diff options
Diffstat (limited to 'contrib/llvm-project/llvm/include/llvm/ADT/SparseBitVector.h')
-rw-r--r-- | contrib/llvm-project/llvm/include/llvm/ADT/SparseBitVector.h | 892 |
1 files changed, 892 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/include/llvm/ADT/SparseBitVector.h b/contrib/llvm-project/llvm/include/llvm/ADT/SparseBitVector.h new file mode 100644 index 000000000000..12850e14f4ed --- /dev/null +++ b/contrib/llvm-project/llvm/include/llvm/ADT/SparseBitVector.h @@ -0,0 +1,892 @@ +//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the SparseBitVector class. See the doxygen comment for +// SparseBitVector for more details on the algorithm used. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_SPARSEBITVECTOR_H +#define LLVM_ADT_SPARSEBITVECTOR_H + +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <climits> +#include <cstring> +#include <iterator> +#include <list> + +namespace llvm { + +/// SparseBitVector is an implementation of a bitvector that is sparse by only +/// storing the elements that have non-zero bits set. In order to make this +/// fast for the most common cases, SparseBitVector is implemented as a linked +/// list of SparseBitVectorElements. We maintain a pointer to the last +/// SparseBitVectorElement accessed (in the form of a list iterator), in order +/// to make multiple in-order test/set constant time after the first one is +/// executed. Note that using vectors to store SparseBitVectorElement's does +/// not work out very well because it causes insertion in the middle to take +/// enormous amounts of time with a large amount of bits. Other structures that +/// have better worst cases for insertion in the middle (various balanced trees, +/// etc) do not perform as well in practice as a linked list with this iterator +/// kept up to date. They are also significantly more memory intensive. + +template <unsigned ElementSize = 128> struct SparseBitVectorElement { +public: + using BitWord = unsigned long; + using size_type = unsigned; + enum { + BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, + BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, + BITS_PER_ELEMENT = ElementSize + }; + +private: + // Index of Element in terms of where first bit starts. + unsigned ElementIndex; + BitWord Bits[BITWORDS_PER_ELEMENT]; + + SparseBitVectorElement() { + ElementIndex = ~0U; + memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); + } + +public: + explicit SparseBitVectorElement(unsigned Idx) { + ElementIndex = Idx; + memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); + } + + // Comparison. + bool operator==(const SparseBitVectorElement &RHS) const { + if (ElementIndex != RHS.ElementIndex) + return false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != RHS.Bits[i]) + return false; + return true; + } + + bool operator!=(const SparseBitVectorElement &RHS) const { + return !(*this == RHS); + } + + // Return the bits that make up word Idx in our element. + BitWord word(unsigned Idx) const { + assert(Idx < BITWORDS_PER_ELEMENT); + return Bits[Idx]; + } + + unsigned index() const { + return ElementIndex; + } + + bool empty() const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i]) + return false; + return true; + } + + void set(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); + } + + bool test_and_set(unsigned Idx) { + bool old = test(Idx); + if (!old) { + set(Idx); + return true; + } + return false; + } + + void reset(unsigned Idx) { + Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); + } + + bool test(unsigned Idx) const { + return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); + } + + size_type count() const { + unsigned NumBits = 0; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + NumBits += countPopulation(Bits[i]); + return NumBits; + } + + /// find_first - Returns the index of the first set bit. + int find_first() const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); + llvm_unreachable("Illegal empty element"); + } + + /// find_last - Returns the index of the last set bit. + int find_last() const { + for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) { + unsigned Idx = BITWORDS_PER_ELEMENT - I - 1; + if (Bits[Idx] != 0) + return Idx * BITWORD_SIZE + BITWORD_SIZE - + countLeadingZeros(Bits[Idx]) - 1; + } + llvm_unreachable("Illegal empty element"); + } + + /// find_next - Returns the index of the next set bit starting from the + /// "Curr" bit. Returns -1 if the next set bit is not found. + int find_next(unsigned Curr) const { + if (Curr >= BITS_PER_ELEMENT) + return -1; + + unsigned WordPos = Curr / BITWORD_SIZE; + unsigned BitPos = Curr % BITWORD_SIZE; + BitWord Copy = Bits[WordPos]; + assert(WordPos <= BITWORDS_PER_ELEMENT + && "Word Position outside of element"); + + // Mask off previous bits. + Copy &= ~0UL << BitPos; + + if (Copy != 0) + return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); + + // Check subsequent words. + for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) + if (Bits[i] != 0) + return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); + return -1; + } + + // Union this element with RHS and return true if this one changed. + bool unionWith(const SparseBitVectorElement &RHS) { + bool changed = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] |= RHS.Bits[i]; + if (!changed && old != Bits[i]) + changed = true; + } + return changed; + } + + // Return true if we have any bits in common with RHS + bool intersects(const SparseBitVectorElement &RHS) const { + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + if (RHS.Bits[i] & Bits[i]) + return true; + } + return false; + } + + // Intersect this Element with RHS and return true if this one changed. + // BecameZero is set to true if this element became all-zero bits. + bool intersectWith(const SparseBitVectorElement &RHS, + bool &BecameZero) { + bool changed = false; + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] &= RHS.Bits[i]; + if (Bits[i] != 0) + allzero = false; + + if (!changed && old != Bits[i]) + changed = true; + } + BecameZero = allzero; + return changed; + } + + // Intersect this Element with the complement of RHS and return true if this + // one changed. BecameZero is set to true if this element became all-zero + // bits. + bool intersectWithComplement(const SparseBitVectorElement &RHS, + bool &BecameZero) { + bool changed = false; + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + BitWord old = changed ? 0 : Bits[i]; + + Bits[i] &= ~RHS.Bits[i]; + if (Bits[i] != 0) + allzero = false; + + if (!changed && old != Bits[i]) + changed = true; + } + BecameZero = allzero; + return changed; + } + + // Three argument version of intersectWithComplement that intersects + // RHS1 & ~RHS2 into this element + void intersectWithComplement(const SparseBitVectorElement &RHS1, + const SparseBitVectorElement &RHS2, + bool &BecameZero) { + bool allzero = true; + + BecameZero = false; + for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { + Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; + if (Bits[i] != 0) + allzero = false; + } + BecameZero = allzero; + } +}; + +template <unsigned ElementSize = 128> +class SparseBitVector { + using ElementList = std::list<SparseBitVectorElement<ElementSize>>; + using ElementListIter = typename ElementList::iterator; + using ElementListConstIter = typename ElementList::const_iterator; + enum { + BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE + }; + + ElementList Elements; + // Pointer to our current Element. This has no visible effect on the external + // state of a SparseBitVector, it's just used to improve performance in the + // common case of testing/modifying bits with similar indices. + mutable ElementListIter CurrElementIter; + + // This is like std::lower_bound, except we do linear searching from the + // current position. + ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const { + + // We cache a non-const iterator so we're forced to resort to const_cast to + // get the begin/end in the case where 'this' is const. To avoid duplication + // of code with the only difference being whether the const cast is present + // 'this' is always const in this particular function and we sort out the + // difference in FindLowerBound and FindLowerBoundConst. + ElementListIter Begin = + const_cast<SparseBitVector<ElementSize> *>(this)->Elements.begin(); + ElementListIter End = + const_cast<SparseBitVector<ElementSize> *>(this)->Elements.end(); + + if (Elements.empty()) { + CurrElementIter = Begin; + return CurrElementIter; + } + + // Make sure our current iterator is valid. + if (CurrElementIter == End) + --CurrElementIter; + + // Search from our current iterator, either backwards or forwards, + // depending on what element we are looking for. + ElementListIter ElementIter = CurrElementIter; + if (CurrElementIter->index() == ElementIndex) { + return ElementIter; + } else if (CurrElementIter->index() > ElementIndex) { + while (ElementIter != Begin + && ElementIter->index() > ElementIndex) + --ElementIter; + } else { + while (ElementIter != End && + ElementIter->index() < ElementIndex) + ++ElementIter; + } + CurrElementIter = ElementIter; + return ElementIter; + } + ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const { + return FindLowerBoundImpl(ElementIndex); + } + ElementListIter FindLowerBound(unsigned ElementIndex) { + return FindLowerBoundImpl(ElementIndex); + } + + // Iterator to walk set bits in the bitmap. This iterator is a lot uglier + // than it would be, in order to be efficient. + class SparseBitVectorIterator { + private: + bool AtEnd; + + const SparseBitVector<ElementSize> *BitVector = nullptr; + + // Current element inside of bitmap. + ElementListConstIter Iter; + + // Current bit number inside of our bitmap. + unsigned BitNumber; + + // Current word number inside of our element. + unsigned WordNumber; + + // Current bits from the element. + typename SparseBitVectorElement<ElementSize>::BitWord Bits; + + // Move our iterator to the first non-zero bit in the bitmap. + void AdvanceToFirstNonZero() { + if (AtEnd) + return; + if (BitVector->Elements.empty()) { + AtEnd = true; + return; + } + Iter = BitVector->Elements.begin(); + BitNumber = Iter->index() * ElementSize; + unsigned BitPos = Iter->find_first(); + BitNumber += BitPos; + WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= BitPos % BITWORD_SIZE; + } + + // Move our iterator to the next non-zero bit. + void AdvanceToNextNonZero() { + if (AtEnd) + return; + + while (Bits && !(Bits & 1)) { + Bits >>= 1; + BitNumber += 1; + } + + // See if we ran out of Bits in this word. + if (!Bits) { + int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; + // If we ran out of set bits in this element, move to next element. + if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { + ++Iter; + WordNumber = 0; + + // We may run out of elements in the bitmap. + if (Iter == BitVector->Elements.end()) { + AtEnd = true; + return; + } + // Set up for next non-zero word in bitmap. + BitNumber = Iter->index() * ElementSize; + NextSetBitNumber = Iter->find_first(); + BitNumber += NextSetBitNumber; + WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= NextSetBitNumber % BITWORD_SIZE; + } else { + WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; + Bits = Iter->word(WordNumber); + Bits >>= NextSetBitNumber % BITWORD_SIZE; + BitNumber = Iter->index() * ElementSize; + BitNumber += NextSetBitNumber; + } + } + } + + public: + SparseBitVectorIterator() = default; + + SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS, + bool end = false):BitVector(RHS) { + Iter = BitVector->Elements.begin(); + BitNumber = 0; + Bits = 0; + WordNumber = ~0; + AtEnd = end; + AdvanceToFirstNonZero(); + } + + // Preincrement. + inline SparseBitVectorIterator& operator++() { + ++BitNumber; + Bits >>= 1; + AdvanceToNextNonZero(); + return *this; + } + + // Postincrement. + inline SparseBitVectorIterator operator++(int) { + SparseBitVectorIterator tmp = *this; + ++*this; + return tmp; + } + + // Return the current set bit number. + unsigned operator*() const { + return BitNumber; + } + + bool operator==(const SparseBitVectorIterator &RHS) const { + // If they are both at the end, ignore the rest of the fields. + if (AtEnd && RHS.AtEnd) + return true; + // Otherwise they are the same if they have the same bit number and + // bitmap. + return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; + } + + bool operator!=(const SparseBitVectorIterator &RHS) const { + return !(*this == RHS); + } + }; + +public: + using iterator = SparseBitVectorIterator; + + SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {} + + SparseBitVector(const SparseBitVector &RHS) + : Elements(RHS.Elements), CurrElementIter(Elements.begin()) {} + SparseBitVector(SparseBitVector &&RHS) + : Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {} + + // Clear. + void clear() { + Elements.clear(); + } + + // Assignment + SparseBitVector& operator=(const SparseBitVector& RHS) { + if (this == &RHS) + return *this; + + Elements = RHS.Elements; + CurrElementIter = Elements.begin(); + return *this; + } + SparseBitVector &operator=(SparseBitVector &&RHS) { + Elements = std::move(RHS.Elements); + CurrElementIter = Elements.begin(); + return *this; + } + + // Test, Reset, and Set a bit in the bitmap. + bool test(unsigned Idx) const { + if (Elements.empty()) + return false; + + unsigned ElementIndex = Idx / ElementSize; + ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex); + + // If we can't find an element that is supposed to contain this bit, there + // is nothing more to do. + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) + return false; + return ElementIter->test(Idx % ElementSize); + } + + void reset(unsigned Idx) { + if (Elements.empty()) + return; + + unsigned ElementIndex = Idx / ElementSize; + ElementListIter ElementIter = FindLowerBound(ElementIndex); + + // If we can't find an element that is supposed to contain this bit, there + // is nothing more to do. + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) + return; + ElementIter->reset(Idx % ElementSize); + + // When the element is zeroed out, delete it. + if (ElementIter->empty()) { + ++CurrElementIter; + Elements.erase(ElementIter); + } + } + + void set(unsigned Idx) { + unsigned ElementIndex = Idx / ElementSize; + ElementListIter ElementIter; + if (Elements.empty()) { + ElementIter = Elements.emplace(Elements.end(), ElementIndex); + } else { + ElementIter = FindLowerBound(ElementIndex); + + if (ElementIter == Elements.end() || + ElementIter->index() != ElementIndex) { + // We may have hit the beginning of our SparseBitVector, in which case, + // we may need to insert right after this element, which requires moving + // the current iterator forward one, because insert does insert before. + if (ElementIter != Elements.end() && + ElementIter->index() < ElementIndex) + ++ElementIter; + ElementIter = Elements.emplace(ElementIter, ElementIndex); + } + } + CurrElementIter = ElementIter; + + ElementIter->set(Idx % ElementSize); + } + + bool test_and_set(unsigned Idx) { + bool old = test(Idx); + if (!old) { + set(Idx); + return true; + } + return false; + } + + bool operator!=(const SparseBitVector &RHS) const { + return !(*this == RHS); + } + + bool operator==(const SparseBitVector &RHS) const { + ElementListConstIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); + ++Iter1, ++Iter2) { + if (*Iter1 != *Iter2) + return false; + } + return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); + } + + // Union our bitmap with the RHS and return true if we changed. + bool operator|=(const SparseBitVector &RHS) { + if (this == &RHS) + return false; + + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // If RHS is empty, we are done + if (RHS.Elements.empty()) + return false; + + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { + Elements.insert(Iter1, *Iter2); + ++Iter2; + changed = true; + } else if (Iter1->index() == Iter2->index()) { + changed |= Iter1->unionWith(*Iter2); + ++Iter1; + ++Iter2; + } else { + ++Iter1; + } + } + CurrElementIter = Elements.begin(); + return changed; + } + + // Intersect our bitmap with the RHS and return true if ours changed. + bool operator&=(const SparseBitVector &RHS) { + if (this == &RHS) + return false; + + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // Check if both bitmaps are empty. + if (Elements.empty() && RHS.Elements.empty()) + return false; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) { + CurrElementIter = Elements.begin(); + return changed; + } + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero; + changed |= Iter1->intersectWith(*Iter2, BecameZero); + if (BecameZero) { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + } else { + ++Iter1; + } + ++Iter2; + } else { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + changed = true; + } + } + if (Iter1 != Elements.end()) { + Elements.erase(Iter1, Elements.end()); + changed = true; + } + CurrElementIter = Elements.begin(); + return changed; + } + + // Intersect our bitmap with the complement of the RHS and return true + // if ours changed. + bool intersectWithComplement(const SparseBitVector &RHS) { + if (this == &RHS) { + if (!empty()) { + clear(); + return true; + } + return false; + } + + bool changed = false; + ElementListIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // If either our bitmap or RHS is empty, we are done + if (Elements.empty() || RHS.Elements.empty()) + return false; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) { + CurrElementIter = Elements.begin(); + return changed; + } + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero; + changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); + if (BecameZero) { + ElementListIter IterTmp = Iter1; + ++Iter1; + Elements.erase(IterTmp); + } else { + ++Iter1; + } + ++Iter2; + } else { + ++Iter1; + } + } + CurrElementIter = Elements.begin(); + return changed; + } + + bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const { + return intersectWithComplement(*RHS); + } + + // Three argument version of intersectWithComplement. + // Result of RHS1 & ~RHS2 is stored into this bitmap. + void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1, + const SparseBitVector<ElementSize> &RHS2) + { + if (this == &RHS1) { + intersectWithComplement(RHS2); + return; + } else if (this == &RHS2) { + SparseBitVector RHS2Copy(RHS2); + intersectWithComplement(RHS1, RHS2Copy); + return; + } + + Elements.clear(); + CurrElementIter = Elements.begin(); + ElementListConstIter Iter1 = RHS1.Elements.begin(); + ElementListConstIter Iter2 = RHS2.Elements.begin(); + + // If RHS1 is empty, we are done + // If RHS2 is empty, we still have to copy RHS1 + if (RHS1.Elements.empty()) + return; + + // Loop through, intersecting as we go, erasing elements when necessary. + while (Iter2 != RHS2.Elements.end()) { + if (Iter1 == RHS1.Elements.end()) + return; + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + bool BecameZero = false; + Elements.emplace_back(Iter1->index()); + Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero); + if (BecameZero) + Elements.pop_back(); + ++Iter1; + ++Iter2; + } else { + Elements.push_back(*Iter1++); + } + } + + // copy the remaining elements + std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements)); + } + + void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1, + const SparseBitVector<ElementSize> *RHS2) { + intersectWithComplement(*RHS1, *RHS2); + } + + bool intersects(const SparseBitVector<ElementSize> *RHS) const { + return intersects(*RHS); + } + + // Return true if we share any bits in common with RHS + bool intersects(const SparseBitVector<ElementSize> &RHS) const { + ElementListConstIter Iter1 = Elements.begin(); + ElementListConstIter Iter2 = RHS.Elements.begin(); + + // Check if both bitmaps are empty. + if (Elements.empty() && RHS.Elements.empty()) + return false; + + // Loop through, intersecting stopping when we hit bits in common. + while (Iter2 != RHS.Elements.end()) { + if (Iter1 == Elements.end()) + return false; + + if (Iter1->index() > Iter2->index()) { + ++Iter2; + } else if (Iter1->index() == Iter2->index()) { + if (Iter1->intersects(*Iter2)) + return true; + ++Iter1; + ++Iter2; + } else { + ++Iter1; + } + } + return false; + } + + // Return true iff all bits set in this SparseBitVector are + // also set in RHS. + bool contains(const SparseBitVector<ElementSize> &RHS) const { + SparseBitVector<ElementSize> Result(*this); + Result &= RHS; + return (Result == RHS); + } + + // Return the first set bit in the bitmap. Return -1 if no bits are set. + int find_first() const { + if (Elements.empty()) + return -1; + const SparseBitVectorElement<ElementSize> &First = *(Elements.begin()); + return (First.index() * ElementSize) + First.find_first(); + } + + // Return the last set bit in the bitmap. Return -1 if no bits are set. + int find_last() const { + if (Elements.empty()) + return -1; + const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin()); + return (Last.index() * ElementSize) + Last.find_last(); + } + + // Return true if the SparseBitVector is empty + bool empty() const { + return Elements.empty(); + } + + unsigned count() const { + unsigned BitCount = 0; + for (ElementListConstIter Iter = Elements.begin(); + Iter != Elements.end(); + ++Iter) + BitCount += Iter->count(); + + return BitCount; + } + + iterator begin() const { + return iterator(this); + } + + iterator end() const { + return iterator(this, true); + } +}; + +// Convenience functions to allow Or and And without dereferencing in the user +// code. + +template <unsigned ElementSize> +inline bool operator |=(SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> *RHS) { + return LHS |= *RHS; +} + +template <unsigned ElementSize> +inline bool operator |=(SparseBitVector<ElementSize> *LHS, + const SparseBitVector<ElementSize> &RHS) { + return LHS->operator|=(RHS); +} + +template <unsigned ElementSize> +inline bool operator &=(SparseBitVector<ElementSize> *LHS, + const SparseBitVector<ElementSize> &RHS) { + return LHS->operator&=(RHS); +} + +template <unsigned ElementSize> +inline bool operator &=(SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> *RHS) { + return LHS &= *RHS; +} + +// Convenience functions for infix union, intersection, difference operators. + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator|(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result(LHS); + Result |= RHS; + return Result; +} + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator&(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result(LHS); + Result &= RHS; + return Result; +} + +template <unsigned ElementSize> +inline SparseBitVector<ElementSize> +operator-(const SparseBitVector<ElementSize> &LHS, + const SparseBitVector<ElementSize> &RHS) { + SparseBitVector<ElementSize> Result; + Result.intersectWithComplement(LHS, RHS); + return Result; +} + +// Dump a SparseBitVector to a stream +template <unsigned ElementSize> +void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) { + out << "["; + + typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(), + be = LHS.end(); + if (bi != be) { + out << *bi; + for (++bi; bi != be; ++bi) { + out << " " << *bi; + } + } + out << "]\n"; +} + +} // end namespace llvm + +#endif // LLVM_ADT_SPARSEBITVECTOR_H |