summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lld/ELF/Writer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/lld/ELF/Writer.cpp')
-rw-r--r--contrib/llvm-project/lld/ELF/Writer.cpp2691
1 files changed, 2691 insertions, 0 deletions
diff --git a/contrib/llvm-project/lld/ELF/Writer.cpp b/contrib/llvm-project/lld/ELF/Writer.cpp
new file mode 100644
index 000000000000..10b171e8c0d7
--- /dev/null
+++ b/contrib/llvm-project/lld/ELF/Writer.cpp
@@ -0,0 +1,2691 @@
+//===- Writer.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "Writer.h"
+#include "AArch64ErrataFix.h"
+#include "CallGraphSort.h"
+#include "Config.h"
+#include "LinkerScript.h"
+#include "MapFile.h"
+#include "OutputSections.h"
+#include "Relocations.h"
+#include "SymbolTable.h"
+#include "Symbols.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+#include "lld/Common/Filesystem.h"
+#include "lld/Common/Memory.h"
+#include "lld/Common/Strings.h"
+#include "lld/Common/Threads.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/RandomNumberGenerator.h"
+#include "llvm/Support/SHA1.h"
+#include "llvm/Support/xxhash.h"
+#include <climits>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+namespace {
+// The writer writes a SymbolTable result to a file.
+template <class ELFT> class Writer {
+public:
+ Writer() : buffer(errorHandler().outputBuffer) {}
+ using Elf_Shdr = typename ELFT::Shdr;
+ using Elf_Ehdr = typename ELFT::Ehdr;
+ using Elf_Phdr = typename ELFT::Phdr;
+
+ void run();
+
+private:
+ void copyLocalSymbols();
+ void addSectionSymbols();
+ void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
+ void sortSections();
+ void resolveShfLinkOrder();
+ void finalizeAddressDependentContent();
+ void sortInputSections();
+ void finalizeSections();
+ void checkExecuteOnly();
+ void setReservedSymbolSections();
+
+ std::vector<PhdrEntry *> createPhdrs(Partition &part);
+ void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrEntry);
+ void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
+ unsigned pFlags);
+ void assignFileOffsets();
+ void assignFileOffsetsBinary();
+ void setPhdrs(Partition &part);
+ void checkSections();
+ void fixSectionAlignments();
+ void openFile();
+ void writeTrapInstr();
+ void writeHeader();
+ void writeSections();
+ void writeSectionsBinary();
+ void writeBuildId();
+
+ std::unique_ptr<FileOutputBuffer> &buffer;
+
+ void addRelIpltSymbols();
+ void addStartEndSymbols();
+ void addStartStopSymbols(OutputSection *sec);
+
+ uint64_t fileSize;
+ uint64_t sectionHeaderOff;
+};
+} // anonymous namespace
+
+static bool isSectionPrefix(StringRef prefix, StringRef name) {
+ return name.startswith(prefix) || name == prefix.drop_back();
+}
+
+StringRef elf::getOutputSectionName(const InputSectionBase *s) {
+ if (config->relocatable)
+ return s->name;
+
+ // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
+ // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
+ // technically required, but not doing it is odd). This code guarantees that.
+ if (auto *isec = dyn_cast<InputSection>(s)) {
+ if (InputSectionBase *rel = isec->getRelocatedSection()) {
+ OutputSection *out = rel->getOutputSection();
+ if (s->type == SHT_RELA)
+ return saver.save(".rela" + out->name);
+ return saver.save(".rel" + out->name);
+ }
+ }
+
+ // This check is for -z keep-text-section-prefix. This option separates text
+ // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
+ // ".text.exit".
+ // When enabled, this allows identifying the hot code region (.text.hot) in
+ // the final binary which can be selectively mapped to huge pages or mlocked,
+ // for instance.
+ if (config->zKeepTextSectionPrefix)
+ for (StringRef v :
+ {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
+ if (isSectionPrefix(v, s->name))
+ return v.drop_back();
+
+ for (StringRef v :
+ {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
+ ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
+ ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
+ if (isSectionPrefix(v, s->name))
+ return v.drop_back();
+
+ // CommonSection is identified as "COMMON" in linker scripts.
+ // By default, it should go to .bss section.
+ if (s->name == "COMMON")
+ return ".bss";
+
+ return s->name;
+}
+
+static bool needsInterpSection() {
+ return !sharedFiles.empty() && !config->dynamicLinker.empty() &&
+ script->needsInterpSection();
+}
+
+template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
+
+template <class ELFT>
+void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
+ llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
+ if (p->p_type != PT_LOAD)
+ return false;
+ if (!p->firstSec)
+ return true;
+ uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
+ return size == 0;
+ });
+}
+
+template <class ELFT> static void copySectionsIntoPartitions() {
+ std::vector<InputSectionBase *> newSections;
+ for (unsigned part = 2; part != partitions.size() + 1; ++part) {
+ for (InputSectionBase *s : inputSections) {
+ if (!(s->flags & SHF_ALLOC) || !s->isLive())
+ continue;
+ InputSectionBase *copy;
+ if (s->type == SHT_NOTE)
+ copy = make<InputSection>(cast<InputSection>(*s));
+ else if (auto *es = dyn_cast<EhInputSection>(s))
+ copy = make<EhInputSection>(*es);
+ else
+ continue;
+ copy->partition = part;
+ newSections.push_back(copy);
+ }
+ }
+
+ inputSections.insert(inputSections.end(), newSections.begin(),
+ newSections.end());
+}
+
+template <class ELFT> static void combineEhSections() {
+ for (InputSectionBase *&s : inputSections) {
+ // Ignore dead sections and the partition end marker (.part.end),
+ // whose partition number is out of bounds.
+ if (!s->isLive() || s->partition == 255)
+ continue;
+
+ Partition &part = s->getPartition();
+ if (auto *es = dyn_cast<EhInputSection>(s)) {
+ part.ehFrame->addSection<ELFT>(es);
+ s = nullptr;
+ } else if (s->kind() == SectionBase::Regular && part.armExidx &&
+ part.armExidx->addSection(cast<InputSection>(s))) {
+ s = nullptr;
+ }
+ }
+
+ std::vector<InputSectionBase *> &v = inputSections;
+ v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
+}
+
+static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
+ uint64_t val, uint8_t stOther = STV_HIDDEN,
+ uint8_t binding = STB_GLOBAL) {
+ Symbol *s = symtab->find(name);
+ if (!s || s->isDefined())
+ return nullptr;
+
+ s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
+ /*size=*/0, sec});
+ return cast<Defined>(s);
+}
+
+static Defined *addAbsolute(StringRef name) {
+ Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
+ STT_NOTYPE, 0, 0, nullptr});
+ return cast<Defined>(sym);
+}
+
+// The linker is expected to define some symbols depending on
+// the linking result. This function defines such symbols.
+void elf::addReservedSymbols() {
+ if (config->emachine == EM_MIPS) {
+ // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
+ // so that it points to an absolute address which by default is relative
+ // to GOT. Default offset is 0x7ff0.
+ // See "Global Data Symbols" in Chapter 6 in the following document:
+ // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
+ ElfSym::mipsGp = addAbsolute("_gp");
+
+ // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
+ // start of function and 'gp' pointer into GOT.
+ if (symtab->find("_gp_disp"))
+ ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
+
+ // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
+ // pointer. This symbol is used in the code generated by .cpload pseudo-op
+ // in case of using -mno-shared option.
+ // https://sourceware.org/ml/binutils/2004-12/msg00094.html
+ if (symtab->find("__gnu_local_gp"))
+ ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
+ } else if (config->emachine == EM_PPC) {
+ // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
+ // support Small Data Area, define it arbitrarily as 0.
+ addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
+ }
+
+ // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
+ // combines the typical ELF GOT with the small data sections. It commonly
+ // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
+ // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
+ // represent the TOC base which is offset by 0x8000 bytes from the start of
+ // the .got section.
+ // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
+ // correctness of some relocations depends on its value.
+ StringRef gotSymName =
+ (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
+
+ if (Symbol *s = symtab->find(gotSymName)) {
+ if (s->isDefined()) {
+ error(toString(s->file) + " cannot redefine linker defined symbol '" +
+ gotSymName + "'");
+ return;
+ }
+
+ uint64_t gotOff = 0;
+ if (config->emachine == EM_PPC64)
+ gotOff = 0x8000;
+
+ s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
+ STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
+ ElfSym::globalOffsetTable = cast<Defined>(s);
+ }
+
+ // __ehdr_start is the location of ELF file headers. Note that we define
+ // this symbol unconditionally even when using a linker script, which
+ // differs from the behavior implemented by GNU linker which only define
+ // this symbol if ELF headers are in the memory mapped segment.
+ addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
+
+ // __executable_start is not documented, but the expectation of at
+ // least the Android libc is that it points to the ELF header.
+ addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
+
+ // __dso_handle symbol is passed to cxa_finalize as a marker to identify
+ // each DSO. The address of the symbol doesn't matter as long as they are
+ // different in different DSOs, so we chose the start address of the DSO.
+ addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
+
+ // If linker script do layout we do not need to create any standart symbols.
+ if (script->hasSectionsCommand)
+ return;
+
+ auto add = [](StringRef s, int64_t pos) {
+ return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
+ };
+
+ ElfSym::bss = add("__bss_start", 0);
+ ElfSym::end1 = add("end", -1);
+ ElfSym::end2 = add("_end", -1);
+ ElfSym::etext1 = add("etext", -1);
+ ElfSym::etext2 = add("_etext", -1);
+ ElfSym::edata1 = add("edata", -1);
+ ElfSym::edata2 = add("_edata", -1);
+}
+
+static OutputSection *findSection(StringRef name, unsigned partition = 1) {
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ if (sec->name == name && sec->partition == partition)
+ return sec;
+ return nullptr;
+}
+
+// Initialize Out members.
+template <class ELFT> static void createSyntheticSections() {
+ // Initialize all pointers with NULL. This is needed because
+ // you can call lld::elf::main more than once as a library.
+ memset(&Out::first, 0, sizeof(Out));
+
+ auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); };
+
+ in.shStrTab = make<StringTableSection>(".shstrtab", false);
+
+ Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
+ Out::programHeaders->alignment = config->wordsize;
+
+ if (config->strip != StripPolicy::All) {
+ in.strTab = make<StringTableSection>(".strtab", false);
+ in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
+ in.symTabShndx = make<SymtabShndxSection>();
+ }
+
+ in.bss = make<BssSection>(".bss", 0, 1);
+ add(in.bss);
+
+ // If there is a SECTIONS command and a .data.rel.ro section name use name
+ // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
+ // This makes sure our relro is contiguous.
+ bool hasDataRelRo =
+ script->hasSectionsCommand && findSection(".data.rel.ro", 0);
+ in.bssRelRo =
+ make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
+ add(in.bssRelRo);
+
+ // Add MIPS-specific sections.
+ if (config->emachine == EM_MIPS) {
+ if (!config->shared && config->hasDynSymTab) {
+ in.mipsRldMap = make<MipsRldMapSection>();
+ add(in.mipsRldMap);
+ }
+ if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
+ add(sec);
+ if (auto *sec = MipsOptionsSection<ELFT>::create())
+ add(sec);
+ if (auto *sec = MipsReginfoSection<ELFT>::create())
+ add(sec);
+ }
+
+ for (Partition &part : partitions) {
+ auto add = [&](InputSectionBase *sec) {
+ sec->partition = part.getNumber();
+ inputSections.push_back(sec);
+ };
+
+ if (!part.name.empty()) {
+ part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
+ part.elfHeader->name = part.name;
+ add(part.elfHeader);
+
+ part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
+ add(part.programHeaders);
+ }
+
+ if (config->buildId != BuildIdKind::None) {
+ part.buildId = make<BuildIdSection>();
+ add(part.buildId);
+ }
+
+ part.dynStrTab = make<StringTableSection>(".dynstr", true);
+ part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
+ part.dynamic = make<DynamicSection<ELFT>>();
+ if (config->androidPackDynRelocs) {
+ part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(
+ config->isRela ? ".rela.dyn" : ".rel.dyn");
+ } else {
+ part.relaDyn = make<RelocationSection<ELFT>>(
+ config->isRela ? ".rela.dyn" : ".rel.dyn", config->zCombreloc);
+ }
+
+ if (needsInterpSection())
+ add(createInterpSection());
+
+ if (config->hasDynSymTab) {
+ part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
+ add(part.dynSymTab);
+
+ part.verSym = make<VersionTableSection>();
+ add(part.verSym);
+
+ if (!config->versionDefinitions.empty()) {
+ part.verDef = make<VersionDefinitionSection>();
+ add(part.verDef);
+ }
+
+ part.verNeed = make<VersionNeedSection<ELFT>>();
+ add(part.verNeed);
+
+ if (config->gnuHash) {
+ part.gnuHashTab = make<GnuHashTableSection>();
+ add(part.gnuHashTab);
+ }
+
+ if (config->sysvHash) {
+ part.hashTab = make<HashTableSection>();
+ add(part.hashTab);
+ }
+
+ add(part.dynamic);
+ add(part.dynStrTab);
+ add(part.relaDyn);
+ }
+
+ if (config->relrPackDynRelocs) {
+ part.relrDyn = make<RelrSection<ELFT>>();
+ add(part.relrDyn);
+ }
+
+ if (!config->relocatable) {
+ if (config->ehFrameHdr) {
+ part.ehFrameHdr = make<EhFrameHeader>();
+ add(part.ehFrameHdr);
+ }
+ part.ehFrame = make<EhFrameSection>();
+ add(part.ehFrame);
+ }
+
+ if (config->emachine == EM_ARM && !config->relocatable) {
+ // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
+ // InputSections.
+ part.armExidx = make<ARMExidxSyntheticSection>();
+ add(part.armExidx);
+ }
+ }
+
+ if (partitions.size() != 1) {
+ // Create the partition end marker. This needs to be in partition number 255
+ // so that it is sorted after all other partitions. It also has other
+ // special handling (see createPhdrs() and combineEhSections()).
+ in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
+ in.partEnd->partition = 255;
+ add(in.partEnd);
+
+ in.partIndex = make<PartitionIndexSection>();
+ addOptionalRegular("__part_index_begin", in.partIndex, 0);
+ addOptionalRegular("__part_index_end", in.partIndex,
+ in.partIndex->getSize());
+ add(in.partIndex);
+ }
+
+ // Add .got. MIPS' .got is so different from the other archs,
+ // it has its own class.
+ if (config->emachine == EM_MIPS) {
+ in.mipsGot = make<MipsGotSection>();
+ add(in.mipsGot);
+ } else {
+ in.got = make<GotSection>();
+ add(in.got);
+ }
+
+ if (config->emachine == EM_PPC) {
+ in.ppc32Got2 = make<PPC32Got2Section>();
+ add(in.ppc32Got2);
+ }
+
+ if (config->emachine == EM_PPC64) {
+ in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
+ add(in.ppc64LongBranchTarget);
+ }
+
+ if (config->emachine == EM_RISCV) {
+ in.riscvSdata = make<RISCVSdataSection>();
+ add(in.riscvSdata);
+ }
+
+ in.gotPlt = make<GotPltSection>();
+ add(in.gotPlt);
+ in.igotPlt = make<IgotPltSection>();
+ add(in.igotPlt);
+
+ // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
+ // it as a relocation and ensure the referenced section is created.
+ if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
+ if (target->gotBaseSymInGotPlt)
+ in.gotPlt->hasGotPltOffRel = true;
+ else
+ in.got->hasGotOffRel = true;
+ }
+
+ if (config->gdbIndex)
+ add(GdbIndexSection::create<ELFT>());
+
+ // We always need to add rel[a].plt to output if it has entries.
+ // Even for static linking it can contain R_[*]_IRELATIVE relocations.
+ in.relaPlt = make<RelocationSection<ELFT>>(
+ config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
+ add(in.relaPlt);
+
+ // The relaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
+ // that the IRelative relocations are processed last by the dynamic loader.
+ // We cannot place the iplt section in .rel.dyn when Android relocation
+ // packing is enabled because that would cause a section type mismatch.
+ // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
+ // we can get the desired behaviour by placing the iplt section in .rel.plt.
+ in.relaIplt = make<RelocationSection<ELFT>>(
+ (config->emachine == EM_ARM && !config->androidPackDynRelocs)
+ ? ".rel.dyn"
+ : in.relaPlt->name,
+ /*sort=*/false);
+ add(in.relaIplt);
+
+ in.plt = make<PltSection>(false);
+ add(in.plt);
+ in.iplt = make<PltSection>(true);
+ add(in.iplt);
+
+ if (config->andFeatures)
+ add(make<GnuPropertySection>());
+
+ // .note.GNU-stack is always added when we are creating a re-linkable
+ // object file. Other linkers are using the presence of this marker
+ // section to control the executable-ness of the stack area, but that
+ // is irrelevant these days. Stack area should always be non-executable
+ // by default. So we emit this section unconditionally.
+ if (config->relocatable)
+ add(make<GnuStackSection>());
+
+ if (in.symTab)
+ add(in.symTab);
+ if (in.symTabShndx)
+ add(in.symTabShndx);
+ add(in.shStrTab);
+ if (in.strTab)
+ add(in.strTab);
+}
+
+// The main function of the writer.
+template <class ELFT> void Writer<ELFT>::run() {
+ // Make copies of any input sections that need to be copied into each
+ // partition.
+ copySectionsIntoPartitions<ELFT>();
+
+ // Create linker-synthesized sections such as .got or .plt.
+ // Such sections are of type input section.
+ createSyntheticSections<ELFT>();
+
+ // Some input sections that are used for exception handling need to be moved
+ // into synthetic sections. Do that now so that they aren't assigned to
+ // output sections in the usual way.
+ if (!config->relocatable)
+ combineEhSections<ELFT>();
+
+ // We want to process linker script commands. When SECTIONS command
+ // is given we let it create sections.
+ script->processSectionCommands();
+
+ // Linker scripts controls how input sections are assigned to output sections.
+ // Input sections that were not handled by scripts are called "orphans", and
+ // they are assigned to output sections by the default rule. Process that.
+ script->addOrphanSections();
+
+ if (config->discard != DiscardPolicy::All)
+ copyLocalSymbols();
+
+ if (config->copyRelocs)
+ addSectionSymbols();
+
+ // Now that we have a complete set of output sections. This function
+ // completes section contents. For example, we need to add strings
+ // to the string table, and add entries to .got and .plt.
+ // finalizeSections does that.
+ finalizeSections();
+ checkExecuteOnly();
+ if (errorCount())
+ return;
+
+ script->assignAddresses();
+
+ // If -compressed-debug-sections is specified, we need to compress
+ // .debug_* sections. Do it right now because it changes the size of
+ // output sections.
+ for (OutputSection *sec : outputSections)
+ sec->maybeCompress<ELFT>();
+
+ script->allocateHeaders(mainPart->phdrs);
+
+ // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
+ // 0 sized region. This has to be done late since only after assignAddresses
+ // we know the size of the sections.
+ for (Partition &part : partitions)
+ removeEmptyPTLoad(part.phdrs);
+
+ if (!config->oFormatBinary)
+ assignFileOffsets();
+ else
+ assignFileOffsetsBinary();
+
+ for (Partition &part : partitions)
+ setPhdrs(part);
+
+ if (config->relocatable)
+ for (OutputSection *sec : outputSections)
+ sec->addr = 0;
+
+ if (config->checkSections)
+ checkSections();
+
+ // It does not make sense try to open the file if we have error already.
+ if (errorCount())
+ return;
+ // Write the result down to a file.
+ openFile();
+ if (errorCount())
+ return;
+
+ if (!config->oFormatBinary) {
+ writeTrapInstr();
+ writeHeader();
+ writeSections();
+ } else {
+ writeSectionsBinary();
+ }
+
+ // Backfill .note.gnu.build-id section content. This is done at last
+ // because the content is usually a hash value of the entire output file.
+ writeBuildId();
+ if (errorCount())
+ return;
+
+ // Handle -Map and -cref options.
+ writeMapFile();
+ writeCrossReferenceTable();
+ if (errorCount())
+ return;
+
+ if (auto e = buffer->commit())
+ error("failed to write to the output file: " + toString(std::move(e)));
+}
+
+static bool shouldKeepInSymtab(const Defined &sym) {
+ if (sym.isSection())
+ return false;
+
+ if (config->discard == DiscardPolicy::None)
+ return true;
+
+ // If -emit-reloc is given, all symbols including local ones need to be
+ // copied because they may be referenced by relocations.
+ if (config->emitRelocs)
+ return true;
+
+ // In ELF assembly .L symbols are normally discarded by the assembler.
+ // If the assembler fails to do so, the linker discards them if
+ // * --discard-locals is used.
+ // * The symbol is in a SHF_MERGE section, which is normally the reason for
+ // the assembler keeping the .L symbol.
+ StringRef name = sym.getName();
+ bool isLocal = name.startswith(".L") || name.empty();
+ if (!isLocal)
+ return true;
+
+ if (config->discard == DiscardPolicy::Locals)
+ return false;
+
+ SectionBase *sec = sym.section;
+ return !sec || !(sec->flags & SHF_MERGE);
+}
+
+static bool includeInSymtab(const Symbol &b) {
+ if (!b.isLocal() && !b.isUsedInRegularObj)
+ return false;
+
+ if (auto *d = dyn_cast<Defined>(&b)) {
+ // Always include absolute symbols.
+ SectionBase *sec = d->section;
+ if (!sec)
+ return true;
+ sec = sec->repl;
+
+ // Exclude symbols pointing to garbage-collected sections.
+ if (isa<InputSectionBase>(sec) && !sec->isLive())
+ return false;
+
+ if (auto *s = dyn_cast<MergeInputSection>(sec))
+ if (!s->getSectionPiece(d->value)->live)
+ return false;
+ return true;
+ }
+ return b.used;
+}
+
+// Local symbols are not in the linker's symbol table. This function scans
+// each object file's symbol table to copy local symbols to the output.
+template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
+ if (!in.symTab)
+ return;
+ for (InputFile *file : objectFiles) {
+ ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
+ for (Symbol *b : f->getLocalSymbols()) {
+ if (!b->isLocal())
+ fatal(toString(f) +
+ ": broken object: getLocalSymbols returns a non-local symbol");
+ auto *dr = dyn_cast<Defined>(b);
+
+ // No reason to keep local undefined symbol in symtab.
+ if (!dr)
+ continue;
+ if (!includeInSymtab(*b))
+ continue;
+ if (!shouldKeepInSymtab(*dr))
+ continue;
+ in.symTab->addSymbol(b);
+ }
+ }
+}
+
+// Create a section symbol for each output section so that we can represent
+// relocations that point to the section. If we know that no relocation is
+// referring to a section (that happens if the section is a synthetic one), we
+// don't create a section symbol for that section.
+template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
+ for (BaseCommand *base : script->sectionCommands) {
+ auto *sec = dyn_cast<OutputSection>(base);
+ if (!sec)
+ continue;
+ auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
+ if (auto *isd = dyn_cast<InputSectionDescription>(base))
+ return !isd->sections.empty();
+ return false;
+ });
+ if (i == sec->sectionCommands.end())
+ continue;
+ InputSection *isec = cast<InputSectionDescription>(*i)->sections[0];
+
+ // Relocations are not using REL[A] section symbols.
+ if (isec->type == SHT_REL || isec->type == SHT_RELA)
+ continue;
+
+ // Unlike other synthetic sections, mergeable output sections contain data
+ // copied from input sections, and there may be a relocation pointing to its
+ // contents if -r or -emit-reloc are given.
+ if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
+ continue;
+
+ auto *sym =
+ make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
+ /*value=*/0, /*size=*/0, isec);
+ in.symTab->addSymbol(sym);
+ }
+}
+
+// Today's loaders have a feature to make segments read-only after
+// processing dynamic relocations to enhance security. PT_GNU_RELRO
+// is defined for that.
+//
+// This function returns true if a section needs to be put into a
+// PT_GNU_RELRO segment.
+static bool isRelroSection(const OutputSection *sec) {
+ if (!config->zRelro)
+ return false;
+
+ uint64_t flags = sec->flags;
+
+ // Non-allocatable or non-writable sections don't need RELRO because
+ // they are not writable or not even mapped to memory in the first place.
+ // RELRO is for sections that are essentially read-only but need to
+ // be writable only at process startup to allow dynamic linker to
+ // apply relocations.
+ if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
+ return false;
+
+ // Once initialized, TLS data segments are used as data templates
+ // for a thread-local storage. For each new thread, runtime
+ // allocates memory for a TLS and copy templates there. No thread
+ // are supposed to use templates directly. Thus, it can be in RELRO.
+ if (flags & SHF_TLS)
+ return true;
+
+ // .init_array, .preinit_array and .fini_array contain pointers to
+ // functions that are executed on process startup or exit. These
+ // pointers are set by the static linker, and they are not expected
+ // to change at runtime. But if you are an attacker, you could do
+ // interesting things by manipulating pointers in .fini_array, for
+ // example. So they are put into RELRO.
+ uint32_t type = sec->type;
+ if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
+ type == SHT_PREINIT_ARRAY)
+ return true;
+
+ // .got contains pointers to external symbols. They are resolved by
+ // the dynamic linker when a module is loaded into memory, and after
+ // that they are not expected to change. So, it can be in RELRO.
+ if (in.got && sec == in.got->getParent())
+ return true;
+
+ // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
+ // through r2 register, which is reserved for that purpose. Since r2 is used
+ // for accessing .got as well, .got and .toc need to be close enough in the
+ // virtual address space. Usually, .toc comes just after .got. Since we place
+ // .got into RELRO, .toc needs to be placed into RELRO too.
+ if (sec->name.equals(".toc"))
+ return true;
+
+ // .got.plt contains pointers to external function symbols. They are
+ // by default resolved lazily, so we usually cannot put it into RELRO.
+ // However, if "-z now" is given, the lazy symbol resolution is
+ // disabled, which enables us to put it into RELRO.
+ if (sec == in.gotPlt->getParent())
+ return config->zNow;
+
+ // .dynamic section contains data for the dynamic linker, and
+ // there's no need to write to it at runtime, so it's better to put
+ // it into RELRO.
+ if (sec->name == ".dynamic")
+ return true;
+
+ // Sections with some special names are put into RELRO. This is a
+ // bit unfortunate because section names shouldn't be significant in
+ // ELF in spirit. But in reality many linker features depend on
+ // magic section names.
+ StringRef s = sec->name;
+ return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
+ s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
+ s == ".openbsd.randomdata";
+}
+
+// We compute a rank for each section. The rank indicates where the
+// section should be placed in the file. Instead of using simple
+// numbers (0,1,2...), we use a series of flags. One for each decision
+// point when placing the section.
+// Using flags has two key properties:
+// * It is easy to check if a give branch was taken.
+// * It is easy two see how similar two ranks are (see getRankProximity).
+enum RankFlags {
+ RF_NOT_ADDR_SET = 1 << 27,
+ RF_NOT_ALLOC = 1 << 26,
+ RF_PARTITION = 1 << 18, // Partition number (8 bits)
+ RF_NOT_PART_EHDR = 1 << 17,
+ RF_NOT_PART_PHDR = 1 << 16,
+ RF_NOT_INTERP = 1 << 15,
+ RF_NOT_NOTE = 1 << 14,
+ RF_WRITE = 1 << 13,
+ RF_EXEC_WRITE = 1 << 12,
+ RF_EXEC = 1 << 11,
+ RF_RODATA = 1 << 10,
+ RF_NOT_RELRO = 1 << 9,
+ RF_NOT_TLS = 1 << 8,
+ RF_BSS = 1 << 7,
+ RF_PPC_NOT_TOCBSS = 1 << 6,
+ RF_PPC_TOCL = 1 << 5,
+ RF_PPC_TOC = 1 << 4,
+ RF_PPC_GOT = 1 << 3,
+ RF_PPC_BRANCH_LT = 1 << 2,
+ RF_MIPS_GPREL = 1 << 1,
+ RF_MIPS_NOT_GOT = 1 << 0
+};
+
+static unsigned getSectionRank(const OutputSection *sec) {
+ unsigned rank = sec->partition * RF_PARTITION;
+
+ // We want to put section specified by -T option first, so we
+ // can start assigning VA starting from them later.
+ if (config->sectionStartMap.count(sec->name))
+ return rank;
+ rank |= RF_NOT_ADDR_SET;
+
+ // Allocatable sections go first to reduce the total PT_LOAD size and
+ // so debug info doesn't change addresses in actual code.
+ if (!(sec->flags & SHF_ALLOC))
+ return rank | RF_NOT_ALLOC;
+
+ if (sec->type == SHT_LLVM_PART_EHDR)
+ return rank;
+ rank |= RF_NOT_PART_EHDR;
+
+ if (sec->type == SHT_LLVM_PART_PHDR)
+ return rank;
+ rank |= RF_NOT_PART_PHDR;
+
+ // Put .interp first because some loaders want to see that section
+ // on the first page of the executable file when loaded into memory.
+ if (sec->name == ".interp")
+ return rank;
+ rank |= RF_NOT_INTERP;
+
+ // Put .note sections (which make up one PT_NOTE) at the beginning so that
+ // they are likely to be included in a core file even if core file size is
+ // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
+ // included in a core to match core files with executables.
+ if (sec->type == SHT_NOTE)
+ return rank;
+ rank |= RF_NOT_NOTE;
+
+ // Sort sections based on their access permission in the following
+ // order: R, RX, RWX, RW. This order is based on the following
+ // considerations:
+ // * Read-only sections come first such that they go in the
+ // PT_LOAD covering the program headers at the start of the file.
+ // * Read-only, executable sections come next.
+ // * Writable, executable sections follow such that .plt on
+ // architectures where it needs to be writable will be placed
+ // between .text and .data.
+ // * Writable sections come last, such that .bss lands at the very
+ // end of the last PT_LOAD.
+ bool isExec = sec->flags & SHF_EXECINSTR;
+ bool isWrite = sec->flags & SHF_WRITE;
+
+ if (isExec) {
+ if (isWrite)
+ rank |= RF_EXEC_WRITE;
+ else
+ rank |= RF_EXEC;
+ } else if (isWrite) {
+ rank |= RF_WRITE;
+ } else if (sec->type == SHT_PROGBITS) {
+ // Make non-executable and non-writable PROGBITS sections (e.g .rodata
+ // .eh_frame) closer to .text. They likely contain PC or GOT relative
+ // relocations and there could be relocation overflow if other huge sections
+ // (.dynstr .dynsym) were placed in between.
+ rank |= RF_RODATA;
+ }
+
+ // Place RelRo sections first. After considering SHT_NOBITS below, the
+ // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
+ // where | marks where page alignment happens. An alternative ordering is
+ // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
+ // waste more bytes due to 2 alignment places.
+ if (!isRelroSection(sec))
+ rank |= RF_NOT_RELRO;
+
+ // If we got here we know that both A and B are in the same PT_LOAD.
+
+ // The TLS initialization block needs to be a single contiguous block in a R/W
+ // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
+ // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
+ // after PROGBITS.
+ if (!(sec->flags & SHF_TLS))
+ rank |= RF_NOT_TLS;
+
+ // Within TLS sections, or within other RelRo sections, or within non-RelRo
+ // sections, place non-NOBITS sections first.
+ if (sec->type == SHT_NOBITS)
+ rank |= RF_BSS;
+
+ // Some architectures have additional ordering restrictions for sections
+ // within the same PT_LOAD.
+ if (config->emachine == EM_PPC64) {
+ // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
+ // that we would like to make sure appear is a specific order to maximize
+ // their coverage by a single signed 16-bit offset from the TOC base
+ // pointer. Conversely, the special .tocbss section should be first among
+ // all SHT_NOBITS sections. This will put it next to the loaded special
+ // PPC64 sections (and, thus, within reach of the TOC base pointer).
+ StringRef name = sec->name;
+ if (name != ".tocbss")
+ rank |= RF_PPC_NOT_TOCBSS;
+
+ if (name == ".toc1")
+ rank |= RF_PPC_TOCL;
+
+ if (name == ".toc")
+ rank |= RF_PPC_TOC;
+
+ if (name == ".got")
+ rank |= RF_PPC_GOT;
+
+ if (name == ".branch_lt")
+ rank |= RF_PPC_BRANCH_LT;
+ }
+
+ if (config->emachine == EM_MIPS) {
+ // All sections with SHF_MIPS_GPREL flag should be grouped together
+ // because data in these sections is addressable with a gp relative address.
+ if (sec->flags & SHF_MIPS_GPREL)
+ rank |= RF_MIPS_GPREL;
+
+ if (sec->name != ".got")
+ rank |= RF_MIPS_NOT_GOT;
+ }
+
+ return rank;
+}
+
+static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
+ const OutputSection *a = cast<OutputSection>(aCmd);
+ const OutputSection *b = cast<OutputSection>(bCmd);
+
+ if (a->sortRank != b->sortRank)
+ return a->sortRank < b->sortRank;
+
+ if (!(a->sortRank & RF_NOT_ADDR_SET))
+ return config->sectionStartMap.lookup(a->name) <
+ config->sectionStartMap.lookup(b->name);
+ return false;
+}
+
+void PhdrEntry::add(OutputSection *sec) {
+ lastSec = sec;
+ if (!firstSec)
+ firstSec = sec;
+ p_align = std::max(p_align, sec->alignment);
+ if (p_type == PT_LOAD)
+ sec->ptLoad = this;
+}
+
+// The beginning and the ending of .rel[a].plt section are marked
+// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
+// executable. The runtime needs these symbols in order to resolve
+// all IRELATIVE relocs on startup. For dynamic executables, we don't
+// need these symbols, since IRELATIVE relocs are resolved through GOT
+// and PLT. For details, see http://www.airs.com/blog/archives/403.
+template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
+ if (config->relocatable || needsInterpSection())
+ return;
+
+ // By default, __rela_iplt_{start,end} belong to a dummy section 0
+ // because .rela.plt might be empty and thus removed from output.
+ // We'll override Out::elfHeader with In.relaIplt later when we are
+ // sure that .rela.plt exists in output.
+ ElfSym::relaIpltStart = addOptionalRegular(
+ config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
+ Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
+
+ ElfSym::relaIpltEnd = addOptionalRegular(
+ config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
+ Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
+}
+
+template <class ELFT>
+void Writer<ELFT>::forEachRelSec(
+ llvm::function_ref<void(InputSectionBase &)> fn) {
+ // Scan all relocations. Each relocation goes through a series
+ // of tests to determine if it needs special treatment, such as
+ // creating GOT, PLT, copy relocations, etc.
+ // Note that relocations for non-alloc sections are directly
+ // processed by InputSection::relocateNonAlloc.
+ for (InputSectionBase *isec : inputSections)
+ if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
+ fn(*isec);
+ for (Partition &part : partitions) {
+ for (EhInputSection *es : part.ehFrame->sections)
+ fn(*es);
+ if (part.armExidx && part.armExidx->isLive())
+ for (InputSection *ex : part.armExidx->exidxSections)
+ fn(*ex);
+ }
+}
+
+// This function generates assignments for predefined symbols (e.g. _end or
+// _etext) and inserts them into the commands sequence to be processed at the
+// appropriate time. This ensures that the value is going to be correct by the
+// time any references to these symbols are processed and is equivalent to
+// defining these symbols explicitly in the linker script.
+template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
+ if (ElfSym::globalOffsetTable) {
+ // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
+ // to the start of the .got or .got.plt section.
+ InputSection *gotSection = in.gotPlt;
+ if (!target->gotBaseSymInGotPlt)
+ gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
+ : cast<InputSection>(in.got);
+ ElfSym::globalOffsetTable->section = gotSection;
+ }
+
+ // .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
+ if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
+ ElfSym::relaIpltStart->section = in.relaIplt;
+ ElfSym::relaIpltEnd->section = in.relaIplt;
+ ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
+ }
+
+ PhdrEntry *last = nullptr;
+ PhdrEntry *lastRO = nullptr;
+
+ for (Partition &part : partitions) {
+ for (PhdrEntry *p : part.phdrs) {
+ if (p->p_type != PT_LOAD)
+ continue;
+ last = p;
+ if (!(p->p_flags & PF_W))
+ lastRO = p;
+ }
+ }
+
+ if (lastRO) {
+ // _etext is the first location after the last read-only loadable segment.
+ if (ElfSym::etext1)
+ ElfSym::etext1->section = lastRO->lastSec;
+ if (ElfSym::etext2)
+ ElfSym::etext2->section = lastRO->lastSec;
+ }
+
+ if (last) {
+ // _edata points to the end of the last mapped initialized section.
+ OutputSection *edata = nullptr;
+ for (OutputSection *os : outputSections) {
+ if (os->type != SHT_NOBITS)
+ edata = os;
+ if (os == last->lastSec)
+ break;
+ }
+
+ if (ElfSym::edata1)
+ ElfSym::edata1->section = edata;
+ if (ElfSym::edata2)
+ ElfSym::edata2->section = edata;
+
+ // _end is the first location after the uninitialized data region.
+ if (ElfSym::end1)
+ ElfSym::end1->section = last->lastSec;
+ if (ElfSym::end2)
+ ElfSym::end2->section = last->lastSec;
+ }
+
+ if (ElfSym::bss)
+ ElfSym::bss->section = findSection(".bss");
+
+ // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
+ // be equal to the _gp symbol's value.
+ if (ElfSym::mipsGp) {
+ // Find GP-relative section with the lowest address
+ // and use this address to calculate default _gp value.
+ for (OutputSection *os : outputSections) {
+ if (os->flags & SHF_MIPS_GPREL) {
+ ElfSym::mipsGp->section = os;
+ ElfSym::mipsGp->value = 0x7ff0;
+ break;
+ }
+ }
+ }
+}
+
+// We want to find how similar two ranks are.
+// The more branches in getSectionRank that match, the more similar they are.
+// Since each branch corresponds to a bit flag, we can just use
+// countLeadingZeros.
+static int getRankProximityAux(OutputSection *a, OutputSection *b) {
+ return countLeadingZeros(a->sortRank ^ b->sortRank);
+}
+
+static int getRankProximity(OutputSection *a, BaseCommand *b) {
+ auto *sec = dyn_cast<OutputSection>(b);
+ return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
+}
+
+// When placing orphan sections, we want to place them after symbol assignments
+// so that an orphan after
+// begin_foo = .;
+// foo : { *(foo) }
+// end_foo = .;
+// doesn't break the intended meaning of the begin/end symbols.
+// We don't want to go over sections since findOrphanPos is the
+// one in charge of deciding the order of the sections.
+// We don't want to go over changes to '.', since doing so in
+// rx_sec : { *(rx_sec) }
+// . = ALIGN(0x1000);
+// /* The RW PT_LOAD starts here*/
+// rw_sec : { *(rw_sec) }
+// would mean that the RW PT_LOAD would become unaligned.
+static bool shouldSkip(BaseCommand *cmd) {
+ if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
+ return assign->name != ".";
+ return false;
+}
+
+// We want to place orphan sections so that they share as much
+// characteristics with their neighbors as possible. For example, if
+// both are rw, or both are tls.
+static std::vector<BaseCommand *>::iterator
+findOrphanPos(std::vector<BaseCommand *>::iterator b,
+ std::vector<BaseCommand *>::iterator e) {
+ OutputSection *sec = cast<OutputSection>(*e);
+
+ // Find the first element that has as close a rank as possible.
+ auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
+ return getRankProximity(sec, a) < getRankProximity(sec, b);
+ });
+ if (i == e)
+ return e;
+
+ // Consider all existing sections with the same proximity.
+ int proximity = getRankProximity(sec, *i);
+ for (; i != e; ++i) {
+ auto *curSec = dyn_cast<OutputSection>(*i);
+ if (!curSec || !curSec->hasInputSections)
+ continue;
+ if (getRankProximity(sec, curSec) != proximity ||
+ sec->sortRank < curSec->sortRank)
+ break;
+ }
+
+ auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
+ auto *os = dyn_cast<OutputSection>(cmd);
+ return os && os->hasInputSections;
+ };
+ auto j = std::find_if(llvm::make_reverse_iterator(i),
+ llvm::make_reverse_iterator(b),
+ isOutputSecWithInputSections);
+ i = j.base();
+
+ // As a special case, if the orphan section is the last section, put
+ // it at the very end, past any other commands.
+ // This matches bfd's behavior and is convenient when the linker script fully
+ // specifies the start of the file, but doesn't care about the end (the non
+ // alloc sections for example).
+ auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
+ if (nextSec == e)
+ return e;
+
+ while (i != e && shouldSkip(*i))
+ ++i;
+ return i;
+}
+
+// Builds section order for handling --symbol-ordering-file.
+static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
+ DenseMap<const InputSectionBase *, int> sectionOrder;
+ // Use the rarely used option -call-graph-ordering-file to sort sections.
+ if (!config->callGraphProfile.empty())
+ return computeCallGraphProfileOrder();
+
+ if (config->symbolOrderingFile.empty())
+ return sectionOrder;
+
+ struct SymbolOrderEntry {
+ int priority;
+ bool present;
+ };
+
+ // Build a map from symbols to their priorities. Symbols that didn't
+ // appear in the symbol ordering file have the lowest priority 0.
+ // All explicitly mentioned symbols have negative (higher) priorities.
+ DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
+ int priority = -config->symbolOrderingFile.size();
+ for (StringRef s : config->symbolOrderingFile)
+ symbolOrder.insert({s, {priority++, false}});
+
+ // Build a map from sections to their priorities.
+ auto addSym = [&](Symbol &sym) {
+ auto it = symbolOrder.find(sym.getName());
+ if (it == symbolOrder.end())
+ return;
+ SymbolOrderEntry &ent = it->second;
+ ent.present = true;
+
+ maybeWarnUnorderableSymbol(&sym);
+
+ if (auto *d = dyn_cast<Defined>(&sym)) {
+ if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
+ int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
+ priority = std::min(priority, ent.priority);
+ }
+ }
+ };
+
+ // We want both global and local symbols. We get the global ones from the
+ // symbol table and iterate the object files for the local ones.
+ symtab->forEachSymbol([&](Symbol *sym) {
+ if (!sym->isLazy())
+ addSym(*sym);
+ });
+
+ for (InputFile *file : objectFiles)
+ for (Symbol *sym : file->getSymbols())
+ if (sym->isLocal())
+ addSym(*sym);
+
+ if (config->warnSymbolOrdering)
+ for (auto orderEntry : symbolOrder)
+ if (!orderEntry.second.present)
+ warn("symbol ordering file: no such symbol: " + orderEntry.first);
+
+ return sectionOrder;
+}
+
+// Sorts the sections in ISD according to the provided section order.
+static void
+sortISDBySectionOrder(InputSectionDescription *isd,
+ const DenseMap<const InputSectionBase *, int> &order) {
+ std::vector<InputSection *> unorderedSections;
+ std::vector<std::pair<InputSection *, int>> orderedSections;
+ uint64_t unorderedSize = 0;
+
+ for (InputSection *isec : isd->sections) {
+ auto i = order.find(isec);
+ if (i == order.end()) {
+ unorderedSections.push_back(isec);
+ unorderedSize += isec->getSize();
+ continue;
+ }
+ orderedSections.push_back({isec, i->second});
+ }
+ llvm::sort(orderedSections, [&](std::pair<InputSection *, int> a,
+ std::pair<InputSection *, int> b) {
+ return a.second < b.second;
+ });
+
+ // Find an insertion point for the ordered section list in the unordered
+ // section list. On targets with limited-range branches, this is the mid-point
+ // of the unordered section list. This decreases the likelihood that a range
+ // extension thunk will be needed to enter or exit the ordered region. If the
+ // ordered section list is a list of hot functions, we can generally expect
+ // the ordered functions to be called more often than the unordered functions,
+ // making it more likely that any particular call will be within range, and
+ // therefore reducing the number of thunks required.
+ //
+ // For example, imagine that you have 8MB of hot code and 32MB of cold code.
+ // If the layout is:
+ //
+ // 8MB hot
+ // 32MB cold
+ //
+ // only the first 8-16MB of the cold code (depending on which hot function it
+ // is actually calling) can call the hot code without a range extension thunk.
+ // However, if we use this layout:
+ //
+ // 16MB cold
+ // 8MB hot
+ // 16MB cold
+ //
+ // both the last 8-16MB of the first block of cold code and the first 8-16MB
+ // of the second block of cold code can call the hot code without a thunk. So
+ // we effectively double the amount of code that could potentially call into
+ // the hot code without a thunk.
+ size_t insPt = 0;
+ if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
+ uint64_t unorderedPos = 0;
+ for (; insPt != unorderedSections.size(); ++insPt) {
+ unorderedPos += unorderedSections[insPt]->getSize();
+ if (unorderedPos > unorderedSize / 2)
+ break;
+ }
+ }
+
+ isd->sections.clear();
+ for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
+ isd->sections.push_back(isec);
+ for (std::pair<InputSection *, int> p : orderedSections)
+ isd->sections.push_back(p.first);
+ for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
+ isd->sections.push_back(isec);
+}
+
+static void sortSection(OutputSection *sec,
+ const DenseMap<const InputSectionBase *, int> &order) {
+ StringRef name = sec->name;
+
+ // Sort input sections by section name suffixes for
+ // __attribute__((init_priority(N))).
+ if (name == ".init_array" || name == ".fini_array") {
+ if (!script->hasSectionsCommand)
+ sec->sortInitFini();
+ return;
+ }
+
+ // Sort input sections by the special rule for .ctors and .dtors.
+ if (name == ".ctors" || name == ".dtors") {
+ if (!script->hasSectionsCommand)
+ sec->sortCtorsDtors();
+ return;
+ }
+
+ // Never sort these.
+ if (name == ".init" || name == ".fini")
+ return;
+
+ // .toc is allocated just after .got and is accessed using GOT-relative
+ // relocations. Object files compiled with small code model have an
+ // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
+ // To reduce the risk of relocation overflow, .toc contents are sorted so that
+ // sections having smaller relocation offsets are at beginning of .toc
+ if (config->emachine == EM_PPC64 && name == ".toc") {
+ if (script->hasSectionsCommand)
+ return;
+ assert(sec->sectionCommands.size() == 1);
+ auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
+ llvm::stable_sort(isd->sections,
+ [](const InputSection *a, const InputSection *b) -> bool {
+ return a->file->ppc64SmallCodeModelTocRelocs &&
+ !b->file->ppc64SmallCodeModelTocRelocs;
+ });
+ return;
+ }
+
+ // Sort input sections by priority using the list provided
+ // by --symbol-ordering-file.
+ if (!order.empty())
+ for (BaseCommand *b : sec->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(b))
+ sortISDBySectionOrder(isd, order);
+}
+
+// If no layout was provided by linker script, we want to apply default
+// sorting for special input sections. This also handles --symbol-ordering-file.
+template <class ELFT> void Writer<ELFT>::sortInputSections() {
+ // Build the order once since it is expensive.
+ DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ sortSection(sec, order);
+}
+
+template <class ELFT> void Writer<ELFT>::sortSections() {
+ script->adjustSectionsBeforeSorting();
+
+ // Don't sort if using -r. It is not necessary and we want to preserve the
+ // relative order for SHF_LINK_ORDER sections.
+ if (config->relocatable)
+ return;
+
+ sortInputSections();
+
+ for (BaseCommand *base : script->sectionCommands) {
+ auto *os = dyn_cast<OutputSection>(base);
+ if (!os)
+ continue;
+ os->sortRank = getSectionRank(os);
+
+ // We want to assign rude approximation values to outSecOff fields
+ // to know the relative order of the input sections. We use it for
+ // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
+ uint64_t i = 0;
+ for (InputSection *sec : getInputSections(os))
+ sec->outSecOff = i++;
+ }
+
+ if (!script->hasSectionsCommand) {
+ // We know that all the OutputSections are contiguous in this case.
+ auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
+ std::stable_sort(
+ llvm::find_if(script->sectionCommands, isSection),
+ llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
+ compareSections);
+ return;
+ }
+
+ // Orphan sections are sections present in the input files which are
+ // not explicitly placed into the output file by the linker script.
+ //
+ // The sections in the linker script are already in the correct
+ // order. We have to figuere out where to insert the orphan
+ // sections.
+ //
+ // The order of the sections in the script is arbitrary and may not agree with
+ // compareSections. This means that we cannot easily define a strict weak
+ // ordering. To see why, consider a comparison of a section in the script and
+ // one not in the script. We have a two simple options:
+ // * Make them equivalent (a is not less than b, and b is not less than a).
+ // The problem is then that equivalence has to be transitive and we can
+ // have sections a, b and c with only b in a script and a less than c
+ // which breaks this property.
+ // * Use compareSectionsNonScript. Given that the script order doesn't have
+ // to match, we can end up with sections a, b, c, d where b and c are in the
+ // script and c is compareSectionsNonScript less than b. In which case d
+ // can be equivalent to c, a to b and d < a. As a concrete example:
+ // .a (rx) # not in script
+ // .b (rx) # in script
+ // .c (ro) # in script
+ // .d (ro) # not in script
+ //
+ // The way we define an order then is:
+ // * Sort only the orphan sections. They are in the end right now.
+ // * Move each orphan section to its preferred position. We try
+ // to put each section in the last position where it can share
+ // a PT_LOAD.
+ //
+ // There is some ambiguity as to where exactly a new entry should be
+ // inserted, because Commands contains not only output section
+ // commands but also other types of commands such as symbol assignment
+ // expressions. There's no correct answer here due to the lack of the
+ // formal specification of the linker script. We use heuristics to
+ // determine whether a new output command should be added before or
+ // after another commands. For the details, look at shouldSkip
+ // function.
+
+ auto i = script->sectionCommands.begin();
+ auto e = script->sectionCommands.end();
+ auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ return sec->sectionIndex == UINT32_MAX;
+ return false;
+ });
+
+ // Sort the orphan sections.
+ std::stable_sort(nonScriptI, e, compareSections);
+
+ // As a horrible special case, skip the first . assignment if it is before any
+ // section. We do this because it is common to set a load address by starting
+ // the script with ". = 0xabcd" and the expectation is that every section is
+ // after that.
+ auto firstSectionOrDotAssignment =
+ std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
+ if (firstSectionOrDotAssignment != e &&
+ isa<SymbolAssignment>(**firstSectionOrDotAssignment))
+ ++firstSectionOrDotAssignment;
+ i = firstSectionOrDotAssignment;
+
+ while (nonScriptI != e) {
+ auto pos = findOrphanPos(i, nonScriptI);
+ OutputSection *orphan = cast<OutputSection>(*nonScriptI);
+
+ // As an optimization, find all sections with the same sort rank
+ // and insert them with one rotate.
+ unsigned rank = orphan->sortRank;
+ auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
+ return cast<OutputSection>(cmd)->sortRank != rank;
+ });
+ std::rotate(pos, nonScriptI, end);
+ nonScriptI = end;
+ }
+
+ script->adjustSectionsAfterSorting();
+}
+
+static bool compareByFilePosition(InputSection *a, InputSection *b) {
+ InputSection *la = a->getLinkOrderDep();
+ InputSection *lb = b->getLinkOrderDep();
+ OutputSection *aOut = la->getParent();
+ OutputSection *bOut = lb->getParent();
+
+ if (aOut != bOut)
+ return aOut->sectionIndex < bOut->sectionIndex;
+ return la->outSecOff < lb->outSecOff;
+}
+
+template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
+ for (OutputSection *sec : outputSections) {
+ if (!(sec->flags & SHF_LINK_ORDER))
+ continue;
+
+ // Link order may be distributed across several InputSectionDescriptions
+ // but sort must consider them all at once.
+ std::vector<InputSection **> scriptSections;
+ std::vector<InputSection *> sections;
+ for (BaseCommand *base : sec->sectionCommands) {
+ if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
+ for (InputSection *&isec : isd->sections) {
+ scriptSections.push_back(&isec);
+ sections.push_back(isec);
+ }
+ }
+ }
+
+ // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
+ // this processing inside the ARMExidxsyntheticsection::finalizeContents().
+ if (!config->relocatable && config->emachine == EM_ARM &&
+ sec->type == SHT_ARM_EXIDX)
+ continue;
+
+ llvm::stable_sort(sections, compareByFilePosition);
+
+ for (int i = 0, n = sections.size(); i < n; ++i)
+ *scriptSections[i] = sections[i];
+ }
+}
+
+// We need to generate and finalize the content that depends on the address of
+// InputSections. As the generation of the content may also alter InputSection
+// addresses we must converge to a fixed point. We do that here. See the comment
+// in Writer<ELFT>::finalizeSections().
+template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
+ ThunkCreator tc;
+ AArch64Err843419Patcher a64p;
+
+ // For some targets, like x86, this loop iterates only once.
+ for (;;) {
+ bool changed = false;
+
+ script->assignAddresses();
+
+ if (target->needsThunks)
+ changed |= tc.createThunks(outputSections);
+
+ if (config->fixCortexA53Errata843419) {
+ if (changed)
+ script->assignAddresses();
+ changed |= a64p.createFixes();
+ }
+
+ if (in.mipsGot)
+ in.mipsGot->updateAllocSize();
+
+ for (Partition &part : partitions) {
+ changed |= part.relaDyn->updateAllocSize();
+ if (part.relrDyn)
+ changed |= part.relrDyn->updateAllocSize();
+ }
+
+ if (!changed)
+ return;
+ }
+}
+
+static void finalizeSynthetic(SyntheticSection *sec) {
+ if (sec && sec->isNeeded() && sec->getParent())
+ sec->finalizeContents();
+}
+
+// In order to allow users to manipulate linker-synthesized sections,
+// we had to add synthetic sections to the input section list early,
+// even before we make decisions whether they are needed. This allows
+// users to write scripts like this: ".mygot : { .got }".
+//
+// Doing it has an unintended side effects. If it turns out that we
+// don't need a .got (for example) at all because there's no
+// relocation that needs a .got, we don't want to emit .got.
+//
+// To deal with the above problem, this function is called after
+// scanRelocations is called to remove synthetic sections that turn
+// out to be empty.
+static void removeUnusedSyntheticSections() {
+ // All input synthetic sections that can be empty are placed after
+ // all regular ones. We iterate over them all and exit at first
+ // non-synthetic.
+ for (InputSectionBase *s : llvm::reverse(inputSections)) {
+ SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
+ if (!ss)
+ return;
+ OutputSection *os = ss->getParent();
+ if (!os || ss->isNeeded())
+ continue;
+
+ // If we reach here, then SS is an unused synthetic section and we want to
+ // remove it from corresponding input section description of output section.
+ for (BaseCommand *b : os->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(b))
+ llvm::erase_if(isd->sections,
+ [=](InputSection *isec) { return isec == ss; });
+ }
+}
+
+// Returns true if a symbol can be replaced at load-time by a symbol
+// with the same name defined in other ELF executable or DSO.
+static bool computeIsPreemptible(const Symbol &b) {
+ assert(!b.isLocal());
+
+ // Only symbols that appear in dynsym can be preempted.
+ if (!b.includeInDynsym())
+ return false;
+
+ // Only default visibility symbols can be preempted.
+ if (b.visibility != STV_DEFAULT)
+ return false;
+
+ // At this point copy relocations have not been created yet, so any
+ // symbol that is not defined locally is preemptible.
+ if (!b.isDefined())
+ return true;
+
+ // If we have a dynamic list it specifies which local symbols are preemptible.
+ if (config->hasDynamicList)
+ return false;
+
+ if (!config->shared)
+ return false;
+
+ // -Bsymbolic means that definitions are not preempted.
+ if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc()))
+ return false;
+ return true;
+}
+
+// Create output section objects and add them to OutputSections.
+template <class ELFT> void Writer<ELFT>::finalizeSections() {
+ Out::preinitArray = findSection(".preinit_array");
+ Out::initArray = findSection(".init_array");
+ Out::finiArray = findSection(".fini_array");
+
+ // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
+ // symbols for sections, so that the runtime can get the start and end
+ // addresses of each section by section name. Add such symbols.
+ if (!config->relocatable) {
+ addStartEndSymbols();
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ addStartStopSymbols(sec);
+ }
+
+ // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
+ // It should be okay as no one seems to care about the type.
+ // Even the author of gold doesn't remember why gold behaves that way.
+ // https://sourceware.org/ml/binutils/2002-03/msg00360.html
+ if (mainPart->dynamic->parent)
+ symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
+ STV_HIDDEN, STT_NOTYPE,
+ /*value=*/0, /*size=*/0, mainPart->dynamic});
+
+ // Define __rel[a]_iplt_{start,end} symbols if needed.
+ addRelIpltSymbols();
+
+ // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
+ // This symbol should only be defined in an executable.
+ if (config->emachine == EM_RISCV && !config->shared)
+ ElfSym::riscvGlobalPointer =
+ addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800,
+ STV_DEFAULT, STB_GLOBAL);
+
+ if (config->emachine == EM_X86_64) {
+ // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
+ // way that:
+ //
+ // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
+ // computes 0.
+ // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
+ // the TLS block).
+ //
+ // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
+ // an absolute symbol of zero. This is different from GNU linkers which
+ // define _TLS_MODULE_BASE_ relative to the first TLS section.
+ Symbol *s = symtab->find("_TLS_MODULE_BASE_");
+ if (s && s->isUndefined()) {
+ s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
+ STT_TLS, /*value=*/0, 0,
+ /*section=*/nullptr});
+ ElfSym::tlsModuleBase = cast<Defined>(s);
+ }
+ }
+
+ // This responsible for splitting up .eh_frame section into
+ // pieces. The relocation scan uses those pieces, so this has to be
+ // earlier.
+ for (Partition &part : partitions)
+ finalizeSynthetic(part.ehFrame);
+
+ symtab->forEachSymbol([](Symbol *s) {
+ if (!s->isPreemptible)
+ s->isPreemptible = computeIsPreemptible(*s);
+ });
+
+ // Scan relocations. This must be done after every symbol is declared so that
+ // we can correctly decide if a dynamic relocation is needed.
+ if (!config->relocatable) {
+ forEachRelSec(scanRelocations<ELFT>);
+ reportUndefinedSymbols<ELFT>();
+ }
+
+ addIRelativeRelocs();
+
+ if (in.plt && in.plt->isNeeded())
+ in.plt->addSymbols();
+ if (in.iplt && in.iplt->isNeeded())
+ in.iplt->addSymbols();
+
+ if (!config->allowShlibUndefined) {
+ // Error on undefined symbols in a shared object, if all of its DT_NEEDED
+ // entires are seen. These cases would otherwise lead to runtime errors
+ // reported by the dynamic linker.
+ //
+ // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
+ // catch more cases. That is too much for us. Our approach resembles the one
+ // used in ld.gold, achieves a good balance to be useful but not too smart.
+ for (SharedFile *file : sharedFiles)
+ file->allNeededIsKnown =
+ llvm::all_of(file->dtNeeded, [&](StringRef needed) {
+ return symtab->soNames.count(needed);
+ });
+
+ symtab->forEachSymbol([](Symbol *sym) {
+ if (sym->isUndefined() && !sym->isWeak())
+ if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
+ if (f->allNeededIsKnown)
+ error(toString(f) + ": undefined reference to " + toString(*sym));
+ });
+ }
+
+ // Now that we have defined all possible global symbols including linker-
+ // synthesized ones. Visit all symbols to give the finishing touches.
+ symtab->forEachSymbol([](Symbol *sym) {
+ if (!includeInSymtab(*sym))
+ return;
+ if (in.symTab)
+ in.symTab->addSymbol(sym);
+
+ if (sym->includeInDynsym()) {
+ partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
+ if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
+ if (file->isNeeded && !sym->isUndefined())
+ addVerneed(sym);
+ }
+ });
+
+ // We also need to scan the dynamic relocation tables of the other partitions
+ // and add any referenced symbols to the partition's dynsym.
+ for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
+ DenseSet<Symbol *> syms;
+ for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
+ syms.insert(e.sym);
+ for (DynamicReloc &reloc : part.relaDyn->relocs)
+ if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
+ part.dynSymTab->addSymbol(reloc.sym);
+ }
+
+ // Do not proceed if there was an undefined symbol.
+ if (errorCount())
+ return;
+
+ if (in.mipsGot)
+ in.mipsGot->build();
+
+ removeUnusedSyntheticSections();
+
+ sortSections();
+
+ // Now that we have the final list, create a list of all the
+ // OutputSections for convenience.
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ outputSections.push_back(sec);
+
+ // Prefer command line supplied address over other constraints.
+ for (OutputSection *sec : outputSections) {
+ auto i = config->sectionStartMap.find(sec->name);
+ if (i != config->sectionStartMap.end())
+ sec->addrExpr = [=] { return i->second; };
+ }
+
+ // This is a bit of a hack. A value of 0 means undef, so we set it
+ // to 1 to make __ehdr_start defined. The section number is not
+ // particularly relevant.
+ Out::elfHeader->sectionIndex = 1;
+
+ for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
+ OutputSection *sec = outputSections[i];
+ sec->sectionIndex = i + 1;
+ sec->shName = in.shStrTab->addString(sec->name);
+ }
+
+ // Binary and relocatable output does not have PHDRS.
+ // The headers have to be created before finalize as that can influence the
+ // image base and the dynamic section on mips includes the image base.
+ if (!config->relocatable && !config->oFormatBinary) {
+ for (Partition &part : partitions) {
+ part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
+ : createPhdrs(part);
+ if (config->emachine == EM_ARM) {
+ // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
+ addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
+ }
+ if (config->emachine == EM_MIPS) {
+ // Add separate segments for MIPS-specific sections.
+ addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
+ addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
+ addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
+ }
+ }
+ Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
+
+ // Find the TLS segment. This happens before the section layout loop so that
+ // Android relocation packing can look up TLS symbol addresses. We only need
+ // to care about the main partition here because all TLS symbols were moved
+ // to the main partition (see MarkLive.cpp).
+ for (PhdrEntry *p : mainPart->phdrs)
+ if (p->p_type == PT_TLS)
+ Out::tlsPhdr = p;
+ }
+
+ // Some symbols are defined in term of program headers. Now that we
+ // have the headers, we can find out which sections they point to.
+ setReservedSymbolSections();
+
+ finalizeSynthetic(in.bss);
+ finalizeSynthetic(in.bssRelRo);
+ finalizeSynthetic(in.symTabShndx);
+ finalizeSynthetic(in.shStrTab);
+ finalizeSynthetic(in.strTab);
+ finalizeSynthetic(in.got);
+ finalizeSynthetic(in.mipsGot);
+ finalizeSynthetic(in.igotPlt);
+ finalizeSynthetic(in.gotPlt);
+ finalizeSynthetic(in.relaIplt);
+ finalizeSynthetic(in.relaPlt);
+ finalizeSynthetic(in.plt);
+ finalizeSynthetic(in.iplt);
+ finalizeSynthetic(in.ppc32Got2);
+ finalizeSynthetic(in.riscvSdata);
+ finalizeSynthetic(in.partIndex);
+
+ // Dynamic section must be the last one in this list and dynamic
+ // symbol table section (dynSymTab) must be the first one.
+ for (Partition &part : partitions) {
+ finalizeSynthetic(part.armExidx);
+ finalizeSynthetic(part.dynSymTab);
+ finalizeSynthetic(part.gnuHashTab);
+ finalizeSynthetic(part.hashTab);
+ finalizeSynthetic(part.verDef);
+ finalizeSynthetic(part.relaDyn);
+ finalizeSynthetic(part.relrDyn);
+ finalizeSynthetic(part.ehFrameHdr);
+ finalizeSynthetic(part.verSym);
+ finalizeSynthetic(part.verNeed);
+ finalizeSynthetic(part.dynamic);
+ }
+
+ if (!script->hasSectionsCommand && !config->relocatable)
+ fixSectionAlignments();
+
+ // SHFLinkOrder processing must be processed after relative section placements are
+ // known but before addresses are allocated.
+ resolveShfLinkOrder();
+
+ // This is used to:
+ // 1) Create "thunks":
+ // Jump instructions in many ISAs have small displacements, and therefore
+ // they cannot jump to arbitrary addresses in memory. For example, RISC-V
+ // JAL instruction can target only +-1 MiB from PC. It is a linker's
+ // responsibility to create and insert small pieces of code between
+ // sections to extend the ranges if jump targets are out of range. Such
+ // code pieces are called "thunks".
+ //
+ // We add thunks at this stage. We couldn't do this before this point
+ // because this is the earliest point where we know sizes of sections and
+ // their layouts (that are needed to determine if jump targets are in
+ // range).
+ //
+ // 2) Update the sections. We need to generate content that depends on the
+ // address of InputSections. For example, MIPS GOT section content or
+ // android packed relocations sections content.
+ //
+ // 3) Assign the final values for the linker script symbols. Linker scripts
+ // sometimes using forward symbol declarations. We want to set the correct
+ // values. They also might change after adding the thunks.
+ finalizeAddressDependentContent();
+
+ // finalizeAddressDependentContent may have added local symbols to the static symbol table.
+ finalizeSynthetic(in.symTab);
+ finalizeSynthetic(in.ppc64LongBranchTarget);
+
+ // Fill other section headers. The dynamic table is finalized
+ // at the end because some tags like RELSZ depend on result
+ // of finalizing other sections.
+ for (OutputSection *sec : outputSections)
+ sec->finalize();
+}
+
+// Ensure data sections are not mixed with executable sections when
+// -execute-only is used. -execute-only is a feature to make pages executable
+// but not readable, and the feature is currently supported only on AArch64.
+template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
+ if (!config->executeOnly)
+ return;
+
+ for (OutputSection *os : outputSections)
+ if (os->flags & SHF_EXECINSTR)
+ for (InputSection *isec : getInputSections(os))
+ if (!(isec->flags & SHF_EXECINSTR))
+ error("cannot place " + toString(isec) + " into " + toString(os->name) +
+ ": -execute-only does not support intermingling data and code");
+}
+
+// The linker is expected to define SECNAME_start and SECNAME_end
+// symbols for a few sections. This function defines them.
+template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
+ // If a section does not exist, there's ambiguity as to how we
+ // define _start and _end symbols for an init/fini section. Since
+ // the loader assume that the symbols are always defined, we need to
+ // always define them. But what value? The loader iterates over all
+ // pointers between _start and _end to run global ctors/dtors, so if
+ // the section is empty, their symbol values don't actually matter
+ // as long as _start and _end point to the same location.
+ //
+ // That said, we don't want to set the symbols to 0 (which is
+ // probably the simplest value) because that could cause some
+ // program to fail to link due to relocation overflow, if their
+ // program text is above 2 GiB. We use the address of the .text
+ // section instead to prevent that failure.
+ //
+ // In a rare sitaution, .text section may not exist. If that's the
+ // case, use the image base address as a last resort.
+ OutputSection *Default = findSection(".text");
+ if (!Default)
+ Default = Out::elfHeader;
+
+ auto define = [=](StringRef start, StringRef end, OutputSection *os) {
+ if (os) {
+ addOptionalRegular(start, os, 0);
+ addOptionalRegular(end, os, -1);
+ } else {
+ addOptionalRegular(start, Default, 0);
+ addOptionalRegular(end, Default, 0);
+ }
+ };
+
+ define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
+ define("__init_array_start", "__init_array_end", Out::initArray);
+ define("__fini_array_start", "__fini_array_end", Out::finiArray);
+
+ if (OutputSection *sec = findSection(".ARM.exidx"))
+ define("__exidx_start", "__exidx_end", sec);
+}
+
+// If a section name is valid as a C identifier (which is rare because of
+// the leading '.'), linkers are expected to define __start_<secname> and
+// __stop_<secname> symbols. They are at beginning and end of the section,
+// respectively. This is not requested by the ELF standard, but GNU ld and
+// gold provide the feature, and used by many programs.
+template <class ELFT>
+void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
+ StringRef s = sec->name;
+ if (!isValidCIdentifier(s))
+ return;
+ addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
+ addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
+}
+
+static bool needsPtLoad(OutputSection *sec) {
+ if (!(sec->flags & SHF_ALLOC) || sec->noload)
+ return false;
+
+ // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
+ // responsible for allocating space for them, not the PT_LOAD that
+ // contains the TLS initialization image.
+ if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
+ return false;
+ return true;
+}
+
+// Linker scripts are responsible for aligning addresses. Unfortunately, most
+// linker scripts are designed for creating two PT_LOADs only, one RX and one
+// RW. This means that there is no alignment in the RO to RX transition and we
+// cannot create a PT_LOAD there.
+static uint64_t computeFlags(uint64_t flags) {
+ if (config->omagic)
+ return PF_R | PF_W | PF_X;
+ if (config->executeOnly && (flags & PF_X))
+ return flags & ~PF_R;
+ if (config->singleRoRx && !(flags & PF_W))
+ return flags | PF_X;
+ return flags;
+}
+
+// Decide which program headers to create and which sections to include in each
+// one.
+template <class ELFT>
+std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
+ std::vector<PhdrEntry *> ret;
+ auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
+ ret.push_back(make<PhdrEntry>(type, flags));
+ return ret.back();
+ };
+
+ unsigned partNo = part.getNumber();
+ bool isMain = partNo == 1;
+
+ // The first phdr entry is PT_PHDR which describes the program header itself.
+ if (isMain)
+ addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
+ else
+ addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
+
+ // PT_INTERP must be the second entry if exists.
+ if (OutputSection *cmd = findSection(".interp", partNo))
+ addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
+
+ // Add the first PT_LOAD segment for regular output sections.
+ uint64_t flags = computeFlags(PF_R);
+ PhdrEntry *load = nullptr;
+
+ // Add the headers. We will remove them if they don't fit.
+ // In the other partitions the headers are ordinary sections, so they don't
+ // need to be added here.
+ if (isMain) {
+ load = addHdr(PT_LOAD, flags);
+ load->add(Out::elfHeader);
+ load->add(Out::programHeaders);
+ }
+
+ // PT_GNU_RELRO includes all sections that should be marked as
+ // read-only by dynamic linker after proccessing relocations.
+ // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
+ // an error message if more than one PT_GNU_RELRO PHDR is required.
+ PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
+ bool inRelroPhdr = false;
+ OutputSection *relroEnd = nullptr;
+ for (OutputSection *sec : outputSections) {
+ if (sec->partition != partNo || !needsPtLoad(sec))
+ continue;
+ if (isRelroSection(sec)) {
+ inRelroPhdr = true;
+ if (!relroEnd)
+ relRo->add(sec);
+ else
+ error("section: " + sec->name + " is not contiguous with other relro" +
+ " sections");
+ } else if (inRelroPhdr) {
+ inRelroPhdr = false;
+ relroEnd = sec;
+ }
+ }
+
+ for (OutputSection *sec : outputSections) {
+ if (!(sec->flags & SHF_ALLOC))
+ break;
+ if (!needsPtLoad(sec))
+ continue;
+
+ // Normally, sections in partitions other than the current partition are
+ // ignored. But partition number 255 is a special case: it contains the
+ // partition end marker (.part.end). It needs to be added to the main
+ // partition so that a segment is created for it in the main partition,
+ // which will cause the dynamic loader to reserve space for the other
+ // partitions.
+ if (sec->partition != partNo) {
+ if (isMain && sec->partition == 255)
+ addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
+ continue;
+ }
+
+ // Segments are contiguous memory regions that has the same attributes
+ // (e.g. executable or writable). There is one phdr for each segment.
+ // Therefore, we need to create a new phdr when the next section has
+ // different flags or is loaded at a discontiguous address or memory
+ // region using AT or AT> linker script command, respectively. At the same
+ // time, we don't want to create a separate load segment for the headers,
+ // even if the first output section has an AT or AT> attribute.
+ uint64_t newFlags = computeFlags(sec->getPhdrFlags());
+ if (!load ||
+ ((sec->lmaExpr ||
+ (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
+ load->lastSec != Out::programHeaders) ||
+ sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
+ sec == relroEnd) {
+ load = addHdr(PT_LOAD, newFlags);
+ flags = newFlags;
+ }
+
+ load->add(sec);
+ }
+
+ // Add a TLS segment if any.
+ PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
+ for (OutputSection *sec : outputSections)
+ if (sec->partition == partNo && sec->flags & SHF_TLS)
+ tlsHdr->add(sec);
+ if (tlsHdr->firstSec)
+ ret.push_back(tlsHdr);
+
+ // Add an entry for .dynamic.
+ if (OutputSection *sec = part.dynamic->getParent())
+ addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
+
+ if (relRo->firstSec)
+ ret.push_back(relRo);
+
+ // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
+ if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
+ part.ehFrame->getParent() && part.ehFrameHdr->getParent())
+ addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
+ ->add(part.ehFrameHdr->getParent());
+
+ // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
+ // the dynamic linker fill the segment with random data.
+ if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
+ addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
+
+ // PT_GNU_STACK is a special section to tell the loader to make the
+ // pages for the stack non-executable. If you really want an executable
+ // stack, you can pass -z execstack, but that's not recommended for
+ // security reasons.
+ unsigned perm = PF_R | PF_W;
+ if (config->zExecstack)
+ perm |= PF_X;
+ addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
+
+ // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
+ // is expected to perform W^X violations, such as calling mprotect(2) or
+ // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
+ // OpenBSD.
+ if (config->zWxneeded)
+ addHdr(PT_OPENBSD_WXNEEDED, PF_X);
+
+ // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
+ // same alignment.
+ PhdrEntry *note = nullptr;
+ for (OutputSection *sec : outputSections) {
+ if (sec->partition != partNo)
+ continue;
+ if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
+ if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
+ note = addHdr(PT_NOTE, PF_R);
+ note->add(sec);
+ } else {
+ note = nullptr;
+ }
+ }
+ return ret;
+}
+
+template <class ELFT>
+void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
+ unsigned pType, unsigned pFlags) {
+ unsigned partNo = part.getNumber();
+ auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
+ return cmd->partition == partNo && cmd->type == shType;
+ });
+ if (i == outputSections.end())
+ return;
+
+ PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
+ entry->add(*i);
+ part.phdrs.push_back(entry);
+}
+
+// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
+// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
+// linker can set the permissions.
+template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
+ auto pageAlign = [](OutputSection *cmd) {
+ if (cmd && !cmd->addrExpr)
+ cmd->addrExpr = [=] {
+ return alignTo(script->getDot(), config->maxPageSize);
+ };
+ };
+
+ for (Partition &part : partitions) {
+ for (const PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && p->firstSec)
+ pageAlign(p->firstSec);
+ }
+}
+
+// Compute an in-file position for a given section. The file offset must be the
+// same with its virtual address modulo the page size, so that the loader can
+// load executables without any address adjustment.
+static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
+ // The first section in a PT_LOAD has to have congruent offset and address
+ // module the page size.
+ if (os->ptLoad && os->ptLoad->firstSec == os) {
+ uint64_t alignment =
+ std::max<uint64_t>(os->ptLoad->p_align, config->maxPageSize);
+ return alignTo(off, alignment, os->addr);
+ }
+
+ // File offsets are not significant for .bss sections other than the first one
+ // in a PT_LOAD. By convention, we keep section offsets monotonically
+ // increasing rather than setting to zero.
+ if (os->type == SHT_NOBITS)
+ return off;
+
+ // If the section is not in a PT_LOAD, we just have to align it.
+ if (!os->ptLoad)
+ return alignTo(off, os->alignment);
+
+ // If two sections share the same PT_LOAD the file offset is calculated
+ // using this formula: Off2 = Off1 + (VA2 - VA1).
+ OutputSection *first = os->ptLoad->firstSec;
+ return first->offset + os->addr - first->addr;
+}
+
+// Set an in-file position to a given section and returns the end position of
+// the section.
+static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
+ off = computeFileOffset(os, off);
+ os->offset = off;
+
+ if (os->type == SHT_NOBITS)
+ return off;
+ return off + os->size;
+}
+
+template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
+ uint64_t off = 0;
+ for (OutputSection *sec : outputSections)
+ if (sec->flags & SHF_ALLOC)
+ off = setFileOffset(sec, off);
+ fileSize = alignTo(off, config->wordsize);
+}
+
+static std::string rangeToString(uint64_t addr, uint64_t len) {
+ return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
+}
+
+// Assign file offsets to output sections.
+template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
+ uint64_t off = 0;
+ off = setFileOffset(Out::elfHeader, off);
+ off = setFileOffset(Out::programHeaders, off);
+
+ PhdrEntry *lastRX = nullptr;
+ for (Partition &part : partitions)
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
+ lastRX = p;
+
+ for (OutputSection *sec : outputSections) {
+ off = setFileOffset(sec, off);
+ if (script->hasSectionsCommand)
+ continue;
+
+ // If this is a last section of the last executable segment and that
+ // segment is the last loadable segment, align the offset of the
+ // following section to avoid loading non-segments parts of the file.
+ if (lastRX && lastRX->lastSec == sec)
+ off = alignTo(off, config->commonPageSize);
+ }
+
+ sectionHeaderOff = alignTo(off, config->wordsize);
+ fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
+
+ // Our logic assumes that sections have rising VA within the same segment.
+ // With use of linker scripts it is possible to violate this rule and get file
+ // offset overlaps or overflows. That should never happen with a valid script
+ // which does not move the location counter backwards and usually scripts do
+ // not do that. Unfortunately, there are apps in the wild, for example, Linux
+ // kernel, which control segment distribution explicitly and move the counter
+ // backwards, so we have to allow doing that to support linking them. We
+ // perform non-critical checks for overlaps in checkSectionOverlap(), but here
+ // we want to prevent file size overflows because it would crash the linker.
+ for (OutputSection *sec : outputSections) {
+ if (sec->type == SHT_NOBITS)
+ continue;
+ if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
+ error("unable to place section " + sec->name + " at file offset " +
+ rangeToString(sec->offset, sec->size) +
+ "; check your linker script for overflows");
+ }
+}
+
+// Finalize the program headers. We call this function after we assign
+// file offsets and VAs to all sections.
+template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
+ for (PhdrEntry *p : part.phdrs) {
+ OutputSection *first = p->firstSec;
+ OutputSection *last = p->lastSec;
+
+ if (first) {
+ p->p_filesz = last->offset - first->offset;
+ if (last->type != SHT_NOBITS)
+ p->p_filesz += last->size;
+
+ p->p_memsz = last->addr + last->size - first->addr;
+ p->p_offset = first->offset;
+ p->p_vaddr = first->addr;
+
+ // File offsets in partitions other than the main partition are relative
+ // to the offset of the ELF headers. Perform that adjustment now.
+ if (part.elfHeader)
+ p->p_offset -= part.elfHeader->getParent()->offset;
+
+ if (!p->hasLMA)
+ p->p_paddr = first->getLMA();
+ }
+
+ if (p->p_type == PT_LOAD) {
+ p->p_align = std::max<uint64_t>(p->p_align, config->maxPageSize);
+ } else if (p->p_type == PT_GNU_RELRO) {
+ p->p_align = 1;
+ // The glibc dynamic loader rounds the size down, so we need to round up
+ // to protect the last page. This is a no-op on FreeBSD which always
+ // rounds up.
+ p->p_memsz = alignTo(p->p_memsz, config->commonPageSize);
+ }
+ }
+}
+
+// A helper struct for checkSectionOverlap.
+namespace {
+struct SectionOffset {
+ OutputSection *sec;
+ uint64_t offset;
+};
+} // namespace
+
+// Check whether sections overlap for a specific address range (file offsets,
+// load and virtual adresses).
+static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
+ bool isVirtualAddr) {
+ llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
+ return a.offset < b.offset;
+ });
+
+ // Finding overlap is easy given a vector is sorted by start position.
+ // If an element starts before the end of the previous element, they overlap.
+ for (size_t i = 1, end = sections.size(); i < end; ++i) {
+ SectionOffset a = sections[i - 1];
+ SectionOffset b = sections[i];
+ if (b.offset >= a.offset + a.sec->size)
+ continue;
+
+ // If both sections are in OVERLAY we allow the overlapping of virtual
+ // addresses, because it is what OVERLAY was designed for.
+ if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
+ continue;
+
+ errorOrWarn("section " + a.sec->name + " " + name +
+ " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
+ " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
+ b.sec->name + " range is " +
+ rangeToString(b.offset, b.sec->size));
+ }
+}
+
+// Check for overlapping sections and address overflows.
+//
+// In this function we check that none of the output sections have overlapping
+// file offsets. For SHF_ALLOC sections we also check that the load address
+// ranges and the virtual address ranges don't overlap
+template <class ELFT> void Writer<ELFT>::checkSections() {
+ // First, check that section's VAs fit in available address space for target.
+ for (OutputSection *os : outputSections)
+ if ((os->addr + os->size < os->addr) ||
+ (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
+ errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
+ " of size 0x" + utohexstr(os->size) +
+ " exceeds available address space");
+
+ // Check for overlapping file offsets. In this case we need to skip any
+ // section marked as SHT_NOBITS. These sections don't actually occupy space in
+ // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
+ // binary is specified only add SHF_ALLOC sections are added to the output
+ // file so we skip any non-allocated sections in that case.
+ std::vector<SectionOffset> fileOffs;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && sec->type != SHT_NOBITS &&
+ (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
+ fileOffs.push_back({sec, sec->offset});
+ checkOverlap("file", fileOffs, false);
+
+ // When linking with -r there is no need to check for overlapping virtual/load
+ // addresses since those addresses will only be assigned when the final
+ // executable/shared object is created.
+ if (config->relocatable)
+ return;
+
+ // Checking for overlapping virtual and load addresses only needs to take
+ // into account SHF_ALLOC sections since others will not be loaded.
+ // Furthermore, we also need to skip SHF_TLS sections since these will be
+ // mapped to other addresses at runtime and can therefore have overlapping
+ // ranges in the file.
+ std::vector<SectionOffset> vmas;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
+ vmas.push_back({sec, sec->addr});
+ checkOverlap("virtual address", vmas, true);
+
+ // Finally, check that the load addresses don't overlap. This will usually be
+ // the same as the virtual addresses but can be different when using a linker
+ // script with AT().
+ std::vector<SectionOffset> lmas;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
+ lmas.push_back({sec, sec->getLMA()});
+ checkOverlap("load address", lmas, false);
+}
+
+// The entry point address is chosen in the following ways.
+//
+// 1. the '-e' entry command-line option;
+// 2. the ENTRY(symbol) command in a linker control script;
+// 3. the value of the symbol _start, if present;
+// 4. the number represented by the entry symbol, if it is a number;
+// 5. the address of the first byte of the .text section, if present;
+// 6. the address 0.
+static uint64_t getEntryAddr() {
+ // Case 1, 2 or 3
+ if (Symbol *b = symtab->find(config->entry))
+ return b->getVA();
+
+ // Case 4
+ uint64_t addr;
+ if (to_integer(config->entry, addr))
+ return addr;
+
+ // Case 5
+ if (OutputSection *sec = findSection(".text")) {
+ if (config->warnMissingEntry)
+ warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
+ utohexstr(sec->addr));
+ return sec->addr;
+ }
+
+ // Case 6
+ if (config->warnMissingEntry)
+ warn("cannot find entry symbol " + config->entry +
+ "; not setting start address");
+ return 0;
+}
+
+static uint16_t getELFType() {
+ if (config->isPic)
+ return ET_DYN;
+ if (config->relocatable)
+ return ET_REL;
+ return ET_EXEC;
+}
+
+template <class ELFT> void Writer<ELFT>::writeHeader() {
+ writeEhdr<ELFT>(Out::bufferStart, *mainPart);
+ writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
+
+ auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
+ eHdr->e_type = getELFType();
+ eHdr->e_entry = getEntryAddr();
+ eHdr->e_shoff = sectionHeaderOff;
+
+ // Write the section header table.
+ //
+ // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
+ // and e_shstrndx fields. When the value of one of these fields exceeds
+ // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
+ // use fields in the section header at index 0 to store
+ // the value. The sentinel values and fields are:
+ // e_shnum = 0, SHdrs[0].sh_size = number of sections.
+ // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
+ auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
+ size_t num = outputSections.size() + 1;
+ if (num >= SHN_LORESERVE)
+ sHdrs->sh_size = num;
+ else
+ eHdr->e_shnum = num;
+
+ uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
+ if (strTabIndex >= SHN_LORESERVE) {
+ sHdrs->sh_link = strTabIndex;
+ eHdr->e_shstrndx = SHN_XINDEX;
+ } else {
+ eHdr->e_shstrndx = strTabIndex;
+ }
+
+ for (OutputSection *sec : outputSections)
+ sec->writeHeaderTo<ELFT>(++sHdrs);
+}
+
+// Open a result file.
+template <class ELFT> void Writer<ELFT>::openFile() {
+ uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
+ if (fileSize != size_t(fileSize) || maxSize < fileSize) {
+ error("output file too large: " + Twine(fileSize) + " bytes");
+ return;
+ }
+
+ unlinkAsync(config->outputFile);
+ unsigned flags = 0;
+ if (!config->relocatable)
+ flags = FileOutputBuffer::F_executable;
+ Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
+ FileOutputBuffer::create(config->outputFile, fileSize, flags);
+
+ if (!bufferOrErr) {
+ error("failed to open " + config->outputFile + ": " +
+ llvm::toString(bufferOrErr.takeError()));
+ return;
+ }
+ buffer = std::move(*bufferOrErr);
+ Out::bufferStart = buffer->getBufferStart();
+}
+
+template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
+ for (OutputSection *sec : outputSections)
+ if (sec->flags & SHF_ALLOC)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
+}
+
+static void fillTrap(uint8_t *i, uint8_t *end) {
+ for (; i + 4 <= end; i += 4)
+ memcpy(i, &target->trapInstr, 4);
+}
+
+// Fill the last page of executable segments with trap instructions
+// instead of leaving them as zero. Even though it is not required by any
+// standard, it is in general a good thing to do for security reasons.
+//
+// We'll leave other pages in segments as-is because the rest will be
+// overwritten by output sections.
+template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
+ if (script->hasSectionsCommand)
+ return;
+
+ for (Partition &part : partitions) {
+ // Fill the last page.
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
+ fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
+ config->commonPageSize),
+ Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
+ config->commonPageSize));
+
+ // Round up the file size of the last segment to the page boundary iff it is
+ // an executable segment to ensure that other tools don't accidentally
+ // trim the instruction padding (e.g. when stripping the file).
+ PhdrEntry *last = nullptr;
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD)
+ last = p;
+
+ if (last && (last->p_flags & PF_X))
+ last->p_memsz = last->p_filesz =
+ alignTo(last->p_filesz, config->commonPageSize);
+ }
+}
+
+// Write section contents to a mmap'ed file.
+template <class ELFT> void Writer<ELFT>::writeSections() {
+ // In -r or -emit-relocs mode, write the relocation sections first as in
+ // ELf_Rel targets we might find out that we need to modify the relocated
+ // section while doing it.
+ for (OutputSection *sec : outputSections)
+ if (sec->type == SHT_REL || sec->type == SHT_RELA)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
+
+ for (OutputSection *sec : outputSections)
+ if (sec->type != SHT_REL && sec->type != SHT_RELA)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
+}
+
+// Split one uint8 array into small pieces of uint8 arrays.
+static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
+ size_t chunkSize) {
+ std::vector<ArrayRef<uint8_t>> ret;
+ while (arr.size() > chunkSize) {
+ ret.push_back(arr.take_front(chunkSize));
+ arr = arr.drop_front(chunkSize);
+ }
+ if (!arr.empty())
+ ret.push_back(arr);
+ return ret;
+}
+
+// Computes a hash value of Data using a given hash function.
+// In order to utilize multiple cores, we first split data into 1MB
+// chunks, compute a hash for each chunk, and then compute a hash value
+// of the hash values.
+static void
+computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
+ llvm::ArrayRef<uint8_t> data,
+ std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
+ std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
+ std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
+
+ // Compute hash values.
+ parallelForEachN(0, chunks.size(), [&](size_t i) {
+ hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
+ });
+
+ // Write to the final output buffer.
+ hashFn(hashBuf.data(), hashes);
+}
+
+template <class ELFT> void Writer<ELFT>::writeBuildId() {
+ if (!mainPart->buildId || !mainPart->buildId->getParent())
+ return;
+
+ if (config->buildId == BuildIdKind::Hexstring) {
+ for (Partition &part : partitions)
+ part.buildId->writeBuildId(config->buildIdVector);
+ return;
+ }
+
+ // Compute a hash of all sections of the output file.
+ size_t hashSize = mainPart->buildId->hashSize;
+ std::vector<uint8_t> buildId(hashSize);
+ llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
+
+ switch (config->buildId) {
+ case BuildIdKind::Fast:
+ computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ write64le(dest, xxHash64(arr));
+ });
+ break;
+ case BuildIdKind::Md5:
+ computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ memcpy(dest, MD5::hash(arr).data(), hashSize);
+ });
+ break;
+ case BuildIdKind::Sha1:
+ computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ memcpy(dest, SHA1::hash(arr).data(), hashSize);
+ });
+ break;
+ case BuildIdKind::Uuid:
+ if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
+ error("entropy source failure: " + ec.message());
+ break;
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+ for (Partition &part : partitions)
+ part.buildId->writeBuildId(buildId);
+}
+
+template void elf::writeResult<ELF32LE>();
+template void elf::writeResult<ELF32BE>();
+template void elf::writeResult<ELF64LE>();
+template void elf::writeResult<ELF64BE>();