summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp407
1 files changed, 407 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp b/contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp
new file mode 100644
index 000000000000..e8a1a2fff919
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp
@@ -0,0 +1,407 @@
+//===- DependenceGraphBuilder.cpp ------------------------------------------==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+// This file implements common steps of the build algorithm for construction
+// of dependence graphs such as DDG and PDG.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DependenceGraphBuilder.h"
+#include "llvm/ADT/EnumeratedArray.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/DDG.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "dgb"
+
+STATISTIC(TotalGraphs, "Number of dependence graphs created.");
+STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
+STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
+STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
+STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
+STATISTIC(TotalConfusedEdges,
+ "Number of confused memory dependencies between two nodes.");
+STATISTIC(TotalEdgeReversals,
+ "Number of times the source and sink of dependence was reversed to "
+ "expose cycles in the graph.");
+
+using InstructionListType = SmallVector<Instruction *, 2>;
+
+//===--------------------------------------------------------------------===//
+// AbstractDependenceGraphBuilder implementation
+//===--------------------------------------------------------------------===//
+
+template <class G>
+void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
+ // The BBList is expected to be in program order.
+ size_t NextOrdinal = 1;
+ for (auto *BB : BBList)
+ for (auto &I : *BB)
+ InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
+}
+
+template <class G>
+void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
+ ++TotalGraphs;
+ assert(IMap.empty() && "Expected empty instruction map at start");
+ for (BasicBlock *BB : BBList)
+ for (Instruction &I : *BB) {
+ auto &NewNode = createFineGrainedNode(I);
+ IMap.insert(std::make_pair(&I, &NewNode));
+ NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
+ ++TotalFineGrainedNodes;
+ }
+}
+
+template <class G>
+void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
+ // Create a root node that connects to every connected component of the graph.
+ // This is done to allow graph iterators to visit all the disjoint components
+ // of the graph, in a single walk.
+ //
+ // This algorithm works by going through each node of the graph and for each
+ // node N, do a DFS starting from N. A rooted edge is established between the
+ // root node and N (if N is not yet visited). All the nodes reachable from N
+ // are marked as visited and are skipped in the DFS of subsequent nodes.
+ //
+ // Note: This algorithm tries to limit the number of edges out of the root
+ // node to some extent, but there may be redundant edges created depending on
+ // the iteration order. For example for a graph {A -> B}, an edge from the
+ // root node is added to both nodes if B is visited before A. While it does
+ // not result in minimal number of edges, this approach saves compile-time
+ // while keeping the number of edges in check.
+ auto &RootNode = createRootNode();
+ df_iterator_default_set<const NodeType *, 4> Visited;
+ for (auto *N : Graph) {
+ if (*N == RootNode)
+ continue;
+ for (auto I : depth_first_ext(N, Visited))
+ if (I == N)
+ createRootedEdge(RootNode, *N);
+ }
+}
+
+template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
+ if (!shouldCreatePiBlocks())
+ return;
+
+ LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
+
+ // The overall algorithm is as follows:
+ // 1. Identify SCCs and for each SCC create a pi-block node containing all
+ // the nodes in that SCC.
+ // 2. Identify incoming edges incident to the nodes inside of the SCC and
+ // reconnect them to the pi-block node.
+ // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
+ // outside of it and reconnect them so that the edges are coming out of the
+ // SCC node instead.
+
+ // Adding nodes as we iterate through the SCCs cause the SCC
+ // iterators to get invalidated. To prevent this invalidation, we first
+ // collect a list of nodes that are part of an SCC, and then iterate over
+ // those lists to create the pi-block nodes. Each element of the list is a
+ // list of nodes in an SCC. Note: trivial SCCs containing a single node are
+ // ignored.
+ SmallVector<NodeListType, 4> ListOfSCCs;
+ for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
+ if (SCC.size() > 1)
+ ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
+ }
+
+ for (NodeListType &NL : ListOfSCCs) {
+ LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
+ << " nodes in it.\n");
+
+ // SCC iterator may put the nodes in an order that's different from the
+ // program order. To preserve original program order, we sort the list of
+ // nodes based on ordinal numbers computed earlier.
+ llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
+ return getOrdinal(*LHS) < getOrdinal(*RHS);
+ });
+
+ NodeType &PiNode = createPiBlock(NL);
+ ++TotalPiBlockNodes;
+
+ // Build a set to speed up the lookup for edges whose targets
+ // are inside the SCC.
+ SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
+
+ // We have the set of nodes in the SCC. We go through the set of nodes
+ // that are outside of the SCC and look for edges that cross the two sets.
+ for (NodeType *N : Graph) {
+
+ // Skip the SCC node and all the nodes inside of it.
+ if (*N == PiNode || NodesInSCC.count(N))
+ continue;
+
+ for (NodeType *SCCNode : NL) {
+
+ enum Direction {
+ Incoming, // Incoming edges to the SCC
+ Outgoing, // Edges going ot of the SCC
+ DirectionCount // To make the enum usable as an array index.
+ };
+
+ // Use these flags to help us avoid creating redundant edges. If there
+ // are more than one edges from an outside node to inside nodes, we only
+ // keep one edge from that node to the pi-block node. Similarly, if
+ // there are more than one edges from inside nodes to an outside node,
+ // we only keep one edge from the pi-block node to the outside node.
+ // There is a flag defined for each direction (incoming vs outgoing) and
+ // for each type of edge supported, using a two-dimensional boolean
+ // array.
+ using EdgeKind = typename EdgeType::EdgeKind;
+ EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
+ false, false};
+
+ auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
+ const EdgeKind K) {
+ switch (K) {
+ case EdgeKind::RegisterDefUse:
+ createDefUseEdge(Src, Dst);
+ break;
+ case EdgeKind::MemoryDependence:
+ createMemoryEdge(Src, Dst);
+ break;
+ case EdgeKind::Rooted:
+ createRootedEdge(Src, Dst);
+ break;
+ default:
+ llvm_unreachable("Unsupported type of edge.");
+ }
+ };
+
+ auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
+ const Direction Dir) {
+ if (!Src->hasEdgeTo(*Dst))
+ return;
+ LLVM_DEBUG(dbgs()
+ << "reconnecting("
+ << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
+ << ":\nSrc:" << *Src << "\nDst:" << *Dst
+ << "\nNew:" << *New << "\n");
+ assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
+ "Invalid direction.");
+
+ SmallVector<EdgeType *, 10> EL;
+ Src->findEdgesTo(*Dst, EL);
+ for (EdgeType *OldEdge : EL) {
+ EdgeKind Kind = OldEdge->getKind();
+ if (!EdgeAlreadyCreated[Dir][Kind]) {
+ if (Dir == Direction::Incoming) {
+ createEdgeOfKind(*Src, *New, Kind);
+ LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
+ } else if (Dir == Direction::Outgoing) {
+ createEdgeOfKind(*New, *Dst, Kind);
+ LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
+ }
+ EdgeAlreadyCreated[Dir][Kind] = true;
+ }
+ Src->removeEdge(*OldEdge);
+ destroyEdge(*OldEdge);
+ LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
+ }
+ };
+
+ // Process incoming edges incident to the pi-block node.
+ reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
+
+ // Process edges that are coming out of the pi-block node.
+ reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
+ }
+ }
+ }
+
+ // Ordinal maps are no longer needed.
+ InstOrdinalMap.clear();
+ NodeOrdinalMap.clear();
+
+ LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
+}
+
+template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
+ for (NodeType *N : Graph) {
+ InstructionListType SrcIList;
+ N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
+
+ // Use a set to mark the targets that we link to N, so we don't add
+ // duplicate def-use edges when more than one instruction in a target node
+ // use results of instructions that are contained in N.
+ SmallPtrSet<NodeType *, 4> VisitedTargets;
+
+ for (Instruction *II : SrcIList) {
+ for (User *U : II->users()) {
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI)
+ continue;
+ NodeType *DstNode = nullptr;
+ if (IMap.find(UI) != IMap.end())
+ DstNode = IMap.find(UI)->second;
+
+ // In the case of loops, the scope of the subgraph is all the
+ // basic blocks (and instructions within them) belonging to the loop. We
+ // simply ignore all the edges coming from (or going into) instructions
+ // or basic blocks outside of this range.
+ if (!DstNode) {
+ LLVM_DEBUG(
+ dbgs()
+ << "skipped def-use edge since the sink" << *UI
+ << " is outside the range of instructions being considered.\n");
+ continue;
+ }
+
+ // Self dependencies are ignored because they are redundant and
+ // uninteresting.
+ if (DstNode == N) {
+ LLVM_DEBUG(dbgs()
+ << "skipped def-use edge since the sink and the source ("
+ << N << ") are the same.\n");
+ continue;
+ }
+
+ if (VisitedTargets.insert(DstNode).second) {
+ createDefUseEdge(*N, *DstNode);
+ ++TotalDefUseEdges;
+ }
+ }
+ }
+ }
+}
+
+template <class G>
+void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
+ using DGIterator = typename G::iterator;
+ auto isMemoryAccess = [](const Instruction *I) {
+ return I->mayReadOrWriteMemory();
+ };
+ for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
+ InstructionListType SrcIList;
+ (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
+ if (SrcIList.empty())
+ continue;
+
+ for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
+ if (**SrcIt == **DstIt)
+ continue;
+ InstructionListType DstIList;
+ (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
+ if (DstIList.empty())
+ continue;
+ bool ForwardEdgeCreated = false;
+ bool BackwardEdgeCreated = false;
+ for (Instruction *ISrc : SrcIList) {
+ for (Instruction *IDst : DstIList) {
+ auto D = DI.depends(ISrc, IDst, true);
+ if (!D)
+ continue;
+
+ // If we have a dependence with its left-most non-'=' direction
+ // being '>' we need to reverse the direction of the edge, because
+ // the source of the dependence cannot occur after the sink. For
+ // confused dependencies, we will create edges in both directions to
+ // represent the possibility of a cycle.
+
+ auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
+ if (!ForwardEdgeCreated) {
+ createMemoryEdge(Src, Dst);
+ ++TotalMemoryEdges;
+ }
+ if (!BackwardEdgeCreated) {
+ createMemoryEdge(Dst, Src);
+ ++TotalMemoryEdges;
+ }
+ ForwardEdgeCreated = BackwardEdgeCreated = true;
+ ++TotalConfusedEdges;
+ };
+
+ auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
+ if (!ForwardEdgeCreated) {
+ createMemoryEdge(Src, Dst);
+ ++TotalMemoryEdges;
+ }
+ ForwardEdgeCreated = true;
+ };
+
+ auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
+ if (!BackwardEdgeCreated) {
+ createMemoryEdge(Dst, Src);
+ ++TotalMemoryEdges;
+ }
+ BackwardEdgeCreated = true;
+ };
+
+ if (D->isConfused())
+ createConfusedEdges(**SrcIt, **DstIt);
+ else if (D->isOrdered() && !D->isLoopIndependent()) {
+ bool ReversedEdge = false;
+ for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
+ if (D->getDirection(Level) == Dependence::DVEntry::EQ)
+ continue;
+ else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
+ createBackwardEdge(**SrcIt, **DstIt);
+ ReversedEdge = true;
+ ++TotalEdgeReversals;
+ break;
+ } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
+ break;
+ else {
+ createConfusedEdges(**SrcIt, **DstIt);
+ break;
+ }
+ }
+ if (!ReversedEdge)
+ createForwardEdge(**SrcIt, **DstIt);
+ } else
+ createForwardEdge(**SrcIt, **DstIt);
+
+ // Avoid creating duplicate edges.
+ if (ForwardEdgeCreated && BackwardEdgeCreated)
+ break;
+ }
+
+ // If we've created edges in both directions, there is no more
+ // unique edge that we can create between these two nodes, so we
+ // can exit early.
+ if (ForwardEdgeCreated && BackwardEdgeCreated)
+ break;
+ }
+ }
+ }
+}
+
+template <class G>
+void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
+
+ // If we don't create pi-blocks, then we may not have a DAG.
+ if (!shouldCreatePiBlocks())
+ return;
+
+ SmallVector<NodeType *, 64> NodesInPO;
+ using NodeKind = typename NodeType::NodeKind;
+ for (NodeType *N : post_order(&Graph)) {
+ if (N->getKind() == NodeKind::PiBlock) {
+ // Put members of the pi-block right after the pi-block itself, for
+ // convenience.
+ const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
+ NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
+ PiBlockMembers.end());
+ }
+ NodesInPO.push_back(N);
+ }
+
+ size_t OldSize = Graph.Nodes.size();
+ Graph.Nodes.clear();
+ for (NodeType *N : reverse(NodesInPO))
+ Graph.Nodes.push_back(N);
+ if (Graph.Nodes.size() != OldSize)
+ assert(false &&
+ "Expected the number of nodes to stay the same after the sort");
+}
+
+template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
+template class llvm::DependenceGraphInfo<DDGNode>;