diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp | 4009 | 
1 files changed, 4009 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp b/contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp new file mode 100644 index 000000000000..0038c9fb9ce4 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/DependenceAnalysis.cpp @@ -0,0 +1,4009 @@ +//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// DependenceAnalysis is an LLVM pass that analyses dependences between memory +// accesses. Currently, it is an (incomplete) implementation of the approach +// described in +// +//            Practical Dependence Testing +//            Goff, Kennedy, Tseng +//            PLDI 1991 +// +// There's a single entry point that analyzes the dependence between a pair +// of memory references in a function, returning either NULL, for no dependence, +// or a more-or-less detailed description of the dependence between them. +// +// Currently, the implementation cannot propagate constraints between +// coupled RDIV subscripts and lacks a multi-subscript MIV test. +// Both of these are conservative weaknesses; +// that is, not a source of correctness problems. +// +// Since Clang linearizes some array subscripts, the dependence +// analysis is using SCEV->delinearize to recover the representation of multiple +// subscripts, and thus avoid the more expensive and less precise MIV tests. The +// delinearization is controlled by the flag -da-delinearize. +// +// We should pay some careful attention to the possibility of integer overflow +// in the implementation of the various tests. This could happen with Add, +// Subtract, or Multiply, with both APInt's and SCEV's. +// +// Some non-linear subscript pairs can be handled by the GCD test +// (and perhaps other tests). +// Should explore how often these things occur. +// +// Finally, it seems like certain test cases expose weaknesses in the SCEV +// simplification, especially in the handling of sign and zero extensions. +// It could be useful to spend time exploring these. +// +// Please note that this is work in progress and the interface is subject to +// change. +// +//===----------------------------------------------------------------------===// +//                                                                            // +//                   In memory of Ken Kennedy, 1945 - 2007                    // +//                                                                            // +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "da" + +//===----------------------------------------------------------------------===// +// statistics + +STATISTIC(TotalArrayPairs, "Array pairs tested"); +STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); +STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); +STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); +STATISTIC(ZIVapplications, "ZIV applications"); +STATISTIC(ZIVindependence, "ZIV independence"); +STATISTIC(StrongSIVapplications, "Strong SIV applications"); +STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); +STATISTIC(StrongSIVindependence, "Strong SIV independence"); +STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); +STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); +STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); +STATISTIC(ExactSIVapplications, "Exact SIV applications"); +STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); +STATISTIC(ExactSIVindependence, "Exact SIV independence"); +STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); +STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); +STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); +STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); +STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); +STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); +STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); +STATISTIC(DeltaApplications, "Delta applications"); +STATISTIC(DeltaSuccesses, "Delta successes"); +STATISTIC(DeltaIndependence, "Delta independence"); +STATISTIC(DeltaPropagations, "Delta propagations"); +STATISTIC(GCDapplications, "GCD applications"); +STATISTIC(GCDsuccesses, "GCD successes"); +STATISTIC(GCDindependence, "GCD independence"); +STATISTIC(BanerjeeApplications, "Banerjee applications"); +STATISTIC(BanerjeeIndependence, "Banerjee independence"); +STATISTIC(BanerjeeSuccesses, "Banerjee successes"); + +static cl::opt<bool> +    Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore, +                cl::desc("Try to delinearize array references.")); +static cl::opt<bool> DisableDelinearizationChecks( +    "da-disable-delinearization-checks", cl::init(false), cl::Hidden, +    cl::ZeroOrMore, +    cl::desc( +        "Disable checks that try to statically verify validity of " +        "delinearized subscripts. Enabling this option may result in incorrect " +        "dependence vectors for languages that allow the subscript of one " +        "dimension to underflow or overflow into another dimension.")); + +//===----------------------------------------------------------------------===// +// basics + +DependenceAnalysis::Result +DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { +  auto &AA = FAM.getResult<AAManager>(F); +  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); +  auto &LI = FAM.getResult<LoopAnalysis>(F); +  return DependenceInfo(&F, &AA, &SE, &LI); +} + +AnalysisKey DependenceAnalysis::Key; + +INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da", +                      "Dependence Analysis", true, true) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis", +                    true, true) + +char DependenceAnalysisWrapperPass::ID = 0; + +FunctionPass *llvm::createDependenceAnalysisWrapperPass() { +  return new DependenceAnalysisWrapperPass(); +} + +bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { +  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); +  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +  info.reset(new DependenceInfo(&F, &AA, &SE, &LI)); +  return false; +} + +DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } + +void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } + +void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequiredTransitive<AAResultsWrapperPass>(); +  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); +  AU.addRequiredTransitive<LoopInfoWrapperPass>(); +} + + +// Used to test the dependence analyzer. +// Looks through the function, noting loads and stores. +// Calls depends() on every possible pair and prints out the result. +// Ignores all other instructions. +static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) { +  auto *F = DA->getFunction(); +  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; +       ++SrcI) { +    if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) { +      for (inst_iterator DstI = SrcI, DstE = inst_end(F); +           DstI != DstE; ++DstI) { +        if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) { +          OS << "da analyze - "; +          if (auto D = DA->depends(&*SrcI, &*DstI, true)) { +            D->dump(OS); +            for (unsigned Level = 1; Level <= D->getLevels(); Level++) { +              if (D->isSplitable(Level)) { +                OS << "da analyze - split level = " << Level; +                OS << ", iteration = " << *DA->getSplitIteration(*D, Level); +                OS << "!\n"; +              } +            } +          } +          else +            OS << "none!\n"; +        } +      } +    } +  } +} + +void DependenceAnalysisWrapperPass::print(raw_ostream &OS, +                                          const Module *) const { +  dumpExampleDependence(OS, info.get()); +} + +PreservedAnalyses +DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { +  OS << "'Dependence Analysis' for function '" << F.getName() << "':\n"; +  dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F)); +  return PreservedAnalyses::all(); +} + +//===----------------------------------------------------------------------===// +// Dependence methods + +// Returns true if this is an input dependence. +bool Dependence::isInput() const { +  return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); +} + + +// Returns true if this is an output dependence. +bool Dependence::isOutput() const { +  return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); +} + + +// Returns true if this is an flow (aka true)  dependence. +bool Dependence::isFlow() const { +  return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); +} + + +// Returns true if this is an anti dependence. +bool Dependence::isAnti() const { +  return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); +} + + +// Returns true if a particular level is scalar; that is, +// if no subscript in the source or destination mention the induction +// variable associated with the loop at this level. +// Leave this out of line, so it will serve as a virtual method anchor +bool Dependence::isScalar(unsigned level) const { +  return false; +} + + +//===----------------------------------------------------------------------===// +// FullDependence methods + +FullDependence::FullDependence(Instruction *Source, Instruction *Destination, +                               bool PossiblyLoopIndependent, +                               unsigned CommonLevels) +    : Dependence(Source, Destination), Levels(CommonLevels), +      LoopIndependent(PossiblyLoopIndependent) { +  Consistent = true; +  if (CommonLevels) +    DV = std::make_unique<DVEntry[]>(CommonLevels); +} + +// The rest are simple getters that hide the implementation. + +// getDirection - Returns the direction associated with a particular level. +unsigned FullDependence::getDirection(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].Direction; +} + + +// Returns the distance (or NULL) associated with a particular level. +const SCEV *FullDependence::getDistance(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].Distance; +} + + +// Returns true if a particular level is scalar; that is, +// if no subscript in the source or destination mention the induction +// variable associated with the loop at this level. +bool FullDependence::isScalar(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].Scalar; +} + + +// Returns true if peeling the first iteration from this loop +// will break this dependence. +bool FullDependence::isPeelFirst(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].PeelFirst; +} + + +// Returns true if peeling the last iteration from this loop +// will break this dependence. +bool FullDependence::isPeelLast(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].PeelLast; +} + + +// Returns true if splitting this loop will break the dependence. +bool FullDependence::isSplitable(unsigned Level) const { +  assert(0 < Level && Level <= Levels && "Level out of range"); +  return DV[Level - 1].Splitable; +} + + +//===----------------------------------------------------------------------===// +// DependenceInfo::Constraint methods + +// If constraint is a point <X, Y>, returns X. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getX() const { +  assert(Kind == Point && "Kind should be Point"); +  return A; +} + + +// If constraint is a point <X, Y>, returns Y. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getY() const { +  assert(Kind == Point && "Kind should be Point"); +  return B; +} + + +// If constraint is a line AX + BY = C, returns A. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getA() const { +  assert((Kind == Line || Kind == Distance) && +         "Kind should be Line (or Distance)"); +  return A; +} + + +// If constraint is a line AX + BY = C, returns B. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getB() const { +  assert((Kind == Line || Kind == Distance) && +         "Kind should be Line (or Distance)"); +  return B; +} + + +// If constraint is a line AX + BY = C, returns C. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getC() const { +  assert((Kind == Line || Kind == Distance) && +         "Kind should be Line (or Distance)"); +  return C; +} + + +// If constraint is a distance, returns D. +// Otherwise assert. +const SCEV *DependenceInfo::Constraint::getD() const { +  assert(Kind == Distance && "Kind should be Distance"); +  return SE->getNegativeSCEV(C); +} + + +// Returns the loop associated with this constraint. +const Loop *DependenceInfo::Constraint::getAssociatedLoop() const { +  assert((Kind == Distance || Kind == Line || Kind == Point) && +         "Kind should be Distance, Line, or Point"); +  return AssociatedLoop; +} + +void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y, +                                          const Loop *CurLoop) { +  Kind = Point; +  A = X; +  B = Y; +  AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB, +                                         const SCEV *CC, const Loop *CurLoop) { +  Kind = Line; +  A = AA; +  B = BB; +  C = CC; +  AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setDistance(const SCEV *D, +                                             const Loop *CurLoop) { +  Kind = Distance; +  A = SE->getOne(D->getType()); +  B = SE->getNegativeSCEV(A); +  C = SE->getNegativeSCEV(D); +  AssociatedLoop = CurLoop; +} + +void DependenceInfo::Constraint::setEmpty() { Kind = Empty; } + +void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) { +  SE = NewSE; +  Kind = Any; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +// For debugging purposes. Dumps the constraint out to OS. +LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const { +  if (isEmpty()) +    OS << " Empty\n"; +  else if (isAny()) +    OS << " Any\n"; +  else if (isPoint()) +    OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; +  else if (isDistance()) +    OS << " Distance is " << *getD() << +      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; +  else if (isLine()) +    OS << " Line is " << *getA() << "*X + " << +      *getB() << "*Y = " << *getC() << "\n"; +  else +    llvm_unreachable("unknown constraint type in Constraint::dump"); +} +#endif + + +// Updates X with the intersection +// of the Constraints X and Y. Returns true if X has changed. +// Corresponds to Figure 4 from the paper +// +//            Practical Dependence Testing +//            Goff, Kennedy, Tseng +//            PLDI 1991 +bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) { +  ++DeltaApplications; +  LLVM_DEBUG(dbgs() << "\tintersect constraints\n"); +  LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs())); +  LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs())); +  assert(!Y->isPoint() && "Y must not be a Point"); +  if (X->isAny()) { +    if (Y->isAny()) +      return false; +    *X = *Y; +    return true; +  } +  if (X->isEmpty()) +    return false; +  if (Y->isEmpty()) { +    X->setEmpty(); +    return true; +  } + +  if (X->isDistance() && Y->isDistance()) { +    LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n"); +    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) +      return false; +    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { +      X->setEmpty(); +      ++DeltaSuccesses; +      return true; +    } +    // Hmmm, interesting situation. +    // I guess if either is constant, keep it and ignore the other. +    if (isa<SCEVConstant>(Y->getD())) { +      *X = *Y; +      return true; +    } +    return false; +  } + +  // At this point, the pseudo-code in Figure 4 of the paper +  // checks if (X->isPoint() && Y->isPoint()). +  // This case can't occur in our implementation, +  // since a Point can only arise as the result of intersecting +  // two Line constraints, and the right-hand value, Y, is never +  // the result of an intersection. +  assert(!(X->isPoint() && Y->isPoint()) && +         "We shouldn't ever see X->isPoint() && Y->isPoint()"); + +  if (X->isLine() && Y->isLine()) { +    LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n"); +    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); +    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); +    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { +      // slopes are equal, so lines are parallel +      LLVM_DEBUG(dbgs() << "\t\tsame slope\n"); +      Prod1 = SE->getMulExpr(X->getC(), Y->getB()); +      Prod2 = SE->getMulExpr(X->getB(), Y->getC()); +      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) +        return false; +      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { +        X->setEmpty(); +        ++DeltaSuccesses; +        return true; +      } +      return false; +    } +    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { +      // slopes differ, so lines intersect +      LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n"); +      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); +      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); +      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); +      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); +      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); +      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); +      const SCEVConstant *C1A2_C2A1 = +        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); +      const SCEVConstant *C1B2_C2B1 = +        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); +      const SCEVConstant *A1B2_A2B1 = +        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); +      const SCEVConstant *A2B1_A1B2 = +        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); +      if (!C1B2_C2B1 || !C1A2_C2A1 || +          !A1B2_A2B1 || !A2B1_A1B2) +        return false; +      APInt Xtop = C1B2_C2B1->getAPInt(); +      APInt Xbot = A1B2_A2B1->getAPInt(); +      APInt Ytop = C1A2_C2A1->getAPInt(); +      APInt Ybot = A2B1_A1B2->getAPInt(); +      LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); +      LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); +      LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); +      LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); +      APInt Xq = Xtop; // these need to be initialized, even +      APInt Xr = Xtop; // though they're just going to be overwritten +      APInt::sdivrem(Xtop, Xbot, Xq, Xr); +      APInt Yq = Ytop; +      APInt Yr = Ytop; +      APInt::sdivrem(Ytop, Ybot, Yq, Yr); +      if (Xr != 0 || Yr != 0) { +        X->setEmpty(); +        ++DeltaSuccesses; +        return true; +      } +      LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); +      if (Xq.slt(0) || Yq.slt(0)) { +        X->setEmpty(); +        ++DeltaSuccesses; +        return true; +      } +      if (const SCEVConstant *CUB = +          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { +        const APInt &UpperBound = CUB->getAPInt(); +        LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); +        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { +          X->setEmpty(); +          ++DeltaSuccesses; +          return true; +        } +      } +      X->setPoint(SE->getConstant(Xq), +                  SE->getConstant(Yq), +                  X->getAssociatedLoop()); +      ++DeltaSuccesses; +      return true; +    } +    return false; +  } + +  // if (X->isLine() && Y->isPoint()) This case can't occur. +  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); + +  if (X->isPoint() && Y->isLine()) { +    LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n"); +    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); +    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); +    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); +    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) +      return false; +    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { +      X->setEmpty(); +      ++DeltaSuccesses; +      return true; +    } +    return false; +  } + +  llvm_unreachable("shouldn't reach the end of Constraint intersection"); +  return false; +} + + +//===----------------------------------------------------------------------===// +// DependenceInfo methods + +// For debugging purposes. Dumps a dependence to OS. +void Dependence::dump(raw_ostream &OS) const { +  bool Splitable = false; +  if (isConfused()) +    OS << "confused"; +  else { +    if (isConsistent()) +      OS << "consistent "; +    if (isFlow()) +      OS << "flow"; +    else if (isOutput()) +      OS << "output"; +    else if (isAnti()) +      OS << "anti"; +    else if (isInput()) +      OS << "input"; +    unsigned Levels = getLevels(); +    OS << " ["; +    for (unsigned II = 1; II <= Levels; ++II) { +      if (isSplitable(II)) +        Splitable = true; +      if (isPeelFirst(II)) +        OS << 'p'; +      const SCEV *Distance = getDistance(II); +      if (Distance) +        OS << *Distance; +      else if (isScalar(II)) +        OS << "S"; +      else { +        unsigned Direction = getDirection(II); +        if (Direction == DVEntry::ALL) +          OS << "*"; +        else { +          if (Direction & DVEntry::LT) +            OS << "<"; +          if (Direction & DVEntry::EQ) +            OS << "="; +          if (Direction & DVEntry::GT) +            OS << ">"; +        } +      } +      if (isPeelLast(II)) +        OS << 'p'; +      if (II < Levels) +        OS << " "; +    } +    if (isLoopIndependent()) +      OS << "|<"; +    OS << "]"; +    if (Splitable) +      OS << " splitable"; +  } +  OS << "!\n"; +} + +// Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their +// underlaying objects. If LocA and LocB are known to not alias (for any reason: +// tbaa, non-overlapping regions etc), then it is known there is no dependecy. +// Otherwise the underlying objects are checked to see if they point to +// different identifiable objects. +static AliasResult underlyingObjectsAlias(AliasAnalysis *AA, +                                          const DataLayout &DL, +                                          const MemoryLocation &LocA, +                                          const MemoryLocation &LocB) { +  // Check the original locations (minus size) for noalias, which can happen for +  // tbaa, incompatible underlying object locations, etc. +  MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags); +  MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags); +  if (AA->alias(LocAS, LocBS) == NoAlias) +    return NoAlias; + +  // Check the underlying objects are the same +  const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL); +  const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL); + +  // If the underlying objects are the same, they must alias +  if (AObj == BObj) +    return MustAlias; + +  // We may have hit the recursion limit for underlying objects, or have +  // underlying objects where we don't know they will alias. +  if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj)) +    return MayAlias; + +  // Otherwise we know the objects are different and both identified objects so +  // must not alias. +  return NoAlias; +} + + +// Returns true if the load or store can be analyzed. Atomic and volatile +// operations have properties which this analysis does not understand. +static +bool isLoadOrStore(const Instruction *I) { +  if (const LoadInst *LI = dyn_cast<LoadInst>(I)) +    return LI->isUnordered(); +  else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) +    return SI->isUnordered(); +  return false; +} + + +// Examines the loop nesting of the Src and Dst +// instructions and establishes their shared loops. Sets the variables +// CommonLevels, SrcLevels, and MaxLevels. +// The source and destination instructions needn't be contained in the same +// loop. The routine establishNestingLevels finds the level of most deeply +// nested loop that contains them both, CommonLevels. An instruction that's +// not contained in a loop is at level = 0. MaxLevels is equal to the level +// of the source plus the level of the destination, minus CommonLevels. +// This lets us allocate vectors MaxLevels in length, with room for every +// distinct loop referenced in both the source and destination subscripts. +// The variable SrcLevels is the nesting depth of the source instruction. +// It's used to help calculate distinct loops referenced by the destination. +// Here's the map from loops to levels: +//            0 - unused +//            1 - outermost common loop +//          ... - other common loops +// CommonLevels - innermost common loop +//          ... - loops containing Src but not Dst +//    SrcLevels - innermost loop containing Src but not Dst +//          ... - loops containing Dst but not Src +//    MaxLevels - innermost loops containing Dst but not Src +// Consider the follow code fragment: +//   for (a = ...) { +//     for (b = ...) { +//       for (c = ...) { +//         for (d = ...) { +//           A[] = ...; +//         } +//       } +//       for (e = ...) { +//         for (f = ...) { +//           for (g = ...) { +//             ... = A[]; +//           } +//         } +//       } +//     } +//   } +// If we're looking at the possibility of a dependence between the store +// to A (the Src) and the load from A (the Dst), we'll note that they +// have 2 loops in common, so CommonLevels will equal 2 and the direction +// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. +// A map from loop names to loop numbers would look like +//     a - 1 +//     b - 2 = CommonLevels +//     c - 3 +//     d - 4 = SrcLevels +//     e - 5 +//     f - 6 +//     g - 7 = MaxLevels +void DependenceInfo::establishNestingLevels(const Instruction *Src, +                                            const Instruction *Dst) { +  const BasicBlock *SrcBlock = Src->getParent(); +  const BasicBlock *DstBlock = Dst->getParent(); +  unsigned SrcLevel = LI->getLoopDepth(SrcBlock); +  unsigned DstLevel = LI->getLoopDepth(DstBlock); +  const Loop *SrcLoop = LI->getLoopFor(SrcBlock); +  const Loop *DstLoop = LI->getLoopFor(DstBlock); +  SrcLevels = SrcLevel; +  MaxLevels = SrcLevel + DstLevel; +  while (SrcLevel > DstLevel) { +    SrcLoop = SrcLoop->getParentLoop(); +    SrcLevel--; +  } +  while (DstLevel > SrcLevel) { +    DstLoop = DstLoop->getParentLoop(); +    DstLevel--; +  } +  while (SrcLoop != DstLoop) { +    SrcLoop = SrcLoop->getParentLoop(); +    DstLoop = DstLoop->getParentLoop(); +    SrcLevel--; +  } +  CommonLevels = SrcLevel; +  MaxLevels -= CommonLevels; +} + + +// Given one of the loops containing the source, return +// its level index in our numbering scheme. +unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { +  return SrcLoop->getLoopDepth(); +} + + +// Given one of the loops containing the destination, +// return its level index in our numbering scheme. +unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { +  unsigned D = DstLoop->getLoopDepth(); +  if (D > CommonLevels) +    return D - CommonLevels + SrcLevels; +  else +    return D; +} + + +// Returns true if Expression is loop invariant in LoopNest. +bool DependenceInfo::isLoopInvariant(const SCEV *Expression, +                                     const Loop *LoopNest) const { +  if (!LoopNest) +    return true; +  return SE->isLoopInvariant(Expression, LoopNest) && +    isLoopInvariant(Expression, LoopNest->getParentLoop()); +} + + + +// Finds the set of loops from the LoopNest that +// have a level <= CommonLevels and are referred to by the SCEV Expression. +void DependenceInfo::collectCommonLoops(const SCEV *Expression, +                                        const Loop *LoopNest, +                                        SmallBitVector &Loops) const { +  while (LoopNest) { +    unsigned Level = LoopNest->getLoopDepth(); +    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) +      Loops.set(Level); +    LoopNest = LoopNest->getParentLoop(); +  } +} + +void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { + +  unsigned widestWidthSeen = 0; +  Type *widestType; + +  // Go through each pair and find the widest bit to which we need +  // to extend all of them. +  for (Subscript *Pair : Pairs) { +    const SCEV *Src = Pair->Src; +    const SCEV *Dst = Pair->Dst; +    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); +    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); +    if (SrcTy == nullptr || DstTy == nullptr) { +      assert(SrcTy == DstTy && "This function only unify integer types and " +             "expect Src and Dst share the same type " +             "otherwise."); +      continue; +    } +    if (SrcTy->getBitWidth() > widestWidthSeen) { +      widestWidthSeen = SrcTy->getBitWidth(); +      widestType = SrcTy; +    } +    if (DstTy->getBitWidth() > widestWidthSeen) { +      widestWidthSeen = DstTy->getBitWidth(); +      widestType = DstTy; +    } +  } + + +  assert(widestWidthSeen > 0); + +  // Now extend each pair to the widest seen. +  for (Subscript *Pair : Pairs) { +    const SCEV *Src = Pair->Src; +    const SCEV *Dst = Pair->Dst; +    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); +    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); +    if (SrcTy == nullptr || DstTy == nullptr) { +      assert(SrcTy == DstTy && "This function only unify integer types and " +             "expect Src and Dst share the same type " +             "otherwise."); +      continue; +    } +    if (SrcTy->getBitWidth() < widestWidthSeen) +      // Sign-extend Src to widestType +      Pair->Src = SE->getSignExtendExpr(Src, widestType); +    if (DstTy->getBitWidth() < widestWidthSeen) { +      // Sign-extend Dst to widestType +      Pair->Dst = SE->getSignExtendExpr(Dst, widestType); +    } +  } +} + +// removeMatchingExtensions - Examines a subscript pair. +// If the source and destination are identically sign (or zero) +// extended, it strips off the extension in an effect to simplify +// the actual analysis. +void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { +  const SCEV *Src = Pair->Src; +  const SCEV *Dst = Pair->Dst; +  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || +      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { +    const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src); +    const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst); +    const SCEV *SrcCastOp = SrcCast->getOperand(); +    const SCEV *DstCastOp = DstCast->getOperand(); +    if (SrcCastOp->getType() == DstCastOp->getType()) { +      Pair->Src = SrcCastOp; +      Pair->Dst = DstCastOp; +    } +  } +} + + +// Examine the scev and return true iff it's linear. +// Collect any loops mentioned in the set of "Loops". +bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, +                                       SmallBitVector &Loops) { +  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src); +  if (!AddRec) +    return isLoopInvariant(Src, LoopNest); +  const SCEV *Start = AddRec->getStart(); +  const SCEV *Step = AddRec->getStepRecurrence(*SE); +  const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); +  if (!isa<SCEVCouldNotCompute>(UB)) { +    if (SE->getTypeSizeInBits(Start->getType()) < +        SE->getTypeSizeInBits(UB->getType())) { +      if (!AddRec->getNoWrapFlags()) +        return false; +    } +  } +  if (!isLoopInvariant(Step, LoopNest)) +    return false; +  Loops.set(mapSrcLoop(AddRec->getLoop())); +  return checkSrcSubscript(Start, LoopNest, Loops); +} + + + +// Examine the scev and return true iff it's linear. +// Collect any loops mentioned in the set of "Loops". +bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, +                                       SmallBitVector &Loops) { +  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst); +  if (!AddRec) +    return isLoopInvariant(Dst, LoopNest); +  const SCEV *Start = AddRec->getStart(); +  const SCEV *Step = AddRec->getStepRecurrence(*SE); +  const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); +  if (!isa<SCEVCouldNotCompute>(UB)) { +    if (SE->getTypeSizeInBits(Start->getType()) < +        SE->getTypeSizeInBits(UB->getType())) { +      if (!AddRec->getNoWrapFlags()) +        return false; +    } +  } +  if (!isLoopInvariant(Step, LoopNest)) +    return false; +  Loops.set(mapDstLoop(AddRec->getLoop())); +  return checkDstSubscript(Start, LoopNest, Loops); +} + + +// Examines the subscript pair (the Src and Dst SCEVs) +// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. +// Collects the associated loops in a set. +DependenceInfo::Subscript::ClassificationKind +DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, +                             const SCEV *Dst, const Loop *DstLoopNest, +                             SmallBitVector &Loops) { +  SmallBitVector SrcLoops(MaxLevels + 1); +  SmallBitVector DstLoops(MaxLevels + 1); +  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) +    return Subscript::NonLinear; +  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) +    return Subscript::NonLinear; +  Loops = SrcLoops; +  Loops |= DstLoops; +  unsigned N = Loops.count(); +  if (N == 0) +    return Subscript::ZIV; +  if (N == 1) +    return Subscript::SIV; +  if (N == 2 && (SrcLoops.count() == 0 || +                 DstLoops.count() == 0 || +                 (SrcLoops.count() == 1 && DstLoops.count() == 1))) +    return Subscript::RDIV; +  return Subscript::MIV; +} + + +// A wrapper around SCEV::isKnownPredicate. +// Looks for cases where we're interested in comparing for equality. +// If both X and Y have been identically sign or zero extended, +// it strips off the (confusing) extensions before invoking +// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package +// will be similarly updated. +// +// If SCEV::isKnownPredicate can't prove the predicate, +// we try simple subtraction, which seems to help in some cases +// involving symbolics. +bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X, +                                      const SCEV *Y) const { +  if (Pred == CmpInst::ICMP_EQ || +      Pred == CmpInst::ICMP_NE) { +    if ((isa<SCEVSignExtendExpr>(X) && +         isa<SCEVSignExtendExpr>(Y)) || +        (isa<SCEVZeroExtendExpr>(X) && +         isa<SCEVZeroExtendExpr>(Y))) { +      const SCEVCastExpr *CX = cast<SCEVCastExpr>(X); +      const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y); +      const SCEV *Xop = CX->getOperand(); +      const SCEV *Yop = CY->getOperand(); +      if (Xop->getType() == Yop->getType()) { +        X = Xop; +        Y = Yop; +      } +    } +  } +  if (SE->isKnownPredicate(Pred, X, Y)) +    return true; +  // If SE->isKnownPredicate can't prove the condition, +  // we try the brute-force approach of subtracting +  // and testing the difference. +  // By testing with SE->isKnownPredicate first, we avoid +  // the possibility of overflow when the arguments are constants. +  const SCEV *Delta = SE->getMinusSCEV(X, Y); +  switch (Pred) { +  case CmpInst::ICMP_EQ: +    return Delta->isZero(); +  case CmpInst::ICMP_NE: +    return SE->isKnownNonZero(Delta); +  case CmpInst::ICMP_SGE: +    return SE->isKnownNonNegative(Delta); +  case CmpInst::ICMP_SLE: +    return SE->isKnownNonPositive(Delta); +  case CmpInst::ICMP_SGT: +    return SE->isKnownPositive(Delta); +  case CmpInst::ICMP_SLT: +    return SE->isKnownNegative(Delta); +  default: +    llvm_unreachable("unexpected predicate in isKnownPredicate"); +  } +} + +/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1)) +/// with some extra checking if S is an AddRec and we can prove less-than using +/// the loop bounds. +bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const { +  // First unify to the same type +  auto *SType = dyn_cast<IntegerType>(S->getType()); +  auto *SizeType = dyn_cast<IntegerType>(Size->getType()); +  if (!SType || !SizeType) +    return false; +  Type *MaxType = +      (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType; +  S = SE->getTruncateOrZeroExtend(S, MaxType); +  Size = SE->getTruncateOrZeroExtend(Size, MaxType); + +  // Special check for addrecs using BE taken count +  const SCEV *Bound = SE->getMinusSCEV(S, Size); +  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) { +    if (AddRec->isAffine()) { +      const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop()); +      if (!isa<SCEVCouldNotCompute>(BECount)) { +        const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE); +        if (SE->isKnownNegative(Limit)) +          return true; +      } +    } +  } + +  // Check using normal isKnownNegative +  const SCEV *LimitedBound = +      SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType()))); +  return SE->isKnownNegative(LimitedBound); +} + +bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const { +  bool Inbounds = false; +  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr)) +    Inbounds = SrcGEP->isInBounds(); +  if (Inbounds) { +    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { +      if (AddRec->isAffine()) { +        // We know S is for Ptr, the operand on a load/store, so doesn't wrap. +        // If both parts are NonNegative, the end result will be NonNegative +        if (SE->isKnownNonNegative(AddRec->getStart()) && +            SE->isKnownNonNegative(AddRec->getOperand(1))) +          return true; +      } +    } +  } + +  return SE->isKnownNonNegative(S); +} + +// All subscripts are all the same type. +// Loop bound may be smaller (e.g., a char). +// Should zero extend loop bound, since it's always >= 0. +// This routine collects upper bound and extends or truncates if needed. +// Truncating is safe when subscripts are known not to wrap. Cases without +// nowrap flags should have been rejected earlier. +// Return null if no bound available. +const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { +  if (SE->hasLoopInvariantBackedgeTakenCount(L)) { +    const SCEV *UB = SE->getBackedgeTakenCount(L); +    return SE->getTruncateOrZeroExtend(UB, T); +  } +  return nullptr; +} + + +// Calls collectUpperBound(), then attempts to cast it to SCEVConstant. +// If the cast fails, returns NULL. +const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, +                                                              Type *T) const { +  if (const SCEV *UB = collectUpperBound(L, T)) +    return dyn_cast<SCEVConstant>(UB); +  return nullptr; +} + + +// testZIV - +// When we have a pair of subscripts of the form [c1] and [c2], +// where c1 and c2 are both loop invariant, we attack it using +// the ZIV test. Basically, we test by comparing the two values, +// but there are actually three possible results: +// 1) the values are equal, so there's a dependence +// 2) the values are different, so there's no dependence +// 3) the values might be equal, so we have to assume a dependence. +// +// Return true if dependence disproved. +bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, +                             FullDependence &Result) const { +  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); +  ++ZIVapplications; +  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { +    LLVM_DEBUG(dbgs() << "    provably dependent\n"); +    return false; // provably dependent +  } +  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { +    LLVM_DEBUG(dbgs() << "    provably independent\n"); +    ++ZIVindependence; +    return true; // provably independent +  } +  LLVM_DEBUG(dbgs() << "    possibly dependent\n"); +  Result.Consistent = false; +  return false; // possibly dependent +} + + +// strongSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.1 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +//  and a is a constant, we can solve it exactly using the Strong SIV test. +// +// Can prove independence. Failing that, can compute distance (and direction). +// In the presence of symbolic terms, we can sometimes make progress. +// +// If there's a dependence, +// +//    c1 + a*i = c2 + a*i' +// +// The dependence distance is +// +//    d = i' - i = (c1 - c2)/a +// +// A dependence only exists if d is an integer and abs(d) <= U, where U is the +// loop's upper bound. If a dependence exists, the dependence direction is +// defined as +// +//                { < if d > 0 +//    direction = { = if d = 0 +//                { > if d < 0 +// +// Return true if dependence disproved. +bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, +                                   const SCEV *DstConst, const Loop *CurLoop, +                                   unsigned Level, FullDependence &Result, +                                   Constraint &NewConstraint) const { +  LLVM_DEBUG(dbgs() << "\tStrong SIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff); +  LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst); +  LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst); +  LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); +  ++StrongSIVapplications; +  assert(0 < Level && Level <= CommonLevels && "level out of range"); +  Level--; + +  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta); +  LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); + +  // check that |Delta| < iteration count +  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { +    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound); +    LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); +    const SCEV *AbsDelta = +      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); +    const SCEV *AbsCoeff = +      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); +    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); +    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { +      // Distance greater than trip count - no dependence +      ++StrongSIVindependence; +      ++StrongSIVsuccesses; +      return true; +    } +  } + +  // Can we compute distance? +  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { +    APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt(); +    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt(); +    APInt Distance  = ConstDelta; // these need to be initialized +    APInt Remainder = ConstDelta; +    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); +    LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n"); +    LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); +    // Make sure Coeff divides Delta exactly +    if (Remainder != 0) { +      // Coeff doesn't divide Distance, no dependence +      ++StrongSIVindependence; +      ++StrongSIVsuccesses; +      return true; +    } +    Result.DV[Level].Distance = SE->getConstant(Distance); +    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); +    if (Distance.sgt(0)) +      Result.DV[Level].Direction &= Dependence::DVEntry::LT; +    else if (Distance.slt(0)) +      Result.DV[Level].Direction &= Dependence::DVEntry::GT; +    else +      Result.DV[Level].Direction &= Dependence::DVEntry::EQ; +    ++StrongSIVsuccesses; +  } +  else if (Delta->isZero()) { +    // since 0/X == 0 +    Result.DV[Level].Distance = Delta; +    NewConstraint.setDistance(Delta, CurLoop); +    Result.DV[Level].Direction &= Dependence::DVEntry::EQ; +    ++StrongSIVsuccesses; +  } +  else { +    if (Coeff->isOne()) { +      LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n"); +      Result.DV[Level].Distance = Delta; // since X/1 == X +      NewConstraint.setDistance(Delta, CurLoop); +    } +    else { +      Result.Consistent = false; +      NewConstraint.setLine(Coeff, +                            SE->getNegativeSCEV(Coeff), +                            SE->getNegativeSCEV(Delta), CurLoop); +    } + +    // maybe we can get a useful direction +    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta); +    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); +    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); +    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); +    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); +    // The double negatives above are confusing. +    // It helps to read !SE->isKnownNonZero(Delta) +    // as "Delta might be Zero" +    unsigned NewDirection = Dependence::DVEntry::NONE; +    if ((DeltaMaybePositive && CoeffMaybePositive) || +        (DeltaMaybeNegative && CoeffMaybeNegative)) +      NewDirection = Dependence::DVEntry::LT; +    if (DeltaMaybeZero) +      NewDirection |= Dependence::DVEntry::EQ; +    if ((DeltaMaybeNegative && CoeffMaybePositive) || +        (DeltaMaybePositive && CoeffMaybeNegative)) +      NewDirection |= Dependence::DVEntry::GT; +    if (NewDirection < Result.DV[Level].Direction) +      ++StrongSIVsuccesses; +    Result.DV[Level].Direction &= NewDirection; +  } +  return false; +} + + +// weakCrossingSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Crossing SIV test. +// +// Given c1 + a*i = c2 - a*i', we can look for the intersection of +// the two lines, where i = i', yielding +// +//    c1 + a*i = c2 - a*i +//    2a*i = c2 - c1 +//    i = (c2 - c1)/2a +// +// If i < 0, there is no dependence. +// If i > upperbound, there is no dependence. +// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. +// If i = upperbound, there's a dependence with distance = 0. +// If i is integral, there's a dependence (all directions). +// If the non-integer part = 1/2, there's a dependence (<> directions). +// Otherwise, there's no dependence. +// +// Can prove independence. Failing that, +// can sometimes refine the directions. +// Can determine iteration for splitting. +// +// Return true if dependence disproved. +bool DependenceInfo::weakCrossingSIVtest( +    const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst, +    const Loop *CurLoop, unsigned Level, FullDependence &Result, +    Constraint &NewConstraint, const SCEV *&SplitIter) const { +  LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); +  ++WeakCrossingSIVapplications; +  assert(0 < Level && Level <= CommonLevels && "Level out of range"); +  Level--; +  Result.Consistent = false; +  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); +  if (Delta->isZero()) { +    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); +    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); +    ++WeakCrossingSIVsuccesses; +    if (!Result.DV[Level].Direction) { +      ++WeakCrossingSIVindependence; +      return true; +    } +    Result.DV[Level].Distance = Delta; // = 0 +    return false; +  } +  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); +  if (!ConstCoeff) +    return false; + +  Result.DV[Level].Splitable = true; +  if (SE->isKnownNegative(ConstCoeff)) { +    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); +    assert(ConstCoeff && +           "dynamic cast of negative of ConstCoeff should yield constant"); +    Delta = SE->getNegativeSCEV(Delta); +  } +  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); + +  // compute SplitIter for use by DependenceInfo::getSplitIteration() +  SplitIter = SE->getUDivExpr( +      SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta), +      SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff)); +  LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n"); + +  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); +  if (!ConstDelta) +    return false; + +  // We're certain that ConstCoeff > 0; therefore, +  // if Delta < 0, then no dependence. +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n"); +  if (SE->isKnownNegative(Delta)) { +    // No dependence, Delta < 0 +    ++WeakCrossingSIVindependence; +    ++WeakCrossingSIVsuccesses; +    return true; +  } + +  // We're certain that Delta > 0 and ConstCoeff > 0. +  // Check Delta/(2*ConstCoeff) against upper loop bound +  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { +    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); +    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); +    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), +                                    ConstantTwo); +    LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n"); +    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { +      // Delta too big, no dependence +      ++WeakCrossingSIVindependence; +      ++WeakCrossingSIVsuccesses; +      return true; +    } +    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { +      // i = i' = UB +      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); +      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); +      ++WeakCrossingSIVsuccesses; +      if (!Result.DV[Level].Direction) { +        ++WeakCrossingSIVindependence; +        return true; +      } +      Result.DV[Level].Splitable = false; +      Result.DV[Level].Distance = SE->getZero(Delta->getType()); +      return false; +    } +  } + +  // check that Coeff divides Delta +  APInt APDelta = ConstDelta->getAPInt(); +  APInt APCoeff = ConstCoeff->getAPInt(); +  APInt Distance = APDelta; // these need to be initialzed +  APInt Remainder = APDelta; +  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); +  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); +  if (Remainder != 0) { +    // Coeff doesn't divide Delta, no dependence +    ++WeakCrossingSIVindependence; +    ++WeakCrossingSIVsuccesses; +    return true; +  } +  LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n"); + +  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible +  APInt Two = APInt(Distance.getBitWidth(), 2, true); +  Remainder = Distance.srem(Two); +  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); +  if (Remainder != 0) { +    // Equal direction isn't possible +    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ); +    ++WeakCrossingSIVsuccesses; +  } +  return false; +} + + +// Kirch's algorithm, from +// +//        Optimizing Supercompilers for Supercomputers +//        Michael Wolfe +//        MIT Press, 1989 +// +// Program 2.1, page 29. +// Computes the GCD of AM and BM. +// Also finds a solution to the equation ax - by = gcd(a, b). +// Returns true if dependence disproved; i.e., gcd does not divide Delta. +static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, +                    const APInt &Delta, APInt &G, APInt &X, APInt &Y) { +  APInt A0(Bits, 1, true), A1(Bits, 0, true); +  APInt B0(Bits, 0, true), B1(Bits, 1, true); +  APInt G0 = AM.abs(); +  APInt G1 = BM.abs(); +  APInt Q = G0; // these need to be initialized +  APInt R = G0; +  APInt::sdivrem(G0, G1, Q, R); +  while (R != 0) { +    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; +    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; +    G0 = G1; G1 = R; +    APInt::sdivrem(G0, G1, Q, R); +  } +  G = G1; +  LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n"); +  X = AM.slt(0) ? -A1 : A1; +  Y = BM.slt(0) ? B1 : -B1; + +  // make sure gcd divides Delta +  R = Delta.srem(G); +  if (R != 0) +    return true; // gcd doesn't divide Delta, no dependence +  Q = Delta.sdiv(G); +  X *= Q; +  Y *= Q; +  return false; +} + +static APInt floorOfQuotient(const APInt &A, const APInt &B) { +  APInt Q = A; // these need to be initialized +  APInt R = A; +  APInt::sdivrem(A, B, Q, R); +  if (R == 0) +    return Q; +  if ((A.sgt(0) && B.sgt(0)) || +      (A.slt(0) && B.slt(0))) +    return Q; +  else +    return Q - 1; +} + +static APInt ceilingOfQuotient(const APInt &A, const APInt &B) { +  APInt Q = A; // these need to be initialized +  APInt R = A; +  APInt::sdivrem(A, B, Q, R); +  if (R == 0) +    return Q; +  if ((A.sgt(0) && B.sgt(0)) || +      (A.slt(0) && B.slt(0))) +    return Q + 1; +  else +    return Q; +} + + +static +APInt maxAPInt(APInt A, APInt B) { +  return A.sgt(B) ? A : B; +} + + +static +APInt minAPInt(APInt A, APInt B) { +  return A.slt(B) ? A : B; +} + + +// exactSIVtest - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], +// where i is an induction variable, c1 and c2 are loop invariant, and a1 +// and a2 are constant, we can solve it exactly using an algorithm developed +// by Banerjee and Wolfe. See Section 2.5.3 in +// +//        Optimizing Supercompilers for Supercomputers +//        Michael Wolfe +//        MIT Press, 1989 +// +// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), +// so use them if possible. They're also a bit better with symbolics and, +// in the case of the strong SIV test, can compute Distances. +// +// Return true if dependence disproved. +bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, +                                  const SCEV *SrcConst, const SCEV *DstConst, +                                  const Loop *CurLoop, unsigned Level, +                                  FullDependence &Result, +                                  Constraint &NewConstraint) const { +  LLVM_DEBUG(dbgs() << "\tExact SIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n"); +  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); +  ++ExactSIVapplications; +  assert(0 < Level && Level <= CommonLevels && "Level out of range"); +  Level--; +  Result.Consistent = false; +  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), +                        Delta, CurLoop); +  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); +  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); +  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); +  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) +    return false; + +  // find gcd +  APInt G, X, Y; +  APInt AM = ConstSrcCoeff->getAPInt(); +  APInt BM = ConstDstCoeff->getAPInt(); +  unsigned Bits = AM.getBitWidth(); +  if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { +    // gcd doesn't divide Delta, no dependence +    ++ExactSIVindependence; +    ++ExactSIVsuccesses; +    return true; +  } + +  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n"); + +  // since SCEV construction normalizes, LM = 0 +  APInt UM(Bits, 1, true); +  bool UMvalid = false; +  // UM is perhaps unavailable, let's check +  if (const SCEVConstant *CUB = +      collectConstantUpperBound(CurLoop, Delta->getType())) { +    UM = CUB->getAPInt(); +    LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n"); +    UMvalid = true; +  } + +  APInt TU(APInt::getSignedMaxValue(Bits)); +  APInt TL(APInt::getSignedMinValue(Bits)); + +  // test(BM/G, LM-X) and test(-BM/G, X-UM) +  APInt TMUL = BM.sdiv(G); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    if (UMvalid) { +      TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    } +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    if (UMvalid) { +      TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    } +  } + +  // test(AM/G, LM-Y) and test(-AM/G, Y-UM) +  TMUL = AM.sdiv(G); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    if (UMvalid) { +      TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    } +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    if (UMvalid) { +      TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    } +  } +  if (TL.sgt(TU)) { +    ++ExactSIVindependence; +    ++ExactSIVsuccesses; +    return true; +  } + +  // explore directions +  unsigned NewDirection = Dependence::DVEntry::NONE; + +  // less than +  APInt SaveTU(TU); // save these +  APInt SaveTL(TL); +  LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n"); +  TMUL = AM - BM; +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); +  } +  if (TL.sle(TU)) { +    NewDirection |= Dependence::DVEntry::LT; +    ++ExactSIVsuccesses; +  } + +  // equal +  TU = SaveTU; // restore +  TL = SaveTL; +  LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n"); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); +  } +  TMUL = BM - AM; +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); +  } +  if (TL.sle(TU)) { +    NewDirection |= Dependence::DVEntry::EQ; +    ++ExactSIVsuccesses; +  } + +  // greater than +  TU = SaveTU; // restore +  TL = SaveTL; +  LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n"); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL)); +    LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); +  } +  if (TL.sle(TU)) { +    NewDirection |= Dependence::DVEntry::GT; +    ++ExactSIVsuccesses; +  } + +  // finished +  Result.DV[Level].Direction &= NewDirection; +  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) +    ++ExactSIVindependence; +  return Result.DV[Level].Direction == Dependence::DVEntry::NONE; +} + + + +// Return true if the divisor evenly divides the dividend. +static +bool isRemainderZero(const SCEVConstant *Dividend, +                     const SCEVConstant *Divisor) { +  const APInt &ConstDividend = Dividend->getAPInt(); +  const APInt &ConstDivisor = Divisor->getAPInt(); +  return ConstDividend.srem(ConstDivisor) == 0; +} + + +// weakZeroSrcSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1] and [c2 + a*i], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Zero SIV test. +// +// Given +// +//    c1 = c2 + a*i +// +// we get +// +//    (c1 - c2)/a = i +// +// If i is not an integer, there's no dependence. +// If i < 0 or > UB, there's no dependence. +// If i = 0, the direction is >= and peeling the +// 1st iteration will break the dependence. +// If i = UB, the direction is <= and peeling the +// last iteration will break the dependence. +// Otherwise, the direction is *. +// +// Can prove independence. Failing that, we can sometimes refine +// the directions. Can sometimes show that first or last +// iteration carries all the dependences (so worth peeling). +// +// (see also weakZeroDstSIVtest) +// +// Return true if dependence disproved. +bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, +                                        const SCEV *SrcConst, +                                        const SCEV *DstConst, +                                        const Loop *CurLoop, unsigned Level, +                                        FullDependence &Result, +                                        Constraint &NewConstraint) const { +  // For the WeakSIV test, it's possible the loop isn't common to +  // the Src and Dst loops. If it isn't, then there's no need to +  // record a direction. +  LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); +  ++WeakZeroSIVapplications; +  assert(0 < Level && Level <= MaxLevels && "Level out of range"); +  Level--; +  Result.Consistent = false; +  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); +  NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta, +                        CurLoop); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { +    if (Level < CommonLevels) { +      Result.DV[Level].Direction &= Dependence::DVEntry::GE; +      Result.DV[Level].PeelFirst = true; +      ++WeakZeroSIVsuccesses; +    } +    return false; // dependences caused by first iteration +  } +  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); +  if (!ConstCoeff) +    return false; +  const SCEV *AbsCoeff = +    SE->isKnownNegative(ConstCoeff) ? +    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; +  const SCEV *NewDelta = +    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; + +  // check that Delta/SrcCoeff < iteration count +  // really check NewDelta < count*AbsCoeff +  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { +    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); +    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); +    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { +      ++WeakZeroSIVindependence; +      ++WeakZeroSIVsuccesses; +      return true; +    } +    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { +      // dependences caused by last iteration +      if (Level < CommonLevels) { +        Result.DV[Level].Direction &= Dependence::DVEntry::LE; +        Result.DV[Level].PeelLast = true; +        ++WeakZeroSIVsuccesses; +      } +      return false; +    } +  } + +  // check that Delta/SrcCoeff >= 0 +  // really check that NewDelta >= 0 +  if (SE->isKnownNegative(NewDelta)) { +    // No dependence, newDelta < 0 +    ++WeakZeroSIVindependence; +    ++WeakZeroSIVsuccesses; +    return true; +  } + +  // if SrcCoeff doesn't divide Delta, then no dependence +  if (isa<SCEVConstant>(Delta) && +      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { +    ++WeakZeroSIVindependence; +    ++WeakZeroSIVsuccesses; +    return true; +  } +  return false; +} + + +// weakZeroDstSIVtest - +// From the paper, Practical Dependence Testing, Section 4.2.2 +// +// When we have a pair of subscripts of the form [c1 + a*i] and [c2], +// where i is an induction variable, c1 and c2 are loop invariant, +// and a is a constant, we can solve it exactly using the +// Weak-Zero SIV test. +// +// Given +// +//    c1 + a*i = c2 +// +// we get +// +//    i = (c2 - c1)/a +// +// If i is not an integer, there's no dependence. +// If i < 0 or > UB, there's no dependence. +// If i = 0, the direction is <= and peeling the +// 1st iteration will break the dependence. +// If i = UB, the direction is >= and peeling the +// last iteration will break the dependence. +// Otherwise, the direction is *. +// +// Can prove independence. Failing that, we can sometimes refine +// the directions. Can sometimes show that first or last +// iteration carries all the dependences (so worth peeling). +// +// (see also weakZeroSrcSIVtest) +// +// Return true if dependence disproved. +bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, +                                        const SCEV *SrcConst, +                                        const SCEV *DstConst, +                                        const Loop *CurLoop, unsigned Level, +                                        FullDependence &Result, +                                        Constraint &NewConstraint) const { +  // For the WeakSIV test, it's possible the loop isn't common to the +  // Src and Dst loops. If it isn't, then there's no need to record a direction. +  LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); +  ++WeakZeroSIVapplications; +  assert(0 < Level && Level <= SrcLevels && "Level out of range"); +  Level--; +  Result.Consistent = false; +  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); +  NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta, +                        CurLoop); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { +    if (Level < CommonLevels) { +      Result.DV[Level].Direction &= Dependence::DVEntry::LE; +      Result.DV[Level].PeelFirst = true; +      ++WeakZeroSIVsuccesses; +    } +    return false; // dependences caused by first iteration +  } +  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); +  if (!ConstCoeff) +    return false; +  const SCEV *AbsCoeff = +    SE->isKnownNegative(ConstCoeff) ? +    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; +  const SCEV *NewDelta = +    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; + +  // check that Delta/SrcCoeff < iteration count +  // really check NewDelta < count*AbsCoeff +  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { +    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); +    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); +    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { +      ++WeakZeroSIVindependence; +      ++WeakZeroSIVsuccesses; +      return true; +    } +    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { +      // dependences caused by last iteration +      if (Level < CommonLevels) { +        Result.DV[Level].Direction &= Dependence::DVEntry::GE; +        Result.DV[Level].PeelLast = true; +        ++WeakZeroSIVsuccesses; +      } +      return false; +    } +  } + +  // check that Delta/SrcCoeff >= 0 +  // really check that NewDelta >= 0 +  if (SE->isKnownNegative(NewDelta)) { +    // No dependence, newDelta < 0 +    ++WeakZeroSIVindependence; +    ++WeakZeroSIVsuccesses; +    return true; +  } + +  // if SrcCoeff doesn't divide Delta, then no dependence +  if (isa<SCEVConstant>(Delta) && +      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { +    ++WeakZeroSIVindependence; +    ++WeakZeroSIVsuccesses; +    return true; +  } +  return false; +} + + +// exactRDIVtest - Tests the RDIV subscript pair for dependence. +// Things of the form [c1 + a*i] and [c2 + b*j], +// where i and j are induction variable, c1 and c2 are loop invariant, +// and a and b are constants. +// Returns true if any possible dependence is disproved. +// Marks the result as inconsistent. +// Works in some cases that symbolicRDIVtest doesn't, and vice versa. +bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, +                                   const SCEV *SrcConst, const SCEV *DstConst, +                                   const Loop *SrcLoop, const Loop *DstLoop, +                                   FullDependence &Result) const { +  LLVM_DEBUG(dbgs() << "\tExact RDIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n"); +  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n"); +  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); +  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); +  ++ExactRDIVapplications; +  Result.Consistent = false; +  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); +  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); +  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); +  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); +  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); +  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) +    return false; + +  // find gcd +  APInt G, X, Y; +  APInt AM = ConstSrcCoeff->getAPInt(); +  APInt BM = ConstDstCoeff->getAPInt(); +  unsigned Bits = AM.getBitWidth(); +  if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { +    // gcd doesn't divide Delta, no dependence +    ++ExactRDIVindependence; +    return true; +  } + +  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n"); + +  // since SCEV construction seems to normalize, LM = 0 +  APInt SrcUM(Bits, 1, true); +  bool SrcUMvalid = false; +  // SrcUM is perhaps unavailable, let's check +  if (const SCEVConstant *UpperBound = +      collectConstantUpperBound(SrcLoop, Delta->getType())) { +    SrcUM = UpperBound->getAPInt(); +    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n"); +    SrcUMvalid = true; +  } + +  APInt DstUM(Bits, 1, true); +  bool DstUMvalid = false; +  // UM is perhaps unavailable, let's check +  if (const SCEVConstant *UpperBound = +      collectConstantUpperBound(DstLoop, Delta->getType())) { +    DstUM = UpperBound->getAPInt(); +    LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n"); +    DstUMvalid = true; +  } + +  APInt TU(APInt::getSignedMaxValue(Bits)); +  APInt TL(APInt::getSignedMinValue(Bits)); + +  // test(BM/G, LM-X) and test(-BM/G, X-UM) +  APInt TMUL = BM.sdiv(G); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    if (SrcUMvalid) { +      TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    } +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    if (SrcUMvalid) { +      TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    } +  } + +  // test(AM/G, LM-Y) and test(-AM/G, Y-UM) +  TMUL = AM.sdiv(G); +  if (TMUL.sgt(0)) { +    TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    if (DstUMvalid) { +      TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    } +  } +  else { +    TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); +    LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); +    if (DstUMvalid) { +      TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL)); +      LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); +    } +  } +  if (TL.sgt(TU)) +    ++ExactRDIVindependence; +  return TL.sgt(TU); +} + + +// symbolicRDIVtest - +// In Section 4.5 of the Practical Dependence Testing paper,the authors +// introduce a special case of Banerjee's Inequalities (also called the +// Extreme-Value Test) that can handle some of the SIV and RDIV cases, +// particularly cases with symbolics. Since it's only able to disprove +// dependence (not compute distances or directions), we'll use it as a +// fall back for the other tests. +// +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] +// where i and j are induction variables and c1 and c2 are loop invariants, +// we can use the symbolic tests to disprove some dependences, serving as a +// backup for the RDIV test. Note that i and j can be the same variable, +// letting this test serve as a backup for the various SIV tests. +// +// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some +//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) +// loop bounds for the i and j loops, respectively. So, ... +// +// c1 + a1*i = c2 + a2*j +// a1*i - a2*j = c2 - c1 +// +// To test for a dependence, we compute c2 - c1 and make sure it's in the +// range of the maximum and minimum possible values of a1*i - a2*j. +// Considering the signs of a1 and a2, we have 4 possible cases: +// +// 1) If a1 >= 0 and a2 >= 0, then +//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 +//              -a2*N2 <= c2 - c1 <= a1*N1 +// +// 2) If a1 >= 0 and a2 <= 0, then +//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 +//                  0 <= c2 - c1 <= a1*N1 - a2*N2 +// +// 3) If a1 <= 0 and a2 >= 0, then +//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 +//        a1*N1 - a2*N2 <= c2 - c1 <= 0 +// +// 4) If a1 <= 0 and a2 <= 0, then +//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2 +//        a1*N1         <= c2 - c1 <=       -a2*N2 +// +// return true if dependence disproved +bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, +                                      const SCEV *C1, const SCEV *C2, +                                      const Loop *Loop1, +                                      const Loop *Loop2) const { +  ++SymbolicRDIVapplications; +  LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); +  LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1); +  LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); +  LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n"); +  LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n"); +  LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n"); +  const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); +  const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); +  LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n"); +  LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n"); +  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); +  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); +  LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n"); +  LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n"); +  if (SE->isKnownNonNegative(A1)) { +    if (SE->isKnownNonNegative(A2)) { +      // A1 >= 0 && A2 >= 0 +      if (N1) { +        // make sure that c2 - c1 <= a1*N1 +        const SCEV *A1N1 = SE->getMulExpr(A1, N1); +        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +      if (N2) { +        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 +        const SCEV *A2N2 = SE->getMulExpr(A2, N2); +        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +    } +    else if (SE->isKnownNonPositive(A2)) { +      // a1 >= 0 && a2 <= 0 +      if (N1 && N2) { +        // make sure that c2 - c1 <= a1*N1 - a2*N2 +        const SCEV *A1N1 = SE->getMulExpr(A1, N1); +        const SCEV *A2N2 = SE->getMulExpr(A2, N2); +        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); +        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +      // make sure that 0 <= c2 - c1 +      if (SE->isKnownNegative(C2_C1)) { +        ++SymbolicRDIVindependence; +        return true; +      } +    } +  } +  else if (SE->isKnownNonPositive(A1)) { +    if (SE->isKnownNonNegative(A2)) { +      // a1 <= 0 && a2 >= 0 +      if (N1 && N2) { +        // make sure that a1*N1 - a2*N2 <= c2 - c1 +        const SCEV *A1N1 = SE->getMulExpr(A1, N1); +        const SCEV *A2N2 = SE->getMulExpr(A2, N2); +        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); +        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +      // make sure that c2 - c1 <= 0 +      if (SE->isKnownPositive(C2_C1)) { +        ++SymbolicRDIVindependence; +        return true; +      } +    } +    else if (SE->isKnownNonPositive(A2)) { +      // a1 <= 0 && a2 <= 0 +      if (N1) { +        // make sure that a1*N1 <= c2 - c1 +        const SCEV *A1N1 = SE->getMulExpr(A1, N1); +        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +      if (N2) { +        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 +        const SCEV *A2N2 = SE->getMulExpr(A2, N2); +        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n"); +        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { +          ++SymbolicRDIVindependence; +          return true; +        } +      } +    } +  } +  return false; +} + + +// testSIV - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] +// where i is an induction variable, c1 and c2 are loop invariant, and a1 and +// a2 are constant, we attack it with an SIV test. While they can all be +// solved with the Exact SIV test, it's worthwhile to use simpler tests when +// they apply; they're cheaper and sometimes more precise. +// +// Return true if dependence disproved. +bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, +                             FullDependence &Result, Constraint &NewConstraint, +                             const SCEV *&SplitIter) const { +  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); +  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); +  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); +  if (SrcAddRec && DstAddRec) { +    const SCEV *SrcConst = SrcAddRec->getStart(); +    const SCEV *DstConst = DstAddRec->getStart(); +    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); +    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); +    const Loop *CurLoop = SrcAddRec->getLoop(); +    assert(CurLoop == DstAddRec->getLoop() && +           "both loops in SIV should be same"); +    Level = mapSrcLoop(CurLoop); +    bool disproven; +    if (SrcCoeff == DstCoeff) +      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, +                                Level, Result, NewConstraint); +    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) +      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, +                                      Level, Result, NewConstraint, SplitIter); +    else +      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, +                               Level, Result, NewConstraint); +    return disproven || +      gcdMIVtest(Src, Dst, Result) || +      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); +  } +  if (SrcAddRec) { +    const SCEV *SrcConst = SrcAddRec->getStart(); +    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); +    const SCEV *DstConst = Dst; +    const Loop *CurLoop = SrcAddRec->getLoop(); +    Level = mapSrcLoop(CurLoop); +    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, +                              Level, Result, NewConstraint) || +      gcdMIVtest(Src, Dst, Result); +  } +  if (DstAddRec) { +    const SCEV *DstConst = DstAddRec->getStart(); +    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); +    const SCEV *SrcConst = Src; +    const Loop *CurLoop = DstAddRec->getLoop(); +    Level = mapDstLoop(CurLoop); +    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, +                              CurLoop, Level, Result, NewConstraint) || +      gcdMIVtest(Src, Dst, Result); +  } +  llvm_unreachable("SIV test expected at least one AddRec"); +  return false; +} + + +// testRDIV - +// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] +// where i and j are induction variables, c1 and c2 are loop invariant, +// and a1 and a2 are constant, we can solve it exactly with an easy adaptation +// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. +// It doesn't make sense to talk about distance or direction in this case, +// so there's no point in making special versions of the Strong SIV test or +// the Weak-crossing SIV test. +// +// With minor algebra, this test can also be used for things like +// [c1 + a1*i + a2*j][c2]. +// +// Return true if dependence disproved. +bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, +                              FullDependence &Result) const { +  // we have 3 possible situations here: +  //   1) [a*i + b] and [c*j + d] +  //   2) [a*i + c*j + b] and [d] +  //   3) [b] and [a*i + c*j + d] +  // We need to find what we've got and get organized + +  const SCEV *SrcConst, *DstConst; +  const SCEV *SrcCoeff, *DstCoeff; +  const Loop *SrcLoop, *DstLoop; + +  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); +  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); +  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); +  if (SrcAddRec && DstAddRec) { +    SrcConst = SrcAddRec->getStart(); +    SrcCoeff = SrcAddRec->getStepRecurrence(*SE); +    SrcLoop = SrcAddRec->getLoop(); +    DstConst = DstAddRec->getStart(); +    DstCoeff = DstAddRec->getStepRecurrence(*SE); +    DstLoop = DstAddRec->getLoop(); +  } +  else if (SrcAddRec) { +    if (const SCEVAddRecExpr *tmpAddRec = +        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { +      SrcConst = tmpAddRec->getStart(); +      SrcCoeff = tmpAddRec->getStepRecurrence(*SE); +      SrcLoop = tmpAddRec->getLoop(); +      DstConst = Dst; +      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); +      DstLoop = SrcAddRec->getLoop(); +    } +    else +      llvm_unreachable("RDIV reached by surprising SCEVs"); +  } +  else if (DstAddRec) { +    if (const SCEVAddRecExpr *tmpAddRec = +        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { +      DstConst = tmpAddRec->getStart(); +      DstCoeff = tmpAddRec->getStepRecurrence(*SE); +      DstLoop = tmpAddRec->getLoop(); +      SrcConst = Src; +      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); +      SrcLoop = DstAddRec->getLoop(); +    } +    else +      llvm_unreachable("RDIV reached by surprising SCEVs"); +  } +  else +    llvm_unreachable("RDIV expected at least one AddRec"); +  return exactRDIVtest(SrcCoeff, DstCoeff, +                       SrcConst, DstConst, +                       SrcLoop, DstLoop, +                       Result) || +    gcdMIVtest(Src, Dst, Result) || +    symbolicRDIVtest(SrcCoeff, DstCoeff, +                     SrcConst, DstConst, +                     SrcLoop, DstLoop); +} + + +// Tests the single-subscript MIV pair (Src and Dst) for dependence. +// Return true if dependence disproved. +// Can sometimes refine direction vectors. +bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, +                             const SmallBitVector &Loops, +                             FullDependence &Result) const { +  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); +  Result.Consistent = false; +  return gcdMIVtest(Src, Dst, Result) || +    banerjeeMIVtest(Src, Dst, Loops, Result); +} + + +// Given a product, e.g., 10*X*Y, returns the first constant operand, +// in this case 10. If there is no constant part, returns NULL. +static +const SCEVConstant *getConstantPart(const SCEV *Expr) { +  if (const auto *Constant = dyn_cast<SCEVConstant>(Expr)) +    return Constant; +  else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr)) +    if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0))) +      return Constant; +  return nullptr; +} + + +//===----------------------------------------------------------------------===// +// gcdMIVtest - +// Tests an MIV subscript pair for dependence. +// Returns true if any possible dependence is disproved. +// Marks the result as inconsistent. +// Can sometimes disprove the equal direction for 1 or more loops, +// as discussed in Michael Wolfe's book, +// High Performance Compilers for Parallel Computing, page 235. +// +// We spend some effort (code!) to handle cases like +// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, +// but M and N are just loop-invariant variables. +// This should help us handle linearized subscripts; +// also makes this test a useful backup to the various SIV tests. +// +// It occurs to me that the presence of loop-invariant variables +// changes the nature of the test from "greatest common divisor" +// to "a common divisor". +bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, +                                FullDependence &Result) const { +  LLVM_DEBUG(dbgs() << "starting gcd\n"); +  ++GCDapplications; +  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType()); +  APInt RunningGCD = APInt::getNullValue(BitWidth); + +  // Examine Src coefficients. +  // Compute running GCD and record source constant. +  // Because we're looking for the constant at the end of the chain, +  // we can't quit the loop just because the GCD == 1. +  const SCEV *Coefficients = Src; +  while (const SCEVAddRecExpr *AddRec = +         dyn_cast<SCEVAddRecExpr>(Coefficients)) { +    const SCEV *Coeff = AddRec->getStepRecurrence(*SE); +    // If the coefficient is the product of a constant and other stuff, +    // we can use the constant in the GCD computation. +    const auto *Constant = getConstantPart(Coeff); +    if (!Constant) +      return false; +    APInt ConstCoeff = Constant->getAPInt(); +    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); +    Coefficients = AddRec->getStart(); +  } +  const SCEV *SrcConst = Coefficients; + +  // Examine Dst coefficients. +  // Compute running GCD and record destination constant. +  // Because we're looking for the constant at the end of the chain, +  // we can't quit the loop just because the GCD == 1. +  Coefficients = Dst; +  while (const SCEVAddRecExpr *AddRec = +         dyn_cast<SCEVAddRecExpr>(Coefficients)) { +    const SCEV *Coeff = AddRec->getStepRecurrence(*SE); +    // If the coefficient is the product of a constant and other stuff, +    // we can use the constant in the GCD computation. +    const auto *Constant = getConstantPart(Coeff); +    if (!Constant) +      return false; +    APInt ConstCoeff = Constant->getAPInt(); +    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); +    Coefficients = AddRec->getStart(); +  } +  const SCEV *DstConst = Coefficients; + +  APInt ExtraGCD = APInt::getNullValue(BitWidth); +  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); +  LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n"); +  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); +  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { +    // If Delta is a sum of products, we may be able to make further progress. +    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { +      const SCEV *Operand = Sum->getOperand(Op); +      if (isa<SCEVConstant>(Operand)) { +        assert(!Constant && "Surprised to find multiple constants"); +        Constant = cast<SCEVConstant>(Operand); +      } +      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) { +        // Search for constant operand to participate in GCD; +        // If none found; return false. +        const SCEVConstant *ConstOp = getConstantPart(Product); +        if (!ConstOp) +          return false; +        APInt ConstOpValue = ConstOp->getAPInt(); +        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, +                                                   ConstOpValue.abs()); +      } +      else +        return false; +    } +  } +  if (!Constant) +    return false; +  APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt(); +  LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n"); +  if (ConstDelta == 0) +    return false; +  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); +  LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n"); +  APInt Remainder = ConstDelta.srem(RunningGCD); +  if (Remainder != 0) { +    ++GCDindependence; +    return true; +  } + +  // Try to disprove equal directions. +  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], +  // the code above can't disprove the dependence because the GCD = 1. +  // So we consider what happen if i = i' and what happens if j = j'. +  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], +  // which is infeasible, so we can disallow the = direction for the i level. +  // Setting j = j' doesn't help matters, so we end up with a direction vector +  // of [<>, *] +  // +  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], +  // we need to remember that the constant part is 5 and the RunningGCD should +  // be initialized to ExtraGCD = 30. +  LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n'); + +  bool Improved = false; +  Coefficients = Src; +  while (const SCEVAddRecExpr *AddRec = +         dyn_cast<SCEVAddRecExpr>(Coefficients)) { +    Coefficients = AddRec->getStart(); +    const Loop *CurLoop = AddRec->getLoop(); +    RunningGCD = ExtraGCD; +    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); +    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); +    const SCEV *Inner = Src; +    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { +      AddRec = cast<SCEVAddRecExpr>(Inner); +      const SCEV *Coeff = AddRec->getStepRecurrence(*SE); +      if (CurLoop == AddRec->getLoop()) +        ; // SrcCoeff == Coeff +      else { +        // If the coefficient is the product of a constant and other stuff, +        // we can use the constant in the GCD computation. +        Constant = getConstantPart(Coeff); +        if (!Constant) +          return false; +        APInt ConstCoeff = Constant->getAPInt(); +        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); +      } +      Inner = AddRec->getStart(); +    } +    Inner = Dst; +    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { +      AddRec = cast<SCEVAddRecExpr>(Inner); +      const SCEV *Coeff = AddRec->getStepRecurrence(*SE); +      if (CurLoop == AddRec->getLoop()) +        DstCoeff = Coeff; +      else { +        // If the coefficient is the product of a constant and other stuff, +        // we can use the constant in the GCD computation. +        Constant = getConstantPart(Coeff); +        if (!Constant) +          return false; +        APInt ConstCoeff = Constant->getAPInt(); +        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); +      } +      Inner = AddRec->getStart(); +    } +    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); +    // If the coefficient is the product of a constant and other stuff, +    // we can use the constant in the GCD computation. +    Constant = getConstantPart(Delta); +    if (!Constant) +      // The difference of the two coefficients might not be a product +      // or constant, in which case we give up on this direction. +      continue; +    APInt ConstCoeff = Constant->getAPInt(); +    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); +    LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); +    if (RunningGCD != 0) { +      Remainder = ConstDelta.srem(RunningGCD); +      LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); +      if (Remainder != 0) { +        unsigned Level = mapSrcLoop(CurLoop); +        Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ); +        Improved = true; +      } +    } +  } +  if (Improved) +    ++GCDsuccesses; +  LLVM_DEBUG(dbgs() << "all done\n"); +  return false; +} + + +//===----------------------------------------------------------------------===// +// banerjeeMIVtest - +// Use Banerjee's Inequalities to test an MIV subscript pair. +// (Wolfe, in the race-car book, calls this the Extreme Value Test.) +// Generally follows the discussion in Section 2.5.2 of +// +//    Optimizing Supercompilers for Supercomputers +//    Michael Wolfe +// +// The inequalities given on page 25 are simplified in that loops are +// normalized so that the lower bound is always 0 and the stride is always 1. +// For example, Wolfe gives +// +//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +// +// where A_k is the coefficient of the kth index in the source subscript, +// B_k is the coefficient of the kth index in the destination subscript, +// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth +// index, and N_k is the stride of the kth index. Since all loops are normalized +// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the +// equation to +// +//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 +//            = (A^-_k - B_k)^- (U_k - 1)  - B_k +// +// Similar simplifications are possible for the other equations. +// +// When we can't determine the number of iterations for a loop, +// we use NULL as an indicator for the worst case, infinity. +// When computing the upper bound, NULL denotes +inf; +// for the lower bound, NULL denotes -inf. +// +// Return true if dependence disproved. +bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, +                                     const SmallBitVector &Loops, +                                     FullDependence &Result) const { +  LLVM_DEBUG(dbgs() << "starting Banerjee\n"); +  ++BanerjeeApplications; +  LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n'); +  const SCEV *A0; +  CoefficientInfo *A = collectCoeffInfo(Src, true, A0); +  LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n'); +  const SCEV *B0; +  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); +  BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; +  const SCEV *Delta = SE->getMinusSCEV(B0, A0); +  LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); + +  // Compute bounds for all the * directions. +  LLVM_DEBUG(dbgs() << "\tBounds[*]\n"); +  for (unsigned K = 1; K <= MaxLevels; ++K) { +    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; +    Bound[K].Direction = Dependence::DVEntry::ALL; +    Bound[K].DirSet = Dependence::DVEntry::NONE; +    findBoundsALL(A, B, Bound, K); +#ifndef NDEBUG +    LLVM_DEBUG(dbgs() << "\t    " << K << '\t'); +    if (Bound[K].Lower[Dependence::DVEntry::ALL]) +      LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); +    else +      LLVM_DEBUG(dbgs() << "-inf\t"); +    if (Bound[K].Upper[Dependence::DVEntry::ALL]) +      LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); +    else +      LLVM_DEBUG(dbgs() << "+inf\n"); +#endif +  } + +  // Test the *, *, *, ... case. +  bool Disproved = false; +  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { +    // Explore the direction vector hierarchy. +    unsigned DepthExpanded = 0; +    unsigned NewDeps = exploreDirections(1, A, B, Bound, +                                         Loops, DepthExpanded, Delta); +    if (NewDeps > 0) { +      bool Improved = false; +      for (unsigned K = 1; K <= CommonLevels; ++K) { +        if (Loops[K]) { +          unsigned Old = Result.DV[K - 1].Direction; +          Result.DV[K - 1].Direction = Old & Bound[K].DirSet; +          Improved |= Old != Result.DV[K - 1].Direction; +          if (!Result.DV[K - 1].Direction) { +            Improved = false; +            Disproved = true; +            break; +          } +        } +      } +      if (Improved) +        ++BanerjeeSuccesses; +    } +    else { +      ++BanerjeeIndependence; +      Disproved = true; +    } +  } +  else { +    ++BanerjeeIndependence; +    Disproved = true; +  } +  delete [] Bound; +  delete [] A; +  delete [] B; +  return Disproved; +} + + +// Hierarchically expands the direction vector +// search space, combining the directions of discovered dependences +// in the DirSet field of Bound. Returns the number of distinct +// dependences discovered. If the dependence is disproved, +// it will return 0. +unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, +                                           CoefficientInfo *B, BoundInfo *Bound, +                                           const SmallBitVector &Loops, +                                           unsigned &DepthExpanded, +                                           const SCEV *Delta) const { +  if (Level > CommonLevels) { +    // record result +    LLVM_DEBUG(dbgs() << "\t["); +    for (unsigned K = 1; K <= CommonLevels; ++K) { +      if (Loops[K]) { +        Bound[K].DirSet |= Bound[K].Direction; +#ifndef NDEBUG +        switch (Bound[K].Direction) { +        case Dependence::DVEntry::LT: +          LLVM_DEBUG(dbgs() << " <"); +          break; +        case Dependence::DVEntry::EQ: +          LLVM_DEBUG(dbgs() << " ="); +          break; +        case Dependence::DVEntry::GT: +          LLVM_DEBUG(dbgs() << " >"); +          break; +        case Dependence::DVEntry::ALL: +          LLVM_DEBUG(dbgs() << " *"); +          break; +        default: +          llvm_unreachable("unexpected Bound[K].Direction"); +        } +#endif +      } +    } +    LLVM_DEBUG(dbgs() << " ]\n"); +    return 1; +  } +  if (Loops[Level]) { +    if (Level > DepthExpanded) { +      DepthExpanded = Level; +      // compute bounds for <, =, > at current level +      findBoundsLT(A, B, Bound, Level); +      findBoundsGT(A, B, Bound, Level); +      findBoundsEQ(A, B, Bound, Level); +#ifndef NDEBUG +      LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); +      LLVM_DEBUG(dbgs() << "\t    <\t"); +      if (Bound[Level].Lower[Dependence::DVEntry::LT]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] +                          << '\t'); +      else +        LLVM_DEBUG(dbgs() << "-inf\t"); +      if (Bound[Level].Upper[Dependence::DVEntry::LT]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] +                          << '\n'); +      else +        LLVM_DEBUG(dbgs() << "+inf\n"); +      LLVM_DEBUG(dbgs() << "\t    =\t"); +      if (Bound[Level].Lower[Dependence::DVEntry::EQ]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] +                          << '\t'); +      else +        LLVM_DEBUG(dbgs() << "-inf\t"); +      if (Bound[Level].Upper[Dependence::DVEntry::EQ]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] +                          << '\n'); +      else +        LLVM_DEBUG(dbgs() << "+inf\n"); +      LLVM_DEBUG(dbgs() << "\t    >\t"); +      if (Bound[Level].Lower[Dependence::DVEntry::GT]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] +                          << '\t'); +      else +        LLVM_DEBUG(dbgs() << "-inf\t"); +      if (Bound[Level].Upper[Dependence::DVEntry::GT]) +        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] +                          << '\n'); +      else +        LLVM_DEBUG(dbgs() << "+inf\n"); +#endif +    } + +    unsigned NewDeps = 0; + +    // test bounds for <, *, *, ... +    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) +      NewDeps += exploreDirections(Level + 1, A, B, Bound, +                                   Loops, DepthExpanded, Delta); + +    // Test bounds for =, *, *, ... +    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) +      NewDeps += exploreDirections(Level + 1, A, B, Bound, +                                   Loops, DepthExpanded, Delta); + +    // test bounds for >, *, *, ... +    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) +      NewDeps += exploreDirections(Level + 1, A, B, Bound, +                                   Loops, DepthExpanded, Delta); + +    Bound[Level].Direction = Dependence::DVEntry::ALL; +    return NewDeps; +  } +  else +    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); +} + + +// Returns true iff the current bounds are plausible. +bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, +                                BoundInfo *Bound, const SCEV *Delta) const { +  Bound[Level].Direction = DirKind; +  if (const SCEV *LowerBound = getLowerBound(Bound)) +    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) +      return false; +  if (const SCEV *UpperBound = getUpperBound(Bound)) +    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) +      return false; +  return true; +} + + +// Computes the upper and lower bounds for level K +// using the * direction. Records them in Bound. +// Wolfe gives the equations +// +//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k +//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k +// +// Since we normalize loops, we can simplify these equations to +// +//    LB^*_k = (A^-_k - B^+_k)U_k +//    UB^*_k = (A^+_k - B^-_k)U_k +// +// We must be careful to handle the case where the upper bound is unknown. +// Note that the lower bound is always <= 0 +// and the upper bound is always >= 0. +void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, +                                   BoundInfo *Bound, unsigned K) const { +  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. +  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. +  if (Bound[K].Iterations) { +    Bound[K].Lower[Dependence::DVEntry::ALL] = +      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), +                     Bound[K].Iterations); +    Bound[K].Upper[Dependence::DVEntry::ALL] = +      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), +                     Bound[K].Iterations); +  } +  else { +    // If the difference is 0, we won't need to know the number of iterations. +    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) +      Bound[K].Lower[Dependence::DVEntry::ALL] = +          SE->getZero(A[K].Coeff->getType()); +    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) +      Bound[K].Upper[Dependence::DVEntry::ALL] = +          SE->getZero(A[K].Coeff->getType()); +  } +} + + +// Computes the upper and lower bounds for level K +// using the = direction. Records them in Bound. +// Wolfe gives the equations +// +//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k +//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k +// +// Since we normalize loops, we can simplify these equations to +// +//    LB^=_k = (A_k - B_k)^- U_k +//    UB^=_k = (A_k - B_k)^+ U_k +// +// We must be careful to handle the case where the upper bound is unknown. +// Note that the lower bound is always <= 0 +// and the upper bound is always >= 0. +void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, +                                  BoundInfo *Bound, unsigned K) const { +  Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. +  Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. +  if (Bound[K].Iterations) { +    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); +    const SCEV *NegativePart = getNegativePart(Delta); +    Bound[K].Lower[Dependence::DVEntry::EQ] = +      SE->getMulExpr(NegativePart, Bound[K].Iterations); +    const SCEV *PositivePart = getPositivePart(Delta); +    Bound[K].Upper[Dependence::DVEntry::EQ] = +      SE->getMulExpr(PositivePart, Bound[K].Iterations); +  } +  else { +    // If the positive/negative part of the difference is 0, +    // we won't need to know the number of iterations. +    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); +    const SCEV *NegativePart = getNegativePart(Delta); +    if (NegativePart->isZero()) +      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero +    const SCEV *PositivePart = getPositivePart(Delta); +    if (PositivePart->isZero()) +      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero +  } +} + + +// Computes the upper and lower bounds for level K +// using the < direction. Records them in Bound. +// Wolfe gives the equations +// +//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k +// +// Since we normalize loops, we can simplify these equations to +// +//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k +//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k +// +// We must be careful to handle the case where the upper bound is unknown. +void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, +                                  BoundInfo *Bound, unsigned K) const { +  Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. +  Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. +  if (Bound[K].Iterations) { +    const SCEV *Iter_1 = SE->getMinusSCEV( +        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); +    const SCEV *NegPart = +      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); +    Bound[K].Lower[Dependence::DVEntry::LT] = +      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); +    const SCEV *PosPart = +      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); +    Bound[K].Upper[Dependence::DVEntry::LT] = +      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); +  } +  else { +    // If the positive/negative part of the difference is 0, +    // we won't need to know the number of iterations. +    const SCEV *NegPart = +      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); +    if (NegPart->isZero()) +      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); +    const SCEV *PosPart = +      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); +    if (PosPart->isZero()) +      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); +  } +} + + +// Computes the upper and lower bounds for level K +// using the > direction. Records them in Bound. +// Wolfe gives the equations +// +//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k +//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k +// +// Since we normalize loops, we can simplify these equations to +// +//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k +//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k +// +// We must be careful to handle the case where the upper bound is unknown. +void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, +                                  BoundInfo *Bound, unsigned K) const { +  Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. +  Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. +  if (Bound[K].Iterations) { +    const SCEV *Iter_1 = SE->getMinusSCEV( +        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); +    const SCEV *NegPart = +      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); +    Bound[K].Lower[Dependence::DVEntry::GT] = +      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); +    const SCEV *PosPart = +      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); +    Bound[K].Upper[Dependence::DVEntry::GT] = +      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); +  } +  else { +    // If the positive/negative part of the difference is 0, +    // we won't need to know the number of iterations. +    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); +    if (NegPart->isZero()) +      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; +    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); +    if (PosPart->isZero()) +      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; +  } +} + + +// X^+ = max(X, 0) +const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { +  return SE->getSMaxExpr(X, SE->getZero(X->getType())); +} + + +// X^- = min(X, 0) +const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { +  return SE->getSMinExpr(X, SE->getZero(X->getType())); +} + + +// Walks through the subscript, +// collecting each coefficient, the associated loop bounds, +// and recording its positive and negative parts for later use. +DependenceInfo::CoefficientInfo * +DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, +                                 const SCEV *&Constant) const { +  const SCEV *Zero = SE->getZero(Subscript->getType()); +  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; +  for (unsigned K = 1; K <= MaxLevels; ++K) { +    CI[K].Coeff = Zero; +    CI[K].PosPart = Zero; +    CI[K].NegPart = Zero; +    CI[K].Iterations = nullptr; +  } +  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { +    const Loop *L = AddRec->getLoop(); +    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); +    CI[K].Coeff = AddRec->getStepRecurrence(*SE); +    CI[K].PosPart = getPositivePart(CI[K].Coeff); +    CI[K].NegPart = getNegativePart(CI[K].Coeff); +    CI[K].Iterations = collectUpperBound(L, Subscript->getType()); +    Subscript = AddRec->getStart(); +  } +  Constant = Subscript; +#ifndef NDEBUG +  LLVM_DEBUG(dbgs() << "\tCoefficient Info\n"); +  for (unsigned K = 1; K <= MaxLevels; ++K) { +    LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff); +    LLVM_DEBUG(dbgs() << "\tPos Part = "); +    LLVM_DEBUG(dbgs() << *CI[K].PosPart); +    LLVM_DEBUG(dbgs() << "\tNeg Part = "); +    LLVM_DEBUG(dbgs() << *CI[K].NegPart); +    LLVM_DEBUG(dbgs() << "\tUpper Bound = "); +    if (CI[K].Iterations) +      LLVM_DEBUG(dbgs() << *CI[K].Iterations); +    else +      LLVM_DEBUG(dbgs() << "+inf"); +    LLVM_DEBUG(dbgs() << '\n'); +  } +  LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n'); +#endif +  return CI; +} + + +// Looks through all the bounds info and +// computes the lower bound given the current direction settings +// at each level. If the lower bound for any level is -inf, +// the result is -inf. +const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { +  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; +  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { +    if (Bound[K].Lower[Bound[K].Direction]) +      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); +    else +      Sum = nullptr; +  } +  return Sum; +} + + +// Looks through all the bounds info and +// computes the upper bound given the current direction settings +// at each level. If the upper bound at any level is +inf, +// the result is +inf. +const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { +  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; +  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { +    if (Bound[K].Upper[Bound[K].Direction]) +      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); +    else +      Sum = nullptr; +  } +  return Sum; +} + + +//===----------------------------------------------------------------------===// +// Constraint manipulation for Delta test. + +// Given a linear SCEV, +// return the coefficient (the step) +// corresponding to the specified loop. +// If there isn't one, return 0. +// For example, given a*i + b*j + c*k, finding the coefficient +// corresponding to the j loop would yield b. +const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr, +                                            const Loop *TargetLoop) const { +  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); +  if (!AddRec) +    return SE->getZero(Expr->getType()); +  if (AddRec->getLoop() == TargetLoop) +    return AddRec->getStepRecurrence(*SE); +  return findCoefficient(AddRec->getStart(), TargetLoop); +} + + +// Given a linear SCEV, +// return the SCEV given by zeroing out the coefficient +// corresponding to the specified loop. +// For example, given a*i + b*j + c*k, zeroing the coefficient +// corresponding to the j loop would yield a*i + c*k. +const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr, +                                            const Loop *TargetLoop) const { +  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); +  if (!AddRec) +    return Expr; // ignore +  if (AddRec->getLoop() == TargetLoop) +    return AddRec->getStart(); +  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), +                           AddRec->getStepRecurrence(*SE), +                           AddRec->getLoop(), +                           AddRec->getNoWrapFlags()); +} + + +// Given a linear SCEV Expr, +// return the SCEV given by adding some Value to the +// coefficient corresponding to the specified TargetLoop. +// For example, given a*i + b*j + c*k, adding 1 to the coefficient +// corresponding to the j loop would yield a*i + (b+1)*j + c*k. +const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr, +                                             const Loop *TargetLoop, +                                             const SCEV *Value) const { +  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); +  if (!AddRec) // create a new addRec +    return SE->getAddRecExpr(Expr, +                             Value, +                             TargetLoop, +                             SCEV::FlagAnyWrap); // Worst case, with no info. +  if (AddRec->getLoop() == TargetLoop) { +    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); +    if (Sum->isZero()) +      return AddRec->getStart(); +    return SE->getAddRecExpr(AddRec->getStart(), +                             Sum, +                             AddRec->getLoop(), +                             AddRec->getNoWrapFlags()); +  } +  if (SE->isLoopInvariant(AddRec, TargetLoop)) +    return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap); +  return SE->getAddRecExpr( +      addToCoefficient(AddRec->getStart(), TargetLoop, Value), +      AddRec->getStepRecurrence(*SE), AddRec->getLoop(), +      AddRec->getNoWrapFlags()); +} + + +// Review the constraints, looking for opportunities +// to simplify a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +// Corresponds to Figure 5 from the paper +// +//            Practical Dependence Testing +//            Goff, Kennedy, Tseng +//            PLDI 1991 +bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst, +                               SmallBitVector &Loops, +                               SmallVectorImpl<Constraint> &Constraints, +                               bool &Consistent) { +  bool Result = false; +  for (unsigned LI : Loops.set_bits()) { +    LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is"); +    LLVM_DEBUG(Constraints[LI].dump(dbgs())); +    if (Constraints[LI].isDistance()) +      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); +    else if (Constraints[LI].isLine()) +      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); +    else if (Constraints[LI].isPoint()) +      Result |= propagatePoint(Src, Dst, Constraints[LI]); +  } +  return Result; +} + + +// Attempt to propagate a distance +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst, +                                       Constraint &CurConstraint, +                                       bool &Consistent) { +  const Loop *CurLoop = CurConstraint.getAssociatedLoop(); +  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); +  const SCEV *A_K = findCoefficient(Src, CurLoop); +  if (A_K->isZero()) +    return false; +  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); +  Src = SE->getMinusSCEV(Src, DA_K); +  Src = zeroCoefficient(Src, CurLoop); +  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); +  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); +  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); +  if (!findCoefficient(Dst, CurLoop)->isZero()) +    Consistent = false; +  return true; +} + + +// Attempt to propagate a line +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +// If the simplification isn't exact (that is, if it is conservative +// in terms of dependence), set consistent to false. +bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst, +                                   Constraint &CurConstraint, +                                   bool &Consistent) { +  const Loop *CurLoop = CurConstraint.getAssociatedLoop(); +  const SCEV *A = CurConstraint.getA(); +  const SCEV *B = CurConstraint.getB(); +  const SCEV *C = CurConstraint.getC(); +  LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C +                    << "\n"); +  LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); +  if (A->isZero()) { +    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); +    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); +    if (!Bconst || !Cconst) return false; +    APInt Beta = Bconst->getAPInt(); +    APInt Charlie = Cconst->getAPInt(); +    APInt CdivB = Charlie.sdiv(Beta); +    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); +    const SCEV *AP_K = findCoefficient(Dst, CurLoop); +    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); +    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); +    Dst = zeroCoefficient(Dst, CurLoop); +    if (!findCoefficient(Src, CurLoop)->isZero()) +      Consistent = false; +  } +  else if (B->isZero()) { +    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); +    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); +    if (!Aconst || !Cconst) return false; +    APInt Alpha = Aconst->getAPInt(); +    APInt Charlie = Cconst->getAPInt(); +    APInt CdivA = Charlie.sdiv(Alpha); +    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); +    const SCEV *A_K = findCoefficient(Src, CurLoop); +    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); +    Src = zeroCoefficient(Src, CurLoop); +    if (!findCoefficient(Dst, CurLoop)->isZero()) +      Consistent = false; +  } +  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { +    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); +    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); +    if (!Aconst || !Cconst) return false; +    APInt Alpha = Aconst->getAPInt(); +    APInt Charlie = Cconst->getAPInt(); +    APInt CdivA = Charlie.sdiv(Alpha); +    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); +    const SCEV *A_K = findCoefficient(Src, CurLoop); +    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); +    Src = zeroCoefficient(Src, CurLoop); +    Dst = addToCoefficient(Dst, CurLoop, A_K); +    if (!findCoefficient(Dst, CurLoop)->isZero()) +      Consistent = false; +  } +  else { +    // paper is incorrect here, or perhaps just misleading +    const SCEV *A_K = findCoefficient(Src, CurLoop); +    Src = SE->getMulExpr(Src, A); +    Dst = SE->getMulExpr(Dst, A); +    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); +    Src = zeroCoefficient(Src, CurLoop); +    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); +    if (!findCoefficient(Dst, CurLoop)->isZero()) +      Consistent = false; +  } +  LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); +  return true; +} + + +// Attempt to propagate a point +// constraint into a subscript pair (Src and Dst). +// Return true if some simplification occurs. +bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst, +                                    Constraint &CurConstraint) { +  const Loop *CurLoop = CurConstraint.getAssociatedLoop(); +  const SCEV *A_K = findCoefficient(Src, CurLoop); +  const SCEV *AP_K = findCoefficient(Dst, CurLoop); +  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); +  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); +  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); +  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); +  Src = zeroCoefficient(Src, CurLoop); +  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); +  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); +  Dst = zeroCoefficient(Dst, CurLoop); +  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); +  return true; +} + + +// Update direction vector entry based on the current constraint. +void DependenceInfo::updateDirection(Dependence::DVEntry &Level, +                                     const Constraint &CurConstraint) const { +  LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint ="); +  LLVM_DEBUG(CurConstraint.dump(dbgs())); +  if (CurConstraint.isAny()) +    ; // use defaults +  else if (CurConstraint.isDistance()) { +    // this one is consistent, the others aren't +    Level.Scalar = false; +    Level.Distance = CurConstraint.getD(); +    unsigned NewDirection = Dependence::DVEntry::NONE; +    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero +      NewDirection = Dependence::DVEntry::EQ; +    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive +      NewDirection |= Dependence::DVEntry::LT; +    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative +      NewDirection |= Dependence::DVEntry::GT; +    Level.Direction &= NewDirection; +  } +  else if (CurConstraint.isLine()) { +    Level.Scalar = false; +    Level.Distance = nullptr; +    // direction should be accurate +  } +  else if (CurConstraint.isPoint()) { +    Level.Scalar = false; +    Level.Distance = nullptr; +    unsigned NewDirection = Dependence::DVEntry::NONE; +    if (!isKnownPredicate(CmpInst::ICMP_NE, +                          CurConstraint.getY(), +                          CurConstraint.getX())) +      // if X may be = Y +      NewDirection |= Dependence::DVEntry::EQ; +    if (!isKnownPredicate(CmpInst::ICMP_SLE, +                          CurConstraint.getY(), +                          CurConstraint.getX())) +      // if Y may be > X +      NewDirection |= Dependence::DVEntry::LT; +    if (!isKnownPredicate(CmpInst::ICMP_SGE, +                          CurConstraint.getY(), +                          CurConstraint.getX())) +      // if Y may be < X +      NewDirection |= Dependence::DVEntry::GT; +    Level.Direction &= NewDirection; +  } +  else +    llvm_unreachable("constraint has unexpected kind"); +} + +/// Check if we can delinearize the subscripts. If the SCEVs representing the +/// source and destination array references are recurrences on a nested loop, +/// this function flattens the nested recurrences into separate recurrences +/// for each loop level. +bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, +                                    SmallVectorImpl<Subscript> &Pair) { +  assert(isLoadOrStore(Src) && "instruction is not load or store"); +  assert(isLoadOrStore(Dst) && "instruction is not load or store"); +  Value *SrcPtr = getLoadStorePointerOperand(Src); +  Value *DstPtr = getLoadStorePointerOperand(Dst); + +  Loop *SrcLoop = LI->getLoopFor(Src->getParent()); +  Loop *DstLoop = LI->getLoopFor(Dst->getParent()); + +  // Below code mimics the code in Delinearization.cpp +  const SCEV *SrcAccessFn = +    SE->getSCEVAtScope(SrcPtr, SrcLoop); +  const SCEV *DstAccessFn = +    SE->getSCEVAtScope(DstPtr, DstLoop); + +  const SCEVUnknown *SrcBase = +      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); +  const SCEVUnknown *DstBase = +      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); + +  if (!SrcBase || !DstBase || SrcBase != DstBase) +    return false; + +  const SCEV *ElementSize = SE->getElementSize(Src); +  if (ElementSize != SE->getElementSize(Dst)) +    return false; + +  const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase); +  const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase); + +  const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV); +  const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV); +  if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) +    return false; + +  // First step: collect parametric terms in both array references. +  SmallVector<const SCEV *, 4> Terms; +  SE->collectParametricTerms(SrcAR, Terms); +  SE->collectParametricTerms(DstAR, Terms); + +  // Second step: find subscript sizes. +  SmallVector<const SCEV *, 4> Sizes; +  SE->findArrayDimensions(Terms, Sizes, ElementSize); + +  // Third step: compute the access functions for each subscript. +  SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; +  SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes); +  SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes); + +  // Fail when there is only a subscript: that's a linearized access function. +  if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || +      SrcSubscripts.size() != DstSubscripts.size()) +    return false; + +  int size = SrcSubscripts.size(); + +  // Statically check that the array bounds are in-range. The first subscript we +  // don't have a size for and it cannot overflow into another subscript, so is +  // always safe. The others need to be 0 <= subscript[i] < bound, for both src +  // and dst. +  // FIXME: It may be better to record these sizes and add them as constraints +  // to the dependency checks. +  if (!DisableDelinearizationChecks) +    for (int i = 1; i < size; ++i) { +      if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr)) +        return false; + +      if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1])) +        return false; + +      if (!isKnownNonNegative(DstSubscripts[i], DstPtr)) +        return false; + +      if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1])) +        return false; +    } + +  LLVM_DEBUG({ +    dbgs() << "\nSrcSubscripts: "; +    for (int i = 0; i < size; i++) +      dbgs() << *SrcSubscripts[i]; +    dbgs() << "\nDstSubscripts: "; +    for (int i = 0; i < size; i++) +      dbgs() << *DstSubscripts[i]; +  }); + +  // The delinearization transforms a single-subscript MIV dependence test into +  // a multi-subscript SIV dependence test that is easier to compute. So we +  // resize Pair to contain as many pairs of subscripts as the delinearization +  // has found, and then initialize the pairs following the delinearization. +  Pair.resize(size); +  for (int i = 0; i < size; ++i) { +    Pair[i].Src = SrcSubscripts[i]; +    Pair[i].Dst = DstSubscripts[i]; +    unifySubscriptType(&Pair[i]); +  } + +  return true; +} + +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +// For debugging purposes, dump a small bit vector to dbgs(). +static void dumpSmallBitVector(SmallBitVector &BV) { +  dbgs() << "{"; +  for (unsigned VI : BV.set_bits()) { +    dbgs() << VI; +    if (BV.find_next(VI) >= 0) +      dbgs() << ' '; +  } +  dbgs() << "}\n"; +} +#endif + +bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA, +                                FunctionAnalysisManager::Invalidator &Inv) { +  // Check if the analysis itself has been invalidated. +  auto PAC = PA.getChecker<DependenceAnalysis>(); +  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) +    return true; + +  // Check transitive dependencies. +  return Inv.invalidate<AAManager>(F, PA) || +         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || +         Inv.invalidate<LoopAnalysis>(F, PA); +} + +// depends - +// Returns NULL if there is no dependence. +// Otherwise, return a Dependence with as many details as possible. +// Corresponds to Section 3.1 in the paper +// +//            Practical Dependence Testing +//            Goff, Kennedy, Tseng +//            PLDI 1991 +// +// Care is required to keep the routine below, getSplitIteration(), +// up to date with respect to this routine. +std::unique_ptr<Dependence> +DependenceInfo::depends(Instruction *Src, Instruction *Dst, +                        bool PossiblyLoopIndependent) { +  if (Src == Dst) +    PossiblyLoopIndependent = false; + +  if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) || +      (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory())) +    // if both instructions don't reference memory, there's no dependence +    return nullptr; + +  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) { +    // can only analyze simple loads and stores, i.e., no calls, invokes, etc. +    LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n"); +    return std::make_unique<Dependence>(Src, Dst); +  } + +  assert(isLoadOrStore(Src) && "instruction is not load or store"); +  assert(isLoadOrStore(Dst) && "instruction is not load or store"); +  Value *SrcPtr = getLoadStorePointerOperand(Src); +  Value *DstPtr = getLoadStorePointerOperand(Dst); + +  switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), +                                 MemoryLocation::get(Dst), +                                 MemoryLocation::get(Src))) { +  case MayAlias: +  case PartialAlias: +    // cannot analyse objects if we don't understand their aliasing. +    LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n"); +    return std::make_unique<Dependence>(Src, Dst); +  case NoAlias: +    // If the objects noalias, they are distinct, accesses are independent. +    LLVM_DEBUG(dbgs() << "no alias\n"); +    return nullptr; +  case MustAlias: +    break; // The underlying objects alias; test accesses for dependence. +  } + +  // establish loop nesting levels +  establishNestingLevels(Src, Dst); +  LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n"); +  LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n"); + +  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); +  ++TotalArrayPairs; + +  unsigned Pairs = 1; +  SmallVector<Subscript, 2> Pair(Pairs); +  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); +  const SCEV *DstSCEV = SE->getSCEV(DstPtr); +  LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n"); +  LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n"); +  Pair[0].Src = SrcSCEV; +  Pair[0].Dst = DstSCEV; + +  if (Delinearize) { +    if (tryDelinearize(Src, Dst, Pair)) { +      LLVM_DEBUG(dbgs() << "    delinearized\n"); +      Pairs = Pair.size(); +    } +  } + +  for (unsigned P = 0; P < Pairs; ++P) { +    Pair[P].Loops.resize(MaxLevels + 1); +    Pair[P].GroupLoops.resize(MaxLevels + 1); +    Pair[P].Group.resize(Pairs); +    removeMatchingExtensions(&Pair[P]); +    Pair[P].Classification = +      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), +                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()), +                   Pair[P].Loops); +    Pair[P].GroupLoops = Pair[P].Loops; +    Pair[P].Group.set(P); +    LLVM_DEBUG(dbgs() << "    subscript " << P << "\n"); +    LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n"); +    LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n"); +    LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n"); +    LLVM_DEBUG(dbgs() << "\tloops = "); +    LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); +  } + +  SmallBitVector Separable(Pairs); +  SmallBitVector Coupled(Pairs); + +  // Partition subscripts into separable and minimally-coupled groups +  // Algorithm in paper is algorithmically better; +  // this may be faster in practice. Check someday. +  // +  // Here's an example of how it works. Consider this code: +  // +  //   for (i = ...) { +  //     for (j = ...) { +  //       for (k = ...) { +  //         for (l = ...) { +  //           for (m = ...) { +  //             A[i][j][k][m] = ...; +  //             ... = A[0][j][l][i + j]; +  //           } +  //         } +  //       } +  //     } +  //   } +  // +  // There are 4 subscripts here: +  //    0 [i] and [0] +  //    1 [j] and [j] +  //    2 [k] and [l] +  //    3 [m] and [i + j] +  // +  // We've already classified each subscript pair as ZIV, SIV, etc., +  // and collected all the loops mentioned by pair P in Pair[P].Loops. +  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops +  // and set Pair[P].Group = {P}. +  // +  //      Src Dst    Classification Loops  GroupLoops Group +  //    0 [i] [0]         SIV       {1}      {1}        {0} +  //    1 [j] [j]         SIV       {2}      {2}        {1} +  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2} +  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3} +  // +  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. +  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. +  // +  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. +  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. +  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, +  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added +  // to either Separable or Coupled). +  // +  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. +  // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty, +  // so Pair[3].Group = {0, 1, 3} and Done = false. +  // +  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. +  // Since Done remains true, we add 2 to the set of Separable pairs. +  // +  // Finally, we consider 3. There's nothing to compare it with, +  // so Done remains true and we add it to the Coupled set. +  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. +  // +  // In the end, we've got 1 separable subscript and 1 coupled group. +  for (unsigned SI = 0; SI < Pairs; ++SI) { +    if (Pair[SI].Classification == Subscript::NonLinear) { +      // ignore these, but collect loops for later +      ++NonlinearSubscriptPairs; +      collectCommonLoops(Pair[SI].Src, +                         LI->getLoopFor(Src->getParent()), +                         Pair[SI].Loops); +      collectCommonLoops(Pair[SI].Dst, +                         LI->getLoopFor(Dst->getParent()), +                         Pair[SI].Loops); +      Result.Consistent = false; +    } else if (Pair[SI].Classification == Subscript::ZIV) { +      // always separable +      Separable.set(SI); +    } +    else { +      // SIV, RDIV, or MIV, so check for coupled group +      bool Done = true; +      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { +        SmallBitVector Intersection = Pair[SI].GroupLoops; +        Intersection &= Pair[SJ].GroupLoops; +        if (Intersection.any()) { +          // accumulate set of all the loops in group +          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; +          // accumulate set of all subscripts in group +          Pair[SJ].Group |= Pair[SI].Group; +          Done = false; +        } +      } +      if (Done) { +        if (Pair[SI].Group.count() == 1) { +          Separable.set(SI); +          ++SeparableSubscriptPairs; +        } +        else { +          Coupled.set(SI); +          ++CoupledSubscriptPairs; +        } +      } +    } +  } + +  LLVM_DEBUG(dbgs() << "    Separable = "); +  LLVM_DEBUG(dumpSmallBitVector(Separable)); +  LLVM_DEBUG(dbgs() << "    Coupled = "); +  LLVM_DEBUG(dumpSmallBitVector(Coupled)); + +  Constraint NewConstraint; +  NewConstraint.setAny(SE); + +  // test separable subscripts +  for (unsigned SI : Separable.set_bits()) { +    LLVM_DEBUG(dbgs() << "testing subscript " << SI); +    switch (Pair[SI].Classification) { +    case Subscript::ZIV: +      LLVM_DEBUG(dbgs() << ", ZIV\n"); +      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) +        return nullptr; +      break; +    case Subscript::SIV: { +      LLVM_DEBUG(dbgs() << ", SIV\n"); +      unsigned Level; +      const SCEV *SplitIter = nullptr; +      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint, +                  SplitIter)) +        return nullptr; +      break; +    } +    case Subscript::RDIV: +      LLVM_DEBUG(dbgs() << ", RDIV\n"); +      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) +        return nullptr; +      break; +    case Subscript::MIV: +      LLVM_DEBUG(dbgs() << ", MIV\n"); +      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) +        return nullptr; +      break; +    default: +      llvm_unreachable("subscript has unexpected classification"); +    } +  } + +  if (Coupled.count()) { +    // test coupled subscript groups +    LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n"); +    LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); +    SmallVector<Constraint, 4> Constraints(MaxLevels + 1); +    for (unsigned II = 0; II <= MaxLevels; ++II) +      Constraints[II].setAny(SE); +    for (unsigned SI : Coupled.set_bits()) { +      LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { "); +      SmallBitVector Group(Pair[SI].Group); +      SmallBitVector Sivs(Pairs); +      SmallBitVector Mivs(Pairs); +      SmallBitVector ConstrainedLevels(MaxLevels + 1); +      SmallVector<Subscript *, 4> PairsInGroup; +      for (unsigned SJ : Group.set_bits()) { +        LLVM_DEBUG(dbgs() << SJ << " "); +        if (Pair[SJ].Classification == Subscript::SIV) +          Sivs.set(SJ); +        else +          Mivs.set(SJ); +        PairsInGroup.push_back(&Pair[SJ]); +      } +      unifySubscriptType(PairsInGroup); +      LLVM_DEBUG(dbgs() << "}\n"); +      while (Sivs.any()) { +        bool Changed = false; +        for (unsigned SJ : Sivs.set_bits()) { +          LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); +          // SJ is an SIV subscript that's part of the current coupled group +          unsigned Level; +          const SCEV *SplitIter = nullptr; +          LLVM_DEBUG(dbgs() << "SIV\n"); +          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint, +                      SplitIter)) +            return nullptr; +          ConstrainedLevels.set(Level); +          if (intersectConstraints(&Constraints[Level], &NewConstraint)) { +            if (Constraints[Level].isEmpty()) { +              ++DeltaIndependence; +              return nullptr; +            } +            Changed = true; +          } +          Sivs.reset(SJ); +        } +        if (Changed) { +          // propagate, possibly creating new SIVs and ZIVs +          LLVM_DEBUG(dbgs() << "    propagating\n"); +          LLVM_DEBUG(dbgs() << "\tMivs = "); +          LLVM_DEBUG(dumpSmallBitVector(Mivs)); +          for (unsigned SJ : Mivs.set_bits()) { +            // SJ is an MIV subscript that's part of the current coupled group +            LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); +            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, +                          Constraints, Result.Consistent)) { +              LLVM_DEBUG(dbgs() << "\t    Changed\n"); +              ++DeltaPropagations; +              Pair[SJ].Classification = +                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), +                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), +                             Pair[SJ].Loops); +              switch (Pair[SJ].Classification) { +              case Subscript::ZIV: +                LLVM_DEBUG(dbgs() << "ZIV\n"); +                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) +                  return nullptr; +                Mivs.reset(SJ); +                break; +              case Subscript::SIV: +                Sivs.set(SJ); +                Mivs.reset(SJ); +                break; +              case Subscript::RDIV: +              case Subscript::MIV: +                break; +              default: +                llvm_unreachable("bad subscript classification"); +              } +            } +          } +        } +      } + +      // test & propagate remaining RDIVs +      for (unsigned SJ : Mivs.set_bits()) { +        if (Pair[SJ].Classification == Subscript::RDIV) { +          LLVM_DEBUG(dbgs() << "RDIV test\n"); +          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) +            return nullptr; +          // I don't yet understand how to propagate RDIV results +          Mivs.reset(SJ); +        } +      } + +      // test remaining MIVs +      // This code is temporary. +      // Better to somehow test all remaining subscripts simultaneously. +      for (unsigned SJ : Mivs.set_bits()) { +        if (Pair[SJ].Classification == Subscript::MIV) { +          LLVM_DEBUG(dbgs() << "MIV test\n"); +          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) +            return nullptr; +        } +        else +          llvm_unreachable("expected only MIV subscripts at this point"); +      } + +      // update Result.DV from constraint vector +      LLVM_DEBUG(dbgs() << "    updating\n"); +      for (unsigned SJ : ConstrainedLevels.set_bits()) { +        if (SJ > CommonLevels) +          break; +        updateDirection(Result.DV[SJ - 1], Constraints[SJ]); +        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) +          return nullptr; +      } +    } +  } + +  // Make sure the Scalar flags are set correctly. +  SmallBitVector CompleteLoops(MaxLevels + 1); +  for (unsigned SI = 0; SI < Pairs; ++SI) +    CompleteLoops |= Pair[SI].Loops; +  for (unsigned II = 1; II <= CommonLevels; ++II) +    if (CompleteLoops[II]) +      Result.DV[II - 1].Scalar = false; + +  if (PossiblyLoopIndependent) { +    // Make sure the LoopIndependent flag is set correctly. +    // All directions must include equal, otherwise no +    // loop-independent dependence is possible. +    for (unsigned II = 1; II <= CommonLevels; ++II) { +      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { +        Result.LoopIndependent = false; +        break; +      } +    } +  } +  else { +    // On the other hand, if all directions are equal and there's no +    // loop-independent dependence possible, then no dependence exists. +    bool AllEqual = true; +    for (unsigned II = 1; II <= CommonLevels; ++II) { +      if (Result.getDirection(II) != Dependence::DVEntry::EQ) { +        AllEqual = false; +        break; +      } +    } +    if (AllEqual) +      return nullptr; +  } + +  return std::make_unique<FullDependence>(std::move(Result)); +} + + + +//===----------------------------------------------------------------------===// +// getSplitIteration - +// Rather than spend rarely-used space recording the splitting iteration +// during the Weak-Crossing SIV test, we re-compute it on demand. +// The re-computation is basically a repeat of the entire dependence test, +// though simplified since we know that the dependence exists. +// It's tedious, since we must go through all propagations, etc. +// +// Care is required to keep this code up to date with respect to the routine +// above, depends(). +// +// Generally, the dependence analyzer will be used to build +// a dependence graph for a function (basically a map from instructions +// to dependences). Looking for cycles in the graph shows us loops +// that cannot be trivially vectorized/parallelized. +// +// We can try to improve the situation by examining all the dependences +// that make up the cycle, looking for ones we can break. +// Sometimes, peeling the first or last iteration of a loop will break +// dependences, and we've got flags for those possibilities. +// Sometimes, splitting a loop at some other iteration will do the trick, +// and we've got a flag for that case. Rather than waste the space to +// record the exact iteration (since we rarely know), we provide +// a method that calculates the iteration. It's a drag that it must work +// from scratch, but wonderful in that it's possible. +// +// Here's an example: +// +//    for (i = 0; i < 10; i++) +//        A[i] = ... +//        ... = A[11 - i] +// +// There's a loop-carried flow dependence from the store to the load, +// found by the weak-crossing SIV test. The dependence will have a flag, +// indicating that the dependence can be broken by splitting the loop. +// Calling getSplitIteration will return 5. +// Splitting the loop breaks the dependence, like so: +// +//    for (i = 0; i <= 5; i++) +//        A[i] = ... +//        ... = A[11 - i] +//    for (i = 6; i < 10; i++) +//        A[i] = ... +//        ... = A[11 - i] +// +// breaks the dependence and allows us to vectorize/parallelize +// both loops. +const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep, +                                              unsigned SplitLevel) { +  assert(Dep.isSplitable(SplitLevel) && +         "Dep should be splitable at SplitLevel"); +  Instruction *Src = Dep.getSrc(); +  Instruction *Dst = Dep.getDst(); +  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); +  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); +  assert(isLoadOrStore(Src)); +  assert(isLoadOrStore(Dst)); +  Value *SrcPtr = getLoadStorePointerOperand(Src); +  Value *DstPtr = getLoadStorePointerOperand(Dst); +  assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), +                                MemoryLocation::get(Dst), +                                MemoryLocation::get(Src)) == MustAlias); + +  // establish loop nesting levels +  establishNestingLevels(Src, Dst); + +  FullDependence Result(Src, Dst, false, CommonLevels); + +  unsigned Pairs = 1; +  SmallVector<Subscript, 2> Pair(Pairs); +  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); +  const SCEV *DstSCEV = SE->getSCEV(DstPtr); +  Pair[0].Src = SrcSCEV; +  Pair[0].Dst = DstSCEV; + +  if (Delinearize) { +    if (tryDelinearize(Src, Dst, Pair)) { +      LLVM_DEBUG(dbgs() << "    delinearized\n"); +      Pairs = Pair.size(); +    } +  } + +  for (unsigned P = 0; P < Pairs; ++P) { +    Pair[P].Loops.resize(MaxLevels + 1); +    Pair[P].GroupLoops.resize(MaxLevels + 1); +    Pair[P].Group.resize(Pairs); +    removeMatchingExtensions(&Pair[P]); +    Pair[P].Classification = +      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), +                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()), +                   Pair[P].Loops); +    Pair[P].GroupLoops = Pair[P].Loops; +    Pair[P].Group.set(P); +  } + +  SmallBitVector Separable(Pairs); +  SmallBitVector Coupled(Pairs); + +  // partition subscripts into separable and minimally-coupled groups +  for (unsigned SI = 0; SI < Pairs; ++SI) { +    if (Pair[SI].Classification == Subscript::NonLinear) { +      // ignore these, but collect loops for later +      collectCommonLoops(Pair[SI].Src, +                         LI->getLoopFor(Src->getParent()), +                         Pair[SI].Loops); +      collectCommonLoops(Pair[SI].Dst, +                         LI->getLoopFor(Dst->getParent()), +                         Pair[SI].Loops); +      Result.Consistent = false; +    } +    else if (Pair[SI].Classification == Subscript::ZIV) +      Separable.set(SI); +    else { +      // SIV, RDIV, or MIV, so check for coupled group +      bool Done = true; +      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { +        SmallBitVector Intersection = Pair[SI].GroupLoops; +        Intersection &= Pair[SJ].GroupLoops; +        if (Intersection.any()) { +          // accumulate set of all the loops in group +          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; +          // accumulate set of all subscripts in group +          Pair[SJ].Group |= Pair[SI].Group; +          Done = false; +        } +      } +      if (Done) { +        if (Pair[SI].Group.count() == 1) +          Separable.set(SI); +        else +          Coupled.set(SI); +      } +    } +  } + +  Constraint NewConstraint; +  NewConstraint.setAny(SE); + +  // test separable subscripts +  for (unsigned SI : Separable.set_bits()) { +    switch (Pair[SI].Classification) { +    case Subscript::SIV: { +      unsigned Level; +      const SCEV *SplitIter = nullptr; +      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, +                     Result, NewConstraint, SplitIter); +      if (Level == SplitLevel) { +        assert(SplitIter != nullptr); +        return SplitIter; +      } +      break; +    } +    case Subscript::ZIV: +    case Subscript::RDIV: +    case Subscript::MIV: +      break; +    default: +      llvm_unreachable("subscript has unexpected classification"); +    } +  } + +  if (Coupled.count()) { +    // test coupled subscript groups +    SmallVector<Constraint, 4> Constraints(MaxLevels + 1); +    for (unsigned II = 0; II <= MaxLevels; ++II) +      Constraints[II].setAny(SE); +    for (unsigned SI : Coupled.set_bits()) { +      SmallBitVector Group(Pair[SI].Group); +      SmallBitVector Sivs(Pairs); +      SmallBitVector Mivs(Pairs); +      SmallBitVector ConstrainedLevels(MaxLevels + 1); +      for (unsigned SJ : Group.set_bits()) { +        if (Pair[SJ].Classification == Subscript::SIV) +          Sivs.set(SJ); +        else +          Mivs.set(SJ); +      } +      while (Sivs.any()) { +        bool Changed = false; +        for (unsigned SJ : Sivs.set_bits()) { +          // SJ is an SIV subscript that's part of the current coupled group +          unsigned Level; +          const SCEV *SplitIter = nullptr; +          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, +                         Result, NewConstraint, SplitIter); +          if (Level == SplitLevel && SplitIter) +            return SplitIter; +          ConstrainedLevels.set(Level); +          if (intersectConstraints(&Constraints[Level], &NewConstraint)) +            Changed = true; +          Sivs.reset(SJ); +        } +        if (Changed) { +          // propagate, possibly creating new SIVs and ZIVs +          for (unsigned SJ : Mivs.set_bits()) { +            // SJ is an MIV subscript that's part of the current coupled group +            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, +                          Pair[SJ].Loops, Constraints, Result.Consistent)) { +              Pair[SJ].Classification = +                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), +                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), +                             Pair[SJ].Loops); +              switch (Pair[SJ].Classification) { +              case Subscript::ZIV: +                Mivs.reset(SJ); +                break; +              case Subscript::SIV: +                Sivs.set(SJ); +                Mivs.reset(SJ); +                break; +              case Subscript::RDIV: +              case Subscript::MIV: +                break; +              default: +                llvm_unreachable("bad subscript classification"); +              } +            } +          } +        } +      } +    } +  } +  llvm_unreachable("somehow reached end of routine"); +  return nullptr; +}  | 
