summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lld/ELF/ICF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/lld/ELF/ICF.cpp')
-rw-r--r--contrib/llvm-project/lld/ELF/ICF.cpp510
1 files changed, 510 insertions, 0 deletions
diff --git a/contrib/llvm-project/lld/ELF/ICF.cpp b/contrib/llvm-project/lld/ELF/ICF.cpp
new file mode 100644
index 000000000000..8b01d06b0248
--- /dev/null
+++ b/contrib/llvm-project/lld/ELF/ICF.cpp
@@ -0,0 +1,510 @@
+//===- ICF.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// ICF is short for Identical Code Folding. This is a size optimization to
+// identify and merge two or more read-only sections (typically functions)
+// that happened to have the same contents. It usually reduces output size
+// by a few percent.
+//
+// In ICF, two sections are considered identical if they have the same
+// section flags, section data, and relocations. Relocations are tricky,
+// because two relocations are considered the same if they have the same
+// relocation types, values, and if they point to the same sections *in
+// terms of ICF*.
+//
+// Here is an example. If foo and bar defined below are compiled to the
+// same machine instructions, ICF can and should merge the two, although
+// their relocations point to each other.
+//
+// void foo() { bar(); }
+// void bar() { foo(); }
+//
+// If you merge the two, their relocations point to the same section and
+// thus you know they are mergeable, but how do you know they are
+// mergeable in the first place? This is not an easy problem to solve.
+//
+// What we are doing in LLD is to partition sections into equivalence
+// classes. Sections in the same equivalence class when the algorithm
+// terminates are considered identical. Here are details:
+//
+// 1. First, we partition sections using their hash values as keys. Hash
+// values contain section types, section contents and numbers of
+// relocations. During this step, relocation targets are not taken into
+// account. We just put sections that apparently differ into different
+// equivalence classes.
+//
+// 2. Next, for each equivalence class, we visit sections to compare
+// relocation targets. Relocation targets are considered equivalent if
+// their targets are in the same equivalence class. Sections with
+// different relocation targets are put into different equivalence
+// clases.
+//
+// 3. If we split an equivalence class in step 2, two relocations
+// previously target the same equivalence class may now target
+// different equivalence classes. Therefore, we repeat step 2 until a
+// convergence is obtained.
+//
+// 4. For each equivalence class C, pick an arbitrary section in C, and
+// merge all the other sections in C with it.
+//
+// For small programs, this algorithm needs 3-5 iterations. For large
+// programs such as Chromium, it takes more than 20 iterations.
+//
+// This algorithm was mentioned as an "optimistic algorithm" in [1],
+// though gold implements a different algorithm than this.
+//
+// We parallelize each step so that multiple threads can work on different
+// equivalence classes concurrently. That gave us a large performance
+// boost when applying ICF on large programs. For example, MSVC link.exe
+// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
+// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
+// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
+// faster than MSVC or gold though.
+//
+// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
+// in the Gold Linker
+// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
+//
+//===----------------------------------------------------------------------===//
+
+#include "ICF.h"
+#include "Config.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Writer.h"
+#include "lld/Common/Threads.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/Object/ELF.h"
+#include "llvm/Support/xxhash.h"
+#include <algorithm>
+#include <atomic>
+
+using namespace lld;
+using namespace lld::elf;
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+
+namespace {
+template <class ELFT> class ICF {
+public:
+ void run();
+
+private:
+ void segregate(size_t begin, size_t end, bool constant);
+
+ template <class RelTy>
+ bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
+ const InputSection *b, ArrayRef<RelTy> relsB);
+
+ template <class RelTy>
+ bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
+ const InputSection *b, ArrayRef<RelTy> relsB);
+
+ bool equalsConstant(const InputSection *a, const InputSection *b);
+ bool equalsVariable(const InputSection *a, const InputSection *b);
+
+ size_t findBoundary(size_t begin, size_t end);
+
+ void forEachClassRange(size_t begin, size_t end,
+ llvm::function_ref<void(size_t, size_t)> fn);
+
+ void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
+
+ std::vector<InputSection *> sections;
+
+ // We repeat the main loop while `Repeat` is true.
+ std::atomic<bool> repeat;
+
+ // The main loop counter.
+ int cnt = 0;
+
+ // We have two locations for equivalence classes. On the first iteration
+ // of the main loop, Class[0] has a valid value, and Class[1] contains
+ // garbage. We read equivalence classes from slot 0 and write to slot 1.
+ // So, Class[0] represents the current class, and Class[1] represents
+ // the next class. On each iteration, we switch their roles and use them
+ // alternately.
+ //
+ // Why are we doing this? Recall that other threads may be working on
+ // other equivalence classes in parallel. They may read sections that we
+ // are updating. We cannot update equivalence classes in place because
+ // it breaks the invariance that all possibly-identical sections must be
+ // in the same equivalence class at any moment. In other words, the for
+ // loop to update equivalence classes is not atomic, and that is
+ // observable from other threads. By writing new classes to other
+ // places, we can keep the invariance.
+ //
+ // Below, `Current` has the index of the current class, and `Next` has
+ // the index of the next class. If threading is enabled, they are either
+ // (0, 1) or (1, 0).
+ //
+ // Note on single-thread: if that's the case, they are always (0, 0)
+ // because we can safely read the next class without worrying about race
+ // conditions. Using the same location makes this algorithm converge
+ // faster because it uses results of the same iteration earlier.
+ int current = 0;
+ int next = 0;
+};
+}
+
+// Returns true if section S is subject of ICF.
+static bool isEligible(InputSection *s) {
+ if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
+ return false;
+
+ // Don't merge writable sections. .data.rel.ro sections are marked as writable
+ // but are semantically read-only.
+ if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
+ !s->name.startswith(".data.rel.ro."))
+ return false;
+
+ // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
+ // so we don't consider them for ICF individually.
+ if (s->flags & SHF_LINK_ORDER)
+ return false;
+
+ // Don't merge synthetic sections as their Data member is not valid and empty.
+ // The Data member needs to be valid for ICF as it is used by ICF to determine
+ // the equality of section contents.
+ if (isa<SyntheticSection>(s))
+ return false;
+
+ // .init and .fini contains instructions that must be executed to initialize
+ // and finalize the process. They cannot and should not be merged.
+ if (s->name == ".init" || s->name == ".fini")
+ return false;
+
+ // A user program may enumerate sections named with a C identifier using
+ // __start_* and __stop_* symbols. We cannot ICF any such sections because
+ // that could change program semantics.
+ if (isValidCIdentifier(s->name))
+ return false;
+
+ return true;
+}
+
+// Split an equivalence class into smaller classes.
+template <class ELFT>
+void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
+ // This loop rearranges sections in [Begin, End) so that all sections
+ // that are equal in terms of equals{Constant,Variable} are contiguous
+ // in [Begin, End).
+ //
+ // The algorithm is quadratic in the worst case, but that is not an
+ // issue in practice because the number of the distinct sections in
+ // each range is usually very small.
+
+ while (begin < end) {
+ // Divide [Begin, End) into two. Let Mid be the start index of the
+ // second group.
+ auto bound =
+ std::stable_partition(sections.begin() + begin + 1,
+ sections.begin() + end, [&](InputSection *s) {
+ if (constant)
+ return equalsConstant(sections[begin], s);
+ return equalsVariable(sections[begin], s);
+ });
+ size_t mid = bound - sections.begin();
+
+ // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
+ // updating the sections in [Begin, Mid). We use Mid as an equivalence
+ // class ID because every group ends with a unique index.
+ for (size_t i = begin; i < mid; ++i)
+ sections[i]->eqClass[next] = mid;
+
+ // If we created a group, we need to iterate the main loop again.
+ if (mid != end)
+ repeat = true;
+
+ begin = mid;
+ }
+}
+
+// Compare two lists of relocations.
+template <class ELFT>
+template <class RelTy>
+bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
+ const InputSection *secB, ArrayRef<RelTy> rb) {
+ for (size_t i = 0; i < ra.size(); ++i) {
+ if (ra[i].r_offset != rb[i].r_offset ||
+ ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
+ return false;
+
+ uint64_t addA = getAddend<ELFT>(ra[i]);
+ uint64_t addB = getAddend<ELFT>(rb[i]);
+
+ Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
+ Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
+ if (&sa == &sb) {
+ if (addA == addB)
+ continue;
+ return false;
+ }
+
+ auto *da = dyn_cast<Defined>(&sa);
+ auto *db = dyn_cast<Defined>(&sb);
+
+ // Placeholder symbols generated by linker scripts look the same now but
+ // may have different values later.
+ if (!da || !db || da->scriptDefined || db->scriptDefined)
+ return false;
+
+ // Relocations referring to absolute symbols are constant-equal if their
+ // values are equal.
+ if (!da->section && !db->section && da->value + addA == db->value + addB)
+ continue;
+ if (!da->section || !db->section)
+ return false;
+
+ if (da->section->kind() != db->section->kind())
+ return false;
+
+ // Relocations referring to InputSections are constant-equal if their
+ // section offsets are equal.
+ if (isa<InputSection>(da->section)) {
+ if (da->value + addA == db->value + addB)
+ continue;
+ return false;
+ }
+
+ // Relocations referring to MergeInputSections are constant-equal if their
+ // offsets in the output section are equal.
+ auto *x = dyn_cast<MergeInputSection>(da->section);
+ if (!x)
+ return false;
+ auto *y = cast<MergeInputSection>(db->section);
+ if (x->getParent() != y->getParent())
+ return false;
+
+ uint64_t offsetA =
+ sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
+ uint64_t offsetB =
+ sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
+ if (offsetA != offsetB)
+ return false;
+ }
+
+ return true;
+}
+
+// Compare "non-moving" part of two InputSections, namely everything
+// except relocation targets.
+template <class ELFT>
+bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
+ if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
+ a->getSize() != b->getSize() || a->data() != b->data())
+ return false;
+
+ // If two sections have different output sections, we cannot merge them.
+ // FIXME: This doesn't do the right thing in the case where there is a linker
+ // script. We probably need to move output section assignment before ICF to
+ // get the correct behaviour here.
+ if (getOutputSectionName(a) != getOutputSectionName(b))
+ return false;
+
+ if (a->areRelocsRela)
+ return constantEq(a, a->template relas<ELFT>(), b,
+ b->template relas<ELFT>());
+ return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
+}
+
+// Compare two lists of relocations. Returns true if all pairs of
+// relocations point to the same section in terms of ICF.
+template <class ELFT>
+template <class RelTy>
+bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
+ const InputSection *secB, ArrayRef<RelTy> rb) {
+ assert(ra.size() == rb.size());
+
+ for (size_t i = 0; i < ra.size(); ++i) {
+ // The two sections must be identical.
+ Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
+ Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
+ if (&sa == &sb)
+ continue;
+
+ auto *da = cast<Defined>(&sa);
+ auto *db = cast<Defined>(&sb);
+
+ // We already dealt with absolute and non-InputSection symbols in
+ // constantEq, and for InputSections we have already checked everything
+ // except the equivalence class.
+ if (!da->section)
+ continue;
+ auto *x = dyn_cast<InputSection>(da->section);
+ if (!x)
+ continue;
+ auto *y = cast<InputSection>(db->section);
+
+ // Ineligible sections are in the special equivalence class 0.
+ // They can never be the same in terms of the equivalence class.
+ if (x->eqClass[current] == 0)
+ return false;
+ if (x->eqClass[current] != y->eqClass[current])
+ return false;
+ };
+
+ return true;
+}
+
+// Compare "moving" part of two InputSections, namely relocation targets.
+template <class ELFT>
+bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
+ if (a->areRelocsRela)
+ return variableEq(a, a->template relas<ELFT>(), b,
+ b->template relas<ELFT>());
+ return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
+}
+
+template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
+ uint32_t eqClass = sections[begin]->eqClass[current];
+ for (size_t i = begin + 1; i < end; ++i)
+ if (eqClass != sections[i]->eqClass[current])
+ return i;
+ return end;
+}
+
+// Sections in the same equivalence class are contiguous in Sections
+// vector. Therefore, Sections vector can be considered as contiguous
+// groups of sections, grouped by the class.
+//
+// This function calls Fn on every group within [Begin, End).
+template <class ELFT>
+void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
+ llvm::function_ref<void(size_t, size_t)> fn) {
+ while (begin < end) {
+ size_t mid = findBoundary(begin, end);
+ fn(begin, mid);
+ begin = mid;
+ }
+}
+
+// Call Fn on each equivalence class.
+template <class ELFT>
+void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
+ // If threading is disabled or the number of sections are
+ // too small to use threading, call Fn sequentially.
+ if (!threadsEnabled || sections.size() < 1024) {
+ forEachClassRange(0, sections.size(), fn);
+ ++cnt;
+ return;
+ }
+
+ current = cnt % 2;
+ next = (cnt + 1) % 2;
+
+ // Shard into non-overlapping intervals, and call Fn in parallel.
+ // The sharding must be completed before any calls to Fn are made
+ // so that Fn can modify the Chunks in its shard without causing data
+ // races.
+ const size_t numShards = 256;
+ size_t step = sections.size() / numShards;
+ size_t boundaries[numShards + 1];
+ boundaries[0] = 0;
+ boundaries[numShards] = sections.size();
+
+ parallelForEachN(1, numShards, [&](size_t i) {
+ boundaries[i] = findBoundary((i - 1) * step, sections.size());
+ });
+
+ parallelForEachN(1, numShards + 1, [&](size_t i) {
+ if (boundaries[i - 1] < boundaries[i])
+ forEachClassRange(boundaries[i - 1], boundaries[i], fn);
+ });
+ ++cnt;
+}
+
+// Combine the hashes of the sections referenced by the given section into its
+// hash.
+template <class ELFT, class RelTy>
+static void combineRelocHashes(unsigned cnt, InputSection *isec,
+ ArrayRef<RelTy> rels) {
+ uint32_t hash = isec->eqClass[cnt % 2];
+ for (RelTy rel : rels) {
+ Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
+ if (auto *d = dyn_cast<Defined>(&s))
+ if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
+ hash += relSec->eqClass[cnt % 2];
+ }
+ // Set MSB to 1 to avoid collisions with non-hash IDs.
+ isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
+}
+
+static void print(const Twine &s) {
+ if (config->printIcfSections)
+ message(s);
+}
+
+// The main function of ICF.
+template <class ELFT> void ICF<ELFT>::run() {
+ // Collect sections to merge.
+ for (InputSectionBase *sec : inputSections)
+ if (auto *s = dyn_cast<InputSection>(sec))
+ if (isEligible(s))
+ sections.push_back(s);
+
+ // Initially, we use hash values to partition sections.
+ parallelForEach(sections, [&](InputSection *s) {
+ s->eqClass[0] = xxHash64(s->data());
+ });
+
+ for (unsigned cnt = 0; cnt != 2; ++cnt) {
+ parallelForEach(sections, [&](InputSection *s) {
+ if (s->areRelocsRela)
+ combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
+ else
+ combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
+ });
+ }
+
+ // From now on, sections in Sections vector are ordered so that sections
+ // in the same equivalence class are consecutive in the vector.
+ llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
+ return a->eqClass[0] < b->eqClass[0];
+ });
+
+ // Compare static contents and assign unique IDs for each static content.
+ forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
+
+ // Split groups by comparing relocations until convergence is obtained.
+ do {
+ repeat = false;
+ forEachClass(
+ [&](size_t begin, size_t end) { segregate(begin, end, false); });
+ } while (repeat);
+
+ log("ICF needed " + Twine(cnt) + " iterations");
+
+ // Merge sections by the equivalence class.
+ forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
+ if (end - begin == 1)
+ return;
+ print("selected section " + toString(sections[begin]));
+ for (size_t i = begin + 1; i < end; ++i) {
+ print(" removing identical section " + toString(sections[i]));
+ sections[begin]->replace(sections[i]);
+
+ // At this point we know sections merged are fully identical and hence
+ // we want to remove duplicate implicit dependencies such as link order
+ // and relocation sections.
+ for (InputSection *isec : sections[i]->dependentSections)
+ isec->markDead();
+ }
+ });
+}
+
+// ICF entry point function.
+template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
+
+template void elf::doIcf<ELF32LE>();
+template void elf::doIcf<ELF32BE>();
+template void elf::doIcf<ELF64LE>();
+template void elf::doIcf<ELF64BE>();