diff options
Diffstat (limited to 'contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp')
| -rw-r--r-- | contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp | 4097 |
1 files changed, 4097 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp b/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp new file mode 100644 index 000000000000..f315262ad0f4 --- /dev/null +++ b/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp @@ -0,0 +1,4097 @@ +//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// These tablegen backends emit Clang attribute processing code +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/StringMatcher.h" +#include "llvm/TableGen/TableGenBackend.h" +#include <algorithm> +#include <cassert> +#include <cctype> +#include <cstddef> +#include <cstdint> +#include <map> +#include <memory> +#include <set> +#include <sstream> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +namespace { + +class FlattenedSpelling { + std::string V, N, NS; + bool K; + +public: + FlattenedSpelling(const std::string &Variety, const std::string &Name, + const std::string &Namespace, bool KnownToGCC) : + V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} + explicit FlattenedSpelling(const Record &Spelling) : + V(Spelling.getValueAsString("Variety")), + N(Spelling.getValueAsString("Name")) { + + assert(V != "GCC" && V != "Clang" && + "Given a GCC spelling, which means this hasn't been flattened!"); + if (V == "CXX11" || V == "C2x" || V == "Pragma") + NS = Spelling.getValueAsString("Namespace"); + bool Unset; + K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset); + } + + const std::string &variety() const { return V; } + const std::string &name() const { return N; } + const std::string &nameSpace() const { return NS; } + bool knownToGCC() const { return K; } +}; + +} // end anonymous namespace + +static std::vector<FlattenedSpelling> +GetFlattenedSpellings(const Record &Attr) { + std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings"); + std::vector<FlattenedSpelling> Ret; + + for (const auto &Spelling : Spellings) { + StringRef Variety = Spelling->getValueAsString("Variety"); + StringRef Name = Spelling->getValueAsString("Name"); + if (Variety == "GCC") { + // Gin up two new spelling objects to add into the list. + Ret.emplace_back("GNU", Name, "", true); + Ret.emplace_back("CXX11", Name, "gnu", true); + } else if (Variety == "Clang") { + Ret.emplace_back("GNU", Name, "", false); + Ret.emplace_back("CXX11", Name, "clang", false); + if (Spelling->getValueAsBit("AllowInC")) + Ret.emplace_back("C2x", Name, "clang", false); + } else + Ret.push_back(FlattenedSpelling(*Spelling)); + } + + return Ret; +} + +static std::string ReadPCHRecord(StringRef type) { + return StringSwitch<std::string>(type) + .EndsWith("Decl *", "Record.GetLocalDeclAs<" + + std::string(type, 0, type.size()-1) + ">(Record.readInt())") + .Case("TypeSourceInfo *", "Record.getTypeSourceInfo()") + .Case("Expr *", "Record.readExpr()") + .Case("IdentifierInfo *", "Record.getIdentifierInfo()") + .Case("StringRef", "Record.readString()") + .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())") + .Default("Record.readInt()"); +} + +// Get a type that is suitable for storing an object of the specified type. +static StringRef getStorageType(StringRef type) { + return StringSwitch<StringRef>(type) + .Case("StringRef", "std::string") + .Default(type); +} + +// Assumes that the way to get the value is SA->getname() +static std::string WritePCHRecord(StringRef type, StringRef name) { + return "Record." + StringSwitch<std::string>(type) + .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") + .Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n") + .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") + .Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n") + .Case("StringRef", "AddString(" + std::string(name) + ");\n") + .Case("ParamIdx", "push_back(" + std::string(name) + ".serialize());\n") + .Default("push_back(" + std::string(name) + ");\n"); +} + +// Normalize attribute name by removing leading and trailing +// underscores. For example, __foo, foo__, __foo__ would +// become foo. +static StringRef NormalizeAttrName(StringRef AttrName) { + AttrName.consume_front("__"); + AttrName.consume_back("__"); + return AttrName; +} + +// Normalize the name by removing any and all leading and trailing underscores. +// This is different from NormalizeAttrName in that it also handles names like +// _pascal and __pascal. +static StringRef NormalizeNameForSpellingComparison(StringRef Name) { + return Name.trim("_"); +} + +// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"), +// removing "__" if it appears at the beginning and end of the attribute's name. +static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) { + if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { + AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); + } + + return AttrSpelling; +} + +typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap; + +static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, + ParsedAttrMap *Dupes = nullptr) { + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::set<std::string> Seen; + ParsedAttrMap R; + for (const auto *Attr : Attrs) { + if (Attr->getValueAsBit("SemaHandler")) { + std::string AN; + if (Attr->isSubClassOf("TargetSpecificAttr") && + !Attr->isValueUnset("ParseKind")) { + AN = Attr->getValueAsString("ParseKind"); + + // If this attribute has already been handled, it does not need to be + // handled again. + if (Seen.find(AN) != Seen.end()) { + if (Dupes) + Dupes->push_back(std::make_pair(AN, Attr)); + continue; + } + Seen.insert(AN); + } else + AN = NormalizeAttrName(Attr->getName()).str(); + + R.push_back(std::make_pair(AN, Attr)); + } + } + return R; +} + +namespace { + + class Argument { + std::string lowerName, upperName; + StringRef attrName; + bool isOpt; + bool Fake; + + public: + Argument(const Record &Arg, StringRef Attr) + : lowerName(Arg.getValueAsString("Name")), upperName(lowerName), + attrName(Attr), isOpt(false), Fake(false) { + if (!lowerName.empty()) { + lowerName[0] = std::tolower(lowerName[0]); + upperName[0] = std::toupper(upperName[0]); + } + // Work around MinGW's macro definition of 'interface' to 'struct'. We + // have an attribute argument called 'Interface', so only the lower case + // name conflicts with the macro definition. + if (lowerName == "interface") + lowerName = "interface_"; + } + virtual ~Argument() = default; + + StringRef getLowerName() const { return lowerName; } + StringRef getUpperName() const { return upperName; } + StringRef getAttrName() const { return attrName; } + + bool isOptional() const { return isOpt; } + void setOptional(bool set) { isOpt = set; } + + bool isFake() const { return Fake; } + void setFake(bool fake) { Fake = fake; } + + // These functions print the argument contents formatted in different ways. + virtual void writeAccessors(raw_ostream &OS) const = 0; + virtual void writeAccessorDefinitions(raw_ostream &OS) const {} + virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} + virtual void writeCloneArgs(raw_ostream &OS) const = 0; + virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; + virtual void writeTemplateInstantiation(raw_ostream &OS) const {} + virtual void writeCtorBody(raw_ostream &OS) const {} + virtual void writeCtorInitializers(raw_ostream &OS) const = 0; + virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; + virtual void writeCtorParameters(raw_ostream &OS) const = 0; + virtual void writeDeclarations(raw_ostream &OS) const = 0; + virtual void writePCHReadArgs(raw_ostream &OS) const = 0; + virtual void writePCHReadDecls(raw_ostream &OS) const = 0; + virtual void writePCHWrite(raw_ostream &OS) const = 0; + virtual std::string getIsOmitted() const { return "false"; } + virtual void writeValue(raw_ostream &OS) const = 0; + virtual void writeDump(raw_ostream &OS) const = 0; + virtual void writeDumpChildren(raw_ostream &OS) const {} + virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } + + virtual bool isEnumArg() const { return false; } + virtual bool isVariadicEnumArg() const { return false; } + virtual bool isVariadic() const { return false; } + + virtual void writeImplicitCtorArgs(raw_ostream &OS) const { + OS << getUpperName(); + } + }; + + class SimpleArgument : public Argument { + std::string type; + + public: + SimpleArgument(const Record &Arg, StringRef Attr, std::string T) + : Argument(Arg, Attr), type(std::move(T)) {} + + std::string getType() const { return type; } + + void writeAccessors(raw_ostream &OS) const override { + OS << " " << type << " get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "()"; + } + + void writeCtorParameters(raw_ostream &OS) const override { + OS << type << " " << getUpperName(); + } + + void writeDeclarations(raw_ostream &OS) const override { + OS << type << " " << getLowerName() << ";"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + std::string read = ReadPCHRecord(type); + OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " " << WritePCHRecord(type, "SA->get" + + std::string(getUpperName()) + "()"); + } + + std::string getIsOmitted() const override { + if (type == "IdentifierInfo *") + return "!get" + getUpperName().str() + "()"; + if (type == "ParamIdx") + return "!get" + getUpperName().str() + "().isValid()"; + return "false"; + } + + void writeValue(raw_ostream &OS) const override { + if (type == "FunctionDecl *") + OS << "\" << get" << getUpperName() + << "()->getNameInfo().getAsString() << \""; + else if (type == "IdentifierInfo *") + // Some non-optional (comma required) identifier arguments can be the + // empty string but are then recorded as a nullptr. + OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName() + << "()->getName() : \"\") << \""; + else if (type == "TypeSourceInfo *") + OS << "\" << get" << getUpperName() << "().getAsString() << \""; + else if (type == "ParamIdx") + OS << "\" << get" << getUpperName() << "().getSourceIndex() << \""; + else + OS << "\" << get" << getUpperName() << "() << \""; + } + + void writeDump(raw_ostream &OS) const override { + if (type == "FunctionDecl *" || type == "NamedDecl *") { + OS << " OS << \" \";\n"; + OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; + } else if (type == "IdentifierInfo *") { + // Some non-optional (comma required) identifier arguments can be the + // empty string but are then recorded as a nullptr. + OS << " if (SA->get" << getUpperName() << "())\n" + << " OS << \" \" << SA->get" << getUpperName() + << "()->getName();\n"; + } else if (type == "TypeSourceInfo *") { + OS << " OS << \" \" << SA->get" << getUpperName() + << "().getAsString();\n"; + } else if (type == "bool") { + OS << " if (SA->get" << getUpperName() << "()) OS << \" " + << getUpperName() << "\";\n"; + } else if (type == "int" || type == "unsigned") { + OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; + } else if (type == "ParamIdx") { + if (isOptional()) + OS << " if (SA->get" << getUpperName() << "().isValid())\n "; + OS << " OS << \" \" << SA->get" << getUpperName() + << "().getSourceIndex();\n"; + } else { + llvm_unreachable("Unknown SimpleArgument type!"); + } + } + }; + + class DefaultSimpleArgument : public SimpleArgument { + int64_t Default; + + public: + DefaultSimpleArgument(const Record &Arg, StringRef Attr, + std::string T, int64_t Default) + : SimpleArgument(Arg, Attr, T), Default(Default) {} + + void writeAccessors(raw_ostream &OS) const override { + SimpleArgument::writeAccessors(OS); + + OS << "\n\n static const " << getType() << " Default" << getUpperName() + << " = "; + if (getType() == "bool") + OS << (Default != 0 ? "true" : "false"); + else + OS << Default; + OS << ";"; + } + }; + + class StringArgument : public Argument { + public: + StringArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; + OS << " return llvm::StringRef(" << getLowerName() << ", " + << getLowerName() << "Length);\n"; + OS << " }\n"; + OS << " unsigned get" << getUpperName() << "Length() const {\n"; + OS << " return " << getLowerName() << "Length;\n"; + OS << " }\n"; + OS << " void set" << getUpperName() + << "(ASTContext &C, llvm::StringRef S) {\n"; + OS << " " << getLowerName() << "Length = S.size();\n"; + OS << " this->" << getLowerName() << " = new (C, 1) char [" + << getLowerName() << "Length];\n"; + OS << " if (!S.empty())\n"; + OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " + << getLowerName() << "Length);\n"; + OS << " }"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << "get" << getUpperName() << "()"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + + void writeCtorBody(raw_ostream &OS) const override { + OS << " if (!" << getUpperName() << ".empty())\n"; + OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() + << ".data(), " << getLowerName() << "Length);\n"; + } + + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "Length(" << getUpperName() << ".size())," + << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() + << "Length])"; + } + + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; + } + + void writeCtorParameters(raw_ostream &OS) const override { + OS << "llvm::StringRef " << getUpperName(); + } + + void writeDeclarations(raw_ostream &OS) const override { + OS << "unsigned " << getLowerName() << "Length;\n"; + OS << "char *" << getLowerName() << ";"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " std::string " << getLowerName() + << "= Record.readString();\n"; + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; + } + + void writeValue(raw_ostream &OS) const override { + OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; + } + + void writeDump(raw_ostream &OS) const override { + OS << " OS << \" \\\"\" << SA->get" << getUpperName() + << "() << \"\\\"\";\n"; + } + }; + + class AlignedArgument : public Argument { + public: + AlignedArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " bool is" << getUpperName() << "Dependent() const;\n"; + + OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; + + OS << " bool is" << getUpperName() << "Expr() const {\n"; + OS << " return is" << getLowerName() << "Expr;\n"; + OS << " }\n"; + + OS << " Expr *get" << getUpperName() << "Expr() const {\n"; + OS << " assert(is" << getLowerName() << "Expr);\n"; + OS << " return " << getLowerName() << "Expr;\n"; + OS << " }\n"; + + OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; + OS << " assert(!is" << getLowerName() << "Expr);\n"; + OS << " return " << getLowerName() << "Type;\n"; + OS << " }"; + } + + void writeAccessorDefinitions(raw_ostream &OS) const override { + OS << "bool " << getAttrName() << "Attr::is" << getUpperName() + << "Dependent() const {\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " return " << getLowerName() << "Expr && (" << getLowerName() + << "Expr->isValueDependent() || " << getLowerName() + << "Expr->isTypeDependent());\n"; + OS << " else\n"; + OS << " return " << getLowerName() + << "Type->getType()->isDependentType();\n"; + OS << "}\n"; + + // FIXME: Do not do the calculation here + // FIXME: Handle types correctly + // A null pointer means maximum alignment + OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() + << "(ASTContext &Ctx) const {\n"; + OS << " assert(!is" << getUpperName() << "Dependent());\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " return " << getLowerName() << "Expr ? " << getLowerName() + << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" + << " * Ctx.getCharWidth() : " + << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; + OS << " else\n"; + OS << " return 0; // FIXME\n"; + OS << "}\n"; + } + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + StringRef Name = getUpperName(); + OS << " if (A->is" << Name << "Expr()) {\n" + << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n" + << " return false;\n" + << " } else if (auto *TSI = A->get" << Name << "Type()) {\n" + << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n" + << " return false;\n" + << " }\n"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr, is" << getLowerName() + << "Expr ? static_cast<void*>(" << getLowerName() + << "Expr) : " << getLowerName() + << "Type"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + // FIXME: move the definition in Sema::InstantiateAttrs to here. + // In the meantime, aligned attributes are cloned. + } + + void writeCtorBody(raw_ostream &OS) const override { + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>(" + << getUpperName() << ");\n"; + OS << " else\n"; + OS << " " << getLowerName() + << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName() + << ");\n"; + } + + void writeCtorInitializers(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; + } + + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr(false)"; + } + + void writeCtorParameters(raw_ostream &OS) const override { + OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); + } + + void writeImplicitCtorArgs(raw_ostream &OS) const override { + OS << "Is" << getUpperName() << "Expr, " << getUpperName(); + } + + void writeDeclarations(raw_ostream &OS) const override { + OS << "bool is" << getLowerName() << "Expr;\n"; + OS << "union {\n"; + OS << "Expr *" << getLowerName() << "Expr;\n"; + OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; + OS << "};"; + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n"; + OS << " void *" << getLowerName() << "Ptr;\n"; + OS << " if (is" << getLowerName() << "Expr)\n"; + OS << " " << getLowerName() << "Ptr = Record.readExpr();\n"; + OS << " else\n"; + OS << " " << getLowerName() + << "Ptr = Record.getTypeSourceInfo();\n"; + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; + OS << " if (SA->is" << getUpperName() << "Expr())\n"; + OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; + OS << " else\n"; + OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() + << "Type());\n"; + } + + std::string getIsOmitted() const override { + return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str() + + "Expr"; + } + + void writeValue(raw_ostream &OS) const override { + OS << "\";\n"; + OS << " " << getLowerName() + << "Expr->printPretty(OS, nullptr, Policy);\n"; + OS << " OS << \""; + } + + void writeDump(raw_ostream &OS) const override { + OS << " if (!SA->is" << getUpperName() << "Expr())\n"; + OS << " dumpType(SA->get" << getUpperName() + << "Type()->getType());\n"; + } + + void writeDumpChildren(raw_ostream &OS) const override { + OS << " if (SA->is" << getUpperName() << "Expr())\n"; + OS << " Visit(SA->get" << getUpperName() << "Expr());\n"; + } + + void writeHasChildren(raw_ostream &OS) const override { + OS << "SA->is" << getUpperName() << "Expr()"; + } + }; + + class VariadicArgument : public Argument { + std::string Type, ArgName, ArgSizeName, RangeName; + + protected: + // Assumed to receive a parameter: raw_ostream OS. + virtual void writeValueImpl(raw_ostream &OS) const { + OS << " OS << Val;\n"; + } + // Assumed to receive a parameter: raw_ostream OS. + virtual void writeDumpImpl(raw_ostream &OS) const { + OS << " OS << \" \" << Val;\n"; + } + + public: + VariadicArgument(const Record &Arg, StringRef Attr, std::string T) + : Argument(Arg, Attr), Type(std::move(T)), + ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), + RangeName(getLowerName()) {} + + const std::string &getType() const { return Type; } + const std::string &getArgName() const { return ArgName; } + const std::string &getArgSizeName() const { return ArgSizeName; } + bool isVariadic() const override { return true; } + + void writeAccessors(raw_ostream &OS) const override { + std::string IteratorType = getLowerName().str() + "_iterator"; + std::string BeginFn = getLowerName().str() + "_begin()"; + std::string EndFn = getLowerName().str() + "_end()"; + + OS << " typedef " << Type << "* " << IteratorType << ";\n"; + OS << " " << IteratorType << " " << BeginFn << " const {" + << " return " << ArgName << "; }\n"; + OS << " " << IteratorType << " " << EndFn << " const {" + << " return " << ArgName << " + " << ArgSizeName << "; }\n"; + OS << " unsigned " << getLowerName() << "_size() const {" + << " return " << ArgSizeName << "; }\n"; + OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName + << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn + << "); }\n"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << ArgName << ", " << ArgSizeName; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + // This isn't elegant, but we have to go through public methods... + OS << "A->" << getLowerName() << "_begin(), " + << "A->" << getLowerName() << "_size()"; + } + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + // FIXME: Traverse the elements. + } + + void writeCtorBody(raw_ostream &OS) const override { + OS << " std::copy(" << getUpperName() << ", " << getUpperName() + << " + " << ArgSizeName << ", " << ArgName << ");\n"; + } + + void writeCtorInitializers(raw_ostream &OS) const override { + OS << ArgSizeName << "(" << getUpperName() << "Size), " + << ArgName << "(new (Ctx, 16) " << getType() << "[" + << ArgSizeName << "])"; + } + + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; + } + + void writeCtorParameters(raw_ostream &OS) const override { + OS << getType() << " *" << getUpperName() << ", unsigned " + << getUpperName() << "Size"; + } + + void writeImplicitCtorArgs(raw_ostream &OS) const override { + OS << getUpperName() << ", " << getUpperName() << "Size"; + } + + void writeDeclarations(raw_ostream &OS) const override { + OS << " unsigned " << ArgSizeName << ";\n"; + OS << " " << getType() << " *" << ArgName << ";"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; + OS << " SmallVector<" << getType() << ", 4> " + << getLowerName() << ";\n"; + OS << " " << getLowerName() << ".reserve(" << getLowerName() + << "Size);\n"; + + // If we can't store the values in the current type (if it's something + // like StringRef), store them in a different type and convert the + // container afterwards. + std::string StorageType = getStorageType(getType()); + std::string StorageName = getLowerName(); + if (StorageType != getType()) { + StorageName += "Storage"; + OS << " SmallVector<" << StorageType << ", 4> " + << StorageName << ";\n"; + OS << " " << StorageName << ".reserve(" << getLowerName() + << "Size);\n"; + } + + OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; + std::string read = ReadPCHRecord(Type); + OS << " " << StorageName << ".push_back(" << read << ");\n"; + + if (StorageType != getType()) { + OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; + OS << " " << getLowerName() << ".push_back(" + << StorageName << "[i]);\n"; + } + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName() << ".data(), " << getLowerName() << "Size"; + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; + OS << " for (auto &Val : SA->" << RangeName << "())\n"; + OS << " " << WritePCHRecord(Type, "Val"); + } + + void writeValue(raw_ostream &OS) const override { + OS << "\";\n"; + OS << " bool isFirst = true;\n" + << " for (const auto &Val : " << RangeName << "()) {\n" + << " if (isFirst) isFirst = false;\n" + << " else OS << \", \";\n"; + writeValueImpl(OS); + OS << " }\n"; + OS << " OS << \""; + } + + void writeDump(raw_ostream &OS) const override { + OS << " for (const auto &Val : SA->" << RangeName << "())\n"; + writeDumpImpl(OS); + } + }; + + class VariadicParamIdxArgument : public VariadicArgument { + public: + VariadicParamIdxArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "ParamIdx") {} + + public: + void writeValueImpl(raw_ostream &OS) const override { + OS << " OS << Val.getSourceIndex();\n"; + } + + void writeDumpImpl(raw_ostream &OS) const override { + OS << " OS << \" \" << Val.getSourceIndex();\n"; + } + }; + + struct VariadicParamOrParamIdxArgument : public VariadicArgument { + VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "int") {} + }; + + // Unique the enums, but maintain the original declaration ordering. + std::vector<StringRef> + uniqueEnumsInOrder(const std::vector<StringRef> &enums) { + std::vector<StringRef> uniques; + SmallDenseSet<StringRef, 8> unique_set; + for (const auto &i : enums) { + if (unique_set.insert(i).second) + uniques.push_back(i); + } + return uniques; + } + + class EnumArgument : public Argument { + std::string type; + std::vector<StringRef> values, enums, uniques; + + public: + EnumArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr), type(Arg.getValueAsString("Type")), + values(Arg.getValueAsListOfStrings("Values")), + enums(Arg.getValueAsListOfStrings("Enums")), + uniques(uniqueEnumsInOrder(enums)) + { + // FIXME: Emit a proper error + assert(!uniques.empty()); + } + + bool isEnumArg() const override { return true; } + + void writeAccessors(raw_ostream &OS) const override { + OS << " " << type << " get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << type << "(0))"; + } + void writeCtorParameters(raw_ostream &OS) const override { + OS << type << " " << getUpperName(); + } + void writeDeclarations(raw_ostream &OS) const override { + auto i = uniques.cbegin(), e = uniques.cend(); + // The last one needs to not have a comma. + --e; + + OS << "public:\n"; + OS << " enum " << type << " {\n"; + for (; i != e; ++i) + OS << " " << *i << ",\n"; + OS << " " << *e << "\n"; + OS << " };\n"; + OS << "private:\n"; + OS << " " << type << " " << getLowerName() << ";"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() + << "(static_cast<" << getAttrName() << "Attr::" << type + << ">(Record.readInt()));\n"; + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; + } + + void writeValue(raw_ostream &OS) const override { + // FIXME: this isn't 100% correct -- some enum arguments require printing + // as a string literal, while others require printing as an identifier. + // Tablegen currently does not distinguish between the two forms. + OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" + << getUpperName() << "()) << \"\\\""; + } + + void writeDump(raw_ostream &OS) const override { + OS << " switch(SA->get" << getUpperName() << "()) {\n"; + for (const auto &I : uniques) { + OS << " case " << getAttrName() << "Attr::" << I << ":\n"; + OS << " OS << \" " << I << "\";\n"; + OS << " break;\n"; + } + OS << " }\n"; + } + + void writeConversion(raw_ostream &OS) const { + OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; + OS << type << " &Out) {\n"; + OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; + OS << type << ">>(Val)\n"; + for (size_t I = 0; I < enums.size(); ++I) { + OS << " .Case(\"" << values[I] << "\", "; + OS << getAttrName() << "Attr::" << enums[I] << ")\n"; + } + OS << " .Default(Optional<" << type << ">());\n"; + OS << " if (R) {\n"; + OS << " Out = *R;\n return true;\n }\n"; + OS << " return false;\n"; + OS << " }\n\n"; + + // Mapping from enumeration values back to enumeration strings isn't + // trivial because some enumeration values have multiple named + // enumerators, such as type_visibility(internal) and + // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. + OS << " static const char *Convert" << type << "ToStr(" + << type << " Val) {\n" + << " switch(Val) {\n"; + SmallDenseSet<StringRef, 8> Uniques; + for (size_t I = 0; I < enums.size(); ++I) { + if (Uniques.insert(enums[I]).second) + OS << " case " << getAttrName() << "Attr::" << enums[I] + << ": return \"" << values[I] << "\";\n"; + } + OS << " }\n" + << " llvm_unreachable(\"No enumerator with that value\");\n" + << " }\n"; + } + }; + + class VariadicEnumArgument: public VariadicArgument { + std::string type, QualifiedTypeName; + std::vector<StringRef> values, enums, uniques; + + protected: + void writeValueImpl(raw_ostream &OS) const override { + // FIXME: this isn't 100% correct -- some enum arguments require printing + // as a string literal, while others require printing as an identifier. + // Tablegen currently does not distinguish between the two forms. + OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type + << "ToStr(Val)" << "<< \"\\\"\";\n"; + } + + public: + VariadicEnumArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")), + type(Arg.getValueAsString("Type")), + values(Arg.getValueAsListOfStrings("Values")), + enums(Arg.getValueAsListOfStrings("Enums")), + uniques(uniqueEnumsInOrder(enums)) + { + QualifiedTypeName = getAttrName().str() + "Attr::" + type; + + // FIXME: Emit a proper error + assert(!uniques.empty()); + } + + bool isVariadicEnumArg() const override { return true; } + + void writeDeclarations(raw_ostream &OS) const override { + auto i = uniques.cbegin(), e = uniques.cend(); + // The last one needs to not have a comma. + --e; + + OS << "public:\n"; + OS << " enum " << type << " {\n"; + for (; i != e; ++i) + OS << " " << *i << ",\n"; + OS << " " << *e << "\n"; + OS << " };\n"; + OS << "private:\n"; + + VariadicArgument::writeDeclarations(OS); + } + + void writeDump(raw_ostream &OS) const override { + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" + << getLowerName() << "_end(); I != E; ++I) {\n"; + OS << " switch(*I) {\n"; + for (const auto &UI : uniques) { + OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; + OS << " OS << \" " << UI << "\";\n"; + OS << " break;\n"; + } + OS << " }\n"; + OS << " }\n"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; + OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() + << ";\n"; + OS << " " << getLowerName() << ".reserve(" << getLowerName() + << "Size);\n"; + OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; + OS << " " << getLowerName() << ".push_back(" << "static_cast<" + << QualifiedTypeName << ">(Record.readInt()));\n"; + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" + << getLowerName() << "_end(); i != e; ++i)\n"; + OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); + } + + void writeConversion(raw_ostream &OS) const { + OS << " static bool ConvertStrTo" << type << "(StringRef Val, "; + OS << type << " &Out) {\n"; + OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<"; + OS << type << ">>(Val)\n"; + for (size_t I = 0; I < enums.size(); ++I) { + OS << " .Case(\"" << values[I] << "\", "; + OS << getAttrName() << "Attr::" << enums[I] << ")\n"; + } + OS << " .Default(Optional<" << type << ">());\n"; + OS << " if (R) {\n"; + OS << " Out = *R;\n return true;\n }\n"; + OS << " return false;\n"; + OS << " }\n\n"; + + OS << " static const char *Convert" << type << "ToStr(" + << type << " Val) {\n" + << " switch(Val) {\n"; + SmallDenseSet<StringRef, 8> Uniques; + for (size_t I = 0; I < enums.size(); ++I) { + if (Uniques.insert(enums[I]).second) + OS << " case " << getAttrName() << "Attr::" << enums[I] + << ": return \"" << values[I] << "\";\n"; + } + OS << " }\n" + << " llvm_unreachable(\"No enumerator with that value\");\n" + << " }\n"; + } + }; + + class VersionArgument : public Argument { + public: + VersionArgument(const Record &Arg, StringRef Attr) + : Argument(Arg, Attr) + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " VersionTuple get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }\n"; + OS << " void set" << getUpperName() + << "(ASTContext &C, VersionTuple V) {\n"; + OS << " " << getLowerName() << " = V;\n"; + OS << " }"; + } + + void writeCloneArgs(raw_ostream &OS) const override { + OS << "get" << getUpperName() << "()"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "()"; + } + + void writeCtorInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "(" << getUpperName() << ")"; + } + + void writeCtorDefaultInitializers(raw_ostream &OS) const override { + OS << getLowerName() << "()"; + } + + void writeCtorParameters(raw_ostream &OS) const override { + OS << "VersionTuple " << getUpperName(); + } + + void writeDeclarations(raw_ostream &OS) const override { + OS << "VersionTuple " << getLowerName() << ";\n"; + } + + void writePCHReadDecls(raw_ostream &OS) const override { + OS << " VersionTuple " << getLowerName() + << "= Record.readVersionTuple();\n"; + } + + void writePCHReadArgs(raw_ostream &OS) const override { + OS << getLowerName(); + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; + } + + void writeValue(raw_ostream &OS) const override { + OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; + } + + void writeDump(raw_ostream &OS) const override { + OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; + } + }; + + class ExprArgument : public SimpleArgument { + public: + ExprArgument(const Record &Arg, StringRef Attr) + : SimpleArgument(Arg, Attr, "Expr *") + {} + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + OS << " if (!" + << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; + OS << " return false;\n"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "tempInst" << getUpperName(); + } + + void writeTemplateInstantiation(raw_ostream &OS) const override { + OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; + OS << " {\n"; + OS << " EnterExpressionEvaluationContext " + << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; + OS << " ExprResult " << "Result = S.SubstExpr(" + << "A->get" << getUpperName() << "(), TemplateArgs);\n"; + OS << " tempInst" << getUpperName() << " = " + << "Result.getAs<Expr>();\n"; + OS << " }\n"; + } + + void writeDump(raw_ostream &OS) const override {} + + void writeDumpChildren(raw_ostream &OS) const override { + OS << " Visit(SA->get" << getUpperName() << "());\n"; + } + + void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } + }; + + class VariadicExprArgument : public VariadicArgument { + public: + VariadicExprArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "Expr *") + {} + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + OS << " {\n"; + OS << " " << getType() << " *I = A->" << getLowerName() + << "_begin();\n"; + OS << " " << getType() << " *E = A->" << getLowerName() + << "_end();\n"; + OS << " for (; I != E; ++I) {\n"; + OS << " if (!getDerived().TraverseStmt(*I))\n"; + OS << " return false;\n"; + OS << " }\n"; + OS << " }\n"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "tempInst" << getUpperName() << ", " + << "A->" << getLowerName() << "_size()"; + } + + void writeTemplateInstantiation(raw_ostream &OS) const override { + OS << " auto *tempInst" << getUpperName() + << " = new (C, 16) " << getType() + << "[A->" << getLowerName() << "_size()];\n"; + OS << " {\n"; + OS << " EnterExpressionEvaluationContext " + << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; + OS << " " << getType() << " *TI = tempInst" << getUpperName() + << ";\n"; + OS << " " << getType() << " *I = A->" << getLowerName() + << "_begin();\n"; + OS << " " << getType() << " *E = A->" << getLowerName() + << "_end();\n"; + OS << " for (; I != E; ++I, ++TI) {\n"; + OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; + OS << " *TI = Result.getAs<Expr>();\n"; + OS << " }\n"; + OS << " }\n"; + } + + void writeDump(raw_ostream &OS) const override {} + + void writeDumpChildren(raw_ostream &OS) const override { + OS << " for (" << getAttrName() << "Attr::" << getLowerName() + << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" + << getLowerName() << "_end(); I != E; ++I)\n"; + OS << " Visit(*I);\n"; + } + + void writeHasChildren(raw_ostream &OS) const override { + OS << "SA->" << getLowerName() << "_begin() != " + << "SA->" << getLowerName() << "_end()"; + } + }; + + class VariadicIdentifierArgument : public VariadicArgument { + public: + VariadicIdentifierArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "IdentifierInfo *") + {} + }; + + class VariadicStringArgument : public VariadicArgument { + public: + VariadicStringArgument(const Record &Arg, StringRef Attr) + : VariadicArgument(Arg, Attr, "StringRef") + {} + + void writeCtorBody(raw_ostream &OS) const override { + OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" + " ++I) {\n" + " StringRef Ref = " << getUpperName() << "[I];\n" + " if (!Ref.empty()) {\n" + " char *Mem = new (Ctx, 1) char[Ref.size()];\n" + " std::memcpy(Mem, Ref.data(), Ref.size());\n" + " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" + " }\n" + " }\n"; + } + + void writeValueImpl(raw_ostream &OS) const override { + OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; + } + }; + + class TypeArgument : public SimpleArgument { + public: + TypeArgument(const Record &Arg, StringRef Attr) + : SimpleArgument(Arg, Attr, "TypeSourceInfo *") + {} + + void writeAccessors(raw_ostream &OS) const override { + OS << " QualType get" << getUpperName() << "() const {\n"; + OS << " return " << getLowerName() << "->getType();\n"; + OS << " }"; + OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; + OS << " return " << getLowerName() << ";\n"; + OS << " }"; + } + + void writeASTVisitorTraversal(raw_ostream &OS) const override { + OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n"; + OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"; + OS << " return false;\n"; + } + + void writeTemplateInstantiationArgs(raw_ostream &OS) const override { + OS << "A->get" << getUpperName() << "Loc()"; + } + + void writePCHWrite(raw_ostream &OS) const override { + OS << " " << WritePCHRecord( + getType(), "SA->get" + std::string(getUpperName()) + "Loc()"); + } + }; + +} // end anonymous namespace + +static std::unique_ptr<Argument> +createArgument(const Record &Arg, StringRef Attr, + const Record *Search = nullptr) { + if (!Search) + Search = &Arg; + + std::unique_ptr<Argument> Ptr; + llvm::StringRef ArgName = Search->getName(); + + if (ArgName == "AlignedArgument") + Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr); + else if (ArgName == "EnumArgument") + Ptr = llvm::make_unique<EnumArgument>(Arg, Attr); + else if (ArgName == "ExprArgument") + Ptr = llvm::make_unique<ExprArgument>(Arg, Attr); + else if (ArgName == "FunctionArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *"); + else if (ArgName == "NamedArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "NamedDecl *"); + else if (ArgName == "IdentifierArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *"); + else if (ArgName == "DefaultBoolArgument") + Ptr = llvm::make_unique<DefaultSimpleArgument>( + Arg, Attr, "bool", Arg.getValueAsBit("Default")); + else if (ArgName == "BoolArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool"); + else if (ArgName == "DefaultIntArgument") + Ptr = llvm::make_unique<DefaultSimpleArgument>( + Arg, Attr, "int", Arg.getValueAsInt("Default")); + else if (ArgName == "IntArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int"); + else if (ArgName == "StringArgument") + Ptr = llvm::make_unique<StringArgument>(Arg, Attr); + else if (ArgName == "TypeArgument") + Ptr = llvm::make_unique<TypeArgument>(Arg, Attr); + else if (ArgName == "UnsignedArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned"); + else if (ArgName == "VariadicUnsignedArgument") + Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned"); + else if (ArgName == "VariadicStringArgument") + Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr); + else if (ArgName == "VariadicEnumArgument") + Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr); + else if (ArgName == "VariadicExprArgument") + Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr); + else if (ArgName == "VariadicParamIdxArgument") + Ptr = llvm::make_unique<VariadicParamIdxArgument>(Arg, Attr); + else if (ArgName == "VariadicParamOrParamIdxArgument") + Ptr = llvm::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr); + else if (ArgName == "ParamIdxArgument") + Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx"); + else if (ArgName == "VariadicIdentifierArgument") + Ptr = llvm::make_unique<VariadicIdentifierArgument>(Arg, Attr); + else if (ArgName == "VersionArgument") + Ptr = llvm::make_unique<VersionArgument>(Arg, Attr); + + if (!Ptr) { + // Search in reverse order so that the most-derived type is handled first. + ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses(); + for (const auto &Base : llvm::reverse(Bases)) { + if ((Ptr = createArgument(Arg, Attr, Base.first))) + break; + } + } + + if (Ptr && Arg.getValueAsBit("Optional")) + Ptr->setOptional(true); + + if (Ptr && Arg.getValueAsBit("Fake")) + Ptr->setFake(true); + + return Ptr; +} + +static void writeAvailabilityValue(raw_ostream &OS) { + OS << "\" << getPlatform()->getName();\n" + << " if (getStrict()) OS << \", strict\";\n" + << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" + << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" + << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" + << " if (getUnavailable()) OS << \", unavailable\";\n" + << " OS << \""; +} + +static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { + OS << "\\\"\" << getMessage() << \"\\\"\";\n"; + // Only GNU deprecated has an optional fixit argument at the second position. + if (Variety == "GNU") + OS << " if (!getReplacement().empty()) OS << \", \\\"\"" + " << getReplacement() << \"\\\"\";\n"; + OS << " OS << \""; +} + +static void writeGetSpellingFunction(Record &R, raw_ostream &OS) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; + if (Spellings.empty()) { + OS << " return \"(No spelling)\";\n}\n\n"; + return; + } + + OS << " switch (SpellingListIndex) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute spelling!\");\n" + " return \"(No spelling)\";\n"; + + for (unsigned I = 0; I < Spellings.size(); ++I) + OS << " case " << I << ":\n" + " return \"" << Spellings[I].name() << "\";\n"; + // End of the switch statement. + OS << " }\n"; + // End of the getSpelling function. + OS << "}\n\n"; +} + +static void +writePrettyPrintFunction(Record &R, + const std::vector<std::unique_ptr<Argument>> &Args, + raw_ostream &OS) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + OS << "void " << R.getName() << "Attr::printPretty(" + << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; + + if (Spellings.empty()) { + OS << "}\n\n"; + return; + } + + OS << + " switch (SpellingListIndex) {\n" + " default:\n" + " llvm_unreachable(\"Unknown attribute spelling!\");\n" + " break;\n"; + + for (unsigned I = 0; I < Spellings.size(); ++ I) { + llvm::SmallString<16> Prefix; + llvm::SmallString<8> Suffix; + // The actual spelling of the name and namespace (if applicable) + // of an attribute without considering prefix and suffix. + llvm::SmallString<64> Spelling; + std::string Name = Spellings[I].name(); + std::string Variety = Spellings[I].variety(); + + if (Variety == "GNU") { + Prefix = " __attribute__(("; + Suffix = "))"; + } else if (Variety == "CXX11" || Variety == "C2x") { + Prefix = " [["; + Suffix = "]]"; + std::string Namespace = Spellings[I].nameSpace(); + if (!Namespace.empty()) { + Spelling += Namespace; + Spelling += "::"; + } + } else if (Variety == "Declspec") { + Prefix = " __declspec("; + Suffix = ")"; + } else if (Variety == "Microsoft") { + Prefix = "["; + Suffix = "]"; + } else if (Variety == "Keyword") { + Prefix = " "; + Suffix = ""; + } else if (Variety == "Pragma") { + Prefix = "#pragma "; + Suffix = "\n"; + std::string Namespace = Spellings[I].nameSpace(); + if (!Namespace.empty()) { + Spelling += Namespace; + Spelling += " "; + } + } else { + llvm_unreachable("Unknown attribute syntax variety!"); + } + + Spelling += Name; + + OS << + " case " << I << " : {\n" + " OS << \"" << Prefix << Spelling; + + if (Variety == "Pragma") { + OS << "\";\n"; + OS << " printPrettyPragma(OS, Policy);\n"; + OS << " OS << \"\\n\";"; + OS << " break;\n"; + OS << " }\n"; + continue; + } + + if (Spelling == "availability") { + OS << "("; + writeAvailabilityValue(OS); + OS << ")"; + } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { + OS << "("; + writeDeprecatedAttrValue(OS, Variety); + OS << ")"; + } else { + // To avoid printing parentheses around an empty argument list or + // printing spurious commas at the end of an argument list, we need to + // determine where the last provided non-fake argument is. + unsigned NonFakeArgs = 0; + unsigned TrailingOptArgs = 0; + bool FoundNonOptArg = false; + for (const auto &arg : llvm::reverse(Args)) { + if (arg->isFake()) + continue; + ++NonFakeArgs; + if (FoundNonOptArg) + continue; + // FIXME: arg->getIsOmitted() == "false" means we haven't implemented + // any way to detect whether the argument was omitted. + if (!arg->isOptional() || arg->getIsOmitted() == "false") { + FoundNonOptArg = true; + continue; + } + if (!TrailingOptArgs++) + OS << "\";\n" + << " unsigned TrailingOmittedArgs = 0;\n"; + OS << " if (" << arg->getIsOmitted() << ")\n" + << " ++TrailingOmittedArgs;\n"; + } + if (TrailingOptArgs) + OS << " OS << \""; + if (TrailingOptArgs < NonFakeArgs) + OS << "("; + else if (TrailingOptArgs) + OS << "\";\n" + << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n" + << " OS << \"(\";\n" + << " OS << \""; + unsigned ArgIndex = 0; + for (const auto &arg : Args) { + if (arg->isFake()) + continue; + if (ArgIndex) { + if (ArgIndex >= NonFakeArgs - TrailingOptArgs) + OS << "\";\n" + << " if (" << ArgIndex << " < " << NonFakeArgs + << " - TrailingOmittedArgs)\n" + << " OS << \", \";\n" + << " OS << \""; + else + OS << ", "; + } + std::string IsOmitted = arg->getIsOmitted(); + if (arg->isOptional() && IsOmitted != "false") + OS << "\";\n" + << " if (!(" << IsOmitted << ")) {\n" + << " OS << \""; + arg->writeValue(OS); + if (arg->isOptional() && IsOmitted != "false") + OS << "\";\n" + << " }\n" + << " OS << \""; + ++ArgIndex; + } + if (TrailingOptArgs < NonFakeArgs) + OS << ")"; + else if (TrailingOptArgs) + OS << "\";\n" + << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n" + << " OS << \")\";\n" + << " OS << \""; + } + + OS << Suffix + "\";\n"; + + OS << + " break;\n" + " }\n"; + } + + // End of the switch statement. + OS << "}\n"; + // End of the print function. + OS << "}\n\n"; +} + +/// Return the index of a spelling in a spelling list. +static unsigned +getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList, + const FlattenedSpelling &Spelling) { + assert(!SpellingList.empty() && "Spelling list is empty!"); + + for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { + const FlattenedSpelling &S = SpellingList[Index]; + if (S.variety() != Spelling.variety()) + continue; + if (S.nameSpace() != Spelling.nameSpace()) + continue; + if (S.name() != Spelling.name()) + continue; + + return Index; + } + + llvm_unreachable("Unknown spelling!"); +} + +static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { + std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors"); + if (Accessors.empty()) + return; + + const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R); + assert(!SpellingList.empty() && + "Attribute with empty spelling list can't have accessors!"); + for (const auto *Accessor : Accessors) { + const StringRef Name = Accessor->getValueAsString("Name"); + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor); + + OS << " bool " << Name << "() const { return SpellingListIndex == "; + for (unsigned Index = 0; Index < Spellings.size(); ++Index) { + OS << getSpellingListIndex(SpellingList, Spellings[Index]); + if (Index != Spellings.size() - 1) + OS << " ||\n SpellingListIndex == "; + else + OS << "; }\n"; + } + } +} + +static bool +SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) { + assert(!Spellings.empty() && "An empty list of spellings was provided"); + std::string FirstName = NormalizeNameForSpellingComparison( + Spellings.front().name()); + for (const auto &Spelling : + llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { + std::string Name = NormalizeNameForSpellingComparison(Spelling.name()); + if (Name != FirstName) + return false; + } + return true; +} + +typedef std::map<unsigned, std::string> SemanticSpellingMap; +static std::string +CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings, + SemanticSpellingMap &Map) { + // The enumerants are automatically generated based on the variety, + // namespace (if present) and name for each attribute spelling. However, + // care is taken to avoid trampling on the reserved namespace due to + // underscores. + std::string Ret(" enum Spelling {\n"); + std::set<std::string> Uniques; + unsigned Idx = 0; + for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { + const FlattenedSpelling &S = *I; + const std::string &Variety = S.variety(); + const std::string &Spelling = S.name(); + const std::string &Namespace = S.nameSpace(); + std::string EnumName; + + EnumName += (Variety + "_"); + if (!Namespace.empty()) + EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + + "_"); + EnumName += NormalizeNameForSpellingComparison(Spelling); + + // Even if the name is not unique, this spelling index corresponds to a + // particular enumerant name that we've calculated. + Map[Idx] = EnumName; + + // Since we have been stripping underscores to avoid trampling on the + // reserved namespace, we may have inadvertently created duplicate + // enumerant names. These duplicates are not considered part of the + // semantic spelling, and can be elided. + if (Uniques.find(EnumName) != Uniques.end()) + continue; + + Uniques.insert(EnumName); + if (I != Spellings.begin()) + Ret += ",\n"; + // Duplicate spellings are not considered part of the semantic spelling + // enumeration, but the spelling index and semantic spelling values are + // meant to be equivalent, so we must specify a concrete value for each + // enumerator. + Ret += " " + EnumName + " = " + llvm::utostr(Idx); + } + Ret += "\n };\n\n"; + return Ret; +} + +void WriteSemanticSpellingSwitch(const std::string &VarName, + const SemanticSpellingMap &Map, + raw_ostream &OS) { + OS << " switch (" << VarName << ") {\n default: " + << "llvm_unreachable(\"Unknown spelling list index\");\n"; + for (const auto &I : Map) + OS << " case " << I.first << ": return " << I.second << ";\n"; + OS << " }\n"; +} + +// Emits the LateParsed property for attributes. +static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + bool LateParsed = Attr->getValueAsBit("LateParsed"); + + if (LateParsed) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + + // FIXME: Handle non-GNU attributes + for (const auto &I : Spellings) { + if (I.variety() != "GNU") + continue; + OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; + } + } + } + OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; +} + +static bool hasGNUorCXX11Spelling(const Record &Attribute) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); + for (const auto &I : Spellings) { + if (I.variety() == "GNU" || I.variety() == "CXX11") + return true; + } + return false; +} + +namespace { + +struct AttributeSubjectMatchRule { + const Record *MetaSubject; + const Record *Constraint; + + AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint) + : MetaSubject(MetaSubject), Constraint(Constraint) { + assert(MetaSubject && "Missing subject"); + } + + bool isSubRule() const { return Constraint != nullptr; } + + std::vector<Record *> getSubjects() const { + return (Constraint ? Constraint : MetaSubject) + ->getValueAsListOfDefs("Subjects"); + } + + std::vector<Record *> getLangOpts() const { + if (Constraint) { + // Lookup the options in the sub-rule first, in case the sub-rule + // overrides the rules options. + std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts"); + if (!Opts.empty()) + return Opts; + } + return MetaSubject->getValueAsListOfDefs("LangOpts"); + } + + // Abstract rules are used only for sub-rules + bool isAbstractRule() const { return getSubjects().empty(); } + + StringRef getName() const { + return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name"); + } + + bool isNegatedSubRule() const { + assert(isSubRule() && "Not a sub-rule"); + return Constraint->getValueAsBit("Negated"); + } + + std::string getSpelling() const { + std::string Result = MetaSubject->getValueAsString("Name"); + if (isSubRule()) { + Result += '('; + if (isNegatedSubRule()) + Result += "unless("; + Result += getName(); + if (isNegatedSubRule()) + Result += ')'; + Result += ')'; + } + return Result; + } + + std::string getEnumValueName() const { + SmallString<128> Result; + Result += "SubjectMatchRule_"; + Result += MetaSubject->getValueAsString("Name"); + if (isSubRule()) { + Result += "_"; + if (isNegatedSubRule()) + Result += "not_"; + Result += Constraint->getValueAsString("Name"); + } + if (isAbstractRule()) + Result += "_abstract"; + return Result.str(); + } + + std::string getEnumValue() const { return "attr::" + getEnumValueName(); } + + static const char *EnumName; +}; + +const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule"; + +struct PragmaClangAttributeSupport { + std::vector<AttributeSubjectMatchRule> Rules; + + class RuleOrAggregateRuleSet { + std::vector<AttributeSubjectMatchRule> Rules; + bool IsRule; + RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules, + bool IsRule) + : Rules(Rules), IsRule(IsRule) {} + + public: + bool isRule() const { return IsRule; } + + const AttributeSubjectMatchRule &getRule() const { + assert(IsRule && "not a rule!"); + return Rules[0]; + } + + ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const { + return Rules; + } + + static RuleOrAggregateRuleSet + getRule(const AttributeSubjectMatchRule &Rule) { + return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true); + } + static RuleOrAggregateRuleSet + getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) { + return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false); + } + }; + llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules; + + PragmaClangAttributeSupport(RecordKeeper &Records); + + bool isAttributedSupported(const Record &Attribute); + + void emitMatchRuleList(raw_ostream &OS); + + std::string generateStrictConformsTo(const Record &Attr, raw_ostream &OS); + + void generateParsingHelpers(raw_ostream &OS); +}; + +} // end anonymous namespace + +static bool doesDeclDeriveFrom(const Record *D, const Record *Base) { + const Record *CurrentBase = D->getValueAsDef("Base"); + if (!CurrentBase) + return false; + if (CurrentBase == Base) + return true; + return doesDeclDeriveFrom(CurrentBase, Base); +} + +PragmaClangAttributeSupport::PragmaClangAttributeSupport( + RecordKeeper &Records) { + std::vector<Record *> MetaSubjects = + Records.getAllDerivedDefinitions("AttrSubjectMatcherRule"); + auto MapFromSubjectsToRules = [this](const Record *SubjectContainer, + const Record *MetaSubject, + const Record *Constraint) { + Rules.emplace_back(MetaSubject, Constraint); + std::vector<Record *> ApplicableSubjects = + SubjectContainer->getValueAsListOfDefs("Subjects"); + for (const auto *Subject : ApplicableSubjects) { + bool Inserted = + SubjectsToRules + .try_emplace(Subject, RuleOrAggregateRuleSet::getRule( + AttributeSubjectMatchRule(MetaSubject, + Constraint))) + .second; + if (!Inserted) { + PrintFatalError("Attribute subject match rules should not represent" + "same attribute subjects."); + } + } + }; + for (const auto *MetaSubject : MetaSubjects) { + MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr); + std::vector<Record *> Constraints = + MetaSubject->getValueAsListOfDefs("Constraints"); + for (const auto *Constraint : Constraints) + MapFromSubjectsToRules(Constraint, MetaSubject, Constraint); + } + + std::vector<Record *> Aggregates = + Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule"); + std::vector<Record *> DeclNodes = Records.getAllDerivedDefinitions("DDecl"); + for (const auto *Aggregate : Aggregates) { + Record *SubjectDecl = Aggregate->getValueAsDef("Subject"); + + // Gather sub-classes of the aggregate subject that act as attribute + // subject rules. + std::vector<AttributeSubjectMatchRule> Rules; + for (const auto *D : DeclNodes) { + if (doesDeclDeriveFrom(D, SubjectDecl)) { + auto It = SubjectsToRules.find(D); + if (It == SubjectsToRules.end()) + continue; + if (!It->second.isRule() || It->second.getRule().isSubRule()) + continue; // Assume that the rule will be included as well. + Rules.push_back(It->second.getRule()); + } + } + + bool Inserted = + SubjectsToRules + .try_emplace(SubjectDecl, + RuleOrAggregateRuleSet::getAggregateRuleSet(Rules)) + .second; + if (!Inserted) { + PrintFatalError("Attribute subject match rules should not represent" + "same attribute subjects."); + } + } +} + +static PragmaClangAttributeSupport & +getPragmaAttributeSupport(RecordKeeper &Records) { + static PragmaClangAttributeSupport Instance(Records); + return Instance; +} + +void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) { + OS << "#ifndef ATTR_MATCH_SUB_RULE\n"; + OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, " + "IsNegated) " + << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n"; + OS << "#endif\n"; + for (const auto &Rule : Rules) { + OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '('; + OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", " + << Rule.isAbstractRule(); + if (Rule.isSubRule()) + OS << ", " + << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue() + << ", " << Rule.isNegatedSubRule(); + OS << ")\n"; + } + OS << "#undef ATTR_MATCH_SUB_RULE\n"; +} + +bool PragmaClangAttributeSupport::isAttributedSupported( + const Record &Attribute) { + // If the attribute explicitly specified whether to support #pragma clang + // attribute, use that setting. + bool Unset; + bool SpecifiedResult = + Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset); + if (!Unset) + return SpecifiedResult; + + // Opt-out rules: + // An attribute requires delayed parsing (LateParsed is on) + if (Attribute.getValueAsBit("LateParsed")) + return false; + // An attribute has no GNU/CXX11 spelling + if (!hasGNUorCXX11Spelling(Attribute)) + return false; + // An attribute subject list has a subject that isn't covered by one of the + // subject match rules or has no subjects at all. + if (Attribute.isValueUnset("Subjects")) + return false; + const Record *SubjectObj = Attribute.getValueAsDef("Subjects"); + std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); + if (Subjects.empty()) + return false; + for (const auto *Subject : Subjects) { + if (SubjectsToRules.find(Subject) == SubjectsToRules.end()) + return false; + } + return true; +} + +static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) { + std::string Test; + + for (auto *E : LangOpts) { + if (!Test.empty()) + Test += " || "; + + const StringRef Code = E->getValueAsString("CustomCode"); + if (!Code.empty()) { + Test += "("; + Test += Code; + Test += ")"; + } else { + Test += "LangOpts."; + Test += E->getValueAsString("Name"); + } + } + + if (Test.empty()) + return "true"; + + return Test; +} + +std::string +PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr, + raw_ostream &OS) { + if (!isAttributedSupported(Attr)) + return "nullptr"; + // Generate a function that constructs a set of matching rules that describe + // to which declarations the attribute should apply to. + std::string FnName = "matchRulesFor" + Attr.getName().str(); + OS << "static void " << FnName << "(llvm::SmallVectorImpl<std::pair<" + << AttributeSubjectMatchRule::EnumName + << ", bool>> &MatchRules, const LangOptions &LangOpts) {\n"; + if (Attr.isValueUnset("Subjects")) { + OS << "}\n\n"; + return FnName; + } + const Record *SubjectObj = Attr.getValueAsDef("Subjects"); + std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); + for (const auto *Subject : Subjects) { + auto It = SubjectsToRules.find(Subject); + assert(It != SubjectsToRules.end() && + "This attribute is unsupported by #pragma clang attribute"); + for (const auto &Rule : It->getSecond().getAggregateRuleSet()) { + // The rule might be language specific, so only subtract it from the given + // rules if the specific language options are specified. + std::vector<Record *> LangOpts = Rule.getLangOpts(); + OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue() + << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts) + << "));\n"; + } + } + OS << "}\n\n"; + return FnName; +} + +void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) { + // Generate routines that check the names of sub-rules. + OS << "Optional<attr::SubjectMatchRule> " + "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n"; + OS << " return None;\n"; + OS << "}\n\n"; + + std::map<const Record *, std::vector<AttributeSubjectMatchRule>> + SubMatchRules; + for (const auto &Rule : Rules) { + if (!Rule.isSubRule()) + continue; + SubMatchRules[Rule.MetaSubject].push_back(Rule); + } + + for (const auto &SubMatchRule : SubMatchRules) { + OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_" + << SubMatchRule.first->getValueAsString("Name") + << "(StringRef Name, bool IsUnless) {\n"; + OS << " if (IsUnless)\n"; + OS << " return " + "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; + for (const auto &Rule : SubMatchRule.second) { + if (Rule.isNegatedSubRule()) + OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() + << ").\n"; + } + OS << " Default(None);\n"; + OS << " return " + "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n"; + for (const auto &Rule : SubMatchRule.second) { + if (!Rule.isNegatedSubRule()) + OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() + << ").\n"; + } + OS << " Default(None);\n"; + OS << "}\n\n"; + } + + // Generate the function that checks for the top-level rules. + OS << "std::pair<Optional<attr::SubjectMatchRule>, " + "Optional<attr::SubjectMatchRule> (*)(StringRef, " + "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n"; + OS << " return " + "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, " + "Optional<attr::SubjectMatchRule> (*) (StringRef, " + "bool)>>(Name).\n"; + for (const auto &Rule : Rules) { + if (Rule.isSubRule()) + continue; + std::string SubRuleFunction; + if (SubMatchRules.count(Rule.MetaSubject)) + SubRuleFunction = + ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str(); + else + SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor"; + OS << " Case(\"" << Rule.getName() << "\", std::make_pair(" + << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n"; + } + OS << " Default(std::make_pair(None, " + "defaultIsAttributeSubjectMatchSubRuleFor));\n"; + OS << "}\n\n"; + + // Generate the function that checks for the submatch rules. + OS << "const char *validAttributeSubjectMatchSubRules(" + << AttributeSubjectMatchRule::EnumName << " Rule) {\n"; + OS << " switch (Rule) {\n"; + for (const auto &SubMatchRule : SubMatchRules) { + OS << " case " + << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue() + << ":\n"; + OS << " return \"'"; + bool IsFirst = true; + for (const auto &Rule : SubMatchRule.second) { + if (!IsFirst) + OS << ", '"; + IsFirst = false; + if (Rule.isNegatedSubRule()) + OS << "unless("; + OS << Rule.getName(); + if (Rule.isNegatedSubRule()) + OS << ')'; + OS << "'"; + } + OS << "\";\n"; + } + OS << " default: return nullptr;\n"; + OS << " }\n"; + OS << "}\n\n"; +} + +template <typename Fn> +static void forEachUniqueSpelling(const Record &Attr, Fn &&F) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + SmallDenseSet<StringRef, 8> Seen; + for (const FlattenedSpelling &S : Spellings) { + if (Seen.insert(S.name()).second) + F(S); + } +} + +/// Emits the first-argument-is-type property for attributes. +static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + // Determine whether the first argument is a type. + std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); + if (Args.empty()) + continue; + + if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument") + continue; + + // All these spellings take a single type argument. + forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + }); + } + OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; +} + +/// Emits the parse-arguments-in-unevaluated-context property for +/// attributes. +static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; + ParsedAttrMap Attrs = getParsedAttrList(Records); + for (const auto &I : Attrs) { + const Record &Attr = *I.second; + + if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) + continue; + + // All these spellings take are parsed unevaluated. + forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + }); + } + OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; +} + +static bool isIdentifierArgument(Record *Arg) { + return !Arg->getSuperClasses().empty() && + llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName()) + .Case("IdentifierArgument", true) + .Case("EnumArgument", true) + .Case("VariadicEnumArgument", true) + .Default(false); +} + +static bool isVariadicIdentifierArgument(Record *Arg) { + return !Arg->getSuperClasses().empty() && + llvm::StringSwitch<bool>( + Arg->getSuperClasses().back().first->getName()) + .Case("VariadicIdentifierArgument", true) + .Case("VariadicParamOrParamIdxArgument", true) + .Default(false); +} + +static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records, + raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n"; + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + for (const auto *A : Attrs) { + // Determine whether the first argument is a variadic identifier. + std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); + if (Args.empty() || !isVariadicIdentifierArgument(Args[0])) + continue; + + // All these spellings take an identifier argument. + forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { + OS << ".Case(\"" << S.name() << "\", " + << "true" + << ")\n"; + }); + } + OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n"; +} + +// Emits the first-argument-is-identifier property for attributes. +static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + // Determine whether the first argument is an identifier. + std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args"); + if (Args.empty() || !isIdentifierArgument(Args[0])) + continue; + + // All these spellings take an identifier argument. + forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { + OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; + }); + } + OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; +} + +static bool keywordThisIsaIdentifierInArgument(const Record *Arg) { + return !Arg->getSuperClasses().empty() && + llvm::StringSwitch<bool>( + Arg->getSuperClasses().back().first->getName()) + .Case("VariadicParamOrParamIdxArgument", true) + .Default(false); +} + +static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records, + raw_ostream &OS) { + OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n"; + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + for (const auto *A : Attrs) { + // Determine whether the first argument is a variadic identifier. + std::vector<Record *> Args = A->getValueAsListOfDefs("Args"); + if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0])) + continue; + + // All these spellings take an identifier argument. + forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { + OS << ".Case(\"" << S.name() << "\", " + << "true" + << ")\n"; + }); + } + OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n"; +} + +namespace clang { + +// Emits the class definitions for attributes. +void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute classes' definitions", OS); + + OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; + OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + + // FIXME: Currently, documentation is generated as-needed due to the fact + // that there is no way to allow a generated project "reach into" the docs + // directory (for instance, it may be an out-of-tree build). However, we want + // to ensure that every attribute has a Documentation field, and produce an + // error if it has been neglected. Otherwise, the on-demand generation which + // happens server-side will fail. This code is ensuring that functionality, + // even though this Emitter doesn't technically need the documentation. + // When attribute documentation can be generated as part of the build + // itself, this code can be removed. + (void)R.getValueAsListOfDefs("Documentation"); + + if (!R.getValueAsBit("ASTNode")) + continue; + + ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses(); + assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); + std::string SuperName; + bool Inheritable = false; + for (const auto &Super : llvm::reverse(Supers)) { + const Record *R = Super.first; + if (R->getName() != "TargetSpecificAttr" && + R->getName() != "DeclOrTypeAttr" && SuperName.empty()) + SuperName = R->getName(); + if (R->getName() == "InheritableAttr") + Inheritable = true; + } + + OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + Args.reserve(ArgRecords.size()); + + bool HasOptArg = false; + bool HasFakeArg = false; + for (const auto *ArgRecord : ArgRecords) { + Args.emplace_back(createArgument(*ArgRecord, R.getName())); + Args.back()->writeDeclarations(OS); + OS << "\n\n"; + + // For these purposes, fake takes priority over optional. + if (Args.back()->isFake()) { + HasFakeArg = true; + } else if (Args.back()->isOptional()) { + HasOptArg = true; + } + } + + OS << "public:\n"; + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + + // If there are zero or one spellings, all spelling-related functionality + // can be elided. If all of the spellings share the same name, the spelling + // functionality can also be elided. + bool ElideSpelling = (Spellings.size() <= 1) || + SpellingNamesAreCommon(Spellings); + + // This maps spelling index values to semantic Spelling enumerants. + SemanticSpellingMap SemanticToSyntacticMap; + + if (!ElideSpelling) + OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); + + // Emit CreateImplicit factory methods. + auto emitCreateImplicit = [&](bool emitFake) { + OS << " static " << R.getName() << "Attr *CreateImplicit("; + OS << "ASTContext &Ctx"; + if (!ElideSpelling) + OS << ", Spelling S"; + for (auto const &ai : Args) { + if (ai->isFake() && !emitFake) continue; + OS << ", "; + ai->writeCtorParameters(OS); + } + OS << ", SourceRange Loc = SourceRange()"; + OS << ") {\n"; + OS << " auto *A = new (Ctx) " << R.getName(); + OS << "Attr(Loc, Ctx, "; + for (auto const &ai : Args) { + if (ai->isFake() && !emitFake) continue; + ai->writeImplicitCtorArgs(OS); + OS << ", "; + } + OS << (ElideSpelling ? "0" : "S") << ");\n"; + OS << " A->setImplicit(true);\n"; + OS << " return A;\n }\n\n"; + }; + + // Emit a CreateImplicit that takes all the arguments. + emitCreateImplicit(true); + + // Emit a CreateImplicit that takes all the non-fake arguments. + if (HasFakeArg) { + emitCreateImplicit(false); + } + + // Emit constructors. + auto emitCtor = [&](bool emitOpt, bool emitFake) { + auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) { + if (arg->isFake()) return emitFake; + if (arg->isOptional()) return emitOpt; + return true; + }; + + OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n"; + for (auto const &ai : Args) { + if (!shouldEmitArg(ai)) continue; + OS << " , "; + ai->writeCtorParameters(OS); + OS << "\n"; + } + + OS << " , "; + OS << "unsigned SI\n"; + + OS << " )\n"; + OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, " + << ( R.getValueAsBit("LateParsed") ? "true" : "false" ); + if (Inheritable) { + OS << ", " + << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true" + : "false"); + } + OS << ")\n"; + + for (auto const &ai : Args) { + OS << " , "; + if (!shouldEmitArg(ai)) { + ai->writeCtorDefaultInitializers(OS); + } else { + ai->writeCtorInitializers(OS); + } + OS << "\n"; + } + + OS << " {\n"; + + for (auto const &ai : Args) { + if (!shouldEmitArg(ai)) continue; + ai->writeCtorBody(OS); + } + OS << " }\n\n"; + }; + + // Emit a constructor that includes all the arguments. + // This is necessary for cloning. + emitCtor(true, true); + + // Emit a constructor that takes all the non-fake arguments. + if (HasFakeArg) { + emitCtor(true, false); + } + + // Emit a constructor that takes all the non-fake, non-optional arguments. + if (HasOptArg) { + emitCtor(false, false); + } + + OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; + OS << " void printPretty(raw_ostream &OS,\n" + << " const PrintingPolicy &Policy) const;\n"; + OS << " const char *getSpelling() const;\n"; + + if (!ElideSpelling) { + assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); + OS << " Spelling getSemanticSpelling() const {\n"; + WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap, + OS); + OS << " }\n"; + } + + writeAttrAccessorDefinition(R, OS); + + for (auto const &ai : Args) { + ai->writeAccessors(OS); + OS << "\n\n"; + + // Don't write conversion routines for fake arguments. + if (ai->isFake()) continue; + + if (ai->isEnumArg()) + static_cast<const EnumArgument *>(ai.get())->writeConversion(OS); + else if (ai->isVariadicEnumArg()) + static_cast<const VariadicEnumArgument *>(ai.get()) + ->writeConversion(OS); + } + + OS << R.getValueAsString("AdditionalMembers"); + OS << "\n\n"; + + OS << " static bool classof(const Attr *A) { return A->getKind() == " + << "attr::" << R.getName() << "; }\n"; + + OS << "};\n\n"; + } + + OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; +} + +// Emits the class method definitions for attributes. +void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute classes' member function definitions", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + for (auto *Attr : Attrs) { + Record &R = *Attr; + + if (!R.getValueAsBit("ASTNode")) + continue; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + for (const auto *Arg : ArgRecords) + Args.emplace_back(createArgument(*Arg, R.getName())); + + for (auto const &ai : Args) + ai->writeAccessorDefinitions(OS); + + OS << R.getName() << "Attr *" << R.getName() + << "Attr::clone(ASTContext &C) const {\n"; + OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C"; + for (auto const &ai : Args) { + OS << ", "; + ai->writeCloneArgs(OS); + } + OS << ", getSpellingListIndex());\n"; + OS << " A->Inherited = Inherited;\n"; + OS << " A->IsPackExpansion = IsPackExpansion;\n"; + OS << " A->Implicit = Implicit;\n"; + OS << " return A;\n}\n\n"; + + writePrettyPrintFunction(R, Args, OS); + writeGetSpellingFunction(R, OS); + } + + // Instead of relying on virtual dispatch we just create a huge dispatch + // switch. This is both smaller and faster than virtual functions. + auto EmitFunc = [&](const char *Method) { + OS << " switch (getKind()) {\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ":\n"; + OS << " return cast<" << R.getName() << "Attr>(this)->" << Method + << ";\n"; + } + OS << " }\n"; + OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; + OS << "}\n\n"; + }; + + OS << "const char *Attr::getSpelling() const {\n"; + EmitFunc("getSpelling()"); + + OS << "Attr *Attr::clone(ASTContext &C) const {\n"; + EmitFunc("clone(C)"); + + OS << "void Attr::printPretty(raw_ostream &OS, " + "const PrintingPolicy &Policy) const {\n"; + EmitFunc("printPretty(OS, Policy)"); +} + +} // end namespace clang + +static void emitAttrList(raw_ostream &OS, StringRef Class, + const std::vector<Record*> &AttrList) { + for (auto Cur : AttrList) { + OS << Class << "(" << Cur->getName() << ")\n"; + } +} + +// Determines if an attribute has a Pragma spelling. +static bool AttrHasPragmaSpelling(const Record *R) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); + return llvm::find_if(Spellings, [](const FlattenedSpelling &S) { + return S.variety() == "Pragma"; + }) != Spellings.end(); +} + +namespace { + + struct AttrClassDescriptor { + const char * const MacroName; + const char * const TableGenName; + }; + +} // end anonymous namespace + +static const AttrClassDescriptor AttrClassDescriptors[] = { + { "ATTR", "Attr" }, + { "TYPE_ATTR", "TypeAttr" }, + { "STMT_ATTR", "StmtAttr" }, + { "INHERITABLE_ATTR", "InheritableAttr" }, + { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" }, + { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, + { "PARAMETER_ABI_ATTR", "ParameterABIAttr" } +}; + +static void emitDefaultDefine(raw_ostream &OS, StringRef name, + const char *superName) { + OS << "#ifndef " << name << "\n"; + OS << "#define " << name << "(NAME) "; + if (superName) OS << superName << "(NAME)"; + OS << "\n#endif\n\n"; +} + +namespace { + + /// A class of attributes. + struct AttrClass { + const AttrClassDescriptor &Descriptor; + Record *TheRecord; + AttrClass *SuperClass = nullptr; + std::vector<AttrClass*> SubClasses; + std::vector<Record*> Attrs; + + AttrClass(const AttrClassDescriptor &Descriptor, Record *R) + : Descriptor(Descriptor), TheRecord(R) {} + + void emitDefaultDefines(raw_ostream &OS) const { + // Default the macro unless this is a root class (i.e. Attr). + if (SuperClass) { + emitDefaultDefine(OS, Descriptor.MacroName, + SuperClass->Descriptor.MacroName); + } + } + + void emitUndefs(raw_ostream &OS) const { + OS << "#undef " << Descriptor.MacroName << "\n"; + } + + void emitAttrList(raw_ostream &OS) const { + for (auto SubClass : SubClasses) { + SubClass->emitAttrList(OS); + } + + ::emitAttrList(OS, Descriptor.MacroName, Attrs); + } + + void classifyAttrOnRoot(Record *Attr) { + bool result = classifyAttr(Attr); + assert(result && "failed to classify on root"); (void) result; + } + + void emitAttrRange(raw_ostream &OS) const { + OS << "ATTR_RANGE(" << Descriptor.TableGenName + << ", " << getFirstAttr()->getName() + << ", " << getLastAttr()->getName() << ")\n"; + } + + private: + bool classifyAttr(Record *Attr) { + // Check all the subclasses. + for (auto SubClass : SubClasses) { + if (SubClass->classifyAttr(Attr)) + return true; + } + + // It's not more specific than this class, but it might still belong here. + if (Attr->isSubClassOf(TheRecord)) { + Attrs.push_back(Attr); + return true; + } + + return false; + } + + Record *getFirstAttr() const { + if (!SubClasses.empty()) + return SubClasses.front()->getFirstAttr(); + return Attrs.front(); + } + + Record *getLastAttr() const { + if (!Attrs.empty()) + return Attrs.back(); + return SubClasses.back()->getLastAttr(); + } + }; + + /// The entire hierarchy of attribute classes. + class AttrClassHierarchy { + std::vector<std::unique_ptr<AttrClass>> Classes; + + public: + AttrClassHierarchy(RecordKeeper &Records) { + // Find records for all the classes. + for (auto &Descriptor : AttrClassDescriptors) { + Record *ClassRecord = Records.getClass(Descriptor.TableGenName); + AttrClass *Class = new AttrClass(Descriptor, ClassRecord); + Classes.emplace_back(Class); + } + + // Link up the hierarchy. + for (auto &Class : Classes) { + if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { + Class->SuperClass = SuperClass; + SuperClass->SubClasses.push_back(Class.get()); + } + } + +#ifndef NDEBUG + for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { + assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && + "only the first class should be a root class!"); + } +#endif + } + + void emitDefaultDefines(raw_ostream &OS) const { + for (auto &Class : Classes) { + Class->emitDefaultDefines(OS); + } + } + + void emitUndefs(raw_ostream &OS) const { + for (auto &Class : Classes) { + Class->emitUndefs(OS); + } + } + + void emitAttrLists(raw_ostream &OS) const { + // Just start from the root class. + Classes[0]->emitAttrList(OS); + } + + void emitAttrRanges(raw_ostream &OS) const { + for (auto &Class : Classes) + Class->emitAttrRange(OS); + } + + void classifyAttr(Record *Attr) { + // Add the attribute to the root class. + Classes[0]->classifyAttrOnRoot(Attr); + } + + private: + AttrClass *findClassByRecord(Record *R) const { + for (auto &Class : Classes) { + if (Class->TheRecord == R) + return Class.get(); + } + return nullptr; + } + + AttrClass *findSuperClass(Record *R) const { + // TableGen flattens the superclass list, so we just need to walk it + // in reverse. + auto SuperClasses = R->getSuperClasses(); + for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { + auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); + if (SuperClass) return SuperClass; + } + return nullptr; + } + }; + +} // end anonymous namespace + +namespace clang { + +// Emits the enumeration list for attributes. +void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("List of all attributes that Clang recognizes", OS); + + AttrClassHierarchy Hierarchy(Records); + + // Add defaulting macro definitions. + Hierarchy.emitDefaultDefines(OS); + emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); + + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::vector<Record *> PragmaAttrs; + for (auto *Attr : Attrs) { + if (!Attr->getValueAsBit("ASTNode")) + continue; + + // Add the attribute to the ad-hoc groups. + if (AttrHasPragmaSpelling(Attr)) + PragmaAttrs.push_back(Attr); + + // Place it in the hierarchy. + Hierarchy.classifyAttr(Attr); + } + + // Emit the main attribute list. + Hierarchy.emitAttrLists(OS); + + // Emit the ad hoc groups. + emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); + + // Emit the attribute ranges. + OS << "#ifdef ATTR_RANGE\n"; + Hierarchy.emitAttrRanges(OS); + OS << "#undef ATTR_RANGE\n"; + OS << "#endif\n"; + + Hierarchy.emitUndefs(OS); + OS << "#undef PRAGMA_SPELLING_ATTR\n"; +} + +// Emits the enumeration list for attributes. +void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader( + "List of all attribute subject matching rules that Clang recognizes", OS); + PragmaClangAttributeSupport &PragmaAttributeSupport = + getPragmaAttributeSupport(Records); + emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr); + PragmaAttributeSupport.emitMatchRuleList(OS); + OS << "#undef ATTR_MATCH_RULE\n"; +} + +// Emits the code to read an attribute from a precompiled header. +void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute deserialization code", OS); + + Record *InhClass = Records.getClass("InheritableAttr"); + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), + ArgRecords; + std::vector<std::unique_ptr<Argument>> Args; + + OS << " switch (Kind) {\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ": {\n"; + if (R.isSubClassOf(InhClass)) + OS << " bool isInherited = Record.readInt();\n"; + OS << " bool isImplicit = Record.readInt();\n"; + OS << " unsigned Spelling = Record.readInt();\n"; + ArgRecords = R.getValueAsListOfDefs("Args"); + Args.clear(); + for (const auto *Arg : ArgRecords) { + Args.emplace_back(createArgument(*Arg, R.getName())); + Args.back()->writePCHReadDecls(OS); + } + OS << " New = new (Context) " << R.getName() << "Attr(Range, Context"; + for (auto const &ri : Args) { + OS << ", "; + ri->writePCHReadArgs(OS); + } + OS << ", Spelling);\n"; + if (R.isSubClassOf(InhClass)) + OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n"; + OS << " New->setImplicit(isImplicit);\n"; + OS << " break;\n"; + OS << " }\n"; + } + OS << " }\n"; +} + +// Emits the code to write an attribute to a precompiled header. +void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute serialization code", OS); + + Record *InhClass = Records.getClass("InheritableAttr"); + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; + + OS << " switch (A->getKind()) {\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " case attr::" << R.getName() << ": {\n"; + Args = R.getValueAsListOfDefs("Args"); + if (R.isSubClassOf(InhClass) || !Args.empty()) + OS << " const auto *SA = cast<" << R.getName() + << "Attr>(A);\n"; + if (R.isSubClassOf(InhClass)) + OS << " Record.push_back(SA->isInherited());\n"; + OS << " Record.push_back(A->isImplicit());\n"; + OS << " Record.push_back(A->getSpellingListIndex());\n"; + + for (const auto *Arg : Args) + createArgument(*Arg, R.getName())->writePCHWrite(OS); + OS << " break;\n"; + OS << " }\n"; + } + OS << " }\n"; +} + +// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test' +// parameter with only a single check type, if applicable. +static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test, + std::string *FnName, + StringRef ListName, + StringRef CheckAgainst, + StringRef Scope) { + if (!R->isValueUnset(ListName)) { + Test += " && ("; + std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName); + for (auto I = Items.begin(), E = Items.end(); I != E; ++I) { + StringRef Part = *I; + Test += CheckAgainst; + Test += " == "; + Test += Scope; + Test += Part; + if (I + 1 != E) + Test += " || "; + if (FnName) + *FnName += Part; + } + Test += ")"; + return true; + } + return false; +} + +// Generate a conditional expression to check if the current target satisfies +// the conditions for a TargetSpecificAttr record, and append the code for +// those checks to the Test string. If the FnName string pointer is non-null, +// append a unique suffix to distinguish this set of target checks from other +// TargetSpecificAttr records. +static bool GenerateTargetSpecificAttrChecks(const Record *R, + std::vector<StringRef> &Arches, + std::string &Test, + std::string *FnName) { + bool AnyTargetChecks = false; + + // It is assumed that there will be an llvm::Triple object + // named "T" and a TargetInfo object named "Target" within + // scope that can be used to determine whether the attribute exists in + // a given target. + Test += "true"; + // If one or more architectures is specified, check those. Arches are handled + // differently because GenerateTargetRequirements needs to combine the list + // with ParseKind. + if (!Arches.empty()) { + AnyTargetChecks = true; + Test += " && ("; + for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { + StringRef Part = *I; + Test += "T.getArch() == llvm::Triple::"; + Test += Part; + if (I + 1 != E) + Test += " || "; + if (FnName) + *FnName += Part; + } + Test += ")"; + } + + // If the attribute is specific to particular OSes, check those. + AnyTargetChecks |= GenerateTargetSpecificAttrCheck( + R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::"); + + // If one or more object formats is specified, check those. + AnyTargetChecks |= + GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats", + "T.getObjectFormat()", "llvm::Triple::"); + + // If custom code is specified, emit it. + StringRef Code = R->getValueAsString("CustomCode"); + if (!Code.empty()) { + AnyTargetChecks = true; + Test += " && ("; + Test += Code; + Test += ")"; + } + + return AnyTargetChecks; +} + +static void GenerateHasAttrSpellingStringSwitch( + const std::vector<Record *> &Attrs, raw_ostream &OS, + const std::string &Variety = "", const std::string &Scope = "") { + for (const auto *Attr : Attrs) { + // C++11-style attributes have specific version information associated with + // them. If the attribute has no scope, the version information must not + // have the default value (1), as that's incorrect. Instead, the unscoped + // attribute version information should be taken from the SD-6 standing + // document, which can be found at: + // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations + int Version = 1; + + if (Variety == "CXX11") { + std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings"); + for (const auto &Spelling : Spellings) { + if (Spelling->getValueAsString("Variety") == "CXX11") { + Version = static_cast<int>(Spelling->getValueAsInt("Version")); + if (Scope.empty() && Version == 1) + PrintError(Spelling->getLoc(), "C++ standard attributes must " + "have valid version information."); + break; + } + } + } + + std::string Test; + if (Attr->isSubClassOf("TargetSpecificAttr")) { + const Record *R = Attr->getValueAsDef("Target"); + std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); + GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); + + // If this is the C++11 variety, also add in the LangOpts test. + if (Variety == "CXX11") + Test += " && LangOpts.CPlusPlus11"; + else if (Variety == "C2x") + Test += " && LangOpts.DoubleSquareBracketAttributes"; + } else if (Variety == "CXX11") + // C++11 mode should be checked against LangOpts, which is presumed to be + // present in the caller. + Test = "LangOpts.CPlusPlus11"; + else if (Variety == "C2x") + Test = "LangOpts.DoubleSquareBracketAttributes"; + + std::string TestStr = + !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr); + for (const auto &S : Spellings) + if (Variety.empty() || (Variety == S.variety() && + (Scope.empty() || Scope == S.nameSpace()))) + OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; + } + OS << " .Default(0);\n"; +} + +// Emits the list of spellings for attributes. +void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Code to implement the __has_attribute logic", OS); + + // Separate all of the attributes out into four group: generic, C++11, GNU, + // and declspecs. Then generate a big switch statement for each of them. + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::vector<Record *> Declspec, Microsoft, GNU, Pragma; + std::map<std::string, std::vector<Record *>> CXX, C2x; + + // Walk over the list of all attributes, and split them out based on the + // spelling variety. + for (auto *R : Attrs) { + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R); + for (const auto &SI : Spellings) { + const std::string &Variety = SI.variety(); + if (Variety == "GNU") + GNU.push_back(R); + else if (Variety == "Declspec") + Declspec.push_back(R); + else if (Variety == "Microsoft") + Microsoft.push_back(R); + else if (Variety == "CXX11") + CXX[SI.nameSpace()].push_back(R); + else if (Variety == "C2x") + C2x[SI.nameSpace()].push_back(R); + else if (Variety == "Pragma") + Pragma.push_back(R); + } + } + + OS << "const llvm::Triple &T = Target.getTriple();\n"; + OS << "switch (Syntax) {\n"; + OS << "case AttrSyntax::GNU:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); + OS << "case AttrSyntax::Declspec:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); + OS << "case AttrSyntax::Microsoft:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft"); + OS << "case AttrSyntax::Pragma:\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); + auto fn = [&OS](const char *Spelling, const char *Variety, + const std::map<std::string, std::vector<Record *>> &List) { + OS << "case AttrSyntax::" << Variety << ": {\n"; + // C++11-style attributes are further split out based on the Scope. + for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) { + if (I != List.cbegin()) + OS << " else "; + if (I->first.empty()) + OS << "if (ScopeName == \"\") {\n"; + else + OS << "if (ScopeName == \"" << I->first << "\") {\n"; + OS << " return llvm::StringSwitch<int>(Name)\n"; + GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first); + OS << "}"; + } + OS << "\n} break;\n"; + }; + fn("CXX11", "CXX", CXX); + fn("C2x", "C", C2x); + OS << "}\n"; +} + +void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Code to translate different attribute spellings " + "into internal identifiers", OS); + + OS << " switch (AttrKind) {\n"; + + ParsedAttrMap Attrs = getParsedAttrList(Records); + for (const auto &I : Attrs) { + const Record &R = *I.second; + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + OS << " case AT_" << I.first << ": {\n"; + for (unsigned I = 0; I < Spellings.size(); ++ I) { + OS << " if (Name == \"" << Spellings[I].name() << "\" && " + << "SyntaxUsed == " + << StringSwitch<unsigned>(Spellings[I].variety()) + .Case("GNU", 0) + .Case("CXX11", 1) + .Case("C2x", 2) + .Case("Declspec", 3) + .Case("Microsoft", 4) + .Case("Keyword", 5) + .Case("Pragma", 6) + .Default(0) + << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" + << " return " << I << ";\n"; + } + + OS << " break;\n"; + OS << " }\n"; + } + + OS << " }\n"; + OS << " return 0;\n"; +} + +// Emits code used by RecursiveASTVisitor to visit attributes +void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + // Write method declarations for Traverse* methods. + // We emit this here because we only generate methods for attributes that + // are declared as ASTNodes. + OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " bool Traverse" + << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; + OS << " bool Visit" + << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" + << " return true; \n" + << " }\n"; + } + OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; + + // Write individual Traverse* methods for each attribute class. + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << "template <typename Derived>\n" + << "bool VISITORCLASS<Derived>::Traverse" + << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" + << " if (!getDerived().VisitAttr(A))\n" + << " return false;\n" + << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" + << " return false;\n"; + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + for (const auto *Arg : ArgRecords) + createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); + + OS << " return true;\n"; + OS << "}\n\n"; + } + + // Write generic Traverse routine + OS << "template <typename Derived>\n" + << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n" + << " if (!A)\n" + << " return true;\n" + << "\n" + << " switch (A->getKind()) {\n"; + + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + OS << " case attr::" << R.getName() << ":\n" + << " return getDerived().Traverse" << R.getName() << "Attr(" + << "cast<" << R.getName() << "Attr>(A));\n"; + } + OS << " }\n"; // end switch + OS << " llvm_unreachable(\"bad attribute kind\");\n"; + OS << "}\n"; // end function + OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; +} + +void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs, + raw_ostream &OS, + bool AppliesToDecl) { + + OS << " switch (At->getKind()) {\n"; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + OS << " case attr::" << R.getName() << ": {\n"; + bool ShouldClone = R.getValueAsBit("Clone") && + (!AppliesToDecl || + R.getValueAsBit("MeaningfulToClassTemplateDefinition")); + + if (!ShouldClone) { + OS << " return nullptr;\n"; + OS << " }\n"; + continue; + } + + OS << " const auto *A = cast<" + << R.getName() << "Attr>(At);\n"; + bool TDependent = R.getValueAsBit("TemplateDependent"); + + if (!TDependent) { + OS << " return A->clone(C);\n"; + OS << " }\n"; + continue; + } + + std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args"); + std::vector<std::unique_ptr<Argument>> Args; + Args.reserve(ArgRecords.size()); + + for (const auto *ArgRecord : ArgRecords) + Args.emplace_back(createArgument(*ArgRecord, R.getName())); + + for (auto const &ai : Args) + ai->writeTemplateInstantiation(OS); + + OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C"; + for (auto const &ai : Args) { + OS << ", "; + ai->writeTemplateInstantiationArgs(OS); + } + OS << ", A->getSpellingListIndex());\n }\n"; + } + OS << " } // end switch\n" + << " llvm_unreachable(\"Unknown attribute!\");\n" + << " return nullptr;\n"; +} + +// Emits code to instantiate dependent attributes on templates. +void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Template instantiation code for attributes", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"); + + OS << "namespace clang {\n" + << "namespace sema {\n\n" + << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " + << "Sema &S,\n" + << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; + EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false); + OS << "}\n\n" + << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n" + << " ASTContext &C, Sema &S,\n" + << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; + EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true); + OS << "}\n\n" + << "} // end namespace sema\n" + << "} // end namespace clang\n"; +} + +// Emits the list of parsed attributes. +void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("List of all attributes that Clang recognizes", OS); + + OS << "#ifndef PARSED_ATTR\n"; + OS << "#define PARSED_ATTR(NAME) NAME\n"; + OS << "#endif\n\n"; + + ParsedAttrMap Names = getParsedAttrList(Records); + for (const auto &I : Names) { + OS << "PARSED_ATTR(" << I.first << ")\n"; + } +} + +static bool isArgVariadic(const Record &R, StringRef AttrName) { + return createArgument(R, AttrName)->isVariadic(); +} + +static void emitArgInfo(const Record &R, raw_ostream &OS) { + // This function will count the number of arguments specified for the + // attribute and emit the number of required arguments followed by the + // number of optional arguments. + std::vector<Record *> Args = R.getValueAsListOfDefs("Args"); + unsigned ArgCount = 0, OptCount = 0; + bool HasVariadic = false; + for (const auto *Arg : Args) { + // If the arg is fake, it's the user's job to supply it: general parsing + // logic shouldn't need to know anything about it. + if (Arg->getValueAsBit("Fake")) + continue; + Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; + if (!HasVariadic && isArgVariadic(*Arg, R.getName())) + HasVariadic = true; + } + + // If there is a variadic argument, we will set the optional argument count + // to its largest value. Since it's currently a 4-bit number, we set it to 15. + OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount); +} + +static void GenerateDefaultAppertainsTo(raw_ostream &OS) { + OS << "static bool defaultAppertainsTo(Sema &, const ParsedAttr &,"; + OS << "const Decl *) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string GetDiagnosticSpelling(const Record &R) { + std::string Ret = R.getValueAsString("DiagSpelling"); + if (!Ret.empty()) + return Ret; + + // If we couldn't find the DiagSpelling in this object, we can check to see + // if the object is one that has a base, and if it is, loop up to the Base + // member recursively. + std::string Super = R.getSuperClasses().back().first->getName(); + if (Super == "DDecl" || Super == "DStmt") + return GetDiagnosticSpelling(*R.getValueAsDef("Base")); + + return ""; +} + +static std::string CalculateDiagnostic(const Record &S) { + // If the SubjectList object has a custom diagnostic associated with it, + // return that directly. + const StringRef CustomDiag = S.getValueAsString("CustomDiag"); + if (!CustomDiag.empty()) + return ("\"" + Twine(CustomDiag) + "\"").str(); + + std::vector<std::string> DiagList; + std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects"); + for (const auto *Subject : Subjects) { + const Record &R = *Subject; + // Get the diagnostic text from the Decl or Stmt node given. + std::string V = GetDiagnosticSpelling(R); + if (V.empty()) { + PrintError(R.getLoc(), + "Could not determine diagnostic spelling for the node: " + + R.getName() + "; please add one to DeclNodes.td"); + } else { + // The node may contain a list of elements itself, so split the elements + // by a comma, and trim any whitespace. + SmallVector<StringRef, 2> Frags; + llvm::SplitString(V, Frags, ","); + for (auto Str : Frags) { + DiagList.push_back(Str.trim()); + } + } + } + + if (DiagList.empty()) { + PrintFatalError(S.getLoc(), + "Could not deduce diagnostic argument for Attr subjects"); + return ""; + } + + // FIXME: this is not particularly good for localization purposes and ideally + // should be part of the diagnostics engine itself with some sort of list + // specifier. + + // A single member of the list can be returned directly. + if (DiagList.size() == 1) + return '"' + DiagList.front() + '"'; + + if (DiagList.size() == 2) + return '"' + DiagList[0] + " and " + DiagList[1] + '"'; + + // If there are more than two in the list, we serialize the first N - 1 + // elements with a comma. This leaves the string in the state: foo, bar, + // baz (but misses quux). We can then add ", and " for the last element + // manually. + std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", "); + return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"'; +} + +static std::string GetSubjectWithSuffix(const Record *R) { + const std::string &B = R->getName(); + if (B == "DeclBase") + return "Decl"; + return B + "Decl"; +} + +static std::string functionNameForCustomAppertainsTo(const Record &Subject) { + return "is" + Subject.getName().str(); +} + +static std::string GenerateCustomAppertainsTo(const Record &Subject, + raw_ostream &OS) { + std::string FnName = functionNameForCustomAppertainsTo(Subject); + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomSubjectSet; + auto I = CustomSubjectSet.find(FnName); + if (I != CustomSubjectSet.end()) + return *I; + + Record *Base = Subject.getValueAsDef("Base"); + + // Not currently support custom subjects within custom subjects. + if (Base->isSubClassOf("SubsetSubject")) { + PrintFatalError(Subject.getLoc(), + "SubsetSubjects within SubsetSubjects is not supported"); + return ""; + } + + OS << "static bool " << FnName << "(const Decl *D) {\n"; + OS << " if (const auto *S = dyn_cast<"; + OS << GetSubjectWithSuffix(Base); + OS << ">(D))\n"; + OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; + OS << " return false;\n"; + OS << "}\n\n"; + + CustomSubjectSet.insert(FnName); + return FnName; +} + +static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { + // If the attribute does not contain a Subjects definition, then use the + // default appertainsTo logic. + if (Attr.isValueUnset("Subjects")) + return "defaultAppertainsTo"; + + const Record *SubjectObj = Attr.getValueAsDef("Subjects"); + std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); + + // If the list of subjects is empty, it is assumed that the attribute + // appertains to everything. + if (Subjects.empty()) + return "defaultAppertainsTo"; + + bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); + + // Otherwise, generate an appertainsTo check specific to this attribute which + // checks all of the given subjects against the Decl passed in. Return the + // name of that check to the caller. + // + // If D is null, that means the attribute was not applied to a declaration + // at all (for instance because it was applied to a type), or that the caller + // has determined that the check should fail (perhaps prior to the creation + // of the declaration). + std::string FnName = "check" + Attr.getName().str() + "AppertainsTo"; + std::stringstream SS; + SS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr, "; + SS << "const Decl *D) {\n"; + SS << " if (!D || ("; + for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { + // If the subject has custom code associated with it, generate a function + // for it. The function cannot be inlined into this check (yet) because it + // requires the subject to be of a specific type, and were that information + // inlined here, it would not support an attribute with multiple custom + // subjects. + if ((*I)->isSubClassOf("SubsetSubject")) { + SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)"; + } else { + SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; + } + + if (I + 1 != E) + SS << " && "; + } + SS << ")) {\n"; + SS << " S.Diag(Attr.getLoc(), diag::"; + SS << (Warn ? "warn_attribute_wrong_decl_type_str" : + "err_attribute_wrong_decl_type_str"); + SS << ")\n"; + SS << " << Attr << "; + SS << CalculateDiagnostic(*SubjectObj) << ";\n"; + SS << " return false;\n"; + SS << " }\n"; + SS << " return true;\n"; + SS << "}\n\n"; + + OS << SS.str(); + return FnName; +} + +static void +emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport, + raw_ostream &OS) { + OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, " + << AttributeSubjectMatchRule::EnumName << " rule) {\n"; + OS << " switch (rule) {\n"; + for (const auto &Rule : PragmaAttributeSupport.Rules) { + if (Rule.isAbstractRule()) { + OS << " case " << Rule.getEnumValue() << ":\n"; + OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n"; + OS << " return false;\n"; + continue; + } + std::vector<Record *> Subjects = Rule.getSubjects(); + assert(!Subjects.empty() && "Missing subjects"); + OS << " case " << Rule.getEnumValue() << ":\n"; + OS << " return "; + for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { + // If the subject has custom code associated with it, use the function + // that was generated for GenerateAppertainsTo to check if the declaration + // is valid. + if ((*I)->isSubClassOf("SubsetSubject")) + OS << functionNameForCustomAppertainsTo(**I) << "(D)"; + else + OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)"; + + if (I + 1 != E) + OS << " || "; + } + OS << ";\n"; + } + OS << " }\n"; + OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n"; + OS << "}\n\n"; +} + +static void GenerateDefaultLangOptRequirements(raw_ostream &OS) { + OS << "static bool defaultDiagnoseLangOpts(Sema &, "; + OS << "const ParsedAttr &) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string GenerateLangOptRequirements(const Record &R, + raw_ostream &OS) { + // If the attribute has an empty or unset list of language requirements, + // return the default handler. + std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts"); + if (LangOpts.empty()) + return "defaultDiagnoseLangOpts"; + + // Generate a unique function name for the diagnostic test. The list of + // options should usually be short (one or two options), and the + // uniqueness isn't strictly necessary (it is just for codegen efficiency). + std::string FnName = "check"; + for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I) + FnName += (*I)->getValueAsString("Name"); + FnName += "LangOpts"; + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomLangOptsSet; + auto I = CustomLangOptsSet.find(FnName); + if (I != CustomLangOptsSet.end()) + return *I; + + OS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr) {\n"; + OS << " auto &LangOpts = S.LangOpts;\n"; + OS << " if (" << GenerateTestExpression(LangOpts) << ")\n"; + OS << " return true;\n\n"; + OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) "; + OS << "<< Attr.getName();\n"; + OS << " return false;\n"; + OS << "}\n\n"; + + CustomLangOptsSet.insert(FnName); + return FnName; +} + +static void GenerateDefaultTargetRequirements(raw_ostream &OS) { + OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n"; + OS << " return true;\n"; + OS << "}\n\n"; +} + +static std::string GenerateTargetRequirements(const Record &Attr, + const ParsedAttrMap &Dupes, + raw_ostream &OS) { + // If the attribute is not a target specific attribute, return the default + // target handler. + if (!Attr.isSubClassOf("TargetSpecificAttr")) + return "defaultTargetRequirements"; + + // Get the list of architectures to be tested for. + const Record *R = Attr.getValueAsDef("Target"); + std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches"); + + // If there are other attributes which share the same parsed attribute kind, + // such as target-specific attributes with a shared spelling, collapse the + // duplicate architectures. This is required because a shared target-specific + // attribute has only one ParsedAttr::Kind enumeration value, but it + // applies to multiple target architectures. In order for the attribute to be + // considered valid, all of its architectures need to be included. + if (!Attr.isValueUnset("ParseKind")) { + const StringRef APK = Attr.getValueAsString("ParseKind"); + for (const auto &I : Dupes) { + if (I.first == APK) { + std::vector<StringRef> DA = + I.second->getValueAsDef("Target")->getValueAsListOfStrings( + "Arches"); + Arches.insert(Arches.end(), DA.begin(), DA.end()); + } + } + } + + std::string FnName = "isTarget"; + std::string Test; + bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); + + // If this code has already been generated, simply return the previous + // instance of it. + static std::set<std::string> CustomTargetSet; + auto I = CustomTargetSet.find(FnName); + if (I != CustomTargetSet.end()) + return *I; + + OS << "static bool " << FnName << "(const TargetInfo &Target) {\n"; + if (UsesT) + OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n"; + OS << " return " << Test << ";\n"; + OS << "}\n\n"; + + CustomTargetSet.insert(FnName); + return FnName; +} + +static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) { + OS << "static unsigned defaultSpellingIndexToSemanticSpelling(" + << "const ParsedAttr &Attr) {\n"; + OS << " return UINT_MAX;\n"; + OS << "}\n\n"; +} + +static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr, + raw_ostream &OS) { + // If the attribute does not have a semantic form, we can bail out early. + if (!Attr.getValueAsBit("ASTNode")) + return "defaultSpellingIndexToSemanticSpelling"; + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + + // If there are zero or one spellings, or all of the spellings share the same + // name, we can also bail out early. + if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) + return "defaultSpellingIndexToSemanticSpelling"; + + // Generate the enumeration we will use for the mapping. + SemanticSpellingMap SemanticToSyntacticMap; + std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); + std::string Name = Attr.getName().str() + "AttrSpellingMap"; + + OS << "static unsigned " << Name << "(const ParsedAttr &Attr) {\n"; + OS << Enum; + OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; + WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); + OS << "}\n\n"; + + return Name; +} + +static bool IsKnownToGCC(const Record &Attr) { + // Look at the spellings for this subject; if there are any spellings which + // claim to be known to GCC, the attribute is known to GCC. + return llvm::any_of( + GetFlattenedSpellings(Attr), + [](const FlattenedSpelling &S) { return S.knownToGCC(); }); +} + +/// Emits the parsed attribute helpers +void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Parsed attribute helpers", OS); + + PragmaClangAttributeSupport &PragmaAttributeSupport = + getPragmaAttributeSupport(Records); + + // Get the list of parsed attributes, and accept the optional list of + // duplicates due to the ParseKind. + ParsedAttrMap Dupes; + ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); + + // Generate the default appertainsTo, target and language option diagnostic, + // and spelling list index mapping methods. + GenerateDefaultAppertainsTo(OS); + GenerateDefaultLangOptRequirements(OS); + GenerateDefaultTargetRequirements(OS); + GenerateDefaultSpellingIndexToSemanticSpelling(OS); + + // Generate the appertainsTo diagnostic methods and write their names into + // another mapping. At the same time, generate the AttrInfoMap object + // contents. Due to the reliance on generated code, use separate streams so + // that code will not be interleaved. + std::string Buffer; + raw_string_ostream SS {Buffer}; + for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { + // TODO: If the attribute's kind appears in the list of duplicates, that is + // because it is a target-specific attribute that appears multiple times. + // It would be beneficial to test whether the duplicates are "similar + // enough" to each other to not cause problems. For instance, check that + // the spellings are identical, and custom parsing rules match, etc. + + // We need to generate struct instances based off ParsedAttrInfo from + // ParsedAttr.cpp. + SS << " { "; + emitArgInfo(*I->second, SS); + SS << ", " << I->second->getValueAsBit("HasCustomParsing"); + SS << ", " << I->second->isSubClassOf("TargetSpecificAttr"); + SS << ", " + << (I->second->isSubClassOf("TypeAttr") || + I->second->isSubClassOf("DeclOrTypeAttr")); + SS << ", " << I->second->isSubClassOf("StmtAttr"); + SS << ", " << IsKnownToGCC(*I->second); + SS << ", " << PragmaAttributeSupport.isAttributedSupported(*I->second); + SS << ", " << GenerateAppertainsTo(*I->second, OS); + SS << ", " << GenerateLangOptRequirements(*I->second, OS); + SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS); + SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS); + SS << ", " + << PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS); + SS << " }"; + + if (I + 1 != E) + SS << ","; + + SS << " // AT_" << I->first << "\n"; + } + + OS << "static const ParsedAttrInfo AttrInfoMap[ParsedAttr::UnknownAttribute " + "+ 1] = {\n"; + OS << SS.str(); + OS << "};\n\n"; + + // Generate the attribute match rules. + emitAttributeMatchRules(PragmaAttributeSupport, OS); +} + +// Emits the kind list of parsed attributes +void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute name matcher", OS); + + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11, + Keywords, Pragma, C2x; + std::set<std::string> Seen; + for (const auto *A : Attrs) { + const Record &Attr = *A; + + bool SemaHandler = Attr.getValueAsBit("SemaHandler"); + bool Ignored = Attr.getValueAsBit("Ignored"); + if (SemaHandler || Ignored) { + // Attribute spellings can be shared between target-specific attributes, + // and can be shared between syntaxes for the same attribute. For + // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- + // specific attribute, or MSP430-specific attribute. Additionally, an + // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> + // for the same semantic attribute. Ultimately, we need to map each of + // these to a single ParsedAttr::Kind value, but the StringMatcher + // class cannot handle duplicate match strings. So we generate a list of + // string to match based on the syntax, and emit multiple string matchers + // depending on the syntax used. + std::string AttrName; + if (Attr.isSubClassOf("TargetSpecificAttr") && + !Attr.isValueUnset("ParseKind")) { + AttrName = Attr.getValueAsString("ParseKind"); + if (Seen.find(AttrName) != Seen.end()) + continue; + Seen.insert(AttrName); + } else + AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr); + for (const auto &S : Spellings) { + const std::string &RawSpelling = S.name(); + std::vector<StringMatcher::StringPair> *Matches = nullptr; + std::string Spelling; + const std::string &Variety = S.variety(); + if (Variety == "CXX11") { + Matches = &CXX11; + Spelling += S.nameSpace(); + Spelling += "::"; + } else if (Variety == "C2x") { + Matches = &C2x; + Spelling += S.nameSpace(); + Spelling += "::"; + } else if (Variety == "GNU") + Matches = &GNU; + else if (Variety == "Declspec") + Matches = &Declspec; + else if (Variety == "Microsoft") + Matches = &Microsoft; + else if (Variety == "Keyword") + Matches = &Keywords; + else if (Variety == "Pragma") + Matches = &Pragma; + + assert(Matches && "Unsupported spelling variety found"); + + if (Variety == "GNU") + Spelling += NormalizeGNUAttrSpelling(RawSpelling); + else + Spelling += RawSpelling; + + if (SemaHandler) + Matches->push_back(StringMatcher::StringPair( + Spelling, "return ParsedAttr::AT_" + AttrName + ";")); + else + Matches->push_back(StringMatcher::StringPair( + Spelling, "return ParsedAttr::IgnoredAttribute;")); + } + } + } + + OS << "static ParsedAttr::Kind getAttrKind(StringRef Name, "; + OS << "ParsedAttr::Syntax Syntax) {\n"; + OS << " if (ParsedAttr::AS_GNU == Syntax) {\n"; + StringMatcher("Name", GNU, OS).Emit(); + OS << " } else if (ParsedAttr::AS_Declspec == Syntax) {\n"; + StringMatcher("Name", Declspec, OS).Emit(); + OS << " } else if (ParsedAttr::AS_Microsoft == Syntax) {\n"; + StringMatcher("Name", Microsoft, OS).Emit(); + OS << " } else if (ParsedAttr::AS_CXX11 == Syntax) {\n"; + StringMatcher("Name", CXX11, OS).Emit(); + OS << " } else if (ParsedAttr::AS_C2x == Syntax) {\n"; + StringMatcher("Name", C2x, OS).Emit(); + OS << " } else if (ParsedAttr::AS_Keyword == Syntax || "; + OS << "ParsedAttr::AS_ContextSensitiveKeyword == Syntax) {\n"; + StringMatcher("Name", Keywords, OS).Emit(); + OS << " } else if (ParsedAttr::AS_Pragma == Syntax) {\n"; + StringMatcher("Name", Pragma, OS).Emit(); + OS << " }\n"; + OS << " return ParsedAttr::UnknownAttribute;\n" + << "}\n"; +} + +// Emits the code to dump an attribute. +void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute text node dumper", OS); + + std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + // If the attribute has a semantically-meaningful name (which is determined + // by whether there is a Spelling enumeration for it), then write out the + // spelling used for the attribute. + + std::string FunctionContent; + llvm::raw_string_ostream SS(FunctionContent); + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R); + if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) + SS << " OS << \" \" << A->getSpelling();\n"; + + Args = R.getValueAsListOfDefs("Args"); + for (const auto *Arg : Args) + createArgument(*Arg, R.getName())->writeDump(SS); + + if (SS.tell()) { + OS << " void Visit" << R.getName() << "Attr(const " << R.getName() + << "Attr *A) {\n"; + if (!Args.empty()) + OS << " const auto *SA = cast<" << R.getName() + << "Attr>(A); (void)SA;\n"; + OS << SS.str(); + OS << " }\n"; + } + } +} + +void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) { + emitSourceFileHeader("Attribute text node traverser", OS); + + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args; + for (const auto *Attr : Attrs) { + const Record &R = *Attr; + if (!R.getValueAsBit("ASTNode")) + continue; + + std::string FunctionContent; + llvm::raw_string_ostream SS(FunctionContent); + + Args = R.getValueAsListOfDefs("Args"); + for (const auto *Arg : Args) + createArgument(*Arg, R.getName())->writeDumpChildren(SS); + if (SS.tell()) { + OS << " void Visit" << R.getName() << "Attr(const " << R.getName() + << "Attr *A) {\n"; + if (!Args.empty()) + OS << " const auto *SA = cast<" << R.getName() + << "Attr>(A); (void)SA;\n"; + OS << SS.str(); + OS << " }\n"; + } + } +} + +void EmitClangAttrParserStringSwitches(RecordKeeper &Records, + raw_ostream &OS) { + emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); + emitClangAttrArgContextList(Records, OS); + emitClangAttrIdentifierArgList(Records, OS); + emitClangAttrVariadicIdentifierArgList(Records, OS); + emitClangAttrThisIsaIdentifierArgList(Records, OS); + emitClangAttrTypeArgList(Records, OS); + emitClangAttrLateParsedList(Records, OS); +} + +void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records, + raw_ostream &OS) { + getPragmaAttributeSupport(Records).generateParsingHelpers(OS); +} + +enum class SpellingKind { + GNU, + CXX11, + C2x, + Declspec, + Microsoft, + Keyword, + Pragma, +}; +static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1; + +class SpellingList { + std::vector<std::string> Spellings[NumSpellingKinds]; + +public: + ArrayRef<std::string> operator[](SpellingKind K) const { + return Spellings[(size_t)K]; + } + + void add(const Record &Attr, FlattenedSpelling Spelling) { + SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety()) + .Case("GNU", SpellingKind::GNU) + .Case("CXX11", SpellingKind::CXX11) + .Case("C2x", SpellingKind::C2x) + .Case("Declspec", SpellingKind::Declspec) + .Case("Microsoft", SpellingKind::Microsoft) + .Case("Keyword", SpellingKind::Keyword) + .Case("Pragma", SpellingKind::Pragma); + std::string Name; + if (!Spelling.nameSpace().empty()) { + switch (Kind) { + case SpellingKind::CXX11: + case SpellingKind::C2x: + Name = Spelling.nameSpace() + "::"; + break; + case SpellingKind::Pragma: + Name = Spelling.nameSpace() + " "; + break; + default: + PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling"); + } + } + Name += Spelling.name(); + + Spellings[(size_t)Kind].push_back(Name); + } +}; + +class DocumentationData { +public: + const Record *Documentation; + const Record *Attribute; + std::string Heading; + SpellingList SupportedSpellings; + + DocumentationData(const Record &Documentation, const Record &Attribute, + std::pair<std::string, SpellingList> HeadingAndSpellings) + : Documentation(&Documentation), Attribute(&Attribute), + Heading(std::move(HeadingAndSpellings.first)), + SupportedSpellings(std::move(HeadingAndSpellings.second)) {} +}; + +static void WriteCategoryHeader(const Record *DocCategory, + raw_ostream &OS) { + const StringRef Name = DocCategory->getValueAsString("Name"); + OS << Name << "\n" << std::string(Name.size(), '=') << "\n"; + + // If there is content, print that as well. + const StringRef ContentStr = DocCategory->getValueAsString("Content"); + // Trim leading and trailing newlines and spaces. + OS << ContentStr.trim(); + + OS << "\n\n"; +} + +static std::pair<std::string, SpellingList> +GetAttributeHeadingAndSpellings(const Record &Documentation, + const Record &Attribute) { + // FIXME: there is no way to have a per-spelling category for the attribute + // documentation. This may not be a limiting factor since the spellings + // should generally be consistently applied across the category. + + std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute); + if (Spellings.empty()) + PrintFatalError(Attribute.getLoc(), + "Attribute has no supported spellings; cannot be " + "documented"); + + // Determine the heading to be used for this attribute. + std::string Heading = Documentation.getValueAsString("Heading"); + if (Heading.empty()) { + // If there's only one spelling, we can simply use that. + if (Spellings.size() == 1) + Heading = Spellings.begin()->name(); + else { + std::set<std::string> Uniques; + for (auto I = Spellings.begin(), E = Spellings.end(); + I != E && Uniques.size() <= 1; ++I) { + std::string Spelling = NormalizeNameForSpellingComparison(I->name()); + Uniques.insert(Spelling); + } + // If the semantic map has only one spelling, that is sufficient for our + // needs. + if (Uniques.size() == 1) + Heading = *Uniques.begin(); + } + } + + // If the heading is still empty, it is an error. + if (Heading.empty()) + PrintFatalError(Attribute.getLoc(), + "This attribute requires a heading to be specified"); + + SpellingList SupportedSpellings; + for (const auto &I : Spellings) + SupportedSpellings.add(Attribute, I); + + return std::make_pair(std::move(Heading), std::move(SupportedSpellings)); +} + +static void WriteDocumentation(RecordKeeper &Records, + const DocumentationData &Doc, raw_ostream &OS) { + OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n"; + + // List what spelling syntaxes the attribute supports. + OS << ".. csv-table:: Supported Syntaxes\n"; + OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\","; + OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n"; + OS << " \""; + for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) { + SpellingKind K = (SpellingKind)Kind; + // TODO: List Microsoft (IDL-style attribute) spellings once we fully + // support them. + if (K == SpellingKind::Microsoft) + continue; + + bool PrintedAny = false; + for (StringRef Spelling : Doc.SupportedSpellings[K]) { + if (PrintedAny) + OS << " |br| "; + OS << "``" << Spelling << "``"; + PrintedAny = true; + } + + OS << "\",\""; + } + + if (getPragmaAttributeSupport(Records).isAttributedSupported( + *Doc.Attribute)) + OS << "Yes"; + OS << "\"\n\n"; + + // If the attribute is deprecated, print a message about it, and possibly + // provide a replacement attribute. + if (!Doc.Documentation->isValueUnset("Deprecated")) { + OS << "This attribute has been deprecated, and may be removed in a future " + << "version of Clang."; + const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); + const StringRef Replacement = Deprecated.getValueAsString("Replacement"); + if (!Replacement.empty()) + OS << " This attribute has been superseded by ``" << Replacement + << "``."; + OS << "\n\n"; + } + + const StringRef ContentStr = Doc.Documentation->getValueAsString("Content"); + // Trim leading and trailing newlines and spaces. + OS << ContentStr.trim(); + + OS << "\n\n\n"; +} + +void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { + // Get the documentation introduction paragraph. + const Record *Documentation = Records.getDef("GlobalDocumentation"); + if (!Documentation) { + PrintFatalError("The Documentation top-level definition is missing, " + "no documentation will be generated."); + return; + } + + OS << Documentation->getValueAsString("Intro") << "\n"; + + // Gather the Documentation lists from each of the attributes, based on the + // category provided. + std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"); + std::map<const Record *, std::vector<DocumentationData>> SplitDocs; + for (const auto *A : Attrs) { + const Record &Attr = *A; + std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation"); + for (const auto *D : Docs) { + const Record &Doc = *D; + const Record *Category = Doc.getValueAsDef("Category"); + // If the category is "undocumented", then there cannot be any other + // documentation categories (otherwise, the attribute would become + // documented). + const StringRef Cat = Category->getValueAsString("Name"); + bool Undocumented = Cat == "Undocumented"; + if (Undocumented && Docs.size() > 1) + PrintFatalError(Doc.getLoc(), + "Attribute is \"Undocumented\", but has multiple " + "documentation categories"); + + if (!Undocumented) + SplitDocs[Category].push_back(DocumentationData( + Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr))); + } + } + + // Having split the attributes out based on what documentation goes where, + // we can begin to generate sections of documentation. + for (auto &I : SplitDocs) { + WriteCategoryHeader(I.first, OS); + + llvm::sort(I.second, + [](const DocumentationData &D1, const DocumentationData &D2) { + return D1.Heading < D2.Heading; + }); + + // Walk over each of the attributes in the category and write out their + // documentation. + for (const auto &Doc : I.second) + WriteDocumentation(Records, Doc, OS); + } +} + +void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records, + raw_ostream &OS) { + PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records); + ParsedAttrMap Attrs = getParsedAttrList(Records); + OS << "#pragma clang attribute supports the following attributes:\n"; + for (const auto &I : Attrs) { + if (!Support.isAttributedSupported(*I.second)) + continue; + OS << I.first; + if (I.second->isValueUnset("Subjects")) { + OS << " ()\n"; + continue; + } + const Record *SubjectObj = I.second->getValueAsDef("Subjects"); + std::vector<Record *> Subjects = + SubjectObj->getValueAsListOfDefs("Subjects"); + OS << " ("; + for (const auto &Subject : llvm::enumerate(Subjects)) { + if (Subject.index()) + OS << ", "; + PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet = + Support.SubjectsToRules.find(Subject.value())->getSecond(); + if (RuleSet.isRule()) { + OS << RuleSet.getRule().getEnumValueName(); + continue; + } + OS << "("; + for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) { + if (Rule.index()) + OS << ", "; + OS << Rule.value().getEnumValueName(); + } + OS << ")"; + } + OS << ")\n"; + } + OS << "End of supported attributes.\n"; +} + +} // end namespace clang |
