diff options
Diffstat (limited to 'contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h')
-rw-r--r-- | contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h | 4092 |
1 files changed, 4092 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h b/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h new file mode 100644 index 000000000000..ca7548cd8d6f --- /dev/null +++ b/contrib/llvm-project/llvm/include/llvm/CodeGen/TargetLowering.h @@ -0,0 +1,4092 @@ +//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file describes how to lower LLVM code to machine code. This has two +/// main components: +/// +/// 1. Which ValueTypes are natively supported by the target. +/// 2. Which operations are supported for supported ValueTypes. +/// 3. Cost thresholds for alternative implementations of certain operations. +/// +/// In addition it has a few other components, like information about FP +/// immediates. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_TARGETLOWERING_H +#define LLVM_CODEGEN_TARGETLOWERING_H + +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/LegacyDivergenceAnalysis.h" +#include "llvm/CodeGen/DAGCombine.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetCallingConv.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Type.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <iterator> +#include <map> +#include <string> +#include <utility> +#include <vector> + +namespace llvm { + +class BranchProbability; +class CCState; +class CCValAssign; +class Constant; +class FastISel; +class FunctionLoweringInfo; +class GlobalValue; +class IntrinsicInst; +struct KnownBits; +class LLVMContext; +class MachineBasicBlock; +class MachineFunction; +class MachineInstr; +class MachineJumpTableInfo; +class MachineLoop; +class MachineRegisterInfo; +class MCContext; +class MCExpr; +class Module; +class TargetRegisterClass; +class TargetLibraryInfo; +class TargetRegisterInfo; +class Value; + +namespace Sched { + + enum Preference { + None, // No preference + Source, // Follow source order. + RegPressure, // Scheduling for lowest register pressure. + Hybrid, // Scheduling for both latency and register pressure. + ILP, // Scheduling for ILP in low register pressure mode. + VLIW // Scheduling for VLIW targets. + }; + +} // end namespace Sched + +/// This base class for TargetLowering contains the SelectionDAG-independent +/// parts that can be used from the rest of CodeGen. +class TargetLoweringBase { +public: + /// This enum indicates whether operations are valid for a target, and if not, + /// what action should be used to make them valid. + enum LegalizeAction : uint8_t { + Legal, // The target natively supports this operation. + Promote, // This operation should be executed in a larger type. + Expand, // Try to expand this to other ops, otherwise use a libcall. + LibCall, // Don't try to expand this to other ops, always use a libcall. + Custom // Use the LowerOperation hook to implement custom lowering. + }; + + /// This enum indicates whether a types are legal for a target, and if not, + /// what action should be used to make them valid. + enum LegalizeTypeAction : uint8_t { + TypeLegal, // The target natively supports this type. + TypePromoteInteger, // Replace this integer with a larger one. + TypeExpandInteger, // Split this integer into two of half the size. + TypeSoftenFloat, // Convert this float to a same size integer type, + // if an operation is not supported in target HW. + TypeExpandFloat, // Split this float into two of half the size. + TypeScalarizeVector, // Replace this one-element vector with its element. + TypeSplitVector, // Split this vector into two of half the size. + TypeWidenVector, // This vector should be widened into a larger vector. + TypePromoteFloat // Replace this float with a larger one. + }; + + /// LegalizeKind holds the legalization kind that needs to happen to EVT + /// in order to type-legalize it. + using LegalizeKind = std::pair<LegalizeTypeAction, EVT>; + + /// Enum that describes how the target represents true/false values. + enum BooleanContent { + UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. + ZeroOrOneBooleanContent, // All bits zero except for bit 0. + ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. + }; + + /// Enum that describes what type of support for selects the target has. + enum SelectSupportKind { + ScalarValSelect, // The target supports scalar selects (ex: cmov). + ScalarCondVectorVal, // The target supports selects with a scalar condition + // and vector values (ex: cmov). + VectorMaskSelect // The target supports vector selects with a vector + // mask (ex: x86 blends). + }; + + /// Enum that specifies what an atomic load/AtomicRMWInst is expanded + /// to, if at all. Exists because different targets have different levels of + /// support for these atomic instructions, and also have different options + /// w.r.t. what they should expand to. + enum class AtomicExpansionKind { + None, // Don't expand the instruction. + LLSC, // Expand the instruction into loadlinked/storeconditional; used + // by ARM/AArch64. + LLOnly, // Expand the (load) instruction into just a load-linked, which has + // greater atomic guarantees than a normal load. + CmpXChg, // Expand the instruction into cmpxchg; used by at least X86. + MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop. + }; + + /// Enum that specifies when a multiplication should be expanded. + enum class MulExpansionKind { + Always, // Always expand the instruction. + OnlyLegalOrCustom, // Only expand when the resulting instructions are legal + // or custom. + }; + + class ArgListEntry { + public: + Value *Val = nullptr; + SDValue Node = SDValue(); + Type *Ty = nullptr; + bool IsSExt : 1; + bool IsZExt : 1; + bool IsInReg : 1; + bool IsSRet : 1; + bool IsNest : 1; + bool IsByVal : 1; + bool IsInAlloca : 1; + bool IsReturned : 1; + bool IsSwiftSelf : 1; + bool IsSwiftError : 1; + uint16_t Alignment = 0; + Type *ByValType = nullptr; + + ArgListEntry() + : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false), + IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false), + IsSwiftSelf(false), IsSwiftError(false) {} + + void setAttributes(const CallBase *Call, unsigned ArgIdx); + + void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx) { + return setAttributes(cast<CallBase>(CS->getInstruction()), ArgIdx); + } + }; + using ArgListTy = std::vector<ArgListEntry>; + + virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, + ArgListTy &Args) const {}; + + static ISD::NodeType getExtendForContent(BooleanContent Content) { + switch (Content) { + case UndefinedBooleanContent: + // Extend by adding rubbish bits. + return ISD::ANY_EXTEND; + case ZeroOrOneBooleanContent: + // Extend by adding zero bits. + return ISD::ZERO_EXTEND; + case ZeroOrNegativeOneBooleanContent: + // Extend by copying the sign bit. + return ISD::SIGN_EXTEND; + } + llvm_unreachable("Invalid content kind"); + } + + /// NOTE: The TargetMachine owns TLOF. + explicit TargetLoweringBase(const TargetMachine &TM); + TargetLoweringBase(const TargetLoweringBase &) = delete; + TargetLoweringBase &operator=(const TargetLoweringBase &) = delete; + virtual ~TargetLoweringBase() = default; + +protected: + /// Initialize all of the actions to default values. + void initActions(); + +public: + const TargetMachine &getTargetMachine() const { return TM; } + + virtual bool useSoftFloat() const { return false; } + + /// Return the pointer type for the given address space, defaults to + /// the pointer type from the data layout. + /// FIXME: The default needs to be removed once all the code is updated. + virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const { + return MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); + } + + /// Return the in-memory pointer type for the given address space, defaults to + /// the pointer type from the data layout. FIXME: The default needs to be + /// removed once all the code is updated. + MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const { + return MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); + } + + /// Return the type for frame index, which is determined by + /// the alloca address space specified through the data layout. + MVT getFrameIndexTy(const DataLayout &DL) const { + return getPointerTy(DL, DL.getAllocaAddrSpace()); + } + + /// Return the type for operands of fence. + /// TODO: Let fence operands be of i32 type and remove this. + virtual MVT getFenceOperandTy(const DataLayout &DL) const { + return getPointerTy(DL); + } + + /// EVT is not used in-tree, but is used by out-of-tree target. + /// A documentation for this function would be nice... + virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const; + + EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL, + bool LegalTypes = true) const; + + /// Returns the type to be used for the index operand of: + /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, + /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR + virtual MVT getVectorIdxTy(const DataLayout &DL) const { + return getPointerTy(DL); + } + + virtual bool isSelectSupported(SelectSupportKind /*kind*/) const { + return true; + } + + /// Return true if it is profitable to convert a select of FP constants into + /// a constant pool load whose address depends on the select condition. The + /// parameter may be used to differentiate a select with FP compare from + /// integer compare. + virtual bool reduceSelectOfFPConstantLoads(bool IsFPSetCC) const { + return true; + } + + /// Return true if multiple condition registers are available. + bool hasMultipleConditionRegisters() const { + return HasMultipleConditionRegisters; + } + + /// Return true if the target has BitExtract instructions. + bool hasExtractBitsInsn() const { return HasExtractBitsInsn; } + + /// Return the preferred vector type legalization action. + virtual TargetLoweringBase::LegalizeTypeAction + getPreferredVectorAction(MVT VT) const { + // The default action for one element vectors is to scalarize + if (VT.getVectorNumElements() == 1) + return TypeScalarizeVector; + // The default action for an odd-width vector is to widen. + if (!VT.isPow2VectorType()) + return TypeWidenVector; + // The default action for other vectors is to promote + return TypePromoteInteger; + } + + // There are two general methods for expanding a BUILD_VECTOR node: + // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle + // them together. + // 2. Build the vector on the stack and then load it. + // If this function returns true, then method (1) will be used, subject to + // the constraint that all of the necessary shuffles are legal (as determined + // by isShuffleMaskLegal). If this function returns false, then method (2) is + // always used. The vector type, and the number of defined values, are + // provided. + virtual bool + shouldExpandBuildVectorWithShuffles(EVT /* VT */, + unsigned DefinedValues) const { + return DefinedValues < 3; + } + + /// Return true if integer divide is usually cheaper than a sequence of + /// several shifts, adds, and multiplies for this target. + /// The definition of "cheaper" may depend on whether we're optimizing + /// for speed or for size. + virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; } + + /// Return true if the target can handle a standalone remainder operation. + virtual bool hasStandaloneRem(EVT VT) const { + return true; + } + + /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X). + virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const { + // Default behavior is to replace SQRT(X) with X*RSQRT(X). + return false; + } + + /// Reciprocal estimate status values used by the functions below. + enum ReciprocalEstimate : int { + Unspecified = -1, + Disabled = 0, + Enabled = 1 + }; + + /// Return a ReciprocalEstimate enum value for a square root of the given type + /// based on the function's attributes. If the operation is not overridden by + /// the function's attributes, "Unspecified" is returned and target defaults + /// are expected to be used for instruction selection. + int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const; + + /// Return a ReciprocalEstimate enum value for a division of the given type + /// based on the function's attributes. If the operation is not overridden by + /// the function's attributes, "Unspecified" is returned and target defaults + /// are expected to be used for instruction selection. + int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const; + + /// Return the refinement step count for a square root of the given type based + /// on the function's attributes. If the operation is not overridden by + /// the function's attributes, "Unspecified" is returned and target defaults + /// are expected to be used for instruction selection. + int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const; + + /// Return the refinement step count for a division of the given type based + /// on the function's attributes. If the operation is not overridden by + /// the function's attributes, "Unspecified" is returned and target defaults + /// are expected to be used for instruction selection. + int getDivRefinementSteps(EVT VT, MachineFunction &MF) const; + + /// Returns true if target has indicated at least one type should be bypassed. + bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); } + + /// Returns map of slow types for division or remainder with corresponding + /// fast types + const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const { + return BypassSlowDivWidths; + } + + /// Return true if Flow Control is an expensive operation that should be + /// avoided. + bool isJumpExpensive() const { return JumpIsExpensive; } + + /// Return true if selects are only cheaper than branches if the branch is + /// unlikely to be predicted right. + bool isPredictableSelectExpensive() const { + return PredictableSelectIsExpensive; + } + + /// If a branch or a select condition is skewed in one direction by more than + /// this factor, it is very likely to be predicted correctly. + virtual BranchProbability getPredictableBranchThreshold() const; + + /// Return true if the following transform is beneficial: + /// fold (conv (load x)) -> (load (conv*)x) + /// On architectures that don't natively support some vector loads + /// efficiently, casting the load to a smaller vector of larger types and + /// loading is more efficient, however, this can be undone by optimizations in + /// dag combiner. + virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, + const SelectionDAG &DAG, + const MachineMemOperand &MMO) const { + // Don't do if we could do an indexed load on the original type, but not on + // the new one. + if (!LoadVT.isSimple() || !BitcastVT.isSimple()) + return true; + + MVT LoadMVT = LoadVT.getSimpleVT(); + + // Don't bother doing this if it's just going to be promoted again later, as + // doing so might interfere with other combines. + if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && + getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) + return false; + + bool Fast = false; + return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, + MMO, &Fast) && Fast; + } + + /// Return true if the following transform is beneficial: + /// (store (y (conv x)), y*)) -> (store x, (x*)) + virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, + const SelectionDAG &DAG, + const MachineMemOperand &MMO) const { + // Default to the same logic as loads. + return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO); + } + + /// Return true if it is expected to be cheaper to do a store of a non-zero + /// vector constant with the given size and type for the address space than to + /// store the individual scalar element constants. + virtual bool storeOfVectorConstantIsCheap(EVT MemVT, + unsigned NumElem, + unsigned AddrSpace) const { + return false; + } + + /// Allow store merging for the specified type after legalization in addition + /// to before legalization. This may transform stores that do not exist + /// earlier (for example, stores created from intrinsics). + virtual bool mergeStoresAfterLegalization(EVT MemVT) const { + return true; + } + + /// Returns if it's reasonable to merge stores to MemVT size. + virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, + const SelectionDAG &DAG) const { + return true; + } + + /// Return true if it is cheap to speculate a call to intrinsic cttz. + virtual bool isCheapToSpeculateCttz() const { + return false; + } + + /// Return true if it is cheap to speculate a call to intrinsic ctlz. + virtual bool isCheapToSpeculateCtlz() const { + return false; + } + + /// Return true if ctlz instruction is fast. + virtual bool isCtlzFast() const { + return false; + } + + /// Return true if it is safe to transform an integer-domain bitwise operation + /// into the equivalent floating-point operation. This should be set to true + /// if the target has IEEE-754-compliant fabs/fneg operations for the input + /// type. + virtual bool hasBitPreservingFPLogic(EVT VT) const { + return false; + } + + /// Return true if it is cheaper to split the store of a merged int val + /// from a pair of smaller values into multiple stores. + virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const { + return false; + } + + /// Return if the target supports combining a + /// chain like: + /// \code + /// %andResult = and %val1, #mask + /// %icmpResult = icmp %andResult, 0 + /// \endcode + /// into a single machine instruction of a form like: + /// \code + /// cc = test %register, #mask + /// \endcode + virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { + return false; + } + + /// Use bitwise logic to make pairs of compares more efficient. For example: + /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 + /// This should be true when it takes more than one instruction to lower + /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on + /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win. + virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const { + return false; + } + + /// Return the preferred operand type if the target has a quick way to compare + /// integer values of the given size. Assume that any legal integer type can + /// be compared efficiently. Targets may override this to allow illegal wide + /// types to return a vector type if there is support to compare that type. + virtual MVT hasFastEqualityCompare(unsigned NumBits) const { + MVT VT = MVT::getIntegerVT(NumBits); + return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE; + } + + /// Return true if the target should transform: + /// (X & Y) == Y ---> (~X & Y) == 0 + /// (X & Y) != Y ---> (~X & Y) != 0 + /// + /// This may be profitable if the target has a bitwise and-not operation that + /// sets comparison flags. A target may want to limit the transformation based + /// on the type of Y or if Y is a constant. + /// + /// Note that the transform will not occur if Y is known to be a power-of-2 + /// because a mask and compare of a single bit can be handled by inverting the + /// predicate, for example: + /// (X & 8) == 8 ---> (X & 8) != 0 + virtual bool hasAndNotCompare(SDValue Y) const { + return false; + } + + /// Return true if the target has a bitwise and-not operation: + /// X = ~A & B + /// This can be used to simplify select or other instructions. + virtual bool hasAndNot(SDValue X) const { + // If the target has the more complex version of this operation, assume that + // it has this operation too. + return hasAndNotCompare(X); + } + + /// There are two ways to clear extreme bits (either low or high): + /// Mask: x & (-1 << y) (the instcombine canonical form) + /// Shifts: x >> y << y + /// Return true if the variant with 2 variable shifts is preferred. + /// Return false if there is no preference. + virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const { + // By default, let's assume that no one prefers shifts. + return false; + } + + /// Return true if it is profitable to fold a pair of shifts into a mask. + /// This is usually true on most targets. But some targets, like Thumb1, + /// have immediate shift instructions, but no immediate "and" instruction; + /// this makes the fold unprofitable. + virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N, + CombineLevel Level) const { + return true; + } + + /// Should we tranform the IR-optimal check for whether given truncation + /// down into KeptBits would be truncating or not: + /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) + /// Into it's more traditional form: + /// ((%x << C) a>> C) dstcond %x + /// Return true if we should transform. + /// Return false if there is no preference. + virtual bool shouldTransformSignedTruncationCheck(EVT XVT, + unsigned KeptBits) const { + // By default, let's assume that no one prefers shifts. + return false; + } + + /// These two forms are equivalent: + /// sub %y, (xor %x, -1) + /// add (add %x, 1), %y + /// The variant with two add's is IR-canonical. + /// Some targets may prefer one to the other. + virtual bool preferIncOfAddToSubOfNot(EVT VT) const { + // By default, let's assume that everyone prefers the form with two add's. + return true; + } + + /// Return true if the target wants to use the optimization that + /// turns ext(promotableInst1(...(promotableInstN(load)))) into + /// promotedInst1(...(promotedInstN(ext(load)))). + bool enableExtLdPromotion() const { return EnableExtLdPromotion; } + + /// Return true if the target can combine store(extractelement VectorTy, + /// Idx). + /// \p Cost[out] gives the cost of that transformation when this is true. + virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, + unsigned &Cost) const { + return false; + } + + /// Return true if inserting a scalar into a variable element of an undef + /// vector is more efficiently handled by splatting the scalar instead. + virtual bool shouldSplatInsEltVarIndex(EVT) const { + return false; + } + + /// Return true if target always beneficiates from combining into FMA for a + /// given value type. This must typically return false on targets where FMA + /// takes more cycles to execute than FADD. + virtual bool enableAggressiveFMAFusion(EVT VT) const { + return false; + } + + /// Return the ValueType of the result of SETCC operations. + virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, + EVT VT) const; + + /// Return the ValueType for comparison libcalls. Comparions libcalls include + /// floating point comparion calls, and Ordered/Unordered check calls on + /// floating point numbers. + virtual + MVT::SimpleValueType getCmpLibcallReturnType() const; + + /// For targets without i1 registers, this gives the nature of the high-bits + /// of boolean values held in types wider than i1. + /// + /// "Boolean values" are special true/false values produced by nodes like + /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. + /// Not to be confused with general values promoted from i1. Some cpus + /// distinguish between vectors of boolean and scalars; the isVec parameter + /// selects between the two kinds. For example on X86 a scalar boolean should + /// be zero extended from i1, while the elements of a vector of booleans + /// should be sign extended from i1. + /// + /// Some cpus also treat floating point types the same way as they treat + /// vectors instead of the way they treat scalars. + BooleanContent getBooleanContents(bool isVec, bool isFloat) const { + if (isVec) + return BooleanVectorContents; + return isFloat ? BooleanFloatContents : BooleanContents; + } + + BooleanContent getBooleanContents(EVT Type) const { + return getBooleanContents(Type.isVector(), Type.isFloatingPoint()); + } + + /// Return target scheduling preference. + Sched::Preference getSchedulingPreference() const { + return SchedPreferenceInfo; + } + + /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics + /// for different nodes. This function returns the preference (or none) for + /// the given node. + virtual Sched::Preference getSchedulingPreference(SDNode *) const { + return Sched::None; + } + + /// Return the register class that should be used for the specified value + /// type. + virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const { + (void)isDivergent; + const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; + assert(RC && "This value type is not natively supported!"); + return RC; + } + + /// Allows target to decide about the register class of the + /// specific value that is live outside the defining block. + /// Returns true if the value needs uniform register class. + virtual bool requiresUniformRegister(MachineFunction &MF, + const Value *) const { + return false; + } + + /// Return the 'representative' register class for the specified value + /// type. + /// + /// The 'representative' register class is the largest legal super-reg + /// register class for the register class of the value type. For example, on + /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep + /// register class is GR64 on x86_64. + virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { + const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; + return RC; + } + + /// Return the cost of the 'representative' register class for the specified + /// value type. + virtual uint8_t getRepRegClassCostFor(MVT VT) const { + return RepRegClassCostForVT[VT.SimpleTy]; + } + + /// Return true if SHIFT instructions should be expanded to SHIFT_PARTS + /// instructions, and false if a library call is preferred (e.g for code-size + /// reasons). + virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const { + return true; + } + + /// Return true if the target has native support for the specified value type. + /// This means that it has a register that directly holds it without + /// promotions or expansions. + bool isTypeLegal(EVT VT) const { + assert(!VT.isSimple() || + (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); + return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr; + } + + class ValueTypeActionImpl { + /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum + /// that indicates how instruction selection should deal with the type. + LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE]; + + public: + ValueTypeActionImpl() { + std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), + TypeLegal); + } + + LegalizeTypeAction getTypeAction(MVT VT) const { + return ValueTypeActions[VT.SimpleTy]; + } + + void setTypeAction(MVT VT, LegalizeTypeAction Action) { + ValueTypeActions[VT.SimpleTy] = Action; + } + }; + + const ValueTypeActionImpl &getValueTypeActions() const { + return ValueTypeActions; + } + + /// Return how we should legalize values of this type, either it is already + /// legal (return 'Legal') or we need to promote it to a larger type (return + /// 'Promote'), or we need to expand it into multiple registers of smaller + /// integer type (return 'Expand'). 'Custom' is not an option. + LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { + return getTypeConversion(Context, VT).first; + } + LegalizeTypeAction getTypeAction(MVT VT) const { + return ValueTypeActions.getTypeAction(VT); + } + + /// For types supported by the target, this is an identity function. For + /// types that must be promoted to larger types, this returns the larger type + /// to promote to. For integer types that are larger than the largest integer + /// register, this contains one step in the expansion to get to the smaller + /// register. For illegal floating point types, this returns the integer type + /// to transform to. + EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { + return getTypeConversion(Context, VT).second; + } + + /// For types supported by the target, this is an identity function. For + /// types that must be expanded (i.e. integer types that are larger than the + /// largest integer register or illegal floating point types), this returns + /// the largest legal type it will be expanded to. + EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { + assert(!VT.isVector()); + while (true) { + switch (getTypeAction(Context, VT)) { + case TypeLegal: + return VT; + case TypeExpandInteger: + VT = getTypeToTransformTo(Context, VT); + break; + default: + llvm_unreachable("Type is not legal nor is it to be expanded!"); + } + } + } + + /// Vector types are broken down into some number of legal first class types. + /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8 + /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64 + /// turns into 4 EVT::i32 values with both PPC and X86. + /// + /// This method returns the number of registers needed, and the VT for each + /// register. It also returns the VT and quantity of the intermediate values + /// before they are promoted/expanded. + unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, + EVT &IntermediateVT, + unsigned &NumIntermediates, + MVT &RegisterVT) const; + + /// Certain targets such as MIPS require that some types such as vectors are + /// always broken down into scalars in some contexts. This occurs even if the + /// vector type is legal. + virtual unsigned getVectorTypeBreakdownForCallingConv( + LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, + unsigned &NumIntermediates, MVT &RegisterVT) const { + return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates, + RegisterVT); + } + + struct IntrinsicInfo { + unsigned opc = 0; // target opcode + EVT memVT; // memory VT + + // value representing memory location + PointerUnion<const Value *, const PseudoSourceValue *> ptrVal; + + int offset = 0; // offset off of ptrVal + unsigned size = 0; // the size of the memory location + // (taken from memVT if zero) + unsigned align = 1; // alignment + + MachineMemOperand::Flags flags = MachineMemOperand::MONone; + IntrinsicInfo() = default; + }; + + /// Given an intrinsic, checks if on the target the intrinsic will need to map + /// to a MemIntrinsicNode (touches memory). If this is the case, it returns + /// true and store the intrinsic information into the IntrinsicInfo that was + /// passed to the function. + virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, + MachineFunction &, + unsigned /*Intrinsic*/) const { + return false; + } + + /// Returns true if the target can instruction select the specified FP + /// immediate natively. If false, the legalizer will materialize the FP + /// immediate as a load from a constant pool. + virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/, + bool ForCodeSize = false) const { + return false; + } + + /// Targets can use this to indicate that they only support *some* + /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a + /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be + /// legal. + virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const { + return true; + } + + /// Returns true if the operation can trap for the value type. + /// + /// VT must be a legal type. By default, we optimistically assume most + /// operations don't trap except for integer divide and remainder. + virtual bool canOpTrap(unsigned Op, EVT VT) const; + + /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there + /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a + /// constant pool entry. + virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/, + EVT /*VT*/) const { + return false; + } + + /// Return how this operation should be treated: either it is legal, needs to + /// be promoted to a larger size, needs to be expanded to some other code + /// sequence, or the target has a custom expander for it. + LegalizeAction getOperationAction(unsigned Op, EVT VT) const { + if (VT.isExtended()) return Expand; + // If a target-specific SDNode requires legalization, require the target + // to provide custom legalization for it. + if (Op >= array_lengthof(OpActions[0])) return Custom; + return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op]; + } + + /// Custom method defined by each target to indicate if an operation which + /// may require a scale is supported natively by the target. + /// If not, the operation is illegal. + virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT, + unsigned Scale) const { + return false; + } + + /// Some fixed point operations may be natively supported by the target but + /// only for specific scales. This method allows for checking + /// if the width is supported by the target for a given operation that may + /// depend on scale. + LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, + unsigned Scale) const { + auto Action = getOperationAction(Op, VT); + if (Action != Legal) + return Action; + + // This operation is supported in this type but may only work on specific + // scales. + bool Supported; + switch (Op) { + default: + llvm_unreachable("Unexpected fixed point operation."); + case ISD::SMULFIX: + case ISD::SMULFIXSAT: + case ISD::UMULFIX: + Supported = isSupportedFixedPointOperation(Op, VT, Scale); + break; + } + + return Supported ? Action : Expand; + } + + LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const { + unsigned EqOpc; + switch (Op) { + default: llvm_unreachable("Unexpected FP pseudo-opcode"); + case ISD::STRICT_FADD: EqOpc = ISD::FADD; break; + case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break; + case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break; + case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break; + case ISD::STRICT_FREM: EqOpc = ISD::FREM; break; + case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break; + case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break; + case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break; + case ISD::STRICT_FMA: EqOpc = ISD::FMA; break; + case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break; + case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break; + case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break; + case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break; + case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break; + case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break; + case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break; + case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break; + case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break; + case ISD::STRICT_FMAXNUM: EqOpc = ISD::FMAXNUM; break; + case ISD::STRICT_FMINNUM: EqOpc = ISD::FMINNUM; break; + case ISD::STRICT_FCEIL: EqOpc = ISD::FCEIL; break; + case ISD::STRICT_FFLOOR: EqOpc = ISD::FFLOOR; break; + case ISD::STRICT_FROUND: EqOpc = ISD::FROUND; break; + case ISD::STRICT_FTRUNC: EqOpc = ISD::FTRUNC; break; + case ISD::STRICT_FP_ROUND: EqOpc = ISD::FP_ROUND; break; + case ISD::STRICT_FP_EXTEND: EqOpc = ISD::FP_EXTEND; break; + } + + auto Action = getOperationAction(EqOpc, VT); + + // We don't currently handle Custom or Promote for strict FP pseudo-ops. + // For now, we just expand for those cases. + if (Action != Legal) + Action = Expand; + + return Action; + } + + /// Return true if the specified operation is legal on this target or can be + /// made legal with custom lowering. This is used to help guide high-level + /// lowering decisions. + bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { + return (VT == MVT::Other || isTypeLegal(VT)) && + (getOperationAction(Op, VT) == Legal || + getOperationAction(Op, VT) == Custom); + } + + /// Return true if the specified operation is legal on this target or can be + /// made legal using promotion. This is used to help guide high-level lowering + /// decisions. + bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { + return (VT == MVT::Other || isTypeLegal(VT)) && + (getOperationAction(Op, VT) == Legal || + getOperationAction(Op, VT) == Promote); + } + + /// Return true if the specified operation is legal on this target or can be + /// made legal with custom lowering or using promotion. This is used to help + /// guide high-level lowering decisions. + bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const { + return (VT == MVT::Other || isTypeLegal(VT)) && + (getOperationAction(Op, VT) == Legal || + getOperationAction(Op, VT) == Custom || + getOperationAction(Op, VT) == Promote); + } + + /// Return true if the operation uses custom lowering, regardless of whether + /// the type is legal or not. + bool isOperationCustom(unsigned Op, EVT VT) const { + return getOperationAction(Op, VT) == Custom; + } + + /// Return true if lowering to a jump table is allowed. + virtual bool areJTsAllowed(const Function *Fn) const { + if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") + return false; + + return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || + isOperationLegalOrCustom(ISD::BRIND, MVT::Other); + } + + /// Check whether the range [Low,High] fits in a machine word. + bool rangeFitsInWord(const APInt &Low, const APInt &High, + const DataLayout &DL) const { + // FIXME: Using the pointer type doesn't seem ideal. + uint64_t BW = DL.getIndexSizeInBits(0u); + uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; + return Range <= BW; + } + + /// Return true if lowering to a jump table is suitable for a set of case + /// clusters which may contain \p NumCases cases, \p Range range of values. + virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, + uint64_t Range) const { + // FIXME: This function check the maximum table size and density, but the + // minimum size is not checked. It would be nice if the minimum size is + // also combined within this function. Currently, the minimum size check is + // performed in findJumpTable() in SelectionDAGBuiler and + // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. + const bool OptForSize = SI->getParent()->getParent()->hasOptSize(); + const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); + const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); + + // Check whether the number of cases is small enough and + // the range is dense enough for a jump table. + if ((OptForSize || Range <= MaxJumpTableSize) && + (NumCases * 100 >= Range * MinDensity)) { + return true; + } + return false; + } + + /// Return true if lowering to a bit test is suitable for a set of case + /// clusters which contains \p NumDests unique destinations, \p Low and + /// \p High as its lowest and highest case values, and expects \p NumCmps + /// case value comparisons. Check if the number of destinations, comparison + /// metric, and range are all suitable. + bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, + const APInt &Low, const APInt &High, + const DataLayout &DL) const { + // FIXME: I don't think NumCmps is the correct metric: a single case and a + // range of cases both require only one branch to lower. Just looking at the + // number of clusters and destinations should be enough to decide whether to + // build bit tests. + + // To lower a range with bit tests, the range must fit the bitwidth of a + // machine word. + if (!rangeFitsInWord(Low, High, DL)) + return false; + + // Decide whether it's profitable to lower this range with bit tests. Each + // destination requires a bit test and branch, and there is an overall range + // check branch. For a small number of clusters, separate comparisons might + // be cheaper, and for many destinations, splitting the range might be + // better. + return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) || + (NumDests == 3 && NumCmps >= 6); + } + + /// Return true if the specified operation is illegal on this target or + /// unlikely to be made legal with custom lowering. This is used to help guide + /// high-level lowering decisions. + bool isOperationExpand(unsigned Op, EVT VT) const { + return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); + } + + /// Return true if the specified operation is legal on this target. + bool isOperationLegal(unsigned Op, EVT VT) const { + return (VT == MVT::Other || isTypeLegal(VT)) && + getOperationAction(Op, VT) == Legal; + } + + /// Return how this load with extension should be treated: either it is legal, + /// needs to be promoted to a larger size, needs to be expanded to some other + /// code sequence, or the target has a custom expander for it. + LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, + EVT MemVT) const { + if (ValVT.isExtended() || MemVT.isExtended()) return Expand; + unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; + unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; + assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE && + MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!"); + unsigned Shift = 4 * ExtType; + return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf); + } + + /// Return true if the specified load with extension is legal on this target. + bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const { + return getLoadExtAction(ExtType, ValVT, MemVT) == Legal; + } + + /// Return true if the specified load with extension is legal or custom + /// on this target. + bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const { + return getLoadExtAction(ExtType, ValVT, MemVT) == Legal || + getLoadExtAction(ExtType, ValVT, MemVT) == Custom; + } + + /// Return how this store with truncation should be treated: either it is + /// legal, needs to be promoted to a larger size, needs to be expanded to some + /// other code sequence, or the target has a custom expander for it. + LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { + if (ValVT.isExtended() || MemVT.isExtended()) return Expand; + unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; + unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; + assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE && + "Table isn't big enough!"); + return TruncStoreActions[ValI][MemI]; + } + + /// Return true if the specified store with truncation is legal on this + /// target. + bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { + return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal; + } + + /// Return true if the specified store with truncation has solution on this + /// target. + bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const { + return isTypeLegal(ValVT) && + (getTruncStoreAction(ValVT, MemVT) == Legal || + getTruncStoreAction(ValVT, MemVT) == Custom); + } + + /// Return how the indexed load should be treated: either it is legal, needs + /// to be promoted to a larger size, needs to be expanded to some other code + /// sequence, or the target has a custom expander for it. + LegalizeAction + getIndexedLoadAction(unsigned IdxMode, MVT VT) const { + assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && + "Table isn't big enough!"); + unsigned Ty = (unsigned)VT.SimpleTy; + return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); + } + + /// Return true if the specified indexed load is legal on this target. + bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { + return VT.isSimple() && + (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || + getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); + } + + /// Return how the indexed store should be treated: either it is legal, needs + /// to be promoted to a larger size, needs to be expanded to some other code + /// sequence, or the target has a custom expander for it. + LegalizeAction + getIndexedStoreAction(unsigned IdxMode, MVT VT) const { + assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && + "Table isn't big enough!"); + unsigned Ty = (unsigned)VT.SimpleTy; + return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); + } + + /// Return true if the specified indexed load is legal on this target. + bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { + return VT.isSimple() && + (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || + getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); + } + + /// Return how the condition code should be treated: either it is legal, needs + /// to be expanded to some other code sequence, or the target has a custom + /// expander for it. + LegalizeAction + getCondCodeAction(ISD::CondCode CC, MVT VT) const { + assert((unsigned)CC < array_lengthof(CondCodeActions) && + ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) && + "Table isn't big enough!"); + // See setCondCodeAction for how this is encoded. + uint32_t Shift = 4 * (VT.SimpleTy & 0x7); + uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3]; + LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF); + assert(Action != Promote && "Can't promote condition code!"); + return Action; + } + + /// Return true if the specified condition code is legal on this target. + bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { + return getCondCodeAction(CC, VT) == Legal; + } + + /// Return true if the specified condition code is legal or custom on this + /// target. + bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const { + return getCondCodeAction(CC, VT) == Legal || + getCondCodeAction(CC, VT) == Custom; + } + + /// If the action for this operation is to promote, this method returns the + /// ValueType to promote to. + MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { + assert(getOperationAction(Op, VT) == Promote && + "This operation isn't promoted!"); + + // See if this has an explicit type specified. + std::map<std::pair<unsigned, MVT::SimpleValueType>, + MVT::SimpleValueType>::const_iterator PTTI = + PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); + if (PTTI != PromoteToType.end()) return PTTI->second; + + assert((VT.isInteger() || VT.isFloatingPoint()) && + "Cannot autopromote this type, add it with AddPromotedToType."); + + MVT NVT = VT; + do { + NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); + assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && + "Didn't find type to promote to!"); + } while (!isTypeLegal(NVT) || + getOperationAction(Op, NVT) == Promote); + return NVT; + } + + /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM + /// operations except for the pointer size. If AllowUnknown is true, this + /// will return MVT::Other for types with no EVT counterpart (e.g. structs), + /// otherwise it will assert. + EVT getValueType(const DataLayout &DL, Type *Ty, + bool AllowUnknown = false) const { + // Lower scalar pointers to native pointer types. + if (auto *PTy = dyn_cast<PointerType>(Ty)) + return getPointerTy(DL, PTy->getAddressSpace()); + + if (auto *VTy = dyn_cast<VectorType>(Ty)) { + Type *EltTy = VTy->getElementType(); + // Lower vectors of pointers to native pointer types. + if (auto *PTy = dyn_cast<PointerType>(EltTy)) { + EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace())); + EltTy = PointerTy.getTypeForEVT(Ty->getContext()); + } + return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false), + VTy->getNumElements()); + } + + return EVT::getEVT(Ty, AllowUnknown); + } + + EVT getMemValueType(const DataLayout &DL, Type *Ty, + bool AllowUnknown = false) const { + // Lower scalar pointers to native pointer types. + if (PointerType *PTy = dyn_cast<PointerType>(Ty)) + return getPointerMemTy(DL, PTy->getAddressSpace()); + else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { + Type *Elm = VTy->getElementType(); + if (PointerType *PT = dyn_cast<PointerType>(Elm)) { + EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace())); + Elm = PointerTy.getTypeForEVT(Ty->getContext()); + } + return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), + VTy->getNumElements()); + } + + return getValueType(DL, Ty, AllowUnknown); + } + + + /// Return the MVT corresponding to this LLVM type. See getValueType. + MVT getSimpleValueType(const DataLayout &DL, Type *Ty, + bool AllowUnknown = false) const { + return getValueType(DL, Ty, AllowUnknown).getSimpleVT(); + } + + /// Return the desired alignment for ByVal or InAlloca aggregate function + /// arguments in the caller parameter area. This is the actual alignment, not + /// its logarithm. + virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const; + + /// Return the type of registers that this ValueType will eventually require. + MVT getRegisterType(MVT VT) const { + assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); + return RegisterTypeForVT[VT.SimpleTy]; + } + + /// Return the type of registers that this ValueType will eventually require. + MVT getRegisterType(LLVMContext &Context, EVT VT) const { + if (VT.isSimple()) { + assert((unsigned)VT.getSimpleVT().SimpleTy < + array_lengthof(RegisterTypeForVT)); + return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; + } + if (VT.isVector()) { + EVT VT1; + MVT RegisterVT; + unsigned NumIntermediates; + (void)getVectorTypeBreakdown(Context, VT, VT1, + NumIntermediates, RegisterVT); + return RegisterVT; + } + if (VT.isInteger()) { + return getRegisterType(Context, getTypeToTransformTo(Context, VT)); + } + llvm_unreachable("Unsupported extended type!"); + } + + /// Return the number of registers that this ValueType will eventually + /// require. + /// + /// This is one for any types promoted to live in larger registers, but may be + /// more than one for types (like i64) that are split into pieces. For types + /// like i140, which are first promoted then expanded, it is the number of + /// registers needed to hold all the bits of the original type. For an i140 + /// on a 32 bit machine this means 5 registers. + unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { + if (VT.isSimple()) { + assert((unsigned)VT.getSimpleVT().SimpleTy < + array_lengthof(NumRegistersForVT)); + return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; + } + if (VT.isVector()) { + EVT VT1; + MVT VT2; + unsigned NumIntermediates; + return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); + } + if (VT.isInteger()) { + unsigned BitWidth = VT.getSizeInBits(); + unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); + return (BitWidth + RegWidth - 1) / RegWidth; + } + llvm_unreachable("Unsupported extended type!"); + } + + /// Certain combinations of ABIs, Targets and features require that types + /// are legal for some operations and not for other operations. + /// For MIPS all vector types must be passed through the integer register set. + virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, + CallingConv::ID CC, EVT VT) const { + return getRegisterType(Context, VT); + } + + /// Certain targets require unusual breakdowns of certain types. For MIPS, + /// this occurs when a vector type is used, as vector are passed through the + /// integer register set. + virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, + CallingConv::ID CC, + EVT VT) const { + return getNumRegisters(Context, VT); + } + + /// Certain targets have context senstive alignment requirements, where one + /// type has the alignment requirement of another type. + virtual unsigned getABIAlignmentForCallingConv(Type *ArgTy, + DataLayout DL) const { + return DL.getABITypeAlignment(ArgTy); + } + + /// If true, then instruction selection should seek to shrink the FP constant + /// of the specified type to a smaller type in order to save space and / or + /// reduce runtime. + virtual bool ShouldShrinkFPConstant(EVT) const { return true; } + + /// Return true if it is profitable to reduce a load to a smaller type. + /// Example: (i16 (trunc (i32 (load x))) -> i16 load x + virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, + EVT NewVT) const { + // By default, assume that it is cheaper to extract a subvector from a wide + // vector load rather than creating multiple narrow vector loads. + if (NewVT.isVector() && !Load->hasOneUse()) + return false; + + return true; + } + + /// When splitting a value of the specified type into parts, does the Lo + /// or Hi part come first? This usually follows the endianness, except + /// for ppcf128, where the Hi part always comes first. + bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const { + return DL.isBigEndian() || VT == MVT::ppcf128; + } + + /// If true, the target has custom DAG combine transformations that it can + /// perform for the specified node. + bool hasTargetDAGCombine(ISD::NodeType NT) const { + assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); + return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); + } + + unsigned getGatherAllAliasesMaxDepth() const { + return GatherAllAliasesMaxDepth; + } + + /// Returns the size of the platform's va_list object. + virtual unsigned getVaListSizeInBits(const DataLayout &DL) const { + return getPointerTy(DL).getSizeInBits(); + } + + /// Get maximum # of store operations permitted for llvm.memset + /// + /// This function returns the maximum number of store operations permitted + /// to replace a call to llvm.memset. The value is set by the target at the + /// performance threshold for such a replacement. If OptSize is true, + /// return the limit for functions that have OptSize attribute. + unsigned getMaxStoresPerMemset(bool OptSize) const { + return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; + } + + /// Get maximum # of store operations permitted for llvm.memcpy + /// + /// This function returns the maximum number of store operations permitted + /// to replace a call to llvm.memcpy. The value is set by the target at the + /// performance threshold for such a replacement. If OptSize is true, + /// return the limit for functions that have OptSize attribute. + unsigned getMaxStoresPerMemcpy(bool OptSize) const { + return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; + } + + /// \brief Get maximum # of store operations to be glued together + /// + /// This function returns the maximum number of store operations permitted + /// to glue together during lowering of llvm.memcpy. The value is set by + // the target at the performance threshold for such a replacement. + virtual unsigned getMaxGluedStoresPerMemcpy() const { + return MaxGluedStoresPerMemcpy; + } + + /// Get maximum # of load operations permitted for memcmp + /// + /// This function returns the maximum number of load operations permitted + /// to replace a call to memcmp. The value is set by the target at the + /// performance threshold for such a replacement. If OptSize is true, + /// return the limit for functions that have OptSize attribute. + unsigned getMaxExpandSizeMemcmp(bool OptSize) const { + return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp; + } + + /// Get maximum # of store operations permitted for llvm.memmove + /// + /// This function returns the maximum number of store operations permitted + /// to replace a call to llvm.memmove. The value is set by the target at the + /// performance threshold for such a replacement. If OptSize is true, + /// return the limit for functions that have OptSize attribute. + unsigned getMaxStoresPerMemmove(bool OptSize) const { + return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; + } + + /// Determine if the target supports unaligned memory accesses. + /// + /// This function returns true if the target allows unaligned memory accesses + /// of the specified type in the given address space. If true, it also returns + /// whether the unaligned memory access is "fast" in the last argument by + /// reference. This is used, for example, in situations where an array + /// copy/move/set is converted to a sequence of store operations. Its use + /// helps to ensure that such replacements don't generate code that causes an + /// alignment error (trap) on the target machine. + virtual bool allowsMisalignedMemoryAccesses( + EVT, unsigned AddrSpace = 0, unsigned Align = 1, + MachineMemOperand::Flags Flags = MachineMemOperand::MONone, + bool * /*Fast*/ = nullptr) const { + return false; + } + + /// Return true if the target supports a memory access of this type for the + /// given address space and alignment. If the access is allowed, the optional + /// final parameter returns if the access is also fast (as defined by the + /// target). + bool + allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, + unsigned AddrSpace = 0, unsigned Alignment = 1, + MachineMemOperand::Flags Flags = MachineMemOperand::MONone, + bool *Fast = nullptr) const; + + /// Return true if the target supports a memory access of this type for the + /// given MachineMemOperand. If the access is allowed, the optional + /// final parameter returns if the access is also fast (as defined by the + /// target). + bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, + const MachineMemOperand &MMO, + bool *Fast = nullptr) const; + + /// Returns the target specific optimal type for load and store operations as + /// a result of memset, memcpy, and memmove lowering. + /// + /// If DstAlign is zero that means it's safe to destination alignment can + /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't + /// a need to check it against alignment requirement, probably because the + /// source does not need to be loaded. If 'IsMemset' is true, that means it's + /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of + /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it + /// does not need to be loaded. It returns EVT::Other if the type should be + /// determined using generic target-independent logic. + virtual EVT + getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/, + unsigned /*SrcAlign*/, bool /*IsMemset*/, + bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/, + const AttributeList & /*FuncAttributes*/) const { + return MVT::Other; + } + + /// Returns true if it's safe to use load / store of the specified type to + /// expand memcpy / memset inline. + /// + /// This is mostly true for all types except for some special cases. For + /// example, on X86 targets without SSE2 f64 load / store are done with fldl / + /// fstpl which also does type conversion. Note the specified type doesn't + /// have to be legal as the hook is used before type legalization. + virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; } + + /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp. + bool usesUnderscoreSetJmp() const { + return UseUnderscoreSetJmp; + } + + /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp. + bool usesUnderscoreLongJmp() const { + return UseUnderscoreLongJmp; + } + + /// Return lower limit for number of blocks in a jump table. + virtual unsigned getMinimumJumpTableEntries() const; + + /// Return lower limit of the density in a jump table. + unsigned getMinimumJumpTableDensity(bool OptForSize) const; + + /// Return upper limit for number of entries in a jump table. + /// Zero if no limit. + unsigned getMaximumJumpTableSize() const; + + virtual bool isJumpTableRelative() const { + return TM.isPositionIndependent(); + } + + /// If a physical register, this specifies the register that + /// llvm.savestack/llvm.restorestack should save and restore. + unsigned getStackPointerRegisterToSaveRestore() const { + return StackPointerRegisterToSaveRestore; + } + + /// If a physical register, this returns the register that receives the + /// exception address on entry to an EH pad. + virtual unsigned + getExceptionPointerRegister(const Constant *PersonalityFn) const { + // 0 is guaranteed to be the NoRegister value on all targets + return 0; + } + + /// If a physical register, this returns the register that receives the + /// exception typeid on entry to a landing pad. + virtual unsigned + getExceptionSelectorRegister(const Constant *PersonalityFn) const { + // 0 is guaranteed to be the NoRegister value on all targets + return 0; + } + + virtual bool needsFixedCatchObjects() const { + report_fatal_error("Funclet EH is not implemented for this target"); + } + + /// Returns the target's jmp_buf size in bytes (if never set, the default is + /// 200) + unsigned getJumpBufSize() const { + return JumpBufSize; + } + + /// Returns the target's jmp_buf alignment in bytes (if never set, the default + /// is 0) + unsigned getJumpBufAlignment() const { + return JumpBufAlignment; + } + + /// Return the minimum stack alignment of an argument. + unsigned getMinStackArgumentAlignment() const { + return MinStackArgumentAlignment; + } + + /// Return the minimum function alignment. + unsigned getMinFunctionAlignment() const { + return MinFunctionAlignment; + } + + /// Return the preferred function alignment. + unsigned getPrefFunctionAlignment() const { + return PrefFunctionAlignment; + } + + /// Return the preferred loop alignment. + virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const { + return PrefLoopAlignment; + } + + /// Should loops be aligned even when the function is marked OptSize (but not + /// MinSize). + virtual bool alignLoopsWithOptSize() const { + return false; + } + + /// If the target has a standard location for the stack protector guard, + /// returns the address of that location. Otherwise, returns nullptr. + /// DEPRECATED: please override useLoadStackGuardNode and customize + /// LOAD_STACK_GUARD, or customize \@llvm.stackguard(). + virtual Value *getIRStackGuard(IRBuilder<> &IRB) const; + + /// Inserts necessary declarations for SSP (stack protection) purpose. + /// Should be used only when getIRStackGuard returns nullptr. + virtual void insertSSPDeclarations(Module &M) const; + + /// Return the variable that's previously inserted by insertSSPDeclarations, + /// if any, otherwise return nullptr. Should be used only when + /// getIRStackGuard returns nullptr. + virtual Value *getSDagStackGuard(const Module &M) const; + + /// If this function returns true, stack protection checks should XOR the + /// frame pointer (or whichever pointer is used to address locals) into the + /// stack guard value before checking it. getIRStackGuard must return nullptr + /// if this returns true. + virtual bool useStackGuardXorFP() const { return false; } + + /// If the target has a standard stack protection check function that + /// performs validation and error handling, returns the function. Otherwise, + /// returns nullptr. Must be previously inserted by insertSSPDeclarations. + /// Should be used only when getIRStackGuard returns nullptr. + virtual Function *getSSPStackGuardCheck(const Module &M) const; + +protected: + Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, + bool UseTLS) const; + +public: + /// Returns the target-specific address of the unsafe stack pointer. + virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const; + + /// Returns the name of the symbol used to emit stack probes or the empty + /// string if not applicable. + virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const { + return ""; + } + + /// Returns true if a cast between SrcAS and DestAS is a noop. + virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { + return false; + } + + /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we + /// are happy to sink it into basic blocks. A cast may be free, but not + /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer. + virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { + return isNoopAddrSpaceCast(SrcAS, DestAS); + } + + /// Return true if the pointer arguments to CI should be aligned by aligning + /// the object whose address is being passed. If so then MinSize is set to the + /// minimum size the object must be to be aligned and PrefAlign is set to the + /// preferred alignment. + virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/, + unsigned & /*PrefAlign*/) const { + return false; + } + + //===--------------------------------------------------------------------===// + /// \name Helpers for TargetTransformInfo implementations + /// @{ + + /// Get the ISD node that corresponds to the Instruction class opcode. + int InstructionOpcodeToISD(unsigned Opcode) const; + + /// Estimate the cost of type-legalization and the legalized type. + std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL, + Type *Ty) const; + + /// @} + + //===--------------------------------------------------------------------===// + /// \name Helpers for atomic expansion. + /// @{ + + /// Returns the maximum atomic operation size (in bits) supported by + /// the backend. Atomic operations greater than this size (as well + /// as ones that are not naturally aligned), will be expanded by + /// AtomicExpandPass into an __atomic_* library call. + unsigned getMaxAtomicSizeInBitsSupported() const { + return MaxAtomicSizeInBitsSupported; + } + + /// Returns the size of the smallest cmpxchg or ll/sc instruction + /// the backend supports. Any smaller operations are widened in + /// AtomicExpandPass. + /// + /// Note that *unlike* operations above the maximum size, atomic ops + /// are still natively supported below the minimum; they just + /// require a more complex expansion. + unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; } + + /// Whether the target supports unaligned atomic operations. + bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; } + + /// Whether AtomicExpandPass should automatically insert fences and reduce + /// ordering for this atomic. This should be true for most architectures with + /// weak memory ordering. Defaults to false. + virtual bool shouldInsertFencesForAtomic(const Instruction *I) const { + return false; + } + + /// Perform a load-linked operation on Addr, returning a "Value *" with the + /// corresponding pointee type. This may entail some non-trivial operations to + /// truncate or reconstruct types that will be illegal in the backend. See + /// ARMISelLowering for an example implementation. + virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, + AtomicOrdering Ord) const { + llvm_unreachable("Load linked unimplemented on this target"); + } + + /// Perform a store-conditional operation to Addr. Return the status of the + /// store. This should be 0 if the store succeeded, non-zero otherwise. + virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, + Value *Addr, AtomicOrdering Ord) const { + llvm_unreachable("Store conditional unimplemented on this target"); + } + + /// Perform a masked atomicrmw using a target-specific intrinsic. This + /// represents the core LL/SC loop which will be lowered at a late stage by + /// the backend. + virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder, + AtomicRMWInst *AI, + Value *AlignedAddr, Value *Incr, + Value *Mask, Value *ShiftAmt, + AtomicOrdering Ord) const { + llvm_unreachable("Masked atomicrmw expansion unimplemented on this target"); + } + + /// Perform a masked cmpxchg using a target-specific intrinsic. This + /// represents the core LL/SC loop which will be lowered at a late stage by + /// the backend. + virtual Value *emitMaskedAtomicCmpXchgIntrinsic( + IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, + Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { + llvm_unreachable("Masked cmpxchg expansion unimplemented on this target"); + } + + /// Inserts in the IR a target-specific intrinsic specifying a fence. + /// It is called by AtomicExpandPass before expanding an + /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad + /// if shouldInsertFencesForAtomic returns true. + /// + /// Inst is the original atomic instruction, prior to other expansions that + /// may be performed. + /// + /// This function should either return a nullptr, or a pointer to an IR-level + /// Instruction*. Even complex fence sequences can be represented by a + /// single Instruction* through an intrinsic to be lowered later. + /// Backends should override this method to produce target-specific intrinsic + /// for their fences. + /// FIXME: Please note that the default implementation here in terms of + /// IR-level fences exists for historical/compatibility reasons and is + /// *unsound* ! Fences cannot, in general, be used to restore sequential + /// consistency. For example, consider the following example: + /// atomic<int> x = y = 0; + /// int r1, r2, r3, r4; + /// Thread 0: + /// x.store(1); + /// Thread 1: + /// y.store(1); + /// Thread 2: + /// r1 = x.load(); + /// r2 = y.load(); + /// Thread 3: + /// r3 = y.load(); + /// r4 = x.load(); + /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all + /// seq_cst. But if they are lowered to monotonic accesses, no amount of + /// IR-level fences can prevent it. + /// @{ + virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst, + AtomicOrdering Ord) const { + if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) + return Builder.CreateFence(Ord); + else + return nullptr; + } + + virtual Instruction *emitTrailingFence(IRBuilder<> &Builder, + Instruction *Inst, + AtomicOrdering Ord) const { + if (isAcquireOrStronger(Ord)) + return Builder.CreateFence(Ord); + else + return nullptr; + } + /// @} + + // Emits code that executes when the comparison result in the ll/sc + // expansion of a cmpxchg instruction is such that the store-conditional will + // not execute. This makes it possible to balance out the load-linked with + // a dedicated instruction, if desired. + // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would + // be unnecessarily held, except if clrex, inserted by this hook, is executed. + virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {} + + /// Returns true if the given (atomic) store should be expanded by the + /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input. + virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const { + return false; + } + + /// Returns true if arguments should be sign-extended in lib calls. + virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { + return IsSigned; + } + + /// Returns how the given (atomic) load should be expanded by the + /// IR-level AtomicExpand pass. + virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const { + return AtomicExpansionKind::None; + } + + /// Returns how the given atomic cmpxchg should be expanded by the IR-level + /// AtomicExpand pass. + virtual AtomicExpansionKind + shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { + return AtomicExpansionKind::None; + } + + /// Returns how the IR-level AtomicExpand pass should expand the given + /// AtomicRMW, if at all. Default is to never expand. + virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { + return RMW->isFloatingPointOperation() ? + AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None; + } + + /// On some platforms, an AtomicRMW that never actually modifies the value + /// (such as fetch_add of 0) can be turned into a fence followed by an + /// atomic load. This may sound useless, but it makes it possible for the + /// processor to keep the cacheline shared, dramatically improving + /// performance. And such idempotent RMWs are useful for implementing some + /// kinds of locks, see for example (justification + benchmarks): + /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf + /// This method tries doing that transformation, returning the atomic load if + /// it succeeds, and nullptr otherwise. + /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo + /// another round of expansion. + virtual LoadInst * + lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const { + return nullptr; + } + + /// Returns how the platform's atomic operations are extended (ZERO_EXTEND, + /// SIGN_EXTEND, or ANY_EXTEND). + virtual ISD::NodeType getExtendForAtomicOps() const { + return ISD::ZERO_EXTEND; + } + + /// @} + + /// Returns true if we should normalize + /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and + /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely + /// that it saves us from materializing N0 and N1 in an integer register. + /// Targets that are able to perform and/or on flags should return false here. + virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, + EVT VT) const { + // If a target has multiple condition registers, then it likely has logical + // operations on those registers. + if (hasMultipleConditionRegisters()) + return false; + // Only do the transform if the value won't be split into multiple + // registers. + LegalizeTypeAction Action = getTypeAction(Context, VT); + return Action != TypeExpandInteger && Action != TypeExpandFloat && + Action != TypeSplitVector; + } + + virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; } + + /// Return true if a select of constants (select Cond, C1, C2) should be + /// transformed into simple math ops with the condition value. For example: + /// select Cond, C1, C1-1 --> add (zext Cond), C1-1 + virtual bool convertSelectOfConstantsToMath(EVT VT) const { + return false; + } + + /// Return true if it is profitable to transform an integer + /// multiplication-by-constant into simpler operations like shifts and adds. + /// This may be true if the target does not directly support the + /// multiplication operation for the specified type or the sequence of simpler + /// ops is faster than the multiply. + virtual bool decomposeMulByConstant(EVT VT, SDValue C) const { + return false; + } + + /// Return true if it is more correct/profitable to use strict FP_TO_INT + /// conversion operations - canonicalizing the FP source value instead of + /// converting all cases and then selecting based on value. + /// This may be true if the target throws exceptions for out of bounds + /// conversions or has fast FP CMOV. + virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, + bool IsSigned) const { + return false; + } + + //===--------------------------------------------------------------------===// + // TargetLowering Configuration Methods - These methods should be invoked by + // the derived class constructor to configure this object for the target. + // +protected: + /// Specify how the target extends the result of integer and floating point + /// boolean values from i1 to a wider type. See getBooleanContents. + void setBooleanContents(BooleanContent Ty) { + BooleanContents = Ty; + BooleanFloatContents = Ty; + } + + /// Specify how the target extends the result of integer and floating point + /// boolean values from i1 to a wider type. See getBooleanContents. + void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) { + BooleanContents = IntTy; + BooleanFloatContents = FloatTy; + } + + /// Specify how the target extends the result of a vector boolean value from a + /// vector of i1 to a wider type. See getBooleanContents. + void setBooleanVectorContents(BooleanContent Ty) { + BooleanVectorContents = Ty; + } + + /// Specify the target scheduling preference. + void setSchedulingPreference(Sched::Preference Pref) { + SchedPreferenceInfo = Pref; + } + + /// Indicate whether this target prefers to use _setjmp to implement + /// llvm.setjmp or the version without _. Defaults to false. + void setUseUnderscoreSetJmp(bool Val) { + UseUnderscoreSetJmp = Val; + } + + /// Indicate whether this target prefers to use _longjmp to implement + /// llvm.longjmp or the version without _. Defaults to false. + void setUseUnderscoreLongJmp(bool Val) { + UseUnderscoreLongJmp = Val; + } + + /// Indicate the minimum number of blocks to generate jump tables. + void setMinimumJumpTableEntries(unsigned Val); + + /// Indicate the maximum number of entries in jump tables. + /// Set to zero to generate unlimited jump tables. + void setMaximumJumpTableSize(unsigned); + + /// If set to a physical register, this specifies the register that + /// llvm.savestack/llvm.restorestack should save and restore. + void setStackPointerRegisterToSaveRestore(unsigned R) { + StackPointerRegisterToSaveRestore = R; + } + + /// Tells the code generator that the target has multiple (allocatable) + /// condition registers that can be used to store the results of comparisons + /// for use by selects and conditional branches. With multiple condition + /// registers, the code generator will not aggressively sink comparisons into + /// the blocks of their users. + void setHasMultipleConditionRegisters(bool hasManyRegs = true) { + HasMultipleConditionRegisters = hasManyRegs; + } + + /// Tells the code generator that the target has BitExtract instructions. + /// The code generator will aggressively sink "shift"s into the blocks of + /// their users if the users will generate "and" instructions which can be + /// combined with "shift" to BitExtract instructions. + void setHasExtractBitsInsn(bool hasExtractInsn = true) { + HasExtractBitsInsn = hasExtractInsn; + } + + /// Tells the code generator not to expand logic operations on comparison + /// predicates into separate sequences that increase the amount of flow + /// control. + void setJumpIsExpensive(bool isExpensive = true); + + /// Tells the code generator which bitwidths to bypass. + void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { + BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; + } + + /// Add the specified register class as an available regclass for the + /// specified value type. This indicates the selector can handle values of + /// that class natively. + void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { + assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); + RegClassForVT[VT.SimpleTy] = RC; + } + + /// Return the largest legal super-reg register class of the register class + /// for the specified type and its associated "cost". + virtual std::pair<const TargetRegisterClass *, uint8_t> + findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const; + + /// Once all of the register classes are added, this allows us to compute + /// derived properties we expose. + void computeRegisterProperties(const TargetRegisterInfo *TRI); + + /// Indicate that the specified operation does not work with the specified + /// type and indicate what to do about it. Note that VT may refer to either + /// the type of a result or that of an operand of Op. + void setOperationAction(unsigned Op, MVT VT, + LegalizeAction Action) { + assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); + OpActions[(unsigned)VT.SimpleTy][Op] = Action; + } + + /// Indicate that the specified load with extension does not work with the + /// specified type and indicate what to do about it. + void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, + LegalizeAction Action) { + assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() && + MemVT.isValid() && "Table isn't big enough!"); + assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); + unsigned Shift = 4 * ExtType; + LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift); + LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift; + } + + /// Indicate that the specified truncating store does not work with the + /// specified type and indicate what to do about it. + void setTruncStoreAction(MVT ValVT, MVT MemVT, + LegalizeAction Action) { + assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!"); + TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action; + } + + /// Indicate that the specified indexed load does or does not work with the + /// specified type and indicate what to do abort it. + /// + /// NOTE: All indexed mode loads are initialized to Expand in + /// TargetLowering.cpp + void setIndexedLoadAction(unsigned IdxMode, MVT VT, + LegalizeAction Action) { + assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && + (unsigned)Action < 0xf && "Table isn't big enough!"); + // Load action are kept in the upper half. + IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; + IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; + } + + /// Indicate that the specified indexed store does or does not work with the + /// specified type and indicate what to do about it. + /// + /// NOTE: All indexed mode stores are initialized to Expand in + /// TargetLowering.cpp + void setIndexedStoreAction(unsigned IdxMode, MVT VT, + LegalizeAction Action) { + assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && + (unsigned)Action < 0xf && "Table isn't big enough!"); + // Store action are kept in the lower half. + IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; + IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); + } + + /// Indicate that the specified condition code is or isn't supported on the + /// target and indicate what to do about it. + void setCondCodeAction(ISD::CondCode CC, MVT VT, + LegalizeAction Action) { + assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) && + "Table isn't big enough!"); + assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); + /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit + /// value and the upper 29 bits index into the second dimension of the array + /// to select what 32-bit value to use. + uint32_t Shift = 4 * (VT.SimpleTy & 0x7); + CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift); + CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift; + } + + /// If Opc/OrigVT is specified as being promoted, the promotion code defaults + /// to trying a larger integer/fp until it can find one that works. If that + /// default is insufficient, this method can be used by the target to override + /// the default. + void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { + PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; + } + + /// Convenience method to set an operation to Promote and specify the type + /// in a single call. + void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { + setOperationAction(Opc, OrigVT, Promote); + AddPromotedToType(Opc, OrigVT, DestVT); + } + + /// Targets should invoke this method for each target independent node that + /// they want to provide a custom DAG combiner for by implementing the + /// PerformDAGCombine virtual method. + void setTargetDAGCombine(ISD::NodeType NT) { + assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); + TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); + } + + /// Set the target's required jmp_buf buffer size (in bytes); default is 200 + void setJumpBufSize(unsigned Size) { + JumpBufSize = Size; + } + + /// Set the target's required jmp_buf buffer alignment (in bytes); default is + /// 0 + void setJumpBufAlignment(unsigned Align) { + JumpBufAlignment = Align; + } + + /// Set the target's minimum function alignment (in log2(bytes)) + void setMinFunctionAlignment(unsigned Align) { + MinFunctionAlignment = Align; + } + + /// Set the target's preferred function alignment. This should be set if + /// there is a performance benefit to higher-than-minimum alignment (in + /// log2(bytes)) + void setPrefFunctionAlignment(unsigned Align) { + PrefFunctionAlignment = Align; + } + + /// Set the target's preferred loop alignment. Default alignment is zero, it + /// means the target does not care about loop alignment. The alignment is + /// specified in log2(bytes). The target may also override + /// getPrefLoopAlignment to provide per-loop values. + void setPrefLoopAlignment(unsigned Align) { + PrefLoopAlignment = Align; + } + + /// Set the minimum stack alignment of an argument (in log2(bytes)). + void setMinStackArgumentAlignment(unsigned Align) { + MinStackArgumentAlignment = Align; + } + + /// Set the maximum atomic operation size supported by the + /// backend. Atomic operations greater than this size (as well as + /// ones that are not naturally aligned), will be expanded by + /// AtomicExpandPass into an __atomic_* library call. + void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) { + MaxAtomicSizeInBitsSupported = SizeInBits; + } + + /// Sets the minimum cmpxchg or ll/sc size supported by the backend. + void setMinCmpXchgSizeInBits(unsigned SizeInBits) { + MinCmpXchgSizeInBits = SizeInBits; + } + + /// Sets whether unaligned atomic operations are supported. + void setSupportsUnalignedAtomics(bool UnalignedSupported) { + SupportsUnalignedAtomics = UnalignedSupported; + } + +public: + //===--------------------------------------------------------------------===// + // Addressing mode description hooks (used by LSR etc). + // + + /// CodeGenPrepare sinks address calculations into the same BB as Load/Store + /// instructions reading the address. This allows as much computation as + /// possible to be done in the address mode for that operand. This hook lets + /// targets also pass back when this should be done on intrinsics which + /// load/store. + virtual bool getAddrModeArguments(IntrinsicInst * /*I*/, + SmallVectorImpl<Value*> &/*Ops*/, + Type *&/*AccessTy*/) const { + return false; + } + + /// This represents an addressing mode of: + /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + /// If BaseGV is null, there is no BaseGV. + /// If BaseOffs is zero, there is no base offset. + /// If HasBaseReg is false, there is no base register. + /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with + /// no scale. + struct AddrMode { + GlobalValue *BaseGV = nullptr; + int64_t BaseOffs = 0; + bool HasBaseReg = false; + int64_t Scale = 0; + AddrMode() = default; + }; + + /// Return true if the addressing mode represented by AM is legal for this + /// target, for a load/store of the specified type. + /// + /// The type may be VoidTy, in which case only return true if the addressing + /// mode is legal for a load/store of any legal type. TODO: Handle + /// pre/postinc as well. + /// + /// If the address space cannot be determined, it will be -1. + /// + /// TODO: Remove default argument + virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, + Type *Ty, unsigned AddrSpace, + Instruction *I = nullptr) const; + + /// Return the cost of the scaling factor used in the addressing mode + /// represented by AM for this target, for a load/store of the specified type. + /// + /// If the AM is supported, the return value must be >= 0. + /// If the AM is not supported, it returns a negative value. + /// TODO: Handle pre/postinc as well. + /// TODO: Remove default argument + virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, + Type *Ty, unsigned AS = 0) const { + // Default: assume that any scaling factor used in a legal AM is free. + if (isLegalAddressingMode(DL, AM, Ty, AS)) + return 0; + return -1; + } + + /// Return true if the specified immediate is legal icmp immediate, that is + /// the target has icmp instructions which can compare a register against the + /// immediate without having to materialize the immediate into a register. + virtual bool isLegalICmpImmediate(int64_t) const { + return true; + } + + /// Return true if the specified immediate is legal add immediate, that is the + /// target has add instructions which can add a register with the immediate + /// without having to materialize the immediate into a register. + virtual bool isLegalAddImmediate(int64_t) const { + return true; + } + + /// Return true if the specified immediate is legal for the value input of a + /// store instruction. + virtual bool isLegalStoreImmediate(int64_t Value) const { + // Default implementation assumes that at least 0 works since it is likely + // that a zero register exists or a zero immediate is allowed. + return Value == 0; + } + + /// Return true if it's significantly cheaper to shift a vector by a uniform + /// scalar than by an amount which will vary across each lane. On x86, for + /// example, there is a "psllw" instruction for the former case, but no simple + /// instruction for a general "a << b" operation on vectors. + virtual bool isVectorShiftByScalarCheap(Type *Ty) const { + return false; + } + + /// Returns true if the opcode is a commutative binary operation. + virtual bool isCommutativeBinOp(unsigned Opcode) const { + // FIXME: This should get its info from the td file. + switch (Opcode) { + case ISD::ADD: + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: + case ISD::MUL: + case ISD::MULHU: + case ISD::MULHS: + case ISD::SMUL_LOHI: + case ISD::UMUL_LOHI: + case ISD::FADD: + case ISD::FMUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + case ISD::SADDO: + case ISD::UADDO: + case ISD::ADDC: + case ISD::ADDE: + case ISD::SADDSAT: + case ISD::UADDSAT: + case ISD::FMINNUM: + case ISD::FMAXNUM: + case ISD::FMINNUM_IEEE: + case ISD::FMAXNUM_IEEE: + case ISD::FMINIMUM: + case ISD::FMAXIMUM: + return true; + default: return false; + } + } + + /// Return true if the node is a math/logic binary operator. + virtual bool isBinOp(unsigned Opcode) const { + // A commutative binop must be a binop. + if (isCommutativeBinOp(Opcode)) + return true; + // These are non-commutative binops. + switch (Opcode) { + case ISD::SUB: + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + case ISD::FSUB: + case ISD::FDIV: + case ISD::FREM: + return true; + default: + return false; + } + } + + /// Return true if it's free to truncate a value of type FromTy to type + /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 + /// by referencing its sub-register AX. + /// Targets must return false when FromTy <= ToTy. + virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const { + return false; + } + + /// Return true if a truncation from FromTy to ToTy is permitted when deciding + /// whether a call is in tail position. Typically this means that both results + /// would be assigned to the same register or stack slot, but it could mean + /// the target performs adequate checks of its own before proceeding with the + /// tail call. Targets must return false when FromTy <= ToTy. + virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const { + return false; + } + + virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { + return false; + } + + virtual bool isProfitableToHoist(Instruction *I) const { return true; } + + /// Return true if the extension represented by \p I is free. + /// Unlikely the is[Z|FP]ExtFree family which is based on types, + /// this method can use the context provided by \p I to decide + /// whether or not \p I is free. + /// This method extends the behavior of the is[Z|FP]ExtFree family. + /// In other words, if is[Z|FP]Free returns true, then this method + /// returns true as well. The converse is not true. + /// The target can perform the adequate checks by overriding isExtFreeImpl. + /// \pre \p I must be a sign, zero, or fp extension. + bool isExtFree(const Instruction *I) const { + switch (I->getOpcode()) { + case Instruction::FPExt: + if (isFPExtFree(EVT::getEVT(I->getType()), + EVT::getEVT(I->getOperand(0)->getType()))) + return true; + break; + case Instruction::ZExt: + if (isZExtFree(I->getOperand(0)->getType(), I->getType())) + return true; + break; + case Instruction::SExt: + break; + default: + llvm_unreachable("Instruction is not an extension"); + } + return isExtFreeImpl(I); + } + + /// Return true if \p Load and \p Ext can form an ExtLoad. + /// For example, in AArch64 + /// %L = load i8, i8* %ptr + /// %E = zext i8 %L to i32 + /// can be lowered into one load instruction + /// ldrb w0, [x0] + bool isExtLoad(const LoadInst *Load, const Instruction *Ext, + const DataLayout &DL) const { + EVT VT = getValueType(DL, Ext->getType()); + EVT LoadVT = getValueType(DL, Load->getType()); + + // If the load has other users and the truncate is not free, the ext + // probably isn't free. + if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) && + !isTruncateFree(Ext->getType(), Load->getType())) + return false; + + // Check whether the target supports casts folded into loads. + unsigned LType; + if (isa<ZExtInst>(Ext)) + LType = ISD::ZEXTLOAD; + else { + assert(isa<SExtInst>(Ext) && "Unexpected ext type!"); + LType = ISD::SEXTLOAD; + } + + return isLoadExtLegal(LType, VT, LoadVT); + } + + /// Return true if any actual instruction that defines a value of type FromTy + /// implicitly zero-extends the value to ToTy in the result register. + /// + /// The function should return true when it is likely that the truncate can + /// be freely folded with an instruction defining a value of FromTy. If + /// the defining instruction is unknown (because you're looking at a + /// function argument, PHI, etc.) then the target may require an + /// explicit truncate, which is not necessarily free, but this function + /// does not deal with those cases. + /// Targets must return false when FromTy >= ToTy. + virtual bool isZExtFree(Type *FromTy, Type *ToTy) const { + return false; + } + + virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { + return false; + } + + /// Return true if sign-extension from FromTy to ToTy is cheaper than + /// zero-extension. + virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const { + return false; + } + + /// Return true if sinking I's operands to the same basic block as I is + /// profitable, e.g. because the operands can be folded into a target + /// instruction during instruction selection. After calling the function + /// \p Ops contains the Uses to sink ordered by dominance (dominating users + /// come first). + virtual bool shouldSinkOperands(Instruction *I, + SmallVectorImpl<Use *> &Ops) const { + return false; + } + + /// Return true if the target supplies and combines to a paired load + /// two loaded values of type LoadedType next to each other in memory. + /// RequiredAlignment gives the minimal alignment constraints that must be met + /// to be able to select this paired load. + /// + /// This information is *not* used to generate actual paired loads, but it is + /// used to generate a sequence of loads that is easier to combine into a + /// paired load. + /// For instance, something like this: + /// a = load i64* addr + /// b = trunc i64 a to i32 + /// c = lshr i64 a, 32 + /// d = trunc i64 c to i32 + /// will be optimized into: + /// b = load i32* addr1 + /// d = load i32* addr2 + /// Where addr1 = addr2 +/- sizeof(i32). + /// + /// In other words, unless the target performs a post-isel load combining, + /// this information should not be provided because it will generate more + /// loads. + virtual bool hasPairedLoad(EVT /*LoadedType*/, + unsigned & /*RequiredAlignment*/) const { + return false; + } + + /// Return true if the target has a vector blend instruction. + virtual bool hasVectorBlend() const { return false; } + + /// Get the maximum supported factor for interleaved memory accesses. + /// Default to be the minimum interleave factor: 2. + virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; } + + /// Lower an interleaved load to target specific intrinsics. Return + /// true on success. + /// + /// \p LI is the vector load instruction. + /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector. + /// \p Indices is the corresponding indices for each shufflevector. + /// \p Factor is the interleave factor. + virtual bool lowerInterleavedLoad(LoadInst *LI, + ArrayRef<ShuffleVectorInst *> Shuffles, + ArrayRef<unsigned> Indices, + unsigned Factor) const { + return false; + } + + /// Lower an interleaved store to target specific intrinsics. Return + /// true on success. + /// + /// \p SI is the vector store instruction. + /// \p SVI is the shufflevector to RE-interleave the stored vector. + /// \p Factor is the interleave factor. + virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, + unsigned Factor) const { + return false; + } + + /// Return true if zero-extending the specific node Val to type VT2 is free + /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or + /// because it's folded such as X86 zero-extending loads). + virtual bool isZExtFree(SDValue Val, EVT VT2) const { + return isZExtFree(Val.getValueType(), VT2); + } + + /// Return true if an fpext operation is free (for instance, because + /// single-precision floating-point numbers are implicitly extended to + /// double-precision). + virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const { + assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() && + "invalid fpext types"); + return false; + } + + /// Return true if an fpext operation input to an \p Opcode operation is free + /// (for instance, because half-precision floating-point numbers are + /// implicitly extended to float-precision) for an FMA instruction. + virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const { + assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && + "invalid fpext types"); + return isFPExtFree(DestVT, SrcVT); + } + + /// Return true if folding a vector load into ExtVal (a sign, zero, or any + /// extend node) is profitable. + virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; } + + /// Return true if an fneg operation is free to the point where it is never + /// worthwhile to replace it with a bitwise operation. + virtual bool isFNegFree(EVT VT) const { + assert(VT.isFloatingPoint()); + return false; + } + + /// Return true if an fabs operation is free to the point where it is never + /// worthwhile to replace it with a bitwise operation. + virtual bool isFAbsFree(EVT VT) const { + assert(VT.isFloatingPoint()); + return false; + } + + /// Return true if an FMA operation is faster than a pair of fmul and fadd + /// instructions. fmuladd intrinsics will be expanded to FMAs when this method + /// returns true, otherwise fmuladd is expanded to fmul + fadd. + /// + /// NOTE: This may be called before legalization on types for which FMAs are + /// not legal, but should return true if those types will eventually legalize + /// to types that support FMAs. After legalization, it will only be called on + /// types that support FMAs (via Legal or Custom actions) + virtual bool isFMAFasterThanFMulAndFAdd(EVT) const { + return false; + } + + /// Return true if it's profitable to narrow operations of type VT1 to + /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from + /// i32 to i16. + virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { + return false; + } + + /// Return true if it is beneficial to convert a load of a constant to + /// just the constant itself. + /// On some targets it might be more efficient to use a combination of + /// arithmetic instructions to materialize the constant instead of loading it + /// from a constant pool. + virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + return false; + } + + /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type + /// from this source type with this index. This is needed because + /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of + /// the first element, and only the target knows which lowering is cheap. + virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, + unsigned Index) const { + return false; + } + + /// Try to convert an extract element of a vector binary operation into an + /// extract element followed by a scalar operation. + virtual bool shouldScalarizeBinop(SDValue VecOp) const { + return false; + } + + /// Return true if extraction of a scalar element from the given vector type + /// at the given index is cheap. For example, if scalar operations occur on + /// the same register file as vector operations, then an extract element may + /// be a sub-register rename rather than an actual instruction. + virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const { + return false; + } + + /// Try to convert math with an overflow comparison into the corresponding DAG + /// node operation. Targets may want to override this independently of whether + /// the operation is legal/custom for the given type because it may obscure + /// matching of other patterns. + virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const { + // TODO: The default logic is inherited from code in CodeGenPrepare. + // The opcode should not make a difference by default? + if (Opcode != ISD::UADDO) + return false; + + // Allow the transform as long as we have an integer type that is not + // obviously illegal and unsupported. + if (VT.isVector()) + return false; + return VT.isSimple() || !isOperationExpand(Opcode, VT); + } + + // Return true if it is profitable to use a scalar input to a BUILD_VECTOR + // even if the vector itself has multiple uses. + virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const { + return false; + } + + // Return true if CodeGenPrepare should consider splitting large offset of a + // GEP to make the GEP fit into the addressing mode and can be sunk into the + // same blocks of its users. + virtual bool shouldConsiderGEPOffsetSplit() const { return false; } + + //===--------------------------------------------------------------------===// + // Runtime Library hooks + // + + /// Rename the default libcall routine name for the specified libcall. + void setLibcallName(RTLIB::Libcall Call, const char *Name) { + LibcallRoutineNames[Call] = Name; + } + + /// Get the libcall routine name for the specified libcall. + const char *getLibcallName(RTLIB::Libcall Call) const { + return LibcallRoutineNames[Call]; + } + + /// Override the default CondCode to be used to test the result of the + /// comparison libcall against zero. + void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { + CmpLibcallCCs[Call] = CC; + } + + /// Get the CondCode that's to be used to test the result of the comparison + /// libcall against zero. + ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { + return CmpLibcallCCs[Call]; + } + + /// Set the CallingConv that should be used for the specified libcall. + void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { + LibcallCallingConvs[Call] = CC; + } + + /// Get the CallingConv that should be used for the specified libcall. + CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { + return LibcallCallingConvs[Call]; + } + + /// Execute target specific actions to finalize target lowering. + /// This is used to set extra flags in MachineFrameInformation and freezing + /// the set of reserved registers. + /// The default implementation just freezes the set of reserved registers. + virtual void finalizeLowering(MachineFunction &MF) const; + +private: + const TargetMachine &TM; + + /// Tells the code generator that the target has multiple (allocatable) + /// condition registers that can be used to store the results of comparisons + /// for use by selects and conditional branches. With multiple condition + /// registers, the code generator will not aggressively sink comparisons into + /// the blocks of their users. + bool HasMultipleConditionRegisters; + + /// Tells the code generator that the target has BitExtract instructions. + /// The code generator will aggressively sink "shift"s into the blocks of + /// their users if the users will generate "and" instructions which can be + /// combined with "shift" to BitExtract instructions. + bool HasExtractBitsInsn; + + /// Tells the code generator to bypass slow divide or remainder + /// instructions. For example, BypassSlowDivWidths[32,8] tells the code + /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer + /// div/rem when the operands are positive and less than 256. + DenseMap <unsigned int, unsigned int> BypassSlowDivWidths; + + /// Tells the code generator that it shouldn't generate extra flow control + /// instructions and should attempt to combine flow control instructions via + /// predication. + bool JumpIsExpensive; + + /// This target prefers to use _setjmp to implement llvm.setjmp. + /// + /// Defaults to false. + bool UseUnderscoreSetJmp; + + /// This target prefers to use _longjmp to implement llvm.longjmp. + /// + /// Defaults to false. + bool UseUnderscoreLongJmp; + + /// Information about the contents of the high-bits in boolean values held in + /// a type wider than i1. See getBooleanContents. + BooleanContent BooleanContents; + + /// Information about the contents of the high-bits in boolean values held in + /// a type wider than i1. See getBooleanContents. + BooleanContent BooleanFloatContents; + + /// Information about the contents of the high-bits in boolean vector values + /// when the element type is wider than i1. See getBooleanContents. + BooleanContent BooleanVectorContents; + + /// The target scheduling preference: shortest possible total cycles or lowest + /// register usage. + Sched::Preference SchedPreferenceInfo; + + /// The size, in bytes, of the target's jmp_buf buffers + unsigned JumpBufSize; + + /// The alignment, in bytes, of the target's jmp_buf buffers + unsigned JumpBufAlignment; + + /// The minimum alignment that any argument on the stack needs to have. + unsigned MinStackArgumentAlignment; + + /// The minimum function alignment (used when optimizing for size, and to + /// prevent explicitly provided alignment from leading to incorrect code). + unsigned MinFunctionAlignment; + + /// The preferred function alignment (used when alignment unspecified and + /// optimizing for speed). + unsigned PrefFunctionAlignment; + + /// The preferred loop alignment. + unsigned PrefLoopAlignment; + + /// Size in bits of the maximum atomics size the backend supports. + /// Accesses larger than this will be expanded by AtomicExpandPass. + unsigned MaxAtomicSizeInBitsSupported; + + /// Size in bits of the minimum cmpxchg or ll/sc operation the + /// backend supports. + unsigned MinCmpXchgSizeInBits; + + /// This indicates if the target supports unaligned atomic operations. + bool SupportsUnalignedAtomics; + + /// If set to a physical register, this specifies the register that + /// llvm.savestack/llvm.restorestack should save and restore. + unsigned StackPointerRegisterToSaveRestore; + + /// This indicates the default register class to use for each ValueType the + /// target supports natively. + const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; + unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; + MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; + + /// This indicates the "representative" register class to use for each + /// ValueType the target supports natively. This information is used by the + /// scheduler to track register pressure. By default, the representative + /// register class is the largest legal super-reg register class of the + /// register class of the specified type. e.g. On x86, i8, i16, and i32's + /// representative class would be GR32. + const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; + + /// This indicates the "cost" of the "representative" register class for each + /// ValueType. The cost is used by the scheduler to approximate register + /// pressure. + uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; + + /// For any value types we are promoting or expanding, this contains the value + /// type that we are changing to. For Expanded types, this contains one step + /// of the expand (e.g. i64 -> i32), even if there are multiple steps required + /// (e.g. i64 -> i16). For types natively supported by the system, this holds + /// the same type (e.g. i32 -> i32). + MVT TransformToType[MVT::LAST_VALUETYPE]; + + /// For each operation and each value type, keep a LegalizeAction that + /// indicates how instruction selection should deal with the operation. Most + /// operations are Legal (aka, supported natively by the target), but + /// operations that are not should be described. Note that operations on + /// non-legal value types are not described here. + LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; + + /// For each load extension type and each value type, keep a LegalizeAction + /// that indicates how instruction selection should deal with a load of a + /// specific value type and extension type. Uses 4-bits to store the action + /// for each of the 4 load ext types. + uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; + + /// For each value type pair keep a LegalizeAction that indicates whether a + /// truncating store of a specific value type and truncating type is legal. + LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; + + /// For each indexed mode and each value type, keep a pair of LegalizeAction + /// that indicates how instruction selection should deal with the load / + /// store. + /// + /// The first dimension is the value_type for the reference. The second + /// dimension represents the various modes for load store. + uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; + + /// For each condition code (ISD::CondCode) keep a LegalizeAction that + /// indicates how instruction selection should deal with the condition code. + /// + /// Because each CC action takes up 4 bits, we need to have the array size be + /// large enough to fit all of the value types. This can be done by rounding + /// up the MVT::LAST_VALUETYPE value to the next multiple of 8. + uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8]; + +protected: + ValueTypeActionImpl ValueTypeActions; + +private: + LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const; + + /// Targets can specify ISD nodes that they would like PerformDAGCombine + /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this + /// array. + unsigned char + TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; + + /// For operations that must be promoted to a specific type, this holds the + /// destination type. This map should be sparse, so don't hold it as an + /// array. + /// + /// Targets add entries to this map with AddPromotedToType(..), clients access + /// this with getTypeToPromoteTo(..). + std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> + PromoteToType; + + /// Stores the name each libcall. + const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1]; + + /// The ISD::CondCode that should be used to test the result of each of the + /// comparison libcall against zero. + ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; + + /// Stores the CallingConv that should be used for each libcall. + CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; + + /// Set default libcall names and calling conventions. + void InitLibcalls(const Triple &TT); + +protected: + /// Return true if the extension represented by \p I is free. + /// \pre \p I is a sign, zero, or fp extension and + /// is[Z|FP]ExtFree of the related types is not true. + virtual bool isExtFreeImpl(const Instruction *I) const { return false; } + + /// Depth that GatherAllAliases should should continue looking for chain + /// dependencies when trying to find a more preferable chain. As an + /// approximation, this should be more than the number of consecutive stores + /// expected to be merged. + unsigned GatherAllAliasesMaxDepth; + + /// Specify maximum number of store instructions per memset call. + /// + /// When lowering \@llvm.memset this field specifies the maximum number of + /// store operations that may be substituted for the call to memset. Targets + /// must set this value based on the cost threshold for that target. Targets + /// should assume that the memset will be done using as many of the largest + /// store operations first, followed by smaller ones, if necessary, per + /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine + /// with 16-bit alignment would result in four 2-byte stores and one 1-byte + /// store. This only applies to setting a constant array of a constant size. + unsigned MaxStoresPerMemset; + + /// Maximum number of stores operations that may be substituted for the call + /// to memset, used for functions with OptSize attribute. + unsigned MaxStoresPerMemsetOptSize; + + /// Specify maximum bytes of store instructions per memcpy call. + /// + /// When lowering \@llvm.memcpy this field specifies the maximum number of + /// store operations that may be substituted for a call to memcpy. Targets + /// must set this value based on the cost threshold for that target. Targets + /// should assume that the memcpy will be done using as many of the largest + /// store operations first, followed by smaller ones, if necessary, per + /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine + /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store + /// and one 1-byte store. This only applies to copying a constant array of + /// constant size. + unsigned MaxStoresPerMemcpy; + + + /// \brief Specify max number of store instructions to glue in inlined memcpy. + /// + /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number + /// of store instructions to keep together. This helps in pairing and + // vectorization later on. + unsigned MaxGluedStoresPerMemcpy = 0; + + /// Maximum number of store operations that may be substituted for a call to + /// memcpy, used for functions with OptSize attribute. + unsigned MaxStoresPerMemcpyOptSize; + unsigned MaxLoadsPerMemcmp; + unsigned MaxLoadsPerMemcmpOptSize; + + /// Specify maximum bytes of store instructions per memmove call. + /// + /// When lowering \@llvm.memmove this field specifies the maximum number of + /// store instructions that may be substituted for a call to memmove. Targets + /// must set this value based on the cost threshold for that target. Targets + /// should assume that the memmove will be done using as many of the largest + /// store operations first, followed by smaller ones, if necessary, per + /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine + /// with 8-bit alignment would result in nine 1-byte stores. This only + /// applies to copying a constant array of constant size. + unsigned MaxStoresPerMemmove; + + /// Maximum number of store instructions that may be substituted for a call to + /// memmove, used for functions with OptSize attribute. + unsigned MaxStoresPerMemmoveOptSize; + + /// Tells the code generator that select is more expensive than a branch if + /// the branch is usually predicted right. + bool PredictableSelectIsExpensive; + + /// \see enableExtLdPromotion. + bool EnableExtLdPromotion; + + /// Return true if the value types that can be represented by the specified + /// register class are all legal. + bool isLegalRC(const TargetRegisterInfo &TRI, + const TargetRegisterClass &RC) const; + + /// Replace/modify any TargetFrameIndex operands with a targte-dependent + /// sequence of memory operands that is recognized by PrologEpilogInserter. + MachineBasicBlock *emitPatchPoint(MachineInstr &MI, + MachineBasicBlock *MBB) const; + + /// Replace/modify the XRay custom event operands with target-dependent + /// details. + MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI, + MachineBasicBlock *MBB) const; + + /// Replace/modify the XRay typed event operands with target-dependent + /// details. + MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI, + MachineBasicBlock *MBB) const; +}; + +/// This class defines information used to lower LLVM code to legal SelectionDAG +/// operators that the target instruction selector can accept natively. +/// +/// This class also defines callbacks that targets must implement to lower +/// target-specific constructs to SelectionDAG operators. +class TargetLowering : public TargetLoweringBase { +public: + struct DAGCombinerInfo; + + TargetLowering(const TargetLowering &) = delete; + TargetLowering &operator=(const TargetLowering &) = delete; + + /// NOTE: The TargetMachine owns TLOF. + explicit TargetLowering(const TargetMachine &TM); + + bool isPositionIndependent() const; + + virtual bool isSDNodeSourceOfDivergence(const SDNode *N, + FunctionLoweringInfo *FLI, + LegacyDivergenceAnalysis *DA) const { + return false; + } + + virtual bool isSDNodeAlwaysUniform(const SDNode * N) const { + return false; + } + + /// Returns true by value, base pointer and offset pointer and addressing mode + /// by reference if the node's address can be legally represented as + /// pre-indexed load / store address. + virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, + SDValue &/*Offset*/, + ISD::MemIndexedMode &/*AM*/, + SelectionDAG &/*DAG*/) const { + return false; + } + + /// Returns true by value, base pointer and offset pointer and addressing mode + /// by reference if this node can be combined with a load / store to form a + /// post-indexed load / store. + virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, + SDValue &/*Base*/, + SDValue &/*Offset*/, + ISD::MemIndexedMode &/*AM*/, + SelectionDAG &/*DAG*/) const { + return false; + } + + /// Return the entry encoding for a jump table in the current function. The + /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. + virtual unsigned getJumpTableEncoding() const; + + virtual const MCExpr * + LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, + const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, + MCContext &/*Ctx*/) const { + llvm_unreachable("Need to implement this hook if target has custom JTIs"); + } + + /// Returns relocation base for the given PIC jumptable. + virtual SDValue getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const; + + /// This returns the relocation base for the given PIC jumptable, the same as + /// getPICJumpTableRelocBase, but as an MCExpr. + virtual const MCExpr * + getPICJumpTableRelocBaseExpr(const MachineFunction *MF, + unsigned JTI, MCContext &Ctx) const; + + /// Return true if folding a constant offset with the given GlobalAddress is + /// legal. It is frequently not legal in PIC relocation models. + virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; + + bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, + SDValue &Chain) const; + + void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, + SDValue &NewRHS, ISD::CondCode &CCCode, + const SDLoc &DL) const; + + /// Returns a pair of (return value, chain). + /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC. + std::pair<SDValue, SDValue> makeLibCall( + SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef<SDValue> Ops, + bool isSigned, const SDLoc &dl, bool doesNotReturn = false, + bool isReturnValueUsed = true, bool isPostTypeLegalization = false) const; + + /// Check whether parameters to a call that are passed in callee saved + /// registers are the same as from the calling function. This needs to be + /// checked for tail call eligibility. + bool parametersInCSRMatch(const MachineRegisterInfo &MRI, + const uint32_t *CallerPreservedMask, + const SmallVectorImpl<CCValAssign> &ArgLocs, + const SmallVectorImpl<SDValue> &OutVals) const; + + //===--------------------------------------------------------------------===// + // TargetLowering Optimization Methods + // + + /// A convenience struct that encapsulates a DAG, and two SDValues for + /// returning information from TargetLowering to its clients that want to + /// combine. + struct TargetLoweringOpt { + SelectionDAG &DAG; + bool LegalTys; + bool LegalOps; + SDValue Old; + SDValue New; + + explicit TargetLoweringOpt(SelectionDAG &InDAG, + bool LT, bool LO) : + DAG(InDAG), LegalTys(LT), LegalOps(LO) {} + + bool LegalTypes() const { return LegalTys; } + bool LegalOperations() const { return LegalOps; } + + bool CombineTo(SDValue O, SDValue N) { + Old = O; + New = N; + return true; + } + }; + + /// Determines the optimal series of memory ops to replace the memset / memcpy. + /// Return true if the number of memory ops is below the threshold (Limit). + /// It returns the types of the sequence of memory ops to perform + /// memset / memcpy by reference. + bool findOptimalMemOpLowering(std::vector<EVT> &MemOps, + unsigned Limit, uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, + bool ZeroMemset, + bool MemcpyStrSrc, + bool AllowOverlap, + unsigned DstAS, unsigned SrcAS, + const AttributeList &FuncAttributes) const; + + /// Check to see if the specified operand of the specified instruction is a + /// constant integer. If so, check to see if there are any bits set in the + /// constant that are not demanded. If so, shrink the constant and return + /// true. + bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, + TargetLoweringOpt &TLO) const; + + // Target hook to do target-specific const optimization, which is called by + // ShrinkDemandedConstant. This function should return true if the target + // doesn't want ShrinkDemandedConstant to further optimize the constant. + virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded, + TargetLoweringOpt &TLO) const { + return false; + } + + /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This + /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be + /// generalized for targets with other types of implicit widening casts. + bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, + TargetLoweringOpt &TLO) const; + + /// Look at Op. At this point, we know that only the DemandedBits bits of the + /// result of Op are ever used downstream. If we can use this information to + /// simplify Op, create a new simplified DAG node and return true, returning + /// the original and new nodes in Old and New. Otherwise, analyze the + /// expression and return a mask of KnownOne and KnownZero bits for the + /// expression (used to simplify the caller). The KnownZero/One bits may only + /// be accurate for those bits in the Demanded masks. + /// \p AssumeSingleUse When this parameter is true, this function will + /// attempt to simplify \p Op even if there are multiple uses. + /// Callers are responsible for correctly updating the DAG based on the + /// results of this function, because simply replacing replacing TLO.Old + /// with TLO.New will be incorrect when this parameter is true and TLO.Old + /// has multiple uses. + bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + const APInt &DemandedElts, KnownBits &Known, + TargetLoweringOpt &TLO, unsigned Depth = 0, + bool AssumeSingleUse = false) const; + + /// Helper wrapper around SimplifyDemandedBits, demanding all elements. + /// Adds Op back to the worklist upon success. + bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + KnownBits &Known, TargetLoweringOpt &TLO, + unsigned Depth = 0, + bool AssumeSingleUse = false) const; + + /// Helper wrapper around SimplifyDemandedBits. + /// Adds Op back to the worklist upon success. + bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, + DAGCombinerInfo &DCI) const; + + /// Look at Vector Op. At this point, we know that only the DemandedElts + /// elements of the result of Op are ever used downstream. If we can use + /// this information to simplify Op, create a new simplified DAG node and + /// return true, storing the original and new nodes in TLO. + /// Otherwise, analyze the expression and return a mask of KnownUndef and + /// KnownZero elements for the expression (used to simplify the caller). + /// The KnownUndef/Zero elements may only be accurate for those bits + /// in the DemandedMask. + /// \p AssumeSingleUse When this parameter is true, this function will + /// attempt to simplify \p Op even if there are multiple uses. + /// Callers are responsible for correctly updating the DAG based on the + /// results of this function, because simply replacing replacing TLO.Old + /// with TLO.New will be incorrect when this parameter is true and TLO.Old + /// has multiple uses. + bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, + APInt &KnownUndef, APInt &KnownZero, + TargetLoweringOpt &TLO, unsigned Depth = 0, + bool AssumeSingleUse = false) const; + + /// Helper wrapper around SimplifyDemandedVectorElts. + /// Adds Op back to the worklist upon success. + bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, + APInt &KnownUndef, APInt &KnownZero, + DAGCombinerInfo &DCI) const; + + /// Determine which of the bits specified in Mask are known to be either zero + /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts + /// argument allows us to only collect the known bits that are shared by the + /// requested vector elements. + virtual void computeKnownBitsForTargetNode(const SDValue Op, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth = 0) const; + + /// Determine which of the bits of FrameIndex \p FIOp are known to be 0. + /// Default implementation computes low bits based on alignment + /// information. This should preserve known bits passed into it. + virtual void computeKnownBitsForFrameIndex(const SDValue FIOp, + KnownBits &Known, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth = 0) const; + + /// This method can be implemented by targets that want to expose additional + /// information about sign bits to the DAG Combiner. The DemandedElts + /// argument allows us to only collect the minimum sign bits that are shared + /// by the requested vector elements. + virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, + const APInt &DemandedElts, + const SelectionDAG &DAG, + unsigned Depth = 0) const; + + /// Attempt to simplify any target nodes based on the demanded vector + /// elements, returning true on success. Otherwise, analyze the expression and + /// return a mask of KnownUndef and KnownZero elements for the expression + /// (used to simplify the caller). The KnownUndef/Zero elements may only be + /// accurate for those bits in the DemandedMask. + virtual bool SimplifyDemandedVectorEltsForTargetNode( + SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, + APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const; + + /// Attempt to simplify any target nodes based on the demanded bits/elts, + /// returning true on success. Otherwise, analyze the + /// expression and return a mask of KnownOne and KnownZero bits for the + /// expression (used to simplify the caller). The KnownZero/One bits may only + /// be accurate for those bits in the Demanded masks. + virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, + const APInt &DemandedBits, + const APInt &DemandedElts, + KnownBits &Known, + TargetLoweringOpt &TLO, + unsigned Depth = 0) const; + + /// This method returns the constant pool value that will be loaded by LD. + /// NOTE: You must check for implicit extensions of the constant by LD. + virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const; + + /// If \p SNaN is false, \returns true if \p Op is known to never be any + /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling + /// NaN. + virtual bool isKnownNeverNaNForTargetNode(SDValue Op, + const SelectionDAG &DAG, + bool SNaN = false, + unsigned Depth = 0) const; + struct DAGCombinerInfo { + void *DC; // The DAG Combiner object. + CombineLevel Level; + bool CalledByLegalizer; + + public: + SelectionDAG &DAG; + + DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) + : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {} + + bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } + bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } + bool isAfterLegalizeDAG() const { + return Level == AfterLegalizeDAG; + } + CombineLevel getDAGCombineLevel() { return Level; } + bool isCalledByLegalizer() const { return CalledByLegalizer; } + + void AddToWorklist(SDNode *N); + SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true); + SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); + SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); + + void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); + }; + + /// Return if the N is a constant or constant vector equal to the true value + /// from getBooleanContents(). + bool isConstTrueVal(const SDNode *N) const; + + /// Return if the N is a constant or constant vector equal to the false value + /// from getBooleanContents(). + bool isConstFalseVal(const SDNode *N) const; + + /// Return if \p N is a True value when extended to \p VT. + bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const; + + /// Try to simplify a setcc built with the specified operands and cc. If it is + /// unable to simplify it, return a null SDValue. + SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, + bool foldBooleans, DAGCombinerInfo &DCI, + const SDLoc &dl) const; + + // For targets which wrap address, unwrap for analysis. + virtual SDValue unwrapAddress(SDValue N) const { return N; } + + /// Returns true (and the GlobalValue and the offset) if the node is a + /// GlobalAddress + offset. + virtual bool + isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; + + /// This method will be invoked for all target nodes and for any + /// target-independent nodes that the target has registered with invoke it + /// for. + /// + /// The semantics are as follows: + /// Return Value: + /// SDValue.Val == 0 - No change was made + /// SDValue.Val == N - N was replaced, is dead, and is already handled. + /// otherwise - N should be replaced by the returned Operand. + /// + /// In addition, methods provided by DAGCombinerInfo may be used to perform + /// more complex transformations. + /// + virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; + + /// Return true if it is profitable to move this shift by a constant amount + /// though its operand, adjusting any immediate operands as necessary to + /// preserve semantics. This transformation may not be desirable if it + /// disrupts a particularly auspicious target-specific tree (e.g. bitfield + /// extraction in AArch64). By default, it returns true. + /// + /// @param N the shift node + /// @param Level the current DAGCombine legalization level. + virtual bool isDesirableToCommuteWithShift(const SDNode *N, + CombineLevel Level) const { + return true; + } + + // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern + // to a shuffle and a truncate. + // Example of such a combine: + // v4i32 build_vector((extract_elt V, 1), + // (extract_elt V, 3), + // (extract_elt V, 5), + // (extract_elt V, 7)) + // --> + // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64) + virtual bool isDesirableToCombineBuildVectorToShuffleTruncate( + ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const { + return false; + } + + /// Return true if the target has native support for the specified value type + /// and it is 'desirable' to use the type for the given node type. e.g. On x86 + /// i16 is legal, but undesirable since i16 instruction encodings are longer + /// and some i16 instructions are slow. + virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { + // By default, assume all legal types are desirable. + return isTypeLegal(VT); + } + + /// Return true if it is profitable for dag combiner to transform a floating + /// point op of specified opcode to a equivalent op of an integer + /// type. e.g. f32 load -> i32 load can be profitable on ARM. + virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, + EVT /*VT*/) const { + return false; + } + + /// This method query the target whether it is beneficial for dag combiner to + /// promote the specified node. If true, it should return the desired + /// promotion type by reference. + virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { + return false; + } + + /// Return true if the target supports swifterror attribute. It optimizes + /// loads and stores to reading and writing a specific register. + virtual bool supportSwiftError() const { + return false; + } + + /// Return true if the target supports that a subset of CSRs for the given + /// machine function is handled explicitly via copies. + virtual bool supportSplitCSR(MachineFunction *MF) const { + return false; + } + + /// Perform necessary initialization to handle a subset of CSRs explicitly + /// via copies. This function is called at the beginning of instruction + /// selection. + virtual void initializeSplitCSR(MachineBasicBlock *Entry) const { + llvm_unreachable("Not Implemented"); + } + + /// Insert explicit copies in entry and exit blocks. We copy a subset of + /// CSRs to virtual registers in the entry block, and copy them back to + /// physical registers in the exit blocks. This function is called at the end + /// of instruction selection. + virtual void insertCopiesSplitCSR( + MachineBasicBlock *Entry, + const SmallVectorImpl<MachineBasicBlock *> &Exits) const { + llvm_unreachable("Not Implemented"); + } + + //===--------------------------------------------------------------------===// + // Lowering methods - These methods must be implemented by targets so that + // the SelectionDAGBuilder code knows how to lower these. + // + + /// This hook must be implemented to lower the incoming (formal) arguments, + /// described by the Ins array, into the specified DAG. The implementation + /// should fill in the InVals array with legal-type argument values, and + /// return the resulting token chain value. + virtual SDValue LowerFormalArguments( + SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, + const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/, + SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const { + llvm_unreachable("Not Implemented"); + } + + /// This structure contains all information that is necessary for lowering + /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder + /// needs to lower a call, and targets will see this struct in their LowerCall + /// implementation. + struct CallLoweringInfo { + SDValue Chain; + Type *RetTy = nullptr; + bool RetSExt : 1; + bool RetZExt : 1; + bool IsVarArg : 1; + bool IsInReg : 1; + bool DoesNotReturn : 1; + bool IsReturnValueUsed : 1; + bool IsConvergent : 1; + bool IsPatchPoint : 1; + + // IsTailCall should be modified by implementations of + // TargetLowering::LowerCall that perform tail call conversions. + bool IsTailCall = false; + + // Is Call lowering done post SelectionDAG type legalization. + bool IsPostTypeLegalization = false; + + unsigned NumFixedArgs = -1; + CallingConv::ID CallConv = CallingConv::C; + SDValue Callee; + ArgListTy Args; + SelectionDAG &DAG; + SDLoc DL; + ImmutableCallSite CS; + SmallVector<ISD::OutputArg, 32> Outs; + SmallVector<SDValue, 32> OutVals; + SmallVector<ISD::InputArg, 32> Ins; + SmallVector<SDValue, 4> InVals; + + CallLoweringInfo(SelectionDAG &DAG) + : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false), + DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false), + IsPatchPoint(false), DAG(DAG) {} + + CallLoweringInfo &setDebugLoc(const SDLoc &dl) { + DL = dl; + return *this; + } + + CallLoweringInfo &setChain(SDValue InChain) { + Chain = InChain; + return *this; + } + + // setCallee with target/module-specific attributes + CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType, + SDValue Target, ArgListTy &&ArgsList) { + RetTy = ResultType; + Callee = Target; + CallConv = CC; + NumFixedArgs = ArgsList.size(); + Args = std::move(ArgsList); + + DAG.getTargetLoweringInfo().markLibCallAttributes( + &(DAG.getMachineFunction()), CC, Args); + return *this; + } + + CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType, + SDValue Target, ArgListTy &&ArgsList) { + RetTy = ResultType; + Callee = Target; + CallConv = CC; + NumFixedArgs = ArgsList.size(); + Args = std::move(ArgsList); + return *this; + } + + CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy, + SDValue Target, ArgListTy &&ArgsList, + ImmutableCallSite Call) { + RetTy = ResultType; + + IsInReg = Call.hasRetAttr(Attribute::InReg); + DoesNotReturn = + Call.doesNotReturn() || + (!Call.isInvoke() && + isa<UnreachableInst>(Call.getInstruction()->getNextNode())); + IsVarArg = FTy->isVarArg(); + IsReturnValueUsed = !Call.getInstruction()->use_empty(); + RetSExt = Call.hasRetAttr(Attribute::SExt); + RetZExt = Call.hasRetAttr(Attribute::ZExt); + + Callee = Target; + + CallConv = Call.getCallingConv(); + NumFixedArgs = FTy->getNumParams(); + Args = std::move(ArgsList); + + CS = Call; + + return *this; + } + + CallLoweringInfo &setInRegister(bool Value = true) { + IsInReg = Value; + return *this; + } + + CallLoweringInfo &setNoReturn(bool Value = true) { + DoesNotReturn = Value; + return *this; + } + + CallLoweringInfo &setVarArg(bool Value = true) { + IsVarArg = Value; + return *this; + } + + CallLoweringInfo &setTailCall(bool Value = true) { + IsTailCall = Value; + return *this; + } + + CallLoweringInfo &setDiscardResult(bool Value = true) { + IsReturnValueUsed = !Value; + return *this; + } + + CallLoweringInfo &setConvergent(bool Value = true) { + IsConvergent = Value; + return *this; + } + + CallLoweringInfo &setSExtResult(bool Value = true) { + RetSExt = Value; + return *this; + } + + CallLoweringInfo &setZExtResult(bool Value = true) { + RetZExt = Value; + return *this; + } + + CallLoweringInfo &setIsPatchPoint(bool Value = true) { + IsPatchPoint = Value; + return *this; + } + + CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) { + IsPostTypeLegalization = Value; + return *this; + } + + ArgListTy &getArgs() { + return Args; + } + }; + + /// This function lowers an abstract call to a function into an actual call. + /// This returns a pair of operands. The first element is the return value + /// for the function (if RetTy is not VoidTy). The second element is the + /// outgoing token chain. It calls LowerCall to do the actual lowering. + std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const; + + /// This hook must be implemented to lower calls into the specified + /// DAG. The outgoing arguments to the call are described by the Outs array, + /// and the values to be returned by the call are described by the Ins + /// array. The implementation should fill in the InVals array with legal-type + /// return values from the call, and return the resulting token chain value. + virtual SDValue + LowerCall(CallLoweringInfo &/*CLI*/, + SmallVectorImpl<SDValue> &/*InVals*/) const { + llvm_unreachable("Not Implemented"); + } + + /// Target-specific cleanup for formal ByVal parameters. + virtual void HandleByVal(CCState *, unsigned &, unsigned) const {} + + /// This hook should be implemented to check whether the return values + /// described by the Outs array can fit into the return registers. If false + /// is returned, an sret-demotion is performed. + virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, + MachineFunction &/*MF*/, bool /*isVarArg*/, + const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, + LLVMContext &/*Context*/) const + { + // Return true by default to get preexisting behavior. + return true; + } + + /// This hook must be implemented to lower outgoing return values, described + /// by the Outs array, into the specified DAG. The implementation should + /// return the resulting token chain value. + virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, + bool /*isVarArg*/, + const SmallVectorImpl<ISD::OutputArg> & /*Outs*/, + const SmallVectorImpl<SDValue> & /*OutVals*/, + const SDLoc & /*dl*/, + SelectionDAG & /*DAG*/) const { + llvm_unreachable("Not Implemented"); + } + + /// Return true if result of the specified node is used by a return node + /// only. It also compute and return the input chain for the tail call. + /// + /// This is used to determine whether it is possible to codegen a libcall as + /// tail call at legalization time. + virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const { + return false; + } + + /// Return true if the target may be able emit the call instruction as a tail + /// call. This is used by optimization passes to determine if it's profitable + /// to duplicate return instructions to enable tailcall optimization. + virtual bool mayBeEmittedAsTailCall(const CallInst *) const { + return false; + } + + /// Return the builtin name for the __builtin___clear_cache intrinsic + /// Default is to invoke the clear cache library call + virtual const char * getClearCacheBuiltinName() const { + return "__clear_cache"; + } + + /// Return the register ID of the name passed in. Used by named register + /// global variables extension. There is no target-independent behaviour + /// so the default action is to bail. + virtual unsigned getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + report_fatal_error("Named registers not implemented for this target"); + } + + /// Return the type that should be used to zero or sign extend a + /// zeroext/signext integer return value. FIXME: Some C calling conventions + /// require the return type to be promoted, but this is not true all the time, + /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling + /// conventions. The frontend should handle this and include all of the + /// necessary information. + virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, + ISD::NodeType /*ExtendKind*/) const { + EVT MinVT = getRegisterType(Context, MVT::i32); + return VT.bitsLT(MinVT) ? MinVT : VT; + } + + /// For some targets, an LLVM struct type must be broken down into multiple + /// simple types, but the calling convention specifies that the entire struct + /// must be passed in a block of consecutive registers. + virtual bool + functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, + bool isVarArg) const { + return false; + } + + /// For most targets, an LLVM type must be broken down into multiple + /// smaller types. Usually the halves are ordered according to the endianness + /// but for some platform that would break. So this method will default to + /// matching the endianness but can be overridden. + virtual bool + shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const { + return DL.isLittleEndian(); + } + + /// Returns a 0 terminated array of registers that can be safely used as + /// scratch registers. + virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const { + return nullptr; + } + + /// This callback is used to prepare for a volatile or atomic load. + /// It takes a chain node as input and returns the chain for the load itself. + /// + /// Having a callback like this is necessary for targets like SystemZ, + /// which allows a CPU to reuse the result of a previous load indefinitely, + /// even if a cache-coherent store is performed by another CPU. The default + /// implementation does nothing. + virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, + SelectionDAG &DAG) const { + return Chain; + } + + /// This callback is used to inspect load/store instructions and add + /// target-specific MachineMemOperand flags to them. The default + /// implementation does nothing. + virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const { + return MachineMemOperand::MONone; + } + + /// This callback is invoked by the type legalizer to legalize nodes with an + /// illegal operand type but legal result types. It replaces the + /// LowerOperation callback in the type Legalizer. The reason we can not do + /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to + /// use this callback. + /// + /// TODO: Consider merging with ReplaceNodeResults. + /// + /// The target places new result values for the node in Results (their number + /// and types must exactly match those of the original return values of + /// the node), or leaves Results empty, which indicates that the node is not + /// to be custom lowered after all. + /// The default implementation calls LowerOperation. + virtual void LowerOperationWrapper(SDNode *N, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) const; + + /// This callback is invoked for operations that are unsupported by the + /// target, which are registered to use 'custom' lowering, and whose defined + /// values are all legal. If the target has no operations that require custom + /// lowering, it need not implement this. The default implementation of this + /// aborts. + virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; + + /// This callback is invoked when a node result type is illegal for the + /// target, and the operation was registered to use 'custom' lowering for that + /// result type. The target places new result values for the node in Results + /// (their number and types must exactly match those of the original return + /// values of the node), or leaves Results empty, which indicates that the + /// node is not to be custom lowered after all. + /// + /// If the target has no operations that require custom lowering, it need not + /// implement this. The default implementation aborts. + virtual void ReplaceNodeResults(SDNode * /*N*/, + SmallVectorImpl<SDValue> &/*Results*/, + SelectionDAG &/*DAG*/) const { + llvm_unreachable("ReplaceNodeResults not implemented for this target!"); + } + + /// This method returns the name of a target specific DAG node. + virtual const char *getTargetNodeName(unsigned Opcode) const; + + /// This method returns a target specific FastISel object, or null if the + /// target does not support "fast" ISel. + virtual FastISel *createFastISel(FunctionLoweringInfo &, + const TargetLibraryInfo *) const { + return nullptr; + } + + bool verifyReturnAddressArgumentIsConstant(SDValue Op, + SelectionDAG &DAG) const; + + //===--------------------------------------------------------------------===// + // Inline Asm Support hooks + // + + /// This hook allows the target to expand an inline asm call to be explicit + /// llvm code if it wants to. This is useful for turning simple inline asms + /// into LLVM intrinsics, which gives the compiler more information about the + /// behavior of the code. + virtual bool ExpandInlineAsm(CallInst *) const { + return false; + } + + enum ConstraintType { + C_Register, // Constraint represents specific register(s). + C_RegisterClass, // Constraint represents any of register(s) in class. + C_Memory, // Memory constraint. + C_Immediate, // Requires an immediate. + C_Other, // Something else. + C_Unknown // Unsupported constraint. + }; + + enum ConstraintWeight { + // Generic weights. + CW_Invalid = -1, // No match. + CW_Okay = 0, // Acceptable. + CW_Good = 1, // Good weight. + CW_Better = 2, // Better weight. + CW_Best = 3, // Best weight. + + // Well-known weights. + CW_SpecificReg = CW_Okay, // Specific register operands. + CW_Register = CW_Good, // Register operands. + CW_Memory = CW_Better, // Memory operands. + CW_Constant = CW_Best, // Constant operand. + CW_Default = CW_Okay // Default or don't know type. + }; + + /// This contains information for each constraint that we are lowering. + struct AsmOperandInfo : public InlineAsm::ConstraintInfo { + /// This contains the actual string for the code, like "m". TargetLowering + /// picks the 'best' code from ConstraintInfo::Codes that most closely + /// matches the operand. + std::string ConstraintCode; + + /// Information about the constraint code, e.g. Register, RegisterClass, + /// Memory, Other, Unknown. + TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown; + + /// If this is the result output operand or a clobber, this is null, + /// otherwise it is the incoming operand to the CallInst. This gets + /// modified as the asm is processed. + Value *CallOperandVal = nullptr; + + /// The ValueType for the operand value. + MVT ConstraintVT = MVT::Other; + + /// Copy constructor for copying from a ConstraintInfo. + AsmOperandInfo(InlineAsm::ConstraintInfo Info) + : InlineAsm::ConstraintInfo(std::move(Info)) {} + + /// Return true of this is an input operand that is a matching constraint + /// like "4". + bool isMatchingInputConstraint() const; + + /// If this is an input matching constraint, this method returns the output + /// operand it matches. + unsigned getMatchedOperand() const; + }; + + using AsmOperandInfoVector = std::vector<AsmOperandInfo>; + + /// Split up the constraint string from the inline assembly value into the + /// specific constraints and their prefixes, and also tie in the associated + /// operand values. If this returns an empty vector, and if the constraint + /// string itself isn't empty, there was an error parsing. + virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, + const TargetRegisterInfo *TRI, + ImmutableCallSite CS) const; + + /// Examine constraint type and operand type and determine a weight value. + /// The operand object must already have been set up with the operand type. + virtual ConstraintWeight getMultipleConstraintMatchWeight( + AsmOperandInfo &info, int maIndex) const; + + /// Examine constraint string and operand type and determine a weight value. + /// The operand object must already have been set up with the operand type. + virtual ConstraintWeight getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const; + + /// Determines the constraint code and constraint type to use for the specific + /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. + /// If the actual operand being passed in is available, it can be passed in as + /// Op, otherwise an empty SDValue can be passed. + virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, + SDValue Op, + SelectionDAG *DAG = nullptr) const; + + /// Given a constraint, return the type of constraint it is for this target. + virtual ConstraintType getConstraintType(StringRef Constraint) const; + + /// Given a physical register constraint (e.g. {edx}), return the register + /// number and the register class for the register. + /// + /// Given a register class constraint, like 'r', if this corresponds directly + /// to an LLVM register class, return a register of 0 and the register class + /// pointer. + /// + /// This should only be used for C_Register constraints. On error, this + /// returns a register number of 0 and a null register class pointer. + virtual std::pair<unsigned, const TargetRegisterClass *> + getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, MVT VT) const; + + virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const { + if (ConstraintCode == "i") + return InlineAsm::Constraint_i; + else if (ConstraintCode == "m") + return InlineAsm::Constraint_m; + return InlineAsm::Constraint_Unknown; + } + + /// Try to replace an X constraint, which matches anything, with another that + /// has more specific requirements based on the type of the corresponding + /// operand. This returns null if there is no replacement to make. + virtual const char *LowerXConstraint(EVT ConstraintVT) const; + + /// Lower the specified operand into the Ops vector. If it is invalid, don't + /// add anything to Ops. + virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const; + + // Lower custom output constraints. If invalid, return SDValue(). + virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, + SDLoc DL, + const AsmOperandInfo &OpInfo, + SelectionDAG &DAG) const; + + //===--------------------------------------------------------------------===// + // Div utility functions + // + SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const; + SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, + SmallVectorImpl<SDNode *> &Created) const; + + /// Targets may override this function to provide custom SDIV lowering for + /// power-of-2 denominators. If the target returns an empty SDValue, LLVM + /// assumes SDIV is expensive and replaces it with a series of other integer + /// operations. + virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, + SelectionDAG &DAG, + SmallVectorImpl<SDNode *> &Created) const; + + /// Indicate whether this target prefers to combine FDIVs with the same + /// divisor. If the transform should never be done, return zero. If the + /// transform should be done, return the minimum number of divisor uses + /// that must exist. + virtual unsigned combineRepeatedFPDivisors() const { + return 0; + } + + /// Hooks for building estimates in place of slower divisions and square + /// roots. + + /// Return either a square root or its reciprocal estimate value for the input + /// operand. + /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or + /// 'Enabled' as set by a potential default override attribute. + /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson + /// refinement iterations required to generate a sufficient (though not + /// necessarily IEEE-754 compliant) estimate is returned in that parameter. + /// The boolean UseOneConstNR output is used to select a Newton-Raphson + /// algorithm implementation that uses either one or two constants. + /// The boolean Reciprocal is used to select whether the estimate is for the + /// square root of the input operand or the reciprocal of its square root. + /// A target may choose to implement its own refinement within this function. + /// If that's true, then return '0' as the number of RefinementSteps to avoid + /// any further refinement of the estimate. + /// An empty SDValue return means no estimate sequence can be created. + virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, + int Enabled, int &RefinementSteps, + bool &UseOneConstNR, bool Reciprocal) const { + return SDValue(); + } + + /// Return a reciprocal estimate value for the input operand. + /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or + /// 'Enabled' as set by a potential default override attribute. + /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson + /// refinement iterations required to generate a sufficient (though not + /// necessarily IEEE-754 compliant) estimate is returned in that parameter. + /// A target may choose to implement its own refinement within this function. + /// If that's true, then return '0' as the number of RefinementSteps to avoid + /// any further refinement of the estimate. + /// An empty SDValue return means no estimate sequence can be created. + virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, + int Enabled, int &RefinementSteps) const { + return SDValue(); + } + + //===--------------------------------------------------------------------===// + // Legalization utility functions + // + + /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, + /// respectively, each computing an n/2-bit part of the result. + /// \param Result A vector that will be filled with the parts of the result + /// in little-endian order. + /// \param LL Low bits of the LHS of the MUL. You can use this parameter + /// if you want to control how low bits are extracted from the LHS. + /// \param LH High bits of the LHS of the MUL. See LL for meaning. + /// \param RL Low bits of the RHS of the MUL. See LL for meaning + /// \param RH High bits of the RHS of the MUL. See LL for meaning. + /// \returns true if the node has been expanded, false if it has not + bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS, + SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT, + SelectionDAG &DAG, MulExpansionKind Kind, + SDValue LL = SDValue(), SDValue LH = SDValue(), + SDValue RL = SDValue(), SDValue RH = SDValue()) const; + + /// Expand a MUL into two nodes. One that computes the high bits of + /// the result and one that computes the low bits. + /// \param HiLoVT The value type to use for the Lo and Hi nodes. + /// \param LL Low bits of the LHS of the MUL. You can use this parameter + /// if you want to control how low bits are extracted from the LHS. + /// \param LH High bits of the LHS of the MUL. See LL for meaning. + /// \param RL Low bits of the RHS of the MUL. See LL for meaning + /// \param RH High bits of the RHS of the MUL. See LL for meaning. + /// \returns true if the node has been expanded. false if it has not + bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, + SelectionDAG &DAG, MulExpansionKind Kind, + SDValue LL = SDValue(), SDValue LH = SDValue(), + SDValue RL = SDValue(), SDValue RH = SDValue()) const; + + /// Expand funnel shift. + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand rotations. + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandROT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand float(f32) to SINT(i64) conversion + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand float to UINT conversion + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand UINT(i64) to double(f64) conversion + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs. + SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const; + + /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes, + /// vector nodes can only succeed if all operations are legal/custom. + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes, + /// vector nodes can only succeed if all operations are legal/custom. + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes, + /// vector nodes can only succeed if all operations are legal/custom. + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Expand ABS nodes. Expands vector/scalar ABS nodes, + /// vector nodes can only succeed if all operations are legal/custom. + /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size)) + /// \param N Node to expand + /// \param Result output after conversion + /// \returns True, if the expansion was successful, false otherwise + bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; + + /// Turn load of vector type into a load of the individual elements. + /// \param LD load to expand + /// \returns MERGE_VALUEs of the scalar loads with their chains. + SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const; + + // Turn a store of a vector type into stores of the individual elements. + /// \param ST Store with a vector value type + /// \returns MERGE_VALUs of the individual store chains. + SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const; + + /// Expands an unaligned load to 2 half-size loads for an integer, and + /// possibly more for vectors. + std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD, + SelectionDAG &DAG) const; + + /// Expands an unaligned store to 2 half-size stores for integer values, and + /// possibly more for vectors. + SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const; + + /// Increments memory address \p Addr according to the type of the value + /// \p DataVT that should be stored. If the data is stored in compressed + /// form, the memory address should be incremented according to the number of + /// the stored elements. This number is equal to the number of '1's bits + /// in the \p Mask. + /// \p DataVT is a vector type. \p Mask is a vector value. + /// \p DataVT and \p Mask have the same number of vector elements. + SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, + EVT DataVT, SelectionDAG &DAG, + bool IsCompressedMemory) const; + + /// Get a pointer to vector element \p Idx located in memory for a vector of + /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of + /// bounds the returned pointer is unspecified, but will be within the vector + /// bounds. + SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, + SDValue Index) const; + + /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This + /// method accepts integers as its arguments. + SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const; + + /// Method for building the DAG expansion of ISD::SMULFIX. This method accepts + /// integers as its arguments. + SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const; + + /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion + /// always suceeds and populates the Result and Overflow arguments. + void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, + SelectionDAG &DAG) const; + + /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion + /// always suceeds and populates the Result and Overflow arguments. + void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, + SelectionDAG &DAG) const; + + /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether + /// expansion was successful and populates the Result and Overflow arguments. + bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, + SelectionDAG &DAG) const; + + /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified, + /// only the first Count elements of the vector are used. + SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const; + + //===--------------------------------------------------------------------===// + // Instruction Emitting Hooks + // + + /// This method should be implemented by targets that mark instructions with + /// the 'usesCustomInserter' flag. These instructions are special in various + /// ways, which require special support to insert. The specified MachineInstr + /// is created but not inserted into any basic blocks, and this method is + /// called to expand it into a sequence of instructions, potentially also + /// creating new basic blocks and control flow. + /// As long as the returned basic block is different (i.e., we created a new + /// one), the custom inserter is free to modify the rest of \p MBB. + virtual MachineBasicBlock * + EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; + + /// This method should be implemented by targets that mark instructions with + /// the 'hasPostISelHook' flag. These instructions must be adjusted after + /// instruction selection by target hooks. e.g. To fill in optional defs for + /// ARM 's' setting instructions. + virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, + SDNode *Node) const; + + /// If this function returns true, SelectionDAGBuilder emits a + /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector. + virtual bool useLoadStackGuardNode() const { + return false; + } + + virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, + const SDLoc &DL) const { + llvm_unreachable("not implemented for this target"); + } + + /// Lower TLS global address SDNode for target independent emulated TLS model. + virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, + SelectionDAG &DAG) const; + + /// Expands target specific indirect branch for the case of JumpTable + /// expanasion. + virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr, + SelectionDAG &DAG) const { + return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr); + } + + // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits))) + // If we're comparing for equality to zero and isCtlzFast is true, expose the + // fact that this can be implemented as a ctlz/srl pair, so that the dag + // combiner can fold the new nodes. + SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const; + +private: + SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, + const SDLoc &DL, DAGCombinerInfo &DCI) const; + SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, + const SDLoc &DL, DAGCombinerInfo &DCI) const; + + SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0, + SDValue N1, ISD::CondCode Cond, + DAGCombinerInfo &DCI, + const SDLoc &DL) const; + + SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, + SDValue CompTargetNode, ISD::CondCode Cond, + DAGCombinerInfo &DCI, const SDLoc &DL, + SmallVectorImpl<SDNode *> &Created) const; + SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode, + ISD::CondCode Cond, DAGCombinerInfo &DCI, + const SDLoc &DL) const; +}; + +/// Given an LLVM IR type and return type attributes, compute the return value +/// EVTs and flags, and optionally also the offsets, if the return value is +/// being lowered to memory. +void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, + SmallVectorImpl<ISD::OutputArg> &Outs, + const TargetLowering &TLI, const DataLayout &DL); + +} // end namespace llvm + +#endif // LLVM_CODEGEN_TARGETLOWERING_H |