diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/Loads.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/Loads.cpp | 457 |
1 files changed, 457 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp b/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp new file mode 100644 index 000000000000..31da4e9ec783 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/Loads.cpp @@ -0,0 +1,457 @@ +//===- Loads.cpp - Local load analysis ------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines simple local analyses for load instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Statepoint.h" + +using namespace llvm; + +static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, + const DataLayout &DL) { + APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); + + if (!BaseAlign) { + Type *Ty = Base->getType()->getPointerElementType(); + if (!Ty->isSized()) + return false; + BaseAlign = DL.getABITypeAlignment(Ty); + } + + APInt Alignment(Offset.getBitWidth(), Align); + + assert(Alignment.isPowerOf2() && "must be a power of 2!"); + return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); +} + +static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { + Type *Ty = Base->getType(); + assert(Ty->isSized() && "must be sized"); + APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); + return isAligned(Base, Offset, Align, DL); +} + +/// Test if V is always a pointer to allocated and suitably aligned memory for +/// a simple load or store. +static bool isDereferenceableAndAlignedPointer( + const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, + const Instruction *CtxI, const DominatorTree *DT, + SmallPtrSetImpl<const Value *> &Visited) { + // Already visited? Bail out, we've likely hit unreachable code. + if (!Visited.insert(V).second) + return false; + + // Note that it is not safe to speculate into a malloc'd region because + // malloc may return null. + + // bitcast instructions are no-ops as far as dereferenceability is concerned. + if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) + return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, + DL, CtxI, DT, Visited); + + bool CheckForNonNull = false; + APInt KnownDerefBytes(Size.getBitWidth(), + V->getPointerDereferenceableBytes(DL, CheckForNonNull)); + if (KnownDerefBytes.getBoolValue()) { + if (KnownDerefBytes.uge(Size)) + if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) + return isAligned(V, Align, DL); + } + + // For GEPs, determine if the indexing lands within the allocated object. + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + const Value *Base = GEP->getPointerOperand(); + + APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); + if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || + !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) + return false; + + // If the base pointer is dereferenceable for Offset+Size bytes, then the + // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base + // pointer is aligned to Align bytes, and the Offset is divisible by Align + // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also + // aligned to Align bytes. + + // Offset and Size may have different bit widths if we have visited an + // addrspacecast, so we can't do arithmetic directly on the APInt values. + return isDereferenceableAndAlignedPointer( + Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()), + DL, CtxI, DT, Visited); + } + + // For gc.relocate, look through relocations + if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) + return isDereferenceableAndAlignedPointer( + RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); + + if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) + return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, + DL, CtxI, DT, Visited); + + if (const auto *Call = dyn_cast<CallBase>(V)) + if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) + return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT, + Visited); + + // If we don't know, assume the worst. + return false; +} + +bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, + const APInt &Size, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + SmallPtrSet<const Value *, 32> Visited; + return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT, + Visited); +} + +bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, + unsigned Align, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + // When dereferenceability information is provided by a dereferenceable + // attribute, we know exactly how many bytes are dereferenceable. If we can + // determine the exact offset to the attributed variable, we can use that + // information here. + + // Require ABI alignment for loads without alignment specification + if (Align == 0) + Align = DL.getABITypeAlignment(Ty); + + if (!Ty->isSized()) + return false; + + SmallPtrSet<const Value *, 32> Visited; + return ::isDereferenceableAndAlignedPointer( + V, Align, + APInt(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)), + DL, CtxI, DT, Visited); +} + +bool llvm::isDereferenceablePointer(const Value *V, Type *Ty, + const DataLayout &DL, + const Instruction *CtxI, + const DominatorTree *DT) { + return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT); +} + +/// Test if A and B will obviously have the same value. +/// +/// This includes recognizing that %t0 and %t1 will have the same +/// value in code like this: +/// \code +/// %t0 = getelementptr \@a, 0, 3 +/// store i32 0, i32* %t0 +/// %t1 = getelementptr \@a, 0, 3 +/// %t2 = load i32* %t1 +/// \endcode +/// +static bool AreEquivalentAddressValues(const Value *A, const Value *B) { + // Test if the values are trivially equivalent. + if (A == B) + return true; + + // Test if the values come from identical arithmetic instructions. + // Use isIdenticalToWhenDefined instead of isIdenticalTo because + // this function is only used when one address use dominates the + // other, which means that they'll always either have the same + // value or one of them will have an undefined value. + if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || + isa<GetElementPtrInst>(A)) + if (const Instruction *BI = dyn_cast<Instruction>(B)) + if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) + return true; + + // Otherwise they may not be equivalent. + return false; +} + +/// Check if executing a load of this pointer value cannot trap. +/// +/// If DT and ScanFrom are specified this method performs context-sensitive +/// analysis and returns true if it is safe to load immediately before ScanFrom. +/// +/// If it is not obviously safe to load from the specified pointer, we do +/// a quick local scan of the basic block containing \c ScanFrom, to determine +/// if the address is already accessed. +/// +/// This uses the pointee type to determine how many bytes need to be safe to +/// load from the pointer. +bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size, + const DataLayout &DL, + Instruction *ScanFrom, + const DominatorTree *DT) { + // Zero alignment means that the load has the ABI alignment for the target + if (Align == 0) + Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); + assert(isPowerOf2_32(Align)); + + // If DT is not specified we can't make context-sensitive query + const Instruction* CtxI = DT ? ScanFrom : nullptr; + if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT)) + return true; + + int64_t ByteOffset = 0; + Value *Base = V; + Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); + + if (ByteOffset < 0) // out of bounds + return false; + + Type *BaseType = nullptr; + unsigned BaseAlign = 0; + if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { + // An alloca is safe to load from as load as it is suitably aligned. + BaseType = AI->getAllocatedType(); + BaseAlign = AI->getAlignment(); + } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { + // Global variables are not necessarily safe to load from if they are + // interposed arbitrarily. Their size may change or they may be weak and + // require a test to determine if they were in fact provided. + if (!GV->isInterposable()) { + BaseType = GV->getType()->getElementType(); + BaseAlign = GV->getAlignment(); + } + } + + PointerType *AddrTy = cast<PointerType>(V->getType()); + uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); + + // If we found a base allocated type from either an alloca or global variable, + // try to see if we are definitively within the allocated region. We need to + // know the size of the base type and the loaded type to do anything in this + // case. + if (BaseType && BaseType->isSized()) { + if (BaseAlign == 0) + BaseAlign = DL.getPrefTypeAlignment(BaseType); + + if (Align <= BaseAlign) { + // Check if the load is within the bounds of the underlying object. + if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && + ((ByteOffset % Align) == 0)) + return true; + } + } + + if (!ScanFrom) + return false; + + // Otherwise, be a little bit aggressive by scanning the local block where we + // want to check to see if the pointer is already being loaded or stored + // from/to. If so, the previous load or store would have already trapped, + // so there is no harm doing an extra load (also, CSE will later eliminate + // the load entirely). + BasicBlock::iterator BBI = ScanFrom->getIterator(), + E = ScanFrom->getParent()->begin(); + + // We can at least always strip pointer casts even though we can't use the + // base here. + V = V->stripPointerCasts(); + + while (BBI != E) { + --BBI; + + // If we see a free or a call which may write to memory (i.e. which might do + // a free) the pointer could be marked invalid. + if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && + !isa<DbgInfoIntrinsic>(BBI)) + return false; + + Value *AccessedPtr; + unsigned AccessedAlign; + if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { + // Ignore volatile loads. The execution of a volatile load cannot + // be used to prove an address is backed by regular memory; it can, + // for example, point to an MMIO register. + if (LI->isVolatile()) + continue; + AccessedPtr = LI->getPointerOperand(); + AccessedAlign = LI->getAlignment(); + } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { + // Ignore volatile stores (see comment for loads). + if (SI->isVolatile()) + continue; + AccessedPtr = SI->getPointerOperand(); + AccessedAlign = SI->getAlignment(); + } else + continue; + + Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); + if (AccessedAlign == 0) + AccessedAlign = DL.getABITypeAlignment(AccessedTy); + if (AccessedAlign < Align) + continue; + + // Handle trivial cases. + if (AccessedPtr == V) + return true; + + if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && + LoadSize <= DL.getTypeStoreSize(AccessedTy)) + return true; + } + return false; +} + +bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align, + const DataLayout &DL, + Instruction *ScanFrom, + const DominatorTree *DT) { + APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty)); + return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT); +} + + /// DefMaxInstsToScan - the default number of maximum instructions +/// to scan in the block, used by FindAvailableLoadedValue(). +/// FindAvailableLoadedValue() was introduced in r60148, to improve jump +/// threading in part by eliminating partially redundant loads. +/// At that point, the value of MaxInstsToScan was already set to '6' +/// without documented explanation. +cl::opt<unsigned> +llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, + cl::desc("Use this to specify the default maximum number of instructions " + "to scan backward from a given instruction, when searching for " + "available loaded value")); + +Value *llvm::FindAvailableLoadedValue(LoadInst *Load, + BasicBlock *ScanBB, + BasicBlock::iterator &ScanFrom, + unsigned MaxInstsToScan, + AliasAnalysis *AA, bool *IsLoad, + unsigned *NumScanedInst) { + // Don't CSE load that is volatile or anything stronger than unordered. + if (!Load->isUnordered()) + return nullptr; + + return FindAvailablePtrLoadStore( + Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, + ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); +} + +Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, + bool AtLeastAtomic, BasicBlock *ScanBB, + BasicBlock::iterator &ScanFrom, + unsigned MaxInstsToScan, + AliasAnalysis *AA, bool *IsLoadCSE, + unsigned *NumScanedInst) { + if (MaxInstsToScan == 0) + MaxInstsToScan = ~0U; + + const DataLayout &DL = ScanBB->getModule()->getDataLayout(); + + // Try to get the store size for the type. + auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy)); + + Value *StrippedPtr = Ptr->stripPointerCasts(); + + while (ScanFrom != ScanBB->begin()) { + // We must ignore debug info directives when counting (otherwise they + // would affect codegen). + Instruction *Inst = &*--ScanFrom; + if (isa<DbgInfoIntrinsic>(Inst)) + continue; + + // Restore ScanFrom to expected value in case next test succeeds + ScanFrom++; + + if (NumScanedInst) + ++(*NumScanedInst); + + // Don't scan huge blocks. + if (MaxInstsToScan-- == 0) + return nullptr; + + --ScanFrom; + // If this is a load of Ptr, the loaded value is available. + // (This is true even if the load is volatile or atomic, although + // those cases are unlikely.) + if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) + if (AreEquivalentAddressValues( + LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { + + // We can value forward from an atomic to a non-atomic, but not the + // other way around. + if (LI->isAtomic() < AtLeastAtomic) + return nullptr; + + if (IsLoadCSE) + *IsLoadCSE = true; + return LI; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); + // If this is a store through Ptr, the value is available! + // (This is true even if the store is volatile or atomic, although + // those cases are unlikely.) + if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && + CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), + AccessTy, DL)) { + + // We can value forward from an atomic to a non-atomic, but not the + // other way around. + if (SI->isAtomic() < AtLeastAtomic) + return nullptr; + + if (IsLoadCSE) + *IsLoadCSE = false; + return SI->getOperand(0); + } + + // If both StrippedPtr and StorePtr reach all the way to an alloca or + // global and they are different, ignore the store. This is a trivial form + // of alias analysis that is important for reg2mem'd code. + if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && + (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && + StrippedPtr != StorePtr) + continue; + + // If we have alias analysis and it says the store won't modify the loaded + // value, ignore the store. + if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) + continue; + + // Otherwise the store that may or may not alias the pointer, bail out. + ++ScanFrom; + return nullptr; + } + + // If this is some other instruction that may clobber Ptr, bail out. + if (Inst->mayWriteToMemory()) { + // If alias analysis claims that it really won't modify the load, + // ignore it. + if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) + continue; + + // May modify the pointer, bail out. + ++ScanFrom; + return nullptr; + } + } + + // Got to the start of the block, we didn't find it, but are done for this + // block. + return nullptr; +} |
