diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp | 2106 |
1 files changed, 2106 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp b/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp new file mode 100644 index 000000000000..fb54b5d6c8d8 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp @@ -0,0 +1,2106 @@ +//===- BranchFolding.cpp - Fold machine code branch instructions ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass forwards branches to unconditional branches to make them branch +// directly to the target block. This pass often results in dead MBB's, which +// it then removes. +// +// Note that this pass must be run after register allocation, it cannot handle +// SSA form. It also must handle virtual registers for targets that emit virtual +// ISA (e.g. NVPTX). +// +//===----------------------------------------------------------------------===// + +#include "BranchFolding.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/LivePhysRegs.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cassert> +#include <cstddef> +#include <iterator> +#include <numeric> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "branch-folder" + +STATISTIC(NumDeadBlocks, "Number of dead blocks removed"); +STATISTIC(NumBranchOpts, "Number of branches optimized"); +STATISTIC(NumTailMerge , "Number of block tails merged"); +STATISTIC(NumHoist , "Number of times common instructions are hoisted"); +STATISTIC(NumTailCalls, "Number of tail calls optimized"); + +static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge", + cl::init(cl::BOU_UNSET), cl::Hidden); + +// Throttle for huge numbers of predecessors (compile speed problems) +static cl::opt<unsigned> +TailMergeThreshold("tail-merge-threshold", + cl::desc("Max number of predecessors to consider tail merging"), + cl::init(150), cl::Hidden); + +// Heuristic for tail merging (and, inversely, tail duplication). +// TODO: This should be replaced with a target query. +static cl::opt<unsigned> +TailMergeSize("tail-merge-size", + cl::desc("Min number of instructions to consider tail merging"), + cl::init(3), cl::Hidden); + +namespace { + + /// BranchFolderPass - Wrap branch folder in a machine function pass. + class BranchFolderPass : public MachineFunctionPass { + public: + static char ID; + + explicit BranchFolderPass(): MachineFunctionPass(ID) {} + + bool runOnMachineFunction(MachineFunction &MF) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineBlockFrequencyInfo>(); + AU.addRequired<MachineBranchProbabilityInfo>(); + AU.addRequired<TargetPassConfig>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + }; + +} // end anonymous namespace + +char BranchFolderPass::ID = 0; + +char &llvm::BranchFolderPassID = BranchFolderPass::ID; + +INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE, + "Control Flow Optimizer", false, false) + +bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) { + if (skipFunction(MF.getFunction())) + return false; + + TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); + // TailMerge can create jump into if branches that make CFG irreducible for + // HW that requires structurized CFG. + bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && + PassConfig->getEnableTailMerge(); + BranchFolder::MBFIWrapper MBBFreqInfo( + getAnalysis<MachineBlockFrequencyInfo>()); + BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo, + getAnalysis<MachineBranchProbabilityInfo>()); + return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(), + MF.getSubtarget().getRegisterInfo(), + getAnalysisIfAvailable<MachineModuleInfo>()); +} + +BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist, + MBFIWrapper &FreqInfo, + const MachineBranchProbabilityInfo &ProbInfo, + unsigned MinTailLength) + : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength), + MBBFreqInfo(FreqInfo), MBPI(ProbInfo) { + if (MinCommonTailLength == 0) + MinCommonTailLength = TailMergeSize; + switch (FlagEnableTailMerge) { + case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break; + case cl::BOU_TRUE: EnableTailMerge = true; break; + case cl::BOU_FALSE: EnableTailMerge = false; break; + } +} + +void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) { + assert(MBB->pred_empty() && "MBB must be dead!"); + LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB); + + MachineFunction *MF = MBB->getParent(); + // drop all successors. + while (!MBB->succ_empty()) + MBB->removeSuccessor(MBB->succ_end()-1); + + // Avoid matching if this pointer gets reused. + TriedMerging.erase(MBB); + + // Remove the block. + MF->erase(MBB); + EHScopeMembership.erase(MBB); + if (MLI) + MLI->removeBlock(MBB); +} + +bool BranchFolder::OptimizeFunction(MachineFunction &MF, + const TargetInstrInfo *tii, + const TargetRegisterInfo *tri, + MachineModuleInfo *mmi, + MachineLoopInfo *mli, bool AfterPlacement) { + if (!tii) return false; + + TriedMerging.clear(); + + MachineRegisterInfo &MRI = MF.getRegInfo(); + AfterBlockPlacement = AfterPlacement; + TII = tii; + TRI = tri; + MMI = mmi; + MLI = mli; + this->MRI = &MRI; + + UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF); + if (!UpdateLiveIns) + MRI.invalidateLiveness(); + + // Fix CFG. The later algorithms expect it to be right. + bool MadeChange = false; + for (MachineBasicBlock &MBB : MF) { + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true)) + MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); + } + + // Recalculate EH scope membership. + EHScopeMembership = getEHScopeMembership(MF); + + bool MadeChangeThisIteration = true; + while (MadeChangeThisIteration) { + MadeChangeThisIteration = TailMergeBlocks(MF); + // No need to clean up if tail merging does not change anything after the + // block placement. + if (!AfterBlockPlacement || MadeChangeThisIteration) + MadeChangeThisIteration |= OptimizeBranches(MF); + if (EnableHoistCommonCode) + MadeChangeThisIteration |= HoistCommonCode(MF); + MadeChange |= MadeChangeThisIteration; + } + + // See if any jump tables have become dead as the code generator + // did its thing. + MachineJumpTableInfo *JTI = MF.getJumpTableInfo(); + if (!JTI) + return MadeChange; + + // Walk the function to find jump tables that are live. + BitVector JTIsLive(JTI->getJumpTables().size()); + for (const MachineBasicBlock &BB : MF) { + for (const MachineInstr &I : BB) + for (const MachineOperand &Op : I.operands()) { + if (!Op.isJTI()) continue; + + // Remember that this JT is live. + JTIsLive.set(Op.getIndex()); + } + } + + // Finally, remove dead jump tables. This happens when the + // indirect jump was unreachable (and thus deleted). + for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i) + if (!JTIsLive.test(i)) { + JTI->RemoveJumpTable(i); + MadeChange = true; + } + + return MadeChange; +} + +//===----------------------------------------------------------------------===// +// Tail Merging of Blocks +//===----------------------------------------------------------------------===// + +/// HashMachineInstr - Compute a hash value for MI and its operands. +static unsigned HashMachineInstr(const MachineInstr &MI) { + unsigned Hash = MI.getOpcode(); + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + const MachineOperand &Op = MI.getOperand(i); + + // Merge in bits from the operand if easy. We can't use MachineOperand's + // hash_code here because it's not deterministic and we sort by hash value + // later. + unsigned OperandHash = 0; + switch (Op.getType()) { + case MachineOperand::MO_Register: + OperandHash = Op.getReg(); + break; + case MachineOperand::MO_Immediate: + OperandHash = Op.getImm(); + break; + case MachineOperand::MO_MachineBasicBlock: + OperandHash = Op.getMBB()->getNumber(); + break; + case MachineOperand::MO_FrameIndex: + case MachineOperand::MO_ConstantPoolIndex: + case MachineOperand::MO_JumpTableIndex: + OperandHash = Op.getIndex(); + break; + case MachineOperand::MO_GlobalAddress: + case MachineOperand::MO_ExternalSymbol: + // Global address / external symbol are too hard, don't bother, but do + // pull in the offset. + OperandHash = Op.getOffset(); + break; + default: + break; + } + + Hash += ((OperandHash << 3) | Op.getType()) << (i & 31); + } + return Hash; +} + +/// HashEndOfMBB - Hash the last instruction in the MBB. +static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) { + MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return 0; + + return HashMachineInstr(*I); +} + +/// Whether MI should be counted as an instruction when calculating common tail. +static bool countsAsInstruction(const MachineInstr &MI) { + return !(MI.isDebugInstr() || MI.isCFIInstruction()); +} + +/// ComputeCommonTailLength - Given two machine basic blocks, compute the number +/// of instructions they actually have in common together at their end. Return +/// iterators for the first shared instruction in each block. +static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1, + MachineBasicBlock *MBB2, + MachineBasicBlock::iterator &I1, + MachineBasicBlock::iterator &I2) { + I1 = MBB1->end(); + I2 = MBB2->end(); + + unsigned TailLen = 0; + while (I1 != MBB1->begin() && I2 != MBB2->begin()) { + --I1; --I2; + // Skip debugging pseudos; necessary to avoid changing the code. + while (!countsAsInstruction(*I1)) { + if (I1==MBB1->begin()) { + while (!countsAsInstruction(*I2)) { + if (I2==MBB2->begin()) { + // I1==DBG at begin; I2==DBG at begin + goto SkipTopCFIAndReturn; + } + --I2; + } + ++I2; + // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin + goto SkipTopCFIAndReturn; + } + --I1; + } + // I1==first (untested) non-DBG preceding known match + while (!countsAsInstruction(*I2)) { + if (I2==MBB2->begin()) { + ++I1; + // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin + goto SkipTopCFIAndReturn; + } + --I2; + } + // I1, I2==first (untested) non-DBGs preceding known match + if (!I1->isIdenticalTo(*I2) || + // FIXME: This check is dubious. It's used to get around a problem where + // people incorrectly expect inline asm directives to remain in the same + // relative order. This is untenable because normal compiler + // optimizations (like this one) may reorder and/or merge these + // directives. + I1->isInlineAsm()) { + ++I1; ++I2; + break; + } + ++TailLen; + } + // Back past possible debugging pseudos at beginning of block. This matters + // when one block differs from the other only by whether debugging pseudos + // are present at the beginning. (This way, the various checks later for + // I1==MBB1->begin() work as expected.) + if (I1 == MBB1->begin() && I2 != MBB2->begin()) { + --I2; + while (I2->isDebugInstr()) { + if (I2 == MBB2->begin()) + return TailLen; + --I2; + } + ++I2; + } + if (I2 == MBB2->begin() && I1 != MBB1->begin()) { + --I1; + while (I1->isDebugInstr()) { + if (I1 == MBB1->begin()) + return TailLen; + --I1; + } + ++I1; + } + +SkipTopCFIAndReturn: + // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if + // I1 and I2 are non-identical when compared and then one or both of them ends + // up pointing to a CFI instruction after being incremented. For example: + /* + BB1: + ... + INSTRUCTION_A + ADD32ri8 <- last common instruction + ... + BB2: + ... + INSTRUCTION_B + CFI_INSTRUCTION + ADD32ri8 <- last common instruction + ... + */ + // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after + // incrementing the iterators, I1 will point to ADD, however I2 will point to + // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the + // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI + // instruction. + while (I1 != MBB1->end() && I1->isCFIInstruction()) { + ++I1; + } + + while (I2 != MBB2->end() && I2->isCFIInstruction()) { + ++I2; + } + + return TailLen; +} + +void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst, + MachineBasicBlock &NewDest) { + if (UpdateLiveIns) { + // OldInst should always point to an instruction. + MachineBasicBlock &OldMBB = *OldInst->getParent(); + LiveRegs.clear(); + LiveRegs.addLiveOuts(OldMBB); + // Move backward to the place where will insert the jump. + MachineBasicBlock::iterator I = OldMBB.end(); + do { + --I; + LiveRegs.stepBackward(*I); + } while (I != OldInst); + + // Merging the tails may have switched some undef operand to non-undef ones. + // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the + // register. + for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) { + // We computed the liveins with computeLiveIn earlier and should only see + // full registers: + assert(P.LaneMask == LaneBitmask::getAll() && + "Can only handle full register."); + MCPhysReg Reg = P.PhysReg; + if (!LiveRegs.available(*MRI, Reg)) + continue; + DebugLoc DL; + BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg); + } + } + + TII->ReplaceTailWithBranchTo(OldInst, &NewDest); + ++NumTailMerge; +} + +MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB, + MachineBasicBlock::iterator BBI1, + const BasicBlock *BB) { + if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1)) + return nullptr; + + MachineFunction &MF = *CurMBB.getParent(); + + // Create the fall-through block. + MachineFunction::iterator MBBI = CurMBB.getIterator(); + MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB); + CurMBB.getParent()->insert(++MBBI, NewMBB); + + // Move all the successors of this block to the specified block. + NewMBB->transferSuccessors(&CurMBB); + + // Add an edge from CurMBB to NewMBB for the fall-through. + CurMBB.addSuccessor(NewMBB); + + // Splice the code over. + NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end()); + + // NewMBB belongs to the same loop as CurMBB. + if (MLI) + if (MachineLoop *ML = MLI->getLoopFor(&CurMBB)) + ML->addBasicBlockToLoop(NewMBB, MLI->getBase()); + + // NewMBB inherits CurMBB's block frequency. + MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB)); + + if (UpdateLiveIns) + computeAndAddLiveIns(LiveRegs, *NewMBB); + + // Add the new block to the EH scope. + const auto &EHScopeI = EHScopeMembership.find(&CurMBB); + if (EHScopeI != EHScopeMembership.end()) { + auto n = EHScopeI->second; + EHScopeMembership[NewMBB] = n; + } + + return NewMBB; +} + +/// EstimateRuntime - Make a rough estimate for how long it will take to run +/// the specified code. +static unsigned EstimateRuntime(MachineBasicBlock::iterator I, + MachineBasicBlock::iterator E) { + unsigned Time = 0; + for (; I != E; ++I) { + if (!countsAsInstruction(*I)) + continue; + if (I->isCall()) + Time += 10; + else if (I->mayLoad() || I->mayStore()) + Time += 2; + else + ++Time; + } + return Time; +} + +// CurMBB needs to add an unconditional branch to SuccMBB (we removed these +// branches temporarily for tail merging). In the case where CurMBB ends +// with a conditional branch to the next block, optimize by reversing the +// test and conditionally branching to SuccMBB instead. +static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB, + const TargetInstrInfo *TII) { + MachineFunction *MF = CurMBB->getParent(); + MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB)); + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + DebugLoc dl = CurMBB->findBranchDebugLoc(); + if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) { + MachineBasicBlock *NextBB = &*I; + if (TBB == NextBB && !Cond.empty() && !FBB) { + if (!TII->reverseBranchCondition(Cond)) { + TII->removeBranch(*CurMBB); + TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl); + return; + } + } + } + TII->insertBranch(*CurMBB, SuccBB, nullptr, + SmallVector<MachineOperand, 0>(), dl); +} + +bool +BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const { + if (getHash() < o.getHash()) + return true; + if (getHash() > o.getHash()) + return false; + if (getBlock()->getNumber() < o.getBlock()->getNumber()) + return true; + if (getBlock()->getNumber() > o.getBlock()->getNumber()) + return false; + // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing + // an object with itself. +#ifndef _GLIBCXX_DEBUG + llvm_unreachable("Predecessor appears twice"); +#else + return false; +#endif +} + +BlockFrequency +BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const { + auto I = MergedBBFreq.find(MBB); + + if (I != MergedBBFreq.end()) + return I->second; + + return MBFI.getBlockFreq(MBB); +} + +void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB, + BlockFrequency F) { + MergedBBFreq[MBB] = F; +} + +raw_ostream & +BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, + const MachineBasicBlock *MBB) const { + return MBFI.printBlockFreq(OS, getBlockFreq(MBB)); +} + +raw_ostream & +BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS, + const BlockFrequency Freq) const { + return MBFI.printBlockFreq(OS, Freq); +} + +void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) { + MBFI.view(Name, isSimple); +} + +uint64_t +BranchFolder::MBFIWrapper::getEntryFreq() const { + return MBFI.getEntryFreq(); +} + +/// CountTerminators - Count the number of terminators in the given +/// block and set I to the position of the first non-terminator, if there +/// is one, or MBB->end() otherwise. +static unsigned CountTerminators(MachineBasicBlock *MBB, + MachineBasicBlock::iterator &I) { + I = MBB->end(); + unsigned NumTerms = 0; + while (true) { + if (I == MBB->begin()) { + I = MBB->end(); + break; + } + --I; + if (!I->isTerminator()) break; + ++NumTerms; + } + return NumTerms; +} + +/// A no successor, non-return block probably ends in unreachable and is cold. +/// Also consider a block that ends in an indirect branch to be a return block, +/// since many targets use plain indirect branches to return. +static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) { + if (!MBB->succ_empty()) + return false; + if (MBB->empty()) + return true; + return !(MBB->back().isReturn() || MBB->back().isIndirectBranch()); +} + +/// ProfitableToMerge - Check if two machine basic blocks have a common tail +/// and decide if it would be profitable to merge those tails. Return the +/// length of the common tail and iterators to the first common instruction +/// in each block. +/// MBB1, MBB2 The blocks to check +/// MinCommonTailLength Minimum size of tail block to be merged. +/// CommonTailLen Out parameter to record the size of the shared tail between +/// MBB1 and MBB2 +/// I1, I2 Iterator references that will be changed to point to the first +/// instruction in the common tail shared by MBB1,MBB2 +/// SuccBB A common successor of MBB1, MBB2 which are in a canonical form +/// relative to SuccBB +/// PredBB The layout predecessor of SuccBB, if any. +/// EHScopeMembership map from block to EH scope #. +/// AfterPlacement True if we are merging blocks after layout. Stricter +/// thresholds apply to prevent undoing tail-duplication. +static bool +ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2, + unsigned MinCommonTailLength, unsigned &CommonTailLen, + MachineBasicBlock::iterator &I1, + MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB, + MachineBasicBlock *PredBB, + DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, + bool AfterPlacement) { + // It is never profitable to tail-merge blocks from two different EH scopes. + if (!EHScopeMembership.empty()) { + auto EHScope1 = EHScopeMembership.find(MBB1); + assert(EHScope1 != EHScopeMembership.end()); + auto EHScope2 = EHScopeMembership.find(MBB2); + assert(EHScope2 != EHScopeMembership.end()); + if (EHScope1->second != EHScope2->second) + return false; + } + + CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2); + if (CommonTailLen == 0) + return false; + LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1) + << " and " << printMBBReference(*MBB2) << " is " + << CommonTailLen << '\n'); + + // It's almost always profitable to merge any number of non-terminator + // instructions with the block that falls through into the common successor. + // This is true only for a single successor. For multiple successors, we are + // trading a conditional branch for an unconditional one. + // TODO: Re-visit successor size for non-layout tail merging. + if ((MBB1 == PredBB || MBB2 == PredBB) && + (!AfterPlacement || MBB1->succ_size() == 1)) { + MachineBasicBlock::iterator I; + unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I); + if (CommonTailLen > NumTerms) + return true; + } + + // If these are identical non-return blocks with no successors, merge them. + // Such blocks are typically cold calls to noreturn functions like abort, and + // are unlikely to become a fallthrough target after machine block placement. + // Tail merging these blocks is unlikely to create additional unconditional + // branches, and will reduce the size of this cold code. + if (I1 == MBB1->begin() && I2 == MBB2->begin() && + blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2)) + return true; + + // If one of the blocks can be completely merged and happens to be in + // a position where the other could fall through into it, merge any number + // of instructions, because it can be done without a branch. + // TODO: If the blocks are not adjacent, move one of them so that they are? + if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin()) + return true; + if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin()) + return true; + + // If both blocks are identical and end in a branch, merge them unless they + // both have a fallthrough predecessor and successor. + // We can only do this after block placement because it depends on whether + // there are fallthroughs, and we don't know until after layout. + if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) { + auto BothFallThrough = [](MachineBasicBlock *MBB) { + if (MBB->succ_size() != 0 && !MBB->canFallThrough()) + return false; + MachineFunction::iterator I(MBB); + MachineFunction *MF = MBB->getParent(); + return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough(); + }; + if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2)) + return true; + } + + // If both blocks have an unconditional branch temporarily stripped out, + // count that as an additional common instruction for the following + // heuristics. This heuristic is only accurate for single-succ blocks, so to + // make sure that during layout merging and duplicating don't crash, we check + // for that when merging during layout. + unsigned EffectiveTailLen = CommonTailLen; + if (SuccBB && MBB1 != PredBB && MBB2 != PredBB && + (MBB1->succ_size() == 1 || !AfterPlacement) && + !MBB1->back().isBarrier() && + !MBB2->back().isBarrier()) + ++EffectiveTailLen; + + // Check if the common tail is long enough to be worthwhile. + if (EffectiveTailLen >= MinCommonTailLength) + return true; + + // If we are optimizing for code size, 2 instructions in common is enough if + // we don't have to split a block. At worst we will be introducing 1 new + // branch instruction, which is likely to be smaller than the 2 + // instructions that would be deleted in the merge. + MachineFunction *MF = MBB1->getParent(); + return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() && + (I1 == MBB1->begin() || I2 == MBB2->begin()); +} + +unsigned BranchFolder::ComputeSameTails(unsigned CurHash, + unsigned MinCommonTailLength, + MachineBasicBlock *SuccBB, + MachineBasicBlock *PredBB) { + unsigned maxCommonTailLength = 0U; + SameTails.clear(); + MachineBasicBlock::iterator TrialBBI1, TrialBBI2; + MPIterator HighestMPIter = std::prev(MergePotentials.end()); + for (MPIterator CurMPIter = std::prev(MergePotentials.end()), + B = MergePotentials.begin(); + CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) { + for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) { + unsigned CommonTailLen; + if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(), + MinCommonTailLength, + CommonTailLen, TrialBBI1, TrialBBI2, + SuccBB, PredBB, + EHScopeMembership, + AfterBlockPlacement)) { + if (CommonTailLen > maxCommonTailLength) { + SameTails.clear(); + maxCommonTailLength = CommonTailLen; + HighestMPIter = CurMPIter; + SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1)); + } + if (HighestMPIter == CurMPIter && + CommonTailLen == maxCommonTailLength) + SameTails.push_back(SameTailElt(I, TrialBBI2)); + } + if (I == B) + break; + } + } + return maxCommonTailLength; +} + +void BranchFolder::RemoveBlocksWithHash(unsigned CurHash, + MachineBasicBlock *SuccBB, + MachineBasicBlock *PredBB) { + MPIterator CurMPIter, B; + for (CurMPIter = std::prev(MergePotentials.end()), + B = MergePotentials.begin(); + CurMPIter->getHash() == CurHash; --CurMPIter) { + // Put the unconditional branch back, if we need one. + MachineBasicBlock *CurMBB = CurMPIter->getBlock(); + if (SuccBB && CurMBB != PredBB) + FixTail(CurMBB, SuccBB, TII); + if (CurMPIter == B) + break; + } + if (CurMPIter->getHash() != CurHash) + CurMPIter++; + MergePotentials.erase(CurMPIter, MergePotentials.end()); +} + +bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB, + MachineBasicBlock *SuccBB, + unsigned maxCommonTailLength, + unsigned &commonTailIndex) { + commonTailIndex = 0; + unsigned TimeEstimate = ~0U; + for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { + // Use PredBB if possible; that doesn't require a new branch. + if (SameTails[i].getBlock() == PredBB) { + commonTailIndex = i; + break; + } + // Otherwise, make a (fairly bogus) choice based on estimate of + // how long it will take the various blocks to execute. + unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(), + SameTails[i].getTailStartPos()); + if (t <= TimeEstimate) { + TimeEstimate = t; + commonTailIndex = i; + } + } + + MachineBasicBlock::iterator BBI = + SameTails[commonTailIndex].getTailStartPos(); + MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); + + LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size " + << maxCommonTailLength); + + // If the split block unconditionally falls-thru to SuccBB, it will be + // merged. In control flow terms it should then take SuccBB's name. e.g. If + // SuccBB is an inner loop, the common tail is still part of the inner loop. + const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ? + SuccBB->getBasicBlock() : MBB->getBasicBlock(); + MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB); + if (!newMBB) { + LLVM_DEBUG(dbgs() << "... failed!"); + return false; + } + + SameTails[commonTailIndex].setBlock(newMBB); + SameTails[commonTailIndex].setTailStartPos(newMBB->begin()); + + // If we split PredBB, newMBB is the new predecessor. + if (PredBB == MBB) + PredBB = newMBB; + + return true; +} + +static void +mergeOperations(MachineBasicBlock::iterator MBBIStartPos, + MachineBasicBlock &MBBCommon) { + MachineBasicBlock *MBB = MBBIStartPos->getParent(); + // Note CommonTailLen does not necessarily matches the size of + // the common BB nor all its instructions because of debug + // instructions differences. + unsigned CommonTailLen = 0; + for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos) + ++CommonTailLen; + + MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(); + MachineBasicBlock::reverse_iterator MBBIE = MBB->rend(); + MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin(); + MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend(); + + while (CommonTailLen--) { + assert(MBBI != MBBIE && "Reached BB end within common tail length!"); + (void)MBBIE; + + if (!countsAsInstruction(*MBBI)) { + ++MBBI; + continue; + } + + while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon)) + ++MBBICommon; + + assert(MBBICommon != MBBIECommon && + "Reached BB end within common tail length!"); + assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!"); + + // Merge MMOs from memory operations in the common block. + if (MBBICommon->mayLoad() || MBBICommon->mayStore()) + MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI}); + // Drop undef flags if they aren't present in all merged instructions. + for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) { + MachineOperand &MO = MBBICommon->getOperand(I); + if (MO.isReg() && MO.isUndef()) { + const MachineOperand &OtherMO = MBBI->getOperand(I); + if (!OtherMO.isUndef()) + MO.setIsUndef(false); + } + } + + ++MBBI; + ++MBBICommon; + } +} + +void BranchFolder::mergeCommonTails(unsigned commonTailIndex) { + MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); + + std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size()); + for (unsigned int i = 0 ; i != SameTails.size() ; ++i) { + if (i != commonTailIndex) { + NextCommonInsts[i] = SameTails[i].getTailStartPos(); + mergeOperations(SameTails[i].getTailStartPos(), *MBB); + } else { + assert(SameTails[i].getTailStartPos() == MBB->begin() && + "MBB is not a common tail only block"); + } + } + + for (auto &MI : *MBB) { + if (!countsAsInstruction(MI)) + continue; + DebugLoc DL = MI.getDebugLoc(); + for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) { + if (i == commonTailIndex) + continue; + + auto &Pos = NextCommonInsts[i]; + assert(Pos != SameTails[i].getBlock()->end() && + "Reached BB end within common tail"); + while (!countsAsInstruction(*Pos)) { + ++Pos; + assert(Pos != SameTails[i].getBlock()->end() && + "Reached BB end within common tail"); + } + assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!"); + DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc()); + NextCommonInsts[i] = ++Pos; + } + MI.setDebugLoc(DL); + } + + if (UpdateLiveIns) { + LivePhysRegs NewLiveIns(*TRI); + computeLiveIns(NewLiveIns, *MBB); + LiveRegs.init(*TRI); + + // The flag merging may lead to some register uses no longer using the + // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary. + for (MachineBasicBlock *Pred : MBB->predecessors()) { + LiveRegs.clear(); + LiveRegs.addLiveOuts(*Pred); + MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator(); + for (unsigned Reg : NewLiveIns) { + if (!LiveRegs.available(*MRI, Reg)) + continue; + DebugLoc DL; + BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF), + Reg); + } + } + + MBB->clearLiveIns(); + addLiveIns(*MBB, NewLiveIns); + } +} + +// See if any of the blocks in MergePotentials (which all have SuccBB as a +// successor, or all have no successor if it is null) can be tail-merged. +// If there is a successor, any blocks in MergePotentials that are not +// tail-merged and are not immediately before Succ must have an unconditional +// branch to Succ added (but the predecessor/successor lists need no +// adjustment). The lone predecessor of Succ that falls through into Succ, +// if any, is given in PredBB. +// MinCommonTailLength - Except for the special cases below, tail-merge if +// there are at least this many instructions in common. +bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB, + MachineBasicBlock *PredBB, + unsigned MinCommonTailLength) { + bool MadeChange = false; + + LLVM_DEBUG( + dbgs() << "\nTryTailMergeBlocks: "; + for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs() + << printMBBReference(*MergePotentials[i].getBlock()) + << (i == e - 1 ? "" : ", "); + dbgs() << "\n"; if (SuccBB) { + dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n'; + if (PredBB) + dbgs() << " which has fall-through from " + << printMBBReference(*PredBB) << "\n"; + } dbgs() << "Looking for common tails of at least " + << MinCommonTailLength << " instruction" + << (MinCommonTailLength == 1 ? "" : "s") << '\n';); + + // Sort by hash value so that blocks with identical end sequences sort + // together. + array_pod_sort(MergePotentials.begin(), MergePotentials.end()); + + // Walk through equivalence sets looking for actual exact matches. + while (MergePotentials.size() > 1) { + unsigned CurHash = MergePotentials.back().getHash(); + + // Build SameTails, identifying the set of blocks with this hash code + // and with the maximum number of instructions in common. + unsigned maxCommonTailLength = ComputeSameTails(CurHash, + MinCommonTailLength, + SuccBB, PredBB); + + // If we didn't find any pair that has at least MinCommonTailLength + // instructions in common, remove all blocks with this hash code and retry. + if (SameTails.empty()) { + RemoveBlocksWithHash(CurHash, SuccBB, PredBB); + continue; + } + + // If one of the blocks is the entire common tail (and not the entry + // block, which we can't jump to), we can treat all blocks with this same + // tail at once. Use PredBB if that is one of the possibilities, as that + // will not introduce any extra branches. + MachineBasicBlock *EntryBB = + &MergePotentials.front().getBlock()->getParent()->front(); + unsigned commonTailIndex = SameTails.size(); + // If there are two blocks, check to see if one can be made to fall through + // into the other. + if (SameTails.size() == 2 && + SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) && + SameTails[1].tailIsWholeBlock()) + commonTailIndex = 1; + else if (SameTails.size() == 2 && + SameTails[1].getBlock()->isLayoutSuccessor( + SameTails[0].getBlock()) && + SameTails[0].tailIsWholeBlock()) + commonTailIndex = 0; + else { + // Otherwise just pick one, favoring the fall-through predecessor if + // there is one. + for (unsigned i = 0, e = SameTails.size(); i != e; ++i) { + MachineBasicBlock *MBB = SameTails[i].getBlock(); + if (MBB == EntryBB && SameTails[i].tailIsWholeBlock()) + continue; + if (MBB == PredBB) { + commonTailIndex = i; + break; + } + if (SameTails[i].tailIsWholeBlock()) + commonTailIndex = i; + } + } + + if (commonTailIndex == SameTails.size() || + (SameTails[commonTailIndex].getBlock() == PredBB && + !SameTails[commonTailIndex].tailIsWholeBlock())) { + // None of the blocks consist entirely of the common tail. + // Split a block so that one does. + if (!CreateCommonTailOnlyBlock(PredBB, SuccBB, + maxCommonTailLength, commonTailIndex)) { + RemoveBlocksWithHash(CurHash, SuccBB, PredBB); + continue; + } + } + + MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock(); + + // Recompute common tail MBB's edge weights and block frequency. + setCommonTailEdgeWeights(*MBB); + + // Merge debug locations, MMOs and undef flags across identical instructions + // for common tail. + mergeCommonTails(commonTailIndex); + + // MBB is common tail. Adjust all other BB's to jump to this one. + // Traversal must be forwards so erases work. + LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB) + << " for "); + for (unsigned int i=0, e = SameTails.size(); i != e; ++i) { + if (commonTailIndex == i) + continue; + LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock()) + << (i == e - 1 ? "" : ", ")); + // Hack the end off BB i, making it jump to BB commonTailIndex instead. + replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB); + // BB i is no longer a predecessor of SuccBB; remove it from the worklist. + MergePotentials.erase(SameTails[i].getMPIter()); + } + LLVM_DEBUG(dbgs() << "\n"); + // We leave commonTailIndex in the worklist in case there are other blocks + // that match it with a smaller number of instructions. + MadeChange = true; + } + return MadeChange; +} + +bool BranchFolder::TailMergeBlocks(MachineFunction &MF) { + bool MadeChange = false; + if (!EnableTailMerge) + return MadeChange; + + // First find blocks with no successors. + // Block placement may create new tail merging opportunities for these blocks. + MergePotentials.clear(); + for (MachineBasicBlock &MBB : MF) { + if (MergePotentials.size() == TailMergeThreshold) + break; + if (!TriedMerging.count(&MBB) && MBB.succ_empty()) + MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB)); + } + + // If this is a large problem, avoid visiting the same basic blocks + // multiple times. + if (MergePotentials.size() == TailMergeThreshold) + for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) + TriedMerging.insert(MergePotentials[i].getBlock()); + + // See if we can do any tail merging on those. + if (MergePotentials.size() >= 2) + MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength); + + // Look at blocks (IBB) with multiple predecessors (PBB). + // We change each predecessor to a canonical form, by + // (1) temporarily removing any unconditional branch from the predecessor + // to IBB, and + // (2) alter conditional branches so they branch to the other block + // not IBB; this may require adding back an unconditional branch to IBB + // later, where there wasn't one coming in. E.g. + // Bcc IBB + // fallthrough to QBB + // here becomes + // Bncc QBB + // with a conceptual B to IBB after that, which never actually exists. + // With those changes, we see whether the predecessors' tails match, + // and merge them if so. We change things out of canonical form and + // back to the way they were later in the process. (OptimizeBranches + // would undo some of this, but we can't use it, because we'd get into + // a compile-time infinite loop repeatedly doing and undoing the same + // transformations.) + + for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); + I != E; ++I) { + if (I->pred_size() < 2) continue; + SmallPtrSet<MachineBasicBlock *, 8> UniquePreds; + MachineBasicBlock *IBB = &*I; + MachineBasicBlock *PredBB = &*std::prev(I); + MergePotentials.clear(); + MachineLoop *ML; + + // Bail if merging after placement and IBB is the loop header because + // -- If merging predecessors that belong to the same loop as IBB, the + // common tail of merged predecessors may become the loop top if block + // placement is called again and the predecessors may branch to this common + // tail and require more branches. This can be relaxed if + // MachineBlockPlacement::findBestLoopTop is more flexible. + // --If merging predecessors that do not belong to the same loop as IBB, the + // loop info of IBB's loop and the other loops may be affected. Calling the + // block placement again may make big change to the layout and eliminate the + // reason to do tail merging here. + if (AfterBlockPlacement && MLI) { + ML = MLI->getLoopFor(IBB); + if (ML && IBB == ML->getHeader()) + continue; + } + + for (MachineBasicBlock *PBB : I->predecessors()) { + if (MergePotentials.size() == TailMergeThreshold) + break; + + if (TriedMerging.count(PBB)) + continue; + + // Skip blocks that loop to themselves, can't tail merge these. + if (PBB == IBB) + continue; + + // Visit each predecessor only once. + if (!UniquePreds.insert(PBB).second) + continue; + + // Skip blocks which may jump to a landing pad. Can't tail merge these. + if (PBB->hasEHPadSuccessor()) + continue; + + // After block placement, only consider predecessors that belong to the + // same loop as IBB. The reason is the same as above when skipping loop + // header. + if (AfterBlockPlacement && MLI) + if (ML != MLI->getLoopFor(PBB)) + continue; + + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) { + // Failing case: IBB is the target of a cbr, and we cannot reverse the + // branch. + SmallVector<MachineOperand, 4> NewCond(Cond); + if (!Cond.empty() && TBB == IBB) { + if (TII->reverseBranchCondition(NewCond)) + continue; + // This is the QBB case described above + if (!FBB) { + auto Next = ++PBB->getIterator(); + if (Next != MF.end()) + FBB = &*Next; + } + } + + // Remove the unconditional branch at the end, if any. + if (TBB && (Cond.empty() || FBB)) { + DebugLoc dl = PBB->findBranchDebugLoc(); + TII->removeBranch(*PBB); + if (!Cond.empty()) + // reinsert conditional branch only, for now + TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr, + NewCond, dl); + } + + MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB)); + } + } + + // If this is a large problem, avoid visiting the same basic blocks multiple + // times. + if (MergePotentials.size() == TailMergeThreshold) + for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) + TriedMerging.insert(MergePotentials[i].getBlock()); + + if (MergePotentials.size() >= 2) + MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength); + + // Reinsert an unconditional branch if needed. The 1 below can occur as a + // result of removing blocks in TryTailMergeBlocks. + PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks + if (MergePotentials.size() == 1 && + MergePotentials.begin()->getBlock() != PredBB) + FixTail(MergePotentials.begin()->getBlock(), IBB, TII); + } + + return MadeChange; +} + +void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) { + SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size()); + BlockFrequency AccumulatedMBBFreq; + + // Aggregate edge frequency of successor edge j: + // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)), + // where bb is a basic block that is in SameTails. + for (const auto &Src : SameTails) { + const MachineBasicBlock *SrcMBB = Src.getBlock(); + BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB); + AccumulatedMBBFreq += BlockFreq; + + // It is not necessary to recompute edge weights if TailBB has less than two + // successors. + if (TailMBB.succ_size() <= 1) + continue; + + auto EdgeFreq = EdgeFreqLs.begin(); + + for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); + SuccI != SuccE; ++SuccI, ++EdgeFreq) + *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI); + } + + MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq); + + if (TailMBB.succ_size() <= 1) + return; + + auto SumEdgeFreq = + std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0)) + .getFrequency(); + auto EdgeFreq = EdgeFreqLs.begin(); + + if (SumEdgeFreq > 0) { + for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end(); + SuccI != SuccE; ++SuccI, ++EdgeFreq) { + auto Prob = BranchProbability::getBranchProbability( + EdgeFreq->getFrequency(), SumEdgeFreq); + TailMBB.setSuccProbability(SuccI, Prob); + } + } +} + +//===----------------------------------------------------------------------===// +// Branch Optimization +//===----------------------------------------------------------------------===// + +bool BranchFolder::OptimizeBranches(MachineFunction &MF) { + bool MadeChange = false; + + // Make sure blocks are numbered in order + MF.RenumberBlocks(); + // Renumbering blocks alters EH scope membership, recalculate it. + EHScopeMembership = getEHScopeMembership(MF); + + for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end(); + I != E; ) { + MachineBasicBlock *MBB = &*I++; + MadeChange |= OptimizeBlock(MBB); + + // If it is dead, remove it. + if (MBB->pred_empty()) { + RemoveDeadBlock(MBB); + MadeChange = true; + ++NumDeadBlocks; + } + } + + return MadeChange; +} + +// Blocks should be considered empty if they contain only debug info; +// else the debug info would affect codegen. +static bool IsEmptyBlock(MachineBasicBlock *MBB) { + return MBB->getFirstNonDebugInstr() == MBB->end(); +} + +// Blocks with only debug info and branches should be considered the same +// as blocks with only branches. +static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) { + MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr(); + assert(I != MBB->end() && "empty block!"); + return I->isBranch(); +} + +/// IsBetterFallthrough - Return true if it would be clearly better to +/// fall-through to MBB1 than to fall through into MBB2. This has to return +/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will +/// result in infinite loops. +static bool IsBetterFallthrough(MachineBasicBlock *MBB1, + MachineBasicBlock *MBB2) { + // Right now, we use a simple heuristic. If MBB2 ends with a call, and + // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to + // optimize branches that branch to either a return block or an assert block + // into a fallthrough to the return. + MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr(); + MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr(); + if (MBB1I == MBB1->end() || MBB2I == MBB2->end()) + return false; + + // If there is a clear successor ordering we make sure that one block + // will fall through to the next + if (MBB1->isSuccessor(MBB2)) return true; + if (MBB2->isSuccessor(MBB1)) return false; + + return MBB2I->isCall() && !MBB1I->isCall(); +} + +/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch +/// instructions on the block. +static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) { + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I != MBB.end() && I->isBranch()) + return I->getDebugLoc(); + return DebugLoc(); +} + +static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII, + MachineBasicBlock &MBB, + MachineBasicBlock &PredMBB) { + auto InsertBefore = PredMBB.getFirstTerminator(); + for (MachineInstr &MI : MBB.instrs()) + if (MI.isDebugInstr()) { + TII->duplicate(PredMBB, InsertBefore, MI); + LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: " + << MI); + } +} + +static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII, + MachineBasicBlock &MBB, + MachineBasicBlock &SuccMBB) { + auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin()); + for (MachineInstr &MI : MBB.instrs()) + if (MI.isDebugInstr()) { + TII->duplicate(SuccMBB, InsertBefore, MI); + LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: " + << MI); + } +} + +// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such +// a basic block is removed we would lose the debug information unless we have +// copied the information to a predecessor/successor. +// +// TODO: This function only handles some simple cases. An alternative would be +// to run a heavier analysis, such as the LiveDebugValues pass, before we do +// branch folding. +static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII, + MachineBasicBlock &MBB) { + assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info)."); + // If this MBB is the only predecessor of a successor it is legal to copy + // DBG_VALUE instructions to the beginning of the successor. + for (MachineBasicBlock *SuccBB : MBB.successors()) + if (SuccBB->pred_size() == 1) + copyDebugInfoToSuccessor(TII, MBB, *SuccBB); + // If this MBB is the only successor of a predecessor it is legal to copy the + // DBG_VALUE instructions to the end of the predecessor (just before the + // terminators, assuming that the terminator isn't affecting the DBG_VALUE). + for (MachineBasicBlock *PredBB : MBB.predecessors()) + if (PredBB->succ_size() == 1) + copyDebugInfoToPredecessor(TII, MBB, *PredBB); +} + +bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) { + bool MadeChange = false; + MachineFunction &MF = *MBB->getParent(); +ReoptimizeBlock: + + MachineFunction::iterator FallThrough = MBB->getIterator(); + ++FallThrough; + + // Make sure MBB and FallThrough belong to the same EH scope. + bool SameEHScope = true; + if (!EHScopeMembership.empty() && FallThrough != MF.end()) { + auto MBBEHScope = EHScopeMembership.find(MBB); + assert(MBBEHScope != EHScopeMembership.end()); + auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough); + assert(FallThroughEHScope != EHScopeMembership.end()); + SameEHScope = MBBEHScope->second == FallThroughEHScope->second; + } + + // If this block is empty, make everyone use its fall-through, not the block + // explicitly. Landing pads should not do this since the landing-pad table + // points to this block. Blocks with their addresses taken shouldn't be + // optimized away. + if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() && + SameEHScope) { + salvageDebugInfoFromEmptyBlock(TII, *MBB); + // Dead block? Leave for cleanup later. + if (MBB->pred_empty()) return MadeChange; + + if (FallThrough == MF.end()) { + // TODO: Simplify preds to not branch here if possible! + } else if (FallThrough->isEHPad()) { + // Don't rewrite to a landing pad fallthough. That could lead to the case + // where a BB jumps to more than one landing pad. + // TODO: Is it ever worth rewriting predecessors which don't already + // jump to a landing pad, and so can safely jump to the fallthrough? + } else if (MBB->isSuccessor(&*FallThrough)) { + // Rewrite all predecessors of the old block to go to the fallthrough + // instead. + while (!MBB->pred_empty()) { + MachineBasicBlock *Pred = *(MBB->pred_end()-1); + Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough); + } + // If MBB was the target of a jump table, update jump tables to go to the + // fallthrough instead. + if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) + MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough); + MadeChange = true; + } + return MadeChange; + } + + // Check to see if we can simplify the terminator of the block before this + // one. + MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB)); + + MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr; + SmallVector<MachineOperand, 4> PriorCond; + bool PriorUnAnalyzable = + TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true); + if (!PriorUnAnalyzable) { + // If the CFG for the prior block has extra edges, remove them. + MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB, + !PriorCond.empty()); + + // If the previous branch is conditional and both conditions go to the same + // destination, remove the branch, replacing it with an unconditional one or + // a fall-through. + if (PriorTBB && PriorTBB == PriorFBB) { + DebugLoc dl = getBranchDebugLoc(PrevBB); + TII->removeBranch(PrevBB); + PriorCond.clear(); + if (PriorTBB != MBB) + TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); + MadeChange = true; + ++NumBranchOpts; + goto ReoptimizeBlock; + } + + // If the previous block unconditionally falls through to this block and + // this block has no other predecessors, move the contents of this block + // into the prior block. This doesn't usually happen when SimplifyCFG + // has been used, but it can happen if tail merging splits a fall-through + // predecessor of a block. + // This has to check PrevBB->succ_size() because EH edges are ignored by + // AnalyzeBranch. + if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 && + PrevBB.succ_size() == 1 && + !MBB->hasAddressTaken() && !MBB->isEHPad()) { + LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB + << "From MBB: " << *MBB); + // Remove redundant DBG_VALUEs first. + if (PrevBB.begin() != PrevBB.end()) { + MachineBasicBlock::iterator PrevBBIter = PrevBB.end(); + --PrevBBIter; + MachineBasicBlock::iterator MBBIter = MBB->begin(); + // Check if DBG_VALUE at the end of PrevBB is identical to the + // DBG_VALUE at the beginning of MBB. + while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end() + && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) { + if (!MBBIter->isIdenticalTo(*PrevBBIter)) + break; + MachineInstr &DuplicateDbg = *MBBIter; + ++MBBIter; -- PrevBBIter; + DuplicateDbg.eraseFromParent(); + } + } + PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end()); + PrevBB.removeSuccessor(PrevBB.succ_begin()); + assert(PrevBB.succ_empty()); + PrevBB.transferSuccessors(MBB); + MadeChange = true; + return MadeChange; + } + + // If the previous branch *only* branches to *this* block (conditional or + // not) remove the branch. + if (PriorTBB == MBB && !PriorFBB) { + TII->removeBranch(PrevBB); + MadeChange = true; + ++NumBranchOpts; + goto ReoptimizeBlock; + } + + // If the prior block branches somewhere else on the condition and here if + // the condition is false, remove the uncond second branch. + if (PriorFBB == MBB) { + DebugLoc dl = getBranchDebugLoc(PrevBB); + TII->removeBranch(PrevBB); + TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl); + MadeChange = true; + ++NumBranchOpts; + goto ReoptimizeBlock; + } + + // If the prior block branches here on true and somewhere else on false, and + // if the branch condition is reversible, reverse the branch to create a + // fall-through. + if (PriorTBB == MBB) { + SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); + if (!TII->reverseBranchCondition(NewPriorCond)) { + DebugLoc dl = getBranchDebugLoc(PrevBB); + TII->removeBranch(PrevBB); + TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl); + MadeChange = true; + ++NumBranchOpts; + goto ReoptimizeBlock; + } + } + + // If this block has no successors (e.g. it is a return block or ends with + // a call to a no-return function like abort or __cxa_throw) and if the pred + // falls through into this block, and if it would otherwise fall through + // into the block after this, move this block to the end of the function. + // + // We consider it more likely that execution will stay in the function (e.g. + // due to loops) than it is to exit it. This asserts in loops etc, moving + // the assert condition out of the loop body. + if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB && + MachineFunction::iterator(PriorTBB) == FallThrough && + !MBB->canFallThrough()) { + bool DoTransform = true; + + // We have to be careful that the succs of PredBB aren't both no-successor + // blocks. If neither have successors and if PredBB is the second from + // last block in the function, we'd just keep swapping the two blocks for + // last. Only do the swap if one is clearly better to fall through than + // the other. + if (FallThrough == --MF.end() && + !IsBetterFallthrough(PriorTBB, MBB)) + DoTransform = false; + + if (DoTransform) { + // Reverse the branch so we will fall through on the previous true cond. + SmallVector<MachineOperand, 4> NewPriorCond(PriorCond); + if (!TII->reverseBranchCondition(NewPriorCond)) { + LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB + << "To make fallthrough to: " << *PriorTBB << "\n"); + + DebugLoc dl = getBranchDebugLoc(PrevBB); + TII->removeBranch(PrevBB); + TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl); + + // Move this block to the end of the function. + MBB->moveAfter(&MF.back()); + MadeChange = true; + ++NumBranchOpts; + return MadeChange; + } + } + } + } + + if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 && + MF.getFunction().hasOptSize()) { + // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch + // direction, thereby defeating careful block placement and regressing + // performance. Therefore, only consider this for optsize functions. + MachineInstr &TailCall = *MBB->getFirstNonDebugInstr(); + if (TII->isUnconditionalTailCall(TailCall)) { + MachineBasicBlock *Pred = *MBB->pred_begin(); + MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; + SmallVector<MachineOperand, 4> PredCond; + bool PredAnalyzable = + !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true); + + if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB && + PredTBB != PredFBB) { + // The predecessor has a conditional branch to this block which consists + // of only a tail call. Try to fold the tail call into the conditional + // branch. + if (TII->canMakeTailCallConditional(PredCond, TailCall)) { + // TODO: It would be nice if analyzeBranch() could provide a pointer + // to the branch instruction so replaceBranchWithTailCall() doesn't + // have to search for it. + TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall); + ++NumTailCalls; + Pred->removeSuccessor(MBB); + MadeChange = true; + return MadeChange; + } + } + // If the predecessor is falling through to this block, we could reverse + // the branch condition and fold the tail call into that. However, after + // that we might have to re-arrange the CFG to fall through to the other + // block and there is a high risk of regressing code size rather than + // improving it. + } + } + + // Analyze the branch in the current block. + MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr; + SmallVector<MachineOperand, 4> CurCond; + bool CurUnAnalyzable = + TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true); + if (!CurUnAnalyzable) { + // If the CFG for the prior block has extra edges, remove them. + MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty()); + + // If this is a two-way branch, and the FBB branches to this block, reverse + // the condition so the single-basic-block loop is faster. Instead of: + // Loop: xxx; jcc Out; jmp Loop + // we want: + // Loop: xxx; jncc Loop; jmp Out + if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) { + SmallVector<MachineOperand, 4> NewCond(CurCond); + if (!TII->reverseBranchCondition(NewCond)) { + DebugLoc dl = getBranchDebugLoc(*MBB); + TII->removeBranch(*MBB); + TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl); + MadeChange = true; + ++NumBranchOpts; + goto ReoptimizeBlock; + } + } + + // If this branch is the only thing in its block, see if we can forward + // other blocks across it. + if (CurTBB && CurCond.empty() && !CurFBB && + IsBranchOnlyBlock(MBB) && CurTBB != MBB && + !MBB->hasAddressTaken() && !MBB->isEHPad()) { + DebugLoc dl = getBranchDebugLoc(*MBB); + // This block may contain just an unconditional branch. Because there can + // be 'non-branch terminators' in the block, try removing the branch and + // then seeing if the block is empty. + TII->removeBranch(*MBB); + // If the only things remaining in the block are debug info, remove these + // as well, so this will behave the same as an empty block in non-debug + // mode. + if (IsEmptyBlock(MBB)) { + // Make the block empty, losing the debug info (we could probably + // improve this in some cases.) + MBB->erase(MBB->begin(), MBB->end()); + } + // If this block is just an unconditional branch to CurTBB, we can + // usually completely eliminate the block. The only case we cannot + // completely eliminate the block is when the block before this one + // falls through into MBB and we can't understand the prior block's branch + // condition. + if (MBB->empty()) { + bool PredHasNoFallThrough = !PrevBB.canFallThrough(); + if (PredHasNoFallThrough || !PriorUnAnalyzable || + !PrevBB.isSuccessor(MBB)) { + // If the prior block falls through into us, turn it into an + // explicit branch to us to make updates simpler. + if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) && + PriorTBB != MBB && PriorFBB != MBB) { + if (!PriorTBB) { + assert(PriorCond.empty() && !PriorFBB && + "Bad branch analysis"); + PriorTBB = MBB; + } else { + assert(!PriorFBB && "Machine CFG out of date!"); + PriorFBB = MBB; + } + DebugLoc pdl = getBranchDebugLoc(PrevBB); + TII->removeBranch(PrevBB); + TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl); + } + + // Iterate through all the predecessors, revectoring each in-turn. + size_t PI = 0; + bool DidChange = false; + bool HasBranchToSelf = false; + while(PI != MBB->pred_size()) { + MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI); + if (PMBB == MBB) { + // If this block has an uncond branch to itself, leave it. + ++PI; + HasBranchToSelf = true; + } else { + DidChange = true; + PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB); + // If this change resulted in PMBB ending in a conditional + // branch where both conditions go to the same destination, + // change this to an unconditional branch (and fix the CFG). + MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr; + SmallVector<MachineOperand, 4> NewCurCond; + bool NewCurUnAnalyzable = TII->analyzeBranch( + *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true); + if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) { + DebugLoc pdl = getBranchDebugLoc(*PMBB); + TII->removeBranch(*PMBB); + NewCurCond.clear(); + TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl); + MadeChange = true; + ++NumBranchOpts; + PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false); + } + } + } + + // Change any jumptables to go to the new MBB. + if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo()) + MJTI->ReplaceMBBInJumpTables(MBB, CurTBB); + if (DidChange) { + ++NumBranchOpts; + MadeChange = true; + if (!HasBranchToSelf) return MadeChange; + } + } + } + + // Add the branch back if the block is more than just an uncond branch. + TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl); + } + } + + // If the prior block doesn't fall through into this block, and if this + // block doesn't fall through into some other block, see if we can find a + // place to move this block where a fall-through will happen. + if (!PrevBB.canFallThrough()) { + // Now we know that there was no fall-through into this block, check to + // see if it has a fall-through into its successor. + bool CurFallsThru = MBB->canFallThrough(); + + if (!MBB->isEHPad()) { + // Check all the predecessors of this block. If one of them has no fall + // throughs, move this block right after it. + for (MachineBasicBlock *PredBB : MBB->predecessors()) { + // Analyze the branch at the end of the pred. + MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr; + SmallVector<MachineOperand, 4> PredCond; + if (PredBB != MBB && !PredBB->canFallThrough() && + !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) && + (!CurFallsThru || !CurTBB || !CurFBB) && + (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) { + // If the current block doesn't fall through, just move it. + // If the current block can fall through and does not end with a + // conditional branch, we need to append an unconditional jump to + // the (current) next block. To avoid a possible compile-time + // infinite loop, move blocks only backward in this case. + // Also, if there are already 2 branches here, we cannot add a third; + // this means we have the case + // Bcc next + // B elsewhere + // next: + if (CurFallsThru) { + MachineBasicBlock *NextBB = &*std::next(MBB->getIterator()); + CurCond.clear(); + TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc()); + } + MBB->moveAfter(PredBB); + MadeChange = true; + goto ReoptimizeBlock; + } + } + } + + if (!CurFallsThru) { + // Check all successors to see if we can move this block before it. + for (MachineBasicBlock *SuccBB : MBB->successors()) { + // Analyze the branch at the end of the block before the succ. + MachineFunction::iterator SuccPrev = --SuccBB->getIterator(); + + // If this block doesn't already fall-through to that successor, and if + // the succ doesn't already have a block that can fall through into it, + // and if the successor isn't an EH destination, we can arrange for the + // fallthrough to happen. + if (SuccBB != MBB && &*SuccPrev != MBB && + !SuccPrev->canFallThrough() && !CurUnAnalyzable && + !SuccBB->isEHPad()) { + MBB->moveBefore(SuccBB); + MadeChange = true; + goto ReoptimizeBlock; + } + } + + // Okay, there is no really great place to put this block. If, however, + // the block before this one would be a fall-through if this block were + // removed, move this block to the end of the function. There is no real + // advantage in "falling through" to an EH block, so we don't want to + // perform this transformation for that case. + // + // Also, Windows EH introduced the possibility of an arbitrary number of + // successors to a given block. The analyzeBranch call does not consider + // exception handling and so we can get in a state where a block + // containing a call is followed by multiple EH blocks that would be + // rotated infinitely at the end of the function if the transformation + // below were performed for EH "FallThrough" blocks. Therefore, even if + // that appears not to be happening anymore, we should assume that it is + // possible and not remove the "!FallThrough()->isEHPad" condition below. + MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr; + SmallVector<MachineOperand, 4> PrevCond; + if (FallThrough != MF.end() && + !FallThrough->isEHPad() && + !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) && + PrevBB.isSuccessor(&*FallThrough)) { + MBB->moveAfter(&MF.back()); + MadeChange = true; + return MadeChange; + } + } + } + + return MadeChange; +} + +//===----------------------------------------------------------------------===// +// Hoist Common Code +//===----------------------------------------------------------------------===// + +bool BranchFolder::HoistCommonCode(MachineFunction &MF) { + bool MadeChange = false; + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) { + MachineBasicBlock *MBB = &*I++; + MadeChange |= HoistCommonCodeInSuccs(MBB); + } + + return MadeChange; +} + +/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given +/// its 'true' successor. +static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, + MachineBasicBlock *TrueBB) { + for (MachineBasicBlock *SuccBB : BB->successors()) + if (SuccBB != TrueBB) + return SuccBB; + return nullptr; +} + +template <class Container> +static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI, + Container &Set) { + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) + Set.insert(*AI); + } else { + Set.insert(Reg); + } +} + +/// findHoistingInsertPosAndDeps - Find the location to move common instructions +/// in successors to. The location is usually just before the terminator, +/// however if the terminator is a conditional branch and its previous +/// instruction is the flag setting instruction, the previous instruction is +/// the preferred location. This function also gathers uses and defs of the +/// instructions from the insertion point to the end of the block. The data is +/// used by HoistCommonCodeInSuccs to ensure safety. +static +MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, + SmallSet<unsigned,4> &Uses, + SmallSet<unsigned,4> &Defs) { + MachineBasicBlock::iterator Loc = MBB->getFirstTerminator(); + if (!TII->isUnpredicatedTerminator(*Loc)) + return MBB->end(); + + for (const MachineOperand &MO : Loc->operands()) { + if (!MO.isReg()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (MO.isUse()) { + addRegAndItsAliases(Reg, TRI, Uses); + } else { + if (!MO.isDead()) + // Don't try to hoist code in the rare case the terminator defines a + // register that is later used. + return MBB->end(); + + // If the terminator defines a register, make sure we don't hoist + // the instruction whose def might be clobbered by the terminator. + addRegAndItsAliases(Reg, TRI, Defs); + } + } + + if (Uses.empty()) + return Loc; + // If the terminator is the only instruction in the block and Uses is not + // empty (or we would have returned above), we can still safely hoist + // instructions just before the terminator as long as the Defs/Uses are not + // violated (which is checked in HoistCommonCodeInSuccs). + if (Loc == MBB->begin()) + return Loc; + + // The terminator is probably a conditional branch, try not to separate the + // branch from condition setting instruction. + MachineBasicBlock::iterator PI = + skipDebugInstructionsBackward(std::prev(Loc), MBB->begin()); + + bool IsDef = false; + for (const MachineOperand &MO : PI->operands()) { + // If PI has a regmask operand, it is probably a call. Separate away. + if (MO.isRegMask()) + return Loc; + if (!MO.isReg() || MO.isUse()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (Uses.count(Reg)) { + IsDef = true; + break; + } + } + if (!IsDef) + // The condition setting instruction is not just before the conditional + // branch. + return Loc; + + // Be conservative, don't insert instruction above something that may have + // side-effects. And since it's potentially bad to separate flag setting + // instruction from the conditional branch, just abort the optimization + // completely. + // Also avoid moving code above predicated instruction since it's hard to + // reason about register liveness with predicated instruction. + bool DontMoveAcrossStore = true; + if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI)) + return MBB->end(); + + // Find out what registers are live. Note this routine is ignoring other live + // registers which are only used by instructions in successor blocks. + for (const MachineOperand &MO : PI->operands()) { + if (!MO.isReg()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (MO.isUse()) { + addRegAndItsAliases(Reg, TRI, Uses); + } else { + if (Uses.erase(Reg)) { + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) + Uses.erase(*SubRegs); // Use sub-registers to be conservative + } + } + addRegAndItsAliases(Reg, TRI, Defs); + } + } + + return PI; +} + +bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) { + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty()) + return false; + + if (!FBB) FBB = findFalseBlock(MBB, TBB); + if (!FBB) + // Malformed bcc? True and false blocks are the same? + return false; + + // Restrict the optimization to cases where MBB is the only predecessor, + // it is an obvious win. + if (TBB->pred_size() > 1 || FBB->pred_size() > 1) + return false; + + // Find a suitable position to hoist the common instructions to. Also figure + // out which registers are used or defined by instructions from the insertion + // point to the end of the block. + SmallSet<unsigned, 4> Uses, Defs; + MachineBasicBlock::iterator Loc = + findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs); + if (Loc == MBB->end()) + return false; + + bool HasDups = false; + SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet; + MachineBasicBlock::iterator TIB = TBB->begin(); + MachineBasicBlock::iterator FIB = FBB->begin(); + MachineBasicBlock::iterator TIE = TBB->end(); + MachineBasicBlock::iterator FIE = FBB->end(); + while (TIB != TIE && FIB != FIE) { + // Skip dbg_value instructions. These do not count. + TIB = skipDebugInstructionsForward(TIB, TIE); + FIB = skipDebugInstructionsForward(FIB, FIE); + if (TIB == TIE || FIB == FIE) + break; + + if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead)) + break; + + if (TII->isPredicated(*TIB)) + // Hard to reason about register liveness with predicated instruction. + break; + + bool IsSafe = true; + for (MachineOperand &MO : TIB->operands()) { + // Don't attempt to hoist instructions with register masks. + if (MO.isRegMask()) { + IsSafe = false; + break; + } + if (!MO.isReg()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (MO.isDef()) { + if (Uses.count(Reg)) { + // Avoid clobbering a register that's used by the instruction at + // the point of insertion. + IsSafe = false; + break; + } + + if (Defs.count(Reg) && !MO.isDead()) { + // Don't hoist the instruction if the def would be clobber by the + // instruction at the point insertion. FIXME: This is overly + // conservative. It should be possible to hoist the instructions + // in BB2 in the following example: + // BB1: + // r1, eflag = op1 r2, r3 + // brcc eflag + // + // BB2: + // r1 = op2, ... + // = op3, killed r1 + IsSafe = false; + break; + } + } else if (!ActiveDefsSet.count(Reg)) { + if (Defs.count(Reg)) { + // Use is defined by the instruction at the point of insertion. + IsSafe = false; + break; + } + + if (MO.isKill() && Uses.count(Reg)) + // Kills a register that's read by the instruction at the point of + // insertion. Remove the kill marker. + MO.setIsKill(false); + } + } + if (!IsSafe) + break; + + bool DontMoveAcrossStore = true; + if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore)) + break; + + // Remove kills from ActiveDefsSet, these registers had short live ranges. + for (const MachineOperand &MO : TIB->operands()) { + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (!AllDefsSet.count(Reg)) { + continue; + } + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) + ActiveDefsSet.erase(*AI); + } else { + ActiveDefsSet.erase(Reg); + } + } + + // Track local defs so we can update liveins. + for (const MachineOperand &MO : TIB->operands()) { + if (!MO.isReg() || !MO.isDef() || MO.isDead()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + addRegAndItsAliases(Reg, TRI, ActiveDefsSet); + addRegAndItsAliases(Reg, TRI, AllDefsSet); + } + + HasDups = true; + ++TIB; + ++FIB; + } + + if (!HasDups) + return false; + + MBB->splice(Loc, TBB, TBB->begin(), TIB); + FBB->erase(FBB->begin(), FIB); + + if (UpdateLiveIns) { + recomputeLiveIns(*TBB); + recomputeLiveIns(*FBB); + } + + ++NumHoist; + return true; +} |