diff options
Diffstat (limited to 'contrib/llvm-project/lld/ELF/InputSection.cpp')
| -rw-r--r-- | contrib/llvm-project/lld/ELF/InputSection.cpp | 1336 |
1 files changed, 1336 insertions, 0 deletions
diff --git a/contrib/llvm-project/lld/ELF/InputSection.cpp b/contrib/llvm-project/lld/ELF/InputSection.cpp new file mode 100644 index 000000000000..a024ac307b0a --- /dev/null +++ b/contrib/llvm-project/lld/ELF/InputSection.cpp @@ -0,0 +1,1336 @@ +//===- InputSection.cpp ---------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "InputSection.h" +#include "Config.h" +#include "EhFrame.h" +#include "InputFiles.h" +#include "LinkerScript.h" +#include "OutputSections.h" +#include "Relocations.h" +#include "SymbolTable.h" +#include "Symbols.h" +#include "SyntheticSections.h" +#include "Target.h" +#include "Thunks.h" +#include "lld/Common/ErrorHandler.h" +#include "lld/Common/Memory.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Compression.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Threading.h" +#include "llvm/Support/xxhash.h" +#include <algorithm> +#include <mutex> +#include <set> +#include <vector> + +using namespace llvm; +using namespace llvm::ELF; +using namespace llvm::object; +using namespace llvm::support; +using namespace llvm::support::endian; +using namespace llvm::sys; + +using namespace lld; +using namespace lld::elf; + +std::vector<InputSectionBase *> elf::inputSections; + +// Returns a string to construct an error message. +std::string lld::toString(const InputSectionBase *sec) { + return (toString(sec->file) + ":(" + sec->name + ")").str(); +} + +template <class ELFT> +static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, + const typename ELFT::Shdr &hdr) { + if (hdr.sh_type == SHT_NOBITS) + return makeArrayRef<uint8_t>(nullptr, hdr.sh_size); + return check(file.getObj().getSectionContents(&hdr)); +} + +InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags, + uint32_t type, uint64_t entsize, + uint32_t link, uint32_t info, + uint32_t alignment, ArrayRef<uint8_t> data, + StringRef name, Kind sectionKind) + : SectionBase(sectionKind, name, flags, entsize, alignment, type, info, + link), + file(file), rawData(data) { + // In order to reduce memory allocation, we assume that mergeable + // sections are smaller than 4 GiB, which is not an unreasonable + // assumption as of 2017. + if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX) + error(toString(this) + ": section too large"); + + numRelocations = 0; + areRelocsRela = false; + + // The ELF spec states that a value of 0 means the section has + // no alignment constraits. + uint32_t v = std::max<uint32_t>(alignment, 1); + if (!isPowerOf2_64(v)) + fatal(toString(this) + ": sh_addralign is not a power of 2"); + this->alignment = v; + + // In ELF, each section can be compressed by zlib, and if compressed, + // section name may be mangled by appending "z" (e.g. ".zdebug_info"). + // If that's the case, demangle section name so that we can handle a + // section as if it weren't compressed. + if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) { + if (!zlib::isAvailable()) + error(toString(file) + ": contains a compressed section, " + + "but zlib is not available"); + parseCompressedHeader(); + } +} + +// Drop SHF_GROUP bit unless we are producing a re-linkable object file. +// SHF_GROUP is a marker that a section belongs to some comdat group. +// That flag doesn't make sense in an executable. +static uint64_t getFlags(uint64_t flags) { + flags &= ~(uint64_t)SHF_INFO_LINK; + if (!config->relocatable) + flags &= ~(uint64_t)SHF_GROUP; + return flags; +} + +// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of +// March 2017) fail to infer section types for sections starting with +// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of +// SHF_INIT_ARRAY. As a result, the following assembler directive +// creates ".init_array.100" with SHT_PROGBITS, for example. +// +// .section .init_array.100, "aw" +// +// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle +// incorrect inputs as if they were correct from the beginning. +static uint64_t getType(uint64_t type, StringRef name) { + if (type == SHT_PROGBITS && name.startswith(".init_array.")) + return SHT_INIT_ARRAY; + if (type == SHT_PROGBITS && name.startswith(".fini_array.")) + return SHT_FINI_ARRAY; + return type; +} + +template <class ELFT> +InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, + const typename ELFT::Shdr &hdr, + StringRef name, Kind sectionKind) + : InputSectionBase(&file, getFlags(hdr.sh_flags), + getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link, + hdr.sh_info, hdr.sh_addralign, + getSectionContents(file, hdr), name, sectionKind) { + // We reject object files having insanely large alignments even though + // they are allowed by the spec. I think 4GB is a reasonable limitation. + // We might want to relax this in the future. + if (hdr.sh_addralign > UINT32_MAX) + fatal(toString(&file) + ": section sh_addralign is too large"); +} + +size_t InputSectionBase::getSize() const { + if (auto *s = dyn_cast<SyntheticSection>(this)) + return s->getSize(); + if (uncompressedSize >= 0) + return uncompressedSize; + return rawData.size(); +} + +void InputSectionBase::uncompress() const { + size_t size = uncompressedSize; + char *uncompressedBuf; + { + static std::mutex mu; + std::lock_guard<std::mutex> lock(mu); + uncompressedBuf = bAlloc.Allocate<char>(size); + } + + if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size)) + fatal(toString(this) + + ": uncompress failed: " + llvm::toString(std::move(e))); + rawData = makeArrayRef((uint8_t *)uncompressedBuf, size); + uncompressedSize = -1; +} + +uint64_t InputSectionBase::getOffsetInFile() const { + const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart(); + const uint8_t *secStart = data().begin(); + return secStart - fileStart; +} + +uint64_t SectionBase::getOffset(uint64_t offset) const { + switch (kind()) { + case Output: { + auto *os = cast<OutputSection>(this); + // For output sections we treat offset -1 as the end of the section. + return offset == uint64_t(-1) ? os->size : offset; + } + case Regular: + case Synthetic: + return cast<InputSection>(this)->getOffset(offset); + case EHFrame: + // The file crtbeginT.o has relocations pointing to the start of an empty + // .eh_frame that is known to be the first in the link. It does that to + // identify the start of the output .eh_frame. + return offset; + case Merge: + const MergeInputSection *ms = cast<MergeInputSection>(this); + if (InputSection *isec = ms->getParent()) + return isec->getOffset(ms->getParentOffset(offset)); + return ms->getParentOffset(offset); + } + llvm_unreachable("invalid section kind"); +} + +uint64_t SectionBase::getVA(uint64_t offset) const { + const OutputSection *out = getOutputSection(); + return (out ? out->addr : 0) + getOffset(offset); +} + +OutputSection *SectionBase::getOutputSection() { + InputSection *sec; + if (auto *isec = dyn_cast<InputSection>(this)) + sec = isec; + else if (auto *ms = dyn_cast<MergeInputSection>(this)) + sec = ms->getParent(); + else if (auto *eh = dyn_cast<EhInputSection>(this)) + sec = eh->getParent(); + else + return cast<OutputSection>(this); + return sec ? sec->getParent() : nullptr; +} + +// When a section is compressed, `rawData` consists with a header followed +// by zlib-compressed data. This function parses a header to initialize +// `uncompressedSize` member and remove the header from `rawData`. +void InputSectionBase::parseCompressedHeader() { + using Chdr64 = typename ELF64LE::Chdr; + using Chdr32 = typename ELF32LE::Chdr; + + // Old-style header + if (name.startswith(".zdebug")) { + if (!toStringRef(rawData).startswith("ZLIB")) { + error(toString(this) + ": corrupted compressed section header"); + return; + } + rawData = rawData.slice(4); + + if (rawData.size() < 8) { + error(toString(this) + ": corrupted compressed section header"); + return; + } + + uncompressedSize = read64be(rawData.data()); + rawData = rawData.slice(8); + + // Restore the original section name. + // (e.g. ".zdebug_info" -> ".debug_info") + name = saver.save("." + name.substr(2)); + return; + } + + assert(flags & SHF_COMPRESSED); + flags &= ~(uint64_t)SHF_COMPRESSED; + + // New-style 64-bit header + if (config->is64) { + if (rawData.size() < sizeof(Chdr64)) { + error(toString(this) + ": corrupted compressed section"); + return; + } + + auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data()); + if (hdr->ch_type != ELFCOMPRESS_ZLIB) { + error(toString(this) + ": unsupported compression type"); + return; + } + + uncompressedSize = hdr->ch_size; + alignment = std::max<uint32_t>(hdr->ch_addralign, 1); + rawData = rawData.slice(sizeof(*hdr)); + return; + } + + // New-style 32-bit header + if (rawData.size() < sizeof(Chdr32)) { + error(toString(this) + ": corrupted compressed section"); + return; + } + + auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data()); + if (hdr->ch_type != ELFCOMPRESS_ZLIB) { + error(toString(this) + ": unsupported compression type"); + return; + } + + uncompressedSize = hdr->ch_size; + alignment = std::max<uint32_t>(hdr->ch_addralign, 1); + rawData = rawData.slice(sizeof(*hdr)); +} + +InputSection *InputSectionBase::getLinkOrderDep() const { + assert(link); + assert(flags & SHF_LINK_ORDER); + return cast<InputSection>(file->getSections()[link]); +} + +// Find a function symbol that encloses a given location. +template <class ELFT> +Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) { + for (Symbol *b : file->getSymbols()) + if (Defined *d = dyn_cast<Defined>(b)) + if (d->section == this && d->type == STT_FUNC && d->value <= offset && + offset < d->value + d->size) + return d; + return nullptr; +} + +// Returns a source location string. Used to construct an error message. +template <class ELFT> +std::string InputSectionBase::getLocation(uint64_t offset) { + std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str(); + + // We don't have file for synthetic sections. + if (getFile<ELFT>() == nullptr) + return (config->outputFile + ":(" + secAndOffset + ")") + .str(); + + // First check if we can get desired values from debugging information. + if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset)) + return info->FileName + ":" + std::to_string(info->Line) + ":(" + + secAndOffset + ")"; + + // File->sourceFile contains STT_FILE symbol that contains a + // source file name. If it's missing, we use an object file name. + std::string srcFile = getFile<ELFT>()->sourceFile; + if (srcFile.empty()) + srcFile = toString(file); + + if (Defined *d = getEnclosingFunction<ELFT>(offset)) + return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")"; + + // If there's no symbol, print out the offset in the section. + return (srcFile + ":(" + secAndOffset + ")"); +} + +// This function is intended to be used for constructing an error message. +// The returned message looks like this: +// +// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) +// +// Returns an empty string if there's no way to get line info. +std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) { + return file->getSrcMsg(sym, *this, offset); +} + +// Returns a filename string along with an optional section name. This +// function is intended to be used for constructing an error +// message. The returned message looks like this: +// +// path/to/foo.o:(function bar) +// +// or +// +// path/to/foo.o:(function bar) in archive path/to/bar.a +std::string InputSectionBase::getObjMsg(uint64_t off) { + std::string filename = file->getName(); + + std::string archive; + if (!file->archiveName.empty()) + archive = " in archive " + file->archiveName; + + // Find a symbol that encloses a given location. + for (Symbol *b : file->getSymbols()) + if (auto *d = dyn_cast<Defined>(b)) + if (d->section == this && d->value <= off && off < d->value + d->size) + return filename + ":(" + toString(*d) + ")" + archive; + + // If there's no symbol, print out the offset in the section. + return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive) + .str(); +} + +InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), ""); + +InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type, + uint32_t alignment, ArrayRef<uint8_t> data, + StringRef name, Kind k) + : InputSectionBase(f, flags, type, + /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data, + name, k) {} + +template <class ELFT> +InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header, + StringRef name) + : InputSectionBase(f, header, name, InputSectionBase::Regular) {} + +bool InputSection::classof(const SectionBase *s) { + return s->kind() == SectionBase::Regular || + s->kind() == SectionBase::Synthetic; +} + +OutputSection *InputSection::getParent() const { + return cast_or_null<OutputSection>(parent); +} + +// Copy SHT_GROUP section contents. Used only for the -r option. +template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { + // ELFT::Word is the 32-bit integral type in the target endianness. + using u32 = typename ELFT::Word; + ArrayRef<u32> from = getDataAs<u32>(); + auto *to = reinterpret_cast<u32 *>(buf); + + // The first entry is not a section number but a flag. + *to++ = from[0]; + + // Adjust section numbers because section numbers in an input object + // files are different in the output. + ArrayRef<InputSectionBase *> sections = file->getSections(); + for (uint32_t idx : from.slice(1)) + *to++ = sections[idx]->getOutputSection()->sectionIndex; +} + +InputSectionBase *InputSection::getRelocatedSection() const { + if (!file || (type != SHT_RELA && type != SHT_REL)) + return nullptr; + ArrayRef<InputSectionBase *> sections = file->getSections(); + return sections[info]; +} + +// This is used for -r and --emit-relocs. We can't use memcpy to copy +// relocations because we need to update symbol table offset and section index +// for each relocation. So we copy relocations one by one. +template <class ELFT, class RelTy> +void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) { + InputSectionBase *sec = getRelocatedSection(); + + for (const RelTy &rel : rels) { + RelType type = rel.getType(config->isMips64EL); + const ObjFile<ELFT> *file = getFile<ELFT>(); + Symbol &sym = file->getRelocTargetSym(rel); + + auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); + buf += sizeof(RelTy); + + if (RelTy::IsRela) + p->r_addend = getAddend<ELFT>(rel); + + // Output section VA is zero for -r, so r_offset is an offset within the + // section, but for --emit-relocs it is an virtual address. + p->r_offset = sec->getVA(rel.r_offset); + p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type, + config->isMips64EL); + + if (sym.type == STT_SECTION) { + // We combine multiple section symbols into only one per + // section. This means we have to update the addend. That is + // trivial for Elf_Rela, but for Elf_Rel we have to write to the + // section data. We do that by adding to the Relocation vector. + + // .eh_frame is horribly special and can reference discarded sections. To + // avoid having to parse and recreate .eh_frame, we just replace any + // relocation in it pointing to discarded sections with R_*_NONE, which + // hopefully creates a frame that is ignored at runtime. Also, don't warn + // on .gcc_except_table and debug sections. + // + // See the comment in maybeReportUndefined for PPC64 .toc . + auto *d = dyn_cast<Defined>(&sym); + if (!d) { + if (!sec->name.startswith(".debug") && + !sec->name.startswith(".zdebug") && sec->name != ".eh_frame" && + sec->name != ".gcc_except_table" && sec->name != ".toc") { + uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx; + Elf_Shdr_Impl<ELFT> sec = + CHECK(file->getObj().sections(), file)[secIdx]; + warn("relocation refers to a discarded section: " + + CHECK(file->getObj().getSectionName(&sec), file) + + "\n>>> referenced by " + getObjMsg(p->r_offset)); + } + p->setSymbolAndType(0, 0, false); + continue; + } + SectionBase *section = d->section->repl; + if (!section->isLive()) { + p->setSymbolAndType(0, 0, false); + continue; + } + + int64_t addend = getAddend<ELFT>(rel); + const uint8_t *bufLoc = sec->data().begin() + rel.r_offset; + if (!RelTy::IsRela) + addend = target->getImplicitAddend(bufLoc, type); + + if (config->emachine == EM_MIPS && config->relocatable && + target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) { + // Some MIPS relocations depend on "gp" value. By default, + // this value has 0x7ff0 offset from a .got section. But + // relocatable files produced by a complier or a linker + // might redefine this default value and we must use it + // for a calculation of the relocation result. When we + // generate EXE or DSO it's trivial. Generating a relocatable + // output is more difficult case because the linker does + // not calculate relocations in this mode and loses + // individual "gp" values used by each input object file. + // As a workaround we add the "gp" value to the relocation + // addend and save it back to the file. + addend += sec->getFile<ELFT>()->mipsGp0; + } + + if (RelTy::IsRela) + p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr; + else if (config->relocatable && type != target->noneRel) + sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym}); + } + } +} + +// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak +// references specially. The general rule is that the value of the symbol in +// this context is the address of the place P. A further special case is that +// branch relocations to an undefined weak reference resolve to the next +// instruction. +static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, + uint32_t p) { + switch (type) { + // Unresolved branch relocations to weak references resolve to next + // instruction, this will be either 2 or 4 bytes on from P. + case R_ARM_THM_JUMP11: + return p + 2 + a; + case R_ARM_CALL: + case R_ARM_JUMP24: + case R_ARM_PC24: + case R_ARM_PLT32: + case R_ARM_PREL31: + case R_ARM_THM_JUMP19: + case R_ARM_THM_JUMP24: + return p + 4 + a; + case R_ARM_THM_CALL: + // We don't want an interworking BLX to ARM + return p + 5 + a; + // Unresolved non branch pc-relative relocations + // R_ARM_TARGET2 which can be resolved relatively is not present as it never + // targets a weak-reference. + case R_ARM_MOVW_PREL_NC: + case R_ARM_MOVT_PREL: + case R_ARM_REL32: + case R_ARM_THM_MOVW_PREL_NC: + case R_ARM_THM_MOVT_PREL: + return p + a; + } + llvm_unreachable("ARM pc-relative relocation expected\n"); +} + +// The comment above getARMUndefinedRelativeWeakVA applies to this function. +static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a, + uint64_t p) { + switch (type) { + // Unresolved branch relocations to weak references resolve to next + // instruction, this is 4 bytes on from P. + case R_AARCH64_CALL26: + case R_AARCH64_CONDBR19: + case R_AARCH64_JUMP26: + case R_AARCH64_TSTBR14: + return p + 4 + a; + // Unresolved non branch pc-relative relocations + case R_AARCH64_PREL16: + case R_AARCH64_PREL32: + case R_AARCH64_PREL64: + case R_AARCH64_ADR_PREL_LO21: + case R_AARCH64_LD_PREL_LO19: + return p + a; + } + llvm_unreachable("AArch64 pc-relative relocation expected\n"); +} + +// ARM SBREL relocations are of the form S + A - B where B is the static base +// The ARM ABI defines base to be "addressing origin of the output segment +// defining the symbol S". We defined the "addressing origin"/static base to be +// the base of the PT_LOAD segment containing the Sym. +// The procedure call standard only defines a Read Write Position Independent +// RWPI variant so in practice we should expect the static base to be the base +// of the RW segment. +static uint64_t getARMStaticBase(const Symbol &sym) { + OutputSection *os = sym.getOutputSection(); + if (!os || !os->ptLoad || !os->ptLoad->firstSec) + fatal("SBREL relocation to " + sym.getName() + " without static base"); + return os->ptLoad->firstSec->addr; +} + +// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually +// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA +// is calculated using PCREL_HI20's symbol. +// +// This function returns the R_RISCV_PCREL_HI20 relocation from +// R_RISCV_PCREL_LO12's symbol and addend. +static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) { + const Defined *d = cast<Defined>(sym); + if (!d->section) { + error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " + + sym->getName()); + return nullptr; + } + InputSection *isec = cast<InputSection>(d->section); + + if (addend != 0) + warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " + + isec->getObjMsg(d->value) + " is ignored"); + + // Relocations are sorted by offset, so we can use std::equal_range to do + // binary search. + Relocation r; + r.offset = d->value; + auto range = + std::equal_range(isec->relocations.begin(), isec->relocations.end(), r, + [](const Relocation &lhs, const Relocation &rhs) { + return lhs.offset < rhs.offset; + }); + + for (auto it = range.first; it != range.second; ++it) + if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || + it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) + return &*it; + + error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) + + " without an associated R_RISCV_PCREL_HI20 relocation"); + return nullptr; +} + +// A TLS symbol's virtual address is relative to the TLS segment. Add a +// target-specific adjustment to produce a thread-pointer-relative offset. +static int64_t getTlsTpOffset(const Symbol &s) { + // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. + if (&s == ElfSym::tlsModuleBase) + return 0; + + switch (config->emachine) { + case EM_ARM: + case EM_AARCH64: + // Variant 1. The thread pointer points to a TCB with a fixed 2-word size, + // followed by a variable amount of alignment padding, followed by the TLS + // segment. + return s.getVA(0) + alignTo(config->wordsize * 2, Out::tlsPhdr->p_align); + case EM_386: + case EM_X86_64: + // Variant 2. The TLS segment is located just before the thread pointer. + return s.getVA(0) - alignTo(Out::tlsPhdr->p_memsz, Out::tlsPhdr->p_align); + case EM_PPC: + case EM_PPC64: + // The thread pointer points to a fixed offset from the start of the + // executable's TLS segment. An offset of 0x7000 allows a signed 16-bit + // offset to reach 0x1000 of TCB/thread-library data and 0xf000 of the + // program's TLS segment. + return s.getVA(0) - 0x7000; + case EM_RISCV: + return s.getVA(0); + default: + llvm_unreachable("unhandled Config->EMachine"); + } +} + +static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a, + uint64_t p, const Symbol &sym, RelExpr expr) { + switch (expr) { + case R_ABS: + case R_DTPREL: + case R_RELAX_TLS_LD_TO_LE_ABS: + case R_RELAX_GOT_PC_NOPIC: + case R_RISCV_ADD: + return sym.getVA(a); + case R_ADDEND: + return a; + case R_ARM_SBREL: + return sym.getVA(a) - getARMStaticBase(sym); + case R_GOT: + case R_RELAX_TLS_GD_TO_IE_ABS: + return sym.getGotVA() + a; + case R_GOTONLY_PC: + return in.got->getVA() + a - p; + case R_GOTPLTONLY_PC: + return in.gotPlt->getVA() + a - p; + case R_GOTREL: + case R_PPC64_RELAX_TOC: + return sym.getVA(a) - in.got->getVA(); + case R_GOTPLTREL: + return sym.getVA(a) - in.gotPlt->getVA(); + case R_GOTPLT: + case R_RELAX_TLS_GD_TO_IE_GOTPLT: + return sym.getGotVA() + a - in.gotPlt->getVA(); + case R_TLSLD_GOT_OFF: + case R_GOT_OFF: + case R_RELAX_TLS_GD_TO_IE_GOT_OFF: + return sym.getGotOffset() + a; + case R_AARCH64_GOT_PAGE_PC: + case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: + return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p); + case R_GOT_PC: + case R_RELAX_TLS_GD_TO_IE: + return sym.getGotVA() + a - p; + case R_HEXAGON_GOT: + return sym.getGotVA() - in.gotPlt->getVA(); + case R_MIPS_GOTREL: + return sym.getVA(a) - in.mipsGot->getGp(file); + case R_MIPS_GOT_GP: + return in.mipsGot->getGp(file) + a; + case R_MIPS_GOT_GP_PC: { + // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target + // is _gp_disp symbol. In that case we should use the following + // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at + // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf + // microMIPS variants of these relocations use slightly different + // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() + // to correctly handle less-sugnificant bit of the microMIPS symbol. + uint64_t v = in.mipsGot->getGp(file) + a - p; + if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16) + v += 4; + if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16) + v -= 1; + return v; + } + case R_MIPS_GOT_LOCAL_PAGE: + // If relocation against MIPS local symbol requires GOT entry, this entry + // should be initialized by 'page address'. This address is high 16-bits + // of sum the symbol's value and the addend. + return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) - + in.mipsGot->getGp(file); + case R_MIPS_GOT_OFF: + case R_MIPS_GOT_OFF32: + // In case of MIPS if a GOT relocation has non-zero addend this addend + // should be applied to the GOT entry content not to the GOT entry offset. + // That is why we use separate expression type. + return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) - + in.mipsGot->getGp(file); + case R_MIPS_TLSGD: + return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) - + in.mipsGot->getGp(file); + case R_MIPS_TLSLD: + return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) - + in.mipsGot->getGp(file); + case R_AARCH64_PAGE_PC: { + uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a); + return getAArch64Page(val) - getAArch64Page(p); + } + case R_RISCV_PC_INDIRECT: { + if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a)) + return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(), + *hiRel->sym, hiRel->expr); + return 0; + } + case R_PC: { + uint64_t dest; + if (sym.isUndefWeak()) { + // On ARM and AArch64 a branch to an undefined weak resolves to the + // next instruction, otherwise the place. + if (config->emachine == EM_ARM) + dest = getARMUndefinedRelativeWeakVA(type, a, p); + else if (config->emachine == EM_AARCH64) + dest = getAArch64UndefinedRelativeWeakVA(type, a, p); + else if (config->emachine == EM_PPC) + dest = p; + else + dest = sym.getVA(a); + } else { + dest = sym.getVA(a); + } + return dest - p; + } + case R_PLT: + return sym.getPltVA() + a; + case R_PLT_PC: + case R_PPC64_CALL_PLT: + return sym.getPltVA() + a - p; + case R_PPC32_PLTREL: + // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 + // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for + // target VA compuation. + return sym.getPltVA() - p; + case R_PPC64_CALL: { + uint64_t symVA = sym.getVA(a); + // If we have an undefined weak symbol, we might get here with a symbol + // address of zero. That could overflow, but the code must be unreachable, + // so don't bother doing anything at all. + if (!symVA) + return 0; + + // PPC64 V2 ABI describes two entry points to a function. The global entry + // point is used for calls where the caller and callee (may) have different + // TOC base pointers and r2 needs to be modified to hold the TOC base for + // the callee. For local calls the caller and callee share the same + // TOC base and so the TOC pointer initialization code should be skipped by + // branching to the local entry point. + return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther); + } + case R_PPC64_TOCBASE: + return getPPC64TocBase() + a; + case R_RELAX_GOT_PC: + return sym.getVA(a) - p; + case R_RELAX_TLS_GD_TO_LE: + case R_RELAX_TLS_IE_TO_LE: + case R_RELAX_TLS_LD_TO_LE: + case R_TLS: + // It is not very clear what to return if the symbol is undefined. With + // --noinhibit-exec, even a non-weak undefined reference may reach here. + // Just return A, which matches R_ABS, and the behavior of some dynamic + // loaders. + if (sym.isUndefined()) + return a; + return getTlsTpOffset(sym) + a; + case R_RELAX_TLS_GD_TO_LE_NEG: + case R_NEG_TLS: + if (sym.isUndefined()) + return a; + return -getTlsTpOffset(sym) + a; + case R_SIZE: + return sym.getSize() + a; + case R_TLSDESC: + return in.got->getGlobalDynAddr(sym) + a; + case R_TLSDESC_PC: + return in.got->getGlobalDynAddr(sym) + a - p; + case R_AARCH64_TLSDESC_PAGE: + return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) - + getAArch64Page(p); + case R_TLSGD_GOT: + return in.got->getGlobalDynOffset(sym) + a; + case R_TLSGD_GOTPLT: + return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA(); + case R_TLSGD_PC: + return in.got->getGlobalDynAddr(sym) + a - p; + case R_TLSLD_GOTPLT: + return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA(); + case R_TLSLD_GOT: + return in.got->getTlsIndexOff() + a; + case R_TLSLD_PC: + return in.got->getTlsIndexVA() + a - p; + default: + llvm_unreachable("invalid expression"); + } +} + +// This function applies relocations to sections without SHF_ALLOC bit. +// Such sections are never mapped to memory at runtime. Debug sections are +// an example. Relocations in non-alloc sections are much easier to +// handle than in allocated sections because it will never need complex +// treatement such as GOT or PLT (because at runtime no one refers them). +// So, we handle relocations for non-alloc sections directly in this +// function as a performance optimization. +template <class ELFT, class RelTy> +void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) { + const unsigned bits = sizeof(typename ELFT::uint) * 8; + + for (const RelTy &rel : rels) { + RelType type = rel.getType(config->isMips64EL); + + // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations + // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed + // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we + // need to keep this bug-compatible code for a while. + if (config->emachine == EM_386 && type == R_386_GOTPC) + continue; + + uint64_t offset = getOffset(rel.r_offset); + uint8_t *bufLoc = buf + offset; + int64_t addend = getAddend<ELFT>(rel); + if (!RelTy::IsRela) + addend += target->getImplicitAddend(bufLoc, type); + + Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel); + RelExpr expr = target->getRelExpr(type, sym, bufLoc); + if (expr == R_NONE) + continue; + + if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) { + std::string msg = getLocation<ELFT>(offset) + + ": has non-ABS relocation " + toString(type) + + " against symbol '" + toString(sym) + "'"; + if (expr != R_PC) { + error(msg); + return; + } + + // If the control reaches here, we found a PC-relative relocation in a + // non-ALLOC section. Since non-ALLOC section is not loaded into memory + // at runtime, the notion of PC-relative doesn't make sense here. So, + // this is a usage error. However, GNU linkers historically accept such + // relocations without any errors and relocate them as if they were at + // address 0. For bug-compatibilty, we accept them with warnings. We + // know Steel Bank Common Lisp as of 2018 have this bug. + warn(msg); + target->relocateOne(bufLoc, type, + SignExtend64<bits>(sym.getVA(addend - offset))); + continue; + } + + if (sym.isTls() && !Out::tlsPhdr) + target->relocateOne(bufLoc, type, 0); + else + target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend))); + } +} + +// This is used when '-r' is given. +// For REL targets, InputSection::copyRelocations() may store artificial +// relocations aimed to update addends. They are handled in relocateAlloc() +// for allocatable sections, and this function does the same for +// non-allocatable sections, such as sections with debug information. +static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) { + const unsigned bits = config->is64 ? 64 : 32; + + for (const Relocation &rel : sec->relocations) { + // InputSection::copyRelocations() adds only R_ABS relocations. + assert(rel.expr == R_ABS); + uint8_t *bufLoc = buf + rel.offset + sec->outSecOff; + uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits); + target->relocateOne(bufLoc, rel.type, targetVA); + } +} + +template <class ELFT> +void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) { + if (flags & SHF_EXECINSTR) + adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd); + + if (flags & SHF_ALLOC) { + relocateAlloc(buf, bufEnd); + return; + } + + auto *sec = cast<InputSection>(this); + if (config->relocatable) + relocateNonAllocForRelocatable(sec, buf); + else if (sec->areRelocsRela) + sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>()); + else + sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>()); +} + +void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) { + assert(flags & SHF_ALLOC); + const unsigned bits = config->wordsize * 8; + + for (const Relocation &rel : relocations) { + uint64_t offset = rel.offset; + if (auto *sec = dyn_cast<InputSection>(this)) + offset += sec->outSecOff; + uint8_t *bufLoc = buf + offset; + RelType type = rel.type; + + uint64_t addrLoc = getOutputSection()->addr + offset; + RelExpr expr = rel.expr; + uint64_t targetVA = SignExtend64( + getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr), + bits); + + switch (expr) { + case R_RELAX_GOT_PC: + case R_RELAX_GOT_PC_NOPIC: + target->relaxGot(bufLoc, type, targetVA); + break; + case R_PPC64_RELAX_TOC: + if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc)) + target->relocateOne(bufLoc, type, targetVA); + break; + case R_RELAX_TLS_IE_TO_LE: + target->relaxTlsIeToLe(bufLoc, type, targetVA); + break; + case R_RELAX_TLS_LD_TO_LE: + case R_RELAX_TLS_LD_TO_LE_ABS: + target->relaxTlsLdToLe(bufLoc, type, targetVA); + break; + case R_RELAX_TLS_GD_TO_LE: + case R_RELAX_TLS_GD_TO_LE_NEG: + target->relaxTlsGdToLe(bufLoc, type, targetVA); + break; + case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: + case R_RELAX_TLS_GD_TO_IE: + case R_RELAX_TLS_GD_TO_IE_ABS: + case R_RELAX_TLS_GD_TO_IE_GOT_OFF: + case R_RELAX_TLS_GD_TO_IE_GOTPLT: + target->relaxTlsGdToIe(bufLoc, type, targetVA); + break; + case R_PPC64_CALL: + // If this is a call to __tls_get_addr, it may be part of a TLS + // sequence that has been relaxed and turned into a nop. In this + // case, we don't want to handle it as a call. + if (read32(bufLoc) == 0x60000000) // nop + break; + + // Patch a nop (0x60000000) to a ld. + if (rel.sym->needsTocRestore) { + if (bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) { + error(getErrorLocation(bufLoc) + "call lacks nop, can't restore toc"); + break; + } + write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1) + } + target->relocateOne(bufLoc, type, targetVA); + break; + default: + target->relocateOne(bufLoc, type, targetVA); + break; + } + } +} + +// For each function-defining prologue, find any calls to __morestack, +// and replace them with calls to __morestack_non_split. +static void switchMorestackCallsToMorestackNonSplit( + DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) { + + // If the target adjusted a function's prologue, all calls to + // __morestack inside that function should be switched to + // __morestack_non_split. + Symbol *moreStackNonSplit = symtab->find("__morestack_non_split"); + if (!moreStackNonSplit) { + error("Mixing split-stack objects requires a definition of " + "__morestack_non_split"); + return; + } + + // Sort both collections to compare addresses efficiently. + llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) { + return l->offset < r->offset; + }); + std::vector<Defined *> functions(prologues.begin(), prologues.end()); + llvm::sort(functions, [](const Defined *l, const Defined *r) { + return l->value < r->value; + }); + + auto it = morestackCalls.begin(); + for (Defined *f : functions) { + // Find the first call to __morestack within the function. + while (it != morestackCalls.end() && (*it)->offset < f->value) + ++it; + // Adjust all calls inside the function. + while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { + (*it)->sym = moreStackNonSplit; + ++it; + } + } +} + +static bool enclosingPrologueAttempted(uint64_t offset, + const DenseSet<Defined *> &prologues) { + for (Defined *f : prologues) + if (f->value <= offset && offset < f->value + f->size) + return true; + return false; +} + +// If a function compiled for split stack calls a function not +// compiled for split stack, then the caller needs its prologue +// adjusted to ensure that the called function will have enough stack +// available. Find those functions, and adjust their prologues. +template <class ELFT> +void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf, + uint8_t *end) { + if (!getFile<ELFT>()->splitStack) + return; + DenseSet<Defined *> prologues; + std::vector<Relocation *> morestackCalls; + + for (Relocation &rel : relocations) { + // Local symbols can't possibly be cross-calls, and should have been + // resolved long before this line. + if (rel.sym->isLocal()) + continue; + + // Ignore calls into the split-stack api. + if (rel.sym->getName().startswith("__morestack")) { + if (rel.sym->getName().equals("__morestack")) + morestackCalls.push_back(&rel); + continue; + } + + // A relocation to non-function isn't relevant. Sometimes + // __morestack is not marked as a function, so this check comes + // after the name check. + if (rel.sym->type != STT_FUNC) + continue; + + // If the callee's-file was compiled with split stack, nothing to do. In + // this context, a "Defined" symbol is one "defined by the binary currently + // being produced". So an "undefined" symbol might be provided by a shared + // library. It is not possible to tell how such symbols were compiled, so be + // conservative. + if (Defined *d = dyn_cast<Defined>(rel.sym)) + if (InputSection *isec = cast_or_null<InputSection>(d->section)) + if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) + continue; + + if (enclosingPrologueAttempted(rel.offset, prologues)) + continue; + + if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) { + prologues.insert(f); + if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value), + end, f->stOther)) + continue; + if (!getFile<ELFT>()->someNoSplitStack) + error(lld::toString(this) + ": " + f->getName() + + " (with -fsplit-stack) calls " + rel.sym->getName() + + " (without -fsplit-stack), but couldn't adjust its prologue"); + } + } + + if (target->needsMoreStackNonSplit) + switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls); +} + +template <class ELFT> void InputSection::writeTo(uint8_t *buf) { + if (type == SHT_NOBITS) + return; + + if (auto *s = dyn_cast<SyntheticSection>(this)) { + s->writeTo(buf + outSecOff); + return; + } + + // If -r or --emit-relocs is given, then an InputSection + // may be a relocation section. + if (type == SHT_RELA) { + copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>()); + return; + } + if (type == SHT_REL) { + copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>()); + return; + } + + // If -r is given, we may have a SHT_GROUP section. + if (type == SHT_GROUP) { + copyShtGroup<ELFT>(buf + outSecOff); + return; + } + + // If this is a compressed section, uncompress section contents directly + // to the buffer. + if (uncompressedSize >= 0) { + size_t size = uncompressedSize; + if (Error e = zlib::uncompress(toStringRef(rawData), + (char *)(buf + outSecOff), size)) + fatal(toString(this) + + ": uncompress failed: " + llvm::toString(std::move(e))); + uint8_t *bufEnd = buf + outSecOff + size; + relocate<ELFT>(buf, bufEnd); + return; + } + + // Copy section contents from source object file to output file + // and then apply relocations. + memcpy(buf + outSecOff, data().data(), data().size()); + uint8_t *bufEnd = buf + outSecOff + data().size(); + relocate<ELFT>(buf, bufEnd); +} + +void InputSection::replace(InputSection *other) { + alignment = std::max(alignment, other->alignment); + + // When a section is replaced with another section that was allocated to + // another partition, the replacement section (and its associated sections) + // need to be placed in the main partition so that both partitions will be + // able to access it. + if (partition != other->partition) { + partition = 1; + for (InputSection *isec : dependentSections) + isec->partition = 1; + } + + other->repl = repl; + other->markDead(); +} + +template <class ELFT> +EhInputSection::EhInputSection(ObjFile<ELFT> &f, + const typename ELFT::Shdr &header, + StringRef name) + : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} + +SyntheticSection *EhInputSection::getParent() const { + return cast_or_null<SyntheticSection>(parent); +} + +// Returns the index of the first relocation that points to a region between +// Begin and Begin+Size. +template <class IntTy, class RelTy> +static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels, + unsigned &relocI) { + // Start search from RelocI for fast access. That works because the + // relocations are sorted in .eh_frame. + for (unsigned n = rels.size(); relocI < n; ++relocI) { + const RelTy &rel = rels[relocI]; + if (rel.r_offset < begin) + continue; + + if (rel.r_offset < begin + size) + return relocI; + return -1; + } + return -1; +} + +// .eh_frame is a sequence of CIE or FDE records. +// This function splits an input section into records and returns them. +template <class ELFT> void EhInputSection::split() { + if (areRelocsRela) + split<ELFT>(relas<ELFT>()); + else + split<ELFT>(rels<ELFT>()); +} + +template <class ELFT, class RelTy> +void EhInputSection::split(ArrayRef<RelTy> rels) { + unsigned relI = 0; + for (size_t off = 0, end = data().size(); off != end;) { + size_t size = readEhRecordSize(this, off); + pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI)); + // The empty record is the end marker. + if (size == 4) + break; + off += size; + } +} + +static size_t findNull(StringRef s, size_t entSize) { + // Optimize the common case. + if (entSize == 1) + return s.find(0); + + for (unsigned i = 0, n = s.size(); i != n; i += entSize) { + const char *b = s.begin() + i; + if (std::all_of(b, b + entSize, [](char c) { return c == 0; })) + return i; + } + return StringRef::npos; +} + +SyntheticSection *MergeInputSection::getParent() const { + return cast_or_null<SyntheticSection>(parent); +} + +// Split SHF_STRINGS section. Such section is a sequence of +// null-terminated strings. +void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) { + size_t off = 0; + bool isAlloc = flags & SHF_ALLOC; + StringRef s = toStringRef(data); + + while (!s.empty()) { + size_t end = findNull(s, entSize); + if (end == StringRef::npos) + fatal(toString(this) + ": string is not null terminated"); + size_t size = end + entSize; + + pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc); + s = s.substr(size); + off += size; + } +} + +// Split non-SHF_STRINGS section. Such section is a sequence of +// fixed size records. +void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, + size_t entSize) { + size_t size = data.size(); + assert((size % entSize) == 0); + bool isAlloc = flags & SHF_ALLOC; + + for (size_t i = 0; i != size; i += entSize) + pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc); +} + +template <class ELFT> +MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, + const typename ELFT::Shdr &header, + StringRef name) + : InputSectionBase(f, header, name, InputSectionBase::Merge) {} + +MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type, + uint64_t entsize, ArrayRef<uint8_t> data, + StringRef name) + : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0, + /*Alignment*/ entsize, data, name, SectionBase::Merge) {} + +// This function is called after we obtain a complete list of input sections +// that need to be linked. This is responsible to split section contents +// into small chunks for further processing. +// +// Note that this function is called from parallelForEach. This must be +// thread-safe (i.e. no memory allocation from the pools). +void MergeInputSection::splitIntoPieces() { + assert(pieces.empty()); + + if (flags & SHF_STRINGS) + splitStrings(data(), entsize); + else + splitNonStrings(data(), entsize); +} + +SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) { + if (this->data().size() <= offset) + fatal(toString(this) + ": offset is outside the section"); + + // If Offset is not at beginning of a section piece, it is not in the map. + // In that case we need to do a binary search of the original section piece vector. + auto it = partition_point( + pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); + return &it[-1]; +} + +// Returns the offset in an output section for a given input offset. +// Because contents of a mergeable section is not contiguous in output, +// it is not just an addition to a base output offset. +uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { + // If Offset is not at beginning of a section piece, it is not in the map. + // In that case we need to search from the original section piece vector. + const SectionPiece &piece = + *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset)); + uint64_t addend = offset - piece.inputOff; + return piece.outputOff + addend; +} + +template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, + StringRef); +template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, + StringRef); +template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, + StringRef); +template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, + StringRef); + +template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t); +template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t); +template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t); +template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t); + +template void InputSection::writeTo<ELF32LE>(uint8_t *); +template void InputSection::writeTo<ELF32BE>(uint8_t *); +template void InputSection::writeTo<ELF64LE>(uint8_t *); +template void InputSection::writeTo<ELF64BE>(uint8_t *); + +template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, + const ELF32LE::Shdr &, StringRef); +template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, + const ELF32BE::Shdr &, StringRef); +template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, + const ELF64LE::Shdr &, StringRef); +template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, + const ELF64BE::Shdr &, StringRef); + +template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, + const ELF32LE::Shdr &, StringRef); +template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, + const ELF32BE::Shdr &, StringRef); +template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, + const ELF64LE::Shdr &, StringRef); +template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, + const ELF64BE::Shdr &, StringRef); + +template void EhInputSection::split<ELF32LE>(); +template void EhInputSection::split<ELF32BE>(); +template void EhInputSection::split<ELF64LE>(); +template void EhInputSection::split<ELF64BE>(); |
