summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp')
-rw-r--r--contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp4097
1 files changed, 4097 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp b/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp
new file mode 100644
index 000000000000..f315262ad0f4
--- /dev/null
+++ b/contrib/llvm-project/clang/utils/TableGen/ClangAttrEmitter.cpp
@@ -0,0 +1,4097 @@
+//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// These tablegen backends emit Clang attribute processing code
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include "llvm/TableGen/StringMatcher.h"
+#include "llvm/TableGen/TableGenBackend.h"
+#include <algorithm>
+#include <cassert>
+#include <cctype>
+#include <cstddef>
+#include <cstdint>
+#include <map>
+#include <memory>
+#include <set>
+#include <sstream>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+namespace {
+
+class FlattenedSpelling {
+ std::string V, N, NS;
+ bool K;
+
+public:
+ FlattenedSpelling(const std::string &Variety, const std::string &Name,
+ const std::string &Namespace, bool KnownToGCC) :
+ V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {}
+ explicit FlattenedSpelling(const Record &Spelling) :
+ V(Spelling.getValueAsString("Variety")),
+ N(Spelling.getValueAsString("Name")) {
+
+ assert(V != "GCC" && V != "Clang" &&
+ "Given a GCC spelling, which means this hasn't been flattened!");
+ if (V == "CXX11" || V == "C2x" || V == "Pragma")
+ NS = Spelling.getValueAsString("Namespace");
+ bool Unset;
+ K = Spelling.getValueAsBitOrUnset("KnownToGCC", Unset);
+ }
+
+ const std::string &variety() const { return V; }
+ const std::string &name() const { return N; }
+ const std::string &nameSpace() const { return NS; }
+ bool knownToGCC() const { return K; }
+};
+
+} // end anonymous namespace
+
+static std::vector<FlattenedSpelling>
+GetFlattenedSpellings(const Record &Attr) {
+ std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
+ std::vector<FlattenedSpelling> Ret;
+
+ for (const auto &Spelling : Spellings) {
+ StringRef Variety = Spelling->getValueAsString("Variety");
+ StringRef Name = Spelling->getValueAsString("Name");
+ if (Variety == "GCC") {
+ // Gin up two new spelling objects to add into the list.
+ Ret.emplace_back("GNU", Name, "", true);
+ Ret.emplace_back("CXX11", Name, "gnu", true);
+ } else if (Variety == "Clang") {
+ Ret.emplace_back("GNU", Name, "", false);
+ Ret.emplace_back("CXX11", Name, "clang", false);
+ if (Spelling->getValueAsBit("AllowInC"))
+ Ret.emplace_back("C2x", Name, "clang", false);
+ } else
+ Ret.push_back(FlattenedSpelling(*Spelling));
+ }
+
+ return Ret;
+}
+
+static std::string ReadPCHRecord(StringRef type) {
+ return StringSwitch<std::string>(type)
+ .EndsWith("Decl *", "Record.GetLocalDeclAs<"
+ + std::string(type, 0, type.size()-1) + ">(Record.readInt())")
+ .Case("TypeSourceInfo *", "Record.getTypeSourceInfo()")
+ .Case("Expr *", "Record.readExpr()")
+ .Case("IdentifierInfo *", "Record.getIdentifierInfo()")
+ .Case("StringRef", "Record.readString()")
+ .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
+ .Default("Record.readInt()");
+}
+
+// Get a type that is suitable for storing an object of the specified type.
+static StringRef getStorageType(StringRef type) {
+ return StringSwitch<StringRef>(type)
+ .Case("StringRef", "std::string")
+ .Default(type);
+}
+
+// Assumes that the way to get the value is SA->getname()
+static std::string WritePCHRecord(StringRef type, StringRef name) {
+ return "Record." + StringSwitch<std::string>(type)
+ .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
+ .Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n")
+ .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
+ .Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n")
+ .Case("StringRef", "AddString(" + std::string(name) + ");\n")
+ .Case("ParamIdx", "push_back(" + std::string(name) + ".serialize());\n")
+ .Default("push_back(" + std::string(name) + ");\n");
+}
+
+// Normalize attribute name by removing leading and trailing
+// underscores. For example, __foo, foo__, __foo__ would
+// become foo.
+static StringRef NormalizeAttrName(StringRef AttrName) {
+ AttrName.consume_front("__");
+ AttrName.consume_back("__");
+ return AttrName;
+}
+
+// Normalize the name by removing any and all leading and trailing underscores.
+// This is different from NormalizeAttrName in that it also handles names like
+// _pascal and __pascal.
+static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
+ return Name.trim("_");
+}
+
+// Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
+// removing "__" if it appears at the beginning and end of the attribute's name.
+static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
+ if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
+ AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
+ }
+
+ return AttrSpelling;
+}
+
+typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
+
+static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
+ ParsedAttrMap *Dupes = nullptr) {
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::set<std::string> Seen;
+ ParsedAttrMap R;
+ for (const auto *Attr : Attrs) {
+ if (Attr->getValueAsBit("SemaHandler")) {
+ std::string AN;
+ if (Attr->isSubClassOf("TargetSpecificAttr") &&
+ !Attr->isValueUnset("ParseKind")) {
+ AN = Attr->getValueAsString("ParseKind");
+
+ // If this attribute has already been handled, it does not need to be
+ // handled again.
+ if (Seen.find(AN) != Seen.end()) {
+ if (Dupes)
+ Dupes->push_back(std::make_pair(AN, Attr));
+ continue;
+ }
+ Seen.insert(AN);
+ } else
+ AN = NormalizeAttrName(Attr->getName()).str();
+
+ R.push_back(std::make_pair(AN, Attr));
+ }
+ }
+ return R;
+}
+
+namespace {
+
+ class Argument {
+ std::string lowerName, upperName;
+ StringRef attrName;
+ bool isOpt;
+ bool Fake;
+
+ public:
+ Argument(const Record &Arg, StringRef Attr)
+ : lowerName(Arg.getValueAsString("Name")), upperName(lowerName),
+ attrName(Attr), isOpt(false), Fake(false) {
+ if (!lowerName.empty()) {
+ lowerName[0] = std::tolower(lowerName[0]);
+ upperName[0] = std::toupper(upperName[0]);
+ }
+ // Work around MinGW's macro definition of 'interface' to 'struct'. We
+ // have an attribute argument called 'Interface', so only the lower case
+ // name conflicts with the macro definition.
+ if (lowerName == "interface")
+ lowerName = "interface_";
+ }
+ virtual ~Argument() = default;
+
+ StringRef getLowerName() const { return lowerName; }
+ StringRef getUpperName() const { return upperName; }
+ StringRef getAttrName() const { return attrName; }
+
+ bool isOptional() const { return isOpt; }
+ void setOptional(bool set) { isOpt = set; }
+
+ bool isFake() const { return Fake; }
+ void setFake(bool fake) { Fake = fake; }
+
+ // These functions print the argument contents formatted in different ways.
+ virtual void writeAccessors(raw_ostream &OS) const = 0;
+ virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
+ virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
+ virtual void writeCloneArgs(raw_ostream &OS) const = 0;
+ virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
+ virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
+ virtual void writeCtorBody(raw_ostream &OS) const {}
+ virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
+ virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
+ virtual void writeCtorParameters(raw_ostream &OS) const = 0;
+ virtual void writeDeclarations(raw_ostream &OS) const = 0;
+ virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
+ virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
+ virtual void writePCHWrite(raw_ostream &OS) const = 0;
+ virtual std::string getIsOmitted() const { return "false"; }
+ virtual void writeValue(raw_ostream &OS) const = 0;
+ virtual void writeDump(raw_ostream &OS) const = 0;
+ virtual void writeDumpChildren(raw_ostream &OS) const {}
+ virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
+
+ virtual bool isEnumArg() const { return false; }
+ virtual bool isVariadicEnumArg() const { return false; }
+ virtual bool isVariadic() const { return false; }
+
+ virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
+ OS << getUpperName();
+ }
+ };
+
+ class SimpleArgument : public Argument {
+ std::string type;
+
+ public:
+ SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
+ : Argument(Arg, Attr), type(std::move(T)) {}
+
+ std::string getType() const { return type; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " " << type << " get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "()";
+ }
+
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << type << " " << getUpperName();
+ }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << type << " " << getLowerName() << ";";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ std::string read = ReadPCHRecord(type);
+ OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " " << WritePCHRecord(type, "SA->get" +
+ std::string(getUpperName()) + "()");
+ }
+
+ std::string getIsOmitted() const override {
+ if (type == "IdentifierInfo *")
+ return "!get" + getUpperName().str() + "()";
+ if (type == "ParamIdx")
+ return "!get" + getUpperName().str() + "().isValid()";
+ return "false";
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ if (type == "FunctionDecl *")
+ OS << "\" << get" << getUpperName()
+ << "()->getNameInfo().getAsString() << \"";
+ else if (type == "IdentifierInfo *")
+ // Some non-optional (comma required) identifier arguments can be the
+ // empty string but are then recorded as a nullptr.
+ OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
+ << "()->getName() : \"\") << \"";
+ else if (type == "TypeSourceInfo *")
+ OS << "\" << get" << getUpperName() << "().getAsString() << \"";
+ else if (type == "ParamIdx")
+ OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
+ else
+ OS << "\" << get" << getUpperName() << "() << \"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ if (type == "FunctionDecl *" || type == "NamedDecl *") {
+ OS << " OS << \" \";\n";
+ OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
+ } else if (type == "IdentifierInfo *") {
+ // Some non-optional (comma required) identifier arguments can be the
+ // empty string but are then recorded as a nullptr.
+ OS << " if (SA->get" << getUpperName() << "())\n"
+ << " OS << \" \" << SA->get" << getUpperName()
+ << "()->getName();\n";
+ } else if (type == "TypeSourceInfo *") {
+ OS << " OS << \" \" << SA->get" << getUpperName()
+ << "().getAsString();\n";
+ } else if (type == "bool") {
+ OS << " if (SA->get" << getUpperName() << "()) OS << \" "
+ << getUpperName() << "\";\n";
+ } else if (type == "int" || type == "unsigned") {
+ OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
+ } else if (type == "ParamIdx") {
+ if (isOptional())
+ OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
+ OS << " OS << \" \" << SA->get" << getUpperName()
+ << "().getSourceIndex();\n";
+ } else {
+ llvm_unreachable("Unknown SimpleArgument type!");
+ }
+ }
+ };
+
+ class DefaultSimpleArgument : public SimpleArgument {
+ int64_t Default;
+
+ public:
+ DefaultSimpleArgument(const Record &Arg, StringRef Attr,
+ std::string T, int64_t Default)
+ : SimpleArgument(Arg, Attr, T), Default(Default) {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ SimpleArgument::writeAccessors(OS);
+
+ OS << "\n\n static const " << getType() << " Default" << getUpperName()
+ << " = ";
+ if (getType() == "bool")
+ OS << (Default != 0 ? "true" : "false");
+ else
+ OS << Default;
+ OS << ";";
+ }
+ };
+
+ class StringArgument : public Argument {
+ public:
+ StringArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
+ OS << " return llvm::StringRef(" << getLowerName() << ", "
+ << getLowerName() << "Length);\n";
+ OS << " }\n";
+ OS << " unsigned get" << getUpperName() << "Length() const {\n";
+ OS << " return " << getLowerName() << "Length;\n";
+ OS << " }\n";
+ OS << " void set" << getUpperName()
+ << "(ASTContext &C, llvm::StringRef S) {\n";
+ OS << " " << getLowerName() << "Length = S.size();\n";
+ OS << " this->" << getLowerName() << " = new (C, 1) char ["
+ << getLowerName() << "Length];\n";
+ OS << " if (!S.empty())\n";
+ OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
+ << getLowerName() << "Length);\n";
+ OS << " }";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "get" << getUpperName() << "()";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " if (!" << getUpperName() << ".empty())\n";
+ OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
+ << ".data(), " << getLowerName() << "Length);\n";
+ }
+
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
+ << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
+ << "Length])";
+ }
+
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
+ }
+
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "llvm::StringRef " << getUpperName();
+ }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "unsigned " << getLowerName() << "Length;\n";
+ OS << "char *" << getLowerName() << ";";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " std::string " << getLowerName()
+ << "= Record.readString();\n";
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " OS << \" \\\"\" << SA->get" << getUpperName()
+ << "() << \"\\\"\";\n";
+ }
+ };
+
+ class AlignedArgument : public Argument {
+ public:
+ AlignedArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " bool is" << getUpperName() << "Dependent() const;\n";
+
+ OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
+
+ OS << " bool is" << getUpperName() << "Expr() const {\n";
+ OS << " return is" << getLowerName() << "Expr;\n";
+ OS << " }\n";
+
+ OS << " Expr *get" << getUpperName() << "Expr() const {\n";
+ OS << " assert(is" << getLowerName() << "Expr);\n";
+ OS << " return " << getLowerName() << "Expr;\n";
+ OS << " }\n";
+
+ OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
+ OS << " assert(!is" << getLowerName() << "Expr);\n";
+ OS << " return " << getLowerName() << "Type;\n";
+ OS << " }";
+ }
+
+ void writeAccessorDefinitions(raw_ostream &OS) const override {
+ OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
+ << "Dependent() const {\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " return " << getLowerName() << "Expr && (" << getLowerName()
+ << "Expr->isValueDependent() || " << getLowerName()
+ << "Expr->isTypeDependent());\n";
+ OS << " else\n";
+ OS << " return " << getLowerName()
+ << "Type->getType()->isDependentType();\n";
+ OS << "}\n";
+
+ // FIXME: Do not do the calculation here
+ // FIXME: Handle types correctly
+ // A null pointer means maximum alignment
+ OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName()
+ << "(ASTContext &Ctx) const {\n";
+ OS << " assert(!is" << getUpperName() << "Dependent());\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " return " << getLowerName() << "Expr ? " << getLowerName()
+ << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()"
+ << " * Ctx.getCharWidth() : "
+ << "Ctx.getTargetDefaultAlignForAttributeAligned();\n";
+ OS << " else\n";
+ OS << " return 0; // FIXME\n";
+ OS << "}\n";
+ }
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ StringRef Name = getUpperName();
+ OS << " if (A->is" << Name << "Expr()) {\n"
+ << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
+ << " return false;\n"
+ << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
+ << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
+ << " return false;\n"
+ << " }\n";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr, is" << getLowerName()
+ << "Expr ? static_cast<void*>(" << getLowerName()
+ << "Expr) : " << getLowerName()
+ << "Type";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ // FIXME: move the definition in Sema::InstantiateAttrs to here.
+ // In the meantime, aligned attributes are cloned.
+ }
+
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
+ << getUpperName() << ");\n";
+ OS << " else\n";
+ OS << " " << getLowerName()
+ << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
+ << ");\n";
+ }
+
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
+ }
+
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr(false)";
+ }
+
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
+ }
+
+ void writeImplicitCtorArgs(raw_ostream &OS) const override {
+ OS << "Is" << getUpperName() << "Expr, " << getUpperName();
+ }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "bool is" << getLowerName() << "Expr;\n";
+ OS << "union {\n";
+ OS << "Expr *" << getLowerName() << "Expr;\n";
+ OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
+ OS << "};";
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
+ OS << " void *" << getLowerName() << "Ptr;\n";
+ OS << " if (is" << getLowerName() << "Expr)\n";
+ OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
+ OS << " else\n";
+ OS << " " << getLowerName()
+ << "Ptr = Record.getTypeSourceInfo();\n";
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
+ OS << " if (SA->is" << getUpperName() << "Expr())\n";
+ OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
+ OS << " else\n";
+ OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
+ << "Type());\n";
+ }
+
+ std::string getIsOmitted() const override {
+ return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str()
+ + "Expr";
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\";\n";
+ OS << " " << getLowerName()
+ << "Expr->printPretty(OS, nullptr, Policy);\n";
+ OS << " OS << \"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " if (!SA->is" << getUpperName() << "Expr())\n";
+ OS << " dumpType(SA->get" << getUpperName()
+ << "Type()->getType());\n";
+ }
+
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " if (SA->is" << getUpperName() << "Expr())\n";
+ OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
+ }
+
+ void writeHasChildren(raw_ostream &OS) const override {
+ OS << "SA->is" << getUpperName() << "Expr()";
+ }
+ };
+
+ class VariadicArgument : public Argument {
+ std::string Type, ArgName, ArgSizeName, RangeName;
+
+ protected:
+ // Assumed to receive a parameter: raw_ostream OS.
+ virtual void writeValueImpl(raw_ostream &OS) const {
+ OS << " OS << Val;\n";
+ }
+ // Assumed to receive a parameter: raw_ostream OS.
+ virtual void writeDumpImpl(raw_ostream &OS) const {
+ OS << " OS << \" \" << Val;\n";
+ }
+
+ public:
+ VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
+ : Argument(Arg, Attr), Type(std::move(T)),
+ ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
+ RangeName(getLowerName()) {}
+
+ const std::string &getType() const { return Type; }
+ const std::string &getArgName() const { return ArgName; }
+ const std::string &getArgSizeName() const { return ArgSizeName; }
+ bool isVariadic() const override { return true; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ std::string IteratorType = getLowerName().str() + "_iterator";
+ std::string BeginFn = getLowerName().str() + "_begin()";
+ std::string EndFn = getLowerName().str() + "_end()";
+
+ OS << " typedef " << Type << "* " << IteratorType << ";\n";
+ OS << " " << IteratorType << " " << BeginFn << " const {"
+ << " return " << ArgName << "; }\n";
+ OS << " " << IteratorType << " " << EndFn << " const {"
+ << " return " << ArgName << " + " << ArgSizeName << "; }\n";
+ OS << " unsigned " << getLowerName() << "_size() const {"
+ << " return " << ArgSizeName << "; }\n";
+ OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
+ << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
+ << "); }\n";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << ArgName << ", " << ArgSizeName;
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ // This isn't elegant, but we have to go through public methods...
+ OS << "A->" << getLowerName() << "_begin(), "
+ << "A->" << getLowerName() << "_size()";
+ }
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ // FIXME: Traverse the elements.
+ }
+
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " std::copy(" << getUpperName() << ", " << getUpperName()
+ << " + " << ArgSizeName << ", " << ArgName << ");\n";
+ }
+
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << ArgSizeName << "(" << getUpperName() << "Size), "
+ << ArgName << "(new (Ctx, 16) " << getType() << "["
+ << ArgSizeName << "])";
+ }
+
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
+ }
+
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << getType() << " *" << getUpperName() << ", unsigned "
+ << getUpperName() << "Size";
+ }
+
+ void writeImplicitCtorArgs(raw_ostream &OS) const override {
+ OS << getUpperName() << ", " << getUpperName() << "Size";
+ }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << " unsigned " << ArgSizeName << ";\n";
+ OS << " " << getType() << " *" << ArgName << ";";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
+ OS << " SmallVector<" << getType() << ", 4> "
+ << getLowerName() << ";\n";
+ OS << " " << getLowerName() << ".reserve(" << getLowerName()
+ << "Size);\n";
+
+ // If we can't store the values in the current type (if it's something
+ // like StringRef), store them in a different type and convert the
+ // container afterwards.
+ std::string StorageType = getStorageType(getType());
+ std::string StorageName = getLowerName();
+ if (StorageType != getType()) {
+ StorageName += "Storage";
+ OS << " SmallVector<" << StorageType << ", 4> "
+ << StorageName << ";\n";
+ OS << " " << StorageName << ".reserve(" << getLowerName()
+ << "Size);\n";
+ }
+
+ OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
+ std::string read = ReadPCHRecord(Type);
+ OS << " " << StorageName << ".push_back(" << read << ");\n";
+
+ if (StorageType != getType()) {
+ OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
+ OS << " " << getLowerName() << ".push_back("
+ << StorageName << "[i]);\n";
+ }
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName() << ".data(), " << getLowerName() << "Size";
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
+ OS << " for (auto &Val : SA->" << RangeName << "())\n";
+ OS << " " << WritePCHRecord(Type, "Val");
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ OS << "\";\n";
+ OS << " bool isFirst = true;\n"
+ << " for (const auto &Val : " << RangeName << "()) {\n"
+ << " if (isFirst) isFirst = false;\n"
+ << " else OS << \", \";\n";
+ writeValueImpl(OS);
+ OS << " }\n";
+ OS << " OS << \"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " for (const auto &Val : SA->" << RangeName << "())\n";
+ writeDumpImpl(OS);
+ }
+ };
+
+ class VariadicParamIdxArgument : public VariadicArgument {
+ public:
+ VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "ParamIdx") {}
+
+ public:
+ void writeValueImpl(raw_ostream &OS) const override {
+ OS << " OS << Val.getSourceIndex();\n";
+ }
+
+ void writeDumpImpl(raw_ostream &OS) const override {
+ OS << " OS << \" \" << Val.getSourceIndex();\n";
+ }
+ };
+
+ struct VariadicParamOrParamIdxArgument : public VariadicArgument {
+ VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "int") {}
+ };
+
+ // Unique the enums, but maintain the original declaration ordering.
+ std::vector<StringRef>
+ uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
+ std::vector<StringRef> uniques;
+ SmallDenseSet<StringRef, 8> unique_set;
+ for (const auto &i : enums) {
+ if (unique_set.insert(i).second)
+ uniques.push_back(i);
+ }
+ return uniques;
+ }
+
+ class EnumArgument : public Argument {
+ std::string type;
+ std::vector<StringRef> values, enums, uniques;
+
+ public:
+ EnumArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr), type(Arg.getValueAsString("Type")),
+ values(Arg.getValueAsListOfStrings("Values")),
+ enums(Arg.getValueAsListOfStrings("Enums")),
+ uniques(uniqueEnumsInOrder(enums))
+ {
+ // FIXME: Emit a proper error
+ assert(!uniques.empty());
+ }
+
+ bool isEnumArg() const override { return true; }
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " " << type << " get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << type << "(0))";
+ }
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << type << " " << getUpperName();
+ }
+ void writeDeclarations(raw_ostream &OS) const override {
+ auto i = uniques.cbegin(), e = uniques.cend();
+ // The last one needs to not have a comma.
+ --e;
+
+ OS << "public:\n";
+ OS << " enum " << type << " {\n";
+ for (; i != e; ++i)
+ OS << " " << *i << ",\n";
+ OS << " " << *e << "\n";
+ OS << " };\n";
+ OS << "private:\n";
+ OS << " " << type << " " << getLowerName() << ";";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
+ << "(static_cast<" << getAttrName() << "Attr::" << type
+ << ">(Record.readInt()));\n";
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ // FIXME: this isn't 100% correct -- some enum arguments require printing
+ // as a string literal, while others require printing as an identifier.
+ // Tablegen currently does not distinguish between the two forms.
+ OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
+ << getUpperName() << "()) << \"\\\"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " switch(SA->get" << getUpperName() << "()) {\n";
+ for (const auto &I : uniques) {
+ OS << " case " << getAttrName() << "Attr::" << I << ":\n";
+ OS << " OS << \" " << I << "\";\n";
+ OS << " break;\n";
+ }
+ OS << " }\n";
+ }
+
+ void writeConversion(raw_ostream &OS) const {
+ OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
+ OS << type << " &Out) {\n";
+ OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
+ OS << type << ">>(Val)\n";
+ for (size_t I = 0; I < enums.size(); ++I) {
+ OS << " .Case(\"" << values[I] << "\", ";
+ OS << getAttrName() << "Attr::" << enums[I] << ")\n";
+ }
+ OS << " .Default(Optional<" << type << ">());\n";
+ OS << " if (R) {\n";
+ OS << " Out = *R;\n return true;\n }\n";
+ OS << " return false;\n";
+ OS << " }\n\n";
+
+ // Mapping from enumeration values back to enumeration strings isn't
+ // trivial because some enumeration values have multiple named
+ // enumerators, such as type_visibility(internal) and
+ // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
+ OS << " static const char *Convert" << type << "ToStr("
+ << type << " Val) {\n"
+ << " switch(Val) {\n";
+ SmallDenseSet<StringRef, 8> Uniques;
+ for (size_t I = 0; I < enums.size(); ++I) {
+ if (Uniques.insert(enums[I]).second)
+ OS << " case " << getAttrName() << "Attr::" << enums[I]
+ << ": return \"" << values[I] << "\";\n";
+ }
+ OS << " }\n"
+ << " llvm_unreachable(\"No enumerator with that value\");\n"
+ << " }\n";
+ }
+ };
+
+ class VariadicEnumArgument: public VariadicArgument {
+ std::string type, QualifiedTypeName;
+ std::vector<StringRef> values, enums, uniques;
+
+ protected:
+ void writeValueImpl(raw_ostream &OS) const override {
+ // FIXME: this isn't 100% correct -- some enum arguments require printing
+ // as a string literal, while others require printing as an identifier.
+ // Tablegen currently does not distinguish between the two forms.
+ OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
+ << "ToStr(Val)" << "<< \"\\\"\";\n";
+ }
+
+ public:
+ VariadicEnumArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type")),
+ type(Arg.getValueAsString("Type")),
+ values(Arg.getValueAsListOfStrings("Values")),
+ enums(Arg.getValueAsListOfStrings("Enums")),
+ uniques(uniqueEnumsInOrder(enums))
+ {
+ QualifiedTypeName = getAttrName().str() + "Attr::" + type;
+
+ // FIXME: Emit a proper error
+ assert(!uniques.empty());
+ }
+
+ bool isVariadicEnumArg() const override { return true; }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ auto i = uniques.cbegin(), e = uniques.cend();
+ // The last one needs to not have a comma.
+ --e;
+
+ OS << "public:\n";
+ OS << " enum " << type << " {\n";
+ for (; i != e; ++i)
+ OS << " " << *i << ",\n";
+ OS << " " << *e << "\n";
+ OS << " };\n";
+ OS << "private:\n";
+
+ VariadicArgument::writeDeclarations(OS);
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
+ << getLowerName() << "_end(); I != E; ++I) {\n";
+ OS << " switch(*I) {\n";
+ for (const auto &UI : uniques) {
+ OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
+ OS << " OS << \" " << UI << "\";\n";
+ OS << " break;\n";
+ }
+ OS << " }\n";
+ OS << " }\n";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
+ OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
+ << ";\n";
+ OS << " " << getLowerName() << ".reserve(" << getLowerName()
+ << "Size);\n";
+ OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
+ OS << " " << getLowerName() << ".push_back(" << "static_cast<"
+ << QualifiedTypeName << ">(Record.readInt()));\n";
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
+ << getLowerName() << "_end(); i != e; ++i)\n";
+ OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
+ }
+
+ void writeConversion(raw_ostream &OS) const {
+ OS << " static bool ConvertStrTo" << type << "(StringRef Val, ";
+ OS << type << " &Out) {\n";
+ OS << " Optional<" << type << "> R = llvm::StringSwitch<Optional<";
+ OS << type << ">>(Val)\n";
+ for (size_t I = 0; I < enums.size(); ++I) {
+ OS << " .Case(\"" << values[I] << "\", ";
+ OS << getAttrName() << "Attr::" << enums[I] << ")\n";
+ }
+ OS << " .Default(Optional<" << type << ">());\n";
+ OS << " if (R) {\n";
+ OS << " Out = *R;\n return true;\n }\n";
+ OS << " return false;\n";
+ OS << " }\n\n";
+
+ OS << " static const char *Convert" << type << "ToStr("
+ << type << " Val) {\n"
+ << " switch(Val) {\n";
+ SmallDenseSet<StringRef, 8> Uniques;
+ for (size_t I = 0; I < enums.size(); ++I) {
+ if (Uniques.insert(enums[I]).second)
+ OS << " case " << getAttrName() << "Attr::" << enums[I]
+ << ": return \"" << values[I] << "\";\n";
+ }
+ OS << " }\n"
+ << " llvm_unreachable(\"No enumerator with that value\");\n"
+ << " }\n";
+ }
+ };
+
+ class VersionArgument : public Argument {
+ public:
+ VersionArgument(const Record &Arg, StringRef Attr)
+ : Argument(Arg, Attr)
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " VersionTuple get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }\n";
+ OS << " void set" << getUpperName()
+ << "(ASTContext &C, VersionTuple V) {\n";
+ OS << " " << getLowerName() << " = V;\n";
+ OS << " }";
+ }
+
+ void writeCloneArgs(raw_ostream &OS) const override {
+ OS << "get" << getUpperName() << "()";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "()";
+ }
+
+ void writeCtorInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "(" << getUpperName() << ")";
+ }
+
+ void writeCtorDefaultInitializers(raw_ostream &OS) const override {
+ OS << getLowerName() << "()";
+ }
+
+ void writeCtorParameters(raw_ostream &OS) const override {
+ OS << "VersionTuple " << getUpperName();
+ }
+
+ void writeDeclarations(raw_ostream &OS) const override {
+ OS << "VersionTuple " << getLowerName() << ";\n";
+ }
+
+ void writePCHReadDecls(raw_ostream &OS) const override {
+ OS << " VersionTuple " << getLowerName()
+ << "= Record.readVersionTuple();\n";
+ }
+
+ void writePCHReadArgs(raw_ostream &OS) const override {
+ OS << getLowerName();
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
+ }
+
+ void writeValue(raw_ostream &OS) const override {
+ OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
+ }
+
+ void writeDump(raw_ostream &OS) const override {
+ OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
+ }
+ };
+
+ class ExprArgument : public SimpleArgument {
+ public:
+ ExprArgument(const Record &Arg, StringRef Attr)
+ : SimpleArgument(Arg, Attr, "Expr *")
+ {}
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ OS << " if (!"
+ << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
+ OS << " return false;\n";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "tempInst" << getUpperName();
+ }
+
+ void writeTemplateInstantiation(raw_ostream &OS) const override {
+ OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
+ OS << " {\n";
+ OS << " EnterExpressionEvaluationContext "
+ << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
+ OS << " ExprResult " << "Result = S.SubstExpr("
+ << "A->get" << getUpperName() << "(), TemplateArgs);\n";
+ OS << " tempInst" << getUpperName() << " = "
+ << "Result.getAs<Expr>();\n";
+ OS << " }\n";
+ }
+
+ void writeDump(raw_ostream &OS) const override {}
+
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " Visit(SA->get" << getUpperName() << "());\n";
+ }
+
+ void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
+ };
+
+ class VariadicExprArgument : public VariadicArgument {
+ public:
+ VariadicExprArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "Expr *")
+ {}
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ OS << " {\n";
+ OS << " " << getType() << " *I = A->" << getLowerName()
+ << "_begin();\n";
+ OS << " " << getType() << " *E = A->" << getLowerName()
+ << "_end();\n";
+ OS << " for (; I != E; ++I) {\n";
+ OS << " if (!getDerived().TraverseStmt(*I))\n";
+ OS << " return false;\n";
+ OS << " }\n";
+ OS << " }\n";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "tempInst" << getUpperName() << ", "
+ << "A->" << getLowerName() << "_size()";
+ }
+
+ void writeTemplateInstantiation(raw_ostream &OS) const override {
+ OS << " auto *tempInst" << getUpperName()
+ << " = new (C, 16) " << getType()
+ << "[A->" << getLowerName() << "_size()];\n";
+ OS << " {\n";
+ OS << " EnterExpressionEvaluationContext "
+ << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
+ OS << " " << getType() << " *TI = tempInst" << getUpperName()
+ << ";\n";
+ OS << " " << getType() << " *I = A->" << getLowerName()
+ << "_begin();\n";
+ OS << " " << getType() << " *E = A->" << getLowerName()
+ << "_end();\n";
+ OS << " for (; I != E; ++I, ++TI) {\n";
+ OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
+ OS << " *TI = Result.getAs<Expr>();\n";
+ OS << " }\n";
+ OS << " }\n";
+ }
+
+ void writeDump(raw_ostream &OS) const override {}
+
+ void writeDumpChildren(raw_ostream &OS) const override {
+ OS << " for (" << getAttrName() << "Attr::" << getLowerName()
+ << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
+ << getLowerName() << "_end(); I != E; ++I)\n";
+ OS << " Visit(*I);\n";
+ }
+
+ void writeHasChildren(raw_ostream &OS) const override {
+ OS << "SA->" << getLowerName() << "_begin() != "
+ << "SA->" << getLowerName() << "_end()";
+ }
+ };
+
+ class VariadicIdentifierArgument : public VariadicArgument {
+ public:
+ VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "IdentifierInfo *")
+ {}
+ };
+
+ class VariadicStringArgument : public VariadicArgument {
+ public:
+ VariadicStringArgument(const Record &Arg, StringRef Attr)
+ : VariadicArgument(Arg, Attr, "StringRef")
+ {}
+
+ void writeCtorBody(raw_ostream &OS) const override {
+ OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
+ " ++I) {\n"
+ " StringRef Ref = " << getUpperName() << "[I];\n"
+ " if (!Ref.empty()) {\n"
+ " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
+ " std::memcpy(Mem, Ref.data(), Ref.size());\n"
+ " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
+ " }\n"
+ " }\n";
+ }
+
+ void writeValueImpl(raw_ostream &OS) const override {
+ OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
+ }
+ };
+
+ class TypeArgument : public SimpleArgument {
+ public:
+ TypeArgument(const Record &Arg, StringRef Attr)
+ : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
+ {}
+
+ void writeAccessors(raw_ostream &OS) const override {
+ OS << " QualType get" << getUpperName() << "() const {\n";
+ OS << " return " << getLowerName() << "->getType();\n";
+ OS << " }";
+ OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
+ OS << " return " << getLowerName() << ";\n";
+ OS << " }";
+ }
+
+ void writeASTVisitorTraversal(raw_ostream &OS) const override {
+ OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
+ OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
+ OS << " return false;\n";
+ }
+
+ void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
+ OS << "A->get" << getUpperName() << "Loc()";
+ }
+
+ void writePCHWrite(raw_ostream &OS) const override {
+ OS << " " << WritePCHRecord(
+ getType(), "SA->get" + std::string(getUpperName()) + "Loc()");
+ }
+ };
+
+} // end anonymous namespace
+
+static std::unique_ptr<Argument>
+createArgument(const Record &Arg, StringRef Attr,
+ const Record *Search = nullptr) {
+ if (!Search)
+ Search = &Arg;
+
+ std::unique_ptr<Argument> Ptr;
+ llvm::StringRef ArgName = Search->getName();
+
+ if (ArgName == "AlignedArgument")
+ Ptr = llvm::make_unique<AlignedArgument>(Arg, Attr);
+ else if (ArgName == "EnumArgument")
+ Ptr = llvm::make_unique<EnumArgument>(Arg, Attr);
+ else if (ArgName == "ExprArgument")
+ Ptr = llvm::make_unique<ExprArgument>(Arg, Attr);
+ else if (ArgName == "FunctionArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "FunctionDecl *");
+ else if (ArgName == "NamedArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "NamedDecl *");
+ else if (ArgName == "IdentifierArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
+ else if (ArgName == "DefaultBoolArgument")
+ Ptr = llvm::make_unique<DefaultSimpleArgument>(
+ Arg, Attr, "bool", Arg.getValueAsBit("Default"));
+ else if (ArgName == "BoolArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "bool");
+ else if (ArgName == "DefaultIntArgument")
+ Ptr = llvm::make_unique<DefaultSimpleArgument>(
+ Arg, Attr, "int", Arg.getValueAsInt("Default"));
+ else if (ArgName == "IntArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "int");
+ else if (ArgName == "StringArgument")
+ Ptr = llvm::make_unique<StringArgument>(Arg, Attr);
+ else if (ArgName == "TypeArgument")
+ Ptr = llvm::make_unique<TypeArgument>(Arg, Attr);
+ else if (ArgName == "UnsignedArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
+ else if (ArgName == "VariadicUnsignedArgument")
+ Ptr = llvm::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
+ else if (ArgName == "VariadicStringArgument")
+ Ptr = llvm::make_unique<VariadicStringArgument>(Arg, Attr);
+ else if (ArgName == "VariadicEnumArgument")
+ Ptr = llvm::make_unique<VariadicEnumArgument>(Arg, Attr);
+ else if (ArgName == "VariadicExprArgument")
+ Ptr = llvm::make_unique<VariadicExprArgument>(Arg, Attr);
+ else if (ArgName == "VariadicParamIdxArgument")
+ Ptr = llvm::make_unique<VariadicParamIdxArgument>(Arg, Attr);
+ else if (ArgName == "VariadicParamOrParamIdxArgument")
+ Ptr = llvm::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
+ else if (ArgName == "ParamIdxArgument")
+ Ptr = llvm::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
+ else if (ArgName == "VariadicIdentifierArgument")
+ Ptr = llvm::make_unique<VariadicIdentifierArgument>(Arg, Attr);
+ else if (ArgName == "VersionArgument")
+ Ptr = llvm::make_unique<VersionArgument>(Arg, Attr);
+
+ if (!Ptr) {
+ // Search in reverse order so that the most-derived type is handled first.
+ ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
+ for (const auto &Base : llvm::reverse(Bases)) {
+ if ((Ptr = createArgument(Arg, Attr, Base.first)))
+ break;
+ }
+ }
+
+ if (Ptr && Arg.getValueAsBit("Optional"))
+ Ptr->setOptional(true);
+
+ if (Ptr && Arg.getValueAsBit("Fake"))
+ Ptr->setFake(true);
+
+ return Ptr;
+}
+
+static void writeAvailabilityValue(raw_ostream &OS) {
+ OS << "\" << getPlatform()->getName();\n"
+ << " if (getStrict()) OS << \", strict\";\n"
+ << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
+ << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
+ << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
+ << " if (getUnavailable()) OS << \", unavailable\";\n"
+ << " OS << \"";
+}
+
+static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
+ OS << "\\\"\" << getMessage() << \"\\\"\";\n";
+ // Only GNU deprecated has an optional fixit argument at the second position.
+ if (Variety == "GNU")
+ OS << " if (!getReplacement().empty()) OS << \", \\\"\""
+ " << getReplacement() << \"\\\"\";\n";
+ OS << " OS << \"";
+}
+
+static void writeGetSpellingFunction(Record &R, raw_ostream &OS) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
+ if (Spellings.empty()) {
+ OS << " return \"(No spelling)\";\n}\n\n";
+ return;
+ }
+
+ OS << " switch (SpellingListIndex) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute spelling!\");\n"
+ " return \"(No spelling)\";\n";
+
+ for (unsigned I = 0; I < Spellings.size(); ++I)
+ OS << " case " << I << ":\n"
+ " return \"" << Spellings[I].name() << "\";\n";
+ // End of the switch statement.
+ OS << " }\n";
+ // End of the getSpelling function.
+ OS << "}\n\n";
+}
+
+static void
+writePrettyPrintFunction(Record &R,
+ const std::vector<std::unique_ptr<Argument>> &Args,
+ raw_ostream &OS) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ OS << "void " << R.getName() << "Attr::printPretty("
+ << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
+
+ if (Spellings.empty()) {
+ OS << "}\n\n";
+ return;
+ }
+
+ OS <<
+ " switch (SpellingListIndex) {\n"
+ " default:\n"
+ " llvm_unreachable(\"Unknown attribute spelling!\");\n"
+ " break;\n";
+
+ for (unsigned I = 0; I < Spellings.size(); ++ I) {
+ llvm::SmallString<16> Prefix;
+ llvm::SmallString<8> Suffix;
+ // The actual spelling of the name and namespace (if applicable)
+ // of an attribute without considering prefix and suffix.
+ llvm::SmallString<64> Spelling;
+ std::string Name = Spellings[I].name();
+ std::string Variety = Spellings[I].variety();
+
+ if (Variety == "GNU") {
+ Prefix = " __attribute__((";
+ Suffix = "))";
+ } else if (Variety == "CXX11" || Variety == "C2x") {
+ Prefix = " [[";
+ Suffix = "]]";
+ std::string Namespace = Spellings[I].nameSpace();
+ if (!Namespace.empty()) {
+ Spelling += Namespace;
+ Spelling += "::";
+ }
+ } else if (Variety == "Declspec") {
+ Prefix = " __declspec(";
+ Suffix = ")";
+ } else if (Variety == "Microsoft") {
+ Prefix = "[";
+ Suffix = "]";
+ } else if (Variety == "Keyword") {
+ Prefix = " ";
+ Suffix = "";
+ } else if (Variety == "Pragma") {
+ Prefix = "#pragma ";
+ Suffix = "\n";
+ std::string Namespace = Spellings[I].nameSpace();
+ if (!Namespace.empty()) {
+ Spelling += Namespace;
+ Spelling += " ";
+ }
+ } else {
+ llvm_unreachable("Unknown attribute syntax variety!");
+ }
+
+ Spelling += Name;
+
+ OS <<
+ " case " << I << " : {\n"
+ " OS << \"" << Prefix << Spelling;
+
+ if (Variety == "Pragma") {
+ OS << "\";\n";
+ OS << " printPrettyPragma(OS, Policy);\n";
+ OS << " OS << \"\\n\";";
+ OS << " break;\n";
+ OS << " }\n";
+ continue;
+ }
+
+ if (Spelling == "availability") {
+ OS << "(";
+ writeAvailabilityValue(OS);
+ OS << ")";
+ } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
+ OS << "(";
+ writeDeprecatedAttrValue(OS, Variety);
+ OS << ")";
+ } else {
+ // To avoid printing parentheses around an empty argument list or
+ // printing spurious commas at the end of an argument list, we need to
+ // determine where the last provided non-fake argument is.
+ unsigned NonFakeArgs = 0;
+ unsigned TrailingOptArgs = 0;
+ bool FoundNonOptArg = false;
+ for (const auto &arg : llvm::reverse(Args)) {
+ if (arg->isFake())
+ continue;
+ ++NonFakeArgs;
+ if (FoundNonOptArg)
+ continue;
+ // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
+ // any way to detect whether the argument was omitted.
+ if (!arg->isOptional() || arg->getIsOmitted() == "false") {
+ FoundNonOptArg = true;
+ continue;
+ }
+ if (!TrailingOptArgs++)
+ OS << "\";\n"
+ << " unsigned TrailingOmittedArgs = 0;\n";
+ OS << " if (" << arg->getIsOmitted() << ")\n"
+ << " ++TrailingOmittedArgs;\n";
+ }
+ if (TrailingOptArgs)
+ OS << " OS << \"";
+ if (TrailingOptArgs < NonFakeArgs)
+ OS << "(";
+ else if (TrailingOptArgs)
+ OS << "\";\n"
+ << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n"
+ << " OS << \"(\";\n"
+ << " OS << \"";
+ unsigned ArgIndex = 0;
+ for (const auto &arg : Args) {
+ if (arg->isFake())
+ continue;
+ if (ArgIndex) {
+ if (ArgIndex >= NonFakeArgs - TrailingOptArgs)
+ OS << "\";\n"
+ << " if (" << ArgIndex << " < " << NonFakeArgs
+ << " - TrailingOmittedArgs)\n"
+ << " OS << \", \";\n"
+ << " OS << \"";
+ else
+ OS << ", ";
+ }
+ std::string IsOmitted = arg->getIsOmitted();
+ if (arg->isOptional() && IsOmitted != "false")
+ OS << "\";\n"
+ << " if (!(" << IsOmitted << ")) {\n"
+ << " OS << \"";
+ arg->writeValue(OS);
+ if (arg->isOptional() && IsOmitted != "false")
+ OS << "\";\n"
+ << " }\n"
+ << " OS << \"";
+ ++ArgIndex;
+ }
+ if (TrailingOptArgs < NonFakeArgs)
+ OS << ")";
+ else if (TrailingOptArgs)
+ OS << "\";\n"
+ << " if (TrailingOmittedArgs < " << NonFakeArgs << ")\n"
+ << " OS << \")\";\n"
+ << " OS << \"";
+ }
+
+ OS << Suffix + "\";\n";
+
+ OS <<
+ " break;\n"
+ " }\n";
+ }
+
+ // End of the switch statement.
+ OS << "}\n";
+ // End of the print function.
+ OS << "}\n\n";
+}
+
+/// Return the index of a spelling in a spelling list.
+static unsigned
+getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
+ const FlattenedSpelling &Spelling) {
+ assert(!SpellingList.empty() && "Spelling list is empty!");
+
+ for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
+ const FlattenedSpelling &S = SpellingList[Index];
+ if (S.variety() != Spelling.variety())
+ continue;
+ if (S.nameSpace() != Spelling.nameSpace())
+ continue;
+ if (S.name() != Spelling.name())
+ continue;
+
+ return Index;
+ }
+
+ llvm_unreachable("Unknown spelling!");
+}
+
+static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
+ std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
+ if (Accessors.empty())
+ return;
+
+ const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
+ assert(!SpellingList.empty() &&
+ "Attribute with empty spelling list can't have accessors!");
+ for (const auto *Accessor : Accessors) {
+ const StringRef Name = Accessor->getValueAsString("Name");
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
+
+ OS << " bool " << Name << "() const { return SpellingListIndex == ";
+ for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
+ OS << getSpellingListIndex(SpellingList, Spellings[Index]);
+ if (Index != Spellings.size() - 1)
+ OS << " ||\n SpellingListIndex == ";
+ else
+ OS << "; }\n";
+ }
+ }
+}
+
+static bool
+SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
+ assert(!Spellings.empty() && "An empty list of spellings was provided");
+ std::string FirstName = NormalizeNameForSpellingComparison(
+ Spellings.front().name());
+ for (const auto &Spelling :
+ llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
+ std::string Name = NormalizeNameForSpellingComparison(Spelling.name());
+ if (Name != FirstName)
+ return false;
+ }
+ return true;
+}
+
+typedef std::map<unsigned, std::string> SemanticSpellingMap;
+static std::string
+CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
+ SemanticSpellingMap &Map) {
+ // The enumerants are automatically generated based on the variety,
+ // namespace (if present) and name for each attribute spelling. However,
+ // care is taken to avoid trampling on the reserved namespace due to
+ // underscores.
+ std::string Ret(" enum Spelling {\n");
+ std::set<std::string> Uniques;
+ unsigned Idx = 0;
+ for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
+ const FlattenedSpelling &S = *I;
+ const std::string &Variety = S.variety();
+ const std::string &Spelling = S.name();
+ const std::string &Namespace = S.nameSpace();
+ std::string EnumName;
+
+ EnumName += (Variety + "_");
+ if (!Namespace.empty())
+ EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
+ "_");
+ EnumName += NormalizeNameForSpellingComparison(Spelling);
+
+ // Even if the name is not unique, this spelling index corresponds to a
+ // particular enumerant name that we've calculated.
+ Map[Idx] = EnumName;
+
+ // Since we have been stripping underscores to avoid trampling on the
+ // reserved namespace, we may have inadvertently created duplicate
+ // enumerant names. These duplicates are not considered part of the
+ // semantic spelling, and can be elided.
+ if (Uniques.find(EnumName) != Uniques.end())
+ continue;
+
+ Uniques.insert(EnumName);
+ if (I != Spellings.begin())
+ Ret += ",\n";
+ // Duplicate spellings are not considered part of the semantic spelling
+ // enumeration, but the spelling index and semantic spelling values are
+ // meant to be equivalent, so we must specify a concrete value for each
+ // enumerator.
+ Ret += " " + EnumName + " = " + llvm::utostr(Idx);
+ }
+ Ret += "\n };\n\n";
+ return Ret;
+}
+
+void WriteSemanticSpellingSwitch(const std::string &VarName,
+ const SemanticSpellingMap &Map,
+ raw_ostream &OS) {
+ OS << " switch (" << VarName << ") {\n default: "
+ << "llvm_unreachable(\"Unknown spelling list index\");\n";
+ for (const auto &I : Map)
+ OS << " case " << I.first << ": return " << I.second << ";\n";
+ OS << " }\n";
+}
+
+// Emits the LateParsed property for attributes.
+static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ bool LateParsed = Attr->getValueAsBit("LateParsed");
+
+ if (LateParsed) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+
+ // FIXME: Handle non-GNU attributes
+ for (const auto &I : Spellings) {
+ if (I.variety() != "GNU")
+ continue;
+ OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
+ }
+ }
+ }
+ OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
+}
+
+static bool hasGNUorCXX11Spelling(const Record &Attribute) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
+ for (const auto &I : Spellings) {
+ if (I.variety() == "GNU" || I.variety() == "CXX11")
+ return true;
+ }
+ return false;
+}
+
+namespace {
+
+struct AttributeSubjectMatchRule {
+ const Record *MetaSubject;
+ const Record *Constraint;
+
+ AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
+ : MetaSubject(MetaSubject), Constraint(Constraint) {
+ assert(MetaSubject && "Missing subject");
+ }
+
+ bool isSubRule() const { return Constraint != nullptr; }
+
+ std::vector<Record *> getSubjects() const {
+ return (Constraint ? Constraint : MetaSubject)
+ ->getValueAsListOfDefs("Subjects");
+ }
+
+ std::vector<Record *> getLangOpts() const {
+ if (Constraint) {
+ // Lookup the options in the sub-rule first, in case the sub-rule
+ // overrides the rules options.
+ std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
+ if (!Opts.empty())
+ return Opts;
+ }
+ return MetaSubject->getValueAsListOfDefs("LangOpts");
+ }
+
+ // Abstract rules are used only for sub-rules
+ bool isAbstractRule() const { return getSubjects().empty(); }
+
+ StringRef getName() const {
+ return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
+ }
+
+ bool isNegatedSubRule() const {
+ assert(isSubRule() && "Not a sub-rule");
+ return Constraint->getValueAsBit("Negated");
+ }
+
+ std::string getSpelling() const {
+ std::string Result = MetaSubject->getValueAsString("Name");
+ if (isSubRule()) {
+ Result += '(';
+ if (isNegatedSubRule())
+ Result += "unless(";
+ Result += getName();
+ if (isNegatedSubRule())
+ Result += ')';
+ Result += ')';
+ }
+ return Result;
+ }
+
+ std::string getEnumValueName() const {
+ SmallString<128> Result;
+ Result += "SubjectMatchRule_";
+ Result += MetaSubject->getValueAsString("Name");
+ if (isSubRule()) {
+ Result += "_";
+ if (isNegatedSubRule())
+ Result += "not_";
+ Result += Constraint->getValueAsString("Name");
+ }
+ if (isAbstractRule())
+ Result += "_abstract";
+ return Result.str();
+ }
+
+ std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
+
+ static const char *EnumName;
+};
+
+const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
+
+struct PragmaClangAttributeSupport {
+ std::vector<AttributeSubjectMatchRule> Rules;
+
+ class RuleOrAggregateRuleSet {
+ std::vector<AttributeSubjectMatchRule> Rules;
+ bool IsRule;
+ RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
+ bool IsRule)
+ : Rules(Rules), IsRule(IsRule) {}
+
+ public:
+ bool isRule() const { return IsRule; }
+
+ const AttributeSubjectMatchRule &getRule() const {
+ assert(IsRule && "not a rule!");
+ return Rules[0];
+ }
+
+ ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
+ return Rules;
+ }
+
+ static RuleOrAggregateRuleSet
+ getRule(const AttributeSubjectMatchRule &Rule) {
+ return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
+ }
+ static RuleOrAggregateRuleSet
+ getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
+ return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
+ }
+ };
+ llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
+
+ PragmaClangAttributeSupport(RecordKeeper &Records);
+
+ bool isAttributedSupported(const Record &Attribute);
+
+ void emitMatchRuleList(raw_ostream &OS);
+
+ std::string generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
+
+ void generateParsingHelpers(raw_ostream &OS);
+};
+
+} // end anonymous namespace
+
+static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
+ const Record *CurrentBase = D->getValueAsDef("Base");
+ if (!CurrentBase)
+ return false;
+ if (CurrentBase == Base)
+ return true;
+ return doesDeclDeriveFrom(CurrentBase, Base);
+}
+
+PragmaClangAttributeSupport::PragmaClangAttributeSupport(
+ RecordKeeper &Records) {
+ std::vector<Record *> MetaSubjects =
+ Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
+ auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
+ const Record *MetaSubject,
+ const Record *Constraint) {
+ Rules.emplace_back(MetaSubject, Constraint);
+ std::vector<Record *> ApplicableSubjects =
+ SubjectContainer->getValueAsListOfDefs("Subjects");
+ for (const auto *Subject : ApplicableSubjects) {
+ bool Inserted =
+ SubjectsToRules
+ .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
+ AttributeSubjectMatchRule(MetaSubject,
+ Constraint)))
+ .second;
+ if (!Inserted) {
+ PrintFatalError("Attribute subject match rules should not represent"
+ "same attribute subjects.");
+ }
+ }
+ };
+ for (const auto *MetaSubject : MetaSubjects) {
+ MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
+ std::vector<Record *> Constraints =
+ MetaSubject->getValueAsListOfDefs("Constraints");
+ for (const auto *Constraint : Constraints)
+ MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
+ }
+
+ std::vector<Record *> Aggregates =
+ Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
+ std::vector<Record *> DeclNodes = Records.getAllDerivedDefinitions("DDecl");
+ for (const auto *Aggregate : Aggregates) {
+ Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
+
+ // Gather sub-classes of the aggregate subject that act as attribute
+ // subject rules.
+ std::vector<AttributeSubjectMatchRule> Rules;
+ for (const auto *D : DeclNodes) {
+ if (doesDeclDeriveFrom(D, SubjectDecl)) {
+ auto It = SubjectsToRules.find(D);
+ if (It == SubjectsToRules.end())
+ continue;
+ if (!It->second.isRule() || It->second.getRule().isSubRule())
+ continue; // Assume that the rule will be included as well.
+ Rules.push_back(It->second.getRule());
+ }
+ }
+
+ bool Inserted =
+ SubjectsToRules
+ .try_emplace(SubjectDecl,
+ RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
+ .second;
+ if (!Inserted) {
+ PrintFatalError("Attribute subject match rules should not represent"
+ "same attribute subjects.");
+ }
+ }
+}
+
+static PragmaClangAttributeSupport &
+getPragmaAttributeSupport(RecordKeeper &Records) {
+ static PragmaClangAttributeSupport Instance(Records);
+ return Instance;
+}
+
+void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
+ OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
+ OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
+ "IsNegated) "
+ << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
+ OS << "#endif\n";
+ for (const auto &Rule : Rules) {
+ OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
+ OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
+ << Rule.isAbstractRule();
+ if (Rule.isSubRule())
+ OS << ", "
+ << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
+ << ", " << Rule.isNegatedSubRule();
+ OS << ")\n";
+ }
+ OS << "#undef ATTR_MATCH_SUB_RULE\n";
+}
+
+bool PragmaClangAttributeSupport::isAttributedSupported(
+ const Record &Attribute) {
+ // If the attribute explicitly specified whether to support #pragma clang
+ // attribute, use that setting.
+ bool Unset;
+ bool SpecifiedResult =
+ Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
+ if (!Unset)
+ return SpecifiedResult;
+
+ // Opt-out rules:
+ // An attribute requires delayed parsing (LateParsed is on)
+ if (Attribute.getValueAsBit("LateParsed"))
+ return false;
+ // An attribute has no GNU/CXX11 spelling
+ if (!hasGNUorCXX11Spelling(Attribute))
+ return false;
+ // An attribute subject list has a subject that isn't covered by one of the
+ // subject match rules or has no subjects at all.
+ if (Attribute.isValueUnset("Subjects"))
+ return false;
+ const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
+ std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
+ if (Subjects.empty())
+ return false;
+ for (const auto *Subject : Subjects) {
+ if (SubjectsToRules.find(Subject) == SubjectsToRules.end())
+ return false;
+ }
+ return true;
+}
+
+static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
+ std::string Test;
+
+ for (auto *E : LangOpts) {
+ if (!Test.empty())
+ Test += " || ";
+
+ const StringRef Code = E->getValueAsString("CustomCode");
+ if (!Code.empty()) {
+ Test += "(";
+ Test += Code;
+ Test += ")";
+ } else {
+ Test += "LangOpts.";
+ Test += E->getValueAsString("Name");
+ }
+ }
+
+ if (Test.empty())
+ return "true";
+
+ return Test;
+}
+
+std::string
+PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
+ raw_ostream &OS) {
+ if (!isAttributedSupported(Attr))
+ return "nullptr";
+ // Generate a function that constructs a set of matching rules that describe
+ // to which declarations the attribute should apply to.
+ std::string FnName = "matchRulesFor" + Attr.getName().str();
+ OS << "static void " << FnName << "(llvm::SmallVectorImpl<std::pair<"
+ << AttributeSubjectMatchRule::EnumName
+ << ", bool>> &MatchRules, const LangOptions &LangOpts) {\n";
+ if (Attr.isValueUnset("Subjects")) {
+ OS << "}\n\n";
+ return FnName;
+ }
+ const Record *SubjectObj = Attr.getValueAsDef("Subjects");
+ std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
+ for (const auto *Subject : Subjects) {
+ auto It = SubjectsToRules.find(Subject);
+ assert(It != SubjectsToRules.end() &&
+ "This attribute is unsupported by #pragma clang attribute");
+ for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
+ // The rule might be language specific, so only subtract it from the given
+ // rules if the specific language options are specified.
+ std::vector<Record *> LangOpts = Rule.getLangOpts();
+ OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
+ << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
+ << "));\n";
+ }
+ }
+ OS << "}\n\n";
+ return FnName;
+}
+
+void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
+ // Generate routines that check the names of sub-rules.
+ OS << "Optional<attr::SubjectMatchRule> "
+ "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
+ OS << " return None;\n";
+ OS << "}\n\n";
+
+ std::map<const Record *, std::vector<AttributeSubjectMatchRule>>
+ SubMatchRules;
+ for (const auto &Rule : Rules) {
+ if (!Rule.isSubRule())
+ continue;
+ SubMatchRules[Rule.MetaSubject].push_back(Rule);
+ }
+
+ for (const auto &SubMatchRule : SubMatchRules) {
+ OS << "Optional<attr::SubjectMatchRule> isAttributeSubjectMatchSubRuleFor_"
+ << SubMatchRule.first->getValueAsString("Name")
+ << "(StringRef Name, bool IsUnless) {\n";
+ OS << " if (IsUnless)\n";
+ OS << " return "
+ "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
+ for (const auto &Rule : SubMatchRule.second) {
+ if (Rule.isNegatedSubRule())
+ OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
+ << ").\n";
+ }
+ OS << " Default(None);\n";
+ OS << " return "
+ "llvm::StringSwitch<Optional<attr::SubjectMatchRule>>(Name).\n";
+ for (const auto &Rule : SubMatchRule.second) {
+ if (!Rule.isNegatedSubRule())
+ OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
+ << ").\n";
+ }
+ OS << " Default(None);\n";
+ OS << "}\n\n";
+ }
+
+ // Generate the function that checks for the top-level rules.
+ OS << "std::pair<Optional<attr::SubjectMatchRule>, "
+ "Optional<attr::SubjectMatchRule> (*)(StringRef, "
+ "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
+ OS << " return "
+ "llvm::StringSwitch<std::pair<Optional<attr::SubjectMatchRule>, "
+ "Optional<attr::SubjectMatchRule> (*) (StringRef, "
+ "bool)>>(Name).\n";
+ for (const auto &Rule : Rules) {
+ if (Rule.isSubRule())
+ continue;
+ std::string SubRuleFunction;
+ if (SubMatchRules.count(Rule.MetaSubject))
+ SubRuleFunction =
+ ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
+ else
+ SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
+ OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
+ << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
+ }
+ OS << " Default(std::make_pair(None, "
+ "defaultIsAttributeSubjectMatchSubRuleFor));\n";
+ OS << "}\n\n";
+
+ // Generate the function that checks for the submatch rules.
+ OS << "const char *validAttributeSubjectMatchSubRules("
+ << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
+ OS << " switch (Rule) {\n";
+ for (const auto &SubMatchRule : SubMatchRules) {
+ OS << " case "
+ << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
+ << ":\n";
+ OS << " return \"'";
+ bool IsFirst = true;
+ for (const auto &Rule : SubMatchRule.second) {
+ if (!IsFirst)
+ OS << ", '";
+ IsFirst = false;
+ if (Rule.isNegatedSubRule())
+ OS << "unless(";
+ OS << Rule.getName();
+ if (Rule.isNegatedSubRule())
+ OS << ')';
+ OS << "'";
+ }
+ OS << "\";\n";
+ }
+ OS << " default: return nullptr;\n";
+ OS << " }\n";
+ OS << "}\n\n";
+}
+
+template <typename Fn>
+static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+ SmallDenseSet<StringRef, 8> Seen;
+ for (const FlattenedSpelling &S : Spellings) {
+ if (Seen.insert(S.name()).second)
+ F(S);
+ }
+}
+
+/// Emits the first-argument-is-type property for attributes.
+static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ // Determine whether the first argument is a type.
+ std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
+ if (Args.empty())
+ continue;
+
+ if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument")
+ continue;
+
+ // All these spellings take a single type argument.
+ forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ });
+ }
+ OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
+}
+
+/// Emits the parse-arguments-in-unevaluated-context property for
+/// attributes.
+static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
+ ParsedAttrMap Attrs = getParsedAttrList(Records);
+ for (const auto &I : Attrs) {
+ const Record &Attr = *I.second;
+
+ if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
+ continue;
+
+ // All these spellings take are parsed unevaluated.
+ forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ });
+ }
+ OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
+}
+
+static bool isIdentifierArgument(Record *Arg) {
+ return !Arg->getSuperClasses().empty() &&
+ llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
+ .Case("IdentifierArgument", true)
+ .Case("EnumArgument", true)
+ .Case("VariadicEnumArgument", true)
+ .Default(false);
+}
+
+static bool isVariadicIdentifierArgument(Record *Arg) {
+ return !Arg->getSuperClasses().empty() &&
+ llvm::StringSwitch<bool>(
+ Arg->getSuperClasses().back().first->getName())
+ .Case("VariadicIdentifierArgument", true)
+ .Case("VariadicParamOrParamIdxArgument", true)
+ .Default(false);
+}
+
+static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
+ raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ for (const auto *A : Attrs) {
+ // Determine whether the first argument is a variadic identifier.
+ std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
+ if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
+ continue;
+
+ // All these spellings take an identifier argument.
+ forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
+ OS << ".Case(\"" << S.name() << "\", "
+ << "true"
+ << ")\n";
+ });
+ }
+ OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
+}
+
+// Emits the first-argument-is-identifier property for attributes.
+static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ // Determine whether the first argument is an identifier.
+ std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
+ if (Args.empty() || !isIdentifierArgument(Args[0]))
+ continue;
+
+ // All these spellings take an identifier argument.
+ forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
+ OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
+ });
+ }
+ OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
+}
+
+static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
+ return !Arg->getSuperClasses().empty() &&
+ llvm::StringSwitch<bool>(
+ Arg->getSuperClasses().back().first->getName())
+ .Case("VariadicParamOrParamIdxArgument", true)
+ .Default(false);
+}
+
+static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
+ raw_ostream &OS) {
+ OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ for (const auto *A : Attrs) {
+ // Determine whether the first argument is a variadic identifier.
+ std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
+ if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
+ continue;
+
+ // All these spellings take an identifier argument.
+ forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
+ OS << ".Case(\"" << S.name() << "\", "
+ << "true"
+ << ")\n";
+ });
+ }
+ OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
+}
+
+namespace clang {
+
+// Emits the class definitions for attributes.
+void EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute classes' definitions", OS);
+
+ OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
+ OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+
+ // FIXME: Currently, documentation is generated as-needed due to the fact
+ // that there is no way to allow a generated project "reach into" the docs
+ // directory (for instance, it may be an out-of-tree build). However, we want
+ // to ensure that every attribute has a Documentation field, and produce an
+ // error if it has been neglected. Otherwise, the on-demand generation which
+ // happens server-side will fail. This code is ensuring that functionality,
+ // even though this Emitter doesn't technically need the documentation.
+ // When attribute documentation can be generated as part of the build
+ // itself, this code can be removed.
+ (void)R.getValueAsListOfDefs("Documentation");
+
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
+ assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
+ std::string SuperName;
+ bool Inheritable = false;
+ for (const auto &Super : llvm::reverse(Supers)) {
+ const Record *R = Super.first;
+ if (R->getName() != "TargetSpecificAttr" &&
+ R->getName() != "DeclOrTypeAttr" && SuperName.empty())
+ SuperName = R->getName();
+ if (R->getName() == "InheritableAttr")
+ Inheritable = true;
+ }
+
+ OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ Args.reserve(ArgRecords.size());
+
+ bool HasOptArg = false;
+ bool HasFakeArg = false;
+ for (const auto *ArgRecord : ArgRecords) {
+ Args.emplace_back(createArgument(*ArgRecord, R.getName()));
+ Args.back()->writeDeclarations(OS);
+ OS << "\n\n";
+
+ // For these purposes, fake takes priority over optional.
+ if (Args.back()->isFake()) {
+ HasFakeArg = true;
+ } else if (Args.back()->isOptional()) {
+ HasOptArg = true;
+ }
+ }
+
+ OS << "public:\n";
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+
+ // If there are zero or one spellings, all spelling-related functionality
+ // can be elided. If all of the spellings share the same name, the spelling
+ // functionality can also be elided.
+ bool ElideSpelling = (Spellings.size() <= 1) ||
+ SpellingNamesAreCommon(Spellings);
+
+ // This maps spelling index values to semantic Spelling enumerants.
+ SemanticSpellingMap SemanticToSyntacticMap;
+
+ if (!ElideSpelling)
+ OS << CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
+
+ // Emit CreateImplicit factory methods.
+ auto emitCreateImplicit = [&](bool emitFake) {
+ OS << " static " << R.getName() << "Attr *CreateImplicit(";
+ OS << "ASTContext &Ctx";
+ if (!ElideSpelling)
+ OS << ", Spelling S";
+ for (auto const &ai : Args) {
+ if (ai->isFake() && !emitFake) continue;
+ OS << ", ";
+ ai->writeCtorParameters(OS);
+ }
+ OS << ", SourceRange Loc = SourceRange()";
+ OS << ") {\n";
+ OS << " auto *A = new (Ctx) " << R.getName();
+ OS << "Attr(Loc, Ctx, ";
+ for (auto const &ai : Args) {
+ if (ai->isFake() && !emitFake) continue;
+ ai->writeImplicitCtorArgs(OS);
+ OS << ", ";
+ }
+ OS << (ElideSpelling ? "0" : "S") << ");\n";
+ OS << " A->setImplicit(true);\n";
+ OS << " return A;\n }\n\n";
+ };
+
+ // Emit a CreateImplicit that takes all the arguments.
+ emitCreateImplicit(true);
+
+ // Emit a CreateImplicit that takes all the non-fake arguments.
+ if (HasFakeArg) {
+ emitCreateImplicit(false);
+ }
+
+ // Emit constructors.
+ auto emitCtor = [&](bool emitOpt, bool emitFake) {
+ auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
+ if (arg->isFake()) return emitFake;
+ if (arg->isOptional()) return emitOpt;
+ return true;
+ };
+
+ OS << " " << R.getName() << "Attr(SourceRange R, ASTContext &Ctx\n";
+ for (auto const &ai : Args) {
+ if (!shouldEmitArg(ai)) continue;
+ OS << " , ";
+ ai->writeCtorParameters(OS);
+ OS << "\n";
+ }
+
+ OS << " , ";
+ OS << "unsigned SI\n";
+
+ OS << " )\n";
+ OS << " : " << SuperName << "(attr::" << R.getName() << ", R, SI, "
+ << ( R.getValueAsBit("LateParsed") ? "true" : "false" );
+ if (Inheritable) {
+ OS << ", "
+ << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
+ : "false");
+ }
+ OS << ")\n";
+
+ for (auto const &ai : Args) {
+ OS << " , ";
+ if (!shouldEmitArg(ai)) {
+ ai->writeCtorDefaultInitializers(OS);
+ } else {
+ ai->writeCtorInitializers(OS);
+ }
+ OS << "\n";
+ }
+
+ OS << " {\n";
+
+ for (auto const &ai : Args) {
+ if (!shouldEmitArg(ai)) continue;
+ ai->writeCtorBody(OS);
+ }
+ OS << " }\n\n";
+ };
+
+ // Emit a constructor that includes all the arguments.
+ // This is necessary for cloning.
+ emitCtor(true, true);
+
+ // Emit a constructor that takes all the non-fake arguments.
+ if (HasFakeArg) {
+ emitCtor(true, false);
+ }
+
+ // Emit a constructor that takes all the non-fake, non-optional arguments.
+ if (HasOptArg) {
+ emitCtor(false, false);
+ }
+
+ OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
+ OS << " void printPretty(raw_ostream &OS,\n"
+ << " const PrintingPolicy &Policy) const;\n";
+ OS << " const char *getSpelling() const;\n";
+
+ if (!ElideSpelling) {
+ assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
+ OS << " Spelling getSemanticSpelling() const {\n";
+ WriteSemanticSpellingSwitch("SpellingListIndex", SemanticToSyntacticMap,
+ OS);
+ OS << " }\n";
+ }
+
+ writeAttrAccessorDefinition(R, OS);
+
+ for (auto const &ai : Args) {
+ ai->writeAccessors(OS);
+ OS << "\n\n";
+
+ // Don't write conversion routines for fake arguments.
+ if (ai->isFake()) continue;
+
+ if (ai->isEnumArg())
+ static_cast<const EnumArgument *>(ai.get())->writeConversion(OS);
+ else if (ai->isVariadicEnumArg())
+ static_cast<const VariadicEnumArgument *>(ai.get())
+ ->writeConversion(OS);
+ }
+
+ OS << R.getValueAsString("AdditionalMembers");
+ OS << "\n\n";
+
+ OS << " static bool classof(const Attr *A) { return A->getKind() == "
+ << "attr::" << R.getName() << "; }\n";
+
+ OS << "};\n\n";
+ }
+
+ OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
+}
+
+// Emits the class method definitions for attributes.
+void EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute classes' member function definitions", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ for (auto *Attr : Attrs) {
+ Record &R = *Attr;
+
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ for (const auto *Arg : ArgRecords)
+ Args.emplace_back(createArgument(*Arg, R.getName()));
+
+ for (auto const &ai : Args)
+ ai->writeAccessorDefinitions(OS);
+
+ OS << R.getName() << "Attr *" << R.getName()
+ << "Attr::clone(ASTContext &C) const {\n";
+ OS << " auto *A = new (C) " << R.getName() << "Attr(getLocation(), C";
+ for (auto const &ai : Args) {
+ OS << ", ";
+ ai->writeCloneArgs(OS);
+ }
+ OS << ", getSpellingListIndex());\n";
+ OS << " A->Inherited = Inherited;\n";
+ OS << " A->IsPackExpansion = IsPackExpansion;\n";
+ OS << " A->Implicit = Implicit;\n";
+ OS << " return A;\n}\n\n";
+
+ writePrettyPrintFunction(R, Args, OS);
+ writeGetSpellingFunction(R, OS);
+ }
+
+ // Instead of relying on virtual dispatch we just create a huge dispatch
+ // switch. This is both smaller and faster than virtual functions.
+ auto EmitFunc = [&](const char *Method) {
+ OS << " switch (getKind()) {\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ":\n";
+ OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
+ << ";\n";
+ }
+ OS << " }\n";
+ OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
+ OS << "}\n\n";
+ };
+
+ OS << "const char *Attr::getSpelling() const {\n";
+ EmitFunc("getSpelling()");
+
+ OS << "Attr *Attr::clone(ASTContext &C) const {\n";
+ EmitFunc("clone(C)");
+
+ OS << "void Attr::printPretty(raw_ostream &OS, "
+ "const PrintingPolicy &Policy) const {\n";
+ EmitFunc("printPretty(OS, Policy)");
+}
+
+} // end namespace clang
+
+static void emitAttrList(raw_ostream &OS, StringRef Class,
+ const std::vector<Record*> &AttrList) {
+ for (auto Cur : AttrList) {
+ OS << Class << "(" << Cur->getName() << ")\n";
+ }
+}
+
+// Determines if an attribute has a Pragma spelling.
+static bool AttrHasPragmaSpelling(const Record *R) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
+ return llvm::find_if(Spellings, [](const FlattenedSpelling &S) {
+ return S.variety() == "Pragma";
+ }) != Spellings.end();
+}
+
+namespace {
+
+ struct AttrClassDescriptor {
+ const char * const MacroName;
+ const char * const TableGenName;
+ };
+
+} // end anonymous namespace
+
+static const AttrClassDescriptor AttrClassDescriptors[] = {
+ { "ATTR", "Attr" },
+ { "TYPE_ATTR", "TypeAttr" },
+ { "STMT_ATTR", "StmtAttr" },
+ { "INHERITABLE_ATTR", "InheritableAttr" },
+ { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
+ { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
+ { "PARAMETER_ABI_ATTR", "ParameterABIAttr" }
+};
+
+static void emitDefaultDefine(raw_ostream &OS, StringRef name,
+ const char *superName) {
+ OS << "#ifndef " << name << "\n";
+ OS << "#define " << name << "(NAME) ";
+ if (superName) OS << superName << "(NAME)";
+ OS << "\n#endif\n\n";
+}
+
+namespace {
+
+ /// A class of attributes.
+ struct AttrClass {
+ const AttrClassDescriptor &Descriptor;
+ Record *TheRecord;
+ AttrClass *SuperClass = nullptr;
+ std::vector<AttrClass*> SubClasses;
+ std::vector<Record*> Attrs;
+
+ AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
+ : Descriptor(Descriptor), TheRecord(R) {}
+
+ void emitDefaultDefines(raw_ostream &OS) const {
+ // Default the macro unless this is a root class (i.e. Attr).
+ if (SuperClass) {
+ emitDefaultDefine(OS, Descriptor.MacroName,
+ SuperClass->Descriptor.MacroName);
+ }
+ }
+
+ void emitUndefs(raw_ostream &OS) const {
+ OS << "#undef " << Descriptor.MacroName << "\n";
+ }
+
+ void emitAttrList(raw_ostream &OS) const {
+ for (auto SubClass : SubClasses) {
+ SubClass->emitAttrList(OS);
+ }
+
+ ::emitAttrList(OS, Descriptor.MacroName, Attrs);
+ }
+
+ void classifyAttrOnRoot(Record *Attr) {
+ bool result = classifyAttr(Attr);
+ assert(result && "failed to classify on root"); (void) result;
+ }
+
+ void emitAttrRange(raw_ostream &OS) const {
+ OS << "ATTR_RANGE(" << Descriptor.TableGenName
+ << ", " << getFirstAttr()->getName()
+ << ", " << getLastAttr()->getName() << ")\n";
+ }
+
+ private:
+ bool classifyAttr(Record *Attr) {
+ // Check all the subclasses.
+ for (auto SubClass : SubClasses) {
+ if (SubClass->classifyAttr(Attr))
+ return true;
+ }
+
+ // It's not more specific than this class, but it might still belong here.
+ if (Attr->isSubClassOf(TheRecord)) {
+ Attrs.push_back(Attr);
+ return true;
+ }
+
+ return false;
+ }
+
+ Record *getFirstAttr() const {
+ if (!SubClasses.empty())
+ return SubClasses.front()->getFirstAttr();
+ return Attrs.front();
+ }
+
+ Record *getLastAttr() const {
+ if (!Attrs.empty())
+ return Attrs.back();
+ return SubClasses.back()->getLastAttr();
+ }
+ };
+
+ /// The entire hierarchy of attribute classes.
+ class AttrClassHierarchy {
+ std::vector<std::unique_ptr<AttrClass>> Classes;
+
+ public:
+ AttrClassHierarchy(RecordKeeper &Records) {
+ // Find records for all the classes.
+ for (auto &Descriptor : AttrClassDescriptors) {
+ Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
+ AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
+ Classes.emplace_back(Class);
+ }
+
+ // Link up the hierarchy.
+ for (auto &Class : Classes) {
+ if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
+ Class->SuperClass = SuperClass;
+ SuperClass->SubClasses.push_back(Class.get());
+ }
+ }
+
+#ifndef NDEBUG
+ for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
+ assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
+ "only the first class should be a root class!");
+ }
+#endif
+ }
+
+ void emitDefaultDefines(raw_ostream &OS) const {
+ for (auto &Class : Classes) {
+ Class->emitDefaultDefines(OS);
+ }
+ }
+
+ void emitUndefs(raw_ostream &OS) const {
+ for (auto &Class : Classes) {
+ Class->emitUndefs(OS);
+ }
+ }
+
+ void emitAttrLists(raw_ostream &OS) const {
+ // Just start from the root class.
+ Classes[0]->emitAttrList(OS);
+ }
+
+ void emitAttrRanges(raw_ostream &OS) const {
+ for (auto &Class : Classes)
+ Class->emitAttrRange(OS);
+ }
+
+ void classifyAttr(Record *Attr) {
+ // Add the attribute to the root class.
+ Classes[0]->classifyAttrOnRoot(Attr);
+ }
+
+ private:
+ AttrClass *findClassByRecord(Record *R) const {
+ for (auto &Class : Classes) {
+ if (Class->TheRecord == R)
+ return Class.get();
+ }
+ return nullptr;
+ }
+
+ AttrClass *findSuperClass(Record *R) const {
+ // TableGen flattens the superclass list, so we just need to walk it
+ // in reverse.
+ auto SuperClasses = R->getSuperClasses();
+ for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
+ auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
+ if (SuperClass) return SuperClass;
+ }
+ return nullptr;
+ }
+ };
+
+} // end anonymous namespace
+
+namespace clang {
+
+// Emits the enumeration list for attributes.
+void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
+
+ AttrClassHierarchy Hierarchy(Records);
+
+ // Add defaulting macro definitions.
+ Hierarchy.emitDefaultDefines(OS);
+ emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
+
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::vector<Record *> PragmaAttrs;
+ for (auto *Attr : Attrs) {
+ if (!Attr->getValueAsBit("ASTNode"))
+ continue;
+
+ // Add the attribute to the ad-hoc groups.
+ if (AttrHasPragmaSpelling(Attr))
+ PragmaAttrs.push_back(Attr);
+
+ // Place it in the hierarchy.
+ Hierarchy.classifyAttr(Attr);
+ }
+
+ // Emit the main attribute list.
+ Hierarchy.emitAttrLists(OS);
+
+ // Emit the ad hoc groups.
+ emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
+
+ // Emit the attribute ranges.
+ OS << "#ifdef ATTR_RANGE\n";
+ Hierarchy.emitAttrRanges(OS);
+ OS << "#undef ATTR_RANGE\n";
+ OS << "#endif\n";
+
+ Hierarchy.emitUndefs(OS);
+ OS << "#undef PRAGMA_SPELLING_ATTR\n";
+}
+
+// Emits the enumeration list for attributes.
+void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader(
+ "List of all attribute subject matching rules that Clang recognizes", OS);
+ PragmaClangAttributeSupport &PragmaAttributeSupport =
+ getPragmaAttributeSupport(Records);
+ emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
+ PragmaAttributeSupport.emitMatchRuleList(OS);
+ OS << "#undef ATTR_MATCH_RULE\n";
+}
+
+// Emits the code to read an attribute from a precompiled header.
+void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute deserialization code", OS);
+
+ Record *InhClass = Records.getClass("InheritableAttr");
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
+ ArgRecords;
+ std::vector<std::unique_ptr<Argument>> Args;
+
+ OS << " switch (Kind) {\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ": {\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " bool isInherited = Record.readInt();\n";
+ OS << " bool isImplicit = Record.readInt();\n";
+ OS << " unsigned Spelling = Record.readInt();\n";
+ ArgRecords = R.getValueAsListOfDefs("Args");
+ Args.clear();
+ for (const auto *Arg : ArgRecords) {
+ Args.emplace_back(createArgument(*Arg, R.getName()));
+ Args.back()->writePCHReadDecls(OS);
+ }
+ OS << " New = new (Context) " << R.getName() << "Attr(Range, Context";
+ for (auto const &ri : Args) {
+ OS << ", ";
+ ri->writePCHReadArgs(OS);
+ }
+ OS << ", Spelling);\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
+ OS << " New->setImplicit(isImplicit);\n";
+ OS << " break;\n";
+ OS << " }\n";
+ }
+ OS << " }\n";
+}
+
+// Emits the code to write an attribute to a precompiled header.
+void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute serialization code", OS);
+
+ Record *InhClass = Records.getClass("InheritableAttr");
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
+
+ OS << " switch (A->getKind()) {\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " case attr::" << R.getName() << ": {\n";
+ Args = R.getValueAsListOfDefs("Args");
+ if (R.isSubClassOf(InhClass) || !Args.empty())
+ OS << " const auto *SA = cast<" << R.getName()
+ << "Attr>(A);\n";
+ if (R.isSubClassOf(InhClass))
+ OS << " Record.push_back(SA->isInherited());\n";
+ OS << " Record.push_back(A->isImplicit());\n";
+ OS << " Record.push_back(A->getSpellingListIndex());\n";
+
+ for (const auto *Arg : Args)
+ createArgument(*Arg, R.getName())->writePCHWrite(OS);
+ OS << " break;\n";
+ OS << " }\n";
+ }
+ OS << " }\n";
+}
+
+// Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
+// parameter with only a single check type, if applicable.
+static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
+ std::string *FnName,
+ StringRef ListName,
+ StringRef CheckAgainst,
+ StringRef Scope) {
+ if (!R->isValueUnset(ListName)) {
+ Test += " && (";
+ std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
+ for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
+ StringRef Part = *I;
+ Test += CheckAgainst;
+ Test += " == ";
+ Test += Scope;
+ Test += Part;
+ if (I + 1 != E)
+ Test += " || ";
+ if (FnName)
+ *FnName += Part;
+ }
+ Test += ")";
+ return true;
+ }
+ return false;
+}
+
+// Generate a conditional expression to check if the current target satisfies
+// the conditions for a TargetSpecificAttr record, and append the code for
+// those checks to the Test string. If the FnName string pointer is non-null,
+// append a unique suffix to distinguish this set of target checks from other
+// TargetSpecificAttr records.
+static bool GenerateTargetSpecificAttrChecks(const Record *R,
+ std::vector<StringRef> &Arches,
+ std::string &Test,
+ std::string *FnName) {
+ bool AnyTargetChecks = false;
+
+ // It is assumed that there will be an llvm::Triple object
+ // named "T" and a TargetInfo object named "Target" within
+ // scope that can be used to determine whether the attribute exists in
+ // a given target.
+ Test += "true";
+ // If one or more architectures is specified, check those. Arches are handled
+ // differently because GenerateTargetRequirements needs to combine the list
+ // with ParseKind.
+ if (!Arches.empty()) {
+ AnyTargetChecks = true;
+ Test += " && (";
+ for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
+ StringRef Part = *I;
+ Test += "T.getArch() == llvm::Triple::";
+ Test += Part;
+ if (I + 1 != E)
+ Test += " || ";
+ if (FnName)
+ *FnName += Part;
+ }
+ Test += ")";
+ }
+
+ // If the attribute is specific to particular OSes, check those.
+ AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
+ R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
+
+ // If one or more object formats is specified, check those.
+ AnyTargetChecks |=
+ GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
+ "T.getObjectFormat()", "llvm::Triple::");
+
+ // If custom code is specified, emit it.
+ StringRef Code = R->getValueAsString("CustomCode");
+ if (!Code.empty()) {
+ AnyTargetChecks = true;
+ Test += " && (";
+ Test += Code;
+ Test += ")";
+ }
+
+ return AnyTargetChecks;
+}
+
+static void GenerateHasAttrSpellingStringSwitch(
+ const std::vector<Record *> &Attrs, raw_ostream &OS,
+ const std::string &Variety = "", const std::string &Scope = "") {
+ for (const auto *Attr : Attrs) {
+ // C++11-style attributes have specific version information associated with
+ // them. If the attribute has no scope, the version information must not
+ // have the default value (1), as that's incorrect. Instead, the unscoped
+ // attribute version information should be taken from the SD-6 standing
+ // document, which can be found at:
+ // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
+ int Version = 1;
+
+ if (Variety == "CXX11") {
+ std::vector<Record *> Spellings = Attr->getValueAsListOfDefs("Spellings");
+ for (const auto &Spelling : Spellings) {
+ if (Spelling->getValueAsString("Variety") == "CXX11") {
+ Version = static_cast<int>(Spelling->getValueAsInt("Version"));
+ if (Scope.empty() && Version == 1)
+ PrintError(Spelling->getLoc(), "C++ standard attributes must "
+ "have valid version information.");
+ break;
+ }
+ }
+ }
+
+ std::string Test;
+ if (Attr->isSubClassOf("TargetSpecificAttr")) {
+ const Record *R = Attr->getValueAsDef("Target");
+ std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
+ GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
+
+ // If this is the C++11 variety, also add in the LangOpts test.
+ if (Variety == "CXX11")
+ Test += " && LangOpts.CPlusPlus11";
+ else if (Variety == "C2x")
+ Test += " && LangOpts.DoubleSquareBracketAttributes";
+ } else if (Variety == "CXX11")
+ // C++11 mode should be checked against LangOpts, which is presumed to be
+ // present in the caller.
+ Test = "LangOpts.CPlusPlus11";
+ else if (Variety == "C2x")
+ Test = "LangOpts.DoubleSquareBracketAttributes";
+
+ std::string TestStr =
+ !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1";
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
+ for (const auto &S : Spellings)
+ if (Variety.empty() || (Variety == S.variety() &&
+ (Scope.empty() || Scope == S.nameSpace())))
+ OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n";
+ }
+ OS << " .Default(0);\n";
+}
+
+// Emits the list of spellings for attributes.
+void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Code to implement the __has_attribute logic", OS);
+
+ // Separate all of the attributes out into four group: generic, C++11, GNU,
+ // and declspecs. Then generate a big switch statement for each of them.
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::vector<Record *> Declspec, Microsoft, GNU, Pragma;
+ std::map<std::string, std::vector<Record *>> CXX, C2x;
+
+ // Walk over the list of all attributes, and split them out based on the
+ // spelling variety.
+ for (auto *R : Attrs) {
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
+ for (const auto &SI : Spellings) {
+ const std::string &Variety = SI.variety();
+ if (Variety == "GNU")
+ GNU.push_back(R);
+ else if (Variety == "Declspec")
+ Declspec.push_back(R);
+ else if (Variety == "Microsoft")
+ Microsoft.push_back(R);
+ else if (Variety == "CXX11")
+ CXX[SI.nameSpace()].push_back(R);
+ else if (Variety == "C2x")
+ C2x[SI.nameSpace()].push_back(R);
+ else if (Variety == "Pragma")
+ Pragma.push_back(R);
+ }
+ }
+
+ OS << "const llvm::Triple &T = Target.getTriple();\n";
+ OS << "switch (Syntax) {\n";
+ OS << "case AttrSyntax::GNU:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
+ OS << "case AttrSyntax::Declspec:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
+ OS << "case AttrSyntax::Microsoft:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
+ OS << "case AttrSyntax::Pragma:\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
+ auto fn = [&OS](const char *Spelling, const char *Variety,
+ const std::map<std::string, std::vector<Record *>> &List) {
+ OS << "case AttrSyntax::" << Variety << ": {\n";
+ // C++11-style attributes are further split out based on the Scope.
+ for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
+ if (I != List.cbegin())
+ OS << " else ";
+ if (I->first.empty())
+ OS << "if (ScopeName == \"\") {\n";
+ else
+ OS << "if (ScopeName == \"" << I->first << "\") {\n";
+ OS << " return llvm::StringSwitch<int>(Name)\n";
+ GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
+ OS << "}";
+ }
+ OS << "\n} break;\n";
+ };
+ fn("CXX11", "CXX", CXX);
+ fn("C2x", "C", C2x);
+ OS << "}\n";
+}
+
+void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Code to translate different attribute spellings "
+ "into internal identifiers", OS);
+
+ OS << " switch (AttrKind) {\n";
+
+ ParsedAttrMap Attrs = getParsedAttrList(Records);
+ for (const auto &I : Attrs) {
+ const Record &R = *I.second;
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+ OS << " case AT_" << I.first << ": {\n";
+ for (unsigned I = 0; I < Spellings.size(); ++ I) {
+ OS << " if (Name == \"" << Spellings[I].name() << "\" && "
+ << "SyntaxUsed == "
+ << StringSwitch<unsigned>(Spellings[I].variety())
+ .Case("GNU", 0)
+ .Case("CXX11", 1)
+ .Case("C2x", 2)
+ .Case("Declspec", 3)
+ .Case("Microsoft", 4)
+ .Case("Keyword", 5)
+ .Case("Pragma", 6)
+ .Default(0)
+ << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
+ << " return " << I << ";\n";
+ }
+
+ OS << " break;\n";
+ OS << " }\n";
+ }
+
+ OS << " }\n";
+ OS << " return 0;\n";
+}
+
+// Emits code used by RecursiveASTVisitor to visit attributes
+void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ // Write method declarations for Traverse* methods.
+ // We emit this here because we only generate methods for attributes that
+ // are declared as ASTNodes.
+ OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " bool Traverse"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
+ OS << " bool Visit"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
+ << " return true; \n"
+ << " }\n";
+ }
+ OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
+
+ // Write individual Traverse* methods for each attribute class.
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << "template <typename Derived>\n"
+ << "bool VISITORCLASS<Derived>::Traverse"
+ << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
+ << " if (!getDerived().VisitAttr(A))\n"
+ << " return false;\n"
+ << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
+ << " return false;\n";
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ for (const auto *Arg : ArgRecords)
+ createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
+
+ OS << " return true;\n";
+ OS << "}\n\n";
+ }
+
+ // Write generic Traverse routine
+ OS << "template <typename Derived>\n"
+ << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
+ << " if (!A)\n"
+ << " return true;\n"
+ << "\n"
+ << " switch (A->getKind()) {\n";
+
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ OS << " case attr::" << R.getName() << ":\n"
+ << " return getDerived().Traverse" << R.getName() << "Attr("
+ << "cast<" << R.getName() << "Attr>(A));\n";
+ }
+ OS << " }\n"; // end switch
+ OS << " llvm_unreachable(\"bad attribute kind\");\n";
+ OS << "}\n"; // end function
+ OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
+}
+
+void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
+ raw_ostream &OS,
+ bool AppliesToDecl) {
+
+ OS << " switch (At->getKind()) {\n";
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+ OS << " case attr::" << R.getName() << ": {\n";
+ bool ShouldClone = R.getValueAsBit("Clone") &&
+ (!AppliesToDecl ||
+ R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
+
+ if (!ShouldClone) {
+ OS << " return nullptr;\n";
+ OS << " }\n";
+ continue;
+ }
+
+ OS << " const auto *A = cast<"
+ << R.getName() << "Attr>(At);\n";
+ bool TDependent = R.getValueAsBit("TemplateDependent");
+
+ if (!TDependent) {
+ OS << " return A->clone(C);\n";
+ OS << " }\n";
+ continue;
+ }
+
+ std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
+ std::vector<std::unique_ptr<Argument>> Args;
+ Args.reserve(ArgRecords.size());
+
+ for (const auto *ArgRecord : ArgRecords)
+ Args.emplace_back(createArgument(*ArgRecord, R.getName()));
+
+ for (auto const &ai : Args)
+ ai->writeTemplateInstantiation(OS);
+
+ OS << " return new (C) " << R.getName() << "Attr(A->getLocation(), C";
+ for (auto const &ai : Args) {
+ OS << ", ";
+ ai->writeTemplateInstantiationArgs(OS);
+ }
+ OS << ", A->getSpellingListIndex());\n }\n";
+ }
+ OS << " } // end switch\n"
+ << " llvm_unreachable(\"Unknown attribute!\");\n"
+ << " return nullptr;\n";
+}
+
+// Emits code to instantiate dependent attributes on templates.
+void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Template instantiation code for attributes", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
+
+ OS << "namespace clang {\n"
+ << "namespace sema {\n\n"
+ << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
+ << "Sema &S,\n"
+ << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
+ EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
+ OS << "}\n\n"
+ << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
+ << " ASTContext &C, Sema &S,\n"
+ << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
+ EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
+ OS << "}\n\n"
+ << "} // end namespace sema\n"
+ << "} // end namespace clang\n";
+}
+
+// Emits the list of parsed attributes.
+void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("List of all attributes that Clang recognizes", OS);
+
+ OS << "#ifndef PARSED_ATTR\n";
+ OS << "#define PARSED_ATTR(NAME) NAME\n";
+ OS << "#endif\n\n";
+
+ ParsedAttrMap Names = getParsedAttrList(Records);
+ for (const auto &I : Names) {
+ OS << "PARSED_ATTR(" << I.first << ")\n";
+ }
+}
+
+static bool isArgVariadic(const Record &R, StringRef AttrName) {
+ return createArgument(R, AttrName)->isVariadic();
+}
+
+static void emitArgInfo(const Record &R, raw_ostream &OS) {
+ // This function will count the number of arguments specified for the
+ // attribute and emit the number of required arguments followed by the
+ // number of optional arguments.
+ std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
+ unsigned ArgCount = 0, OptCount = 0;
+ bool HasVariadic = false;
+ for (const auto *Arg : Args) {
+ // If the arg is fake, it's the user's job to supply it: general parsing
+ // logic shouldn't need to know anything about it.
+ if (Arg->getValueAsBit("Fake"))
+ continue;
+ Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
+ if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
+ HasVariadic = true;
+ }
+
+ // If there is a variadic argument, we will set the optional argument count
+ // to its largest value. Since it's currently a 4-bit number, we set it to 15.
+ OS << ArgCount << ", " << (HasVariadic ? 15 : OptCount);
+}
+
+static void GenerateDefaultAppertainsTo(raw_ostream &OS) {
+ OS << "static bool defaultAppertainsTo(Sema &, const ParsedAttr &,";
+ OS << "const Decl *) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string GetDiagnosticSpelling(const Record &R) {
+ std::string Ret = R.getValueAsString("DiagSpelling");
+ if (!Ret.empty())
+ return Ret;
+
+ // If we couldn't find the DiagSpelling in this object, we can check to see
+ // if the object is one that has a base, and if it is, loop up to the Base
+ // member recursively.
+ std::string Super = R.getSuperClasses().back().first->getName();
+ if (Super == "DDecl" || Super == "DStmt")
+ return GetDiagnosticSpelling(*R.getValueAsDef("Base"));
+
+ return "";
+}
+
+static std::string CalculateDiagnostic(const Record &S) {
+ // If the SubjectList object has a custom diagnostic associated with it,
+ // return that directly.
+ const StringRef CustomDiag = S.getValueAsString("CustomDiag");
+ if (!CustomDiag.empty())
+ return ("\"" + Twine(CustomDiag) + "\"").str();
+
+ std::vector<std::string> DiagList;
+ std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
+ for (const auto *Subject : Subjects) {
+ const Record &R = *Subject;
+ // Get the diagnostic text from the Decl or Stmt node given.
+ std::string V = GetDiagnosticSpelling(R);
+ if (V.empty()) {
+ PrintError(R.getLoc(),
+ "Could not determine diagnostic spelling for the node: " +
+ R.getName() + "; please add one to DeclNodes.td");
+ } else {
+ // The node may contain a list of elements itself, so split the elements
+ // by a comma, and trim any whitespace.
+ SmallVector<StringRef, 2> Frags;
+ llvm::SplitString(V, Frags, ",");
+ for (auto Str : Frags) {
+ DiagList.push_back(Str.trim());
+ }
+ }
+ }
+
+ if (DiagList.empty()) {
+ PrintFatalError(S.getLoc(),
+ "Could not deduce diagnostic argument for Attr subjects");
+ return "";
+ }
+
+ // FIXME: this is not particularly good for localization purposes and ideally
+ // should be part of the diagnostics engine itself with some sort of list
+ // specifier.
+
+ // A single member of the list can be returned directly.
+ if (DiagList.size() == 1)
+ return '"' + DiagList.front() + '"';
+
+ if (DiagList.size() == 2)
+ return '"' + DiagList[0] + " and " + DiagList[1] + '"';
+
+ // If there are more than two in the list, we serialize the first N - 1
+ // elements with a comma. This leaves the string in the state: foo, bar,
+ // baz (but misses quux). We can then add ", and " for the last element
+ // manually.
+ std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
+ return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
+}
+
+static std::string GetSubjectWithSuffix(const Record *R) {
+ const std::string &B = R->getName();
+ if (B == "DeclBase")
+ return "Decl";
+ return B + "Decl";
+}
+
+static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
+ return "is" + Subject.getName().str();
+}
+
+static std::string GenerateCustomAppertainsTo(const Record &Subject,
+ raw_ostream &OS) {
+ std::string FnName = functionNameForCustomAppertainsTo(Subject);
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomSubjectSet;
+ auto I = CustomSubjectSet.find(FnName);
+ if (I != CustomSubjectSet.end())
+ return *I;
+
+ Record *Base = Subject.getValueAsDef("Base");
+
+ // Not currently support custom subjects within custom subjects.
+ if (Base->isSubClassOf("SubsetSubject")) {
+ PrintFatalError(Subject.getLoc(),
+ "SubsetSubjects within SubsetSubjects is not supported");
+ return "";
+ }
+
+ OS << "static bool " << FnName << "(const Decl *D) {\n";
+ OS << " if (const auto *S = dyn_cast<";
+ OS << GetSubjectWithSuffix(Base);
+ OS << ">(D))\n";
+ OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
+ OS << " return false;\n";
+ OS << "}\n\n";
+
+ CustomSubjectSet.insert(FnName);
+ return FnName;
+}
+
+static std::string GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
+ // If the attribute does not contain a Subjects definition, then use the
+ // default appertainsTo logic.
+ if (Attr.isValueUnset("Subjects"))
+ return "defaultAppertainsTo";
+
+ const Record *SubjectObj = Attr.getValueAsDef("Subjects");
+ std::vector<Record*> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
+
+ // If the list of subjects is empty, it is assumed that the attribute
+ // appertains to everything.
+ if (Subjects.empty())
+ return "defaultAppertainsTo";
+
+ bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
+
+ // Otherwise, generate an appertainsTo check specific to this attribute which
+ // checks all of the given subjects against the Decl passed in. Return the
+ // name of that check to the caller.
+ //
+ // If D is null, that means the attribute was not applied to a declaration
+ // at all (for instance because it was applied to a type), or that the caller
+ // has determined that the check should fail (perhaps prior to the creation
+ // of the declaration).
+ std::string FnName = "check" + Attr.getName().str() + "AppertainsTo";
+ std::stringstream SS;
+ SS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr, ";
+ SS << "const Decl *D) {\n";
+ SS << " if (!D || (";
+ for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
+ // If the subject has custom code associated with it, generate a function
+ // for it. The function cannot be inlined into this check (yet) because it
+ // requires the subject to be of a specific type, and were that information
+ // inlined here, it would not support an attribute with multiple custom
+ // subjects.
+ if ((*I)->isSubClassOf("SubsetSubject")) {
+ SS << "!" << GenerateCustomAppertainsTo(**I, OS) << "(D)";
+ } else {
+ SS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
+ }
+
+ if (I + 1 != E)
+ SS << " && ";
+ }
+ SS << ")) {\n";
+ SS << " S.Diag(Attr.getLoc(), diag::";
+ SS << (Warn ? "warn_attribute_wrong_decl_type_str" :
+ "err_attribute_wrong_decl_type_str");
+ SS << ")\n";
+ SS << " << Attr << ";
+ SS << CalculateDiagnostic(*SubjectObj) << ";\n";
+ SS << " return false;\n";
+ SS << " }\n";
+ SS << " return true;\n";
+ SS << "}\n\n";
+
+ OS << SS.str();
+ return FnName;
+}
+
+static void
+emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
+ raw_ostream &OS) {
+ OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
+ << AttributeSubjectMatchRule::EnumName << " rule) {\n";
+ OS << " switch (rule) {\n";
+ for (const auto &Rule : PragmaAttributeSupport.Rules) {
+ if (Rule.isAbstractRule()) {
+ OS << " case " << Rule.getEnumValue() << ":\n";
+ OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
+ OS << " return false;\n";
+ continue;
+ }
+ std::vector<Record *> Subjects = Rule.getSubjects();
+ assert(!Subjects.empty() && "Missing subjects");
+ OS << " case " << Rule.getEnumValue() << ":\n";
+ OS << " return ";
+ for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
+ // If the subject has custom code associated with it, use the function
+ // that was generated for GenerateAppertainsTo to check if the declaration
+ // is valid.
+ if ((*I)->isSubClassOf("SubsetSubject"))
+ OS << functionNameForCustomAppertainsTo(**I) << "(D)";
+ else
+ OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
+
+ if (I + 1 != E)
+ OS << " || ";
+ }
+ OS << ";\n";
+ }
+ OS << " }\n";
+ OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
+ OS << "}\n\n";
+}
+
+static void GenerateDefaultLangOptRequirements(raw_ostream &OS) {
+ OS << "static bool defaultDiagnoseLangOpts(Sema &, ";
+ OS << "const ParsedAttr &) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateLangOptRequirements(const Record &R,
+ raw_ostream &OS) {
+ // If the attribute has an empty or unset list of language requirements,
+ // return the default handler.
+ std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
+ if (LangOpts.empty())
+ return "defaultDiagnoseLangOpts";
+
+ // Generate a unique function name for the diagnostic test. The list of
+ // options should usually be short (one or two options), and the
+ // uniqueness isn't strictly necessary (it is just for codegen efficiency).
+ std::string FnName = "check";
+ for (auto I = LangOpts.begin(), E = LangOpts.end(); I != E; ++I)
+ FnName += (*I)->getValueAsString("Name");
+ FnName += "LangOpts";
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomLangOptsSet;
+ auto I = CustomLangOptsSet.find(FnName);
+ if (I != CustomLangOptsSet.end())
+ return *I;
+
+ OS << "static bool " << FnName << "(Sema &S, const ParsedAttr &Attr) {\n";
+ OS << " auto &LangOpts = S.LangOpts;\n";
+ OS << " if (" << GenerateTestExpression(LangOpts) << ")\n";
+ OS << " return true;\n\n";
+ OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) ";
+ OS << "<< Attr.getName();\n";
+ OS << " return false;\n";
+ OS << "}\n\n";
+
+ CustomLangOptsSet.insert(FnName);
+ return FnName;
+}
+
+static void GenerateDefaultTargetRequirements(raw_ostream &OS) {
+ OS << "static bool defaultTargetRequirements(const TargetInfo &) {\n";
+ OS << " return true;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateTargetRequirements(const Record &Attr,
+ const ParsedAttrMap &Dupes,
+ raw_ostream &OS) {
+ // If the attribute is not a target specific attribute, return the default
+ // target handler.
+ if (!Attr.isSubClassOf("TargetSpecificAttr"))
+ return "defaultTargetRequirements";
+
+ // Get the list of architectures to be tested for.
+ const Record *R = Attr.getValueAsDef("Target");
+ std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
+
+ // If there are other attributes which share the same parsed attribute kind,
+ // such as target-specific attributes with a shared spelling, collapse the
+ // duplicate architectures. This is required because a shared target-specific
+ // attribute has only one ParsedAttr::Kind enumeration value, but it
+ // applies to multiple target architectures. In order for the attribute to be
+ // considered valid, all of its architectures need to be included.
+ if (!Attr.isValueUnset("ParseKind")) {
+ const StringRef APK = Attr.getValueAsString("ParseKind");
+ for (const auto &I : Dupes) {
+ if (I.first == APK) {
+ std::vector<StringRef> DA =
+ I.second->getValueAsDef("Target")->getValueAsListOfStrings(
+ "Arches");
+ Arches.insert(Arches.end(), DA.begin(), DA.end());
+ }
+ }
+ }
+
+ std::string FnName = "isTarget";
+ std::string Test;
+ bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
+
+ // If this code has already been generated, simply return the previous
+ // instance of it.
+ static std::set<std::string> CustomTargetSet;
+ auto I = CustomTargetSet.find(FnName);
+ if (I != CustomTargetSet.end())
+ return *I;
+
+ OS << "static bool " << FnName << "(const TargetInfo &Target) {\n";
+ if (UsesT)
+ OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
+ OS << " return " << Test << ";\n";
+ OS << "}\n\n";
+
+ CustomTargetSet.insert(FnName);
+ return FnName;
+}
+
+static void GenerateDefaultSpellingIndexToSemanticSpelling(raw_ostream &OS) {
+ OS << "static unsigned defaultSpellingIndexToSemanticSpelling("
+ << "const ParsedAttr &Attr) {\n";
+ OS << " return UINT_MAX;\n";
+ OS << "}\n\n";
+}
+
+static std::string GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
+ raw_ostream &OS) {
+ // If the attribute does not have a semantic form, we can bail out early.
+ if (!Attr.getValueAsBit("ASTNode"))
+ return "defaultSpellingIndexToSemanticSpelling";
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+
+ // If there are zero or one spellings, or all of the spellings share the same
+ // name, we can also bail out early.
+ if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
+ return "defaultSpellingIndexToSemanticSpelling";
+
+ // Generate the enumeration we will use for the mapping.
+ SemanticSpellingMap SemanticToSyntacticMap;
+ std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
+ std::string Name = Attr.getName().str() + "AttrSpellingMap";
+
+ OS << "static unsigned " << Name << "(const ParsedAttr &Attr) {\n";
+ OS << Enum;
+ OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
+ WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
+ OS << "}\n\n";
+
+ return Name;
+}
+
+static bool IsKnownToGCC(const Record &Attr) {
+ // Look at the spellings for this subject; if there are any spellings which
+ // claim to be known to GCC, the attribute is known to GCC.
+ return llvm::any_of(
+ GetFlattenedSpellings(Attr),
+ [](const FlattenedSpelling &S) { return S.knownToGCC(); });
+}
+
+/// Emits the parsed attribute helpers
+void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Parsed attribute helpers", OS);
+
+ PragmaClangAttributeSupport &PragmaAttributeSupport =
+ getPragmaAttributeSupport(Records);
+
+ // Get the list of parsed attributes, and accept the optional list of
+ // duplicates due to the ParseKind.
+ ParsedAttrMap Dupes;
+ ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
+
+ // Generate the default appertainsTo, target and language option diagnostic,
+ // and spelling list index mapping methods.
+ GenerateDefaultAppertainsTo(OS);
+ GenerateDefaultLangOptRequirements(OS);
+ GenerateDefaultTargetRequirements(OS);
+ GenerateDefaultSpellingIndexToSemanticSpelling(OS);
+
+ // Generate the appertainsTo diagnostic methods and write their names into
+ // another mapping. At the same time, generate the AttrInfoMap object
+ // contents. Due to the reliance on generated code, use separate streams so
+ // that code will not be interleaved.
+ std::string Buffer;
+ raw_string_ostream SS {Buffer};
+ for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
+ // TODO: If the attribute's kind appears in the list of duplicates, that is
+ // because it is a target-specific attribute that appears multiple times.
+ // It would be beneficial to test whether the duplicates are "similar
+ // enough" to each other to not cause problems. For instance, check that
+ // the spellings are identical, and custom parsing rules match, etc.
+
+ // We need to generate struct instances based off ParsedAttrInfo from
+ // ParsedAttr.cpp.
+ SS << " { ";
+ emitArgInfo(*I->second, SS);
+ SS << ", " << I->second->getValueAsBit("HasCustomParsing");
+ SS << ", " << I->second->isSubClassOf("TargetSpecificAttr");
+ SS << ", "
+ << (I->second->isSubClassOf("TypeAttr") ||
+ I->second->isSubClassOf("DeclOrTypeAttr"));
+ SS << ", " << I->second->isSubClassOf("StmtAttr");
+ SS << ", " << IsKnownToGCC(*I->second);
+ SS << ", " << PragmaAttributeSupport.isAttributedSupported(*I->second);
+ SS << ", " << GenerateAppertainsTo(*I->second, OS);
+ SS << ", " << GenerateLangOptRequirements(*I->second, OS);
+ SS << ", " << GenerateTargetRequirements(*I->second, Dupes, OS);
+ SS << ", " << GenerateSpellingIndexToSemanticSpelling(*I->second, OS);
+ SS << ", "
+ << PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
+ SS << " }";
+
+ if (I + 1 != E)
+ SS << ",";
+
+ SS << " // AT_" << I->first << "\n";
+ }
+
+ OS << "static const ParsedAttrInfo AttrInfoMap[ParsedAttr::UnknownAttribute "
+ "+ 1] = {\n";
+ OS << SS.str();
+ OS << "};\n\n";
+
+ // Generate the attribute match rules.
+ emitAttributeMatchRules(PragmaAttributeSupport, OS);
+}
+
+// Emits the kind list of parsed attributes
+void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute name matcher", OS);
+
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
+ Keywords, Pragma, C2x;
+ std::set<std::string> Seen;
+ for (const auto *A : Attrs) {
+ const Record &Attr = *A;
+
+ bool SemaHandler = Attr.getValueAsBit("SemaHandler");
+ bool Ignored = Attr.getValueAsBit("Ignored");
+ if (SemaHandler || Ignored) {
+ // Attribute spellings can be shared between target-specific attributes,
+ // and can be shared between syntaxes for the same attribute. For
+ // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
+ // specific attribute, or MSP430-specific attribute. Additionally, an
+ // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
+ // for the same semantic attribute. Ultimately, we need to map each of
+ // these to a single ParsedAttr::Kind value, but the StringMatcher
+ // class cannot handle duplicate match strings. So we generate a list of
+ // string to match based on the syntax, and emit multiple string matchers
+ // depending on the syntax used.
+ std::string AttrName;
+ if (Attr.isSubClassOf("TargetSpecificAttr") &&
+ !Attr.isValueUnset("ParseKind")) {
+ AttrName = Attr.getValueAsString("ParseKind");
+ if (Seen.find(AttrName) != Seen.end())
+ continue;
+ Seen.insert(AttrName);
+ } else
+ AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
+ for (const auto &S : Spellings) {
+ const std::string &RawSpelling = S.name();
+ std::vector<StringMatcher::StringPair> *Matches = nullptr;
+ std::string Spelling;
+ const std::string &Variety = S.variety();
+ if (Variety == "CXX11") {
+ Matches = &CXX11;
+ Spelling += S.nameSpace();
+ Spelling += "::";
+ } else if (Variety == "C2x") {
+ Matches = &C2x;
+ Spelling += S.nameSpace();
+ Spelling += "::";
+ } else if (Variety == "GNU")
+ Matches = &GNU;
+ else if (Variety == "Declspec")
+ Matches = &Declspec;
+ else if (Variety == "Microsoft")
+ Matches = &Microsoft;
+ else if (Variety == "Keyword")
+ Matches = &Keywords;
+ else if (Variety == "Pragma")
+ Matches = &Pragma;
+
+ assert(Matches && "Unsupported spelling variety found");
+
+ if (Variety == "GNU")
+ Spelling += NormalizeGNUAttrSpelling(RawSpelling);
+ else
+ Spelling += RawSpelling;
+
+ if (SemaHandler)
+ Matches->push_back(StringMatcher::StringPair(
+ Spelling, "return ParsedAttr::AT_" + AttrName + ";"));
+ else
+ Matches->push_back(StringMatcher::StringPair(
+ Spelling, "return ParsedAttr::IgnoredAttribute;"));
+ }
+ }
+ }
+
+ OS << "static ParsedAttr::Kind getAttrKind(StringRef Name, ";
+ OS << "ParsedAttr::Syntax Syntax) {\n";
+ OS << " if (ParsedAttr::AS_GNU == Syntax) {\n";
+ StringMatcher("Name", GNU, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_Declspec == Syntax) {\n";
+ StringMatcher("Name", Declspec, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_Microsoft == Syntax) {\n";
+ StringMatcher("Name", Microsoft, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_CXX11 == Syntax) {\n";
+ StringMatcher("Name", CXX11, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_C2x == Syntax) {\n";
+ StringMatcher("Name", C2x, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_Keyword == Syntax || ";
+ OS << "ParsedAttr::AS_ContextSensitiveKeyword == Syntax) {\n";
+ StringMatcher("Name", Keywords, OS).Emit();
+ OS << " } else if (ParsedAttr::AS_Pragma == Syntax) {\n";
+ StringMatcher("Name", Pragma, OS).Emit();
+ OS << " }\n";
+ OS << " return ParsedAttr::UnknownAttribute;\n"
+ << "}\n";
+}
+
+// Emits the code to dump an attribute.
+void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute text node dumper", OS);
+
+ std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ // If the attribute has a semantically-meaningful name (which is determined
+ // by whether there is a Spelling enumeration for it), then write out the
+ // spelling used for the attribute.
+
+ std::string FunctionContent;
+ llvm::raw_string_ostream SS(FunctionContent);
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
+ if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
+ SS << " OS << \" \" << A->getSpelling();\n";
+
+ Args = R.getValueAsListOfDefs("Args");
+ for (const auto *Arg : Args)
+ createArgument(*Arg, R.getName())->writeDump(SS);
+
+ if (SS.tell()) {
+ OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
+ << "Attr *A) {\n";
+ if (!Args.empty())
+ OS << " const auto *SA = cast<" << R.getName()
+ << "Attr>(A); (void)SA;\n";
+ OS << SS.str();
+ OS << " }\n";
+ }
+ }
+}
+
+void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
+ emitSourceFileHeader("Attribute text node traverser", OS);
+
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
+ for (const auto *Attr : Attrs) {
+ const Record &R = *Attr;
+ if (!R.getValueAsBit("ASTNode"))
+ continue;
+
+ std::string FunctionContent;
+ llvm::raw_string_ostream SS(FunctionContent);
+
+ Args = R.getValueAsListOfDefs("Args");
+ for (const auto *Arg : Args)
+ createArgument(*Arg, R.getName())->writeDumpChildren(SS);
+ if (SS.tell()) {
+ OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
+ << "Attr *A) {\n";
+ if (!Args.empty())
+ OS << " const auto *SA = cast<" << R.getName()
+ << "Attr>(A); (void)SA;\n";
+ OS << SS.str();
+ OS << " }\n";
+ }
+ }
+}
+
+void EmitClangAttrParserStringSwitches(RecordKeeper &Records,
+ raw_ostream &OS) {
+ emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS);
+ emitClangAttrArgContextList(Records, OS);
+ emitClangAttrIdentifierArgList(Records, OS);
+ emitClangAttrVariadicIdentifierArgList(Records, OS);
+ emitClangAttrThisIsaIdentifierArgList(Records, OS);
+ emitClangAttrTypeArgList(Records, OS);
+ emitClangAttrLateParsedList(Records, OS);
+}
+
+void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
+ raw_ostream &OS) {
+ getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
+}
+
+enum class SpellingKind {
+ GNU,
+ CXX11,
+ C2x,
+ Declspec,
+ Microsoft,
+ Keyword,
+ Pragma,
+};
+static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1;
+
+class SpellingList {
+ std::vector<std::string> Spellings[NumSpellingKinds];
+
+public:
+ ArrayRef<std::string> operator[](SpellingKind K) const {
+ return Spellings[(size_t)K];
+ }
+
+ void add(const Record &Attr, FlattenedSpelling Spelling) {
+ SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
+ .Case("GNU", SpellingKind::GNU)
+ .Case("CXX11", SpellingKind::CXX11)
+ .Case("C2x", SpellingKind::C2x)
+ .Case("Declspec", SpellingKind::Declspec)
+ .Case("Microsoft", SpellingKind::Microsoft)
+ .Case("Keyword", SpellingKind::Keyword)
+ .Case("Pragma", SpellingKind::Pragma);
+ std::string Name;
+ if (!Spelling.nameSpace().empty()) {
+ switch (Kind) {
+ case SpellingKind::CXX11:
+ case SpellingKind::C2x:
+ Name = Spelling.nameSpace() + "::";
+ break;
+ case SpellingKind::Pragma:
+ Name = Spelling.nameSpace() + " ";
+ break;
+ default:
+ PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
+ }
+ }
+ Name += Spelling.name();
+
+ Spellings[(size_t)Kind].push_back(Name);
+ }
+};
+
+class DocumentationData {
+public:
+ const Record *Documentation;
+ const Record *Attribute;
+ std::string Heading;
+ SpellingList SupportedSpellings;
+
+ DocumentationData(const Record &Documentation, const Record &Attribute,
+ std::pair<std::string, SpellingList> HeadingAndSpellings)
+ : Documentation(&Documentation), Attribute(&Attribute),
+ Heading(std::move(HeadingAndSpellings.first)),
+ SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
+};
+
+static void WriteCategoryHeader(const Record *DocCategory,
+ raw_ostream &OS) {
+ const StringRef Name = DocCategory->getValueAsString("Name");
+ OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
+
+ // If there is content, print that as well.
+ const StringRef ContentStr = DocCategory->getValueAsString("Content");
+ // Trim leading and trailing newlines and spaces.
+ OS << ContentStr.trim();
+
+ OS << "\n\n";
+}
+
+static std::pair<std::string, SpellingList>
+GetAttributeHeadingAndSpellings(const Record &Documentation,
+ const Record &Attribute) {
+ // FIXME: there is no way to have a per-spelling category for the attribute
+ // documentation. This may not be a limiting factor since the spellings
+ // should generally be consistently applied across the category.
+
+ std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
+ if (Spellings.empty())
+ PrintFatalError(Attribute.getLoc(),
+ "Attribute has no supported spellings; cannot be "
+ "documented");
+
+ // Determine the heading to be used for this attribute.
+ std::string Heading = Documentation.getValueAsString("Heading");
+ if (Heading.empty()) {
+ // If there's only one spelling, we can simply use that.
+ if (Spellings.size() == 1)
+ Heading = Spellings.begin()->name();
+ else {
+ std::set<std::string> Uniques;
+ for (auto I = Spellings.begin(), E = Spellings.end();
+ I != E && Uniques.size() <= 1; ++I) {
+ std::string Spelling = NormalizeNameForSpellingComparison(I->name());
+ Uniques.insert(Spelling);
+ }
+ // If the semantic map has only one spelling, that is sufficient for our
+ // needs.
+ if (Uniques.size() == 1)
+ Heading = *Uniques.begin();
+ }
+ }
+
+ // If the heading is still empty, it is an error.
+ if (Heading.empty())
+ PrintFatalError(Attribute.getLoc(),
+ "This attribute requires a heading to be specified");
+
+ SpellingList SupportedSpellings;
+ for (const auto &I : Spellings)
+ SupportedSpellings.add(Attribute, I);
+
+ return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
+}
+
+static void WriteDocumentation(RecordKeeper &Records,
+ const DocumentationData &Doc, raw_ostream &OS) {
+ OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
+
+ // List what spelling syntaxes the attribute supports.
+ OS << ".. csv-table:: Supported Syntaxes\n";
+ OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\",";
+ OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n";
+ OS << " \"";
+ for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
+ SpellingKind K = (SpellingKind)Kind;
+ // TODO: List Microsoft (IDL-style attribute) spellings once we fully
+ // support them.
+ if (K == SpellingKind::Microsoft)
+ continue;
+
+ bool PrintedAny = false;
+ for (StringRef Spelling : Doc.SupportedSpellings[K]) {
+ if (PrintedAny)
+ OS << " |br| ";
+ OS << "``" << Spelling << "``";
+ PrintedAny = true;
+ }
+
+ OS << "\",\"";
+ }
+
+ if (getPragmaAttributeSupport(Records).isAttributedSupported(
+ *Doc.Attribute))
+ OS << "Yes";
+ OS << "\"\n\n";
+
+ // If the attribute is deprecated, print a message about it, and possibly
+ // provide a replacement attribute.
+ if (!Doc.Documentation->isValueUnset("Deprecated")) {
+ OS << "This attribute has been deprecated, and may be removed in a future "
+ << "version of Clang.";
+ const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
+ const StringRef Replacement = Deprecated.getValueAsString("Replacement");
+ if (!Replacement.empty())
+ OS << " This attribute has been superseded by ``" << Replacement
+ << "``.";
+ OS << "\n\n";
+ }
+
+ const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
+ // Trim leading and trailing newlines and spaces.
+ OS << ContentStr.trim();
+
+ OS << "\n\n\n";
+}
+
+void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
+ // Get the documentation introduction paragraph.
+ const Record *Documentation = Records.getDef("GlobalDocumentation");
+ if (!Documentation) {
+ PrintFatalError("The Documentation top-level definition is missing, "
+ "no documentation will be generated.");
+ return;
+ }
+
+ OS << Documentation->getValueAsString("Intro") << "\n";
+
+ // Gather the Documentation lists from each of the attributes, based on the
+ // category provided.
+ std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
+ std::map<const Record *, std::vector<DocumentationData>> SplitDocs;
+ for (const auto *A : Attrs) {
+ const Record &Attr = *A;
+ std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
+ for (const auto *D : Docs) {
+ const Record &Doc = *D;
+ const Record *Category = Doc.getValueAsDef("Category");
+ // If the category is "undocumented", then there cannot be any other
+ // documentation categories (otherwise, the attribute would become
+ // documented).
+ const StringRef Cat = Category->getValueAsString("Name");
+ bool Undocumented = Cat == "Undocumented";
+ if (Undocumented && Docs.size() > 1)
+ PrintFatalError(Doc.getLoc(),
+ "Attribute is \"Undocumented\", but has multiple "
+ "documentation categories");
+
+ if (!Undocumented)
+ SplitDocs[Category].push_back(DocumentationData(
+ Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr)));
+ }
+ }
+
+ // Having split the attributes out based on what documentation goes where,
+ // we can begin to generate sections of documentation.
+ for (auto &I : SplitDocs) {
+ WriteCategoryHeader(I.first, OS);
+
+ llvm::sort(I.second,
+ [](const DocumentationData &D1, const DocumentationData &D2) {
+ return D1.Heading < D2.Heading;
+ });
+
+ // Walk over each of the attributes in the category and write out their
+ // documentation.
+ for (const auto &Doc : I.second)
+ WriteDocumentation(Records, Doc, OS);
+ }
+}
+
+void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
+ raw_ostream &OS) {
+ PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
+ ParsedAttrMap Attrs = getParsedAttrList(Records);
+ OS << "#pragma clang attribute supports the following attributes:\n";
+ for (const auto &I : Attrs) {
+ if (!Support.isAttributedSupported(*I.second))
+ continue;
+ OS << I.first;
+ if (I.second->isValueUnset("Subjects")) {
+ OS << " ()\n";
+ continue;
+ }
+ const Record *SubjectObj = I.second->getValueAsDef("Subjects");
+ std::vector<Record *> Subjects =
+ SubjectObj->getValueAsListOfDefs("Subjects");
+ OS << " (";
+ for (const auto &Subject : llvm::enumerate(Subjects)) {
+ if (Subject.index())
+ OS << ", ";
+ PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
+ Support.SubjectsToRules.find(Subject.value())->getSecond();
+ if (RuleSet.isRule()) {
+ OS << RuleSet.getRule().getEnumValueName();
+ continue;
+ }
+ OS << "(";
+ for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
+ if (Rule.index())
+ OS << ", ";
+ OS << Rule.value().getEnumValueName();
+ }
+ OS << ")";
+ }
+ OS << ")\n";
+ }
+ OS << "End of supported attributes.\n";
+}
+
+} // end namespace clang