // The expression E1 is sequenced before the expression E2. + if (SemaRef.getLangOpts().CPlusPlus17) + VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); + else { + Visit(BO->getLHS()); + Visit(BO->getRHS()); + } + } + + void VisitBinComma(const BinaryOperator *BO) { + // C++11 [expr.comma]p1: + // Every value computation and side effect associated with the left + // expression is sequenced before every value computation and side + // effect associated with the right expression. + VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); + } + + void VisitBinAssign(const BinaryOperator *BO) { + SequenceTree::Seq RHSRegion; + SequenceTree::Seq LHSRegion; + if (SemaRef.getLangOpts().CPlusPlus17) { + RHSRegion = Tree.allocate(Region); + LHSRegion = Tree.allocate(Region); + } else { + RHSRegion = Region; + LHSRegion = Region; + } + SequenceTree::Seq OldRegion = Region; + + // C++11 [expr.ass]p1: + // [...] the assignment is sequenced after the value computation + // of the right and left operands, [...] + // + // so check it before inspecting the operands and update the + // map afterwards. + Object O = getObject(BO->getLHS(), /*Mod=*/true); + if (O) + notePreMod(O, BO); + + if (SemaRef.getLangOpts().CPlusPlus17) { + // C++17 [expr.ass]p1: + // [...] The right operand is sequenced before the left operand. [...] + { + SequencedSubexpression SeqBefore(*this); + Region = RHSRegion; + Visit(BO->getRHS()); + } + + Region = LHSRegion; + Visit(BO->getLHS()); + + if (O && isa<CompoundAssignOperator>(BO)) + notePostUse(O, BO); + + } else { + // C++11 does not specify any sequencing between the LHS and RHS. + Region = LHSRegion; + Visit(BO->getLHS()); + + if (O && isa<CompoundAssignOperator>(BO)) + notePostUse(O, BO); + + Region = RHSRegion; + Visit(BO->getRHS()); + } + + // C++11 [expr.ass]p1: + // the assignment is sequenced [...] before the value computation of the + // assignment expression. + // C11 6.5.16/3 has no such rule. + Region = OldRegion; + if (O) + notePostMod(O, BO, + SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue + : UK_ModAsSideEffect); + if (SemaRef.getLangOpts().CPlusPlus17) { + Tree.merge(RHSRegion); + Tree.merge(LHSRegion); + } + } + + void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { + VisitBinAssign(CAO); + } + + void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } + void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } + void VisitUnaryPreIncDec(const UnaryOperator *UO) { + Object O = getObject(UO->getSubExpr(), true); + if (!O) + return VisitExpr(UO); + + notePreMod(O, UO); + Visit(UO->getSubExpr()); + // C++11 [expr.pre.incr]p1: + // the expression ++x is equivalent to x+=1 + notePostMod(O, UO, + SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue + : UK_ModAsSideEffect); + } + + void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } + void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } + void VisitUnaryPostIncDec(const UnaryOperator *UO) { + Object O = getObject(UO->getSubExpr(), true); + if (!O) + return VisitExpr(UO); + + notePreMod(O, UO); + Visit(UO->getSubExpr()); + notePostMod(O, UO, UK_ModAsSideEffect); + } + + void VisitBinLOr(const BinaryOperator *BO) { + // C++11 [expr.log.or]p2: + // If the second expression is evaluated, every value computation and + // side effect associated with the first expression is sequenced before + // every value computation and side effect associated with the + // second expression. + SequenceTree::Seq LHSRegion = Tree.allocate(Region); + SequenceTree::Seq RHSRegion = Tree.allocate(Region); + SequenceTree::Seq OldRegion = Region; + + EvaluationTracker Eval(*this); + { + SequencedSubexpression Sequenced(*this); + Region = LHSRegion; + Visit(BO->getLHS()); + } + + // C++11 [expr.log.or]p1: + // [...] the second operand is not evaluated if the first operand + // evaluates to true. + bool EvalResult = false; + bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); + bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); + if (ShouldVisitRHS) { + Region = RHSRegion; + Visit(BO->getRHS()); + } + + Region = OldRegion; + Tree.merge(LHSRegion); + Tree.merge(RHSRegion); + } + + void VisitBinLAnd(const BinaryOperator *BO) { + // C++11 [expr.log.and]p2: + // If the second expression is evaluated, every value computation and + // side effect associated with the first expression is sequenced before + // every value computation and side effect associated with the + // second expression. + SequenceTree::Seq LHSRegion = Tree.allocate(Region); + SequenceTree::Seq RHSRegion = Tree.allocate(Region); + SequenceTree::Seq OldRegion = Region; + + EvaluationTracker Eval(*this); + { + SequencedSubexpression Sequenced(*this); + Region = LHSRegion; + Visit(BO->getLHS()); + } + + // C++11 [expr.log.and]p1: + // [...] the second operand is not evaluated if the first operand is false. + bool EvalResult = false; + bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); + bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); + if (ShouldVisitRHS) { + Region = RHSRegion; + Visit(BO->getRHS()); + } + + Region = OldRegion; + Tree.merge(LHSRegion); + Tree.merge(RHSRegion); + } + + void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { + // C++11 [expr.cond]p1: + // [...] Every value computation and side effect associated with the first + // expression is sequenced before every value computation and side effect + // associated with the second or third expression. + SequenceTree::Seq ConditionRegion = Tree.allocate(Region); + + // No sequencing is specified between the true and false expression. + // However since exactly one of both is going to be evaluated we can + // consider them to be sequenced. This is needed to avoid warning on + // something like "x ? y+= 1 : y += 2;" in the case where we will visit + // both the true and false expressions because we can't evaluate x. + // This will still allow us to detect an expression like (pre C++17) + // "(x ? y += 1 : y += 2) = y". + // + // We don't wrap the visitation of the true and false expression with + // SequencedSubexpression because we don't want to downgrade modifications + // as side effect in the true and false expressions after the visition + // is done. (for example in the expression "(x ? y++ : y++) + y" we should + // not warn between the two "y++", but we should warn between the "y++" + // and the "y". + SequenceTree::Seq TrueRegion = Tree.allocate(Region); + SequenceTree::Seq FalseRegion = Tree.allocate(Region); + SequenceTree::Seq OldRegion = Region; + + EvaluationTracker Eval(*this); + { + SequencedSubexpression Sequenced(*this); + Region = ConditionRegion; + Visit(CO->getCond()); + } + + // C++11 [expr.cond]p1: + // [...] The first expression is contextually converted to bool (Clause 4). + // It is evaluated and if it is true, the result of the conditional + // expression is the value of the second expression, otherwise that of the + // third expression. Only one of the second and third expressions is + // evaluated. [...] + bool EvalResult = false; + bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); + bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); + bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); + if (ShouldVisitTrueExpr) { + Region = TrueRegion; + Visit(CO->getTrueExpr()); + } + if (ShouldVisitFalseExpr) { + Region = FalseRegion; + Visit(CO->getFalseExpr()); + } + + Region = OldRegion; + Tree.merge(ConditionRegion); + Tree.merge(TrueRegion); + Tree.merge(FalseRegion); + } + + void VisitCallExpr(const CallExpr *CE) { + // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. + + if (CE->isUnevaluatedBuiltinCall(Context)) + return; + + // C++11 [intro.execution]p15: + // When calling a function [...], every value computation and side effect + // associated with any argument expression, or with the postfix expression + // designating the called function, is sequenced before execution of every + // expression or statement in the body of the function [and thus before + // the value computation of its result]. + SequencedSubexpression Sequenced(*this); + SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { + // C++17 [expr.call]p5 + // The postfix-expression is sequenced before each expression in the + // expression-list and any default argument. [...] + SequenceTree::Seq CalleeRegion; + SequenceTree::Seq OtherRegion; + if (SemaRef.getLangOpts().CPlusPlus17) { + CalleeRegion = Tree.allocate(Region); + OtherRegion = Tree.allocate(Region); + } else { + CalleeRegion = Region; + OtherRegion = Region; + } + SequenceTree::Seq OldRegion = Region; + + // Visit the callee expression first. + Region = CalleeRegion; + if (SemaRef.getLangOpts().CPlusPlus17) { + SequencedSubexpression Sequenced(*this); + Visit(CE->getCallee()); + } else { + Visit(CE->getCallee()); + } + + // Then visit the argument expressions. + Region = OtherRegion; + for (const Expr *Argument : CE->arguments()) + Visit(Argument); + + Region = OldRegion; + if (SemaRef.getLangOpts().CPlusPlus17) { + Tree.merge(CalleeRegion); + Tree.merge(OtherRegion); + } + }); + } + + void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { + // C++17 [over.match.oper]p2: + // [...] the operator notation is first transformed to the equivalent + // function-call notation as summarized in Table 12 (where @ denotes one + // of the operators covered in the specified subclause). However, the + // operands are sequenced in the order prescribed for the built-in + // operator (Clause 8). + // + // From the above only overloaded binary operators and overloaded call + // operators have sequencing rules in C++17 that we need to handle + // separately. + if (!SemaRef.getLangOpts().CPlusPlus17 || + (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) + return VisitCallExpr(CXXOCE); + + enum { + NoSequencing, + LHSBeforeRHS, + RHSBeforeLHS, + LHSBeforeRest + } SequencingKind; + switch (CXXOCE->getOperator()) { + case OO_Equal: + case OO_PlusEqual: + case OO_MinusEqual: + case OO_StarEqual: + case OO_SlashEqual: + case OO_PercentEqual: + case OO_CaretEqual: + case OO_AmpEqual: + case OO_PipeEqual: + case OO_LessLessEqual: + case OO_GreaterGreaterEqual: + SequencingKind = RHSBeforeLHS; + break; + + case OO_LessLess: + case OO_GreaterGreater: + case OO_AmpAmp: + case OO_PipePipe: + case OO_Comma: + case OO_ArrowStar: + case OO_Subscript: + SequencingKind = LHSBeforeRHS; + break; + + case OO_Call: + SequencingKind = LHSBeforeRest; + break; + + default: + SequencingKind = NoSequencing; + break; + } + + if (SequencingKind == NoSequencing) + return VisitCallExpr(CXXOCE); + + // This is a call, so all subexpressions are sequenced before the result. + SequencedSubexpression Sequenced(*this); + + SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { + assert(SemaRef.getLangOpts().CPlusPlus17 && + "Should only get there with C++17 and above!"); + assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && + "Should only get there with an overloaded binary operator" + " or an overloaded call operator!"); + + if (SequencingKind == LHSBeforeRest) { + assert(CXXOCE->getOperator() == OO_Call && + "We should only have an overloaded call operator here!"); + + // This is very similar to VisitCallExpr, except that we only have the + // C++17 case. The postfix-expression is the first argument of the + // CXXOperatorCallExpr. The expressions in the expression-list, if any, + // are in the following arguments. + // + // Note that we intentionally do not visit the callee expression since + // it is just a decayed reference to a function. + SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); + SequenceTree::Seq ArgsRegion = Tree.allocate(Region); + SequenceTree::Seq OldRegion = Region; + + assert(CXXOCE->getNumArgs() >= 1 && + "An overloaded call operator must have at least one argument" + " for the postfix-expression!"); + const Expr *PostfixExpr = CXXOCE->getArgs()[0]; + llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, + CXXOCE->getNumArgs() - 1); + + // Visit the postfix-expression first. + { + Region = PostfixExprRegion; + SequencedSubexpression Sequenced(*this); + Visit(PostfixExpr); + } + + // Then visit the argument expressions. + Region = ArgsRegion; + for (const Expr *Arg : Args) + Visit(Arg); + + Region = OldRegion; + Tree.merge(PostfixExprRegion); + Tree.merge(ArgsRegion); + } else { + assert(CXXOCE->getNumArgs() == 2 && + "Should only have two arguments here!"); + assert((SequencingKind == LHSBeforeRHS || + SequencingKind == RHSBeforeLHS) && + "Unexpected sequencing kind!"); + + // We do not visit the callee expression since it is just a decayed + // reference to a function. + const Expr *E1 = CXXOCE->getArg(0); + const Expr *E2 = CXXOCE->getArg(1); + if (SequencingKind == RHSBeforeLHS) + std::swap(E1, E2); + + return VisitSequencedExpressions(E1, E2); + } + }); + } + + void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { + // This is a call, so all subexpressions are sequenced before the result. + SequencedSubexpression Sequenced(*this); + + if (!CCE->isListInitialization()) + return VisitExpr(CCE); + + // In C++11, list initializations are sequenced. + SmallVector<SequenceTree::Seq, 32> Elts; + SequenceTree::Seq Parent = Region; + for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), + E = CCE->arg_end(); + I != E; ++I) { + Region = Tree.allocate(Parent); + Elts.push_back(Region); + Visit(*I); + } + + // Forget that the initializers are sequenced. + Region = Parent; + for (unsigned I = 0; I < Elts.size(); ++I) + Tree.merge(Elts[I]); + } + + void VisitInitListExpr(const InitListExpr *ILE) { + if (!SemaRef.getLangOpts().CPlusPlus11) + return VisitExpr(ILE); + + // In C++11, list initializations are sequenced. + SmallVector<SequenceTree::Seq, 32> Elts; + SequenceTree::Seq Parent = Region; + for (unsigned I = 0; I < ILE->getNumInits(); ++I) { + const Expr *E = ILE->getInit(I); + if (!E) + continue; + Region = Tree.allocate(Parent); + Elts.push_back(Region); + Visit(E); + } + + // Forget that the initializers are sequenced. + Region = Parent; + for (unsigned I = 0; I < Elts.size(); ++I) + Tree.merge(Elts[I]); + } +}; + +} // namespace + +void Sema::CheckUnsequencedOperations(const Expr *E) { + SmallVector<const Expr *, 8> WorkList; + WorkList.push_back(E); + while (!WorkList.empty()) { + const Expr *Item = WorkList.pop_back_val(); + SequenceChecker(*this, Item, WorkList); + } +} + +void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, + bool IsConstexpr) { + llvm::SaveAndRestore<bool> ConstantContext( + isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); + CheckImplicitConversions(E, CheckLoc); + if (!E->isInstantiationDependent()) + CheckUnsequencedOperations(E); + if (!IsConstexpr && !E->isValueDependent()) + CheckForIntOverflow(E); + DiagnoseMisalignedMembers(); +} + +void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, + FieldDecl *BitField, + Expr *Init) { + (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); +} + +static void diagnoseArrayStarInParamType(Sema &S, QualType PType, + SourceLocation Loc) { + if (!PType->isVariablyModifiedType()) + return; + if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { + diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); + return; + } + if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { + diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); + return; + } + if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { + diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); + return; + } + + const ArrayType *AT = S.Context.getAsArrayType(PType); + if (!AT) + return; + + if (AT->getSizeModifier() != ArrayType::Star) { + diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); + return; + } + + S.Diag(Loc, diag::err_array_star_in_function_definition); +} + +/// CheckParmsForFunctionDef - Check that the parameters of the given +/// function are appropriate for the definition of a function. This +/// takes care of any checks that cannot be performed on the +/// declaration itself, e.g., that the types of each of the function +/// parameters are complete. +bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, + bool CheckParameterNames) { + bool HasInvalidParm = false; + for (ParmVarDecl *Param : Parameters) { + // C99 6.7.5.3p4: the parameters in a parameter type list in a + // function declarator that is part of a function definition of + // that function shall not have incomplete type. + // + // This is also C++ [dcl.fct]p6. + if (!Param->isInvalidDecl() && + RequireCompleteType(Param->getLocation(), Param->getType(), + diag::err_typecheck_decl_incomplete_type)) { + Param->setInvalidDecl(); + HasInvalidParm = true; + } + + // C99 6.9.1p5: If the declarator includes a parameter type list, the + // declaration of each parameter shall include an identifier. + if (CheckParameterNames && Param->getIdentifier() == nullptr && + !Param->isImplicit() && !getLangOpts().CPlusPlus) { + // Diagnose this as an extension in C17 and earlier. + if (!getLangOpts().C2x) + Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); + } + + // C99 6.7.5.3p12: + // If the function declarator is not part of a definition of that + // function, parameters may have incomplete type and may use the [*] + // notation in their sequences of declarator specifiers to specify + // variable length array types. + QualType PType = Param->getOriginalType(); + // FIXME: This diagnostic should point the '[*]' if source-location + // information is added for it. + diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); + + // If the parameter is a c++ class type and it has to be destructed in the + // callee function, declare the destructor so that it can be called by the + // callee function. Do not perform any direct access check on the dtor here. + if (!Param->isInvalidDecl()) { + if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { + if (!ClassDecl->isInvalidDecl() && + !ClassDecl->hasIrrelevantDestructor() && + !ClassDecl->isDependentContext() && + ClassDecl->isParamDestroyedInCallee()) { + CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); + MarkFunctionReferenced(Param->getLocation(), Destructor); + DiagnoseUseOfDecl(Destructor, Param->getLocation()); + } + } + } + + // Parameters with the pass_object_size attribute only need to be marked + // constant at function definitions. Because we lack information about + // whether we're on a declaration or definition when we're instantiating the + // attribute, we need to check for constness here. + if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) + if (!Param->getType().isConstQualified()) + Diag(Param->getLocation(), diag::err_attribute_pointers_only) + << Attr->getSpelling() << 1; + + // Check for parameter names shadowing fields from the class. + if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { + // The owning context for the parameter should be the function, but we + // want to see if this function's declaration context is a record. + DeclContext *DC = Param->getDeclContext(); + if (DC && DC->isFunctionOrMethod()) { + if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) + CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), + RD, /*DeclIsField*/ false); + } + } + } + + return HasInvalidParm; +} + +Optional<std::pair<CharUnits, CharUnits>> +static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); + +/// Compute the alignment and offset of the base class object given the +/// derived-to-base cast expression and the alignment and offset of the derived +/// class object. +static std::pair<CharUnits, CharUnits> +getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, + CharUnits BaseAlignment, CharUnits Offset, + ASTContext &Ctx) { + for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; + ++PathI) { + const CXXBaseSpecifier *Base = *PathI; + const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); + if (Base->isVirtual()) { + // The complete object may have a lower alignment than the non-virtual + // alignment of the base, in which case the base may be misaligned. Choose + // the smaller of the non-virtual alignment and BaseAlignment, which is a + // conservative lower bound of the complete object alignment. + CharUnits NonVirtualAlignment = + Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); + BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); + Offset = CharUnits::Zero(); + } else { + const ASTRecordLayout &RL = + Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); + Offset += RL.getBaseClassOffset(BaseDecl); + } + DerivedType = Base->getType(); + } + + return std::make_pair(BaseAlignment, Offset); +} + +/// Compute the alignment and offset of a binary additive operator. +static Optional<std::pair<CharUnits, CharUnits>> +getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, + bool IsSub, ASTContext &Ctx) { + QualType PointeeType = PtrE->getType()->getPointeeType(); + + if (!PointeeType->isConstantSizeType()) + return llvm::None; + + auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); + + if (!P) + return llvm::None; + + llvm::APSInt IdxRes; + CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); + if (IntE->isIntegerConstantExpr(IdxRes, Ctx)) { + CharUnits Offset = EltSize * IdxRes.getExtValue(); + if (IsSub) + Offset = -Offset; + return std::make_pair(P->first, P->second + Offset); + } + + // If the integer expression isn't a constant expression, compute the lower + // bound of the alignment using the alignment and offset of the pointer + // expression and the element size. + return std::make_pair( + P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), + CharUnits::Zero()); +} + +/// This helper function takes an lvalue expression and returns the alignment of +/// a VarDecl and a constant offset from the VarDecl. +Optional<std::pair<CharUnits, CharUnits>> +static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { + E = E->IgnoreParens(); + switch (E->getStmtClass()) { + default: + break; + case Stmt::CStyleCastExprClass: + case Stmt::CXXStaticCastExprClass: + case Stmt::ImplicitCastExprClass: { + auto *CE = cast<CastExpr>(E); + const Expr *From = CE->getSubExpr(); + switch (CE->getCastKind()) { + default: + break; + case CK_NoOp: + return getBaseAlignmentAndOffsetFromLValue(From, Ctx); + case CK_UncheckedDerivedToBase: + case CK_DerivedToBase: { + auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); + if (!P) + break; + return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, + P->second, Ctx); + } + } + break; + } + case Stmt::ArraySubscriptExprClass: { + auto *ASE = cast<ArraySubscriptExpr>(E); + return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), + false, Ctx); + } + case Stmt::DeclRefExprClass: { + if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { + // FIXME: If VD is captured by copy or is an escaping __block variable, + // use the alignment of VD's type. + if (!VD->getType()->isReferenceType()) + return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); + if (VD->hasInit()) + return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); + } + break; + } + case Stmt::MemberExprClass: { + auto *ME = cast<MemberExpr>(E); + auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); + if (!FD || FD->getType()->isReferenceType()) + break; + Optional<std::pair<CharUnits, CharUnits>> P; + if (ME->isArrow()) + P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); + else + P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); + if (!P) + break; + const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); + uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); + return std::make_pair(P->first, + P->second + CharUnits::fromQuantity(Offset)); + } + case Stmt::UnaryOperatorClass: { + auto *UO = cast<UnaryOperator>(E); + switch (UO->getOpcode()) { + default: + break; + case UO_Deref: + return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); + } + break; + } + case Stmt::BinaryOperatorClass: { + auto *BO = cast<BinaryOperator>(E); + auto Opcode = BO->getOpcode(); + switch (Opcode) { + default: + break; + case BO_Comma: + return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); + } + break; + } + } + return llvm::None; +} + +/// This helper function takes a pointer expression and returns the alignment of +/// a VarDecl and a constant offset from the VarDecl. +Optional<std::pair<CharUnits, CharUnits>> +static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { + E = E->IgnoreParens(); + switch (E->getStmtClass()) { + default: + break; + case Stmt::CStyleCastExprClass: + case Stmt::CXXStaticCastExprClass: + case Stmt::ImplicitCastExprClass: { + auto *CE = cast<CastExpr>(E); + const Expr *From = CE->getSubExpr(); + switch (CE->getCastKind()) { + default: + break; + case CK_NoOp: + return getBaseAlignmentAndOffsetFromPtr(From, Ctx); + case CK_ArrayToPointerDecay: + return getBaseAlignmentAndOffsetFromLValue(From, Ctx); + case CK_UncheckedDerivedToBase: + case CK_DerivedToBase: { + auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); + if (!P) + break; + return getDerivedToBaseAlignmentAndOffset( + CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); + } + } + break; + } + case Stmt::CXXThisExprClass: { + auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); + CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); + return std::make_pair(Alignment, CharUnits::Zero()); + } + case Stmt::UnaryOperatorClass: { + auto *UO = cast<UnaryOperator>(E); + if (UO->getOpcode() == UO_AddrOf) + return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); + break; + } + case Stmt::BinaryOperatorClass: { + auto *BO = cast<BinaryOperator>(E); + auto Opcode = BO->getOpcode(); + switch (Opcode) { + default: + break; + case BO_Add: + case BO_Sub: { + const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); + if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) + std::swap(LHS, RHS); + return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, + Ctx); + } + case BO_Comma: + return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); + } + break; + } + } + return llvm::None; +} + +static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { + // See if we can compute the alignment of a VarDecl and an offset from it. + Optional<std::pair<CharUnits, CharUnits>> P = + getBaseAlignmentAndOffsetFromPtr(E, S.Context); + + if (P) + return P->first.alignmentAtOffset(P->second); + + // If that failed, return the type's alignment. + return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); +} + +/// CheckCastAlign - Implements -Wcast-align, which warns when a +/// pointer cast increases the alignment requirements. +void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { + // This is actually a lot of work to potentially be doing on every + // cast; don't do it if we're ignoring -Wcast_align (as is the default). + if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) + return; + + // Ignore dependent types. + if (T->isDependentType() || Op->getType()->isDependentType()) + return; + + // Require that the destination be a pointer type. + const PointerType *DestPtr = T->getAs<PointerType>(); + if (!DestPtr) return; + + // If the destination has alignment 1, we're done. + QualType DestPointee = DestPtr->getPointeeType(); + if (DestPointee->isIncompleteType()) return; + CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); + if (DestAlign.isOne()) return; + + // Require that the source be a pointer type. + const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); + if (!SrcPtr) return; + QualType SrcPointee = SrcPtr->getPointeeType(); + + // Explicitly allow casts from cv void*. We already implicitly + // allowed casts to cv void*, since they have alignment 1. + // Also allow casts involving incomplete types, which implicitly + // includes 'void'. + if (SrcPointee->isIncompleteType()) return; + + CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); + + if (SrcAlign >= DestAlign) return; + + Diag(TRange.getBegin(), diag::warn_cast_align) + << Op->getType() << T + << static_cast<unsigned>(SrcAlign.getQuantity()) + << static_cast<unsigned>(DestAlign.getQuantity()) + << TRange << Op->getSourceRange(); +} + +/// Check whether this array fits the idiom of a size-one tail padded +/// array member of a struct. +/// +/// We avoid emitting out-of-bounds access warnings for such arrays as they are +/// commonly used to emulate flexible arrays in C89 code. +static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, + const NamedDecl *ND) { + if (Size != 1 || !ND) return false; + + const FieldDecl *FD = dyn_cast<FieldDecl>(ND); + if (!FD) return false; + + // Don't consider sizes resulting from macro expansions or template argument + // substitution to form C89 tail-padded arrays. + + TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); + while (TInfo) { + TypeLoc TL = TInfo->getTypeLoc(); + // Look through typedefs. + if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { + const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); + TInfo = TDL->getTypeSourceInfo(); + continue; + } + if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { + const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); + if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) + return false; + } + break; + } + + const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); + if (!RD) return false; + if (RD->isUnion()) return false; + if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { + if (!CRD->isStandardLayout()) return false; + } + + // See if this is the last field decl in the record. + const Decl *D = FD; + while ((D = D->getNextDeclInContext())) + if (isa<FieldDecl>(D)) + return false; + return true; +} + +void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, + const ArraySubscriptExpr *ASE, + bool AllowOnePastEnd, bool IndexNegated) { + // Already diagnosed by the constant evaluator. + if (isConstantEvaluated()) + return; + + IndexExpr = IndexExpr->IgnoreParenImpCasts(); + if (IndexExpr->isValueDependent()) + return; + + const Type *EffectiveType = + BaseExpr->getType()->getPointeeOrArrayElementType(); + BaseExpr = BaseExpr->IgnoreParenCasts(); + const ConstantArrayType *ArrayTy = + Context.getAsConstantArrayType(BaseExpr->getType()); + + if (!ArrayTy) + return; + + const Type *BaseType = ArrayTy->getElementType().getTypePtr(); + if (EffectiveType->isDependentType() || BaseType->isDependentType()) + return; + + Expr::EvalResult Result; + if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) + return; + + llvm::APSInt index = Result.Val.getInt(); + if (IndexNegated) + index = -index; + + const NamedDecl *ND = nullptr; + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) + ND = DRE->getDecl(); + if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) + ND = ME->getMemberDecl(); + + if (index.isUnsigned() || !index.isNegative()) { + // It is possible that the type of the base expression after + // IgnoreParenCasts is incomplete, even though the type of the base + // expression before IgnoreParenCasts is complete (see PR39746 for an + // example). In this case we have no information about whether the array + // access exceeds the array bounds. However we can still diagnose an array + // access which precedes the array bounds. + if (BaseType->isIncompleteType()) + return; + + llvm::APInt size = ArrayTy->getSize(); + if (!size.isStrictlyPositive()) + return; + + if (BaseType != EffectiveType) { + // Make sure we're comparing apples to apples when comparing index to size + uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); + uint64_t array_typesize = Context.getTypeSize(BaseType); + // Handle ptrarith_typesize being zero, such as when casting to void* + if (!ptrarith_typesize) ptrarith_typesize = 1; + if (ptrarith_typesize != array_typesize) { + // There's a cast to a different size type involved + uint64_t ratio = array_typesize / ptrarith_typesize; + // TODO: Be smarter about handling cases where array_typesize is not a + // multiple of ptrarith_typesize + if (ptrarith_typesize * ratio == array_typesize) + size *= llvm::APInt(size.getBitWidth(), ratio); + } + } + + if (size.getBitWidth() > index.getBitWidth()) + index = index.zext(size.getBitWidth()); + else if (size.getBitWidth() < index.getBitWidth()) + size = size.zext(index.getBitWidth()); + + // For array subscripting the index must be less than size, but for pointer + // arithmetic also allow the index (offset) to be equal to size since + // computing the next address after the end of the array is legal and + // commonly done e.g. in C++ iterators and range-based for loops. + if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) + return; + + // Also don't warn for arrays of size 1 which are members of some + // structure. These are often used to approximate flexible arrays in C89 + // code. + if (IsTailPaddedMemberArray(*this, size, ND)) + return; + + // Suppress the warning if the subscript expression (as identified by the + // ']' location) and the index expression are both from macro expansions + // within a system header. + if (ASE) { + SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( + ASE->getRBracketLoc()); + if (SourceMgr.isInSystemHeader(RBracketLoc)) { + SourceLocation IndexLoc = + SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); + if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) + return; + } + } + + unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; + if (ASE) + DiagID = diag::warn_array_index_exceeds_bounds; + + DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, + PDiag(DiagID) << index.toString(10, true) + << size.toString(10, true) + << (unsigned)size.getLimitedValue(~0U) + << IndexExpr->getSourceRange()); + } else { + unsigned DiagID = diag::warn_array_index_precedes_bounds; + if (!ASE) { + DiagID = diag::warn_ptr_arith_precedes_bounds; + if (index.isNegative()) index = -index; + } + + DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, + PDiag(DiagID) << index.toString(10, true) + << IndexExpr->getSourceRange()); + } + + if (!ND) { + // Try harder to find a NamedDecl to point at in the note. + while (const ArraySubscriptExpr *ASE = + dyn_cast<ArraySubscriptExpr>(BaseExpr)) + BaseExpr = ASE->getBase()->IgnoreParenCasts(); + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) + ND = DRE->getDecl(); + if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) + ND = ME->getMemberDecl(); + } + + if (ND) + DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, + PDiag(diag::note_array_declared_here) + << ND->getDeclName()); +} + +void Sema::CheckArrayAccess(const Expr *expr) { + int AllowOnePastEnd = 0; + while (expr) { + expr = expr->IgnoreParenImpCasts(); + switch (expr->getStmtClass()) { + case Stmt::ArraySubscriptExprClass: { + const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); + CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, + AllowOnePastEnd > 0); + expr = ASE->getBase(); + break; + } + case Stmt::MemberExprClass: { + expr = cast<MemberExpr>(expr)->getBase(); + break; + } + case Stmt::OMPArraySectionExprClass: { + const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); + if (ASE->getLowerBound()) + CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), + /*ASE=*/nullptr, AllowOnePastEnd > 0); + return; + } + case Stmt::UnaryOperatorClass: { + // Only unwrap the * and & unary operators + const UnaryOperator *UO = cast<UnaryOperator>(expr); + expr = UO->getSubExpr(); + switch (UO->getOpcode()) { + case UO_AddrOf: + AllowOnePastEnd++; + break; + case UO_Deref: + AllowOnePastEnd--; + break; + default: + return; + } + break; + } + case Stmt::ConditionalOperatorClass: { + const ConditionalOperator *cond = cast<ConditionalOperator>(expr); + if (const Expr *lhs = cond->getLHS()) + CheckArrayAccess(lhs); + if (const Expr *rhs = cond->getRHS()) + CheckArrayAccess(rhs); + return; + } + case Stmt::CXXOperatorCallExprClass: { + const auto *OCE = cast<CXXOperatorCallExpr>(expr); + for (const auto *Arg : OCE->arguments()) + CheckArrayAccess(Arg); + return; + } + default: + return; + } + } +} + +//===--- CHECK: Objective-C retain cycles ----------------------------------// + +namespace { + +struct RetainCycleOwner { + VarDecl *Variable = nullptr; + SourceRange Range; + SourceLocation Loc; + bool Indirect = false; + + RetainCycleOwner() = default; + + void setLocsFrom(Expr *e) { + Loc = e->getExprLoc(); + Range = e->getSourceRange(); + } +}; + +} // namespace + +/// Consider whether capturing the given variable can possibly lead to +/// a retain cycle. +static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { + // In ARC, it's captured strongly iff the variable has __strong + // lifetime. In MRR, it's captured strongly if the variable is + // __block and has an appropriate type. + if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) + return false; + + owner.Variable = var; + if (ref) + owner.setLocsFrom(ref); + return true; +} + +static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { + while (true) { + e = e->IgnoreParens(); + if (CastExpr *cast = dyn_cast<CastExpr>(e)) { + switch (cast->getCastKind()) { + case CK_BitCast: + case CK_LValueBitCast: + case CK_LValueToRValue: + case CK_ARCReclaimReturnedObject: + e = cast->getSubExpr(); + continue; + + default: + return false; + } + } + + if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { + ObjCIvarDecl *ivar = ref->getDecl(); + if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) + return false; + + // Try to find a retain cycle in the base. + if (!findRetainCycleOwner(S, ref->getBase(), owner)) + return false; + + if (ref->isFreeIvar()) owner.setLocsFrom(ref); + owner.Indirect = true; + return true; + } + + if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { + VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); + if (!var) return false; + return considerVariable(var, ref, owner); + } + + if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { + if (member->isArrow()) return false; + + // Don't count this as an indirect ownership. + e = member->getBase(); + continue; + } + + if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { + // Only pay attention to pseudo-objects on property references. + ObjCPropertyRefExpr *pre + = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() + ->IgnoreParens()); + if (!pre) return false; + if (pre->isImplicitProperty()) return false; + ObjCPropertyDecl *property = pre->getExplicitProperty(); + if (!property->isRetaining() && + !(property->getPropertyIvarDecl() && + property->getPropertyIvarDecl()->getType() + .getObjCLifetime() == Qualifiers::OCL_Strong)) + return false; + + owner.Indirect = true; + if (pre->isSuperReceiver()) { + owner.Variable = S.getCurMethodDecl()->getSelfDecl(); + if (!owner.Variable) + return false; + owner.Loc = pre->getLocation(); + owner.Range = pre->getSourceRange(); + return true; + } + e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) + ->getSourceExpr()); + continue; + } + + // Array ivars? + + return false; + } +} + +namespace { + + struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { + ASTContext &Context; + VarDecl *Variable; + Expr *Capturer = nullptr; + bool VarWillBeReased = false; + + FindCaptureVisitor(ASTContext &Context, VarDecl *variable) + : EvaluatedExprVisitor<FindCaptureVisitor>(Context), + Context(Context), Variable(variable) {} + + void VisitDeclRefExpr(DeclRefExpr *ref) { + if (ref->getDecl() == Variable && !Capturer) + Capturer = ref; + } + + void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { + if (Capturer) return; + Visit(ref->getBase()); + if (Capturer && ref->isFreeIvar()) + Capturer = ref; + } + + void VisitBlockExpr(BlockExpr *block) { + // Look inside nested blocks + if (block->getBlockDecl()->capturesVariable(Variable)) + Visit(block->getBlockDecl()->getBody()); + } + + void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { + if (Capturer) return; + if (OVE->getSourceExpr()) + Visit(OVE->getSourceExpr()); + } + + void VisitBinaryOperator(BinaryOperator *BinOp) { + if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) + return; + Expr *LHS = BinOp->getLHS(); + if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { + if (DRE->getDecl() != Variable) + return; + if (Expr *RHS = BinOp->getRHS()) { + RHS = RHS->IgnoreParenCasts(); + llvm::APSInt Value; + VarWillBeReased = + (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); + } + } + } + }; + +} // namespace + +/// Check whether the given argument is a block which captures a +/// variable. +static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { + assert(owner.Variable && owner.Loc.isValid()); + + e = e->IgnoreParenCasts(); + + // Look through [^{...} copy] and Block_copy(^{...}). + if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { + Selector Cmd = ME->getSelector(); + if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { + e = ME->getInstanceReceiver(); + if (!e) + return nullptr; + e = e->IgnoreParenCasts(); + } + } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { + if (CE->getNumArgs() == 1) { + FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); + if (Fn) { + const IdentifierInfo *FnI = Fn->getIdentifier(); + if (FnI && FnI->isStr("_Block_copy")) { + e = CE->getArg(0)->IgnoreParenCasts(); + } + } + } + } + + BlockExpr *block = dyn_cast<BlockExpr>(e); + if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) + return nullptr; + + FindCaptureVisitor visitor(S.Context, owner.Variable); + visitor.Visit(block->getBlockDecl()->getBody()); + return visitor.VarWillBeReased ? nullptr : visitor.Capturer; +} + +static void diagnoseRetainCycle(Sema &S, Expr *capturer, + RetainCycleOwner &owner) { + assert(capturer); + assert(owner.Variable && owner.Loc.isValid()); + + S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) + << owner.Variable << capturer->getSourceRange(); + S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) + << owner.Indirect << owner.Range; +} + +/// Check for a keyword selector that starts with the word 'add' or +/// 'set'. +static bool isSetterLikeSelector(Selector sel) { + if (sel.isUnarySelector()) return false; + + StringRef str = sel.getNameForSlot(0); + while (!str.empty() && str.front() == '_') str = str.substr(1); + if (str.startswith("set")) + str = str.substr(3); + else if (str.startswith("add")) { + // Specially allow 'addOperationWithBlock:'. + if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) + return false; + str = str.substr(3); + } + else + return false; + + if (str.empty()) return true; + return !isLowercase(str.front()); +} + +static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, + ObjCMessageExpr *Message) { + bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( + Message->getReceiverInterface(), + NSAPI::ClassId_NSMutableArray); + if (!IsMutableArray) { + return None; + } + + Selector Sel = Message->getSelector(); + + Optional<NSAPI::NSArrayMethodKind> MKOpt = + S.NSAPIObj->getNSArrayMethodKind(Sel); + if (!MKOpt) { + return None; + } + + NSAPI::NSArrayMethodKind MK = *MKOpt; + + switch (MK) { + case NSAPI::NSMutableArr_addObject: + case NSAPI::NSMutableArr_insertObjectAtIndex: + case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: + return 0; + case NSAPI::NSMutableArr_replaceObjectAtIndex: + return 1; + + default: + return None; + } + + return None; +} + +static +Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, + ObjCMessageExpr *Message) { + bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( + Message->getReceiverInterface(), + NSAPI::ClassId_NSMutableDictionary); + if (!IsMutableDictionary) { + return None; + } + + Selector Sel = Message->getSelector(); + + Optional<NSAPI::NSDictionaryMethodKind> MKOpt = + S.NSAPIObj->getNSDictionaryMethodKind(Sel); + if (!MKOpt) { + return None; + } + + NSAPI::NSDictionaryMethodKind MK = *MKOpt; + + switch (MK) { + case NSAPI::NSMutableDict_setObjectForKey: + case NSAPI::NSMutableDict_setValueForKey: + case NSAPI::NSMutableDict_setObjectForKeyedSubscript: + return 0; + + default: + return None; + } + + return None; +} + +static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { + bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( + Message->getReceiverInterface(), + NSAPI::ClassId_NSMutableSet); + + bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( + Message->getReceiverInterface(), + NSAPI::ClassId_NSMutableOrderedSet); + if (!IsMutableSet && !IsMutableOrderedSet) { + return None; + } + + Selector Sel = Message->getSelector(); + + Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); + if (!MKOpt) { + return None; + } + + NSAPI::NSSetMethodKind MK = *MKOpt; + + switch (MK) { + case NSAPI::NSMutableSet_addObject: + case NSAPI::NSOrderedSet_setObjectAtIndex: + case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: + case NSAPI::NSOrderedSet_insertObjectAtIndex: + return 0; + case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: + return 1; + } + + return None; +} + +void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { + if (!Message->isInstanceMessage()) { + return; + } + + Optional<int> ArgOpt; + + if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && + !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && + !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { + return; + } + + int ArgIndex = *ArgOpt; + + Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); + if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { + Arg = OE->getSourceExpr()->IgnoreImpCasts(); + } + + if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { + if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { + if (ArgRE->isObjCSelfExpr()) { + Diag(Message->getSourceRange().getBegin(), + diag::warn_objc_circular_container) + << ArgRE->getDecl() << StringRef("'super'"); + } + } + } else { + Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); + + if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { + Receiver = OE->getSourceExpr()->IgnoreImpCasts(); + } + + if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { + if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { + if (ReceiverRE->getDecl() == ArgRE->getDecl()) { + ValueDecl *Decl = ReceiverRE->getDecl(); + Diag(Message->getSourceRange().getBegin(), + diag::warn_objc_circular_container) + << Decl << Decl; + if (!ArgRE->isObjCSelfExpr()) { + Diag(Decl->getLocation(), + diag::note_objc_circular_container_declared_here) + << Decl; + } + } + } + } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { + if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { + if (IvarRE->getDecl() == IvarArgRE->getDecl()) { + ObjCIvarDecl *Decl = IvarRE->getDecl(); + Diag(Message->getSourceRange().getBegin(), + diag::warn_objc_circular_container) + << Decl << Decl; + Diag(Decl->getLocation(), + diag::note_objc_circular_container_declared_here) + << Decl; + } + } + } + } +} + +/// Check a message send to see if it's likely to cause a retain cycle. +void Sema::checkRetainCycles(ObjCMessageExpr *msg) { + // Only check instance methods whose selector looks like a setter. + if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) + return; + + // Try to find a variable that the receiver is strongly owned by. + RetainCycleOwner owner; + if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { + if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) + return; + } else { + assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); + owner.Variable = getCurMethodDecl()->getSelfDecl(); + owner.Loc = msg->getSuperLoc(); + owner.Range = msg->getSuperLoc(); + } + + // Check whether the receiver is captured by any of the arguments. + const ObjCMethodDecl *MD = msg->getMethodDecl(); + for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { + if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { + // noescape blocks should not be retained by the method. + if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) + continue; + return diagnoseRetainCycle(*this, capturer, owner); + } + } +} + +/// Check a property assign to see if it's likely to cause a retain cycle. +void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { + RetainCycleOwner owner; + if (!findRetainCycleOwner(*this, receiver, owner)) + return; + + if (Expr *capturer = findCapturingExpr(*this, argument, owner)) + diagnoseRetainCycle(*this, capturer, owner); +} + +void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { + RetainCycleOwner Owner; + if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) + return; + + // Because we don't have an expression for the variable, we have to set the + // location explicitly here. + Owner.Loc = Var->getLocation(); + Owner.Range = Var->getSourceRange(); + + if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) + diagnoseRetainCycle(*this, Capturer, Owner); +} + +static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, + Expr *RHS, bool isProperty) { + // Check if RHS is an Objective-C object literal, which also can get + // immediately zapped in a weak reference. Note that we explicitly + // allow ObjCStringLiterals, since those are designed to never really die. + RHS = RHS->IgnoreParenImpCasts(); + + // This enum needs to match with the 'select' in + // warn_objc_arc_literal_assign (off-by-1). + Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); + if (Kind == Sema::LK_String || Kind == Sema::LK_None) + return false; + + S.Diag(Loc, diag::warn_arc_literal_assign) + << (unsigned) Kind + << (isProperty ? 0 : 1) + << RHS->getSourceRange(); + + return true; +} + +static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, + Qualifiers::ObjCLifetime LT, + Expr *RHS, bool isProperty) { + // Strip off any implicit cast added to get to the one ARC-specific. + while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { + if (cast->getCastKind() == CK_ARCConsumeObject) { + S.Diag(Loc, diag::warn_arc_retained_assign) + << (LT == Qualifiers::OCL_ExplicitNone) + << (isProperty ? 0 : 1) + << RHS->getSourceRange(); + return true; + } + RHS = cast->getSubExpr(); + } + + if (LT == Qualifiers::OCL_Weak && + checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) + return true; + + return false; +} + +bool Sema::checkUnsafeAssigns(SourceLocation Loc, + QualType LHS, Expr *RHS) { + Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); + + if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) + return false; + + if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) + return true; + + return false; +} + +void Sema::checkUnsafeExprAssigns(SourceLocation Loc, + Expr *LHS, Expr *RHS) { + QualType LHSType; + // PropertyRef on LHS type need be directly obtained from + // its declaration as it has a PseudoType. + ObjCPropertyRefExpr *PRE + = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); + if (PRE && !PRE->isImplicitProperty()) { + const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); + if (PD) + LHSType = PD->getType(); + } + + if (LHSType.isNull()) + LHSType = LHS->getType(); + + Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); + + if (LT == Qualifiers::OCL_Weak) { + if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) + getCurFunction()->markSafeWeakUse(LHS); + } + + if (checkUnsafeAssigns(Loc, LHSType, RHS)) + return; + + // FIXME. Check for other life times. + if (LT != Qualifiers::OCL_None) + return; + + if (PRE) { + if (PRE->isImplicitProperty()) + return; + const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); + if (!PD) + return; + + unsigned Attributes = PD->getPropertyAttributes(); + if (Attributes & ObjCPropertyAttribute::kind_assign) { + // when 'assign' attribute was not explicitly specified + // by user, ignore it and rely on property type itself + // for lifetime info. + unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); + if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && + LHSType->isObjCRetainableType()) + return; + + while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { + if (cast->getCastKind() == CK_ARCConsumeObject) { + Diag(Loc, diag::warn_arc_retained_property_assign) + << RHS->getSourceRange(); + return; + } + RHS = cast->getSubExpr(); + } + } else if (Attributes & ObjCPropertyAttribute::kind_weak) { + if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) + return; + } + } +} + +//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// + +static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, + SourceLocation StmtLoc, + const NullStmt *Body) { + // Do not warn if the body is a macro that expands to nothing, e.g: + // + // #define CALL(x) + // if (condition) + // CALL(0); + if (Body->hasLeadingEmptyMacro()) + return false; + + // Get line numbers of statement and body. + bool StmtLineInvalid; + unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, + &StmtLineInvalid); + if (StmtLineInvalid) + return false; + + bool BodyLineInvalid; + unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), + &BodyLineInvalid); + if (BodyLineInvalid) + return false; + + // Warn if null statement and body are on the same line. + if (StmtLine != BodyLine) + return false; + + return true; +} + +void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, + const Stmt *Body, + unsigned DiagID) { + // Since this is a syntactic check, don't emit diagnostic for template + // instantiations, this just adds noise. + if (CurrentInstantiationScope) + return; + + // The body should be a null statement. + const NullStmt *NBody = dyn_cast<NullStmt>(Body); + if (!NBody) + return; + + // Do the usual checks. + if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) + return; + + Diag(NBody->getSemiLoc(), DiagID); + Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); +} + +void Sema::DiagnoseEmptyLoopBody(const Stmt *S, + const Stmt *PossibleBody) { + assert(!CurrentInstantiationScope); // Ensured by caller + + SourceLocation StmtLoc; + const Stmt *Body; + unsigned DiagID; + if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { + StmtLoc = FS->getRParenLoc(); + Body = FS->getBody(); + DiagID = diag::warn_empty_for_body; + } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { + StmtLoc = WS->getCond()->getSourceRange().getEnd(); + Body = WS->getBody(); + DiagID = diag::warn_empty_while_body; + } else + return; // Neither `for' nor `while'. + + // The body should be a null statement. + const NullStmt *NBody = dyn_cast<NullStmt>(Body); + if (!NBody) + return; + + // Skip expensive checks if diagnostic is disabled. + if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) + return; + + // Do the usual checks. + if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) + return; + + // `for(...);' and `while(...);' are popular idioms, so in order to keep + // noise level low, emit diagnostics only if for/while is followed by a + // CompoundStmt, e.g.: + // for (int i = 0; i < n; i++); + // { + // a(i); + // } + // or if for/while is followed by a statement with more indentation + // than for/while itself: + // for (int i = 0; i < n; i++); + // a(i); + bool ProbableTypo = isa<CompoundStmt>(PossibleBody); + if (!ProbableTypo) { + bool BodyColInvalid; + unsigned BodyCol = SourceMgr.getPresumedColumnNumber( + PossibleBody->getBeginLoc(), &BodyColInvalid); + if (BodyColInvalid) + return; + + bool StmtColInvalid; + unsigned StmtCol = + SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); + if (StmtColInvalid) + return; + + if (BodyCol > StmtCol) + ProbableTypo = true; + } + + if (ProbableTypo) { + Diag(NBody->getSemiLoc(), DiagID); + Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); + } +} + +//===--- CHECK: Warn on self move with std::move. -------------------------===// + +/// DiagnoseSelfMove - Emits a warning if a value is moved to itself. +void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, + SourceLocation OpLoc) { + if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) + return; + + if (inTemplateInstantiation()) + return; + + // Strip parens and casts away. + LHSExpr = LHSExpr->IgnoreParenImpCasts(); + RHSExpr = RHSExpr->IgnoreParenImpCasts(); + + // Check for a call expression + const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); + if (!CE || CE->getNumArgs() != 1) + return; + + // Check for a call to std::move + if (!CE->isCallToStdMove()) + return; + + // Get argument from std::move + RHSExpr = CE->getArg(0); + + const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); + const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); + + // Two DeclRefExpr's, check that the decls are the same. + if (LHSDeclRef && RHSDeclRef) { + if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) + return; + if (LHSDeclRef->getDecl()->getCanonicalDecl() != + RHSDeclRef->getDecl()->getCanonicalDecl()) + return; + + Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() + << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); + return; + } + + // Member variables require a different approach to check for self moves. + // MemberExpr's are the same if every nested MemberExpr refers to the same + // Decl and that the base Expr's are DeclRefExpr's with the same Decl or + // the base Expr's are CXXThisExpr's. + const Expr *LHSBase = LHSExpr; + const Expr *RHSBase = RHSExpr; + const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); + const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); + if (!LHSME || !RHSME) + return; + + while (LHSME && RHSME) { + if (LHSME->getMemberDecl()->getCanonicalDecl() != + RHSME->getMemberDecl()->getCanonicalDecl()) + return; + + LHSBase = LHSME->getBase(); + RHSBase = RHSME->getBase(); + LHSME = dyn_cast<MemberExpr>(LHSBase); + RHSME = dyn_cast<MemberExpr>(RHSBase); + } + + LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); + RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); + if (LHSDeclRef && RHSDeclRef) { + if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) + return; + if (LHSDeclRef->getDecl()->getCanonicalDecl() != + RHSDeclRef->getDecl()->getCanonicalDecl()) + return; + + Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() + << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); + return; + } + + if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) + Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() + << LHSExpr->getSourceRange() + << RHSExpr->getSourceRange(); +} + +//===--- Layout compatibility ----------------------------------------------// + +static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); + +/// Check if two enumeration types are layout-compatible. +static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { + // C++11 [dcl.enum] p8: + // Two enumeration types are layout-compatible if they have the same + // underlying type. + return ED1->isComplete() && ED2->isComplete() && + C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); +} + +/// Check if two fields are layout-compatible. +static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, + FieldDecl *Field2) { + if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) + return false; + + if (Field1->isBitField() != Field2->isBitField()) + return false; + + if (Field1->isBitField()) { + // Make sure that the bit-fields are the same length. + unsigned Bits1 = Field1->getBitWidthValue(C); + unsigned Bits2 = Field2->getBitWidthValue(C); + + if (Bits1 != Bits2) + return false; + } + + return true; +} + +/// Check if two standard-layout structs are layout-compatible. +/// (C++11 [class.mem] p17) +static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, + RecordDecl *RD2) { + // If both records are C++ classes, check that base classes match. + if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { + // If one of records is a CXXRecordDecl we are in C++ mode, + // thus the other one is a CXXRecordDecl, too. + const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); + // Check number of base classes. + if (D1CXX->getNumBases() != D2CXX->getNumBases()) + return false; + + // Check the base classes. + for (CXXRecordDecl::base_class_const_iterator + Base1 = D1CXX->bases_begin(), + BaseEnd1 = D1CXX->bases_end(), + Base2 = D2CXX->bases_begin(); + Base1 != BaseEnd1; + ++Base1, ++Base2) { + if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) + return false; + } + } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { + // If only RD2 is a C++ class, it should have zero base classes. + if (D2CXX->getNumBases() > 0) + return false; + } + + // Check the fields. + RecordDecl::field_iterator Field2 = RD2->field_begin(), + Field2End = RD2->field_end(), + Field1 = RD1->field_begin(), + Field1End = RD1->field_end(); + for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { + if (!isLayoutCompatible(C, *Field1, *Field2)) + return false; + } + if (Field1 != Field1End || Field2 != Field2End) + return false; + + return true; +} + +/// Check if two standard-layout unions are layout-compatible. +/// (C++11 [class.mem] p18) +static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, + RecordDecl *RD2) { + llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; + for (auto *Field2 : RD2->fields()) + UnmatchedFields.insert(Field2); + + for (auto *Field1 : RD1->fields()) { + llvm::SmallPtrSet<FieldDecl *, 8>::iterator + I = UnmatchedFields.begin(), + E = UnmatchedFields.end(); + + for ( ; I != E; ++I) { + if (isLayoutCompatible(C, Field1, *I)) { + bool Result = UnmatchedFields.erase(*I); + (void) Result; + assert(Result); + break; + } + } + if (I == E) + return false; + } + + return UnmatchedFields.empty(); +} + +static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, + RecordDecl *RD2) { + if (RD1->isUnion() != RD2->isUnion()) + return false; + + if (RD1->isUnion()) + return isLayoutCompatibleUnion(C, RD1, RD2); + else + return isLayoutCompatibleStruct(C, RD1, RD2); +} + +/// Check if two types are layout-compatible in C++11 sense. +static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { + if (T1.isNull() || T2.isNull()) + return false; + + // C++11 [basic.types] p11: + // If two types T1 and T2 are the same type, then T1 and T2 are + // layout-compatible types. + if (C.hasSameType(T1, T2)) + return true; + + T1 = T1.getCanonicalType().getUnqualifiedType(); + T2 = T2.getCanonicalType().getUnqualifiedType(); + + const Type::TypeClass TC1 = T1->getTypeClass(); + const Type::TypeClass TC2 = T2->getTypeClass(); + + if (TC1 != TC2) + return false; + + if (TC1 == Type::Enum) { + return isLayoutCompatible(C, + cast<EnumType>(T1)->getDecl(), + cast<EnumType>(T2)->getDecl()); + } else if (TC1 == Type::Record) { + if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) + return false; + + return isLayoutCompatible(C, + cast<RecordType>(T1)->getDecl(), + cast<RecordType>(T2)->getDecl()); + } + + return false; +} + +//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// + +/// Given a type tag expression find the type tag itself. +/// +/// \param TypeExpr Type tag expression, as it appears in user's code. +/// +/// \param VD Declaration of an identifier that appears in a type tag. +/// +/// \param MagicValue Type tag magic value. +/// +/// \param isConstantEvaluated wether the evalaution should be performed in + +/// constant context. +static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, + const ValueDecl **VD, uint64_t *MagicValue, + bool isConstantEvaluated) { + while(true) { + if (!TypeExpr) + return false; + + TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); + + switch (TypeExpr->getStmtClass()) { + case Stmt::UnaryOperatorClass: { + const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); + if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { + TypeExpr = UO->getSubExpr(); + continue; + } + return false; + } + + case Stmt::DeclRefExprClass: { + const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); + *VD = DRE->getDecl(); + return true; + } + + case Stmt::IntegerLiteralClass: { + const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); + llvm::APInt MagicValueAPInt = IL->getValue(); + if (MagicValueAPInt.getActiveBits() <= 64) { + *MagicValue = MagicValueAPInt.getZExtValue(); + return true; + } else + return false; + } + + case Stmt::BinaryConditionalOperatorClass: + case Stmt::ConditionalOperatorClass: { + const AbstractConditionalOperator *ACO = + cast<AbstractConditionalOperator>(TypeExpr); + bool Result; + if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, + isConstantEvaluated)) { + if (Result) + TypeExpr = ACO->getTrueExpr(); + else + TypeExpr = ACO->getFalseExpr(); + continue; + } + return false; + } + + case Stmt::BinaryOperatorClass: { + const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); + if (BO->getOpcode() == BO_Comma) { + TypeExpr = BO->getRHS(); + continue; + } + return false; + } + + default: + return false; + } + } +} + +/// Retrieve the C type corresponding to type tag TypeExpr. +/// +/// \param TypeExpr Expression that specifies a type tag. +/// +/// \param MagicValues Registered magic values. +/// +/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong +/// kind. +/// +/// \param TypeInfo Information about the corresponding C type. +/// +/// \param isConstantEvaluated wether the evalaution should be performed in +/// constant context. +/// +/// \returns true if the corresponding C type was found. +static bool GetMatchingCType( + const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, + const ASTContext &Ctx, + const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> + *MagicValues, + bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, + bool isConstantEvaluated) { + FoundWrongKind = false; + + // Variable declaration that has type_tag_for_datatype attribute. + const ValueDecl *VD = nullptr; + + uint64_t MagicValue; + + if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) + return false; + + if (VD) { + if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { + if (I->getArgumentKind() != ArgumentKind) { + FoundWrongKind = true; + return false; + } + TypeInfo.Type = I->getMatchingCType(); + TypeInfo.LayoutCompatible = I->getLayoutCompatible(); + TypeInfo.MustBeNull = I->getMustBeNull(); + return true; + } + return false; + } + + if (!MagicValues) + return false; + + llvm::DenseMap<Sema::TypeTagMagicValue, + Sema::TypeTagData>::const_iterator I = + MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); + if (I == MagicValues->end()) + return false; + + TypeInfo = I->second; + return true; +} + +void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, + uint64_t MagicValue, QualType Type, + bool LayoutCompatible, + bool MustBeNull) { + if (!TypeTagForDatatypeMagicValues) + TypeTagForDatatypeMagicValues.reset( + new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); + + TypeTagMagicValue Magic(ArgumentKind, MagicValue); + (*TypeTagForDatatypeMagicValues)[Magic] = + TypeTagData(Type, LayoutCompatible, MustBeNull); +} + +static bool IsSameCharType(QualType T1, QualType T2) { + const BuiltinType *BT1 = T1->getAs<BuiltinType>(); + if (!BT1) + return false; + + const BuiltinType *BT2 = T2->getAs<BuiltinType>(); + if (!BT2) + return false; + + BuiltinType::Kind T1Kind = BT1->getKind(); + BuiltinType::Kind T2Kind = BT2->getKind(); + + return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || + (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || + (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || + (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); +} + +void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, + const ArrayRef<const Expr *> ExprArgs, + SourceLocation CallSiteLoc) { + const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); + bool IsPointerAttr = Attr->getIsPointer(); + + // Retrieve the argument representing the 'type_tag'. + unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); + if (TypeTagIdxAST >= ExprArgs.size()) { + Diag(CallSiteLoc, diag::err_tag_index_out_of_range) + << 0 << Attr->getTypeTagIdx().getSourceIndex(); + return; + } + const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; + bool FoundWrongKind; + TypeTagData TypeInfo; + if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, + TypeTagForDatatypeMagicValues.get(), FoundWrongKind, + TypeInfo, isConstantEvaluated())) { + if (FoundWrongKind) + Diag(TypeTagExpr->getExprLoc(), + diag::warn_type_tag_for_datatype_wrong_kind) + << TypeTagExpr->getSourceRange(); + return; + } + + // Retrieve the argument representing the 'arg_idx'. + unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); + if (ArgumentIdxAST >= ExprArgs.size()) { + Diag(CallSiteLoc, diag::err_tag_index_out_of_range) + << 1 << Attr->getArgumentIdx().getSourceIndex(); + return; + } + const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; + if (IsPointerAttr) { + // Skip implicit cast of pointer to `void *' (as a function argument). + if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) + if (ICE->getType()->isVoidPointerType() && + ICE->getCastKind() == CK_BitCast) + ArgumentExpr = ICE->getSubExpr(); + } + QualType ArgumentType = ArgumentExpr->getType(); + + // Passing a `void*' pointer shouldn't trigger a warning. + if (IsPointerAttr && ArgumentType->isVoidPointerType()) + return; + + if (TypeInfo.MustBeNull) { + // Type tag with matching void type requires a null pointer. + if (!ArgumentExpr->isNullPointerConstant(Context, + Expr::NPC_ValueDependentIsNotNull)) { + Diag(ArgumentExpr->getExprLoc(), + diag::warn_type_safety_null_pointer_required) + << ArgumentKind->getName() + << ArgumentExpr->getSourceRange() + << TypeTagExpr->getSourceRange(); + } + return; + } + + QualType RequiredType = TypeInfo.Type; + if (IsPointerAttr) + RequiredType = Context.getPointerType(RequiredType); + + bool mismatch = false; + if (!TypeInfo.LayoutCompatible) { + mismatch = !Context.hasSameType(ArgumentType, RequiredType); + + // C++11 [basic.fundamental] p1: + // Plain char, signed char, and unsigned char are three distinct types. + // + // But we treat plain `char' as equivalent to `signed char' or `unsigned + // char' depending on the current char signedness mode. + if (mismatch) + if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), + RequiredType->getPointeeType())) || + (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) + mismatch = false; + } else + if (IsPointerAttr) + mismatch = !isLayoutCompatible(Context, + ArgumentType->getPointeeType(), + RequiredType->getPointeeType()); + else + mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); + + if (mismatch) + Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) + << ArgumentType << ArgumentKind + << TypeInfo.LayoutCompatible << RequiredType + << ArgumentExpr->getSourceRange() + << TypeTagExpr->getSourceRange(); +} + +void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, + CharUnits Alignment) { + MisalignedMembers.emplace_back(E, RD, MD, Alignment); +} + +void Sema::DiagnoseMisalignedMembers() { + for (MisalignedMember &m : MisalignedMembers) { + const NamedDecl *ND = m.RD; + if (ND->getName().empty()) { + if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) + ND = TD; + } + Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) + << m.MD << ND << m.E->getSourceRange(); + } + MisalignedMembers.clear(); +} + +void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { + E = E->IgnoreParens(); + if (!T->isPointerType() && !T->isIntegerType()) + return; + if (isa<UnaryOperator>(E) && + cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { + auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); + if (isa<MemberExpr>(Op)) { + auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); + if (MA != MisalignedMembers.end() && + (T->isIntegerType() || + (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || + Context.getTypeAlignInChars( + T->getPointeeType()) <= MA->Alignment)))) + MisalignedMembers.erase(MA); + } + } +} + +void Sema::RefersToMemberWithReducedAlignment( + Expr *E, + llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> + Action) { + const auto *ME = dyn_cast<MemberExpr>(E); + if (!ME) + return; + + // No need to check expressions with an __unaligned-qualified type. + if (E->getType().getQualifiers().hasUnaligned()) + return; + + // For a chain of MemberExpr like "a.b.c.d" this list + // will keep FieldDecl's like [d, c, b]. + SmallVector<FieldDecl *, 4> ReverseMemberChain; + const MemberExpr *TopME = nullptr; + bool AnyIsPacked = false; + do { + QualType BaseType = ME->getBase()->getType(); + if (BaseType->isDependentType()) + return; + if (ME->isArrow()) + BaseType = BaseType->getPointeeType(); + RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); + if (RD->isInvalidDecl()) + return; + + ValueDecl *MD = ME->getMemberDecl(); + auto *FD = dyn_cast<FieldDecl>(MD); + // We do not care about non-data members. + if (!FD || FD->isInvalidDecl()) + return; + + AnyIsPacked = + AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); + ReverseMemberChain.push_back(FD); + + TopME = ME; + ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); + } while (ME); + assert(TopME && "We did not compute a topmost MemberExpr!"); + + // Not the scope of this diagnostic. + if (!AnyIsPacked) + return; + + const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); + const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); + // TODO: The innermost base of the member expression may be too complicated. + // For now, just disregard these cases. This is left for future + // improvement. + if (!DRE && !isa<CXXThisExpr>(TopBase)) + return; + + // Alignment expected by the whole expression. + CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); + + // No need to do anything else with this case. + if (ExpectedAlignment.isOne()) + return; + + // Synthesize offset of the whole access. + CharUnits Offset; + for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); + I++) { + Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); + } + + // Compute the CompleteObjectAlignment as the alignment of the whole chain. + CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( + ReverseMemberChain.back()->getParent()->getTypeForDecl()); + + // The base expression of the innermost MemberExpr may give + // stronger guarantees than the class containing the member. + if (DRE && !TopME->isArrow()) { + const ValueDecl *VD = DRE->getDecl(); + if (!VD->getType()->isReferenceType()) + CompleteObjectAlignment = + std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); + } + + // Check if the synthesized offset fulfills the alignment. + if (Offset % ExpectedAlignment != 0 || + // It may fulfill the offset it but the effective alignment may still be + // lower than the expected expression alignment. + CompleteObjectAlignment < ExpectedAlignment) { + // If this happens, we want to determine a sensible culprit of this. + // Intuitively, watching the chain of member expressions from right to + // left, we start with the required alignment (as required by the field + // type) but some packed attribute in that chain has reduced the alignment. + // It may happen that another packed structure increases it again. But if + // we are here such increase has not been enough. So pointing the first + // FieldDecl that either is packed or else its RecordDecl is, + // seems reasonable. + FieldDecl *FD = nullptr; + CharUnits Alignment; + for (FieldDecl *FDI : ReverseMemberChain) { + if (FDI->hasAttr<PackedAttr>() || + FDI->getParent()->hasAttr<PackedAttr>()) { + FD = FDI; + Alignment = std::min( + Context.getTypeAlignInChars(FD->getType()), + Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); + break; + } + } + assert(FD && "We did not find a packed FieldDecl!"); + Action(E, FD->getParent(), FD, Alignment); + } +} + +void Sema::CheckAddressOfPackedMember(Expr *rhs) { + using namespace std::placeholders; + + RefersToMemberWithReducedAlignment( + rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, + _2, _3, _4)); +} + +ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, + ExprResult CallResult) { + if (checkArgCount(*this, TheCall, 1)) + return ExprError(); + + ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); + if (MatrixArg.isInvalid()) + return MatrixArg; + Expr *Matrix = MatrixArg.get(); + + auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); + if (!MType) { + Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); + return ExprError(); + } + + // Create returned matrix type by swapping rows and columns of the argument + // matrix type. + QualType ResultType = Context.getConstantMatrixType( + MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); + + // Change the return type to the type of the returned matrix. + TheCall->setType(ResultType); + + // Update call argument to use the possibly converted matrix argument. + TheCall->setArg(0, Matrix); + return CallResult; +} + +// Get and verify the matrix dimensions. +static llvm::Optional<unsigned> +getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { + llvm::APSInt Value(64); + SourceLocation ErrorPos; + if (!Expr->isIntegerConstantExpr(Value, S.Context, &ErrorPos)) { + S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) + << Name; + return {}; + } + uint64_t Dim = Value.getZExtValue(); + if (!ConstantMatrixType::isDimensionValid(Dim)) { + S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) + << Name << ConstantMatrixType::getMaxElementsPerDimension(); + return {}; + } + return Dim; +} + +ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, + ExprResult CallResult) { + if (!getLangOpts().MatrixTypes) { + Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); + return ExprError(); + } + + if (checkArgCount(*this, TheCall, 4)) + return ExprError(); + + unsigned PtrArgIdx = 0; + Expr *PtrExpr = TheCall->getArg(PtrArgIdx); + Expr *RowsExpr = TheCall->getArg(1); + Expr *ColumnsExpr = TheCall->getArg(2); + Expr *StrideExpr = TheCall->getArg(3); + + bool ArgError = false; + + // Check pointer argument. + { + ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); + if (PtrConv.isInvalid()) + return PtrConv; + PtrExpr = PtrConv.get(); + TheCall->setArg(0, PtrExpr); + if (PtrExpr->isTypeDependent()) { + TheCall->setType(Context.DependentTy); + return TheCall; + } + } + + auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); + QualType ElementTy; + if (!PtrTy) { + Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) + << PtrArgIdx + 1; + ArgError = true; + } else { + ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); + + if (!ConstantMatrixType::isValidElementType(ElementTy)) { + Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) + << PtrArgIdx + 1; + ArgError = true; + } + } + + // Apply default Lvalue conversions and convert the expression to size_t. + auto ApplyArgumentConversions = [this](Expr *E) { + ExprResult Conv = DefaultLvalueConversion(E); + if (Conv.isInvalid()) + return Conv; + + return tryConvertExprToType(Conv.get(), Context.getSizeType()); + }; + + // Apply conversion to row and column expressions. + ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); + if (!RowsConv.isInvalid()) { + RowsExpr = RowsConv.get(); + TheCall->setArg(1, RowsExpr); + } else + RowsExpr = nullptr; + + ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); + if (!ColumnsConv.isInvalid()) { + ColumnsExpr = ColumnsConv.get(); + TheCall->setArg(2, ColumnsExpr); + } else + ColumnsExpr = nullptr; + + // If any any part of the result matrix type is still pending, just use + // Context.DependentTy, until all parts are resolved. + if ((RowsExpr && RowsExpr->isTypeDependent()) || + (ColumnsExpr && ColumnsExpr->isTypeDependent())) { + TheCall->setType(Context.DependentTy); + return CallResult; + } + + // Check row and column dimenions. + llvm::Optional<unsigned> MaybeRows; + if (RowsExpr) + MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); + + llvm::Optional<unsigned> MaybeColumns; + if (ColumnsExpr) + MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); + + // Check stride argument. + ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); + if (StrideConv.isInvalid()) + return ExprError(); + StrideExpr = StrideConv.get(); + TheCall->setArg(3, StrideExpr); + + llvm::APSInt Value(64); + if (MaybeRows && StrideExpr->isIntegerConstantExpr(Value, Context)) { + uint64_t Stride = Value.getZExtValue(); + if (Stride < *MaybeRows) { + Diag(StrideExpr->getBeginLoc(), + diag::err_builtin_matrix_stride_too_small); + ArgError = true; + } + } + + if (ArgError || !MaybeRows || !MaybeColumns) + return ExprError(); + + TheCall->setType( + Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); + return CallResult; +} + +ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, + ExprResult CallResult) { + if (checkArgCount(*this, TheCall, 3)) + return ExprError(); + + unsigned PtrArgIdx = 1; + Expr *MatrixExpr = TheCall->getArg(0); + Expr *PtrExpr = TheCall->getArg(PtrArgIdx); + Expr *StrideExpr = TheCall->getArg(2); + + bool ArgError = false; + + { + ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); + if (MatrixConv.isInvalid()) + return MatrixConv; + MatrixExpr = MatrixConv.get(); + TheCall->setArg(0, MatrixExpr); + } + if (MatrixExpr->isTypeDependent()) { + TheCall->setType(Context.DependentTy); + return TheCall; + } + + auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); + if (!MatrixTy) { + Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; + ArgError = true; + } + + { + ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); + if (PtrConv.isInvalid()) + return PtrConv; + PtrExpr = PtrConv.get(); + TheCall->setArg(1, PtrExpr); + if (PtrExpr->isTypeDependent()) { + TheCall->setType(Context.DependentTy); + return TheCall; + } + } + + // Check pointer argument. + auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); + if (!PtrTy) { + Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) + << PtrArgIdx + 1; + ArgError = true; + } else { + QualType ElementTy = PtrTy->getPointeeType(); + if (ElementTy.isConstQualified()) { + Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); + ArgError = true; + } + ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); + if (MatrixTy && + !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { + Diag(PtrExpr->getBeginLoc(), + diag::err_builtin_matrix_pointer_arg_mismatch) + << ElementTy << MatrixTy->getElementType(); + ArgError = true; + } + } + + // Apply default Lvalue conversions and convert the stride expression to + // size_t. + { + ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); + if (StrideConv.isInvalid()) + return StrideConv; + + StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); + if (StrideConv.isInvalid()) + return StrideConv; + StrideExpr = StrideConv.get(); + TheCall->setArg(2, StrideExpr); + } + + // Check stride argument. + llvm::APSInt Value(64); + if (MatrixTy && StrideExpr->isIntegerConstantExpr(Value, Context)) { + uint64_t Stride = Value.getZExtValue(); + if (Stride < MatrixTy->getNumRows()) { + Diag(StrideExpr->getBeginLoc(), + diag::err_builtin_matrix_stride_too_small); + ArgError = true; + } + } + + if (ArgError) + return ExprError(); + + return CallResult; +} |