summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp8846
1 files changed, 8846 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp b/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp
new file mode 100644
index 000000000000..87dff6468f2d
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp
@@ -0,0 +1,8846 @@
+//===-- LLParser.cpp - Parser Class ---------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the parser class for .ll files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LLParser.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/AsmParser/SlotMapping.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/AutoUpgrade.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstring>
+#include <iterator>
+#include <vector>
+
+using namespace llvm;
+
+static std::string getTypeString(Type *T) {
+ std::string Result;
+ raw_string_ostream Tmp(Result);
+ Tmp << *T;
+ return Tmp.str();
+}
+
+/// Run: module ::= toplevelentity*
+bool LLParser::Run() {
+ // Prime the lexer.
+ Lex.Lex();
+
+ if (Context.shouldDiscardValueNames())
+ return Error(
+ Lex.getLoc(),
+ "Can't read textual IR with a Context that discards named Values");
+
+ return ParseTopLevelEntities() || ValidateEndOfModule() ||
+ ValidateEndOfIndex();
+}
+
+bool LLParser::parseStandaloneConstantValue(Constant *&C,
+ const SlotMapping *Slots) {
+ restoreParsingState(Slots);
+ Lex.Lex();
+
+ Type *Ty = nullptr;
+ if (ParseType(Ty) || parseConstantValue(Ty, C))
+ return true;
+ if (Lex.getKind() != lltok::Eof)
+ return Error(Lex.getLoc(), "expected end of string");
+ return false;
+}
+
+bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
+ const SlotMapping *Slots) {
+ restoreParsingState(Slots);
+ Lex.Lex();
+
+ Read = 0;
+ SMLoc Start = Lex.getLoc();
+ Ty = nullptr;
+ if (ParseType(Ty))
+ return true;
+ SMLoc End = Lex.getLoc();
+ Read = End.getPointer() - Start.getPointer();
+
+ return false;
+}
+
+void LLParser::restoreParsingState(const SlotMapping *Slots) {
+ if (!Slots)
+ return;
+ NumberedVals = Slots->GlobalValues;
+ NumberedMetadata = Slots->MetadataNodes;
+ for (const auto &I : Slots->NamedTypes)
+ NamedTypes.insert(
+ std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
+ for (const auto &I : Slots->Types)
+ NumberedTypes.insert(
+ std::make_pair(I.first, std::make_pair(I.second, LocTy())));
+}
+
+/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
+/// module.
+bool LLParser::ValidateEndOfModule() {
+ if (!M)
+ return false;
+ // Handle any function attribute group forward references.
+ for (const auto &RAG : ForwardRefAttrGroups) {
+ Value *V = RAG.first;
+ const std::vector<unsigned> &Attrs = RAG.second;
+ AttrBuilder B;
+
+ for (const auto &Attr : Attrs)
+ B.merge(NumberedAttrBuilders[Attr]);
+
+ if (Function *Fn = dyn_cast<Function>(V)) {
+ AttributeList AS = Fn->getAttributes();
+ AttrBuilder FnAttrs(AS.getFnAttributes());
+ AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
+
+ FnAttrs.merge(B);
+
+ // If the alignment was parsed as an attribute, move to the alignment
+ // field.
+ if (FnAttrs.hasAlignmentAttr()) {
+ Fn->setAlignment(FnAttrs.getAlignment());
+ FnAttrs.removeAttribute(Attribute::Alignment);
+ }
+
+ AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
+ AttributeSet::get(Context, FnAttrs));
+ Fn->setAttributes(AS);
+ } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
+ AttributeList AS = CI->getAttributes();
+ AttrBuilder FnAttrs(AS.getFnAttributes());
+ AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
+ FnAttrs.merge(B);
+ AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
+ AttributeSet::get(Context, FnAttrs));
+ CI->setAttributes(AS);
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
+ AttributeList AS = II->getAttributes();
+ AttrBuilder FnAttrs(AS.getFnAttributes());
+ AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
+ FnAttrs.merge(B);
+ AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
+ AttributeSet::get(Context, FnAttrs));
+ II->setAttributes(AS);
+ } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
+ AttributeList AS = CBI->getAttributes();
+ AttrBuilder FnAttrs(AS.getFnAttributes());
+ AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
+ FnAttrs.merge(B);
+ AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
+ AttributeSet::get(Context, FnAttrs));
+ CBI->setAttributes(AS);
+ } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
+ AttrBuilder Attrs(GV->getAttributes());
+ Attrs.merge(B);
+ GV->setAttributes(AttributeSet::get(Context,Attrs));
+ } else {
+ llvm_unreachable("invalid object with forward attribute group reference");
+ }
+ }
+
+ // If there are entries in ForwardRefBlockAddresses at this point, the
+ // function was never defined.
+ if (!ForwardRefBlockAddresses.empty())
+ return Error(ForwardRefBlockAddresses.begin()->first.Loc,
+ "expected function name in blockaddress");
+
+ for (const auto &NT : NumberedTypes)
+ if (NT.second.second.isValid())
+ return Error(NT.second.second,
+ "use of undefined type '%" + Twine(NT.first) + "'");
+
+ for (StringMap<std::pair<Type*, LocTy> >::iterator I =
+ NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
+ if (I->second.second.isValid())
+ return Error(I->second.second,
+ "use of undefined type named '" + I->getKey() + "'");
+
+ if (!ForwardRefComdats.empty())
+ return Error(ForwardRefComdats.begin()->second,
+ "use of undefined comdat '$" +
+ ForwardRefComdats.begin()->first + "'");
+
+ if (!ForwardRefVals.empty())
+ return Error(ForwardRefVals.begin()->second.second,
+ "use of undefined value '@" + ForwardRefVals.begin()->first +
+ "'");
+
+ if (!ForwardRefValIDs.empty())
+ return Error(ForwardRefValIDs.begin()->second.second,
+ "use of undefined value '@" +
+ Twine(ForwardRefValIDs.begin()->first) + "'");
+
+ if (!ForwardRefMDNodes.empty())
+ return Error(ForwardRefMDNodes.begin()->second.second,
+ "use of undefined metadata '!" +
+ Twine(ForwardRefMDNodes.begin()->first) + "'");
+
+ // Resolve metadata cycles.
+ for (auto &N : NumberedMetadata) {
+ if (N.second && !N.second->isResolved())
+ N.second->resolveCycles();
+ }
+
+ for (auto *Inst : InstsWithTBAATag) {
+ MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
+ assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
+ auto *UpgradedMD = UpgradeTBAANode(*MD);
+ if (MD != UpgradedMD)
+ Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
+ }
+
+ // Look for intrinsic functions and CallInst that need to be upgraded
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
+ UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
+
+ // Some types could be renamed during loading if several modules are
+ // loaded in the same LLVMContext (LTO scenario). In this case we should
+ // remangle intrinsics names as well.
+ for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
+ Function *F = &*FI++;
+ if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
+ F->replaceAllUsesWith(Remangled.getValue());
+ F->eraseFromParent();
+ }
+ }
+
+ if (UpgradeDebugInfo)
+ llvm::UpgradeDebugInfo(*M);
+
+ UpgradeModuleFlags(*M);
+ UpgradeSectionAttributes(*M);
+
+ if (!Slots)
+ return false;
+ // Initialize the slot mapping.
+ // Because by this point we've parsed and validated everything, we can "steal"
+ // the mapping from LLParser as it doesn't need it anymore.
+ Slots->GlobalValues = std::move(NumberedVals);
+ Slots->MetadataNodes = std::move(NumberedMetadata);
+ for (const auto &I : NamedTypes)
+ Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
+ for (const auto &I : NumberedTypes)
+ Slots->Types.insert(std::make_pair(I.first, I.second.first));
+
+ return false;
+}
+
+/// Do final validity and sanity checks at the end of the index.
+bool LLParser::ValidateEndOfIndex() {
+ if (!Index)
+ return false;
+
+ if (!ForwardRefValueInfos.empty())
+ return Error(ForwardRefValueInfos.begin()->second.front().second,
+ "use of undefined summary '^" +
+ Twine(ForwardRefValueInfos.begin()->first) + "'");
+
+ if (!ForwardRefAliasees.empty())
+ return Error(ForwardRefAliasees.begin()->second.front().second,
+ "use of undefined summary '^" +
+ Twine(ForwardRefAliasees.begin()->first) + "'");
+
+ if (!ForwardRefTypeIds.empty())
+ return Error(ForwardRefTypeIds.begin()->second.front().second,
+ "use of undefined type id summary '^" +
+ Twine(ForwardRefTypeIds.begin()->first) + "'");
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level Entities
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ParseTopLevelEntities() {
+ // If there is no Module, then parse just the summary index entries.
+ if (!M) {
+ while (true) {
+ switch (Lex.getKind()) {
+ case lltok::Eof:
+ return false;
+ case lltok::SummaryID:
+ if (ParseSummaryEntry())
+ return true;
+ break;
+ case lltok::kw_source_filename:
+ if (ParseSourceFileName())
+ return true;
+ break;
+ default:
+ // Skip everything else
+ Lex.Lex();
+ }
+ }
+ }
+ while (true) {
+ switch (Lex.getKind()) {
+ default: return TokError("expected top-level entity");
+ case lltok::Eof: return false;
+ case lltok::kw_declare: if (ParseDeclare()) return true; break;
+ case lltok::kw_define: if (ParseDefine()) return true; break;
+ case lltok::kw_module: if (ParseModuleAsm()) return true; break;
+ case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
+ case lltok::kw_source_filename:
+ if (ParseSourceFileName())
+ return true;
+ break;
+ case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
+ case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
+ case lltok::LocalVar: if (ParseNamedType()) return true; break;
+ case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
+ case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
+ case lltok::ComdatVar: if (parseComdat()) return true; break;
+ case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
+ case lltok::SummaryID:
+ if (ParseSummaryEntry())
+ return true;
+ break;
+ case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
+ case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
+ case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
+ case lltok::kw_uselistorder_bb:
+ if (ParseUseListOrderBB())
+ return true;
+ break;
+ }
+ }
+}
+
+/// toplevelentity
+/// ::= 'module' 'asm' STRINGCONSTANT
+bool LLParser::ParseModuleAsm() {
+ assert(Lex.getKind() == lltok::kw_module);
+ Lex.Lex();
+
+ std::string AsmStr;
+ if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
+ ParseStringConstant(AsmStr)) return true;
+
+ M->appendModuleInlineAsm(AsmStr);
+ return false;
+}
+
+/// toplevelentity
+/// ::= 'target' 'triple' '=' STRINGCONSTANT
+/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
+bool LLParser::ParseTargetDefinition() {
+ assert(Lex.getKind() == lltok::kw_target);
+ std::string Str;
+ switch (Lex.Lex()) {
+ default: return TokError("unknown target property");
+ case lltok::kw_triple:
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after target triple") ||
+ ParseStringConstant(Str))
+ return true;
+ M->setTargetTriple(Str);
+ return false;
+ case lltok::kw_datalayout:
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
+ ParseStringConstant(Str))
+ return true;
+ if (DataLayoutStr.empty())
+ M->setDataLayout(Str);
+ return false;
+ }
+}
+
+/// toplevelentity
+/// ::= 'source_filename' '=' STRINGCONSTANT
+bool LLParser::ParseSourceFileName() {
+ assert(Lex.getKind() == lltok::kw_source_filename);
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
+ ParseStringConstant(SourceFileName))
+ return true;
+ if (M)
+ M->setSourceFileName(SourceFileName);
+ return false;
+}
+
+/// toplevelentity
+/// ::= 'deplibs' '=' '[' ']'
+/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
+/// FIXME: Remove in 4.0. Currently parse, but ignore.
+bool LLParser::ParseDepLibs() {
+ assert(Lex.getKind() == lltok::kw_deplibs);
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
+ ParseToken(lltok::lsquare, "expected '=' after deplibs"))
+ return true;
+
+ if (EatIfPresent(lltok::rsquare))
+ return false;
+
+ do {
+ std::string Str;
+ if (ParseStringConstant(Str)) return true;
+ } while (EatIfPresent(lltok::comma));
+
+ return ParseToken(lltok::rsquare, "expected ']' at end of list");
+}
+
+/// ParseUnnamedType:
+/// ::= LocalVarID '=' 'type' type
+bool LLParser::ParseUnnamedType() {
+ LocTy TypeLoc = Lex.getLoc();
+ unsigned TypeID = Lex.getUIntVal();
+ Lex.Lex(); // eat LocalVarID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name") ||
+ ParseToken(lltok::kw_type, "expected 'type' after '='"))
+ return true;
+
+ Type *Result = nullptr;
+ if (ParseStructDefinition(TypeLoc, "",
+ NumberedTypes[TypeID], Result)) return true;
+
+ if (!isa<StructType>(Result)) {
+ std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
+ if (Entry.first)
+ return Error(TypeLoc, "non-struct types may not be recursive");
+ Entry.first = Result;
+ Entry.second = SMLoc();
+ }
+
+ return false;
+}
+
+/// toplevelentity
+/// ::= LocalVar '=' 'type' type
+bool LLParser::ParseNamedType() {
+ std::string Name = Lex.getStrVal();
+ LocTy NameLoc = Lex.getLoc();
+ Lex.Lex(); // eat LocalVar.
+
+ if (ParseToken(lltok::equal, "expected '=' after name") ||
+ ParseToken(lltok::kw_type, "expected 'type' after name"))
+ return true;
+
+ Type *Result = nullptr;
+ if (ParseStructDefinition(NameLoc, Name,
+ NamedTypes[Name], Result)) return true;
+
+ if (!isa<StructType>(Result)) {
+ std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
+ if (Entry.first)
+ return Error(NameLoc, "non-struct types may not be recursive");
+ Entry.first = Result;
+ Entry.second = SMLoc();
+ }
+
+ return false;
+}
+
+/// toplevelentity
+/// ::= 'declare' FunctionHeader
+bool LLParser::ParseDeclare() {
+ assert(Lex.getKind() == lltok::kw_declare);
+ Lex.Lex();
+
+ std::vector<std::pair<unsigned, MDNode *>> MDs;
+ while (Lex.getKind() == lltok::MetadataVar) {
+ unsigned MDK;
+ MDNode *N;
+ if (ParseMetadataAttachment(MDK, N))
+ return true;
+ MDs.push_back({MDK, N});
+ }
+
+ Function *F;
+ if (ParseFunctionHeader(F, false))
+ return true;
+ for (auto &MD : MDs)
+ F->addMetadata(MD.first, *MD.second);
+ return false;
+}
+
+/// toplevelentity
+/// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
+bool LLParser::ParseDefine() {
+ assert(Lex.getKind() == lltok::kw_define);
+ Lex.Lex();
+
+ Function *F;
+ return ParseFunctionHeader(F, true) ||
+ ParseOptionalFunctionMetadata(*F) ||
+ ParseFunctionBody(*F);
+}
+
+/// ParseGlobalType
+/// ::= 'constant'
+/// ::= 'global'
+bool LLParser::ParseGlobalType(bool &IsConstant) {
+ if (Lex.getKind() == lltok::kw_constant)
+ IsConstant = true;
+ else if (Lex.getKind() == lltok::kw_global)
+ IsConstant = false;
+ else {
+ IsConstant = false;
+ return TokError("expected 'global' or 'constant'");
+ }
+ Lex.Lex();
+ return false;
+}
+
+bool LLParser::ParseOptionalUnnamedAddr(
+ GlobalVariable::UnnamedAddr &UnnamedAddr) {
+ if (EatIfPresent(lltok::kw_unnamed_addr))
+ UnnamedAddr = GlobalValue::UnnamedAddr::Global;
+ else if (EatIfPresent(lltok::kw_local_unnamed_addr))
+ UnnamedAddr = GlobalValue::UnnamedAddr::Local;
+ else
+ UnnamedAddr = GlobalValue::UnnamedAddr::None;
+ return false;
+}
+
+/// ParseUnnamedGlobal:
+/// OptionalVisibility (ALIAS | IFUNC) ...
+/// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
+/// OptionalDLLStorageClass
+/// ... -> global variable
+/// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
+/// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
+/// OptionalDLLStorageClass
+/// ... -> global variable
+bool LLParser::ParseUnnamedGlobal() {
+ unsigned VarID = NumberedVals.size();
+ std::string Name;
+ LocTy NameLoc = Lex.getLoc();
+
+ // Handle the GlobalID form.
+ if (Lex.getKind() == lltok::GlobalID) {
+ if (Lex.getUIntVal() != VarID)
+ return Error(Lex.getLoc(), "variable expected to be numbered '%" +
+ Twine(VarID) + "'");
+ Lex.Lex(); // eat GlobalID;
+
+ if (ParseToken(lltok::equal, "expected '=' after name"))
+ return true;
+ }
+
+ bool HasLinkage;
+ unsigned Linkage, Visibility, DLLStorageClass;
+ bool DSOLocal;
+ GlobalVariable::ThreadLocalMode TLM;
+ GlobalVariable::UnnamedAddr UnnamedAddr;
+ if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
+ DSOLocal) ||
+ ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
+ return true;
+
+ if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
+ return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
+ DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
+
+ return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
+ DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
+}
+
+/// ParseNamedGlobal:
+/// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
+/// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
+/// OptionalVisibility OptionalDLLStorageClass
+/// ... -> global variable
+bool LLParser::ParseNamedGlobal() {
+ assert(Lex.getKind() == lltok::GlobalVar);
+ LocTy NameLoc = Lex.getLoc();
+ std::string Name = Lex.getStrVal();
+ Lex.Lex();
+
+ bool HasLinkage;
+ unsigned Linkage, Visibility, DLLStorageClass;
+ bool DSOLocal;
+ GlobalVariable::ThreadLocalMode TLM;
+ GlobalVariable::UnnamedAddr UnnamedAddr;
+ if (ParseToken(lltok::equal, "expected '=' in global variable") ||
+ ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
+ DSOLocal) ||
+ ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
+ return true;
+
+ if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
+ return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
+ DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
+
+ return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
+ DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
+}
+
+bool LLParser::parseComdat() {
+ assert(Lex.getKind() == lltok::ComdatVar);
+ std::string Name = Lex.getStrVal();
+ LocTy NameLoc = Lex.getLoc();
+ Lex.Lex();
+
+ if (ParseToken(lltok::equal, "expected '=' here"))
+ return true;
+
+ if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
+ return TokError("expected comdat type");
+
+ Comdat::SelectionKind SK;
+ switch (Lex.getKind()) {
+ default:
+ return TokError("unknown selection kind");
+ case lltok::kw_any:
+ SK = Comdat::Any;
+ break;
+ case lltok::kw_exactmatch:
+ SK = Comdat::ExactMatch;
+ break;
+ case lltok::kw_largest:
+ SK = Comdat::Largest;
+ break;
+ case lltok::kw_noduplicates:
+ SK = Comdat::NoDuplicates;
+ break;
+ case lltok::kw_samesize:
+ SK = Comdat::SameSize;
+ break;
+ }
+ Lex.Lex();
+
+ // See if the comdat was forward referenced, if so, use the comdat.
+ Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
+ Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
+ if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
+ return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
+
+ Comdat *C;
+ if (I != ComdatSymTab.end())
+ C = &I->second;
+ else
+ C = M->getOrInsertComdat(Name);
+ C->setSelectionKind(SK);
+
+ return false;
+}
+
+// MDString:
+// ::= '!' STRINGCONSTANT
+bool LLParser::ParseMDString(MDString *&Result) {
+ std::string Str;
+ if (ParseStringConstant(Str)) return true;
+ Result = MDString::get(Context, Str);
+ return false;
+}
+
+// MDNode:
+// ::= '!' MDNodeNumber
+bool LLParser::ParseMDNodeID(MDNode *&Result) {
+ // !{ ..., !42, ... }
+ LocTy IDLoc = Lex.getLoc();
+ unsigned MID = 0;
+ if (ParseUInt32(MID))
+ return true;
+
+ // If not a forward reference, just return it now.
+ if (NumberedMetadata.count(MID)) {
+ Result = NumberedMetadata[MID];
+ return false;
+ }
+
+ // Otherwise, create MDNode forward reference.
+ auto &FwdRef = ForwardRefMDNodes[MID];
+ FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
+
+ Result = FwdRef.first.get();
+ NumberedMetadata[MID].reset(Result);
+ return false;
+}
+
+/// ParseNamedMetadata:
+/// !foo = !{ !1, !2 }
+bool LLParser::ParseNamedMetadata() {
+ assert(Lex.getKind() == lltok::MetadataVar);
+ std::string Name = Lex.getStrVal();
+ Lex.Lex();
+
+ if (ParseToken(lltok::equal, "expected '=' here") ||
+ ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseToken(lltok::lbrace, "Expected '{' here"))
+ return true;
+
+ NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
+ if (Lex.getKind() != lltok::rbrace)
+ do {
+ MDNode *N = nullptr;
+ // Parse DIExpressions inline as a special case. They are still MDNodes,
+ // so they can still appear in named metadata. Remove this logic if they
+ // become plain Metadata.
+ if (Lex.getKind() == lltok::MetadataVar &&
+ Lex.getStrVal() == "DIExpression") {
+ if (ParseDIExpression(N, /*IsDistinct=*/false))
+ return true;
+ } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseMDNodeID(N)) {
+ return true;
+ }
+ NMD->addOperand(N);
+ } while (EatIfPresent(lltok::comma));
+
+ return ParseToken(lltok::rbrace, "expected end of metadata node");
+}
+
+/// ParseStandaloneMetadata:
+/// !42 = !{...}
+bool LLParser::ParseStandaloneMetadata() {
+ assert(Lex.getKind() == lltok::exclaim);
+ Lex.Lex();
+ unsigned MetadataID = 0;
+
+ MDNode *Init;
+ if (ParseUInt32(MetadataID) ||
+ ParseToken(lltok::equal, "expected '=' here"))
+ return true;
+
+ // Detect common error, from old metadata syntax.
+ if (Lex.getKind() == lltok::Type)
+ return TokError("unexpected type in metadata definition");
+
+ bool IsDistinct = EatIfPresent(lltok::kw_distinct);
+ if (Lex.getKind() == lltok::MetadataVar) {
+ if (ParseSpecializedMDNode(Init, IsDistinct))
+ return true;
+ } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
+ ParseMDTuple(Init, IsDistinct))
+ return true;
+
+ // See if this was forward referenced, if so, handle it.
+ auto FI = ForwardRefMDNodes.find(MetadataID);
+ if (FI != ForwardRefMDNodes.end()) {
+ FI->second.first->replaceAllUsesWith(Init);
+ ForwardRefMDNodes.erase(FI);
+
+ assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
+ } else {
+ if (NumberedMetadata.count(MetadataID))
+ return TokError("Metadata id is already used");
+ NumberedMetadata[MetadataID].reset(Init);
+ }
+
+ return false;
+}
+
+// Skips a single module summary entry.
+bool LLParser::SkipModuleSummaryEntry() {
+ // Each module summary entry consists of a tag for the entry
+ // type, followed by a colon, then the fields surrounded by nested sets of
+ // parentheses. The "tag:" looks like a Label. Once parsing support is
+ // in place we will look for the tokens corresponding to the expected tags.
+ if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
+ Lex.getKind() != lltok::kw_typeid)
+ return TokError(
+ "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
+ ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
+ return true;
+ // Now walk through the parenthesized entry, until the number of open
+ // parentheses goes back down to 0 (the first '(' was parsed above).
+ unsigned NumOpenParen = 1;
+ do {
+ switch (Lex.getKind()) {
+ case lltok::lparen:
+ NumOpenParen++;
+ break;
+ case lltok::rparen:
+ NumOpenParen--;
+ break;
+ case lltok::Eof:
+ return TokError("found end of file while parsing summary entry");
+ default:
+ // Skip everything in between parentheses.
+ break;
+ }
+ Lex.Lex();
+ } while (NumOpenParen > 0);
+ return false;
+}
+
+/// SummaryEntry
+/// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
+bool LLParser::ParseSummaryEntry() {
+ assert(Lex.getKind() == lltok::SummaryID);
+ unsigned SummaryID = Lex.getUIntVal();
+
+ // For summary entries, colons should be treated as distinct tokens,
+ // not an indication of the end of a label token.
+ Lex.setIgnoreColonInIdentifiers(true);
+
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' here"))
+ return true;
+
+ // If we don't have an index object, skip the summary entry.
+ if (!Index)
+ return SkipModuleSummaryEntry();
+
+ bool result = false;
+ switch (Lex.getKind()) {
+ case lltok::kw_gv:
+ result = ParseGVEntry(SummaryID);
+ break;
+ case lltok::kw_module:
+ result = ParseModuleEntry(SummaryID);
+ break;
+ case lltok::kw_typeid:
+ result = ParseTypeIdEntry(SummaryID);
+ break;
+ case lltok::kw_typeidCompatibleVTable:
+ result = ParseTypeIdCompatibleVtableEntry(SummaryID);
+ break;
+ default:
+ result = Error(Lex.getLoc(), "unexpected summary kind");
+ break;
+ }
+ Lex.setIgnoreColonInIdentifiers(false);
+ return result;
+}
+
+static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
+ return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
+ (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
+}
+
+// If there was an explicit dso_local, update GV. In the absence of an explicit
+// dso_local we keep the default value.
+static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
+ if (DSOLocal)
+ GV.setDSOLocal(true);
+}
+
+/// parseIndirectSymbol:
+/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
+/// OptionalVisibility OptionalDLLStorageClass
+/// OptionalThreadLocal OptionalUnnamedAddr
+/// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
+///
+/// IndirectSymbol
+/// ::= TypeAndValue
+///
+/// IndirectSymbolAttr
+/// ::= ',' 'partition' StringConstant
+///
+/// Everything through OptionalUnnamedAddr has already been parsed.
+///
+bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
+ unsigned L, unsigned Visibility,
+ unsigned DLLStorageClass, bool DSOLocal,
+ GlobalVariable::ThreadLocalMode TLM,
+ GlobalVariable::UnnamedAddr UnnamedAddr) {
+ bool IsAlias;
+ if (Lex.getKind() == lltok::kw_alias)
+ IsAlias = true;
+ else if (Lex.getKind() == lltok::kw_ifunc)
+ IsAlias = false;
+ else
+ llvm_unreachable("Not an alias or ifunc!");
+ Lex.Lex();
+
+ GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
+
+ if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
+ return Error(NameLoc, "invalid linkage type for alias");
+
+ if (!isValidVisibilityForLinkage(Visibility, L))
+ return Error(NameLoc,
+ "symbol with local linkage must have default visibility");
+
+ Type *Ty;
+ LocTy ExplicitTypeLoc = Lex.getLoc();
+ if (ParseType(Ty) ||
+ ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
+ return true;
+
+ Constant *Aliasee;
+ LocTy AliaseeLoc = Lex.getLoc();
+ if (Lex.getKind() != lltok::kw_bitcast &&
+ Lex.getKind() != lltok::kw_getelementptr &&
+ Lex.getKind() != lltok::kw_addrspacecast &&
+ Lex.getKind() != lltok::kw_inttoptr) {
+ if (ParseGlobalTypeAndValue(Aliasee))
+ return true;
+ } else {
+ // The bitcast dest type is not present, it is implied by the dest type.
+ ValID ID;
+ if (ParseValID(ID))
+ return true;
+ if (ID.Kind != ValID::t_Constant)
+ return Error(AliaseeLoc, "invalid aliasee");
+ Aliasee = ID.ConstantVal;
+ }
+
+ Type *AliaseeType = Aliasee->getType();
+ auto *PTy = dyn_cast<PointerType>(AliaseeType);
+ if (!PTy)
+ return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
+ unsigned AddrSpace = PTy->getAddressSpace();
+
+ if (IsAlias && Ty != PTy->getElementType())
+ return Error(
+ ExplicitTypeLoc,
+ "explicit pointee type doesn't match operand's pointee type");
+
+ if (!IsAlias && !PTy->getElementType()->isFunctionTy())
+ return Error(
+ ExplicitTypeLoc,
+ "explicit pointee type should be a function type");
+
+ GlobalValue *GVal = nullptr;
+
+ // See if the alias was forward referenced, if so, prepare to replace the
+ // forward reference.
+ if (!Name.empty()) {
+ GVal = M->getNamedValue(Name);
+ if (GVal) {
+ if (!ForwardRefVals.erase(Name))
+ return Error(NameLoc, "redefinition of global '@" + Name + "'");
+ }
+ } else {
+ auto I = ForwardRefValIDs.find(NumberedVals.size());
+ if (I != ForwardRefValIDs.end()) {
+ GVal = I->second.first;
+ ForwardRefValIDs.erase(I);
+ }
+ }
+
+ // Okay, create the alias but do not insert it into the module yet.
+ std::unique_ptr<GlobalIndirectSymbol> GA;
+ if (IsAlias)
+ GA.reset(GlobalAlias::create(Ty, AddrSpace,
+ (GlobalValue::LinkageTypes)Linkage, Name,
+ Aliasee, /*Parent*/ nullptr));
+ else
+ GA.reset(GlobalIFunc::create(Ty, AddrSpace,
+ (GlobalValue::LinkageTypes)Linkage, Name,
+ Aliasee, /*Parent*/ nullptr));
+ GA->setThreadLocalMode(TLM);
+ GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+ GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
+ GA->setUnnamedAddr(UnnamedAddr);
+ maybeSetDSOLocal(DSOLocal, *GA);
+
+ // At this point we've parsed everything except for the IndirectSymbolAttrs.
+ // Now parse them if there are any.
+ while (Lex.getKind() == lltok::comma) {
+ Lex.Lex();
+
+ if (Lex.getKind() == lltok::kw_partition) {
+ Lex.Lex();
+ GA->setPartition(Lex.getStrVal());
+ if (ParseToken(lltok::StringConstant, "expected partition string"))
+ return true;
+ } else {
+ return TokError("unknown alias or ifunc property!");
+ }
+ }
+
+ if (Name.empty())
+ NumberedVals.push_back(GA.get());
+
+ if (GVal) {
+ // Verify that types agree.
+ if (GVal->getType() != GA->getType())
+ return Error(
+ ExplicitTypeLoc,
+ "forward reference and definition of alias have different types");
+
+ // If they agree, just RAUW the old value with the alias and remove the
+ // forward ref info.
+ GVal->replaceAllUsesWith(GA.get());
+ GVal->eraseFromParent();
+ }
+
+ // Insert into the module, we know its name won't collide now.
+ if (IsAlias)
+ M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
+ else
+ M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
+ assert(GA->getName() == Name && "Should not be a name conflict!");
+
+ // The module owns this now
+ GA.release();
+
+ return false;
+}
+
+/// ParseGlobal
+/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
+/// OptionalVisibility OptionalDLLStorageClass
+/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
+/// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
+/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
+/// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
+/// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
+/// Const OptionalAttrs
+///
+/// Everything up to and including OptionalUnnamedAddr has been parsed
+/// already.
+///
+bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
+ unsigned Linkage, bool HasLinkage,
+ unsigned Visibility, unsigned DLLStorageClass,
+ bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
+ GlobalVariable::UnnamedAddr UnnamedAddr) {
+ if (!isValidVisibilityForLinkage(Visibility, Linkage))
+ return Error(NameLoc,
+ "symbol with local linkage must have default visibility");
+
+ unsigned AddrSpace;
+ bool IsConstant, IsExternallyInitialized;
+ LocTy IsExternallyInitializedLoc;
+ LocTy TyLoc;
+
+ Type *Ty = nullptr;
+ if (ParseOptionalAddrSpace(AddrSpace) ||
+ ParseOptionalToken(lltok::kw_externally_initialized,
+ IsExternallyInitialized,
+ &IsExternallyInitializedLoc) ||
+ ParseGlobalType(IsConstant) ||
+ ParseType(Ty, TyLoc))
+ return true;
+
+ // If the linkage is specified and is external, then no initializer is
+ // present.
+ Constant *Init = nullptr;
+ if (!HasLinkage ||
+ !GlobalValue::isValidDeclarationLinkage(
+ (GlobalValue::LinkageTypes)Linkage)) {
+ if (ParseGlobalValue(Ty, Init))
+ return true;
+ }
+
+ if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
+ return Error(TyLoc, "invalid type for global variable");
+
+ GlobalValue *GVal = nullptr;
+
+ // See if the global was forward referenced, if so, use the global.
+ if (!Name.empty()) {
+ GVal = M->getNamedValue(Name);
+ if (GVal) {
+ if (!ForwardRefVals.erase(Name))
+ return Error(NameLoc, "redefinition of global '@" + Name + "'");
+ }
+ } else {
+ auto I = ForwardRefValIDs.find(NumberedVals.size());
+ if (I != ForwardRefValIDs.end()) {
+ GVal = I->second.first;
+ ForwardRefValIDs.erase(I);
+ }
+ }
+
+ GlobalVariable *GV;
+ if (!GVal) {
+ GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
+ Name, nullptr, GlobalVariable::NotThreadLocal,
+ AddrSpace);
+ } else {
+ if (GVal->getValueType() != Ty)
+ return Error(TyLoc,
+ "forward reference and definition of global have different types");
+
+ GV = cast<GlobalVariable>(GVal);
+
+ // Move the forward-reference to the correct spot in the module.
+ M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
+ }
+
+ if (Name.empty())
+ NumberedVals.push_back(GV);
+
+ // Set the parsed properties on the global.
+ if (Init)
+ GV->setInitializer(Init);
+ GV->setConstant(IsConstant);
+ GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
+ maybeSetDSOLocal(DSOLocal, *GV);
+ GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+ GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
+ GV->setExternallyInitialized(IsExternallyInitialized);
+ GV->setThreadLocalMode(TLM);
+ GV->setUnnamedAddr(UnnamedAddr);
+
+ // Parse attributes on the global.
+ while (Lex.getKind() == lltok::comma) {
+ Lex.Lex();
+
+ if (Lex.getKind() == lltok::kw_section) {
+ Lex.Lex();
+ GV->setSection(Lex.getStrVal());
+ if (ParseToken(lltok::StringConstant, "expected global section string"))
+ return true;
+ } else if (Lex.getKind() == lltok::kw_partition) {
+ Lex.Lex();
+ GV->setPartition(Lex.getStrVal());
+ if (ParseToken(lltok::StringConstant, "expected partition string"))
+ return true;
+ } else if (Lex.getKind() == lltok::kw_align) {
+ unsigned Alignment;
+ if (ParseOptionalAlignment(Alignment)) return true;
+ GV->setAlignment(Alignment);
+ } else if (Lex.getKind() == lltok::MetadataVar) {
+ if (ParseGlobalObjectMetadataAttachment(*GV))
+ return true;
+ } else {
+ Comdat *C;
+ if (parseOptionalComdat(Name, C))
+ return true;
+ if (C)
+ GV->setComdat(C);
+ else
+ return TokError("unknown global variable property!");
+ }
+ }
+
+ AttrBuilder Attrs;
+ LocTy BuiltinLoc;
+ std::vector<unsigned> FwdRefAttrGrps;
+ if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
+ return true;
+ if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
+ GV->setAttributes(AttributeSet::get(Context, Attrs));
+ ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
+ }
+
+ return false;
+}
+
+/// ParseUnnamedAttrGrp
+/// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
+bool LLParser::ParseUnnamedAttrGrp() {
+ assert(Lex.getKind() == lltok::kw_attributes);
+ LocTy AttrGrpLoc = Lex.getLoc();
+ Lex.Lex();
+
+ if (Lex.getKind() != lltok::AttrGrpID)
+ return TokError("expected attribute group id");
+
+ unsigned VarID = Lex.getUIntVal();
+ std::vector<unsigned> unused;
+ LocTy BuiltinLoc;
+ Lex.Lex();
+
+ if (ParseToken(lltok::equal, "expected '=' here") ||
+ ParseToken(lltok::lbrace, "expected '{' here") ||
+ ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
+ BuiltinLoc) ||
+ ParseToken(lltok::rbrace, "expected end of attribute group"))
+ return true;
+
+ if (!NumberedAttrBuilders[VarID].hasAttributes())
+ return Error(AttrGrpLoc, "attribute group has no attributes");
+
+ return false;
+}
+
+/// ParseFnAttributeValuePairs
+/// ::= <attr> | <attr> '=' <value>
+bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
+ std::vector<unsigned> &FwdRefAttrGrps,
+ bool inAttrGrp, LocTy &BuiltinLoc) {
+ bool HaveError = false;
+
+ B.clear();
+
+ while (true) {
+ lltok::Kind Token = Lex.getKind();
+ if (Token == lltok::kw_builtin)
+ BuiltinLoc = Lex.getLoc();
+ switch (Token) {
+ default:
+ if (!inAttrGrp) return HaveError;
+ return Error(Lex.getLoc(), "unterminated attribute group");
+ case lltok::rbrace:
+ // Finished.
+ return false;
+
+ case lltok::AttrGrpID: {
+ // Allow a function to reference an attribute group:
+ //
+ // define void @foo() #1 { ... }
+ if (inAttrGrp)
+ HaveError |=
+ Error(Lex.getLoc(),
+ "cannot have an attribute group reference in an attribute group");
+
+ unsigned AttrGrpNum = Lex.getUIntVal();
+ if (inAttrGrp) break;
+
+ // Save the reference to the attribute group. We'll fill it in later.
+ FwdRefAttrGrps.push_back(AttrGrpNum);
+ break;
+ }
+ // Target-dependent attributes:
+ case lltok::StringConstant: {
+ if (ParseStringAttribute(B))
+ return true;
+ continue;
+ }
+
+ // Target-independent attributes:
+ case lltok::kw_align: {
+ // As a hack, we allow function alignment to be initially parsed as an
+ // attribute on a function declaration/definition or added to an attribute
+ // group and later moved to the alignment field.
+ unsigned Alignment;
+ if (inAttrGrp) {
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' here") ||
+ ParseUInt32(Alignment))
+ return true;
+ } else {
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ }
+ B.addAlignmentAttr(Alignment);
+ continue;
+ }
+ case lltok::kw_alignstack: {
+ unsigned Alignment;
+ if (inAttrGrp) {
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' here") ||
+ ParseUInt32(Alignment))
+ return true;
+ } else {
+ if (ParseOptionalStackAlignment(Alignment))
+ return true;
+ }
+ B.addStackAlignmentAttr(Alignment);
+ continue;
+ }
+ case lltok::kw_allocsize: {
+ unsigned ElemSizeArg;
+ Optional<unsigned> NumElemsArg;
+ // inAttrGrp doesn't matter; we only support allocsize(a[, b])
+ if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
+ return true;
+ B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
+ continue;
+ }
+ case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
+ case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
+ case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
+ case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
+ case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
+ case lltok::kw_inaccessiblememonly:
+ B.addAttribute(Attribute::InaccessibleMemOnly); break;
+ case lltok::kw_inaccessiblemem_or_argmemonly:
+ B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
+ case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
+ case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
+ case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
+ case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
+ case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
+ case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
+ case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
+ case lltok::kw_noimplicitfloat:
+ B.addAttribute(Attribute::NoImplicitFloat); break;
+ case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
+ case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
+ case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
+ case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
+ case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
+ case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
+ case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
+ case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
+ case lltok::kw_optforfuzzing:
+ B.addAttribute(Attribute::OptForFuzzing); break;
+ case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
+ case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
+ case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
+ case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
+ case lltok::kw_returns_twice:
+ B.addAttribute(Attribute::ReturnsTwice); break;
+ case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
+ case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
+ case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
+ case lltok::kw_sspstrong:
+ B.addAttribute(Attribute::StackProtectStrong); break;
+ case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
+ case lltok::kw_shadowcallstack:
+ B.addAttribute(Attribute::ShadowCallStack); break;
+ case lltok::kw_sanitize_address:
+ B.addAttribute(Attribute::SanitizeAddress); break;
+ case lltok::kw_sanitize_hwaddress:
+ B.addAttribute(Attribute::SanitizeHWAddress); break;
+ case lltok::kw_sanitize_memtag:
+ B.addAttribute(Attribute::SanitizeMemTag); break;
+ case lltok::kw_sanitize_thread:
+ B.addAttribute(Attribute::SanitizeThread); break;
+ case lltok::kw_sanitize_memory:
+ B.addAttribute(Attribute::SanitizeMemory); break;
+ case lltok::kw_speculative_load_hardening:
+ B.addAttribute(Attribute::SpeculativeLoadHardening);
+ break;
+ case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
+ case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
+ case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
+ case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
+
+ // Error handling.
+ case lltok::kw_inreg:
+ case lltok::kw_signext:
+ case lltok::kw_zeroext:
+ HaveError |=
+ Error(Lex.getLoc(),
+ "invalid use of attribute on a function");
+ break;
+ case lltok::kw_byval:
+ case lltok::kw_dereferenceable:
+ case lltok::kw_dereferenceable_or_null:
+ case lltok::kw_inalloca:
+ case lltok::kw_nest:
+ case lltok::kw_noalias:
+ case lltok::kw_nocapture:
+ case lltok::kw_nonnull:
+ case lltok::kw_returned:
+ case lltok::kw_sret:
+ case lltok::kw_swifterror:
+ case lltok::kw_swiftself:
+ case lltok::kw_immarg:
+ HaveError |=
+ Error(Lex.getLoc(),
+ "invalid use of parameter-only attribute on a function");
+ break;
+ }
+
+ Lex.Lex();
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// GlobalValue Reference/Resolution Routines.
+//===----------------------------------------------------------------------===//
+
+static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
+ const std::string &Name) {
+ if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
+ return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
+ PTy->getAddressSpace(), Name, M);
+ else
+ return new GlobalVariable(*M, PTy->getElementType(), false,
+ GlobalValue::ExternalWeakLinkage, nullptr, Name,
+ nullptr, GlobalVariable::NotThreadLocal,
+ PTy->getAddressSpace());
+}
+
+Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
+ Value *Val, bool IsCall) {
+ if (Val->getType() == Ty)
+ return Val;
+ // For calls we also accept variables in the program address space.
+ Type *SuggestedTy = Ty;
+ if (IsCall && isa<PointerType>(Ty)) {
+ Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
+ M->getDataLayout().getProgramAddressSpace());
+ SuggestedTy = TyInProgAS;
+ if (Val->getType() == TyInProgAS)
+ return Val;
+ }
+ if (Ty->isLabelTy())
+ Error(Loc, "'" + Name + "' is not a basic block");
+ else
+ Error(Loc, "'" + Name + "' defined with type '" +
+ getTypeString(Val->getType()) + "' but expected '" +
+ getTypeString(SuggestedTy) + "'");
+ return nullptr;
+}
+
+/// GetGlobalVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed. This can return null if the value
+/// exists but does not have the right type.
+GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
+ LocTy Loc, bool IsCall) {
+ PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (!PTy) {
+ Error(Loc, "global variable reference must have pointer type");
+ return nullptr;
+ }
+
+ // Look this name up in the normal function symbol table.
+ GlobalValue *Val =
+ cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (!Val) {
+ auto I = ForwardRefVals.find(Name);
+ if (I != ForwardRefVals.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val)
+ return cast_or_null<GlobalValue>(
+ checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
+ ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
+ bool IsCall) {
+ PointerType *PTy = dyn_cast<PointerType>(Ty);
+ if (!PTy) {
+ Error(Loc, "global variable reference must have pointer type");
+ return nullptr;
+ }
+
+ GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (!Val) {
+ auto I = ForwardRefValIDs.find(ID);
+ if (I != ForwardRefValIDs.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val)
+ return cast_or_null<GlobalValue>(
+ checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
+ ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+//===----------------------------------------------------------------------===//
+// Comdat Reference/Resolution Routines.
+//===----------------------------------------------------------------------===//
+
+Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
+ // Look this name up in the comdat symbol table.
+ Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
+ Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
+ if (I != ComdatSymTab.end())
+ return &I->second;
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ Comdat *C = M->getOrInsertComdat(Name);
+ ForwardRefComdats[Name] = Loc;
+ return C;
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Routines.
+//===----------------------------------------------------------------------===//
+
+/// ParseToken - If the current token has the specified kind, eat it and return
+/// success. Otherwise, emit the specified error and return failure.
+bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
+ if (Lex.getKind() != T)
+ return TokError(ErrMsg);
+ Lex.Lex();
+ return false;
+}
+
+/// ParseStringConstant
+/// ::= StringConstant
+bool LLParser::ParseStringConstant(std::string &Result) {
+ if (Lex.getKind() != lltok::StringConstant)
+ return TokError("expected string constant");
+ Result = Lex.getStrVal();
+ Lex.Lex();
+ return false;
+}
+
+/// ParseUInt32
+/// ::= uint32
+bool LLParser::ParseUInt32(uint32_t &Val) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected integer");
+ uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
+ if (Val64 != unsigned(Val64))
+ return TokError("expected 32-bit integer (too large)");
+ Val = Val64;
+ Lex.Lex();
+ return false;
+}
+
+/// ParseUInt64
+/// ::= uint64
+bool LLParser::ParseUInt64(uint64_t &Val) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected integer");
+ Val = Lex.getAPSIntVal().getLimitedValue();
+ Lex.Lex();
+ return false;
+}
+
+/// ParseTLSModel
+/// := 'localdynamic'
+/// := 'initialexec'
+/// := 'localexec'
+bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
+ switch (Lex.getKind()) {
+ default:
+ return TokError("expected localdynamic, initialexec or localexec");
+ case lltok::kw_localdynamic:
+ TLM = GlobalVariable::LocalDynamicTLSModel;
+ break;
+ case lltok::kw_initialexec:
+ TLM = GlobalVariable::InitialExecTLSModel;
+ break;
+ case lltok::kw_localexec:
+ TLM = GlobalVariable::LocalExecTLSModel;
+ break;
+ }
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseOptionalThreadLocal
+/// := /*empty*/
+/// := 'thread_local'
+/// := 'thread_local' '(' tlsmodel ')'
+bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
+ TLM = GlobalVariable::NotThreadLocal;
+ if (!EatIfPresent(lltok::kw_thread_local))
+ return false;
+
+ TLM = GlobalVariable::GeneralDynamicTLSModel;
+ if (Lex.getKind() == lltok::lparen) {
+ Lex.Lex();
+ return ParseTLSModel(TLM) ||
+ ParseToken(lltok::rparen, "expected ')' after thread local model");
+ }
+ return false;
+}
+
+/// ParseOptionalAddrSpace
+/// := /*empty*/
+/// := 'addrspace' '(' uint32 ')'
+bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
+ AddrSpace = DefaultAS;
+ if (!EatIfPresent(lltok::kw_addrspace))
+ return false;
+ return ParseToken(lltok::lparen, "expected '(' in address space") ||
+ ParseUInt32(AddrSpace) ||
+ ParseToken(lltok::rparen, "expected ')' in address space");
+}
+
+/// ParseStringAttribute
+/// := StringConstant
+/// := StringConstant '=' StringConstant
+bool LLParser::ParseStringAttribute(AttrBuilder &B) {
+ std::string Attr = Lex.getStrVal();
+ Lex.Lex();
+ std::string Val;
+ if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
+ return true;
+ B.addAttribute(Attr, Val);
+ return false;
+}
+
+/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
+bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
+ bool HaveError = false;
+
+ B.clear();
+
+ while (true) {
+ lltok::Kind Token = Lex.getKind();
+ switch (Token) {
+ default: // End of attributes.
+ return HaveError;
+ case lltok::StringConstant: {
+ if (ParseStringAttribute(B))
+ return true;
+ continue;
+ }
+ case lltok::kw_align: {
+ unsigned Alignment;
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ B.addAlignmentAttr(Alignment);
+ continue;
+ }
+ case lltok::kw_byval: {
+ Type *Ty;
+ if (ParseByValWithOptionalType(Ty))
+ return true;
+ B.addByValAttr(Ty);
+ continue;
+ }
+ case lltok::kw_dereferenceable: {
+ uint64_t Bytes;
+ if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
+ return true;
+ B.addDereferenceableAttr(Bytes);
+ continue;
+ }
+ case lltok::kw_dereferenceable_or_null: {
+ uint64_t Bytes;
+ if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
+ return true;
+ B.addDereferenceableOrNullAttr(Bytes);
+ continue;
+ }
+ case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
+ case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
+ case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
+ case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
+ case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
+ case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
+ case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
+ case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
+ case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
+ case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
+ case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
+ case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
+ case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
+ case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
+ case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
+ case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
+
+ case lltok::kw_alignstack:
+ case lltok::kw_alwaysinline:
+ case lltok::kw_argmemonly:
+ case lltok::kw_builtin:
+ case lltok::kw_inlinehint:
+ case lltok::kw_jumptable:
+ case lltok::kw_minsize:
+ case lltok::kw_naked:
+ case lltok::kw_nobuiltin:
+ case lltok::kw_noduplicate:
+ case lltok::kw_noimplicitfloat:
+ case lltok::kw_noinline:
+ case lltok::kw_nonlazybind:
+ case lltok::kw_noredzone:
+ case lltok::kw_noreturn:
+ case lltok::kw_nocf_check:
+ case lltok::kw_nounwind:
+ case lltok::kw_optforfuzzing:
+ case lltok::kw_optnone:
+ case lltok::kw_optsize:
+ case lltok::kw_returns_twice:
+ case lltok::kw_sanitize_address:
+ case lltok::kw_sanitize_hwaddress:
+ case lltok::kw_sanitize_memtag:
+ case lltok::kw_sanitize_memory:
+ case lltok::kw_sanitize_thread:
+ case lltok::kw_speculative_load_hardening:
+ case lltok::kw_ssp:
+ case lltok::kw_sspreq:
+ case lltok::kw_sspstrong:
+ case lltok::kw_safestack:
+ case lltok::kw_shadowcallstack:
+ case lltok::kw_strictfp:
+ case lltok::kw_uwtable:
+ HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
+ break;
+ }
+
+ Lex.Lex();
+ }
+}
+
+/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
+bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
+ bool HaveError = false;
+
+ B.clear();
+
+ while (true) {
+ lltok::Kind Token = Lex.getKind();
+ switch (Token) {
+ default: // End of attributes.
+ return HaveError;
+ case lltok::StringConstant: {
+ if (ParseStringAttribute(B))
+ return true;
+ continue;
+ }
+ case lltok::kw_dereferenceable: {
+ uint64_t Bytes;
+ if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
+ return true;
+ B.addDereferenceableAttr(Bytes);
+ continue;
+ }
+ case lltok::kw_dereferenceable_or_null: {
+ uint64_t Bytes;
+ if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
+ return true;
+ B.addDereferenceableOrNullAttr(Bytes);
+ continue;
+ }
+ case lltok::kw_align: {
+ unsigned Alignment;
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ B.addAlignmentAttr(Alignment);
+ continue;
+ }
+ case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
+ case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
+ case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
+ case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
+ case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
+
+ // Error handling.
+ case lltok::kw_byval:
+ case lltok::kw_inalloca:
+ case lltok::kw_nest:
+ case lltok::kw_nocapture:
+ case lltok::kw_returned:
+ case lltok::kw_sret:
+ case lltok::kw_swifterror:
+ case lltok::kw_swiftself:
+ case lltok::kw_immarg:
+ HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
+ break;
+
+ case lltok::kw_alignstack:
+ case lltok::kw_alwaysinline:
+ case lltok::kw_argmemonly:
+ case lltok::kw_builtin:
+ case lltok::kw_cold:
+ case lltok::kw_inlinehint:
+ case lltok::kw_jumptable:
+ case lltok::kw_minsize:
+ case lltok::kw_naked:
+ case lltok::kw_nobuiltin:
+ case lltok::kw_noduplicate:
+ case lltok::kw_noimplicitfloat:
+ case lltok::kw_noinline:
+ case lltok::kw_nonlazybind:
+ case lltok::kw_noredzone:
+ case lltok::kw_noreturn:
+ case lltok::kw_nocf_check:
+ case lltok::kw_nounwind:
+ case lltok::kw_optforfuzzing:
+ case lltok::kw_optnone:
+ case lltok::kw_optsize:
+ case lltok::kw_returns_twice:
+ case lltok::kw_sanitize_address:
+ case lltok::kw_sanitize_hwaddress:
+ case lltok::kw_sanitize_memtag:
+ case lltok::kw_sanitize_memory:
+ case lltok::kw_sanitize_thread:
+ case lltok::kw_speculative_load_hardening:
+ case lltok::kw_ssp:
+ case lltok::kw_sspreq:
+ case lltok::kw_sspstrong:
+ case lltok::kw_safestack:
+ case lltok::kw_shadowcallstack:
+ case lltok::kw_strictfp:
+ case lltok::kw_uwtable:
+ HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
+ break;
+
+ case lltok::kw_readnone:
+ case lltok::kw_readonly:
+ HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
+ }
+
+ Lex.Lex();
+ }
+}
+
+static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
+ HasLinkage = true;
+ switch (Kind) {
+ default:
+ HasLinkage = false;
+ return GlobalValue::ExternalLinkage;
+ case lltok::kw_private:
+ return GlobalValue::PrivateLinkage;
+ case lltok::kw_internal:
+ return GlobalValue::InternalLinkage;
+ case lltok::kw_weak:
+ return GlobalValue::WeakAnyLinkage;
+ case lltok::kw_weak_odr:
+ return GlobalValue::WeakODRLinkage;
+ case lltok::kw_linkonce:
+ return GlobalValue::LinkOnceAnyLinkage;
+ case lltok::kw_linkonce_odr:
+ return GlobalValue::LinkOnceODRLinkage;
+ case lltok::kw_available_externally:
+ return GlobalValue::AvailableExternallyLinkage;
+ case lltok::kw_appending:
+ return GlobalValue::AppendingLinkage;
+ case lltok::kw_common:
+ return GlobalValue::CommonLinkage;
+ case lltok::kw_extern_weak:
+ return GlobalValue::ExternalWeakLinkage;
+ case lltok::kw_external:
+ return GlobalValue::ExternalLinkage;
+ }
+}
+
+/// ParseOptionalLinkage
+/// ::= /*empty*/
+/// ::= 'private'
+/// ::= 'internal'
+/// ::= 'weak'
+/// ::= 'weak_odr'
+/// ::= 'linkonce'
+/// ::= 'linkonce_odr'
+/// ::= 'available_externally'
+/// ::= 'appending'
+/// ::= 'common'
+/// ::= 'extern_weak'
+/// ::= 'external'
+bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
+ unsigned &Visibility,
+ unsigned &DLLStorageClass,
+ bool &DSOLocal) {
+ Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
+ if (HasLinkage)
+ Lex.Lex();
+ ParseOptionalDSOLocal(DSOLocal);
+ ParseOptionalVisibility(Visibility);
+ ParseOptionalDLLStorageClass(DLLStorageClass);
+
+ if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
+ return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
+ }
+
+ return false;
+}
+
+void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
+ switch (Lex.getKind()) {
+ default:
+ DSOLocal = false;
+ break;
+ case lltok::kw_dso_local:
+ DSOLocal = true;
+ Lex.Lex();
+ break;
+ case lltok::kw_dso_preemptable:
+ DSOLocal = false;
+ Lex.Lex();
+ break;
+ }
+}
+
+/// ParseOptionalVisibility
+/// ::= /*empty*/
+/// ::= 'default'
+/// ::= 'hidden'
+/// ::= 'protected'
+///
+void LLParser::ParseOptionalVisibility(unsigned &Res) {
+ switch (Lex.getKind()) {
+ default:
+ Res = GlobalValue::DefaultVisibility;
+ return;
+ case lltok::kw_default:
+ Res = GlobalValue::DefaultVisibility;
+ break;
+ case lltok::kw_hidden:
+ Res = GlobalValue::HiddenVisibility;
+ break;
+ case lltok::kw_protected:
+ Res = GlobalValue::ProtectedVisibility;
+ break;
+ }
+ Lex.Lex();
+}
+
+/// ParseOptionalDLLStorageClass
+/// ::= /*empty*/
+/// ::= 'dllimport'
+/// ::= 'dllexport'
+///
+void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
+ switch (Lex.getKind()) {
+ default:
+ Res = GlobalValue::DefaultStorageClass;
+ return;
+ case lltok::kw_dllimport:
+ Res = GlobalValue::DLLImportStorageClass;
+ break;
+ case lltok::kw_dllexport:
+ Res = GlobalValue::DLLExportStorageClass;
+ break;
+ }
+ Lex.Lex();
+}
+
+/// ParseOptionalCallingConv
+/// ::= /*empty*/
+/// ::= 'ccc'
+/// ::= 'fastcc'
+/// ::= 'intel_ocl_bicc'
+/// ::= 'coldcc'
+/// ::= 'x86_stdcallcc'
+/// ::= 'x86_fastcallcc'
+/// ::= 'x86_thiscallcc'
+/// ::= 'x86_vectorcallcc'
+/// ::= 'arm_apcscc'
+/// ::= 'arm_aapcscc'
+/// ::= 'arm_aapcs_vfpcc'
+/// ::= 'aarch64_vector_pcs'
+/// ::= 'msp430_intrcc'
+/// ::= 'avr_intrcc'
+/// ::= 'avr_signalcc'
+/// ::= 'ptx_kernel'
+/// ::= 'ptx_device'
+/// ::= 'spir_func'
+/// ::= 'spir_kernel'
+/// ::= 'x86_64_sysvcc'
+/// ::= 'win64cc'
+/// ::= 'webkit_jscc'
+/// ::= 'anyregcc'
+/// ::= 'preserve_mostcc'
+/// ::= 'preserve_allcc'
+/// ::= 'ghccc'
+/// ::= 'swiftcc'
+/// ::= 'x86_intrcc'
+/// ::= 'hhvmcc'
+/// ::= 'hhvm_ccc'
+/// ::= 'cxx_fast_tlscc'
+/// ::= 'amdgpu_vs'
+/// ::= 'amdgpu_ls'
+/// ::= 'amdgpu_hs'
+/// ::= 'amdgpu_es'
+/// ::= 'amdgpu_gs'
+/// ::= 'amdgpu_ps'
+/// ::= 'amdgpu_cs'
+/// ::= 'amdgpu_kernel'
+/// ::= 'cc' UINT
+///
+bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
+ switch (Lex.getKind()) {
+ default: CC = CallingConv::C; return false;
+ case lltok::kw_ccc: CC = CallingConv::C; break;
+ case lltok::kw_fastcc: CC = CallingConv::Fast; break;
+ case lltok::kw_coldcc: CC = CallingConv::Cold; break;
+ case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
+ case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
+ case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
+ case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
+ case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
+ case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
+ case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
+ case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
+ case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
+ case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
+ case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
+ case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
+ case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
+ case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
+ case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
+ case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
+ case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
+ case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
+ case lltok::kw_win64cc: CC = CallingConv::Win64; break;
+ case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
+ case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
+ case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
+ case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
+ case lltok::kw_ghccc: CC = CallingConv::GHC; break;
+ case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
+ case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
+ case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
+ case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
+ case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
+ case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
+ case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
+ case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
+ case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
+ case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
+ case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
+ case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
+ case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
+ case lltok::kw_cc: {
+ Lex.Lex();
+ return ParseUInt32(CC);
+ }
+ }
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseMetadataAttachment
+/// ::= !dbg !42
+bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
+
+ std::string Name = Lex.getStrVal();
+ Kind = M->getMDKindID(Name);
+ Lex.Lex();
+
+ return ParseMDNode(MD);
+}
+
+/// ParseInstructionMetadata
+/// ::= !dbg !42 (',' !dbg !57)*
+bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
+ do {
+ if (Lex.getKind() != lltok::MetadataVar)
+ return TokError("expected metadata after comma");
+
+ unsigned MDK;
+ MDNode *N;
+ if (ParseMetadataAttachment(MDK, N))
+ return true;
+
+ Inst.setMetadata(MDK, N);
+ if (MDK == LLVMContext::MD_tbaa)
+ InstsWithTBAATag.push_back(&Inst);
+
+ // If this is the end of the list, we're done.
+ } while (EatIfPresent(lltok::comma));
+ return false;
+}
+
+/// ParseGlobalObjectMetadataAttachment
+/// ::= !dbg !57
+bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
+ unsigned MDK;
+ MDNode *N;
+ if (ParseMetadataAttachment(MDK, N))
+ return true;
+
+ GO.addMetadata(MDK, *N);
+ return false;
+}
+
+/// ParseOptionalFunctionMetadata
+/// ::= (!dbg !57)*
+bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
+ while (Lex.getKind() == lltok::MetadataVar)
+ if (ParseGlobalObjectMetadataAttachment(F))
+ return true;
+ return false;
+}
+
+/// ParseOptionalAlignment
+/// ::= /* empty */
+/// ::= 'align' 4
+bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
+ Alignment = 0;
+ if (!EatIfPresent(lltok::kw_align))
+ return false;
+ LocTy AlignLoc = Lex.getLoc();
+ if (ParseUInt32(Alignment)) return true;
+ if (!isPowerOf2_32(Alignment))
+ return Error(AlignLoc, "alignment is not a power of two");
+ if (Alignment > Value::MaximumAlignment)
+ return Error(AlignLoc, "huge alignments are not supported yet");
+ return false;
+}
+
+/// ParseOptionalDerefAttrBytes
+/// ::= /* empty */
+/// ::= AttrKind '(' 4 ')'
+///
+/// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
+bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
+ uint64_t &Bytes) {
+ assert((AttrKind == lltok::kw_dereferenceable ||
+ AttrKind == lltok::kw_dereferenceable_or_null) &&
+ "contract!");
+
+ Bytes = 0;
+ if (!EatIfPresent(AttrKind))
+ return false;
+ LocTy ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::lparen))
+ return Error(ParenLoc, "expected '('");
+ LocTy DerefLoc = Lex.getLoc();
+ if (ParseUInt64(Bytes)) return true;
+ ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::rparen))
+ return Error(ParenLoc, "expected ')'");
+ if (!Bytes)
+ return Error(DerefLoc, "dereferenceable bytes must be non-zero");
+ return false;
+}
+
+/// ParseOptionalCommaAlign
+/// ::=
+/// ::= ',' align 4
+///
+/// This returns with AteExtraComma set to true if it ate an excess comma at the
+/// end.
+bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
+ bool &AteExtraComma) {
+ AteExtraComma = false;
+ while (EatIfPresent(lltok::comma)) {
+ // Metadata at the end is an early exit.
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ return false;
+ }
+
+ if (Lex.getKind() != lltok::kw_align)
+ return Error(Lex.getLoc(), "expected metadata or 'align'");
+
+ if (ParseOptionalAlignment(Alignment)) return true;
+ }
+
+ return false;
+}
+
+/// ParseOptionalCommaAddrSpace
+/// ::=
+/// ::= ',' addrspace(1)
+///
+/// This returns with AteExtraComma set to true if it ate an excess comma at the
+/// end.
+bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
+ LocTy &Loc,
+ bool &AteExtraComma) {
+ AteExtraComma = false;
+ while (EatIfPresent(lltok::comma)) {
+ // Metadata at the end is an early exit.
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ return false;
+ }
+
+ Loc = Lex.getLoc();
+ if (Lex.getKind() != lltok::kw_addrspace)
+ return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
+
+ if (ParseOptionalAddrSpace(AddrSpace))
+ return true;
+ }
+
+ return false;
+}
+
+bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
+ Optional<unsigned> &HowManyArg) {
+ Lex.Lex();
+
+ auto StartParen = Lex.getLoc();
+ if (!EatIfPresent(lltok::lparen))
+ return Error(StartParen, "expected '('");
+
+ if (ParseUInt32(BaseSizeArg))
+ return true;
+
+ if (EatIfPresent(lltok::comma)) {
+ auto HowManyAt = Lex.getLoc();
+ unsigned HowMany;
+ if (ParseUInt32(HowMany))
+ return true;
+ if (HowMany == BaseSizeArg)
+ return Error(HowManyAt,
+ "'allocsize' indices can't refer to the same parameter");
+ HowManyArg = HowMany;
+ } else
+ HowManyArg = None;
+
+ auto EndParen = Lex.getLoc();
+ if (!EatIfPresent(lltok::rparen))
+ return Error(EndParen, "expected ')'");
+ return false;
+}
+
+/// ParseScopeAndOrdering
+/// if isAtomic: ::= SyncScope? AtomicOrdering
+/// else: ::=
+///
+/// This sets Scope and Ordering to the parsed values.
+bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
+ AtomicOrdering &Ordering) {
+ if (!isAtomic)
+ return false;
+
+ return ParseScope(SSID) || ParseOrdering(Ordering);
+}
+
+/// ParseScope
+/// ::= syncscope("singlethread" | "<target scope>")?
+///
+/// This sets synchronization scope ID to the ID of the parsed value.
+bool LLParser::ParseScope(SyncScope::ID &SSID) {
+ SSID = SyncScope::System;
+ if (EatIfPresent(lltok::kw_syncscope)) {
+ auto StartParenAt = Lex.getLoc();
+ if (!EatIfPresent(lltok::lparen))
+ return Error(StartParenAt, "Expected '(' in syncscope");
+
+ std::string SSN;
+ auto SSNAt = Lex.getLoc();
+ if (ParseStringConstant(SSN))
+ return Error(SSNAt, "Expected synchronization scope name");
+
+ auto EndParenAt = Lex.getLoc();
+ if (!EatIfPresent(lltok::rparen))
+ return Error(EndParenAt, "Expected ')' in syncscope");
+
+ SSID = Context.getOrInsertSyncScopeID(SSN);
+ }
+
+ return false;
+}
+
+/// ParseOrdering
+/// ::= AtomicOrdering
+///
+/// This sets Ordering to the parsed value.
+bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
+ switch (Lex.getKind()) {
+ default: return TokError("Expected ordering on atomic instruction");
+ case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
+ case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
+ // Not specified yet:
+ // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
+ case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
+ case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
+ case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
+ case lltok::kw_seq_cst:
+ Ordering = AtomicOrdering::SequentiallyConsistent;
+ break;
+ }
+ Lex.Lex();
+ return false;
+}
+
+/// ParseOptionalStackAlignment
+/// ::= /* empty */
+/// ::= 'alignstack' '(' 4 ')'
+bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
+ Alignment = 0;
+ if (!EatIfPresent(lltok::kw_alignstack))
+ return false;
+ LocTy ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::lparen))
+ return Error(ParenLoc, "expected '('");
+ LocTy AlignLoc = Lex.getLoc();
+ if (ParseUInt32(Alignment)) return true;
+ ParenLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::rparen))
+ return Error(ParenLoc, "expected ')'");
+ if (!isPowerOf2_32(Alignment))
+ return Error(AlignLoc, "stack alignment is not a power of two");
+ return false;
+}
+
+/// ParseIndexList - This parses the index list for an insert/extractvalue
+/// instruction. This sets AteExtraComma in the case where we eat an extra
+/// comma at the end of the line and find that it is followed by metadata.
+/// Clients that don't allow metadata can call the version of this function that
+/// only takes one argument.
+///
+/// ParseIndexList
+/// ::= (',' uint32)+
+///
+bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
+ bool &AteExtraComma) {
+ AteExtraComma = false;
+
+ if (Lex.getKind() != lltok::comma)
+ return TokError("expected ',' as start of index list");
+
+ while (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ if (Indices.empty()) return TokError("expected index");
+ AteExtraComma = true;
+ return false;
+ }
+ unsigned Idx = 0;
+ if (ParseUInt32(Idx)) return true;
+ Indices.push_back(Idx);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Type Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseType - Parse a type.
+bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
+ SMLoc TypeLoc = Lex.getLoc();
+ switch (Lex.getKind()) {
+ default:
+ return TokError(Msg);
+ case lltok::Type:
+ // Type ::= 'float' | 'void' (etc)
+ Result = Lex.getTyVal();
+ Lex.Lex();
+ break;
+ case lltok::lbrace:
+ // Type ::= StructType
+ if (ParseAnonStructType(Result, false))
+ return true;
+ break;
+ case lltok::lsquare:
+ // Type ::= '[' ... ']'
+ Lex.Lex(); // eat the lsquare.
+ if (ParseArrayVectorType(Result, false))
+ return true;
+ break;
+ case lltok::less: // Either vector or packed struct.
+ // Type ::= '<' ... '>'
+ Lex.Lex();
+ if (Lex.getKind() == lltok::lbrace) {
+ if (ParseAnonStructType(Result, true) ||
+ ParseToken(lltok::greater, "expected '>' at end of packed struct"))
+ return true;
+ } else if (ParseArrayVectorType(Result, true))
+ return true;
+ break;
+ case lltok::LocalVar: {
+ // Type ::= %foo
+ std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
+
+ // If the type hasn't been defined yet, create a forward definition and
+ // remember where that forward def'n was seen (in case it never is defined).
+ if (!Entry.first) {
+ Entry.first = StructType::create(Context, Lex.getStrVal());
+ Entry.second = Lex.getLoc();
+ }
+ Result = Entry.first;
+ Lex.Lex();
+ break;
+ }
+
+ case lltok::LocalVarID: {
+ // Type ::= %4
+ std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
+
+ // If the type hasn't been defined yet, create a forward definition and
+ // remember where that forward def'n was seen (in case it never is defined).
+ if (!Entry.first) {
+ Entry.first = StructType::create(Context);
+ Entry.second = Lex.getLoc();
+ }
+ Result = Entry.first;
+ Lex.Lex();
+ break;
+ }
+ }
+
+ // Parse the type suffixes.
+ while (true) {
+ switch (Lex.getKind()) {
+ // End of type.
+ default:
+ if (!AllowVoid && Result->isVoidTy())
+ return Error(TypeLoc, "void type only allowed for function results");
+ return false;
+
+ // Type ::= Type '*'
+ case lltok::star:
+ if (Result->isLabelTy())
+ return TokError("basic block pointers are invalid");
+ if (Result->isVoidTy())
+ return TokError("pointers to void are invalid - use i8* instead");
+ if (!PointerType::isValidElementType(Result))
+ return TokError("pointer to this type is invalid");
+ Result = PointerType::getUnqual(Result);
+ Lex.Lex();
+ break;
+
+ // Type ::= Type 'addrspace' '(' uint32 ')' '*'
+ case lltok::kw_addrspace: {
+ if (Result->isLabelTy())
+ return TokError("basic block pointers are invalid");
+ if (Result->isVoidTy())
+ return TokError("pointers to void are invalid; use i8* instead");
+ if (!PointerType::isValidElementType(Result))
+ return TokError("pointer to this type is invalid");
+ unsigned AddrSpace;
+ if (ParseOptionalAddrSpace(AddrSpace) ||
+ ParseToken(lltok::star, "expected '*' in address space"))
+ return true;
+
+ Result = PointerType::get(Result, AddrSpace);
+ break;
+ }
+
+ /// Types '(' ArgTypeListI ')' OptFuncAttrs
+ case lltok::lparen:
+ if (ParseFunctionType(Result))
+ return true;
+ break;
+ }
+ }
+}
+
+/// ParseParameterList
+/// ::= '(' ')'
+/// ::= '(' Arg (',' Arg)* ')'
+/// Arg
+/// ::= Type OptionalAttributes Value OptionalAttributes
+bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
+ PerFunctionState &PFS, bool IsMustTailCall,
+ bool InVarArgsFunc) {
+ if (ParseToken(lltok::lparen, "expected '(' in call"))
+ return true;
+
+ while (Lex.getKind() != lltok::rparen) {
+ // If this isn't the first argument, we need a comma.
+ if (!ArgList.empty() &&
+ ParseToken(lltok::comma, "expected ',' in argument list"))
+ return true;
+
+ // Parse an ellipsis if this is a musttail call in a variadic function.
+ if (Lex.getKind() == lltok::dotdotdot) {
+ const char *Msg = "unexpected ellipsis in argument list for ";
+ if (!IsMustTailCall)
+ return TokError(Twine(Msg) + "non-musttail call");
+ if (!InVarArgsFunc)
+ return TokError(Twine(Msg) + "musttail call in non-varargs function");
+ Lex.Lex(); // Lex the '...', it is purely for readability.
+ return ParseToken(lltok::rparen, "expected ')' at end of argument list");
+ }
+
+ // Parse the argument.
+ LocTy ArgLoc;
+ Type *ArgTy = nullptr;
+ AttrBuilder ArgAttrs;
+ Value *V;
+ if (ParseType(ArgTy, ArgLoc))
+ return true;
+
+ if (ArgTy->isMetadataTy()) {
+ if (ParseMetadataAsValue(V, PFS))
+ return true;
+ } else {
+ // Otherwise, handle normal operands.
+ if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
+ return true;
+ }
+ ArgList.push_back(ParamInfo(
+ ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
+ }
+
+ if (IsMustTailCall && InVarArgsFunc)
+ return TokError("expected '...' at end of argument list for musttail call "
+ "in varargs function");
+
+ Lex.Lex(); // Lex the ')'.
+ return false;
+}
+
+/// ParseByValWithOptionalType
+/// ::= byval
+/// ::= byval(<ty>)
+bool LLParser::ParseByValWithOptionalType(Type *&Result) {
+ Result = nullptr;
+ if (!EatIfPresent(lltok::kw_byval))
+ return true;
+ if (!EatIfPresent(lltok::lparen))
+ return false;
+ if (ParseType(Result))
+ return true;
+ if (!EatIfPresent(lltok::rparen))
+ return Error(Lex.getLoc(), "expected ')'");
+ return false;
+}
+
+/// ParseOptionalOperandBundles
+/// ::= /*empty*/
+/// ::= '[' OperandBundle [, OperandBundle ]* ']'
+///
+/// OperandBundle
+/// ::= bundle-tag '(' ')'
+/// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
+///
+/// bundle-tag ::= String Constant
+bool LLParser::ParseOptionalOperandBundles(
+ SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
+ LocTy BeginLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::lsquare))
+ return false;
+
+ while (Lex.getKind() != lltok::rsquare) {
+ // If this isn't the first operand bundle, we need a comma.
+ if (!BundleList.empty() &&
+ ParseToken(lltok::comma, "expected ',' in input list"))
+ return true;
+
+ std::string Tag;
+ if (ParseStringConstant(Tag))
+ return true;
+
+ if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
+ return true;
+
+ std::vector<Value *> Inputs;
+ while (Lex.getKind() != lltok::rparen) {
+ // If this isn't the first input, we need a comma.
+ if (!Inputs.empty() &&
+ ParseToken(lltok::comma, "expected ',' in input list"))
+ return true;
+
+ Type *Ty = nullptr;
+ Value *Input = nullptr;
+ if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
+ return true;
+ Inputs.push_back(Input);
+ }
+
+ BundleList.emplace_back(std::move(Tag), std::move(Inputs));
+
+ Lex.Lex(); // Lex the ')'.
+ }
+
+ if (BundleList.empty())
+ return Error(BeginLoc, "operand bundle set must not be empty");
+
+ Lex.Lex(); // Lex the ']'.
+ return false;
+}
+
+/// ParseArgumentList - Parse the argument list for a function type or function
+/// prototype.
+/// ::= '(' ArgTypeListI ')'
+/// ArgTypeListI
+/// ::= /*empty*/
+/// ::= '...'
+/// ::= ArgTypeList ',' '...'
+/// ::= ArgType (',' ArgType)*
+///
+bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
+ bool &isVarArg){
+ isVarArg = false;
+ assert(Lex.getKind() == lltok::lparen);
+ Lex.Lex(); // eat the (.
+
+ if (Lex.getKind() == lltok::rparen) {
+ // empty
+ } else if (Lex.getKind() == lltok::dotdotdot) {
+ isVarArg = true;
+ Lex.Lex();
+ } else {
+ LocTy TypeLoc = Lex.getLoc();
+ Type *ArgTy = nullptr;
+ AttrBuilder Attrs;
+ std::string Name;
+
+ if (ParseType(ArgTy) ||
+ ParseOptionalParamAttrs(Attrs)) return true;
+
+ if (ArgTy->isVoidTy())
+ return Error(TypeLoc, "argument can not have void type");
+
+ if (Lex.getKind() == lltok::LocalVar) {
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ }
+
+ if (!FunctionType::isValidArgumentType(ArgTy))
+ return Error(TypeLoc, "invalid type for function argument");
+
+ ArgList.emplace_back(TypeLoc, ArgTy,
+ AttributeSet::get(ArgTy->getContext(), Attrs),
+ std::move(Name));
+
+ while (EatIfPresent(lltok::comma)) {
+ // Handle ... at end of arg list.
+ if (EatIfPresent(lltok::dotdotdot)) {
+ isVarArg = true;
+ break;
+ }
+
+ // Otherwise must be an argument type.
+ TypeLoc = Lex.getLoc();
+ if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
+
+ if (ArgTy->isVoidTy())
+ return Error(TypeLoc, "argument can not have void type");
+
+ if (Lex.getKind() == lltok::LocalVar) {
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ } else {
+ Name = "";
+ }
+
+ if (!ArgTy->isFirstClassType())
+ return Error(TypeLoc, "invalid type for function argument");
+
+ ArgList.emplace_back(TypeLoc, ArgTy,
+ AttributeSet::get(ArgTy->getContext(), Attrs),
+ std::move(Name));
+ }
+ }
+
+ return ParseToken(lltok::rparen, "expected ')' at end of argument list");
+}
+
+/// ParseFunctionType
+/// ::= Type ArgumentList OptionalAttrs
+bool LLParser::ParseFunctionType(Type *&Result) {
+ assert(Lex.getKind() == lltok::lparen);
+
+ if (!FunctionType::isValidReturnType(Result))
+ return TokError("invalid function return type");
+
+ SmallVector<ArgInfo, 8> ArgList;
+ bool isVarArg;
+ if (ParseArgumentList(ArgList, isVarArg))
+ return true;
+
+ // Reject names on the arguments lists.
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ if (!ArgList[i].Name.empty())
+ return Error(ArgList[i].Loc, "argument name invalid in function type");
+ if (ArgList[i].Attrs.hasAttributes())
+ return Error(ArgList[i].Loc,
+ "argument attributes invalid in function type");
+ }
+
+ SmallVector<Type*, 16> ArgListTy;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ArgListTy.push_back(ArgList[i].Ty);
+
+ Result = FunctionType::get(Result, ArgListTy, isVarArg);
+ return false;
+}
+
+/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
+/// other structs.
+bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
+ SmallVector<Type*, 8> Elts;
+ if (ParseStructBody(Elts)) return true;
+
+ Result = StructType::get(Context, Elts, Packed);
+ return false;
+}
+
+/// ParseStructDefinition - Parse a struct in a 'type' definition.
+bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
+ std::pair<Type*, LocTy> &Entry,
+ Type *&ResultTy) {
+ // If the type was already defined, diagnose the redefinition.
+ if (Entry.first && !Entry.second.isValid())
+ return Error(TypeLoc, "redefinition of type");
+
+ // If we have opaque, just return without filling in the definition for the
+ // struct. This counts as a definition as far as the .ll file goes.
+ if (EatIfPresent(lltok::kw_opaque)) {
+ // This type is being defined, so clear the location to indicate this.
+ Entry.second = SMLoc();
+
+ // If this type number has never been uttered, create it.
+ if (!Entry.first)
+ Entry.first = StructType::create(Context, Name);
+ ResultTy = Entry.first;
+ return false;
+ }
+
+ // If the type starts with '<', then it is either a packed struct or a vector.
+ bool isPacked = EatIfPresent(lltok::less);
+
+ // If we don't have a struct, then we have a random type alias, which we
+ // accept for compatibility with old files. These types are not allowed to be
+ // forward referenced and not allowed to be recursive.
+ if (Lex.getKind() != lltok::lbrace) {
+ if (Entry.first)
+ return Error(TypeLoc, "forward references to non-struct type");
+
+ ResultTy = nullptr;
+ if (isPacked)
+ return ParseArrayVectorType(ResultTy, true);
+ return ParseType(ResultTy);
+ }
+
+ // This type is being defined, so clear the location to indicate this.
+ Entry.second = SMLoc();
+
+ // If this type number has never been uttered, create it.
+ if (!Entry.first)
+ Entry.first = StructType::create(Context, Name);
+
+ StructType *STy = cast<StructType>(Entry.first);
+
+ SmallVector<Type*, 8> Body;
+ if (ParseStructBody(Body) ||
+ (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
+ return true;
+
+ STy->setBody(Body, isPacked);
+ ResultTy = STy;
+ return false;
+}
+
+/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
+/// StructType
+/// ::= '{' '}'
+/// ::= '{' Type (',' Type)* '}'
+/// ::= '<' '{' '}' '>'
+/// ::= '<' '{' Type (',' Type)* '}' '>'
+bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
+ assert(Lex.getKind() == lltok::lbrace);
+ Lex.Lex(); // Consume the '{'
+
+ // Handle the empty struct.
+ if (EatIfPresent(lltok::rbrace))
+ return false;
+
+ LocTy EltTyLoc = Lex.getLoc();
+ Type *Ty = nullptr;
+ if (ParseType(Ty)) return true;
+ Body.push_back(Ty);
+
+ if (!StructType::isValidElementType(Ty))
+ return Error(EltTyLoc, "invalid element type for struct");
+
+ while (EatIfPresent(lltok::comma)) {
+ EltTyLoc = Lex.getLoc();
+ if (ParseType(Ty)) return true;
+
+ if (!StructType::isValidElementType(Ty))
+ return Error(EltTyLoc, "invalid element type for struct");
+
+ Body.push_back(Ty);
+ }
+
+ return ParseToken(lltok::rbrace, "expected '}' at end of struct");
+}
+
+/// ParseArrayVectorType - Parse an array or vector type, assuming the first
+/// token has already been consumed.
+/// Type
+/// ::= '[' APSINTVAL 'x' Types ']'
+/// ::= '<' APSINTVAL 'x' Types '>'
+/// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
+bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
+ bool Scalable = false;
+
+ if (isVector && Lex.getKind() == lltok::kw_vscale) {
+ Lex.Lex(); // consume the 'vscale'
+ if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
+ return true;
+
+ Scalable = true;
+ }
+
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
+ Lex.getAPSIntVal().getBitWidth() > 64)
+ return TokError("expected number in address space");
+
+ LocTy SizeLoc = Lex.getLoc();
+ uint64_t Size = Lex.getAPSIntVal().getZExtValue();
+ Lex.Lex();
+
+ if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
+ return true;
+
+ LocTy TypeLoc = Lex.getLoc();
+ Type *EltTy = nullptr;
+ if (ParseType(EltTy)) return true;
+
+ if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
+ "expected end of sequential type"))
+ return true;
+
+ if (isVector) {
+ if (Size == 0)
+ return Error(SizeLoc, "zero element vector is illegal");
+ if ((unsigned)Size != Size)
+ return Error(SizeLoc, "size too large for vector");
+ if (!VectorType::isValidElementType(EltTy))
+ return Error(TypeLoc, "invalid vector element type");
+ Result = VectorType::get(EltTy, unsigned(Size), Scalable);
+ } else {
+ if (!ArrayType::isValidElementType(EltTy))
+ return Error(TypeLoc, "invalid array element type");
+ Result = ArrayType::get(EltTy, Size);
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Semantic Analysis.
+//===----------------------------------------------------------------------===//
+
+LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
+ int functionNumber)
+ : P(p), F(f), FunctionNumber(functionNumber) {
+
+ // Insert unnamed arguments into the NumberedVals list.
+ for (Argument &A : F.args())
+ if (!A.hasName())
+ NumberedVals.push_back(&A);
+}
+
+LLParser::PerFunctionState::~PerFunctionState() {
+ // If there were any forward referenced non-basicblock values, delete them.
+
+ for (const auto &P : ForwardRefVals) {
+ if (isa<BasicBlock>(P.second.first))
+ continue;
+ P.second.first->replaceAllUsesWith(
+ UndefValue::get(P.second.first->getType()));
+ P.second.first->deleteValue();
+ }
+
+ for (const auto &P : ForwardRefValIDs) {
+ if (isa<BasicBlock>(P.second.first))
+ continue;
+ P.second.first->replaceAllUsesWith(
+ UndefValue::get(P.second.first->getType()));
+ P.second.first->deleteValue();
+ }
+}
+
+bool LLParser::PerFunctionState::FinishFunction() {
+ if (!ForwardRefVals.empty())
+ return P.Error(ForwardRefVals.begin()->second.second,
+ "use of undefined value '%" + ForwardRefVals.begin()->first +
+ "'");
+ if (!ForwardRefValIDs.empty())
+ return P.Error(ForwardRefValIDs.begin()->second.second,
+ "use of undefined value '%" +
+ Twine(ForwardRefValIDs.begin()->first) + "'");
+ return false;
+}
+
+/// GetVal - Get a value with the specified name or ID, creating a
+/// forward reference record if needed. This can return null if the value
+/// exists but does not have the right type.
+Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
+ LocTy Loc, bool IsCall) {
+ // Look this name up in the normal function symbol table.
+ Value *Val = F.getValueSymbolTable()->lookup(Name);
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (!Val) {
+ auto I = ForwardRefVals.find(Name);
+ if (I != ForwardRefVals.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val)
+ return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
+
+ // Don't make placeholders with invalid type.
+ if (!Ty->isFirstClassType()) {
+ P.Error(Loc, "invalid use of a non-first-class type");
+ return nullptr;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ Value *FwdVal;
+ if (Ty->isLabelTy()) {
+ FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
+ } else {
+ FwdVal = new Argument(Ty, Name);
+ }
+
+ ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
+ bool IsCall) {
+ // Look this name up in the normal function symbol table.
+ Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
+
+ // If this is a forward reference for the value, see if we already created a
+ // forward ref record.
+ if (!Val) {
+ auto I = ForwardRefValIDs.find(ID);
+ if (I != ForwardRefValIDs.end())
+ Val = I->second.first;
+ }
+
+ // If we have the value in the symbol table or fwd-ref table, return it.
+ if (Val)
+ return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
+
+ if (!Ty->isFirstClassType()) {
+ P.Error(Loc, "invalid use of a non-first-class type");
+ return nullptr;
+ }
+
+ // Otherwise, create a new forward reference for this value and remember it.
+ Value *FwdVal;
+ if (Ty->isLabelTy()) {
+ FwdVal = BasicBlock::Create(F.getContext(), "", &F);
+ } else {
+ FwdVal = new Argument(Ty);
+ }
+
+ ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
+ return FwdVal;
+}
+
+/// SetInstName - After an instruction is parsed and inserted into its
+/// basic block, this installs its name.
+bool LLParser::PerFunctionState::SetInstName(int NameID,
+ const std::string &NameStr,
+ LocTy NameLoc, Instruction *Inst) {
+ // If this instruction has void type, it cannot have a name or ID specified.
+ if (Inst->getType()->isVoidTy()) {
+ if (NameID != -1 || !NameStr.empty())
+ return P.Error(NameLoc, "instructions returning void cannot have a name");
+ return false;
+ }
+
+ // If this was a numbered instruction, verify that the instruction is the
+ // expected value and resolve any forward references.
+ if (NameStr.empty()) {
+ // If neither a name nor an ID was specified, just use the next ID.
+ if (NameID == -1)
+ NameID = NumberedVals.size();
+
+ if (unsigned(NameID) != NumberedVals.size())
+ return P.Error(NameLoc, "instruction expected to be numbered '%" +
+ Twine(NumberedVals.size()) + "'");
+
+ auto FI = ForwardRefValIDs.find(NameID);
+ if (FI != ForwardRefValIDs.end()) {
+ Value *Sentinel = FI->second.first;
+ if (Sentinel->getType() != Inst->getType())
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
+ getTypeString(FI->second.first->getType()) + "'");
+
+ Sentinel->replaceAllUsesWith(Inst);
+ Sentinel->deleteValue();
+ ForwardRefValIDs.erase(FI);
+ }
+
+ NumberedVals.push_back(Inst);
+ return false;
+ }
+
+ // Otherwise, the instruction had a name. Resolve forward refs and set it.
+ auto FI = ForwardRefVals.find(NameStr);
+ if (FI != ForwardRefVals.end()) {
+ Value *Sentinel = FI->second.first;
+ if (Sentinel->getType() != Inst->getType())
+ return P.Error(NameLoc, "instruction forward referenced with type '" +
+ getTypeString(FI->second.first->getType()) + "'");
+
+ Sentinel->replaceAllUsesWith(Inst);
+ Sentinel->deleteValue();
+ ForwardRefVals.erase(FI);
+ }
+
+ // Set the name on the instruction.
+ Inst->setName(NameStr);
+
+ if (Inst->getName() != NameStr)
+ return P.Error(NameLoc, "multiple definition of local value named '" +
+ NameStr + "'");
+ return false;
+}
+
+/// GetBB - Get a basic block with the specified name or ID, creating a
+/// forward reference record if needed.
+BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
+ LocTy Loc) {
+ return dyn_cast_or_null<BasicBlock>(
+ GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
+}
+
+BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
+ return dyn_cast_or_null<BasicBlock>(
+ GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
+}
+
+/// DefineBB - Define the specified basic block, which is either named or
+/// unnamed. If there is an error, this returns null otherwise it returns
+/// the block being defined.
+BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
+ int NameID, LocTy Loc) {
+ BasicBlock *BB;
+ if (Name.empty()) {
+ if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
+ P.Error(Loc, "label expected to be numbered '" +
+ Twine(NumberedVals.size()) + "'");
+ return nullptr;
+ }
+ BB = GetBB(NumberedVals.size(), Loc);
+ if (!BB) {
+ P.Error(Loc, "unable to create block numbered '" +
+ Twine(NumberedVals.size()) + "'");
+ return nullptr;
+ }
+ } else {
+ BB = GetBB(Name, Loc);
+ if (!BB) {
+ P.Error(Loc, "unable to create block named '" + Name + "'");
+ return nullptr;
+ }
+ }
+
+ // Move the block to the end of the function. Forward ref'd blocks are
+ // inserted wherever they happen to be referenced.
+ F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
+
+ // Remove the block from forward ref sets.
+ if (Name.empty()) {
+ ForwardRefValIDs.erase(NumberedVals.size());
+ NumberedVals.push_back(BB);
+ } else {
+ // BB forward references are already in the function symbol table.
+ ForwardRefVals.erase(Name);
+ }
+
+ return BB;
+}
+
+//===----------------------------------------------------------------------===//
+// Constants.
+//===----------------------------------------------------------------------===//
+
+/// ParseValID - Parse an abstract value that doesn't necessarily have a
+/// type implied. For example, if we parse "4" we don't know what integer type
+/// it has. The value will later be combined with its type and checked for
+/// sanity. PFS is used to convert function-local operands of metadata (since
+/// metadata operands are not just parsed here but also converted to values).
+/// PFS can be null when we are not parsing metadata values inside a function.
+bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
+ ID.Loc = Lex.getLoc();
+ switch (Lex.getKind()) {
+ default: return TokError("expected value token");
+ case lltok::GlobalID: // @42
+ ID.UIntVal = Lex.getUIntVal();
+ ID.Kind = ValID::t_GlobalID;
+ break;
+ case lltok::GlobalVar: // @foo
+ ID.StrVal = Lex.getStrVal();
+ ID.Kind = ValID::t_GlobalName;
+ break;
+ case lltok::LocalVarID: // %42
+ ID.UIntVal = Lex.getUIntVal();
+ ID.Kind = ValID::t_LocalID;
+ break;
+ case lltok::LocalVar: // %foo
+ ID.StrVal = Lex.getStrVal();
+ ID.Kind = ValID::t_LocalName;
+ break;
+ case lltok::APSInt:
+ ID.APSIntVal = Lex.getAPSIntVal();
+ ID.Kind = ValID::t_APSInt;
+ break;
+ case lltok::APFloat:
+ ID.APFloatVal = Lex.getAPFloatVal();
+ ID.Kind = ValID::t_APFloat;
+ break;
+ case lltok::kw_true:
+ ID.ConstantVal = ConstantInt::getTrue(Context);
+ ID.Kind = ValID::t_Constant;
+ break;
+ case lltok::kw_false:
+ ID.ConstantVal = ConstantInt::getFalse(Context);
+ ID.Kind = ValID::t_Constant;
+ break;
+ case lltok::kw_null: ID.Kind = ValID::t_Null; break;
+ case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
+ case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
+ case lltok::kw_none: ID.Kind = ValID::t_None; break;
+
+ case lltok::lbrace: {
+ // ValID ::= '{' ConstVector '}'
+ Lex.Lex();
+ SmallVector<Constant*, 16> Elts;
+ if (ParseGlobalValueVector(Elts) ||
+ ParseToken(lltok::rbrace, "expected end of struct constant"))
+ return true;
+
+ ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
+ ID.UIntVal = Elts.size();
+ memcpy(ID.ConstantStructElts.get(), Elts.data(),
+ Elts.size() * sizeof(Elts[0]));
+ ID.Kind = ValID::t_ConstantStruct;
+ return false;
+ }
+ case lltok::less: {
+ // ValID ::= '<' ConstVector '>' --> Vector.
+ // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
+ Lex.Lex();
+ bool isPackedStruct = EatIfPresent(lltok::lbrace);
+
+ SmallVector<Constant*, 16> Elts;
+ LocTy FirstEltLoc = Lex.getLoc();
+ if (ParseGlobalValueVector(Elts) ||
+ (isPackedStruct &&
+ ParseToken(lltok::rbrace, "expected end of packed struct")) ||
+ ParseToken(lltok::greater, "expected end of constant"))
+ return true;
+
+ if (isPackedStruct) {
+ ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
+ memcpy(ID.ConstantStructElts.get(), Elts.data(),
+ Elts.size() * sizeof(Elts[0]));
+ ID.UIntVal = Elts.size();
+ ID.Kind = ValID::t_PackedConstantStruct;
+ return false;
+ }
+
+ if (Elts.empty())
+ return Error(ID.Loc, "constant vector must not be empty");
+
+ if (!Elts[0]->getType()->isIntegerTy() &&
+ !Elts[0]->getType()->isFloatingPointTy() &&
+ !Elts[0]->getType()->isPointerTy())
+ return Error(FirstEltLoc,
+ "vector elements must have integer, pointer or floating point type");
+
+ // Verify that all the vector elements have the same type.
+ for (unsigned i = 1, e = Elts.size(); i != e; ++i)
+ if (Elts[i]->getType() != Elts[0]->getType())
+ return Error(FirstEltLoc,
+ "vector element #" + Twine(i) +
+ " is not of type '" + getTypeString(Elts[0]->getType()));
+
+ ID.ConstantVal = ConstantVector::get(Elts);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::lsquare: { // Array Constant
+ Lex.Lex();
+ SmallVector<Constant*, 16> Elts;
+ LocTy FirstEltLoc = Lex.getLoc();
+ if (ParseGlobalValueVector(Elts) ||
+ ParseToken(lltok::rsquare, "expected end of array constant"))
+ return true;
+
+ // Handle empty element.
+ if (Elts.empty()) {
+ // Use undef instead of an array because it's inconvenient to determine
+ // the element type at this point, there being no elements to examine.
+ ID.Kind = ValID::t_EmptyArray;
+ return false;
+ }
+
+ if (!Elts[0]->getType()->isFirstClassType())
+ return Error(FirstEltLoc, "invalid array element type: " +
+ getTypeString(Elts[0]->getType()));
+
+ ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
+
+ // Verify all elements are correct type!
+ for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
+ if (Elts[i]->getType() != Elts[0]->getType())
+ return Error(FirstEltLoc,
+ "array element #" + Twine(i) +
+ " is not of type '" + getTypeString(Elts[0]->getType()));
+ }
+
+ ID.ConstantVal = ConstantArray::get(ATy, Elts);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_c: // c "foo"
+ Lex.Lex();
+ ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
+ false);
+ if (ParseToken(lltok::StringConstant, "expected string")) return true;
+ ID.Kind = ValID::t_Constant;
+ return false;
+
+ case lltok::kw_asm: {
+ // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
+ // STRINGCONSTANT
+ bool HasSideEffect, AlignStack, AsmDialect;
+ Lex.Lex();
+ if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
+ ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
+ ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
+ ParseStringConstant(ID.StrVal) ||
+ ParseToken(lltok::comma, "expected comma in inline asm expression") ||
+ ParseToken(lltok::StringConstant, "expected constraint string"))
+ return true;
+ ID.StrVal2 = Lex.getStrVal();
+ ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
+ (unsigned(AsmDialect)<<2);
+ ID.Kind = ValID::t_InlineAsm;
+ return false;
+ }
+
+ case lltok::kw_blockaddress: {
+ // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
+ Lex.Lex();
+
+ ValID Fn, Label;
+
+ if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
+ ParseValID(Fn) ||
+ ParseToken(lltok::comma, "expected comma in block address expression")||
+ ParseValID(Label) ||
+ ParseToken(lltok::rparen, "expected ')' in block address expression"))
+ return true;
+
+ if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
+ return Error(Fn.Loc, "expected function name in blockaddress");
+ if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
+ return Error(Label.Loc, "expected basic block name in blockaddress");
+
+ // Try to find the function (but skip it if it's forward-referenced).
+ GlobalValue *GV = nullptr;
+ if (Fn.Kind == ValID::t_GlobalID) {
+ if (Fn.UIntVal < NumberedVals.size())
+ GV = NumberedVals[Fn.UIntVal];
+ } else if (!ForwardRefVals.count(Fn.StrVal)) {
+ GV = M->getNamedValue(Fn.StrVal);
+ }
+ Function *F = nullptr;
+ if (GV) {
+ // Confirm that it's actually a function with a definition.
+ if (!isa<Function>(GV))
+ return Error(Fn.Loc, "expected function name in blockaddress");
+ F = cast<Function>(GV);
+ if (F->isDeclaration())
+ return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
+ }
+
+ if (!F) {
+ // Make a global variable as a placeholder for this reference.
+ GlobalValue *&FwdRef =
+ ForwardRefBlockAddresses.insert(std::make_pair(
+ std::move(Fn),
+ std::map<ValID, GlobalValue *>()))
+ .first->second.insert(std::make_pair(std::move(Label), nullptr))
+ .first->second;
+ if (!FwdRef)
+ FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
+ GlobalValue::InternalLinkage, nullptr, "");
+ ID.ConstantVal = FwdRef;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // We found the function; now find the basic block. Don't use PFS, since we
+ // might be inside a constant expression.
+ BasicBlock *BB;
+ if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
+ if (Label.Kind == ValID::t_LocalID)
+ BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
+ else
+ BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
+ if (!BB)
+ return Error(Label.Loc, "referenced value is not a basic block");
+ } else {
+ if (Label.Kind == ValID::t_LocalID)
+ return Error(Label.Loc, "cannot take address of numeric label after "
+ "the function is defined");
+ BB = dyn_cast_or_null<BasicBlock>(
+ F->getValueSymbolTable()->lookup(Label.StrVal));
+ if (!BB)
+ return Error(Label.Loc, "referenced value is not a basic block");
+ }
+
+ ID.ConstantVal = BlockAddress::get(F, BB);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ case lltok::kw_trunc:
+ case lltok::kw_zext:
+ case lltok::kw_sext:
+ case lltok::kw_fptrunc:
+ case lltok::kw_fpext:
+ case lltok::kw_bitcast:
+ case lltok::kw_addrspacecast:
+ case lltok::kw_uitofp:
+ case lltok::kw_sitofp:
+ case lltok::kw_fptoui:
+ case lltok::kw_fptosi:
+ case lltok::kw_inttoptr:
+ case lltok::kw_ptrtoint: {
+ unsigned Opc = Lex.getUIntVal();
+ Type *DestTy = nullptr;
+ Constant *SrcVal;
+ Lex.Lex();
+ if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
+ ParseGlobalTypeAndValue(SrcVal) ||
+ ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
+ ParseType(DestTy) ||
+ ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
+ return true;
+ if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
+ return Error(ID.Loc, "invalid cast opcode for cast from '" +
+ getTypeString(SrcVal->getType()) + "' to '" +
+ getTypeString(DestTy) + "'");
+ ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
+ SrcVal, DestTy);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_extractvalue: {
+ Lex.Lex();
+ Constant *Val;
+ SmallVector<unsigned, 4> Indices;
+ if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val) ||
+ ParseIndexList(Indices) ||
+ ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
+ return true;
+
+ if (!Val->getType()->isAggregateType())
+ return Error(ID.Loc, "extractvalue operand must be aggregate type");
+ if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
+ return Error(ID.Loc, "invalid indices for extractvalue");
+ ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_insertvalue: {
+ Lex.Lex();
+ Constant *Val0, *Val1;
+ SmallVector<unsigned, 4> Indices;
+ if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseIndexList(Indices) ||
+ ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
+ return true;
+ if (!Val0->getType()->isAggregateType())
+ return Error(ID.Loc, "insertvalue operand must be aggregate type");
+ Type *IndexedType =
+ ExtractValueInst::getIndexedType(Val0->getType(), Indices);
+ if (!IndexedType)
+ return Error(ID.Loc, "invalid indices for insertvalue");
+ if (IndexedType != Val1->getType())
+ return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
+ getTypeString(Val1->getType()) +
+ "' instead of '" + getTypeString(IndexedType) +
+ "'");
+ ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ case lltok::kw_icmp:
+ case lltok::kw_fcmp: {
+ unsigned PredVal, Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ if (ParseCmpPredicate(PredVal, Opc) ||
+ ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
+ return true;
+
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "compare operands must have the same type");
+
+ CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
+
+ if (Opc == Instruction::FCmp) {
+ if (!Val0->getType()->isFPOrFPVectorTy())
+ return Error(ID.Loc, "fcmp requires floating point operands");
+ ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
+ } else {
+ assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
+ if (!Val0->getType()->isIntOrIntVectorTy() &&
+ !Val0->getType()->isPtrOrPtrVectorTy())
+ return Error(ID.Loc, "icmp requires pointer or integer operands");
+ ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
+ }
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // Unary Operators.
+ case lltok::kw_fneg: {
+ unsigned Opc = Lex.getUIntVal();
+ Constant *Val;
+ Lex.Lex();
+ if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
+ ParseGlobalTypeAndValue(Val) ||
+ ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
+ return true;
+
+ // Check that the type is valid for the operator.
+ switch (Opc) {
+ case Instruction::FNeg:
+ if (!Val->getType()->isFPOrFPVectorTy())
+ return Error(ID.Loc, "constexpr requires fp operands");
+ break;
+ default: llvm_unreachable("Unknown unary operator!");
+ }
+ unsigned Flags = 0;
+ Constant *C = ConstantExpr::get(Opc, Val, Flags);
+ ID.ConstantVal = C;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ // Binary Operators.
+ case lltok::kw_add:
+ case lltok::kw_fadd:
+ case lltok::kw_sub:
+ case lltok::kw_fsub:
+ case lltok::kw_mul:
+ case lltok::kw_fmul:
+ case lltok::kw_udiv:
+ case lltok::kw_sdiv:
+ case lltok::kw_fdiv:
+ case lltok::kw_urem:
+ case lltok::kw_srem:
+ case lltok::kw_frem:
+ case lltok::kw_shl:
+ case lltok::kw_lshr:
+ case lltok::kw_ashr: {
+ bool NUW = false;
+ bool NSW = false;
+ bool Exact = false;
+ unsigned Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ if (Opc == Instruction::Add || Opc == Instruction::Sub ||
+ Opc == Instruction::Mul || Opc == Instruction::Shl) {
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ if (EatIfPresent(lltok::kw_nsw)) {
+ NSW = true;
+ if (EatIfPresent(lltok::kw_nuw))
+ NUW = true;
+ }
+ } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
+ Opc == Instruction::LShr || Opc == Instruction::AShr) {
+ if (EatIfPresent(lltok::kw_exact))
+ Exact = true;
+ }
+ if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
+ return true;
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "operands of constexpr must have same type");
+ // Check that the type is valid for the operator.
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::Shl:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ if (!Val0->getType()->isIntOrIntVectorTy())
+ return Error(ID.Loc, "constexpr requires integer operands");
+ break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ if (!Val0->getType()->isFPOrFPVectorTy())
+ return Error(ID.Loc, "constexpr requires fp operands");
+ break;
+ default: llvm_unreachable("Unknown binary operator!");
+ }
+ unsigned Flags = 0;
+ if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
+ if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
+ if (Exact) Flags |= PossiblyExactOperator::IsExact;
+ Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
+ ID.ConstantVal = C;
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ // Logical Operations
+ case lltok::kw_and:
+ case lltok::kw_or:
+ case lltok::kw_xor: {
+ unsigned Opc = Lex.getUIntVal();
+ Constant *Val0, *Val1;
+ Lex.Lex();
+ if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
+ ParseGlobalTypeAndValue(Val0) ||
+ ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
+ ParseGlobalTypeAndValue(Val1) ||
+ ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
+ return true;
+ if (Val0->getType() != Val1->getType())
+ return Error(ID.Loc, "operands of constexpr must have same type");
+ if (!Val0->getType()->isIntOrIntVectorTy())
+ return Error(ID.Loc,
+ "constexpr requires integer or integer vector operands");
+ ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+
+ case lltok::kw_getelementptr:
+ case lltok::kw_shufflevector:
+ case lltok::kw_insertelement:
+ case lltok::kw_extractelement:
+ case lltok::kw_select: {
+ unsigned Opc = Lex.getUIntVal();
+ SmallVector<Constant*, 16> Elts;
+ bool InBounds = false;
+ Type *Ty;
+ Lex.Lex();
+
+ if (Opc == Instruction::GetElementPtr)
+ InBounds = EatIfPresent(lltok::kw_inbounds);
+
+ if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
+ return true;
+
+ LocTy ExplicitTypeLoc = Lex.getLoc();
+ if (Opc == Instruction::GetElementPtr) {
+ if (ParseType(Ty) ||
+ ParseToken(lltok::comma, "expected comma after getelementptr's type"))
+ return true;
+ }
+
+ Optional<unsigned> InRangeOp;
+ if (ParseGlobalValueVector(
+ Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
+ ParseToken(lltok::rparen, "expected ')' in constantexpr"))
+ return true;
+
+ if (Opc == Instruction::GetElementPtr) {
+ if (Elts.size() == 0 ||
+ !Elts[0]->getType()->isPtrOrPtrVectorTy())
+ return Error(ID.Loc, "base of getelementptr must be a pointer");
+
+ Type *BaseType = Elts[0]->getType();
+ auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
+ if (Ty != BasePointerType->getElementType())
+ return Error(
+ ExplicitTypeLoc,
+ "explicit pointee type doesn't match operand's pointee type");
+
+ unsigned GEPWidth =
+ BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
+
+ ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
+ for (Constant *Val : Indices) {
+ Type *ValTy = Val->getType();
+ if (!ValTy->isIntOrIntVectorTy())
+ return Error(ID.Loc, "getelementptr index must be an integer");
+ if (ValTy->isVectorTy()) {
+ unsigned ValNumEl = ValTy->getVectorNumElements();
+ if (GEPWidth && (ValNumEl != GEPWidth))
+ return Error(
+ ID.Loc,
+ "getelementptr vector index has a wrong number of elements");
+ // GEPWidth may have been unknown because the base is a scalar,
+ // but it is known now.
+ GEPWidth = ValNumEl;
+ }
+ }
+
+ SmallPtrSet<Type*, 4> Visited;
+ if (!Indices.empty() && !Ty->isSized(&Visited))
+ return Error(ID.Loc, "base element of getelementptr must be sized");
+
+ if (!GetElementPtrInst::getIndexedType(Ty, Indices))
+ return Error(ID.Loc, "invalid getelementptr indices");
+
+ if (InRangeOp) {
+ if (*InRangeOp == 0)
+ return Error(ID.Loc,
+ "inrange keyword may not appear on pointer operand");
+ --*InRangeOp;
+ }
+
+ ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
+ InBounds, InRangeOp);
+ } else if (Opc == Instruction::Select) {
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to select");
+ if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
+ Elts[2]))
+ return Error(ID.Loc, Reason);
+ ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
+ } else if (Opc == Instruction::ShuffleVector) {
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to shufflevector");
+ if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+ return Error(ID.Loc, "invalid operands to shufflevector");
+ ID.ConstantVal =
+ ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
+ } else if (Opc == Instruction::ExtractElement) {
+ if (Elts.size() != 2)
+ return Error(ID.Loc, "expected two operands to extractelement");
+ if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
+ return Error(ID.Loc, "invalid extractelement operands");
+ ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
+ } else {
+ assert(Opc == Instruction::InsertElement && "Unknown opcode");
+ if (Elts.size() != 3)
+ return Error(ID.Loc, "expected three operands to insertelement");
+ if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
+ return Error(ID.Loc, "invalid insertelement operands");
+ ID.ConstantVal =
+ ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
+ }
+
+ ID.Kind = ValID::t_Constant;
+ return false;
+ }
+ }
+
+ Lex.Lex();
+ return false;
+}
+
+/// ParseGlobalValue - Parse a global value with the specified type.
+bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
+ C = nullptr;
+ ValID ID;
+ Value *V = nullptr;
+ bool Parsed = ParseValID(ID) ||
+ ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
+ if (V && !(C = dyn_cast<Constant>(V)))
+ return Error(ID.Loc, "global values must be constants");
+ return Parsed;
+}
+
+bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
+ Type *Ty = nullptr;
+ return ParseType(Ty) ||
+ ParseGlobalValue(Ty, V);
+}
+
+bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
+ C = nullptr;
+
+ LocTy KwLoc = Lex.getLoc();
+ if (!EatIfPresent(lltok::kw_comdat))
+ return false;
+
+ if (EatIfPresent(lltok::lparen)) {
+ if (Lex.getKind() != lltok::ComdatVar)
+ return TokError("expected comdat variable");
+ C = getComdat(Lex.getStrVal(), Lex.getLoc());
+ Lex.Lex();
+ if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
+ return true;
+ } else {
+ if (GlobalName.empty())
+ return TokError("comdat cannot be unnamed");
+ C = getComdat(GlobalName, KwLoc);
+ }
+
+ return false;
+}
+
+/// ParseGlobalValueVector
+/// ::= /*empty*/
+/// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
+bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
+ Optional<unsigned> *InRangeOp) {
+ // Empty list.
+ if (Lex.getKind() == lltok::rbrace ||
+ Lex.getKind() == lltok::rsquare ||
+ Lex.getKind() == lltok::greater ||
+ Lex.getKind() == lltok::rparen)
+ return false;
+
+ do {
+ if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
+ *InRangeOp = Elts.size();
+
+ Constant *C;
+ if (ParseGlobalTypeAndValue(C)) return true;
+ Elts.push_back(C);
+ } while (EatIfPresent(lltok::comma));
+
+ return false;
+}
+
+bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
+ SmallVector<Metadata *, 16> Elts;
+ if (ParseMDNodeVector(Elts))
+ return true;
+
+ MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
+ return false;
+}
+
+/// MDNode:
+/// ::= !{ ... }
+/// ::= !7
+/// ::= !DILocation(...)
+bool LLParser::ParseMDNode(MDNode *&N) {
+ if (Lex.getKind() == lltok::MetadataVar)
+ return ParseSpecializedMDNode(N);
+
+ return ParseToken(lltok::exclaim, "expected '!' here") ||
+ ParseMDNodeTail(N);
+}
+
+bool LLParser::ParseMDNodeTail(MDNode *&N) {
+ // !{ ... }
+ if (Lex.getKind() == lltok::lbrace)
+ return ParseMDTuple(N);
+
+ // !42
+ return ParseMDNodeID(N);
+}
+
+namespace {
+
+/// Structure to represent an optional metadata field.
+template <class FieldTy> struct MDFieldImpl {
+ typedef MDFieldImpl ImplTy;
+ FieldTy Val;
+ bool Seen;
+
+ void assign(FieldTy Val) {
+ Seen = true;
+ this->Val = std::move(Val);
+ }
+
+ explicit MDFieldImpl(FieldTy Default)
+ : Val(std::move(Default)), Seen(false) {}
+};
+
+/// Structure to represent an optional metadata field that
+/// can be of either type (A or B) and encapsulates the
+/// MD<typeofA>Field and MD<typeofB>Field structs, so not
+/// to reimplement the specifics for representing each Field.
+template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
+ typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
+ FieldTypeA A;
+ FieldTypeB B;
+ bool Seen;
+
+ enum {
+ IsInvalid = 0,
+ IsTypeA = 1,
+ IsTypeB = 2
+ } WhatIs;
+
+ void assign(FieldTypeA A) {
+ Seen = true;
+ this->A = std::move(A);
+ WhatIs = IsTypeA;
+ }
+
+ void assign(FieldTypeB B) {
+ Seen = true;
+ this->B = std::move(B);
+ WhatIs = IsTypeB;
+ }
+
+ explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
+ : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
+ WhatIs(IsInvalid) {}
+};
+
+struct MDUnsignedField : public MDFieldImpl<uint64_t> {
+ uint64_t Max;
+
+ MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
+ : ImplTy(Default), Max(Max) {}
+};
+
+struct LineField : public MDUnsignedField {
+ LineField() : MDUnsignedField(0, UINT32_MAX) {}
+};
+
+struct ColumnField : public MDUnsignedField {
+ ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
+};
+
+struct DwarfTagField : public MDUnsignedField {
+ DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
+ DwarfTagField(dwarf::Tag DefaultTag)
+ : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
+};
+
+struct DwarfMacinfoTypeField : public MDUnsignedField {
+ DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
+ DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
+ : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
+};
+
+struct DwarfAttEncodingField : public MDUnsignedField {
+ DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
+};
+
+struct DwarfVirtualityField : public MDUnsignedField {
+ DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
+};
+
+struct DwarfLangField : public MDUnsignedField {
+ DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
+};
+
+struct DwarfCCField : public MDUnsignedField {
+ DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
+};
+
+struct EmissionKindField : public MDUnsignedField {
+ EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
+};
+
+struct NameTableKindField : public MDUnsignedField {
+ NameTableKindField()
+ : MDUnsignedField(
+ 0, (unsigned)
+ DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
+};
+
+struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
+ DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
+};
+
+struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
+ DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
+};
+
+struct MDSignedField : public MDFieldImpl<int64_t> {
+ int64_t Min;
+ int64_t Max;
+
+ MDSignedField(int64_t Default = 0)
+ : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
+ MDSignedField(int64_t Default, int64_t Min, int64_t Max)
+ : ImplTy(Default), Min(Min), Max(Max) {}
+};
+
+struct MDBoolField : public MDFieldImpl<bool> {
+ MDBoolField(bool Default = false) : ImplTy(Default) {}
+};
+
+struct MDField : public MDFieldImpl<Metadata *> {
+ bool AllowNull;
+
+ MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
+};
+
+struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
+ MDConstant() : ImplTy(nullptr) {}
+};
+
+struct MDStringField : public MDFieldImpl<MDString *> {
+ bool AllowEmpty;
+ MDStringField(bool AllowEmpty = true)
+ : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
+};
+
+struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
+ MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
+};
+
+struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
+ ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
+};
+
+struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
+ MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
+ : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
+
+ MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
+ bool AllowNull = true)
+ : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
+
+ bool isMDSignedField() const { return WhatIs == IsTypeA; }
+ bool isMDField() const { return WhatIs == IsTypeB; }
+ int64_t getMDSignedValue() const {
+ assert(isMDSignedField() && "Wrong field type");
+ return A.Val;
+ }
+ Metadata *getMDFieldValue() const {
+ assert(isMDField() && "Wrong field type");
+ return B.Val;
+ }
+};
+
+struct MDSignedOrUnsignedField
+ : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
+ MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
+
+ bool isMDSignedField() const { return WhatIs == IsTypeA; }
+ bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
+ int64_t getMDSignedValue() const {
+ assert(isMDSignedField() && "Wrong field type");
+ return A.Val;
+ }
+ uint64_t getMDUnsignedValue() const {
+ assert(isMDUnsignedField() && "Wrong field type");
+ return B.Val;
+ }
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ MDUnsignedField &Result) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected unsigned integer");
+
+ auto &U = Lex.getAPSIntVal();
+ if (U.ugt(Result.Max))
+ return TokError("value for '" + Name + "' too large, limit is " +
+ Twine(Result.Max));
+ Result.assign(U.getZExtValue());
+ assert(Result.Val <= Result.Max && "Expected value in range");
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+}
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfTag)
+ return TokError("expected DWARF tag");
+
+ unsigned Tag = dwarf::getTag(Lex.getStrVal());
+ if (Tag == dwarf::DW_TAG_invalid)
+ return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
+ assert(Tag <= Result.Max && "Expected valid DWARF tag");
+
+ Result.assign(Tag);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ DwarfMacinfoTypeField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfMacinfo)
+ return TokError("expected DWARF macinfo type");
+
+ unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
+ if (Macinfo == dwarf::DW_MACINFO_invalid)
+ return TokError(
+ "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
+ assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
+
+ Result.assign(Macinfo);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ DwarfVirtualityField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfVirtuality)
+ return TokError("expected DWARF virtuality code");
+
+ unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
+ if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
+ return TokError("invalid DWARF virtuality code" + Twine(" '") +
+ Lex.getStrVal() + "'");
+ assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
+ Result.assign(Virtuality);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfLang)
+ return TokError("expected DWARF language");
+
+ unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
+ if (!Lang)
+ return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
+ "'");
+ assert(Lang <= Result.Max && "Expected valid DWARF language");
+ Result.assign(Lang);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfCC)
+ return TokError("expected DWARF calling convention");
+
+ unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
+ if (!CC)
+ return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
+ "'");
+ assert(CC <= Result.Max && "Expected valid DWARF calling convention");
+ Result.assign(CC);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::EmissionKind)
+ return TokError("expected emission kind");
+
+ auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
+ if (!Kind)
+ return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
+ "'");
+ assert(*Kind <= Result.Max && "Expected valid emission kind");
+ Result.assign(*Kind);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ NameTableKindField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::NameTableKind)
+ return TokError("expected nameTable kind");
+
+ auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
+ if (!Kind)
+ return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
+ "'");
+ assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
+ Result.assign((unsigned)*Kind);
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ DwarfAttEncodingField &Result) {
+ if (Lex.getKind() == lltok::APSInt)
+ return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
+
+ if (Lex.getKind() != lltok::DwarfAttEncoding)
+ return TokError("expected DWARF type attribute encoding");
+
+ unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
+ if (!Encoding)
+ return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
+ Lex.getStrVal() + "'");
+ assert(Encoding <= Result.Max && "Expected valid DWARF language");
+ Result.assign(Encoding);
+ Lex.Lex();
+ return false;
+}
+
+/// DIFlagField
+/// ::= uint32
+/// ::= DIFlagVector
+/// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
+
+ // Parser for a single flag.
+ auto parseFlag = [&](DINode::DIFlags &Val) {
+ if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
+ uint32_t TempVal = static_cast<uint32_t>(Val);
+ bool Res = ParseUInt32(TempVal);
+ Val = static_cast<DINode::DIFlags>(TempVal);
+ return Res;
+ }
+
+ if (Lex.getKind() != lltok::DIFlag)
+ return TokError("expected debug info flag");
+
+ Val = DINode::getFlag(Lex.getStrVal());
+ if (!Val)
+ return TokError(Twine("invalid debug info flag flag '") +
+ Lex.getStrVal() + "'");
+ Lex.Lex();
+ return false;
+ };
+
+ // Parse the flags and combine them together.
+ DINode::DIFlags Combined = DINode::FlagZero;
+ do {
+ DINode::DIFlags Val;
+ if (parseFlag(Val))
+ return true;
+ Combined |= Val;
+ } while (EatIfPresent(lltok::bar));
+
+ Result.assign(Combined);
+ return false;
+}
+
+/// DISPFlagField
+/// ::= uint32
+/// ::= DISPFlagVector
+/// ::= DISPFlagVector '|' DISPFlag* '|' uint32
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
+
+ // Parser for a single flag.
+ auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
+ if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
+ uint32_t TempVal = static_cast<uint32_t>(Val);
+ bool Res = ParseUInt32(TempVal);
+ Val = static_cast<DISubprogram::DISPFlags>(TempVal);
+ return Res;
+ }
+
+ if (Lex.getKind() != lltok::DISPFlag)
+ return TokError("expected debug info flag");
+
+ Val = DISubprogram::getFlag(Lex.getStrVal());
+ if (!Val)
+ return TokError(Twine("invalid subprogram debug info flag '") +
+ Lex.getStrVal() + "'");
+ Lex.Lex();
+ return false;
+ };
+
+ // Parse the flags and combine them together.
+ DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
+ do {
+ DISubprogram::DISPFlags Val;
+ if (parseFlag(Val))
+ return true;
+ Combined |= Val;
+ } while (EatIfPresent(lltok::bar));
+
+ Result.assign(Combined);
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ MDSignedField &Result) {
+ if (Lex.getKind() != lltok::APSInt)
+ return TokError("expected signed integer");
+
+ auto &S = Lex.getAPSIntVal();
+ if (S < Result.Min)
+ return TokError("value for '" + Name + "' too small, limit is " +
+ Twine(Result.Min));
+ if (S > Result.Max)
+ return TokError("value for '" + Name + "' too large, limit is " +
+ Twine(Result.Max));
+ Result.assign(S.getExtValue());
+ assert(Result.Val >= Result.Min && "Expected value in range");
+ assert(Result.Val <= Result.Max && "Expected value in range");
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
+ switch (Lex.getKind()) {
+ default:
+ return TokError("expected 'true' or 'false'");
+ case lltok::kw_true:
+ Result.assign(true);
+ break;
+ case lltok::kw_false:
+ Result.assign(false);
+ break;
+ }
+ Lex.Lex();
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
+ if (Lex.getKind() == lltok::kw_null) {
+ if (!Result.AllowNull)
+ return TokError("'" + Name + "' cannot be null");
+ Lex.Lex();
+ Result.assign(nullptr);
+ return false;
+ }
+
+ Metadata *MD;
+ if (ParseMetadata(MD, nullptr))
+ return true;
+
+ Result.assign(MD);
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ MDSignedOrMDField &Result) {
+ // Try to parse a signed int.
+ if (Lex.getKind() == lltok::APSInt) {
+ MDSignedField Res = Result.A;
+ if (!ParseMDField(Loc, Name, Res)) {
+ Result.assign(Res);
+ return false;
+ }
+ return true;
+ }
+
+ // Otherwise, try to parse as an MDField.
+ MDField Res = Result.B;
+ if (!ParseMDField(Loc, Name, Res)) {
+ Result.assign(Res);
+ return false;
+ }
+
+ return true;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ MDSignedOrUnsignedField &Result) {
+ if (Lex.getKind() != lltok::APSInt)
+ return false;
+
+ if (Lex.getAPSIntVal().isSigned()) {
+ MDSignedField Res = Result.A;
+ if (ParseMDField(Loc, Name, Res))
+ return true;
+ Result.assign(Res);
+ return false;
+ }
+
+ MDUnsignedField Res = Result.B;
+ if (ParseMDField(Loc, Name, Res))
+ return true;
+ Result.assign(Res);
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
+ LocTy ValueLoc = Lex.getLoc();
+ std::string S;
+ if (ParseStringConstant(S))
+ return true;
+
+ if (!Result.AllowEmpty && S.empty())
+ return Error(ValueLoc, "'" + Name + "' cannot be empty");
+
+ Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
+ SmallVector<Metadata *, 4> MDs;
+ if (ParseMDNodeVector(MDs))
+ return true;
+
+ Result.assign(std::move(MDs));
+ return false;
+}
+
+template <>
+bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
+ ChecksumKindField &Result) {
+ Optional<DIFile::ChecksumKind> CSKind =
+ DIFile::getChecksumKind(Lex.getStrVal());
+
+ if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
+ return TokError(
+ "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
+
+ Result.assign(*CSKind);
+ Lex.Lex();
+ return false;
+}
+
+} // end namespace llvm
+
+template <class ParserTy>
+bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
+ do {
+ if (Lex.getKind() != lltok::LabelStr)
+ return TokError("expected field label here");
+
+ if (parseField())
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ return false;
+}
+
+template <class ParserTy>
+bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
+ Lex.Lex();
+
+ if (ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+ if (Lex.getKind() != lltok::rparen)
+ if (ParseMDFieldsImplBody(parseField))
+ return true;
+
+ ClosingLoc = Lex.getLoc();
+ return ParseToken(lltok::rparen, "expected ')' here");
+}
+
+template <class FieldTy>
+bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
+ if (Result.Seen)
+ return TokError("field '" + Name + "' cannot be specified more than once");
+
+ LocTy Loc = Lex.getLoc();
+ Lex.Lex();
+ return ParseMDField(Loc, Name, Result);
+}
+
+bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
+
+#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
+ if (Lex.getStrVal() == #CLASS) \
+ return Parse##CLASS(N, IsDistinct);
+#include "llvm/IR/Metadata.def"
+
+ return TokError("expected metadata type");
+}
+
+#define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
+#define NOP_FIELD(NAME, TYPE, INIT)
+#define REQUIRE_FIELD(NAME, TYPE, INIT) \
+ if (!NAME.Seen) \
+ return Error(ClosingLoc, "missing required field '" #NAME "'");
+#define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
+ if (Lex.getStrVal() == #NAME) \
+ return ParseMDField(#NAME, NAME);
+#define PARSE_MD_FIELDS() \
+ VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
+ do { \
+ LocTy ClosingLoc; \
+ if (ParseMDFieldsImpl([&]() -> bool { \
+ VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
+ return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
+ }, ClosingLoc)) \
+ return true; \
+ VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
+ } while (false)
+#define GET_OR_DISTINCT(CLASS, ARGS) \
+ (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
+
+/// ParseDILocationFields:
+/// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
+/// isImplicitCode: true)
+bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(column, ColumnField, ); \
+ REQUIRED(scope, MDField, (/* AllowNull */ false)); \
+ OPTIONAL(inlinedAt, MDField, ); \
+ OPTIONAL(isImplicitCode, MDBoolField, (false));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result =
+ GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
+ inlinedAt.Val, isImplicitCode.Val));
+ return false;
+}
+
+/// ParseGenericDINode:
+/// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
+bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(tag, DwarfTagField, ); \
+ OPTIONAL(header, MDStringField, ); \
+ OPTIONAL(operands, MDFieldList, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(GenericDINode,
+ (Context, tag.Val, header.Val, operands.Val));
+ return false;
+}
+
+/// ParseDISubrange:
+/// ::= !DISubrange(count: 30, lowerBound: 2)
+/// ::= !DISubrange(count: !node, lowerBound: 2)
+bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
+ OPTIONAL(lowerBound, MDSignedField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ if (count.isMDSignedField())
+ Result = GET_OR_DISTINCT(
+ DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
+ else if (count.isMDField())
+ Result = GET_OR_DISTINCT(
+ DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
+ else
+ return true;
+
+ return false;
+}
+
+/// ParseDIEnumerator:
+/// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
+bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(name, MDStringField, ); \
+ REQUIRED(value, MDSignedOrUnsignedField, ); \
+ OPTIONAL(isUnsigned, MDBoolField, (false));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ if (isUnsigned.Val && value.isMDSignedField())
+ return TokError("unsigned enumerator with negative value");
+
+ int64_t Value = value.isMDSignedField()
+ ? value.getMDSignedValue()
+ : static_cast<int64_t>(value.getMDUnsignedValue());
+ Result =
+ GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
+
+ return false;
+}
+
+/// ParseDIBasicType:
+/// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
+/// encoding: DW_ATE_encoding, flags: 0)
+bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
+ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(encoding, DwarfAttEncodingField, ); \
+ OPTIONAL(flags, DIFlagField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
+ align.Val, encoding.Val, flags.Val));
+ return false;
+}
+
+/// ParseDIDerivedType:
+/// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
+/// line: 7, scope: !1, baseType: !2, size: 32,
+/// align: 32, offset: 0, flags: 0, extraData: !3,
+/// dwarfAddressSpace: 3)
+bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(tag, DwarfTagField, ); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(scope, MDField, ); \
+ REQUIRED(baseType, MDField, ); \
+ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
+ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
+ OPTIONAL(flags, DIFlagField, ); \
+ OPTIONAL(extraData, MDField, ); \
+ OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Optional<unsigned> DWARFAddressSpace;
+ if (dwarfAddressSpace.Val != UINT32_MAX)
+ DWARFAddressSpace = dwarfAddressSpace.Val;
+
+ Result = GET_OR_DISTINCT(DIDerivedType,
+ (Context, tag.Val, name.Val, file.Val, line.Val,
+ scope.Val, baseType.Val, size.Val, align.Val,
+ offset.Val, DWARFAddressSpace, flags.Val,
+ extraData.Val));
+ return false;
+}
+
+bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(tag, DwarfTagField, ); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(scope, MDField, ); \
+ OPTIONAL(baseType, MDField, ); \
+ OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
+ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
+ OPTIONAL(flags, DIFlagField, ); \
+ OPTIONAL(elements, MDField, ); \
+ OPTIONAL(runtimeLang, DwarfLangField, ); \
+ OPTIONAL(vtableHolder, MDField, ); \
+ OPTIONAL(templateParams, MDField, ); \
+ OPTIONAL(identifier, MDStringField, ); \
+ OPTIONAL(discriminator, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ // If this has an identifier try to build an ODR type.
+ if (identifier.Val)
+ if (auto *CT = DICompositeType::buildODRType(
+ Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
+ scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
+ elements.Val, runtimeLang.Val, vtableHolder.Val,
+ templateParams.Val, discriminator.Val)) {
+ Result = CT;
+ return false;
+ }
+
+ // Create a new node, and save it in the context if it belongs in the type
+ // map.
+ Result = GET_OR_DISTINCT(
+ DICompositeType,
+ (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
+ size.Val, align.Val, offset.Val, flags.Val, elements.Val,
+ runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
+ discriminator.Val));
+ return false;
+}
+
+bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(flags, DIFlagField, ); \
+ OPTIONAL(cc, DwarfCCField, ); \
+ REQUIRED(types, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DISubroutineType,
+ (Context, flags.Val, cc.Val, types.Val));
+ return false;
+}
+
+/// ParseDIFileType:
+/// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
+/// checksumkind: CSK_MD5,
+/// checksum: "000102030405060708090a0b0c0d0e0f",
+/// source: "source file contents")
+bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
+ // The default constructed value for checksumkind is required, but will never
+ // be used, as the parser checks if the field was actually Seen before using
+ // the Val.
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(filename, MDStringField, ); \
+ REQUIRED(directory, MDStringField, ); \
+ OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
+ OPTIONAL(checksum, MDStringField, ); \
+ OPTIONAL(source, MDStringField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
+ if (checksumkind.Seen && checksum.Seen)
+ OptChecksum.emplace(checksumkind.Val, checksum.Val);
+ else if (checksumkind.Seen || checksum.Seen)
+ return Lex.Error("'checksumkind' and 'checksum' must be provided together");
+
+ Optional<MDString *> OptSource;
+ if (source.Seen)
+ OptSource = source.Val;
+ Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
+ OptChecksum, OptSource));
+ return false;
+}
+
+/// ParseDICompileUnit:
+/// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
+/// isOptimized: true, flags: "-O2", runtimeVersion: 1,
+/// splitDebugFilename: "abc.debug",
+/// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
+/// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
+bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
+ if (!IsDistinct)
+ return Lex.Error("missing 'distinct', required for !DICompileUnit");
+
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(language, DwarfLangField, ); \
+ REQUIRED(file, MDField, (/* AllowNull */ false)); \
+ OPTIONAL(producer, MDStringField, ); \
+ OPTIONAL(isOptimized, MDBoolField, ); \
+ OPTIONAL(flags, MDStringField, ); \
+ OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(splitDebugFilename, MDStringField, ); \
+ OPTIONAL(emissionKind, EmissionKindField, ); \
+ OPTIONAL(enums, MDField, ); \
+ OPTIONAL(retainedTypes, MDField, ); \
+ OPTIONAL(globals, MDField, ); \
+ OPTIONAL(imports, MDField, ); \
+ OPTIONAL(macros, MDField, ); \
+ OPTIONAL(dwoId, MDUnsignedField, ); \
+ OPTIONAL(splitDebugInlining, MDBoolField, = true); \
+ OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
+ OPTIONAL(nameTableKind, NameTableKindField, ); \
+ OPTIONAL(debugBaseAddress, MDBoolField, = false);
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = DICompileUnit::getDistinct(
+ Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
+ runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
+ retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
+ splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
+ debugBaseAddress.Val);
+ return false;
+}
+
+/// ParseDISubprogram:
+/// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
+/// file: !1, line: 7, type: !2, isLocal: false,
+/// isDefinition: true, scopeLine: 8, containingType: !3,
+/// virtuality: DW_VIRTUALTIY_pure_virtual,
+/// virtualIndex: 10, thisAdjustment: 4, flags: 11,
+/// spFlags: 10, isOptimized: false, templateParams: !4,
+/// declaration: !5, retainedNodes: !6, thrownTypes: !7)
+bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
+ auto Loc = Lex.getLoc();
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(scope, MDField, ); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(linkageName, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(type, MDField, ); \
+ OPTIONAL(isLocal, MDBoolField, ); \
+ OPTIONAL(isDefinition, MDBoolField, (true)); \
+ OPTIONAL(scopeLine, LineField, ); \
+ OPTIONAL(containingType, MDField, ); \
+ OPTIONAL(virtuality, DwarfVirtualityField, ); \
+ OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
+ OPTIONAL(flags, DIFlagField, ); \
+ OPTIONAL(spFlags, DISPFlagField, ); \
+ OPTIONAL(isOptimized, MDBoolField, ); \
+ OPTIONAL(unit, MDField, ); \
+ OPTIONAL(templateParams, MDField, ); \
+ OPTIONAL(declaration, MDField, ); \
+ OPTIONAL(retainedNodes, MDField, ); \
+ OPTIONAL(thrownTypes, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ // An explicit spFlags field takes precedence over individual fields in
+ // older IR versions.
+ DISubprogram::DISPFlags SPFlags =
+ spFlags.Seen ? spFlags.Val
+ : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
+ isOptimized.Val, virtuality.Val);
+ if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
+ return Lex.Error(
+ Loc,
+ "missing 'distinct', required for !DISubprogram that is a Definition");
+ Result = GET_OR_DISTINCT(
+ DISubprogram,
+ (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
+ type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
+ thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
+ declaration.Val, retainedNodes.Val, thrownTypes.Val));
+ return false;
+}
+
+/// ParseDILexicalBlock:
+/// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
+bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, (/* AllowNull */ false)); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(column, ColumnField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(
+ DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
+ return false;
+}
+
+/// ParseDILexicalBlockFile:
+/// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
+bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, (/* AllowNull */ false)); \
+ OPTIONAL(file, MDField, ); \
+ REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DILexicalBlockFile,
+ (Context, scope.Val, file.Val, discriminator.Val));
+ return false;
+}
+
+/// ParseDICommonBlock:
+/// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
+bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, ); \
+ OPTIONAL(declaration, MDField, ); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DICommonBlock,
+ (Context, scope.Val, declaration.Val, name.Val,
+ file.Val, line.Val));
+ return false;
+}
+
+/// ParseDINamespace:
+/// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
+bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, ); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(exportSymbols, MDBoolField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DINamespace,
+ (Context, scope.Val, name.Val, exportSymbols.Val));
+ return false;
+}
+
+/// ParseDIMacro:
+/// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
+bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(type, DwarfMacinfoTypeField, ); \
+ OPTIONAL(line, LineField, ); \
+ REQUIRED(name, MDStringField, ); \
+ OPTIONAL(value, MDStringField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DIMacro,
+ (Context, type.Val, line.Val, name.Val, value.Val));
+ return false;
+}
+
+/// ParseDIMacroFile:
+/// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
+bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
+ OPTIONAL(line, LineField, ); \
+ REQUIRED(file, MDField, ); \
+ OPTIONAL(nodes, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DIMacroFile,
+ (Context, type.Val, line.Val, file.Val, nodes.Val));
+ return false;
+}
+
+/// ParseDIModule:
+/// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
+/// includePath: "/usr/include", isysroot: "/")
+bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, ); \
+ REQUIRED(name, MDStringField, ); \
+ OPTIONAL(configMacros, MDStringField, ); \
+ OPTIONAL(includePath, MDStringField, ); \
+ OPTIONAL(isysroot, MDStringField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
+ configMacros.Val, includePath.Val, isysroot.Val));
+ return false;
+}
+
+/// ParseDITemplateTypeParameter:
+/// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
+bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(name, MDStringField, ); \
+ REQUIRED(type, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result =
+ GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
+ return false;
+}
+
+/// ParseDITemplateValueParameter:
+/// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
+/// name: "V", type: !1, value: i32 7)
+bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(type, MDField, ); \
+ REQUIRED(value, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DITemplateValueParameter,
+ (Context, tag.Val, name.Val, type.Val, value.Val));
+ return false;
+}
+
+/// ParseDIGlobalVariable:
+/// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
+/// file: !1, line: 7, type: !2, isLocal: false,
+/// isDefinition: true, templateParams: !3,
+/// declaration: !4, align: 8)
+bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
+ OPTIONAL(scope, MDField, ); \
+ OPTIONAL(linkageName, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(type, MDField, ); \
+ OPTIONAL(isLocal, MDBoolField, ); \
+ OPTIONAL(isDefinition, MDBoolField, (true)); \
+ OPTIONAL(templateParams, MDField, ); \
+ OPTIONAL(declaration, MDField, ); \
+ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result =
+ GET_OR_DISTINCT(DIGlobalVariable,
+ (Context, scope.Val, name.Val, linkageName.Val, file.Val,
+ line.Val, type.Val, isLocal.Val, isDefinition.Val,
+ declaration.Val, templateParams.Val, align.Val));
+ return false;
+}
+
+/// ParseDILocalVariable:
+/// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
+/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
+/// align: 8)
+/// ::= !DILocalVariable(scope: !0, name: "foo",
+/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
+/// align: 8)
+bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, (/* AllowNull */ false)); \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(type, MDField, ); \
+ OPTIONAL(flags, DIFlagField, ); \
+ OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DILocalVariable,
+ (Context, scope.Val, name.Val, file.Val, line.Val,
+ type.Val, arg.Val, flags.Val, align.Val));
+ return false;
+}
+
+/// ParseDILabel:
+/// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
+bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(scope, MDField, (/* AllowNull */ false)); \
+ REQUIRED(name, MDStringField, ); \
+ REQUIRED(file, MDField, ); \
+ REQUIRED(line, LineField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DILabel,
+ (Context, scope.Val, name.Val, file.Val, line.Val));
+ return false;
+}
+
+/// ParseDIExpression:
+/// ::= !DIExpression(0, 7, -1)
+bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
+ assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
+ Lex.Lex();
+
+ if (ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ SmallVector<uint64_t, 8> Elements;
+ if (Lex.getKind() != lltok::rparen)
+ do {
+ if (Lex.getKind() == lltok::DwarfOp) {
+ if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
+ Lex.Lex();
+ Elements.push_back(Op);
+ continue;
+ }
+ return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
+ }
+
+ if (Lex.getKind() == lltok::DwarfAttEncoding) {
+ if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
+ Lex.Lex();
+ Elements.push_back(Op);
+ continue;
+ }
+ return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
+ }
+
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected unsigned integer");
+
+ auto &U = Lex.getAPSIntVal();
+ if (U.ugt(UINT64_MAX))
+ return TokError("element too large, limit is " + Twine(UINT64_MAX));
+ Elements.push_back(U.getZExtValue());
+ Lex.Lex();
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
+ return false;
+}
+
+/// ParseDIGlobalVariableExpression:
+/// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
+bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
+ bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(var, MDField, ); \
+ REQUIRED(expr, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result =
+ GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
+ return false;
+}
+
+/// ParseDIObjCProperty:
+/// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
+/// getter: "getFoo", attributes: 7, type: !2)
+bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ OPTIONAL(name, MDStringField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(setter, MDStringField, ); \
+ OPTIONAL(getter, MDStringField, ); \
+ OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
+ OPTIONAL(type, MDField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(DIObjCProperty,
+ (Context, name.Val, file.Val, line.Val, setter.Val,
+ getter.Val, attributes.Val, type.Val));
+ return false;
+}
+
+/// ParseDIImportedEntity:
+/// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
+/// line: 7, name: "foo")
+bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
+#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
+ REQUIRED(tag, DwarfTagField, ); \
+ REQUIRED(scope, MDField, ); \
+ OPTIONAL(entity, MDField, ); \
+ OPTIONAL(file, MDField, ); \
+ OPTIONAL(line, LineField, ); \
+ OPTIONAL(name, MDStringField, );
+ PARSE_MD_FIELDS();
+#undef VISIT_MD_FIELDS
+
+ Result = GET_OR_DISTINCT(
+ DIImportedEntity,
+ (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
+ return false;
+}
+
+#undef PARSE_MD_FIELD
+#undef NOP_FIELD
+#undef REQUIRE_FIELD
+#undef DECLARE_FIELD
+
+/// ParseMetadataAsValue
+/// ::= metadata i32 %local
+/// ::= metadata i32 @global
+/// ::= metadata i32 7
+/// ::= metadata !0
+/// ::= metadata !{...}
+/// ::= metadata !"string"
+bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
+ // Note: the type 'metadata' has already been parsed.
+ Metadata *MD;
+ if (ParseMetadata(MD, &PFS))
+ return true;
+
+ V = MetadataAsValue::get(Context, MD);
+ return false;
+}
+
+/// ParseValueAsMetadata
+/// ::= i32 %local
+/// ::= i32 @global
+/// ::= i32 7
+bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
+ PerFunctionState *PFS) {
+ Type *Ty;
+ LocTy Loc;
+ if (ParseType(Ty, TypeMsg, Loc))
+ return true;
+ if (Ty->isMetadataTy())
+ return Error(Loc, "invalid metadata-value-metadata roundtrip");
+
+ Value *V;
+ if (ParseValue(Ty, V, PFS))
+ return true;
+
+ MD = ValueAsMetadata::get(V);
+ return false;
+}
+
+/// ParseMetadata
+/// ::= i32 %local
+/// ::= i32 @global
+/// ::= i32 7
+/// ::= !42
+/// ::= !{...}
+/// ::= !"string"
+/// ::= !DILocation(...)
+bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ MDNode *N;
+ if (ParseSpecializedMDNode(N))
+ return true;
+ MD = N;
+ return false;
+ }
+
+ // ValueAsMetadata:
+ // <type> <value>
+ if (Lex.getKind() != lltok::exclaim)
+ return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
+
+ // '!'.
+ assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
+ Lex.Lex();
+
+ // MDString:
+ // ::= '!' STRINGCONSTANT
+ if (Lex.getKind() == lltok::StringConstant) {
+ MDString *S;
+ if (ParseMDString(S))
+ return true;
+ MD = S;
+ return false;
+ }
+
+ // MDNode:
+ // !{ ... }
+ // !7
+ MDNode *N;
+ if (ParseMDNodeTail(N))
+ return true;
+ MD = N;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Function Parsing.
+//===----------------------------------------------------------------------===//
+
+bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
+ PerFunctionState *PFS, bool IsCall) {
+ if (Ty->isFunctionTy())
+ return Error(ID.Loc, "functions are not values, refer to them as pointers");
+
+ switch (ID.Kind) {
+ case ValID::t_LocalID:
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
+ return V == nullptr;
+ case ValID::t_LocalName:
+ if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
+ V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
+ return V == nullptr;
+ case ValID::t_InlineAsm: {
+ if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
+ return Error(ID.Loc, "invalid type for inline asm constraint string");
+ V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
+ (ID.UIntVal >> 1) & 1,
+ (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
+ return false;
+ }
+ case ValID::t_GlobalName:
+ V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
+ return V == nullptr;
+ case ValID::t_GlobalID:
+ V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
+ return V == nullptr;
+ case ValID::t_APSInt:
+ if (!Ty->isIntegerTy())
+ return Error(ID.Loc, "integer constant must have integer type");
+ ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
+ V = ConstantInt::get(Context, ID.APSIntVal);
+ return false;
+ case ValID::t_APFloat:
+ if (!Ty->isFloatingPointTy() ||
+ !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
+ return Error(ID.Loc, "floating point constant invalid for type");
+
+ // The lexer has no type info, so builds all half, float, and double FP
+ // constants as double. Fix this here. Long double does not need this.
+ if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
+ bool Ignored;
+ if (Ty->isHalfTy())
+ ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
+ &Ignored);
+ else if (Ty->isFloatTy())
+ ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
+ &Ignored);
+ }
+ V = ConstantFP::get(Context, ID.APFloatVal);
+
+ if (V->getType() != Ty)
+ return Error(ID.Loc, "floating point constant does not have type '" +
+ getTypeString(Ty) + "'");
+
+ return false;
+ case ValID::t_Null:
+ if (!Ty->isPointerTy())
+ return Error(ID.Loc, "null must be a pointer type");
+ V = ConstantPointerNull::get(cast<PointerType>(Ty));
+ return false;
+ case ValID::t_Undef:
+ // FIXME: LabelTy should not be a first-class type.
+ if (!Ty->isFirstClassType() || Ty->isLabelTy())
+ return Error(ID.Loc, "invalid type for undef constant");
+ V = UndefValue::get(Ty);
+ return false;
+ case ValID::t_EmptyArray:
+ if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
+ return Error(ID.Loc, "invalid empty array initializer");
+ V = UndefValue::get(Ty);
+ return false;
+ case ValID::t_Zero:
+ // FIXME: LabelTy should not be a first-class type.
+ if (!Ty->isFirstClassType() || Ty->isLabelTy())
+ return Error(ID.Loc, "invalid type for null constant");
+ V = Constant::getNullValue(Ty);
+ return false;
+ case ValID::t_None:
+ if (!Ty->isTokenTy())
+ return Error(ID.Loc, "invalid type for none constant");
+ V = Constant::getNullValue(Ty);
+ return false;
+ case ValID::t_Constant:
+ if (ID.ConstantVal->getType() != Ty)
+ return Error(ID.Loc, "constant expression type mismatch");
+
+ V = ID.ConstantVal;
+ return false;
+ case ValID::t_ConstantStruct:
+ case ValID::t_PackedConstantStruct:
+ if (StructType *ST = dyn_cast<StructType>(Ty)) {
+ if (ST->getNumElements() != ID.UIntVal)
+ return Error(ID.Loc,
+ "initializer with struct type has wrong # elements");
+ if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
+ return Error(ID.Loc, "packed'ness of initializer and type don't match");
+
+ // Verify that the elements are compatible with the structtype.
+ for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
+ if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
+ return Error(ID.Loc, "element " + Twine(i) +
+ " of struct initializer doesn't match struct element type");
+
+ V = ConstantStruct::get(
+ ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
+ } else
+ return Error(ID.Loc, "constant expression type mismatch");
+ return false;
+ }
+ llvm_unreachable("Invalid ValID");
+}
+
+bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
+ C = nullptr;
+ ValID ID;
+ auto Loc = Lex.getLoc();
+ if (ParseValID(ID, /*PFS=*/nullptr))
+ return true;
+ switch (ID.Kind) {
+ case ValID::t_APSInt:
+ case ValID::t_APFloat:
+ case ValID::t_Undef:
+ case ValID::t_Constant:
+ case ValID::t_ConstantStruct:
+ case ValID::t_PackedConstantStruct: {
+ Value *V;
+ if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
+ return true;
+ assert(isa<Constant>(V) && "Expected a constant value");
+ C = cast<Constant>(V);
+ return false;
+ }
+ case ValID::t_Null:
+ C = Constant::getNullValue(Ty);
+ return false;
+ default:
+ return Error(Loc, "expected a constant value");
+ }
+}
+
+bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
+ V = nullptr;
+ ValID ID;
+ return ParseValID(ID, PFS) ||
+ ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
+}
+
+bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
+ Type *Ty = nullptr;
+ return ParseType(Ty) ||
+ ParseValue(Ty, V, PFS);
+}
+
+bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
+ PerFunctionState &PFS) {
+ Value *V;
+ Loc = Lex.getLoc();
+ if (ParseTypeAndValue(V, PFS)) return true;
+ if (!isa<BasicBlock>(V))
+ return Error(Loc, "expected a basic block");
+ BB = cast<BasicBlock>(V);
+ return false;
+}
+
+/// FunctionHeader
+/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
+/// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
+/// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
+/// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
+bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
+ // Parse the linkage.
+ LocTy LinkageLoc = Lex.getLoc();
+ unsigned Linkage;
+ unsigned Visibility;
+ unsigned DLLStorageClass;
+ bool DSOLocal;
+ AttrBuilder RetAttrs;
+ unsigned CC;
+ bool HasLinkage;
+ Type *RetType = nullptr;
+ LocTy RetTypeLoc = Lex.getLoc();
+ if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
+ DSOLocal) ||
+ ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/))
+ return true;
+
+ // Verify that the linkage is ok.
+ switch ((GlobalValue::LinkageTypes)Linkage) {
+ case GlobalValue::ExternalLinkage:
+ break; // always ok.
+ case GlobalValue::ExternalWeakLinkage:
+ if (isDefine)
+ return Error(LinkageLoc, "invalid linkage for function definition");
+ break;
+ case GlobalValue::PrivateLinkage:
+ case GlobalValue::InternalLinkage:
+ case GlobalValue::AvailableExternallyLinkage:
+ case GlobalValue::LinkOnceAnyLinkage:
+ case GlobalValue::LinkOnceODRLinkage:
+ case GlobalValue::WeakAnyLinkage:
+ case GlobalValue::WeakODRLinkage:
+ if (!isDefine)
+ return Error(LinkageLoc, "invalid linkage for function declaration");
+ break;
+ case GlobalValue::AppendingLinkage:
+ case GlobalValue::CommonLinkage:
+ return Error(LinkageLoc, "invalid function linkage type");
+ }
+
+ if (!isValidVisibilityForLinkage(Visibility, Linkage))
+ return Error(LinkageLoc,
+ "symbol with local linkage must have default visibility");
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "invalid function return type");
+
+ LocTy NameLoc = Lex.getLoc();
+
+ std::string FunctionName;
+ if (Lex.getKind() == lltok::GlobalVar) {
+ FunctionName = Lex.getStrVal();
+ } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
+ unsigned NameID = Lex.getUIntVal();
+
+ if (NameID != NumberedVals.size())
+ return TokError("function expected to be numbered '%" +
+ Twine(NumberedVals.size()) + "'");
+ } else {
+ return TokError("expected function name");
+ }
+
+ Lex.Lex();
+
+ if (Lex.getKind() != lltok::lparen)
+ return TokError("expected '(' in function argument list");
+
+ SmallVector<ArgInfo, 8> ArgList;
+ bool isVarArg;
+ AttrBuilder FuncAttrs;
+ std::vector<unsigned> FwdRefAttrGrps;
+ LocTy BuiltinLoc;
+ std::string Section;
+ std::string Partition;
+ unsigned Alignment;
+ std::string GC;
+ GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
+ unsigned AddrSpace = 0;
+ Constant *Prefix = nullptr;
+ Constant *Prologue = nullptr;
+ Constant *PersonalityFn = nullptr;
+ Comdat *C;
+
+ if (ParseArgumentList(ArgList, isVarArg) ||
+ ParseOptionalUnnamedAddr(UnnamedAddr) ||
+ ParseOptionalProgramAddrSpace(AddrSpace) ||
+ ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
+ BuiltinLoc) ||
+ (EatIfPresent(lltok::kw_section) &&
+ ParseStringConstant(Section)) ||
+ (EatIfPresent(lltok::kw_partition) &&
+ ParseStringConstant(Partition)) ||
+ parseOptionalComdat(FunctionName, C) ||
+ ParseOptionalAlignment(Alignment) ||
+ (EatIfPresent(lltok::kw_gc) &&
+ ParseStringConstant(GC)) ||
+ (EatIfPresent(lltok::kw_prefix) &&
+ ParseGlobalTypeAndValue(Prefix)) ||
+ (EatIfPresent(lltok::kw_prologue) &&
+ ParseGlobalTypeAndValue(Prologue)) ||
+ (EatIfPresent(lltok::kw_personality) &&
+ ParseGlobalTypeAndValue(PersonalityFn)))
+ return true;
+
+ if (FuncAttrs.contains(Attribute::Builtin))
+ return Error(BuiltinLoc, "'builtin' attribute not valid on function");
+
+ // If the alignment was parsed as an attribute, move to the alignment field.
+ if (FuncAttrs.hasAlignmentAttr()) {
+ Alignment = FuncAttrs.getAlignment();
+ FuncAttrs.removeAttribute(Attribute::Alignment);
+ }
+
+ // Okay, if we got here, the function is syntactically valid. Convert types
+ // and do semantic checks.
+ std::vector<Type*> ParamTypeList;
+ SmallVector<AttributeSet, 8> Attrs;
+
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ ParamTypeList.push_back(ArgList[i].Ty);
+ Attrs.push_back(ArgList[i].Attrs);
+ }
+
+ AttributeList PAL =
+ AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
+ AttributeSet::get(Context, RetAttrs), Attrs);
+
+ if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
+ return Error(RetTypeLoc, "functions with 'sret' argument must return void");
+
+ FunctionType *FT =
+ FunctionType::get(RetType, ParamTypeList, isVarArg);
+ PointerType *PFT = PointerType::get(FT, AddrSpace);
+
+ Fn = nullptr;
+ if (!FunctionName.empty()) {
+ // If this was a definition of a forward reference, remove the definition
+ // from the forward reference table and fill in the forward ref.
+ auto FRVI = ForwardRefVals.find(FunctionName);
+ if (FRVI != ForwardRefVals.end()) {
+ Fn = M->getFunction(FunctionName);
+ if (!Fn)
+ return Error(FRVI->second.second, "invalid forward reference to "
+ "function as global value!");
+ if (Fn->getType() != PFT)
+ return Error(FRVI->second.second, "invalid forward reference to "
+ "function '" + FunctionName + "' with wrong type: "
+ "expected '" + getTypeString(PFT) + "' but was '" +
+ getTypeString(Fn->getType()) + "'");
+ ForwardRefVals.erase(FRVI);
+ } else if ((Fn = M->getFunction(FunctionName))) {
+ // Reject redefinitions.
+ return Error(NameLoc, "invalid redefinition of function '" +
+ FunctionName + "'");
+ } else if (M->getNamedValue(FunctionName)) {
+ return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
+ }
+
+ } else {
+ // If this is a definition of a forward referenced function, make sure the
+ // types agree.
+ auto I = ForwardRefValIDs.find(NumberedVals.size());
+ if (I != ForwardRefValIDs.end()) {
+ Fn = cast<Function>(I->second.first);
+ if (Fn->getType() != PFT)
+ return Error(NameLoc, "type of definition and forward reference of '@" +
+ Twine(NumberedVals.size()) + "' disagree: "
+ "expected '" + getTypeString(PFT) + "' but was '" +
+ getTypeString(Fn->getType()) + "'");
+ ForwardRefValIDs.erase(I);
+ }
+ }
+
+ if (!Fn)
+ Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
+ FunctionName, M);
+ else // Move the forward-reference to the correct spot in the module.
+ M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
+
+ assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
+
+ if (FunctionName.empty())
+ NumberedVals.push_back(Fn);
+
+ Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
+ maybeSetDSOLocal(DSOLocal, *Fn);
+ Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
+ Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
+ Fn->setCallingConv(CC);
+ Fn->setAttributes(PAL);
+ Fn->setUnnamedAddr(UnnamedAddr);
+ Fn->setAlignment(Alignment);
+ Fn->setSection(Section);
+ Fn->setPartition(Partition);
+ Fn->setComdat(C);
+ Fn->setPersonalityFn(PersonalityFn);
+ if (!GC.empty()) Fn->setGC(GC);
+ Fn->setPrefixData(Prefix);
+ Fn->setPrologueData(Prologue);
+ ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
+
+ // Add all of the arguments we parsed to the function.
+ Function::arg_iterator ArgIt = Fn->arg_begin();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
+ // If the argument has a name, insert it into the argument symbol table.
+ if (ArgList[i].Name.empty()) continue;
+
+ // Set the name, if it conflicted, it will be auto-renamed.
+ ArgIt->setName(ArgList[i].Name);
+
+ if (ArgIt->getName() != ArgList[i].Name)
+ return Error(ArgList[i].Loc, "redefinition of argument '%" +
+ ArgList[i].Name + "'");
+ }
+
+ if (isDefine)
+ return false;
+
+ // Check the declaration has no block address forward references.
+ ValID ID;
+ if (FunctionName.empty()) {
+ ID.Kind = ValID::t_GlobalID;
+ ID.UIntVal = NumberedVals.size() - 1;
+ } else {
+ ID.Kind = ValID::t_GlobalName;
+ ID.StrVal = FunctionName;
+ }
+ auto Blocks = ForwardRefBlockAddresses.find(ID);
+ if (Blocks != ForwardRefBlockAddresses.end())
+ return Error(Blocks->first.Loc,
+ "cannot take blockaddress inside a declaration");
+ return false;
+}
+
+bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
+ ValID ID;
+ if (FunctionNumber == -1) {
+ ID.Kind = ValID::t_GlobalName;
+ ID.StrVal = F.getName();
+ } else {
+ ID.Kind = ValID::t_GlobalID;
+ ID.UIntVal = FunctionNumber;
+ }
+
+ auto Blocks = P.ForwardRefBlockAddresses.find(ID);
+ if (Blocks == P.ForwardRefBlockAddresses.end())
+ return false;
+
+ for (const auto &I : Blocks->second) {
+ const ValID &BBID = I.first;
+ GlobalValue *GV = I.second;
+
+ assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
+ "Expected local id or name");
+ BasicBlock *BB;
+ if (BBID.Kind == ValID::t_LocalName)
+ BB = GetBB(BBID.StrVal, BBID.Loc);
+ else
+ BB = GetBB(BBID.UIntVal, BBID.Loc);
+ if (!BB)
+ return P.Error(BBID.Loc, "referenced value is not a basic block");
+
+ GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
+ GV->eraseFromParent();
+ }
+
+ P.ForwardRefBlockAddresses.erase(Blocks);
+ return false;
+}
+
+/// ParseFunctionBody
+/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
+bool LLParser::ParseFunctionBody(Function &Fn) {
+ if (Lex.getKind() != lltok::lbrace)
+ return TokError("expected '{' in function body");
+ Lex.Lex(); // eat the {.
+
+ int FunctionNumber = -1;
+ if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
+
+ PerFunctionState PFS(*this, Fn, FunctionNumber);
+
+ // Resolve block addresses and allow basic blocks to be forward-declared
+ // within this function.
+ if (PFS.resolveForwardRefBlockAddresses())
+ return true;
+ SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
+
+ // We need at least one basic block.
+ if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
+ return TokError("function body requires at least one basic block");
+
+ while (Lex.getKind() != lltok::rbrace &&
+ Lex.getKind() != lltok::kw_uselistorder)
+ if (ParseBasicBlock(PFS)) return true;
+
+ while (Lex.getKind() != lltok::rbrace)
+ if (ParseUseListOrder(&PFS))
+ return true;
+
+ // Eat the }.
+ Lex.Lex();
+
+ // Verify function is ok.
+ return PFS.FinishFunction();
+}
+
+/// ParseBasicBlock
+/// ::= (LabelStr|LabelID)? Instruction*
+bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
+ // If this basic block starts out with a name, remember it.
+ std::string Name;
+ int NameID = -1;
+ LocTy NameLoc = Lex.getLoc();
+ if (Lex.getKind() == lltok::LabelStr) {
+ Name = Lex.getStrVal();
+ Lex.Lex();
+ } else if (Lex.getKind() == lltok::LabelID) {
+ NameID = Lex.getUIntVal();
+ Lex.Lex();
+ }
+
+ BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
+ if (!BB)
+ return true;
+
+ std::string NameStr;
+
+ // Parse the instructions in this block until we get a terminator.
+ Instruction *Inst;
+ do {
+ // This instruction may have three possibilities for a name: a) none
+ // specified, b) name specified "%foo =", c) number specified: "%4 =".
+ LocTy NameLoc = Lex.getLoc();
+ int NameID = -1;
+ NameStr = "";
+
+ if (Lex.getKind() == lltok::LocalVarID) {
+ NameID = Lex.getUIntVal();
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after instruction id"))
+ return true;
+ } else if (Lex.getKind() == lltok::LocalVar) {
+ NameStr = Lex.getStrVal();
+ Lex.Lex();
+ if (ParseToken(lltok::equal, "expected '=' after instruction name"))
+ return true;
+ }
+
+ switch (ParseInstruction(Inst, BB, PFS)) {
+ default: llvm_unreachable("Unknown ParseInstruction result!");
+ case InstError: return true;
+ case InstNormal:
+ BB->getInstList().push_back(Inst);
+
+ // With a normal result, we check to see if the instruction is followed by
+ // a comma and metadata.
+ if (EatIfPresent(lltok::comma))
+ if (ParseInstructionMetadata(*Inst))
+ return true;
+ break;
+ case InstExtraComma:
+ BB->getInstList().push_back(Inst);
+
+ // If the instruction parser ate an extra comma at the end of it, it
+ // *must* be followed by metadata.
+ if (ParseInstructionMetadata(*Inst))
+ return true;
+ break;
+ }
+
+ // Set the name on the instruction.
+ if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
+ } while (!Inst->isTerminator());
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Parsing.
+//===----------------------------------------------------------------------===//
+
+/// ParseInstruction - Parse one of the many different instructions.
+///
+int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
+ PerFunctionState &PFS) {
+ lltok::Kind Token = Lex.getKind();
+ if (Token == lltok::Eof)
+ return TokError("found end of file when expecting more instructions");
+ LocTy Loc = Lex.getLoc();
+ unsigned KeywordVal = Lex.getUIntVal();
+ Lex.Lex(); // Eat the keyword.
+
+ switch (Token) {
+ default: return Error(Loc, "expected instruction opcode");
+ // Terminator Instructions.
+ case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
+ case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
+ case lltok::kw_br: return ParseBr(Inst, PFS);
+ case lltok::kw_switch: return ParseSwitch(Inst, PFS);
+ case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
+ case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
+ case lltok::kw_resume: return ParseResume(Inst, PFS);
+ case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
+ case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
+ case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
+ case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
+ case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
+ case lltok::kw_callbr: return ParseCallBr(Inst, PFS);
+ // Unary Operators.
+ case lltok::kw_fneg: {
+ FastMathFlags FMF = EatFastMathFlagsIfPresent();
+ int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
+ if (Res != 0)
+ return Res;
+ if (FMF.any())
+ Inst->setFastMathFlags(FMF);
+ return false;
+ }
+ // Binary Operators.
+ case lltok::kw_add:
+ case lltok::kw_sub:
+ case lltok::kw_mul:
+ case lltok::kw_shl: {
+ bool NUW = EatIfPresent(lltok::kw_nuw);
+ bool NSW = EatIfPresent(lltok::kw_nsw);
+ if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
+
+ if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
+
+ if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
+ if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
+ return false;
+ }
+ case lltok::kw_fadd:
+ case lltok::kw_fsub:
+ case lltok::kw_fmul:
+ case lltok::kw_fdiv:
+ case lltok::kw_frem: {
+ FastMathFlags FMF = EatFastMathFlagsIfPresent();
+ int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
+ if (Res != 0)
+ return Res;
+ if (FMF.any())
+ Inst->setFastMathFlags(FMF);
+ return 0;
+ }
+
+ case lltok::kw_sdiv:
+ case lltok::kw_udiv:
+ case lltok::kw_lshr:
+ case lltok::kw_ashr: {
+ bool Exact = EatIfPresent(lltok::kw_exact);
+
+ if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
+ if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
+ return false;
+ }
+
+ case lltok::kw_urem:
+ case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal,
+ /*IsFP*/false);
+ case lltok::kw_and:
+ case lltok::kw_or:
+ case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
+ case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
+ case lltok::kw_fcmp: {
+ FastMathFlags FMF = EatFastMathFlagsIfPresent();
+ int Res = ParseCompare(Inst, PFS, KeywordVal);
+ if (Res != 0)
+ return Res;
+ if (FMF.any())
+ Inst->setFastMathFlags(FMF);
+ return 0;
+ }
+
+ // Casts.
+ case lltok::kw_trunc:
+ case lltok::kw_zext:
+ case lltok::kw_sext:
+ case lltok::kw_fptrunc:
+ case lltok::kw_fpext:
+ case lltok::kw_bitcast:
+ case lltok::kw_addrspacecast:
+ case lltok::kw_uitofp:
+ case lltok::kw_sitofp:
+ case lltok::kw_fptoui:
+ case lltok::kw_fptosi:
+ case lltok::kw_inttoptr:
+ case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
+ // Other.
+ case lltok::kw_select: {
+ FastMathFlags FMF = EatFastMathFlagsIfPresent();
+ int Res = ParseSelect(Inst, PFS);
+ if (Res != 0)
+ return Res;
+ if (FMF.any()) {
+ if (!Inst->getType()->isFPOrFPVectorTy())
+ return Error(Loc, "fast-math-flags specified for select without "
+ "floating-point scalar or vector return type");
+ Inst->setFastMathFlags(FMF);
+ }
+ return 0;
+ }
+ case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
+ case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
+ case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
+ case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
+ case lltok::kw_phi: return ParsePHI(Inst, PFS);
+ case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
+ // Call.
+ case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
+ case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
+ case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
+ case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
+ // Memory.
+ case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
+ case lltok::kw_load: return ParseLoad(Inst, PFS);
+ case lltok::kw_store: return ParseStore(Inst, PFS);
+ case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
+ case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
+ case lltok::kw_fence: return ParseFence(Inst, PFS);
+ case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
+ case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
+ case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
+ }
+}
+
+/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
+bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
+ if (Opc == Instruction::FCmp) {
+ switch (Lex.getKind()) {
+ default: return TokError("expected fcmp predicate (e.g. 'oeq')");
+ case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
+ case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
+ case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
+ case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
+ case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
+ case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
+ case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
+ case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
+ case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
+ case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
+ case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
+ case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
+ case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
+ case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
+ case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
+ case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
+ }
+ } else {
+ switch (Lex.getKind()) {
+ default: return TokError("expected icmp predicate (e.g. 'eq')");
+ case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
+ case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
+ case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
+ case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
+ case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
+ case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
+ case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
+ case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
+ case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
+ case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
+ }
+ }
+ Lex.Lex();
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Terminator Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseRet - Parse a return instruction.
+/// ::= 'ret' void (',' !dbg, !1)*
+/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
+bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
+ PerFunctionState &PFS) {
+ SMLoc TypeLoc = Lex.getLoc();
+ Type *Ty = nullptr;
+ if (ParseType(Ty, true /*void allowed*/)) return true;
+
+ Type *ResType = PFS.getFunction().getReturnType();
+
+ if (Ty->isVoidTy()) {
+ if (!ResType->isVoidTy())
+ return Error(TypeLoc, "value doesn't match function result type '" +
+ getTypeString(ResType) + "'");
+
+ Inst = ReturnInst::Create(Context);
+ return false;
+ }
+
+ Value *RV;
+ if (ParseValue(Ty, RV, PFS)) return true;
+
+ if (ResType != RV->getType())
+ return Error(TypeLoc, "value doesn't match function result type '" +
+ getTypeString(ResType) + "'");
+
+ Inst = ReturnInst::Create(Context, RV);
+ return false;
+}
+
+/// ParseBr
+/// ::= 'br' TypeAndValue
+/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc, Loc2;
+ Value *Op0;
+ BasicBlock *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
+
+ if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
+ Inst = BranchInst::Create(BB);
+ return false;
+ }
+
+ if (Op0->getType() != Type::getInt1Ty(Context))
+ return Error(Loc, "branch condition must have 'i1' type");
+
+ if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
+ ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after true destination") ||
+ ParseTypeAndBasicBlock(Op2, Loc2, PFS))
+ return true;
+
+ Inst = BranchInst::Create(Op1, Op2, Op0);
+ return false;
+}
+
+/// ParseSwitch
+/// Instruction
+/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
+/// JumpTable
+/// ::= (TypeAndValue ',' TypeAndValue)*
+bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy CondLoc, BBLoc;
+ Value *Cond;
+ BasicBlock *DefaultBB;
+ if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after switch condition") ||
+ ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
+ ParseToken(lltok::lsquare, "expected '[' with switch table"))
+ return true;
+
+ if (!Cond->getType()->isIntegerTy())
+ return Error(CondLoc, "switch condition must have integer type");
+
+ // Parse the jump table pairs.
+ SmallPtrSet<Value*, 32> SeenCases;
+ SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
+ while (Lex.getKind() != lltok::rsquare) {
+ Value *Constant;
+ BasicBlock *DestBB;
+
+ if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after case value") ||
+ ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+
+ if (!SeenCases.insert(Constant).second)
+ return Error(CondLoc, "duplicate case value in switch");
+ if (!isa<ConstantInt>(Constant))
+ return Error(CondLoc, "case value is not a constant integer");
+
+ Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
+ }
+
+ Lex.Lex(); // Eat the ']'.
+
+ SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
+ for (unsigned i = 0, e = Table.size(); i != e; ++i)
+ SI->addCase(Table[i].first, Table[i].second);
+ Inst = SI;
+ return false;
+}
+
+/// ParseIndirectBr
+/// Instruction
+/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
+bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy AddrLoc;
+ Value *Address;
+ if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
+ ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
+ return true;
+
+ if (!Address->getType()->isPointerTy())
+ return Error(AddrLoc, "indirectbr address must have pointer type");
+
+ // Parse the destination list.
+ SmallVector<BasicBlock*, 16> DestList;
+
+ if (Lex.getKind() != lltok::rsquare) {
+ BasicBlock *DestBB;
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ DestList.push_back(DestBB);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ DestList.push_back(DestBB);
+ }
+ }
+
+ if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
+ return true;
+
+ IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
+ for (unsigned i = 0, e = DestList.size(); i != e; ++i)
+ IBI->addDestination(DestList[i]);
+ Inst = IBI;
+ return false;
+}
+
+/// ParseInvoke
+/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
+/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
+bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy CallLoc = Lex.getLoc();
+ AttrBuilder RetAttrs, FnAttrs;
+ std::vector<unsigned> FwdRefAttrGrps;
+ LocTy NoBuiltinLoc;
+ unsigned CC;
+ unsigned InvokeAddrSpace;
+ Type *RetType = nullptr;
+ LocTy RetTypeLoc;
+ ValID CalleeID;
+ SmallVector<ParamInfo, 16> ArgList;
+ SmallVector<OperandBundleDef, 2> BundleList;
+
+ BasicBlock *NormalBB, *UnwindBB;
+ if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
+ ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+ ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
+ ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
+ NoBuiltinLoc) ||
+ ParseOptionalOperandBundles(BundleList, PFS) ||
+ ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
+ ParseTypeAndBasicBlock(NormalBB, PFS) ||
+ ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
+ ParseTypeAndBasicBlock(UnwindBB, PFS))
+ return true;
+
+ // If RetType is a non-function pointer type, then this is the short syntax
+ // for the call, which means that RetType is just the return type. Infer the
+ // rest of the function argument types from the arguments that are present.
+ FunctionType *Ty = dyn_cast<FunctionType>(RetType);
+ if (!Ty) {
+ // Pull out the types of all of the arguments...
+ std::vector<Type*> ParamTypes;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ParamTypes.push_back(ArgList[i].V->getType());
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ }
+
+ CalleeID.FTy = Ty;
+
+ // Look up the callee.
+ Value *Callee;
+ if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
+ Callee, &PFS, /*IsCall=*/true))
+ return true;
+
+ // Set up the Attribute for the function.
+ SmallVector<Value *, 8> Args;
+ SmallVector<AttributeSet, 8> ArgAttrs;
+
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly. Also, gather any parameter attributes.
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ Type *ExpectedTy = nullptr;
+ if (I != E) {
+ ExpectedTy = *I++;
+ } else if (!Ty->isVarArg()) {
+ return Error(ArgList[i].Loc, "too many arguments specified");
+ }
+
+ if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+ return Error(ArgList[i].Loc, "argument is not of expected type '" +
+ getTypeString(ExpectedTy) + "'");
+ Args.push_back(ArgList[i].V);
+ ArgAttrs.push_back(ArgList[i].Attrs);
+ }
+
+ if (I != E)
+ return Error(CallLoc, "not enough parameters specified for call");
+
+ if (FnAttrs.hasAlignmentAttr())
+ return Error(CallLoc, "invoke instructions may not have an alignment");
+
+ // Finish off the Attribute and check them
+ AttributeList PAL =
+ AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
+ AttributeSet::get(Context, RetAttrs), ArgAttrs);
+
+ InvokeInst *II =
+ InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
+ II->setCallingConv(CC);
+ II->setAttributes(PAL);
+ ForwardRefAttrGroups[II] = FwdRefAttrGrps;
+ Inst = II;
+ return false;
+}
+
+/// ParseResume
+/// ::= 'resume' TypeAndValue
+bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Exn; LocTy ExnLoc;
+ if (ParseTypeAndValue(Exn, ExnLoc, PFS))
+ return true;
+
+ ResumeInst *RI = ResumeInst::Create(Exn);
+ Inst = RI;
+ return false;
+}
+
+bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
+ PerFunctionState &PFS) {
+ if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
+ return true;
+
+ while (Lex.getKind() != lltok::rsquare) {
+ // If this isn't the first argument, we need a comma.
+ if (!Args.empty() &&
+ ParseToken(lltok::comma, "expected ',' in argument list"))
+ return true;
+
+ // Parse the argument.
+ LocTy ArgLoc;
+ Type *ArgTy = nullptr;
+ if (ParseType(ArgTy, ArgLoc))
+ return true;
+
+ Value *V;
+ if (ArgTy->isMetadataTy()) {
+ if (ParseMetadataAsValue(V, PFS))
+ return true;
+ } else {
+ if (ParseValue(ArgTy, V, PFS))
+ return true;
+ }
+ Args.push_back(V);
+ }
+
+ Lex.Lex(); // Lex the ']'.
+ return false;
+}
+
+/// ParseCleanupRet
+/// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
+bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *CleanupPad = nullptr;
+
+ if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
+ return true;
+
+ if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
+ return true;
+
+ if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
+ return true;
+
+ BasicBlock *UnwindBB = nullptr;
+ if (Lex.getKind() == lltok::kw_to) {
+ Lex.Lex();
+ if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
+ return true;
+ } else {
+ if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
+ return true;
+ }
+ }
+
+ Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
+ return false;
+}
+
+/// ParseCatchRet
+/// ::= 'catchret' from Parent Value 'to' TypeAndValue
+bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *CatchPad = nullptr;
+
+ if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
+ return true;
+
+ if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
+ return true;
+
+ BasicBlock *BB;
+ if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
+ ParseTypeAndBasicBlock(BB, PFS))
+ return true;
+
+ Inst = CatchReturnInst::Create(CatchPad, BB);
+ return false;
+}
+
+/// ParseCatchSwitch
+/// ::= 'catchswitch' within Parent
+bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *ParentPad;
+
+ if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
+ return true;
+
+ if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
+ Lex.getKind() != lltok::LocalVarID)
+ return TokError("expected scope value for catchswitch");
+
+ if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
+ return true;
+
+ if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
+ return true;
+
+ SmallVector<BasicBlock *, 32> Table;
+ do {
+ BasicBlock *DestBB;
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ Table.push_back(DestBB);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
+ return true;
+
+ if (ParseToken(lltok::kw_unwind,
+ "expected 'unwind' after catchswitch scope"))
+ return true;
+
+ BasicBlock *UnwindBB = nullptr;
+ if (EatIfPresent(lltok::kw_to)) {
+ if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
+ return true;
+ } else {
+ if (ParseTypeAndBasicBlock(UnwindBB, PFS))
+ return true;
+ }
+
+ auto *CatchSwitch =
+ CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
+ for (BasicBlock *DestBB : Table)
+ CatchSwitch->addHandler(DestBB);
+ Inst = CatchSwitch;
+ return false;
+}
+
+/// ParseCatchPad
+/// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
+bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *CatchSwitch = nullptr;
+
+ if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
+ return true;
+
+ if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
+ return TokError("expected scope value for catchpad");
+
+ if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
+ return true;
+
+ SmallVector<Value *, 8> Args;
+ if (ParseExceptionArgs(Args, PFS))
+ return true;
+
+ Inst = CatchPadInst::Create(CatchSwitch, Args);
+ return false;
+}
+
+/// ParseCleanupPad
+/// ::= 'cleanuppad' within Parent ParamList
+bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *ParentPad = nullptr;
+
+ if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
+ return true;
+
+ if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
+ Lex.getKind() != lltok::LocalVarID)
+ return TokError("expected scope value for cleanuppad");
+
+ if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
+ return true;
+
+ SmallVector<Value *, 8> Args;
+ if (ParseExceptionArgs(Args, PFS))
+ return true;
+
+ Inst = CleanupPadInst::Create(ParentPad, Args);
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Unary Operators.
+//===----------------------------------------------------------------------===//
+
+/// ParseUnaryOp
+/// ::= UnaryOp TypeAndValue ',' Value
+///
+/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
+/// operand is allowed.
+bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc, bool IsFP) {
+ LocTy Loc; Value *LHS;
+ if (ParseTypeAndValue(LHS, Loc, PFS))
+ return true;
+
+ bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
+ : LHS->getType()->isIntOrIntVectorTy();
+
+ if (!Valid)
+ return Error(Loc, "invalid operand type for instruction");
+
+ Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
+ return false;
+}
+
+/// ParseCallBr
+/// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
+/// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
+/// '[' LabelList ']'
+bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy CallLoc = Lex.getLoc();
+ AttrBuilder RetAttrs, FnAttrs;
+ std::vector<unsigned> FwdRefAttrGrps;
+ LocTy NoBuiltinLoc;
+ unsigned CC;
+ Type *RetType = nullptr;
+ LocTy RetTypeLoc;
+ ValID CalleeID;
+ SmallVector<ParamInfo, 16> ArgList;
+ SmallVector<OperandBundleDef, 2> BundleList;
+
+ BasicBlock *DefaultDest;
+ if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+ ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
+ ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
+ NoBuiltinLoc) ||
+ ParseOptionalOperandBundles(BundleList, PFS) ||
+ ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
+ ParseTypeAndBasicBlock(DefaultDest, PFS) ||
+ ParseToken(lltok::lsquare, "expected '[' in callbr"))
+ return true;
+
+ // Parse the destination list.
+ SmallVector<BasicBlock *, 16> IndirectDests;
+
+ if (Lex.getKind() != lltok::rsquare) {
+ BasicBlock *DestBB;
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ IndirectDests.push_back(DestBB);
+
+ while (EatIfPresent(lltok::comma)) {
+ if (ParseTypeAndBasicBlock(DestBB, PFS))
+ return true;
+ IndirectDests.push_back(DestBB);
+ }
+ }
+
+ if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
+ return true;
+
+ // If RetType is a non-function pointer type, then this is the short syntax
+ // for the call, which means that RetType is just the return type. Infer the
+ // rest of the function argument types from the arguments that are present.
+ FunctionType *Ty = dyn_cast<FunctionType>(RetType);
+ if (!Ty) {
+ // Pull out the types of all of the arguments...
+ std::vector<Type *> ParamTypes;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ParamTypes.push_back(ArgList[i].V->getType());
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ }
+
+ CalleeID.FTy = Ty;
+
+ // Look up the callee.
+ Value *Callee;
+ if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
+ /*IsCall=*/true))
+ return true;
+
+ if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
+ return Error(RetTypeLoc, "asm-goto outputs not supported");
+
+ // Set up the Attribute for the function.
+ SmallVector<Value *, 8> Args;
+ SmallVector<AttributeSet, 8> ArgAttrs;
+
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly. Also, gather any parameter attributes.
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ Type *ExpectedTy = nullptr;
+ if (I != E) {
+ ExpectedTy = *I++;
+ } else if (!Ty->isVarArg()) {
+ return Error(ArgList[i].Loc, "too many arguments specified");
+ }
+
+ if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+ return Error(ArgList[i].Loc, "argument is not of expected type '" +
+ getTypeString(ExpectedTy) + "'");
+ Args.push_back(ArgList[i].V);
+ ArgAttrs.push_back(ArgList[i].Attrs);
+ }
+
+ if (I != E)
+ return Error(CallLoc, "not enough parameters specified for call");
+
+ if (FnAttrs.hasAlignmentAttr())
+ return Error(CallLoc, "callbr instructions may not have an alignment");
+
+ // Finish off the Attribute and check them
+ AttributeList PAL =
+ AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
+ AttributeSet::get(Context, RetAttrs), ArgAttrs);
+
+ CallBrInst *CBI =
+ CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
+ BundleList);
+ CBI->setCallingConv(CC);
+ CBI->setAttributes(PAL);
+ ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
+ Inst = CBI;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Binary Operators.
+//===----------------------------------------------------------------------===//
+
+/// ParseArithmetic
+/// ::= ArithmeticOps TypeAndValue ',' Value
+///
+/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
+/// operand is allowed.
+bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc, bool IsFP) {
+ LocTy Loc; Value *LHS, *RHS;
+ if (ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
+ : LHS->getType()->isIntOrIntVectorTy();
+
+ if (!Valid)
+ return Error(Loc, "invalid operand type for instruction");
+
+ Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ return false;
+}
+
+/// ParseLogical
+/// ::= ArithmeticOps TypeAndValue ',' Value {
+bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ LocTy Loc; Value *LHS, *RHS;
+ if (ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' in logical operation") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ if (!LHS->getType()->isIntOrIntVectorTy())
+ return Error(Loc,"instruction requires integer or integer vector operands");
+
+ Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ return false;
+}
+
+/// ParseCompare
+/// ::= 'icmp' IPredicates TypeAndValue ',' Value
+/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
+bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ // Parse the integer/fp comparison predicate.
+ LocTy Loc;
+ unsigned Pred;
+ Value *LHS, *RHS;
+ if (ParseCmpPredicate(Pred, Opc) ||
+ ParseTypeAndValue(LHS, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after compare value") ||
+ ParseValue(LHS->getType(), RHS, PFS))
+ return true;
+
+ if (Opc == Instruction::FCmp) {
+ if (!LHS->getType()->isFPOrFPVectorTy())
+ return Error(Loc, "fcmp requires floating point operands");
+ Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+ } else {
+ assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
+ if (!LHS->getType()->isIntOrIntVectorTy() &&
+ !LHS->getType()->isPtrOrPtrVectorTy())
+ return Error(Loc, "icmp requires integer operands");
+ Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Other Instructions.
+//===----------------------------------------------------------------------===//
+
+
+/// ParseCast
+/// ::= CastOpc TypeAndValue 'to' Type
+bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
+ unsigned Opc) {
+ LocTy Loc;
+ Value *Op;
+ Type *DestTy = nullptr;
+ if (ParseTypeAndValue(Op, Loc, PFS) ||
+ ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
+ ParseType(DestTy))
+ return true;
+
+ if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
+ CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
+ return Error(Loc, "invalid cast opcode for cast from '" +
+ getTypeString(Op->getType()) + "' to '" +
+ getTypeString(DestTy) + "'");
+ }
+ Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
+ return false;
+}
+
+/// ParseSelect
+/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after select condition") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after select value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
+ return Error(Loc, Reason);
+
+ Inst = SelectInst::Create(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParseVA_Arg
+/// ::= 'va_arg' TypeAndValue ',' Type
+bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Op;
+ Type *EltTy = nullptr;
+ LocTy TypeLoc;
+ if (ParseTypeAndValue(Op, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
+ ParseType(EltTy, TypeLoc))
+ return true;
+
+ if (!EltTy->isFirstClassType())
+ return Error(TypeLoc, "va_arg requires operand with first class type");
+
+ Inst = new VAArgInst(Op, EltTy);
+ return false;
+}
+
+/// ParseExtractElement
+/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after extract value") ||
+ ParseTypeAndValue(Op1, PFS))
+ return true;
+
+ if (!ExtractElementInst::isValidOperands(Op0, Op1))
+ return Error(Loc, "invalid extractelement operands");
+
+ Inst = ExtractElementInst::Create(Op0, Op1);
+ return false;
+}
+
+/// ParseInsertElement
+/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
+ return Error(Loc, "invalid insertelement operands");
+
+ Inst = InsertElementInst::Create(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParseShuffleVector
+/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
+bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
+ LocTy Loc;
+ Value *Op0, *Op1, *Op2;
+ if (ParseTypeAndValue(Op0, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
+ ParseTypeAndValue(Op1, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after shuffle value") ||
+ ParseTypeAndValue(Op2, PFS))
+ return true;
+
+ if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
+ return Error(Loc, "invalid shufflevector operands");
+
+ Inst = new ShuffleVectorInst(Op0, Op1, Op2);
+ return false;
+}
+
+/// ParsePHI
+/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
+int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
+ Type *Ty = nullptr; LocTy TypeLoc;
+ Value *Op0, *Op1;
+
+ if (ParseType(Ty, TypeLoc) ||
+ ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+ ParseValue(Ty, Op0, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+ ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+ return true;
+
+ bool AteExtraComma = false;
+ SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
+
+ while (true) {
+ PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
+
+ if (!EatIfPresent(lltok::comma))
+ break;
+
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ break;
+ }
+
+ if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
+ ParseValue(Ty, Op0, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after insertelement value") ||
+ ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
+ ParseToken(lltok::rsquare, "expected ']' in phi value list"))
+ return true;
+ }
+
+ if (!Ty->isFirstClassType())
+ return Error(TypeLoc, "phi node must have first class type");
+
+ PHINode *PN = PHINode::Create(Ty, PHIVals.size());
+ for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
+ PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
+ Inst = PN;
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseLandingPad
+/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
+/// Clause
+/// ::= 'catch' TypeAndValue
+/// ::= 'filter'
+/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
+bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
+ Type *Ty = nullptr; LocTy TyLoc;
+
+ if (ParseType(Ty, TyLoc))
+ return true;
+
+ std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
+ LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
+
+ while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
+ LandingPadInst::ClauseType CT;
+ if (EatIfPresent(lltok::kw_catch))
+ CT = LandingPadInst::Catch;
+ else if (EatIfPresent(lltok::kw_filter))
+ CT = LandingPadInst::Filter;
+ else
+ return TokError("expected 'catch' or 'filter' clause type");
+
+ Value *V;
+ LocTy VLoc;
+ if (ParseTypeAndValue(V, VLoc, PFS))
+ return true;
+
+ // A 'catch' type expects a non-array constant. A filter clause expects an
+ // array constant.
+ if (CT == LandingPadInst::Catch) {
+ if (isa<ArrayType>(V->getType()))
+ Error(VLoc, "'catch' clause has an invalid type");
+ } else {
+ if (!isa<ArrayType>(V->getType()))
+ Error(VLoc, "'filter' clause has an invalid type");
+ }
+
+ Constant *CV = dyn_cast<Constant>(V);
+ if (!CV)
+ return Error(VLoc, "clause argument must be a constant");
+ LP->addClause(CV);
+ }
+
+ Inst = LP.release();
+ return false;
+}
+
+/// ParseCall
+/// ::= 'call' OptionalFastMathFlags OptionalCallingConv
+/// OptionalAttrs Type Value ParameterList OptionalAttrs
+/// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
+/// OptionalAttrs Type Value ParameterList OptionalAttrs
+/// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
+/// OptionalAttrs Type Value ParameterList OptionalAttrs
+/// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
+/// OptionalAttrs Type Value ParameterList OptionalAttrs
+bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
+ CallInst::TailCallKind TCK) {
+ AttrBuilder RetAttrs, FnAttrs;
+ std::vector<unsigned> FwdRefAttrGrps;
+ LocTy BuiltinLoc;
+ unsigned CallAddrSpace;
+ unsigned CC;
+ Type *RetType = nullptr;
+ LocTy RetTypeLoc;
+ ValID CalleeID;
+ SmallVector<ParamInfo, 16> ArgList;
+ SmallVector<OperandBundleDef, 2> BundleList;
+ LocTy CallLoc = Lex.getLoc();
+
+ if (TCK != CallInst::TCK_None &&
+ ParseToken(lltok::kw_call,
+ "expected 'tail call', 'musttail call', or 'notail call'"))
+ return true;
+
+ FastMathFlags FMF = EatFastMathFlagsIfPresent();
+
+ if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
+ ParseOptionalProgramAddrSpace(CallAddrSpace) ||
+ ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
+ ParseValID(CalleeID) ||
+ ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
+ PFS.getFunction().isVarArg()) ||
+ ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
+ ParseOptionalOperandBundles(BundleList, PFS))
+ return true;
+
+ if (FMF.any() && !RetType->isFPOrFPVectorTy())
+ return Error(CallLoc, "fast-math-flags specified for call without "
+ "floating-point scalar or vector return type");
+
+ // If RetType is a non-function pointer type, then this is the short syntax
+ // for the call, which means that RetType is just the return type. Infer the
+ // rest of the function argument types from the arguments that are present.
+ FunctionType *Ty = dyn_cast<FunctionType>(RetType);
+ if (!Ty) {
+ // Pull out the types of all of the arguments...
+ std::vector<Type*> ParamTypes;
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
+ ParamTypes.push_back(ArgList[i].V->getType());
+
+ if (!FunctionType::isValidReturnType(RetType))
+ return Error(RetTypeLoc, "Invalid result type for LLVM function");
+
+ Ty = FunctionType::get(RetType, ParamTypes, false);
+ }
+
+ CalleeID.FTy = Ty;
+
+ // Look up the callee.
+ Value *Callee;
+ if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
+ &PFS, /*IsCall=*/true))
+ return true;
+
+ // Set up the Attribute for the function.
+ SmallVector<AttributeSet, 8> Attrs;
+
+ SmallVector<Value*, 8> Args;
+
+ // Loop through FunctionType's arguments and ensure they are specified
+ // correctly. Also, gather any parameter attributes.
+ FunctionType::param_iterator I = Ty->param_begin();
+ FunctionType::param_iterator E = Ty->param_end();
+ for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
+ Type *ExpectedTy = nullptr;
+ if (I != E) {
+ ExpectedTy = *I++;
+ } else if (!Ty->isVarArg()) {
+ return Error(ArgList[i].Loc, "too many arguments specified");
+ }
+
+ if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
+ return Error(ArgList[i].Loc, "argument is not of expected type '" +
+ getTypeString(ExpectedTy) + "'");
+ Args.push_back(ArgList[i].V);
+ Attrs.push_back(ArgList[i].Attrs);
+ }
+
+ if (I != E)
+ return Error(CallLoc, "not enough parameters specified for call");
+
+ if (FnAttrs.hasAlignmentAttr())
+ return Error(CallLoc, "call instructions may not have an alignment");
+
+ // Finish off the Attribute and check them
+ AttributeList PAL =
+ AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
+ AttributeSet::get(Context, RetAttrs), Attrs);
+
+ CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
+ CI->setTailCallKind(TCK);
+ CI->setCallingConv(CC);
+ if (FMF.any())
+ CI->setFastMathFlags(FMF);
+ CI->setAttributes(PAL);
+ ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
+ Inst = CI;
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Instructions.
+//===----------------------------------------------------------------------===//
+
+/// ParseAlloc
+/// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
+/// (',' 'align' i32)? (',', 'addrspace(n))?
+int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Size = nullptr;
+ LocTy SizeLoc, TyLoc, ASLoc;
+ unsigned Alignment = 0;
+ unsigned AddrSpace = 0;
+ Type *Ty = nullptr;
+
+ bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
+ bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
+
+ if (ParseType(Ty, TyLoc)) return true;
+
+ if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
+ return Error(TyLoc, "invalid type for alloca");
+
+ bool AteExtraComma = false;
+ if (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::kw_align) {
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
+ return true;
+ } else if (Lex.getKind() == lltok::kw_addrspace) {
+ ASLoc = Lex.getLoc();
+ if (ParseOptionalAddrSpace(AddrSpace))
+ return true;
+ } else if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ } else {
+ if (ParseTypeAndValue(Size, SizeLoc, PFS))
+ return true;
+ if (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::kw_align) {
+ if (ParseOptionalAlignment(Alignment))
+ return true;
+ if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
+ return true;
+ } else if (Lex.getKind() == lltok::kw_addrspace) {
+ ASLoc = Lex.getLoc();
+ if (ParseOptionalAddrSpace(AddrSpace))
+ return true;
+ } else if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ }
+ }
+ }
+ }
+
+ if (Size && !Size->getType()->isIntegerTy())
+ return Error(SizeLoc, "element count must have integer type");
+
+ AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
+ AI->setUsedWithInAlloca(IsInAlloca);
+ AI->setSwiftError(IsSwiftError);
+ Inst = AI;
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseLoad
+/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
+/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
+/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
+int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val; LocTy Loc;
+ unsigned Alignment = 0;
+ bool AteExtraComma = false;
+ bool isAtomic = false;
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ SyncScope::ID SSID = SyncScope::System;
+
+ if (Lex.getKind() == lltok::kw_atomic) {
+ isAtomic = true;
+ Lex.Lex();
+ }
+
+ bool isVolatile = false;
+ if (Lex.getKind() == lltok::kw_volatile) {
+ isVolatile = true;
+ Lex.Lex();
+ }
+
+ Type *Ty;
+ LocTy ExplicitTypeLoc = Lex.getLoc();
+ if (ParseType(Ty) ||
+ ParseToken(lltok::comma, "expected comma after load's type") ||
+ ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
+ ParseOptionalCommaAlign(Alignment, AteExtraComma))
+ return true;
+
+ if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
+ return Error(Loc, "load operand must be a pointer to a first class type");
+ if (isAtomic && !Alignment)
+ return Error(Loc, "atomic load must have explicit non-zero alignment");
+ if (Ordering == AtomicOrdering::Release ||
+ Ordering == AtomicOrdering::AcquireRelease)
+ return Error(Loc, "atomic load cannot use Release ordering");
+
+ if (Ty != cast<PointerType>(Val->getType())->getElementType())
+ return Error(ExplicitTypeLoc,
+ "explicit pointee type doesn't match operand's pointee type");
+
+ Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseStore
+
+/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
+/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
+/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
+int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val, *Ptr; LocTy Loc, PtrLoc;
+ unsigned Alignment = 0;
+ bool AteExtraComma = false;
+ bool isAtomic = false;
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ SyncScope::ID SSID = SyncScope::System;
+
+ if (Lex.getKind() == lltok::kw_atomic) {
+ isAtomic = true;
+ Lex.Lex();
+ }
+
+ bool isVolatile = false;
+ if (Lex.getKind() == lltok::kw_volatile) {
+ isVolatile = true;
+ Lex.Lex();
+ }
+
+ if (ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after store operand") ||
+ ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
+ ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
+ ParseOptionalCommaAlign(Alignment, AteExtraComma))
+ return true;
+
+ if (!Ptr->getType()->isPointerTy())
+ return Error(PtrLoc, "store operand must be a pointer");
+ if (!Val->getType()->isFirstClassType())
+ return Error(Loc, "store operand must be a first class value");
+ if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
+ return Error(Loc, "stored value and pointer type do not match");
+ if (isAtomic && !Alignment)
+ return Error(Loc, "atomic store must have explicit non-zero alignment");
+ if (Ordering == AtomicOrdering::Acquire ||
+ Ordering == AtomicOrdering::AcquireRelease)
+ return Error(Loc, "atomic store cannot use Acquire ordering");
+
+ Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseCmpXchg
+/// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
+/// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
+int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
+ bool AteExtraComma = false;
+ AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
+ AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
+ SyncScope::ID SSID = SyncScope::System;
+ bool isVolatile = false;
+ bool isWeak = false;
+
+ if (EatIfPresent(lltok::kw_weak))
+ isWeak = true;
+
+ if (EatIfPresent(lltok::kw_volatile))
+ isVolatile = true;
+
+ if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
+ ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
+ ParseTypeAndValue(New, NewLoc, PFS) ||
+ ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
+ ParseOrdering(FailureOrdering))
+ return true;
+
+ if (SuccessOrdering == AtomicOrdering::Unordered ||
+ FailureOrdering == AtomicOrdering::Unordered)
+ return TokError("cmpxchg cannot be unordered");
+ if (isStrongerThan(FailureOrdering, SuccessOrdering))
+ return TokError("cmpxchg failure argument shall be no stronger than the "
+ "success argument");
+ if (FailureOrdering == AtomicOrdering::Release ||
+ FailureOrdering == AtomicOrdering::AcquireRelease)
+ return TokError(
+ "cmpxchg failure ordering cannot include release semantics");
+ if (!Ptr->getType()->isPointerTy())
+ return Error(PtrLoc, "cmpxchg operand must be a pointer");
+ if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
+ return Error(CmpLoc, "compare value and pointer type do not match");
+ if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
+ return Error(NewLoc, "new value and pointer type do not match");
+ if (!New->getType()->isFirstClassType())
+ return Error(NewLoc, "cmpxchg operand must be a first class value");
+ AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
+ Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
+ CXI->setVolatile(isVolatile);
+ CXI->setWeak(isWeak);
+ Inst = CXI;
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseAtomicRMW
+/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
+/// 'singlethread'? AtomicOrdering
+int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
+ bool AteExtraComma = false;
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ SyncScope::ID SSID = SyncScope::System;
+ bool isVolatile = false;
+ bool IsFP = false;
+ AtomicRMWInst::BinOp Operation;
+
+ if (EatIfPresent(lltok::kw_volatile))
+ isVolatile = true;
+
+ switch (Lex.getKind()) {
+ default: return TokError("expected binary operation in atomicrmw");
+ case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
+ case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
+ case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
+ case lltok::kw_and: Operation = AtomicRMWInst::And; break;
+ case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
+ case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
+ case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
+ case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
+ case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
+ case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
+ case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
+ case lltok::kw_fadd:
+ Operation = AtomicRMWInst::FAdd;
+ IsFP = true;
+ break;
+ case lltok::kw_fsub:
+ Operation = AtomicRMWInst::FSub;
+ IsFP = true;
+ break;
+ }
+ Lex.Lex(); // Eat the operation.
+
+ if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
+ ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
+ ParseTypeAndValue(Val, ValLoc, PFS) ||
+ ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
+ return true;
+
+ if (Ordering == AtomicOrdering::Unordered)
+ return TokError("atomicrmw cannot be unordered");
+ if (!Ptr->getType()->isPointerTy())
+ return Error(PtrLoc, "atomicrmw operand must be a pointer");
+ if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
+ return Error(ValLoc, "atomicrmw value and pointer type do not match");
+
+ if (Operation == AtomicRMWInst::Xchg) {
+ if (!Val->getType()->isIntegerTy() &&
+ !Val->getType()->isFloatingPointTy()) {
+ return Error(ValLoc, "atomicrmw " +
+ AtomicRMWInst::getOperationName(Operation) +
+ " operand must be an integer or floating point type");
+ }
+ } else if (IsFP) {
+ if (!Val->getType()->isFloatingPointTy()) {
+ return Error(ValLoc, "atomicrmw " +
+ AtomicRMWInst::getOperationName(Operation) +
+ " operand must be a floating point type");
+ }
+ } else {
+ if (!Val->getType()->isIntegerTy()) {
+ return Error(ValLoc, "atomicrmw " +
+ AtomicRMWInst::getOperationName(Operation) +
+ " operand must be an integer");
+ }
+ }
+
+ unsigned Size = Val->getType()->getPrimitiveSizeInBits();
+ if (Size < 8 || (Size & (Size - 1)))
+ return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
+ " integer");
+
+ AtomicRMWInst *RMWI =
+ new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
+ RMWI->setVolatile(isVolatile);
+ Inst = RMWI;
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseFence
+/// ::= 'fence' 'singlethread'? AtomicOrdering
+int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
+ AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+ SyncScope::ID SSID = SyncScope::System;
+ if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
+ return true;
+
+ if (Ordering == AtomicOrdering::Unordered)
+ return TokError("fence cannot be unordered");
+ if (Ordering == AtomicOrdering::Monotonic)
+ return TokError("fence cannot be monotonic");
+
+ Inst = new FenceInst(Context, Ordering, SSID);
+ return InstNormal;
+}
+
+/// ParseGetElementPtr
+/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
+int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Ptr = nullptr;
+ Value *Val = nullptr;
+ LocTy Loc, EltLoc;
+
+ bool InBounds = EatIfPresent(lltok::kw_inbounds);
+
+ Type *Ty = nullptr;
+ LocTy ExplicitTypeLoc = Lex.getLoc();
+ if (ParseType(Ty) ||
+ ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
+ ParseTypeAndValue(Ptr, Loc, PFS))
+ return true;
+
+ Type *BaseType = Ptr->getType();
+ PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
+ if (!BasePointerType)
+ return Error(Loc, "base of getelementptr must be a pointer");
+
+ if (Ty != BasePointerType->getElementType())
+ return Error(ExplicitTypeLoc,
+ "explicit pointee type doesn't match operand's pointee type");
+
+ SmallVector<Value*, 16> Indices;
+ bool AteExtraComma = false;
+ // GEP returns a vector of pointers if at least one of parameters is a vector.
+ // All vector parameters should have the same vector width.
+ unsigned GEPWidth = BaseType->isVectorTy() ?
+ BaseType->getVectorNumElements() : 0;
+
+ while (EatIfPresent(lltok::comma)) {
+ if (Lex.getKind() == lltok::MetadataVar) {
+ AteExtraComma = true;
+ break;
+ }
+ if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
+ if (!Val->getType()->isIntOrIntVectorTy())
+ return Error(EltLoc, "getelementptr index must be an integer");
+
+ if (Val->getType()->isVectorTy()) {
+ unsigned ValNumEl = Val->getType()->getVectorNumElements();
+ if (GEPWidth && GEPWidth != ValNumEl)
+ return Error(EltLoc,
+ "getelementptr vector index has a wrong number of elements");
+ GEPWidth = ValNumEl;
+ }
+ Indices.push_back(Val);
+ }
+
+ SmallPtrSet<Type*, 4> Visited;
+ if (!Indices.empty() && !Ty->isSized(&Visited))
+ return Error(Loc, "base element of getelementptr must be sized");
+
+ if (!GetElementPtrInst::getIndexedType(Ty, Indices))
+ return Error(Loc, "invalid getelementptr indices");
+ Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
+ if (InBounds)
+ cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseExtractValue
+/// ::= 'extractvalue' TypeAndValue (',' uint32)+
+int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val; LocTy Loc;
+ SmallVector<unsigned, 4> Indices;
+ bool AteExtraComma;
+ if (ParseTypeAndValue(Val, Loc, PFS) ||
+ ParseIndexList(Indices, AteExtraComma))
+ return true;
+
+ if (!Val->getType()->isAggregateType())
+ return Error(Loc, "extractvalue operand must be aggregate type");
+
+ if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
+ return Error(Loc, "invalid indices for extractvalue");
+ Inst = ExtractValueInst::Create(Val, Indices);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+/// ParseInsertValue
+/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
+int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
+ Value *Val0, *Val1; LocTy Loc0, Loc1;
+ SmallVector<unsigned, 4> Indices;
+ bool AteExtraComma;
+ if (ParseTypeAndValue(Val0, Loc0, PFS) ||
+ ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
+ ParseTypeAndValue(Val1, Loc1, PFS) ||
+ ParseIndexList(Indices, AteExtraComma))
+ return true;
+
+ if (!Val0->getType()->isAggregateType())
+ return Error(Loc0, "insertvalue operand must be aggregate type");
+
+ Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
+ if (!IndexedType)
+ return Error(Loc0, "invalid indices for insertvalue");
+ if (IndexedType != Val1->getType())
+ return Error(Loc1, "insertvalue operand and field disagree in type: '" +
+ getTypeString(Val1->getType()) + "' instead of '" +
+ getTypeString(IndexedType) + "'");
+ Inst = InsertValueInst::Create(Val0, Val1, Indices);
+ return AteExtraComma ? InstExtraComma : InstNormal;
+}
+
+//===----------------------------------------------------------------------===//
+// Embedded metadata.
+//===----------------------------------------------------------------------===//
+
+/// ParseMDNodeVector
+/// ::= { Element (',' Element)* }
+/// Element
+/// ::= 'null' | TypeAndValue
+bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
+ if (ParseToken(lltok::lbrace, "expected '{' here"))
+ return true;
+
+ // Check for an empty list.
+ if (EatIfPresent(lltok::rbrace))
+ return false;
+
+ do {
+ // Null is a special case since it is typeless.
+ if (EatIfPresent(lltok::kw_null)) {
+ Elts.push_back(nullptr);
+ continue;
+ }
+
+ Metadata *MD;
+ if (ParseMetadata(MD, nullptr))
+ return true;
+ Elts.push_back(MD);
+ } while (EatIfPresent(lltok::comma));
+
+ return ParseToken(lltok::rbrace, "expected end of metadata node");
+}
+
+//===----------------------------------------------------------------------===//
+// Use-list order directives.
+//===----------------------------------------------------------------------===//
+bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
+ SMLoc Loc) {
+ if (V->use_empty())
+ return Error(Loc, "value has no uses");
+
+ unsigned NumUses = 0;
+ SmallDenseMap<const Use *, unsigned, 16> Order;
+ for (const Use &U : V->uses()) {
+ if (++NumUses > Indexes.size())
+ break;
+ Order[&U] = Indexes[NumUses - 1];
+ }
+ if (NumUses < 2)
+ return Error(Loc, "value only has one use");
+ if (Order.size() != Indexes.size() || NumUses > Indexes.size())
+ return Error(Loc,
+ "wrong number of indexes, expected " + Twine(V->getNumUses()));
+
+ V->sortUseList([&](const Use &L, const Use &R) {
+ return Order.lookup(&L) < Order.lookup(&R);
+ });
+ return false;
+}
+
+/// ParseUseListOrderIndexes
+/// ::= '{' uint32 (',' uint32)+ '}'
+bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
+ SMLoc Loc = Lex.getLoc();
+ if (ParseToken(lltok::lbrace, "expected '{' here"))
+ return true;
+ if (Lex.getKind() == lltok::rbrace)
+ return Lex.Error("expected non-empty list of uselistorder indexes");
+
+ // Use Offset, Max, and IsOrdered to check consistency of indexes. The
+ // indexes should be distinct numbers in the range [0, size-1], and should
+ // not be in order.
+ unsigned Offset = 0;
+ unsigned Max = 0;
+ bool IsOrdered = true;
+ assert(Indexes.empty() && "Expected empty order vector");
+ do {
+ unsigned Index;
+ if (ParseUInt32(Index))
+ return true;
+
+ // Update consistency checks.
+ Offset += Index - Indexes.size();
+ Max = std::max(Max, Index);
+ IsOrdered &= Index == Indexes.size();
+
+ Indexes.push_back(Index);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rbrace, "expected '}' here"))
+ return true;
+
+ if (Indexes.size() < 2)
+ return Error(Loc, "expected >= 2 uselistorder indexes");
+ if (Offset != 0 || Max >= Indexes.size())
+ return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
+ if (IsOrdered)
+ return Error(Loc, "expected uselistorder indexes to change the order");
+
+ return false;
+}
+
+/// ParseUseListOrder
+/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
+bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
+ SMLoc Loc = Lex.getLoc();
+ if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
+ return true;
+
+ Value *V;
+ SmallVector<unsigned, 16> Indexes;
+ if (ParseTypeAndValue(V, PFS) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
+ ParseUseListOrderIndexes(Indexes))
+ return true;
+
+ return sortUseListOrder(V, Indexes, Loc);
+}
+
+/// ParseUseListOrderBB
+/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
+bool LLParser::ParseUseListOrderBB() {
+ assert(Lex.getKind() == lltok::kw_uselistorder_bb);
+ SMLoc Loc = Lex.getLoc();
+ Lex.Lex();
+
+ ValID Fn, Label;
+ SmallVector<unsigned, 16> Indexes;
+ if (ParseValID(Fn) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
+ ParseValID(Label) ||
+ ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
+ ParseUseListOrderIndexes(Indexes))
+ return true;
+
+ // Check the function.
+ GlobalValue *GV;
+ if (Fn.Kind == ValID::t_GlobalName)
+ GV = M->getNamedValue(Fn.StrVal);
+ else if (Fn.Kind == ValID::t_GlobalID)
+ GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
+ else
+ return Error(Fn.Loc, "expected function name in uselistorder_bb");
+ if (!GV)
+ return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
+ auto *F = dyn_cast<Function>(GV);
+ if (!F)
+ return Error(Fn.Loc, "expected function name in uselistorder_bb");
+ if (F->isDeclaration())
+ return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
+
+ // Check the basic block.
+ if (Label.Kind == ValID::t_LocalID)
+ return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
+ if (Label.Kind != ValID::t_LocalName)
+ return Error(Label.Loc, "expected basic block name in uselistorder_bb");
+ Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
+ if (!V)
+ return Error(Label.Loc, "invalid basic block in uselistorder_bb");
+ if (!isa<BasicBlock>(V))
+ return Error(Label.Loc, "expected basic block in uselistorder_bb");
+
+ return sortUseListOrder(V, Indexes, Loc);
+}
+
+/// ModuleEntry
+/// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
+/// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
+bool LLParser::ParseModuleEntry(unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_module);
+ Lex.Lex();
+
+ std::string Path;
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_path, "expected 'path' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(Path) ||
+ ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_hash, "expected 'hash' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ ModuleHash Hash;
+ if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
+ ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
+ ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
+ ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
+ ParseUInt32(Hash[4]))
+ return true;
+
+ if (ParseToken(lltok::rparen, "expected ')' here") ||
+ ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ auto ModuleEntry = Index->addModule(Path, ID, Hash);
+ ModuleIdMap[ID] = ModuleEntry->first();
+
+ return false;
+}
+
+/// TypeIdEntry
+/// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
+bool LLParser::ParseTypeIdEntry(unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_typeid);
+ Lex.Lex();
+
+ std::string Name;
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_name, "expected 'name' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(Name))
+ return true;
+
+ TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
+ if (ParseToken(lltok::comma, "expected ',' here") ||
+ ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ // Check if this ID was forward referenced, and if so, update the
+ // corresponding GUIDs.
+ auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
+ if (FwdRefTIDs != ForwardRefTypeIds.end()) {
+ for (auto TIDRef : FwdRefTIDs->second) {
+ assert(!*TIDRef.first &&
+ "Forward referenced type id GUID expected to be 0");
+ *TIDRef.first = GlobalValue::getGUID(Name);
+ }
+ ForwardRefTypeIds.erase(FwdRefTIDs);
+ }
+
+ return false;
+}
+
+/// TypeIdSummary
+/// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
+bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
+ if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseTypeTestResolution(TIS.TTRes))
+ return true;
+
+ if (EatIfPresent(lltok::comma)) {
+ // Expect optional wpdResolutions field
+ if (ParseOptionalWpdResolutions(TIS.WPDRes))
+ return true;
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+static ValueInfo EmptyVI =
+ ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
+
+/// TypeIdCompatibleVtableEntry
+/// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
+/// TypeIdCompatibleVtableInfo
+/// ')'
+bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
+ Lex.Lex();
+
+ std::string Name;
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_name, "expected 'name' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(Name))
+ return true;
+
+ TypeIdCompatibleVtableInfo &TI =
+ Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
+ if (ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_summary, "expected 'summary' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ // Parse each call edge
+ do {
+ uint64_t Offset;
+ if (ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_offset, "expected 'offset' here") ||
+ ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
+ ParseToken(lltok::comma, "expected ',' here"))
+ return true;
+
+ LocTy Loc = Lex.getLoc();
+ unsigned GVId;
+ ValueInfo VI;
+ if (ParseGVReference(VI, GVId))
+ return true;
+
+ // Keep track of the TypeIdCompatibleVtableInfo array index needing a
+ // forward reference. We will save the location of the ValueInfo needing an
+ // update, but can only do so once the std::vector is finalized.
+ if (VI == EmptyVI)
+ IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
+ TI.push_back({Offset, VI});
+
+ if (ParseToken(lltok::rparen, "expected ')' in call"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the TI vector is finalized, it is safe to save the locations
+ // of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(TI[P.first].VTableVI == EmptyVI &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&TI[P.first].VTableVI, P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here") ||
+ ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ // Check if this ID was forward referenced, and if so, update the
+ // corresponding GUIDs.
+ auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
+ if (FwdRefTIDs != ForwardRefTypeIds.end()) {
+ for (auto TIDRef : FwdRefTIDs->second) {
+ assert(!*TIDRef.first &&
+ "Forward referenced type id GUID expected to be 0");
+ *TIDRef.first = GlobalValue::getGUID(Name);
+ }
+ ForwardRefTypeIds.erase(FwdRefTIDs);
+ }
+
+ return false;
+}
+
+/// TypeTestResolution
+/// ::= 'typeTestRes' ':' '(' 'kind' ':'
+/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
+/// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
+/// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
+/// [',' 'inlinesBits' ':' UInt64]? ')'
+bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
+ if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_kind, "expected 'kind' here") ||
+ ParseToken(lltok::colon, "expected ':' here"))
+ return true;
+
+ switch (Lex.getKind()) {
+ case lltok::kw_unsat:
+ TTRes.TheKind = TypeTestResolution::Unsat;
+ break;
+ case lltok::kw_byteArray:
+ TTRes.TheKind = TypeTestResolution::ByteArray;
+ break;
+ case lltok::kw_inline:
+ TTRes.TheKind = TypeTestResolution::Inline;
+ break;
+ case lltok::kw_single:
+ TTRes.TheKind = TypeTestResolution::Single;
+ break;
+ case lltok::kw_allOnes:
+ TTRes.TheKind = TypeTestResolution::AllOnes;
+ break;
+ default:
+ return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
+ }
+ Lex.Lex();
+
+ if (ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt32(TTRes.SizeM1BitWidth))
+ return true;
+
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_alignLog2:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") ||
+ ParseUInt64(TTRes.AlignLog2))
+ return true;
+ break;
+ case lltok::kw_sizeM1:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
+ return true;
+ break;
+ case lltok::kw_bitMask: {
+ unsigned Val;
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
+ return true;
+ assert(Val <= 0xff);
+ TTRes.BitMask = (uint8_t)Val;
+ break;
+ }
+ case lltok::kw_inlineBits:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") ||
+ ParseUInt64(TTRes.InlineBits))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// OptionalWpdResolutions
+/// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
+/// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
+bool LLParser::ParseOptionalWpdResolutions(
+ std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
+ if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ do {
+ uint64_t Offset;
+ WholeProgramDevirtResolution WPDRes;
+ if (ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_offset, "expected 'offset' here") ||
+ ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
+ ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
+ ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+ WPDResMap[Offset] = WPDRes;
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// WpdRes
+/// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
+/// [',' OptionalResByArg]? ')'
+/// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
+/// ',' 'singleImplName' ':' STRINGCONSTANT ','
+/// [',' OptionalResByArg]? ')'
+/// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
+/// [',' OptionalResByArg]? ')'
+bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
+ if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_kind, "expected 'kind' here") ||
+ ParseToken(lltok::colon, "expected ':' here"))
+ return true;
+
+ switch (Lex.getKind()) {
+ case lltok::kw_indir:
+ WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
+ break;
+ case lltok::kw_singleImpl:
+ WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
+ break;
+ case lltok::kw_branchFunnel:
+ WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
+ break;
+ default:
+ return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
+ }
+ Lex.Lex();
+
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_singleImplName:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(WPDRes.SingleImplName))
+ return true;
+ break;
+ case lltok::kw_resByArg:
+ if (ParseOptionalResByArg(WPDRes.ResByArg))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(),
+ "expected optional WholeProgramDevirtResolution field");
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// OptionalResByArg
+/// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
+/// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
+/// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
+/// 'virtualConstProp' )
+/// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
+/// [',' 'bit' ':' UInt32]? ')'
+bool LLParser::ParseOptionalResByArg(
+ std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
+ &ResByArg) {
+ if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ do {
+ std::vector<uint64_t> Args;
+ if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseToken(lltok::kw_kind, "expected 'kind' here") ||
+ ParseToken(lltok::colon, "expected ':' here"))
+ return true;
+
+ WholeProgramDevirtResolution::ByArg ByArg;
+ switch (Lex.getKind()) {
+ case lltok::kw_indir:
+ ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
+ break;
+ case lltok::kw_uniformRetVal:
+ ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
+ break;
+ case lltok::kw_uniqueRetVal:
+ ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
+ break;
+ case lltok::kw_virtualConstProp:
+ ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
+ break;
+ default:
+ return Error(Lex.getLoc(),
+ "unexpected WholeProgramDevirtResolution::ByArg kind");
+ }
+ Lex.Lex();
+
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_info:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt64(ByArg.Info))
+ return true;
+ break;
+ case lltok::kw_byte:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt32(ByArg.Byte))
+ return true;
+ break;
+ case lltok::kw_bit:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt32(ByArg.Bit))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(),
+ "expected optional whole program devirt field");
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ ResByArg[Args] = ByArg;
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// OptionalResByArg
+/// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
+bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
+ if (ParseToken(lltok::kw_args, "expected 'args' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ do {
+ uint64_t Val;
+ if (ParseUInt64(Val))
+ return true;
+ Args.push_back(Val);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
+
+static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
+ bool ReadOnly = Fwd->isReadOnly();
+ bool WriteOnly = Fwd->isWriteOnly();
+ assert(!(ReadOnly && WriteOnly));
+ *Fwd = Resolved;
+ if (ReadOnly)
+ Fwd->setReadOnly();
+ if (WriteOnly)
+ Fwd->setWriteOnly();
+}
+
+/// Stores the given Name/GUID and associated summary into the Index.
+/// Also updates any forward references to the associated entry ID.
+void LLParser::AddGlobalValueToIndex(
+ std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
+ unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
+ // First create the ValueInfo utilizing the Name or GUID.
+ ValueInfo VI;
+ if (GUID != 0) {
+ assert(Name.empty());
+ VI = Index->getOrInsertValueInfo(GUID);
+ } else {
+ assert(!Name.empty());
+ if (M) {
+ auto *GV = M->getNamedValue(Name);
+ assert(GV);
+ VI = Index->getOrInsertValueInfo(GV);
+ } else {
+ assert(
+ (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
+ "Need a source_filename to compute GUID for local");
+ GUID = GlobalValue::getGUID(
+ GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
+ VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
+ }
+ }
+
+ // Resolve forward references from calls/refs
+ auto FwdRefVIs = ForwardRefValueInfos.find(ID);
+ if (FwdRefVIs != ForwardRefValueInfos.end()) {
+ for (auto VIRef : FwdRefVIs->second) {
+ assert(VIRef.first->getRef() == FwdVIRef &&
+ "Forward referenced ValueInfo expected to be empty");
+ resolveFwdRef(VIRef.first, VI);
+ }
+ ForwardRefValueInfos.erase(FwdRefVIs);
+ }
+
+ // Resolve forward references from aliases
+ auto FwdRefAliasees = ForwardRefAliasees.find(ID);
+ if (FwdRefAliasees != ForwardRefAliasees.end()) {
+ for (auto AliaseeRef : FwdRefAliasees->second) {
+ assert(!AliaseeRef.first->hasAliasee() &&
+ "Forward referencing alias already has aliasee");
+ assert(Summary && "Aliasee must be a definition");
+ AliaseeRef.first->setAliasee(VI, Summary.get());
+ }
+ ForwardRefAliasees.erase(FwdRefAliasees);
+ }
+
+ // Add the summary if one was provided.
+ if (Summary)
+ Index->addGlobalValueSummary(VI, std::move(Summary));
+
+ // Save the associated ValueInfo for use in later references by ID.
+ if (ID == NumberedValueInfos.size())
+ NumberedValueInfos.push_back(VI);
+ else {
+ // Handle non-continuous numbers (to make test simplification easier).
+ if (ID > NumberedValueInfos.size())
+ NumberedValueInfos.resize(ID + 1);
+ NumberedValueInfos[ID] = VI;
+ }
+}
+
+/// ParseGVEntry
+/// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
+/// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
+/// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
+bool LLParser::ParseGVEntry(unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_gv);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ std::string Name;
+ GlobalValue::GUID GUID = 0;
+ switch (Lex.getKind()) {
+ case lltok::kw_name:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseStringConstant(Name))
+ return true;
+ // Can't create GUID/ValueInfo until we have the linkage.
+ break;
+ case lltok::kw_guid:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected name or guid tag");
+ }
+
+ if (!EatIfPresent(lltok::comma)) {
+ // No summaries. Wrap up.
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+ // This was created for a call to an external or indirect target.
+ // A GUID with no summary came from a VALUE_GUID record, dummy GUID
+ // created for indirect calls with VP. A Name with no GUID came from
+ // an external definition. We pass ExternalLinkage since that is only
+ // used when the GUID must be computed from Name, and in that case
+ // the symbol must have external linkage.
+ AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
+ nullptr);
+ return false;
+ }
+
+ // Have a list of summaries
+ if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
+ ParseToken(lltok::colon, "expected ':' here"))
+ return true;
+
+ do {
+ if (ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+ switch (Lex.getKind()) {
+ case lltok::kw_function:
+ if (ParseFunctionSummary(Name, GUID, ID))
+ return true;
+ break;
+ case lltok::kw_variable:
+ if (ParseVariableSummary(Name, GUID, ID))
+ return true;
+ break;
+ case lltok::kw_alias:
+ if (ParseAliasSummary(Name, GUID, ID))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected summary type");
+ }
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// FunctionSummary
+/// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
+/// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
+/// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
+bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
+ unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_function);
+ Lex.Lex();
+
+ StringRef ModulePath;
+ GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
+ /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
+ /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
+ unsigned InstCount;
+ std::vector<FunctionSummary::EdgeTy> Calls;
+ FunctionSummary::TypeIdInfo TypeIdInfo;
+ std::vector<ValueInfo> Refs;
+ // Default is all-zeros (conservative values).
+ FunctionSummary::FFlags FFlags = {};
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseModuleReference(ModulePath) ||
+ ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
+ ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_insts, "expected 'insts' here") ||
+ ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
+ return true;
+
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_funcFlags:
+ if (ParseOptionalFFlags(FFlags))
+ return true;
+ break;
+ case lltok::kw_calls:
+ if (ParseOptionalCalls(Calls))
+ return true;
+ break;
+ case lltok::kw_typeIdInfo:
+ if (ParseOptionalTypeIdInfo(TypeIdInfo))
+ return true;
+ break;
+ case lltok::kw_refs:
+ if (ParseOptionalRefs(Refs))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected optional function summary field");
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ auto FS = llvm::make_unique<FunctionSummary>(
+ GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
+ std::move(Calls), std::move(TypeIdInfo.TypeTests),
+ std::move(TypeIdInfo.TypeTestAssumeVCalls),
+ std::move(TypeIdInfo.TypeCheckedLoadVCalls),
+ std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
+ std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
+
+ FS->setModulePath(ModulePath);
+
+ AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
+ ID, std::move(FS));
+
+ return false;
+}
+
+/// VariableSummary
+/// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
+/// [',' OptionalRefs]? ')'
+bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
+ unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_variable);
+ Lex.Lex();
+
+ StringRef ModulePath;
+ GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
+ /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
+ /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
+ GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
+ /* WriteOnly */ false);
+ std::vector<ValueInfo> Refs;
+ VTableFuncList VTableFuncs;
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseModuleReference(ModulePath) ||
+ ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
+ ParseToken(lltok::comma, "expected ',' here") ||
+ ParseGVarFlags(GVarFlags))
+ return true;
+
+ // Parse optional fields
+ while (EatIfPresent(lltok::comma)) {
+ switch (Lex.getKind()) {
+ case lltok::kw_vTableFuncs:
+ if (ParseOptionalVTableFuncs(VTableFuncs))
+ return true;
+ break;
+ case lltok::kw_refs:
+ if (ParseOptionalRefs(Refs))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected optional variable summary field");
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ auto GS =
+ llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
+
+ GS->setModulePath(ModulePath);
+ GS->setVTableFuncs(std::move(VTableFuncs));
+
+ AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
+ ID, std::move(GS));
+
+ return false;
+}
+
+/// AliasSummary
+/// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
+/// 'aliasee' ':' GVReference ')'
+bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
+ unsigned ID) {
+ assert(Lex.getKind() == lltok::kw_alias);
+ LocTy Loc = Lex.getLoc();
+ Lex.Lex();
+
+ StringRef ModulePath;
+ GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
+ /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
+ /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseModuleReference(ModulePath) ||
+ ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
+ ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
+ ParseToken(lltok::colon, "expected ':' here"))
+ return true;
+
+ ValueInfo AliaseeVI;
+ unsigned GVId;
+ if (ParseGVReference(AliaseeVI, GVId))
+ return true;
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ auto AS = llvm::make_unique<AliasSummary>(GVFlags);
+
+ AS->setModulePath(ModulePath);
+
+ // Record forward reference if the aliasee is not parsed yet.
+ if (AliaseeVI.getRef() == FwdVIRef) {
+ auto FwdRef = ForwardRefAliasees.insert(
+ std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
+ FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
+ } else {
+ auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
+ assert(Summary && "Aliasee must be a definition");
+ AS->setAliasee(AliaseeVI, Summary);
+ }
+
+ AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
+ ID, std::move(AS));
+
+ return false;
+}
+
+/// Flag
+/// ::= [0|1]
+bool LLParser::ParseFlag(unsigned &Val) {
+ if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
+ return TokError("expected integer");
+ Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
+ Lex.Lex();
+ return false;
+}
+
+/// OptionalFFlags
+/// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
+/// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
+/// [',' 'returnDoesNotAlias' ':' Flag]? ')'
+/// [',' 'noInline' ':' Flag]? ')'
+bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
+ assert(Lex.getKind() == lltok::kw_funcFlags);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
+ ParseToken(lltok::lparen, "expected '(' in funcFlags"))
+ return true;
+
+ do {
+ unsigned Val = 0;
+ switch (Lex.getKind()) {
+ case lltok::kw_readNone:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
+ return true;
+ FFlags.ReadNone = Val;
+ break;
+ case lltok::kw_readOnly:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
+ return true;
+ FFlags.ReadOnly = Val;
+ break;
+ case lltok::kw_noRecurse:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
+ return true;
+ FFlags.NoRecurse = Val;
+ break;
+ case lltok::kw_returnDoesNotAlias:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
+ return true;
+ FFlags.ReturnDoesNotAlias = Val;
+ break;
+ case lltok::kw_noInline:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
+ return true;
+ FFlags.NoInline = Val;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected function flag type");
+ }
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
+ return true;
+
+ return false;
+}
+
+/// OptionalCalls
+/// := 'calls' ':' '(' Call [',' Call]* ')'
+/// Call ::= '(' 'callee' ':' GVReference
+/// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
+bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
+ assert(Lex.getKind() == lltok::kw_calls);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' in calls") |
+ ParseToken(lltok::lparen, "expected '(' in calls"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ // Parse each call edge
+ do {
+ ValueInfo VI;
+ if (ParseToken(lltok::lparen, "expected '(' in call") ||
+ ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
+ ParseToken(lltok::colon, "expected ':'"))
+ return true;
+
+ LocTy Loc = Lex.getLoc();
+ unsigned GVId;
+ if (ParseGVReference(VI, GVId))
+ return true;
+
+ CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
+ unsigned RelBF = 0;
+ if (EatIfPresent(lltok::comma)) {
+ // Expect either hotness or relbf
+ if (EatIfPresent(lltok::kw_hotness)) {
+ if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
+ return true;
+ } else {
+ if (ParseToken(lltok::kw_relbf, "expected relbf") ||
+ ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
+ return true;
+ }
+ }
+ // Keep track of the Call array index needing a forward reference.
+ // We will save the location of the ValueInfo needing an update, but
+ // can only do so once the std::vector is finalized.
+ if (VI.getRef() == FwdVIRef)
+ IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
+ Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
+
+ if (ParseToken(lltok::rparen, "expected ')' in call"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the Calls vector is finalized, it is safe to save the locations
+ // of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(Calls[P.first].first.getRef() == FwdVIRef &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&Calls[P.first].first, P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' in calls"))
+ return true;
+
+ return false;
+}
+
+/// Hotness
+/// := ('unknown'|'cold'|'none'|'hot'|'critical')
+bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
+ switch (Lex.getKind()) {
+ case lltok::kw_unknown:
+ Hotness = CalleeInfo::HotnessType::Unknown;
+ break;
+ case lltok::kw_cold:
+ Hotness = CalleeInfo::HotnessType::Cold;
+ break;
+ case lltok::kw_none:
+ Hotness = CalleeInfo::HotnessType::None;
+ break;
+ case lltok::kw_hot:
+ Hotness = CalleeInfo::HotnessType::Hot;
+ break;
+ case lltok::kw_critical:
+ Hotness = CalleeInfo::HotnessType::Critical;
+ break;
+ default:
+ return Error(Lex.getLoc(), "invalid call edge hotness");
+ }
+ Lex.Lex();
+ return false;
+}
+
+/// OptionalVTableFuncs
+/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
+/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
+bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
+ assert(Lex.getKind() == lltok::kw_vTableFuncs);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
+ ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ // Parse each virtual function pair
+ do {
+ ValueInfo VI;
+ if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
+ ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
+ ParseToken(lltok::colon, "expected ':'"))
+ return true;
+
+ LocTy Loc = Lex.getLoc();
+ unsigned GVId;
+ if (ParseGVReference(VI, GVId))
+ return true;
+
+ uint64_t Offset;
+ if (ParseToken(lltok::comma, "expected comma") ||
+ ParseToken(lltok::kw_offset, "expected offset") ||
+ ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
+ return true;
+
+ // Keep track of the VTableFuncs array index needing a forward reference.
+ // We will save the location of the ValueInfo needing an update, but
+ // can only do so once the std::vector is finalized.
+ if (VI == EmptyVI)
+ IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
+ VTableFuncs.push_back({VI, Offset});
+
+ if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
+ return true;
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the VTableFuncs vector is finalized, it is safe to save the
+ // locations of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
+ return true;
+
+ return false;
+}
+
+/// OptionalRefs
+/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
+bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
+ assert(Lex.getKind() == lltok::kw_refs);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' in refs") |
+ ParseToken(lltok::lparen, "expected '(' in refs"))
+ return true;
+
+ struct ValueContext {
+ ValueInfo VI;
+ unsigned GVId;
+ LocTy Loc;
+ };
+ std::vector<ValueContext> VContexts;
+ // Parse each ref edge
+ do {
+ ValueContext VC;
+ VC.Loc = Lex.getLoc();
+ if (ParseGVReference(VC.VI, VC.GVId))
+ return true;
+ VContexts.push_back(VC);
+ } while (EatIfPresent(lltok::comma));
+
+ // Sort value contexts so that ones with writeonly
+ // and readonly ValueInfo are at the end of VContexts vector.
+ // See FunctionSummary::specialRefCounts()
+ llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
+ return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
+ });
+
+ IdToIndexMapType IdToIndexMap;
+ for (auto &VC : VContexts) {
+ // Keep track of the Refs array index needing a forward reference.
+ // We will save the location of the ValueInfo needing an update, but
+ // can only do so once the std::vector is finalized.
+ if (VC.VI.getRef() == FwdVIRef)
+ IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
+ Refs.push_back(VC.VI);
+ }
+
+ // Now that the Refs vector is finalized, it is safe to save the locations
+ // of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(Refs[P.first].getRef() == FwdVIRef &&
+ "Forward referenced ValueInfo expected to be empty");
+ auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
+ I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
+ FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' in refs"))
+ return true;
+
+ return false;
+}
+
+/// OptionalTypeIdInfo
+/// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
+/// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
+/// [',' TypeCheckedLoadConstVCalls]? ')'
+bool LLParser::ParseOptionalTypeIdInfo(
+ FunctionSummary::TypeIdInfo &TypeIdInfo) {
+ assert(Lex.getKind() == lltok::kw_typeIdInfo);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
+ return true;
+
+ do {
+ switch (Lex.getKind()) {
+ case lltok::kw_typeTests:
+ if (ParseTypeTests(TypeIdInfo.TypeTests))
+ return true;
+ break;
+ case lltok::kw_typeTestAssumeVCalls:
+ if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
+ TypeIdInfo.TypeTestAssumeVCalls))
+ return true;
+ break;
+ case lltok::kw_typeCheckedLoadVCalls:
+ if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
+ TypeIdInfo.TypeCheckedLoadVCalls))
+ return true;
+ break;
+ case lltok::kw_typeTestAssumeConstVCalls:
+ if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
+ TypeIdInfo.TypeTestAssumeConstVCalls))
+ return true;
+ break;
+ case lltok::kw_typeCheckedLoadConstVCalls:
+ if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
+ TypeIdInfo.TypeCheckedLoadConstVCalls))
+ return true;
+ break;
+ default:
+ return Error(Lex.getLoc(), "invalid typeIdInfo list type");
+ }
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
+ return true;
+
+ return false;
+}
+
+/// TypeTests
+/// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
+/// [',' (SummaryID | UInt64)]* ')'
+bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
+ assert(Lex.getKind() == lltok::kw_typeTests);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ do {
+ GlobalValue::GUID GUID = 0;
+ if (Lex.getKind() == lltok::SummaryID) {
+ unsigned ID = Lex.getUIntVal();
+ LocTy Loc = Lex.getLoc();
+ // Keep track of the TypeTests array index needing a forward reference.
+ // We will save the location of the GUID needing an update, but
+ // can only do so once the std::vector is finalized.
+ IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
+ Lex.Lex();
+ } else if (ParseUInt64(GUID))
+ return true;
+ TypeTests.push_back(GUID);
+ } while (EatIfPresent(lltok::comma));
+
+ // Now that the TypeTests vector is finalized, it is safe to save the
+ // locations of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(TypeTests[P.first] == 0 &&
+ "Forward referenced type id GUID expected to be 0");
+ auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
+ I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&TypeTests[P.first], P.second));
+ }
+ }
+
+ if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
+ return true;
+
+ return false;
+}
+
+/// VFuncIdList
+/// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
+bool LLParser::ParseVFuncIdList(
+ lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
+ assert(Lex.getKind() == Kind);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ do {
+ FunctionSummary::VFuncId VFuncId;
+ if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
+ return true;
+ VFuncIdList.push_back(VFuncId);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ // Now that the VFuncIdList vector is finalized, it is safe to save the
+ // locations of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(VFuncIdList[P.first].GUID == 0 &&
+ "Forward referenced type id GUID expected to be 0");
+ auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
+ I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&VFuncIdList[P.first].GUID, P.second));
+ }
+ }
+
+ return false;
+}
+
+/// ConstVCallList
+/// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
+bool LLParser::ParseConstVCallList(
+ lltok::Kind Kind,
+ std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
+ assert(Lex.getKind() == Kind);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ IdToIndexMapType IdToIndexMap;
+ do {
+ FunctionSummary::ConstVCall ConstVCall;
+ if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
+ return true;
+ ConstVCallList.push_back(ConstVCall);
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ // Now that the ConstVCallList vector is finalized, it is safe to save the
+ // locations of any forward GV references that need updating later.
+ for (auto I : IdToIndexMap) {
+ for (auto P : I.second) {
+ assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
+ "Forward referenced type id GUID expected to be 0");
+ auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
+ I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
+ FwdRef.first->second.push_back(
+ std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
+ }
+ }
+
+ return false;
+}
+
+/// ConstVCall
+/// ::= '(' VFuncId ',' Args ')'
+bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
+ IdToIndexMapType &IdToIndexMap, unsigned Index) {
+ if (ParseToken(lltok::lparen, "expected '(' here") ||
+ ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
+ return true;
+
+ if (EatIfPresent(lltok::comma))
+ if (ParseArgs(ConstVCall.Args))
+ return true;
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// VFuncId
+/// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
+/// 'offset' ':' UInt64 ')'
+bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
+ IdToIndexMapType &IdToIndexMap, unsigned Index) {
+ assert(Lex.getKind() == lltok::kw_vFuncId);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ if (Lex.getKind() == lltok::SummaryID) {
+ VFuncId.GUID = 0;
+ unsigned ID = Lex.getUIntVal();
+ LocTy Loc = Lex.getLoc();
+ // Keep track of the array index needing a forward reference.
+ // We will save the location of the GUID needing an update, but
+ // can only do so once the caller's std::vector is finalized.
+ IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
+ Lex.Lex();
+ } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt64(VFuncId.GUID))
+ return true;
+
+ if (ParseToken(lltok::comma, "expected ',' here") ||
+ ParseToken(lltok::kw_offset, "expected 'offset' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseUInt64(VFuncId.Offset) ||
+ ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// GVFlags
+/// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
+/// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
+/// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
+bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
+ assert(Lex.getKind() == lltok::kw_flags);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ do {
+ unsigned Flag = 0;
+ switch (Lex.getKind()) {
+ case lltok::kw_linkage:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'"))
+ return true;
+ bool HasLinkage;
+ GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
+ assert(HasLinkage && "Linkage not optional in summary entry");
+ Lex.Lex();
+ break;
+ case lltok::kw_notEligibleToImport:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
+ return true;
+ GVFlags.NotEligibleToImport = Flag;
+ break;
+ case lltok::kw_live:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
+ return true;
+ GVFlags.Live = Flag;
+ break;
+ case lltok::kw_dsoLocal:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
+ return true;
+ GVFlags.DSOLocal = Flag;
+ break;
+ case lltok::kw_canAutoHide:
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
+ return true;
+ GVFlags.CanAutoHide = Flag;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected gv flag type");
+ }
+ } while (EatIfPresent(lltok::comma));
+
+ if (ParseToken(lltok::rparen, "expected ')' here"))
+ return true;
+
+ return false;
+}
+
+/// GVarFlags
+/// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
+/// ',' 'writeonly' ':' Flag ')'
+bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
+ assert(Lex.getKind() == lltok::kw_varFlags);
+ Lex.Lex();
+
+ if (ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::lparen, "expected '(' here"))
+ return true;
+
+ auto ParseRest = [this](unsigned int &Val) {
+ Lex.Lex();
+ if (ParseToken(lltok::colon, "expected ':'"))
+ return true;
+ return ParseFlag(Val);
+ };
+
+ do {
+ unsigned Flag = 0;
+ switch (Lex.getKind()) {
+ case lltok::kw_readonly:
+ if (ParseRest(Flag))
+ return true;
+ GVarFlags.MaybeReadOnly = Flag;
+ break;
+ case lltok::kw_writeonly:
+ if (ParseRest(Flag))
+ return true;
+ GVarFlags.MaybeWriteOnly = Flag;
+ break;
+ default:
+ return Error(Lex.getLoc(), "expected gvar flag type");
+ }
+ } while (EatIfPresent(lltok::comma));
+ return ParseToken(lltok::rparen, "expected ')' here");
+}
+
+/// ModuleReference
+/// ::= 'module' ':' UInt
+bool LLParser::ParseModuleReference(StringRef &ModulePath) {
+ // Parse module id.
+ if (ParseToken(lltok::kw_module, "expected 'module' here") ||
+ ParseToken(lltok::colon, "expected ':' here") ||
+ ParseToken(lltok::SummaryID, "expected module ID"))
+ return true;
+
+ unsigned ModuleID = Lex.getUIntVal();
+ auto I = ModuleIdMap.find(ModuleID);
+ // We should have already parsed all module IDs
+ assert(I != ModuleIdMap.end());
+ ModulePath = I->second;
+ return false;
+}
+
+/// GVReference
+/// ::= SummaryID
+bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
+ bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
+ if (!ReadOnly)
+ WriteOnly = EatIfPresent(lltok::kw_writeonly);
+ if (ParseToken(lltok::SummaryID, "expected GV ID"))
+ return true;
+
+ GVId = Lex.getUIntVal();
+ // Check if we already have a VI for this GV
+ if (GVId < NumberedValueInfos.size()) {
+ assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
+ VI = NumberedValueInfos[GVId];
+ } else
+ // We will create a forward reference to the stored location.
+ VI = ValueInfo(false, FwdVIRef);
+
+ if (ReadOnly)
+ VI.setReadOnly();
+ if (WriteOnly)
+ VI.setWriteOnly();
+ return false;
+}