summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp2106
1 files changed, 2106 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp b/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp
new file mode 100644
index 000000000000..fb54b5d6c8d8
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp
@@ -0,0 +1,2106 @@
+//===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass forwards branches to unconditional branches to make them branch
+// directly to the target block. This pass often results in dead MBB's, which
+// it then removes.
+//
+// Note that this pass must be run after register allocation, it cannot handle
+// SSA form. It also must handle virtual registers for targets that emit virtual
+// ISA (e.g. NVPTX).
+//
+//===----------------------------------------------------------------------===//
+
+#include "BranchFolding.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <numeric>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "branch-folder"
+
+STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
+STATISTIC(NumBranchOpts, "Number of branches optimized");
+STATISTIC(NumTailMerge , "Number of block tails merged");
+STATISTIC(NumHoist , "Number of times common instructions are hoisted");
+STATISTIC(NumTailCalls, "Number of tail calls optimized");
+
+static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
+ cl::init(cl::BOU_UNSET), cl::Hidden);
+
+// Throttle for huge numbers of predecessors (compile speed problems)
+static cl::opt<unsigned>
+TailMergeThreshold("tail-merge-threshold",
+ cl::desc("Max number of predecessors to consider tail merging"),
+ cl::init(150), cl::Hidden);
+
+// Heuristic for tail merging (and, inversely, tail duplication).
+// TODO: This should be replaced with a target query.
+static cl::opt<unsigned>
+TailMergeSize("tail-merge-size",
+ cl::desc("Min number of instructions to consider tail merging"),
+ cl::init(3), cl::Hidden);
+
+namespace {
+
+ /// BranchFolderPass - Wrap branch folder in a machine function pass.
+ class BranchFolderPass : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ explicit BranchFolderPass(): MachineFunctionPass(ID) {}
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<TargetPassConfig>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+ };
+
+} // end anonymous namespace
+
+char BranchFolderPass::ID = 0;
+
+char &llvm::BranchFolderPassID = BranchFolderPass::ID;
+
+INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
+ "Control Flow Optimizer", false, false)
+
+bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
+ // TailMerge can create jump into if branches that make CFG irreducible for
+ // HW that requires structurized CFG.
+ bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
+ PassConfig->getEnableTailMerge();
+ BranchFolder::MBFIWrapper MBBFreqInfo(
+ getAnalysis<MachineBlockFrequencyInfo>());
+ BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
+ getAnalysis<MachineBranchProbabilityInfo>());
+ return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
+ MF.getSubtarget().getRegisterInfo(),
+ getAnalysisIfAvailable<MachineModuleInfo>());
+}
+
+BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
+ MBFIWrapper &FreqInfo,
+ const MachineBranchProbabilityInfo &ProbInfo,
+ unsigned MinTailLength)
+ : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
+ MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
+ if (MinCommonTailLength == 0)
+ MinCommonTailLength = TailMergeSize;
+ switch (FlagEnableTailMerge) {
+ case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
+ case cl::BOU_TRUE: EnableTailMerge = true; break;
+ case cl::BOU_FALSE: EnableTailMerge = false; break;
+ }
+}
+
+void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
+ assert(MBB->pred_empty() && "MBB must be dead!");
+ LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
+
+ MachineFunction *MF = MBB->getParent();
+ // drop all successors.
+ while (!MBB->succ_empty())
+ MBB->removeSuccessor(MBB->succ_end()-1);
+
+ // Avoid matching if this pointer gets reused.
+ TriedMerging.erase(MBB);
+
+ // Remove the block.
+ MF->erase(MBB);
+ EHScopeMembership.erase(MBB);
+ if (MLI)
+ MLI->removeBlock(MBB);
+}
+
+bool BranchFolder::OptimizeFunction(MachineFunction &MF,
+ const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri,
+ MachineModuleInfo *mmi,
+ MachineLoopInfo *mli, bool AfterPlacement) {
+ if (!tii) return false;
+
+ TriedMerging.clear();
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ AfterBlockPlacement = AfterPlacement;
+ TII = tii;
+ TRI = tri;
+ MMI = mmi;
+ MLI = mli;
+ this->MRI = &MRI;
+
+ UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
+ if (!UpdateLiveIns)
+ MRI.invalidateLiveness();
+
+ // Fix CFG. The later algorithms expect it to be right.
+ bool MadeChange = false;
+ for (MachineBasicBlock &MBB : MF) {
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
+ MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
+ }
+
+ // Recalculate EH scope membership.
+ EHScopeMembership = getEHScopeMembership(MF);
+
+ bool MadeChangeThisIteration = true;
+ while (MadeChangeThisIteration) {
+ MadeChangeThisIteration = TailMergeBlocks(MF);
+ // No need to clean up if tail merging does not change anything after the
+ // block placement.
+ if (!AfterBlockPlacement || MadeChangeThisIteration)
+ MadeChangeThisIteration |= OptimizeBranches(MF);
+ if (EnableHoistCommonCode)
+ MadeChangeThisIteration |= HoistCommonCode(MF);
+ MadeChange |= MadeChangeThisIteration;
+ }
+
+ // See if any jump tables have become dead as the code generator
+ // did its thing.
+ MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
+ if (!JTI)
+ return MadeChange;
+
+ // Walk the function to find jump tables that are live.
+ BitVector JTIsLive(JTI->getJumpTables().size());
+ for (const MachineBasicBlock &BB : MF) {
+ for (const MachineInstr &I : BB)
+ for (const MachineOperand &Op : I.operands()) {
+ if (!Op.isJTI()) continue;
+
+ // Remember that this JT is live.
+ JTIsLive.set(Op.getIndex());
+ }
+ }
+
+ // Finally, remove dead jump tables. This happens when the
+ // indirect jump was unreachable (and thus deleted).
+ for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
+ if (!JTIsLive.test(i)) {
+ JTI->RemoveJumpTable(i);
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Tail Merging of Blocks
+//===----------------------------------------------------------------------===//
+
+/// HashMachineInstr - Compute a hash value for MI and its operands.
+static unsigned HashMachineInstr(const MachineInstr &MI) {
+ unsigned Hash = MI.getOpcode();
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &Op = MI.getOperand(i);
+
+ // Merge in bits from the operand if easy. We can't use MachineOperand's
+ // hash_code here because it's not deterministic and we sort by hash value
+ // later.
+ unsigned OperandHash = 0;
+ switch (Op.getType()) {
+ case MachineOperand::MO_Register:
+ OperandHash = Op.getReg();
+ break;
+ case MachineOperand::MO_Immediate:
+ OperandHash = Op.getImm();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ OperandHash = Op.getMBB()->getNumber();
+ break;
+ case MachineOperand::MO_FrameIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ OperandHash = Op.getIndex();
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ // Global address / external symbol are too hard, don't bother, but do
+ // pull in the offset.
+ OperandHash = Op.getOffset();
+ break;
+ default:
+ break;
+ }
+
+ Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
+ }
+ return Hash;
+}
+
+/// HashEndOfMBB - Hash the last instruction in the MBB.
+static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
+ MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return 0;
+
+ return HashMachineInstr(*I);
+}
+
+/// Whether MI should be counted as an instruction when calculating common tail.
+static bool countsAsInstruction(const MachineInstr &MI) {
+ return !(MI.isDebugInstr() || MI.isCFIInstruction());
+}
+
+/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
+/// of instructions they actually have in common together at their end. Return
+/// iterators for the first shared instruction in each block.
+static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2,
+ MachineBasicBlock::iterator &I1,
+ MachineBasicBlock::iterator &I2) {
+ I1 = MBB1->end();
+ I2 = MBB2->end();
+
+ unsigned TailLen = 0;
+ while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
+ --I1; --I2;
+ // Skip debugging pseudos; necessary to avoid changing the code.
+ while (!countsAsInstruction(*I1)) {
+ if (I1==MBB1->begin()) {
+ while (!countsAsInstruction(*I2)) {
+ if (I2==MBB2->begin()) {
+ // I1==DBG at begin; I2==DBG at begin
+ goto SkipTopCFIAndReturn;
+ }
+ --I2;
+ }
+ ++I2;
+ // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
+ goto SkipTopCFIAndReturn;
+ }
+ --I1;
+ }
+ // I1==first (untested) non-DBG preceding known match
+ while (!countsAsInstruction(*I2)) {
+ if (I2==MBB2->begin()) {
+ ++I1;
+ // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
+ goto SkipTopCFIAndReturn;
+ }
+ --I2;
+ }
+ // I1, I2==first (untested) non-DBGs preceding known match
+ if (!I1->isIdenticalTo(*I2) ||
+ // FIXME: This check is dubious. It's used to get around a problem where
+ // people incorrectly expect inline asm directives to remain in the same
+ // relative order. This is untenable because normal compiler
+ // optimizations (like this one) may reorder and/or merge these
+ // directives.
+ I1->isInlineAsm()) {
+ ++I1; ++I2;
+ break;
+ }
+ ++TailLen;
+ }
+ // Back past possible debugging pseudos at beginning of block. This matters
+ // when one block differs from the other only by whether debugging pseudos
+ // are present at the beginning. (This way, the various checks later for
+ // I1==MBB1->begin() work as expected.)
+ if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
+ --I2;
+ while (I2->isDebugInstr()) {
+ if (I2 == MBB2->begin())
+ return TailLen;
+ --I2;
+ }
+ ++I2;
+ }
+ if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
+ --I1;
+ while (I1->isDebugInstr()) {
+ if (I1 == MBB1->begin())
+ return TailLen;
+ --I1;
+ }
+ ++I1;
+ }
+
+SkipTopCFIAndReturn:
+ // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
+ // I1 and I2 are non-identical when compared and then one or both of them ends
+ // up pointing to a CFI instruction after being incremented. For example:
+ /*
+ BB1:
+ ...
+ INSTRUCTION_A
+ ADD32ri8 <- last common instruction
+ ...
+ BB2:
+ ...
+ INSTRUCTION_B
+ CFI_INSTRUCTION
+ ADD32ri8 <- last common instruction
+ ...
+ */
+ // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
+ // incrementing the iterators, I1 will point to ADD, however I2 will point to
+ // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
+ // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
+ // instruction.
+ while (I1 != MBB1->end() && I1->isCFIInstruction()) {
+ ++I1;
+ }
+
+ while (I2 != MBB2->end() && I2->isCFIInstruction()) {
+ ++I2;
+ }
+
+ return TailLen;
+}
+
+void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
+ MachineBasicBlock &NewDest) {
+ if (UpdateLiveIns) {
+ // OldInst should always point to an instruction.
+ MachineBasicBlock &OldMBB = *OldInst->getParent();
+ LiveRegs.clear();
+ LiveRegs.addLiveOuts(OldMBB);
+ // Move backward to the place where will insert the jump.
+ MachineBasicBlock::iterator I = OldMBB.end();
+ do {
+ --I;
+ LiveRegs.stepBackward(*I);
+ } while (I != OldInst);
+
+ // Merging the tails may have switched some undef operand to non-undef ones.
+ // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
+ // register.
+ for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
+ // We computed the liveins with computeLiveIn earlier and should only see
+ // full registers:
+ assert(P.LaneMask == LaneBitmask::getAll() &&
+ "Can only handle full register.");
+ MCPhysReg Reg = P.PhysReg;
+ if (!LiveRegs.available(*MRI, Reg))
+ continue;
+ DebugLoc DL;
+ BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
+ }
+ }
+
+ TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
+ ++NumTailMerge;
+}
+
+MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
+ MachineBasicBlock::iterator BBI1,
+ const BasicBlock *BB) {
+ if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
+ return nullptr;
+
+ MachineFunction &MF = *CurMBB.getParent();
+
+ // Create the fall-through block.
+ MachineFunction::iterator MBBI = CurMBB.getIterator();
+ MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
+ CurMBB.getParent()->insert(++MBBI, NewMBB);
+
+ // Move all the successors of this block to the specified block.
+ NewMBB->transferSuccessors(&CurMBB);
+
+ // Add an edge from CurMBB to NewMBB for the fall-through.
+ CurMBB.addSuccessor(NewMBB);
+
+ // Splice the code over.
+ NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
+
+ // NewMBB belongs to the same loop as CurMBB.
+ if (MLI)
+ if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
+ ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
+
+ // NewMBB inherits CurMBB's block frequency.
+ MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
+
+ if (UpdateLiveIns)
+ computeAndAddLiveIns(LiveRegs, *NewMBB);
+
+ // Add the new block to the EH scope.
+ const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
+ if (EHScopeI != EHScopeMembership.end()) {
+ auto n = EHScopeI->second;
+ EHScopeMembership[NewMBB] = n;
+ }
+
+ return NewMBB;
+}
+
+/// EstimateRuntime - Make a rough estimate for how long it will take to run
+/// the specified code.
+static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
+ MachineBasicBlock::iterator E) {
+ unsigned Time = 0;
+ for (; I != E; ++I) {
+ if (!countsAsInstruction(*I))
+ continue;
+ if (I->isCall())
+ Time += 10;
+ else if (I->mayLoad() || I->mayStore())
+ Time += 2;
+ else
+ ++Time;
+ }
+ return Time;
+}
+
+// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
+// branches temporarily for tail merging). In the case where CurMBB ends
+// with a conditional branch to the next block, optimize by reversing the
+// test and conditionally branching to SuccMBB instead.
+static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
+ const TargetInstrInfo *TII) {
+ MachineFunction *MF = CurMBB->getParent();
+ MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ DebugLoc dl = CurMBB->findBranchDebugLoc();
+ if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
+ MachineBasicBlock *NextBB = &*I;
+ if (TBB == NextBB && !Cond.empty() && !FBB) {
+ if (!TII->reverseBranchCondition(Cond)) {
+ TII->removeBranch(*CurMBB);
+ TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
+ return;
+ }
+ }
+ }
+ TII->insertBranch(*CurMBB, SuccBB, nullptr,
+ SmallVector<MachineOperand, 0>(), dl);
+}
+
+bool
+BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
+ if (getHash() < o.getHash())
+ return true;
+ if (getHash() > o.getHash())
+ return false;
+ if (getBlock()->getNumber() < o.getBlock()->getNumber())
+ return true;
+ if (getBlock()->getNumber() > o.getBlock()->getNumber())
+ return false;
+ // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
+ // an object with itself.
+#ifndef _GLIBCXX_DEBUG
+ llvm_unreachable("Predecessor appears twice");
+#else
+ return false;
+#endif
+}
+
+BlockFrequency
+BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
+ auto I = MergedBBFreq.find(MBB);
+
+ if (I != MergedBBFreq.end())
+ return I->second;
+
+ return MBFI.getBlockFreq(MBB);
+}
+
+void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
+ BlockFrequency F) {
+ MergedBBFreq[MBB] = F;
+}
+
+raw_ostream &
+BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
+ const MachineBasicBlock *MBB) const {
+ return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
+}
+
+raw_ostream &
+BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
+ const BlockFrequency Freq) const {
+ return MBFI.printBlockFreq(OS, Freq);
+}
+
+void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
+ MBFI.view(Name, isSimple);
+}
+
+uint64_t
+BranchFolder::MBFIWrapper::getEntryFreq() const {
+ return MBFI.getEntryFreq();
+}
+
+/// CountTerminators - Count the number of terminators in the given
+/// block and set I to the position of the first non-terminator, if there
+/// is one, or MBB->end() otherwise.
+static unsigned CountTerminators(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator &I) {
+ I = MBB->end();
+ unsigned NumTerms = 0;
+ while (true) {
+ if (I == MBB->begin()) {
+ I = MBB->end();
+ break;
+ }
+ --I;
+ if (!I->isTerminator()) break;
+ ++NumTerms;
+ }
+ return NumTerms;
+}
+
+/// A no successor, non-return block probably ends in unreachable and is cold.
+/// Also consider a block that ends in an indirect branch to be a return block,
+/// since many targets use plain indirect branches to return.
+static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
+ if (!MBB->succ_empty())
+ return false;
+ if (MBB->empty())
+ return true;
+ return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
+}
+
+/// ProfitableToMerge - Check if two machine basic blocks have a common tail
+/// and decide if it would be profitable to merge those tails. Return the
+/// length of the common tail and iterators to the first common instruction
+/// in each block.
+/// MBB1, MBB2 The blocks to check
+/// MinCommonTailLength Minimum size of tail block to be merged.
+/// CommonTailLen Out parameter to record the size of the shared tail between
+/// MBB1 and MBB2
+/// I1, I2 Iterator references that will be changed to point to the first
+/// instruction in the common tail shared by MBB1,MBB2
+/// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
+/// relative to SuccBB
+/// PredBB The layout predecessor of SuccBB, if any.
+/// EHScopeMembership map from block to EH scope #.
+/// AfterPlacement True if we are merging blocks after layout. Stricter
+/// thresholds apply to prevent undoing tail-duplication.
+static bool
+ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
+ unsigned MinCommonTailLength, unsigned &CommonTailLen,
+ MachineBasicBlock::iterator &I1,
+ MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
+ MachineBasicBlock *PredBB,
+ DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
+ bool AfterPlacement) {
+ // It is never profitable to tail-merge blocks from two different EH scopes.
+ if (!EHScopeMembership.empty()) {
+ auto EHScope1 = EHScopeMembership.find(MBB1);
+ assert(EHScope1 != EHScopeMembership.end());
+ auto EHScope2 = EHScopeMembership.find(MBB2);
+ assert(EHScope2 != EHScopeMembership.end());
+ if (EHScope1->second != EHScope2->second)
+ return false;
+ }
+
+ CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
+ if (CommonTailLen == 0)
+ return false;
+ LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
+ << " and " << printMBBReference(*MBB2) << " is "
+ << CommonTailLen << '\n');
+
+ // It's almost always profitable to merge any number of non-terminator
+ // instructions with the block that falls through into the common successor.
+ // This is true only for a single successor. For multiple successors, we are
+ // trading a conditional branch for an unconditional one.
+ // TODO: Re-visit successor size for non-layout tail merging.
+ if ((MBB1 == PredBB || MBB2 == PredBB) &&
+ (!AfterPlacement || MBB1->succ_size() == 1)) {
+ MachineBasicBlock::iterator I;
+ unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
+ if (CommonTailLen > NumTerms)
+ return true;
+ }
+
+ // If these are identical non-return blocks with no successors, merge them.
+ // Such blocks are typically cold calls to noreturn functions like abort, and
+ // are unlikely to become a fallthrough target after machine block placement.
+ // Tail merging these blocks is unlikely to create additional unconditional
+ // branches, and will reduce the size of this cold code.
+ if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
+ blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
+ return true;
+
+ // If one of the blocks can be completely merged and happens to be in
+ // a position where the other could fall through into it, merge any number
+ // of instructions, because it can be done without a branch.
+ // TODO: If the blocks are not adjacent, move one of them so that they are?
+ if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
+ return true;
+ if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
+ return true;
+
+ // If both blocks are identical and end in a branch, merge them unless they
+ // both have a fallthrough predecessor and successor.
+ // We can only do this after block placement because it depends on whether
+ // there are fallthroughs, and we don't know until after layout.
+ if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
+ auto BothFallThrough = [](MachineBasicBlock *MBB) {
+ if (MBB->succ_size() != 0 && !MBB->canFallThrough())
+ return false;
+ MachineFunction::iterator I(MBB);
+ MachineFunction *MF = MBB->getParent();
+ return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
+ };
+ if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
+ return true;
+ }
+
+ // If both blocks have an unconditional branch temporarily stripped out,
+ // count that as an additional common instruction for the following
+ // heuristics. This heuristic is only accurate for single-succ blocks, so to
+ // make sure that during layout merging and duplicating don't crash, we check
+ // for that when merging during layout.
+ unsigned EffectiveTailLen = CommonTailLen;
+ if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
+ (MBB1->succ_size() == 1 || !AfterPlacement) &&
+ !MBB1->back().isBarrier() &&
+ !MBB2->back().isBarrier())
+ ++EffectiveTailLen;
+
+ // Check if the common tail is long enough to be worthwhile.
+ if (EffectiveTailLen >= MinCommonTailLength)
+ return true;
+
+ // If we are optimizing for code size, 2 instructions in common is enough if
+ // we don't have to split a block. At worst we will be introducing 1 new
+ // branch instruction, which is likely to be smaller than the 2
+ // instructions that would be deleted in the merge.
+ MachineFunction *MF = MBB1->getParent();
+ return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
+ (I1 == MBB1->begin() || I2 == MBB2->begin());
+}
+
+unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
+ unsigned MinCommonTailLength,
+ MachineBasicBlock *SuccBB,
+ MachineBasicBlock *PredBB) {
+ unsigned maxCommonTailLength = 0U;
+ SameTails.clear();
+ MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
+ MPIterator HighestMPIter = std::prev(MergePotentials.end());
+ for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
+ B = MergePotentials.begin();
+ CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
+ for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
+ unsigned CommonTailLen;
+ if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
+ MinCommonTailLength,
+ CommonTailLen, TrialBBI1, TrialBBI2,
+ SuccBB, PredBB,
+ EHScopeMembership,
+ AfterBlockPlacement)) {
+ if (CommonTailLen > maxCommonTailLength) {
+ SameTails.clear();
+ maxCommonTailLength = CommonTailLen;
+ HighestMPIter = CurMPIter;
+ SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
+ }
+ if (HighestMPIter == CurMPIter &&
+ CommonTailLen == maxCommonTailLength)
+ SameTails.push_back(SameTailElt(I, TrialBBI2));
+ }
+ if (I == B)
+ break;
+ }
+ }
+ return maxCommonTailLength;
+}
+
+void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
+ MachineBasicBlock *SuccBB,
+ MachineBasicBlock *PredBB) {
+ MPIterator CurMPIter, B;
+ for (CurMPIter = std::prev(MergePotentials.end()),
+ B = MergePotentials.begin();
+ CurMPIter->getHash() == CurHash; --CurMPIter) {
+ // Put the unconditional branch back, if we need one.
+ MachineBasicBlock *CurMBB = CurMPIter->getBlock();
+ if (SuccBB && CurMBB != PredBB)
+ FixTail(CurMBB, SuccBB, TII);
+ if (CurMPIter == B)
+ break;
+ }
+ if (CurMPIter->getHash() != CurHash)
+ CurMPIter++;
+ MergePotentials.erase(CurMPIter, MergePotentials.end());
+}
+
+bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
+ MachineBasicBlock *SuccBB,
+ unsigned maxCommonTailLength,
+ unsigned &commonTailIndex) {
+ commonTailIndex = 0;
+ unsigned TimeEstimate = ~0U;
+ for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
+ // Use PredBB if possible; that doesn't require a new branch.
+ if (SameTails[i].getBlock() == PredBB) {
+ commonTailIndex = i;
+ break;
+ }
+ // Otherwise, make a (fairly bogus) choice based on estimate of
+ // how long it will take the various blocks to execute.
+ unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
+ SameTails[i].getTailStartPos());
+ if (t <= TimeEstimate) {
+ TimeEstimate = t;
+ commonTailIndex = i;
+ }
+ }
+
+ MachineBasicBlock::iterator BBI =
+ SameTails[commonTailIndex].getTailStartPos();
+ MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
+
+ LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
+ << maxCommonTailLength);
+
+ // If the split block unconditionally falls-thru to SuccBB, it will be
+ // merged. In control flow terms it should then take SuccBB's name. e.g. If
+ // SuccBB is an inner loop, the common tail is still part of the inner loop.
+ const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
+ SuccBB->getBasicBlock() : MBB->getBasicBlock();
+ MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
+ if (!newMBB) {
+ LLVM_DEBUG(dbgs() << "... failed!");
+ return false;
+ }
+
+ SameTails[commonTailIndex].setBlock(newMBB);
+ SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
+
+ // If we split PredBB, newMBB is the new predecessor.
+ if (PredBB == MBB)
+ PredBB = newMBB;
+
+ return true;
+}
+
+static void
+mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
+ MachineBasicBlock &MBBCommon) {
+ MachineBasicBlock *MBB = MBBIStartPos->getParent();
+ // Note CommonTailLen does not necessarily matches the size of
+ // the common BB nor all its instructions because of debug
+ // instructions differences.
+ unsigned CommonTailLen = 0;
+ for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
+ ++CommonTailLen;
+
+ MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
+ MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
+ MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
+ MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
+
+ while (CommonTailLen--) {
+ assert(MBBI != MBBIE && "Reached BB end within common tail length!");
+ (void)MBBIE;
+
+ if (!countsAsInstruction(*MBBI)) {
+ ++MBBI;
+ continue;
+ }
+
+ while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
+ ++MBBICommon;
+
+ assert(MBBICommon != MBBIECommon &&
+ "Reached BB end within common tail length!");
+ assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
+
+ // Merge MMOs from memory operations in the common block.
+ if (MBBICommon->mayLoad() || MBBICommon->mayStore())
+ MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
+ // Drop undef flags if they aren't present in all merged instructions.
+ for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
+ MachineOperand &MO = MBBICommon->getOperand(I);
+ if (MO.isReg() && MO.isUndef()) {
+ const MachineOperand &OtherMO = MBBI->getOperand(I);
+ if (!OtherMO.isUndef())
+ MO.setIsUndef(false);
+ }
+ }
+
+ ++MBBI;
+ ++MBBICommon;
+ }
+}
+
+void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
+ MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
+
+ std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
+ for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
+ if (i != commonTailIndex) {
+ NextCommonInsts[i] = SameTails[i].getTailStartPos();
+ mergeOperations(SameTails[i].getTailStartPos(), *MBB);
+ } else {
+ assert(SameTails[i].getTailStartPos() == MBB->begin() &&
+ "MBB is not a common tail only block");
+ }
+ }
+
+ for (auto &MI : *MBB) {
+ if (!countsAsInstruction(MI))
+ continue;
+ DebugLoc DL = MI.getDebugLoc();
+ for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
+ if (i == commonTailIndex)
+ continue;
+
+ auto &Pos = NextCommonInsts[i];
+ assert(Pos != SameTails[i].getBlock()->end() &&
+ "Reached BB end within common tail");
+ while (!countsAsInstruction(*Pos)) {
+ ++Pos;
+ assert(Pos != SameTails[i].getBlock()->end() &&
+ "Reached BB end within common tail");
+ }
+ assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
+ DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
+ NextCommonInsts[i] = ++Pos;
+ }
+ MI.setDebugLoc(DL);
+ }
+
+ if (UpdateLiveIns) {
+ LivePhysRegs NewLiveIns(*TRI);
+ computeLiveIns(NewLiveIns, *MBB);
+ LiveRegs.init(*TRI);
+
+ // The flag merging may lead to some register uses no longer using the
+ // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
+ for (MachineBasicBlock *Pred : MBB->predecessors()) {
+ LiveRegs.clear();
+ LiveRegs.addLiveOuts(*Pred);
+ MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
+ for (unsigned Reg : NewLiveIns) {
+ if (!LiveRegs.available(*MRI, Reg))
+ continue;
+ DebugLoc DL;
+ BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
+ Reg);
+ }
+ }
+
+ MBB->clearLiveIns();
+ addLiveIns(*MBB, NewLiveIns);
+ }
+}
+
+// See if any of the blocks in MergePotentials (which all have SuccBB as a
+// successor, or all have no successor if it is null) can be tail-merged.
+// If there is a successor, any blocks in MergePotentials that are not
+// tail-merged and are not immediately before Succ must have an unconditional
+// branch to Succ added (but the predecessor/successor lists need no
+// adjustment). The lone predecessor of Succ that falls through into Succ,
+// if any, is given in PredBB.
+// MinCommonTailLength - Except for the special cases below, tail-merge if
+// there are at least this many instructions in common.
+bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
+ MachineBasicBlock *PredBB,
+ unsigned MinCommonTailLength) {
+ bool MadeChange = false;
+
+ LLVM_DEBUG(
+ dbgs() << "\nTryTailMergeBlocks: ";
+ for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
+ << printMBBReference(*MergePotentials[i].getBlock())
+ << (i == e - 1 ? "" : ", ");
+ dbgs() << "\n"; if (SuccBB) {
+ dbgs() << " with successor " << printMBBReference(*SuccBB) << '\n';
+ if (PredBB)
+ dbgs() << " which has fall-through from "
+ << printMBBReference(*PredBB) << "\n";
+ } dbgs() << "Looking for common tails of at least "
+ << MinCommonTailLength << " instruction"
+ << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
+
+ // Sort by hash value so that blocks with identical end sequences sort
+ // together.
+ array_pod_sort(MergePotentials.begin(), MergePotentials.end());
+
+ // Walk through equivalence sets looking for actual exact matches.
+ while (MergePotentials.size() > 1) {
+ unsigned CurHash = MergePotentials.back().getHash();
+
+ // Build SameTails, identifying the set of blocks with this hash code
+ // and with the maximum number of instructions in common.
+ unsigned maxCommonTailLength = ComputeSameTails(CurHash,
+ MinCommonTailLength,
+ SuccBB, PredBB);
+
+ // If we didn't find any pair that has at least MinCommonTailLength
+ // instructions in common, remove all blocks with this hash code and retry.
+ if (SameTails.empty()) {
+ RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
+ continue;
+ }
+
+ // If one of the blocks is the entire common tail (and not the entry
+ // block, which we can't jump to), we can treat all blocks with this same
+ // tail at once. Use PredBB if that is one of the possibilities, as that
+ // will not introduce any extra branches.
+ MachineBasicBlock *EntryBB =
+ &MergePotentials.front().getBlock()->getParent()->front();
+ unsigned commonTailIndex = SameTails.size();
+ // If there are two blocks, check to see if one can be made to fall through
+ // into the other.
+ if (SameTails.size() == 2 &&
+ SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
+ SameTails[1].tailIsWholeBlock())
+ commonTailIndex = 1;
+ else if (SameTails.size() == 2 &&
+ SameTails[1].getBlock()->isLayoutSuccessor(
+ SameTails[0].getBlock()) &&
+ SameTails[0].tailIsWholeBlock())
+ commonTailIndex = 0;
+ else {
+ // Otherwise just pick one, favoring the fall-through predecessor if
+ // there is one.
+ for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = SameTails[i].getBlock();
+ if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
+ continue;
+ if (MBB == PredBB) {
+ commonTailIndex = i;
+ break;
+ }
+ if (SameTails[i].tailIsWholeBlock())
+ commonTailIndex = i;
+ }
+ }
+
+ if (commonTailIndex == SameTails.size() ||
+ (SameTails[commonTailIndex].getBlock() == PredBB &&
+ !SameTails[commonTailIndex].tailIsWholeBlock())) {
+ // None of the blocks consist entirely of the common tail.
+ // Split a block so that one does.
+ if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
+ maxCommonTailLength, commonTailIndex)) {
+ RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
+ continue;
+ }
+ }
+
+ MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
+
+ // Recompute common tail MBB's edge weights and block frequency.
+ setCommonTailEdgeWeights(*MBB);
+
+ // Merge debug locations, MMOs and undef flags across identical instructions
+ // for common tail.
+ mergeCommonTails(commonTailIndex);
+
+ // MBB is common tail. Adjust all other BB's to jump to this one.
+ // Traversal must be forwards so erases work.
+ LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
+ << " for ");
+ for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
+ if (commonTailIndex == i)
+ continue;
+ LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
+ << (i == e - 1 ? "" : ", "));
+ // Hack the end off BB i, making it jump to BB commonTailIndex instead.
+ replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
+ // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
+ MergePotentials.erase(SameTails[i].getMPIter());
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+ // We leave commonTailIndex in the worklist in case there are other blocks
+ // that match it with a smaller number of instructions.
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
+ bool MadeChange = false;
+ if (!EnableTailMerge)
+ return MadeChange;
+
+ // First find blocks with no successors.
+ // Block placement may create new tail merging opportunities for these blocks.
+ MergePotentials.clear();
+ for (MachineBasicBlock &MBB : MF) {
+ if (MergePotentials.size() == TailMergeThreshold)
+ break;
+ if (!TriedMerging.count(&MBB) && MBB.succ_empty())
+ MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
+ }
+
+ // If this is a large problem, avoid visiting the same basic blocks
+ // multiple times.
+ if (MergePotentials.size() == TailMergeThreshold)
+ for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
+ TriedMerging.insert(MergePotentials[i].getBlock());
+
+ // See if we can do any tail merging on those.
+ if (MergePotentials.size() >= 2)
+ MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
+
+ // Look at blocks (IBB) with multiple predecessors (PBB).
+ // We change each predecessor to a canonical form, by
+ // (1) temporarily removing any unconditional branch from the predecessor
+ // to IBB, and
+ // (2) alter conditional branches so they branch to the other block
+ // not IBB; this may require adding back an unconditional branch to IBB
+ // later, where there wasn't one coming in. E.g.
+ // Bcc IBB
+ // fallthrough to QBB
+ // here becomes
+ // Bncc QBB
+ // with a conceptual B to IBB after that, which never actually exists.
+ // With those changes, we see whether the predecessors' tails match,
+ // and merge them if so. We change things out of canonical form and
+ // back to the way they were later in the process. (OptimizeBranches
+ // would undo some of this, but we can't use it, because we'd get into
+ // a compile-time infinite loop repeatedly doing and undoing the same
+ // transformations.)
+
+ for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
+ I != E; ++I) {
+ if (I->pred_size() < 2) continue;
+ SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
+ MachineBasicBlock *IBB = &*I;
+ MachineBasicBlock *PredBB = &*std::prev(I);
+ MergePotentials.clear();
+ MachineLoop *ML;
+
+ // Bail if merging after placement and IBB is the loop header because
+ // -- If merging predecessors that belong to the same loop as IBB, the
+ // common tail of merged predecessors may become the loop top if block
+ // placement is called again and the predecessors may branch to this common
+ // tail and require more branches. This can be relaxed if
+ // MachineBlockPlacement::findBestLoopTop is more flexible.
+ // --If merging predecessors that do not belong to the same loop as IBB, the
+ // loop info of IBB's loop and the other loops may be affected. Calling the
+ // block placement again may make big change to the layout and eliminate the
+ // reason to do tail merging here.
+ if (AfterBlockPlacement && MLI) {
+ ML = MLI->getLoopFor(IBB);
+ if (ML && IBB == ML->getHeader())
+ continue;
+ }
+
+ for (MachineBasicBlock *PBB : I->predecessors()) {
+ if (MergePotentials.size() == TailMergeThreshold)
+ break;
+
+ if (TriedMerging.count(PBB))
+ continue;
+
+ // Skip blocks that loop to themselves, can't tail merge these.
+ if (PBB == IBB)
+ continue;
+
+ // Visit each predecessor only once.
+ if (!UniquePreds.insert(PBB).second)
+ continue;
+
+ // Skip blocks which may jump to a landing pad. Can't tail merge these.
+ if (PBB->hasEHPadSuccessor())
+ continue;
+
+ // After block placement, only consider predecessors that belong to the
+ // same loop as IBB. The reason is the same as above when skipping loop
+ // header.
+ if (AfterBlockPlacement && MLI)
+ if (ML != MLI->getLoopFor(PBB))
+ continue;
+
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
+ // Failing case: IBB is the target of a cbr, and we cannot reverse the
+ // branch.
+ SmallVector<MachineOperand, 4> NewCond(Cond);
+ if (!Cond.empty() && TBB == IBB) {
+ if (TII->reverseBranchCondition(NewCond))
+ continue;
+ // This is the QBB case described above
+ if (!FBB) {
+ auto Next = ++PBB->getIterator();
+ if (Next != MF.end())
+ FBB = &*Next;
+ }
+ }
+
+ // Remove the unconditional branch at the end, if any.
+ if (TBB && (Cond.empty() || FBB)) {
+ DebugLoc dl = PBB->findBranchDebugLoc();
+ TII->removeBranch(*PBB);
+ if (!Cond.empty())
+ // reinsert conditional branch only, for now
+ TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
+ NewCond, dl);
+ }
+
+ MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
+ }
+ }
+
+ // If this is a large problem, avoid visiting the same basic blocks multiple
+ // times.
+ if (MergePotentials.size() == TailMergeThreshold)
+ for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
+ TriedMerging.insert(MergePotentials[i].getBlock());
+
+ if (MergePotentials.size() >= 2)
+ MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
+
+ // Reinsert an unconditional branch if needed. The 1 below can occur as a
+ // result of removing blocks in TryTailMergeBlocks.
+ PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
+ if (MergePotentials.size() == 1 &&
+ MergePotentials.begin()->getBlock() != PredBB)
+ FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
+ }
+
+ return MadeChange;
+}
+
+void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
+ SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
+ BlockFrequency AccumulatedMBBFreq;
+
+ // Aggregate edge frequency of successor edge j:
+ // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
+ // where bb is a basic block that is in SameTails.
+ for (const auto &Src : SameTails) {
+ const MachineBasicBlock *SrcMBB = Src.getBlock();
+ BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
+ AccumulatedMBBFreq += BlockFreq;
+
+ // It is not necessary to recompute edge weights if TailBB has less than two
+ // successors.
+ if (TailMBB.succ_size() <= 1)
+ continue;
+
+ auto EdgeFreq = EdgeFreqLs.begin();
+
+ for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
+ SuccI != SuccE; ++SuccI, ++EdgeFreq)
+ *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
+ }
+
+ MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
+
+ if (TailMBB.succ_size() <= 1)
+ return;
+
+ auto SumEdgeFreq =
+ std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
+ .getFrequency();
+ auto EdgeFreq = EdgeFreqLs.begin();
+
+ if (SumEdgeFreq > 0) {
+ for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
+ SuccI != SuccE; ++SuccI, ++EdgeFreq) {
+ auto Prob = BranchProbability::getBranchProbability(
+ EdgeFreq->getFrequency(), SumEdgeFreq);
+ TailMBB.setSuccProbability(SuccI, Prob);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Branch Optimization
+//===----------------------------------------------------------------------===//
+
+bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
+ bool MadeChange = false;
+
+ // Make sure blocks are numbered in order
+ MF.RenumberBlocks();
+ // Renumbering blocks alters EH scope membership, recalculate it.
+ EHScopeMembership = getEHScopeMembership(MF);
+
+ for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
+ I != E; ) {
+ MachineBasicBlock *MBB = &*I++;
+ MadeChange |= OptimizeBlock(MBB);
+
+ // If it is dead, remove it.
+ if (MBB->pred_empty()) {
+ RemoveDeadBlock(MBB);
+ MadeChange = true;
+ ++NumDeadBlocks;
+ }
+ }
+
+ return MadeChange;
+}
+
+// Blocks should be considered empty if they contain only debug info;
+// else the debug info would affect codegen.
+static bool IsEmptyBlock(MachineBasicBlock *MBB) {
+ return MBB->getFirstNonDebugInstr() == MBB->end();
+}
+
+// Blocks with only debug info and branches should be considered the same
+// as blocks with only branches.
+static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
+ MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
+ assert(I != MBB->end() && "empty block!");
+ return I->isBranch();
+}
+
+/// IsBetterFallthrough - Return true if it would be clearly better to
+/// fall-through to MBB1 than to fall through into MBB2. This has to return
+/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
+/// result in infinite loops.
+static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2) {
+ // Right now, we use a simple heuristic. If MBB2 ends with a call, and
+ // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
+ // optimize branches that branch to either a return block or an assert block
+ // into a fallthrough to the return.
+ MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
+ MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
+ if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
+ return false;
+
+ // If there is a clear successor ordering we make sure that one block
+ // will fall through to the next
+ if (MBB1->isSuccessor(MBB2)) return true;
+ if (MBB2->isSuccessor(MBB1)) return false;
+
+ return MBB2I->isCall() && !MBB1I->isCall();
+}
+
+/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
+/// instructions on the block.
+static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I != MBB.end() && I->isBranch())
+ return I->getDebugLoc();
+ return DebugLoc();
+}
+
+static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock &PredMBB) {
+ auto InsertBefore = PredMBB.getFirstTerminator();
+ for (MachineInstr &MI : MBB.instrs())
+ if (MI.isDebugInstr()) {
+ TII->duplicate(PredMBB, InsertBefore, MI);
+ LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
+ << MI);
+ }
+}
+
+static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock &SuccMBB) {
+ auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
+ for (MachineInstr &MI : MBB.instrs())
+ if (MI.isDebugInstr()) {
+ TII->duplicate(SuccMBB, InsertBefore, MI);
+ LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
+ << MI);
+ }
+}
+
+// Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
+// a basic block is removed we would lose the debug information unless we have
+// copied the information to a predecessor/successor.
+//
+// TODO: This function only handles some simple cases. An alternative would be
+// to run a heavier analysis, such as the LiveDebugValues pass, before we do
+// branch folding.
+static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
+ MachineBasicBlock &MBB) {
+ assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
+ // If this MBB is the only predecessor of a successor it is legal to copy
+ // DBG_VALUE instructions to the beginning of the successor.
+ for (MachineBasicBlock *SuccBB : MBB.successors())
+ if (SuccBB->pred_size() == 1)
+ copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
+ // If this MBB is the only successor of a predecessor it is legal to copy the
+ // DBG_VALUE instructions to the end of the predecessor (just before the
+ // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
+ for (MachineBasicBlock *PredBB : MBB.predecessors())
+ if (PredBB->succ_size() == 1)
+ copyDebugInfoToPredecessor(TII, MBB, *PredBB);
+}
+
+bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
+ bool MadeChange = false;
+ MachineFunction &MF = *MBB->getParent();
+ReoptimizeBlock:
+
+ MachineFunction::iterator FallThrough = MBB->getIterator();
+ ++FallThrough;
+
+ // Make sure MBB and FallThrough belong to the same EH scope.
+ bool SameEHScope = true;
+ if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
+ auto MBBEHScope = EHScopeMembership.find(MBB);
+ assert(MBBEHScope != EHScopeMembership.end());
+ auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
+ assert(FallThroughEHScope != EHScopeMembership.end());
+ SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
+ }
+
+ // If this block is empty, make everyone use its fall-through, not the block
+ // explicitly. Landing pads should not do this since the landing-pad table
+ // points to this block. Blocks with their addresses taken shouldn't be
+ // optimized away.
+ if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
+ SameEHScope) {
+ salvageDebugInfoFromEmptyBlock(TII, *MBB);
+ // Dead block? Leave for cleanup later.
+ if (MBB->pred_empty()) return MadeChange;
+
+ if (FallThrough == MF.end()) {
+ // TODO: Simplify preds to not branch here if possible!
+ } else if (FallThrough->isEHPad()) {
+ // Don't rewrite to a landing pad fallthough. That could lead to the case
+ // where a BB jumps to more than one landing pad.
+ // TODO: Is it ever worth rewriting predecessors which don't already
+ // jump to a landing pad, and so can safely jump to the fallthrough?
+ } else if (MBB->isSuccessor(&*FallThrough)) {
+ // Rewrite all predecessors of the old block to go to the fallthrough
+ // instead.
+ while (!MBB->pred_empty()) {
+ MachineBasicBlock *Pred = *(MBB->pred_end()-1);
+ Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
+ }
+ // If MBB was the target of a jump table, update jump tables to go to the
+ // fallthrough instead.
+ if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
+ MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
+ MadeChange = true;
+ }
+ return MadeChange;
+ }
+
+ // Check to see if we can simplify the terminator of the block before this
+ // one.
+ MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
+
+ MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
+ SmallVector<MachineOperand, 4> PriorCond;
+ bool PriorUnAnalyzable =
+ TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
+ if (!PriorUnAnalyzable) {
+ // If the CFG for the prior block has extra edges, remove them.
+ MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
+ !PriorCond.empty());
+
+ // If the previous branch is conditional and both conditions go to the same
+ // destination, remove the branch, replacing it with an unconditional one or
+ // a fall-through.
+ if (PriorTBB && PriorTBB == PriorFBB) {
+ DebugLoc dl = getBranchDebugLoc(PrevBB);
+ TII->removeBranch(PrevBB);
+ PriorCond.clear();
+ if (PriorTBB != MBB)
+ TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
+ MadeChange = true;
+ ++NumBranchOpts;
+ goto ReoptimizeBlock;
+ }
+
+ // If the previous block unconditionally falls through to this block and
+ // this block has no other predecessors, move the contents of this block
+ // into the prior block. This doesn't usually happen when SimplifyCFG
+ // has been used, but it can happen if tail merging splits a fall-through
+ // predecessor of a block.
+ // This has to check PrevBB->succ_size() because EH edges are ignored by
+ // AnalyzeBranch.
+ if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
+ PrevBB.succ_size() == 1 &&
+ !MBB->hasAddressTaken() && !MBB->isEHPad()) {
+ LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
+ << "From MBB: " << *MBB);
+ // Remove redundant DBG_VALUEs first.
+ if (PrevBB.begin() != PrevBB.end()) {
+ MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
+ --PrevBBIter;
+ MachineBasicBlock::iterator MBBIter = MBB->begin();
+ // Check if DBG_VALUE at the end of PrevBB is identical to the
+ // DBG_VALUE at the beginning of MBB.
+ while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
+ && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
+ if (!MBBIter->isIdenticalTo(*PrevBBIter))
+ break;
+ MachineInstr &DuplicateDbg = *MBBIter;
+ ++MBBIter; -- PrevBBIter;
+ DuplicateDbg.eraseFromParent();
+ }
+ }
+ PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
+ PrevBB.removeSuccessor(PrevBB.succ_begin());
+ assert(PrevBB.succ_empty());
+ PrevBB.transferSuccessors(MBB);
+ MadeChange = true;
+ return MadeChange;
+ }
+
+ // If the previous branch *only* branches to *this* block (conditional or
+ // not) remove the branch.
+ if (PriorTBB == MBB && !PriorFBB) {
+ TII->removeBranch(PrevBB);
+ MadeChange = true;
+ ++NumBranchOpts;
+ goto ReoptimizeBlock;
+ }
+
+ // If the prior block branches somewhere else on the condition and here if
+ // the condition is false, remove the uncond second branch.
+ if (PriorFBB == MBB) {
+ DebugLoc dl = getBranchDebugLoc(PrevBB);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
+ MadeChange = true;
+ ++NumBranchOpts;
+ goto ReoptimizeBlock;
+ }
+
+ // If the prior block branches here on true and somewhere else on false, and
+ // if the branch condition is reversible, reverse the branch to create a
+ // fall-through.
+ if (PriorTBB == MBB) {
+ SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
+ if (!TII->reverseBranchCondition(NewPriorCond)) {
+ DebugLoc dl = getBranchDebugLoc(PrevBB);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
+ MadeChange = true;
+ ++NumBranchOpts;
+ goto ReoptimizeBlock;
+ }
+ }
+
+ // If this block has no successors (e.g. it is a return block or ends with
+ // a call to a no-return function like abort or __cxa_throw) and if the pred
+ // falls through into this block, and if it would otherwise fall through
+ // into the block after this, move this block to the end of the function.
+ //
+ // We consider it more likely that execution will stay in the function (e.g.
+ // due to loops) than it is to exit it. This asserts in loops etc, moving
+ // the assert condition out of the loop body.
+ if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
+ MachineFunction::iterator(PriorTBB) == FallThrough &&
+ !MBB->canFallThrough()) {
+ bool DoTransform = true;
+
+ // We have to be careful that the succs of PredBB aren't both no-successor
+ // blocks. If neither have successors and if PredBB is the second from
+ // last block in the function, we'd just keep swapping the two blocks for
+ // last. Only do the swap if one is clearly better to fall through than
+ // the other.
+ if (FallThrough == --MF.end() &&
+ !IsBetterFallthrough(PriorTBB, MBB))
+ DoTransform = false;
+
+ if (DoTransform) {
+ // Reverse the branch so we will fall through on the previous true cond.
+ SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
+ if (!TII->reverseBranchCondition(NewPriorCond)) {
+ LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
+ << "To make fallthrough to: " << *PriorTBB << "\n");
+
+ DebugLoc dl = getBranchDebugLoc(PrevBB);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
+
+ // Move this block to the end of the function.
+ MBB->moveAfter(&MF.back());
+ MadeChange = true;
+ ++NumBranchOpts;
+ return MadeChange;
+ }
+ }
+ }
+ }
+
+ if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
+ MF.getFunction().hasOptSize()) {
+ // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
+ // direction, thereby defeating careful block placement and regressing
+ // performance. Therefore, only consider this for optsize functions.
+ MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
+ if (TII->isUnconditionalTailCall(TailCall)) {
+ MachineBasicBlock *Pred = *MBB->pred_begin();
+ MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
+ SmallVector<MachineOperand, 4> PredCond;
+ bool PredAnalyzable =
+ !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
+
+ if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
+ PredTBB != PredFBB) {
+ // The predecessor has a conditional branch to this block which consists
+ // of only a tail call. Try to fold the tail call into the conditional
+ // branch.
+ if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
+ // TODO: It would be nice if analyzeBranch() could provide a pointer
+ // to the branch instruction so replaceBranchWithTailCall() doesn't
+ // have to search for it.
+ TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
+ ++NumTailCalls;
+ Pred->removeSuccessor(MBB);
+ MadeChange = true;
+ return MadeChange;
+ }
+ }
+ // If the predecessor is falling through to this block, we could reverse
+ // the branch condition and fold the tail call into that. However, after
+ // that we might have to re-arrange the CFG to fall through to the other
+ // block and there is a high risk of regressing code size rather than
+ // improving it.
+ }
+ }
+
+ // Analyze the branch in the current block.
+ MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
+ SmallVector<MachineOperand, 4> CurCond;
+ bool CurUnAnalyzable =
+ TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
+ if (!CurUnAnalyzable) {
+ // If the CFG for the prior block has extra edges, remove them.
+ MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
+
+ // If this is a two-way branch, and the FBB branches to this block, reverse
+ // the condition so the single-basic-block loop is faster. Instead of:
+ // Loop: xxx; jcc Out; jmp Loop
+ // we want:
+ // Loop: xxx; jncc Loop; jmp Out
+ if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
+ SmallVector<MachineOperand, 4> NewCond(CurCond);
+ if (!TII->reverseBranchCondition(NewCond)) {
+ DebugLoc dl = getBranchDebugLoc(*MBB);
+ TII->removeBranch(*MBB);
+ TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
+ MadeChange = true;
+ ++NumBranchOpts;
+ goto ReoptimizeBlock;
+ }
+ }
+
+ // If this branch is the only thing in its block, see if we can forward
+ // other blocks across it.
+ if (CurTBB && CurCond.empty() && !CurFBB &&
+ IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
+ !MBB->hasAddressTaken() && !MBB->isEHPad()) {
+ DebugLoc dl = getBranchDebugLoc(*MBB);
+ // This block may contain just an unconditional branch. Because there can
+ // be 'non-branch terminators' in the block, try removing the branch and
+ // then seeing if the block is empty.
+ TII->removeBranch(*MBB);
+ // If the only things remaining in the block are debug info, remove these
+ // as well, so this will behave the same as an empty block in non-debug
+ // mode.
+ if (IsEmptyBlock(MBB)) {
+ // Make the block empty, losing the debug info (we could probably
+ // improve this in some cases.)
+ MBB->erase(MBB->begin(), MBB->end());
+ }
+ // If this block is just an unconditional branch to CurTBB, we can
+ // usually completely eliminate the block. The only case we cannot
+ // completely eliminate the block is when the block before this one
+ // falls through into MBB and we can't understand the prior block's branch
+ // condition.
+ if (MBB->empty()) {
+ bool PredHasNoFallThrough = !PrevBB.canFallThrough();
+ if (PredHasNoFallThrough || !PriorUnAnalyzable ||
+ !PrevBB.isSuccessor(MBB)) {
+ // If the prior block falls through into us, turn it into an
+ // explicit branch to us to make updates simpler.
+ if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
+ PriorTBB != MBB && PriorFBB != MBB) {
+ if (!PriorTBB) {
+ assert(PriorCond.empty() && !PriorFBB &&
+ "Bad branch analysis");
+ PriorTBB = MBB;
+ } else {
+ assert(!PriorFBB && "Machine CFG out of date!");
+ PriorFBB = MBB;
+ }
+ DebugLoc pdl = getBranchDebugLoc(PrevBB);
+ TII->removeBranch(PrevBB);
+ TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
+ }
+
+ // Iterate through all the predecessors, revectoring each in-turn.
+ size_t PI = 0;
+ bool DidChange = false;
+ bool HasBranchToSelf = false;
+ while(PI != MBB->pred_size()) {
+ MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
+ if (PMBB == MBB) {
+ // If this block has an uncond branch to itself, leave it.
+ ++PI;
+ HasBranchToSelf = true;
+ } else {
+ DidChange = true;
+ PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
+ // If this change resulted in PMBB ending in a conditional
+ // branch where both conditions go to the same destination,
+ // change this to an unconditional branch (and fix the CFG).
+ MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
+ SmallVector<MachineOperand, 4> NewCurCond;
+ bool NewCurUnAnalyzable = TII->analyzeBranch(
+ *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
+ if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
+ DebugLoc pdl = getBranchDebugLoc(*PMBB);
+ TII->removeBranch(*PMBB);
+ NewCurCond.clear();
+ TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
+ MadeChange = true;
+ ++NumBranchOpts;
+ PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
+ }
+ }
+ }
+
+ // Change any jumptables to go to the new MBB.
+ if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
+ MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
+ if (DidChange) {
+ ++NumBranchOpts;
+ MadeChange = true;
+ if (!HasBranchToSelf) return MadeChange;
+ }
+ }
+ }
+
+ // Add the branch back if the block is more than just an uncond branch.
+ TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
+ }
+ }
+
+ // If the prior block doesn't fall through into this block, and if this
+ // block doesn't fall through into some other block, see if we can find a
+ // place to move this block where a fall-through will happen.
+ if (!PrevBB.canFallThrough()) {
+ // Now we know that there was no fall-through into this block, check to
+ // see if it has a fall-through into its successor.
+ bool CurFallsThru = MBB->canFallThrough();
+
+ if (!MBB->isEHPad()) {
+ // Check all the predecessors of this block. If one of them has no fall
+ // throughs, move this block right after it.
+ for (MachineBasicBlock *PredBB : MBB->predecessors()) {
+ // Analyze the branch at the end of the pred.
+ MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
+ SmallVector<MachineOperand, 4> PredCond;
+ if (PredBB != MBB && !PredBB->canFallThrough() &&
+ !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
+ (!CurFallsThru || !CurTBB || !CurFBB) &&
+ (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
+ // If the current block doesn't fall through, just move it.
+ // If the current block can fall through and does not end with a
+ // conditional branch, we need to append an unconditional jump to
+ // the (current) next block. To avoid a possible compile-time
+ // infinite loop, move blocks only backward in this case.
+ // Also, if there are already 2 branches here, we cannot add a third;
+ // this means we have the case
+ // Bcc next
+ // B elsewhere
+ // next:
+ if (CurFallsThru) {
+ MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
+ CurCond.clear();
+ TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
+ }
+ MBB->moveAfter(PredBB);
+ MadeChange = true;
+ goto ReoptimizeBlock;
+ }
+ }
+ }
+
+ if (!CurFallsThru) {
+ // Check all successors to see if we can move this block before it.
+ for (MachineBasicBlock *SuccBB : MBB->successors()) {
+ // Analyze the branch at the end of the block before the succ.
+ MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
+
+ // If this block doesn't already fall-through to that successor, and if
+ // the succ doesn't already have a block that can fall through into it,
+ // and if the successor isn't an EH destination, we can arrange for the
+ // fallthrough to happen.
+ if (SuccBB != MBB && &*SuccPrev != MBB &&
+ !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
+ !SuccBB->isEHPad()) {
+ MBB->moveBefore(SuccBB);
+ MadeChange = true;
+ goto ReoptimizeBlock;
+ }
+ }
+
+ // Okay, there is no really great place to put this block. If, however,
+ // the block before this one would be a fall-through if this block were
+ // removed, move this block to the end of the function. There is no real
+ // advantage in "falling through" to an EH block, so we don't want to
+ // perform this transformation for that case.
+ //
+ // Also, Windows EH introduced the possibility of an arbitrary number of
+ // successors to a given block. The analyzeBranch call does not consider
+ // exception handling and so we can get in a state where a block
+ // containing a call is followed by multiple EH blocks that would be
+ // rotated infinitely at the end of the function if the transformation
+ // below were performed for EH "FallThrough" blocks. Therefore, even if
+ // that appears not to be happening anymore, we should assume that it is
+ // possible and not remove the "!FallThrough()->isEHPad" condition below.
+ MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
+ SmallVector<MachineOperand, 4> PrevCond;
+ if (FallThrough != MF.end() &&
+ !FallThrough->isEHPad() &&
+ !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
+ PrevBB.isSuccessor(&*FallThrough)) {
+ MBB->moveAfter(&MF.back());
+ MadeChange = true;
+ return MadeChange;
+ }
+ }
+ }
+
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Hoist Common Code
+//===----------------------------------------------------------------------===//
+
+bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
+ bool MadeChange = false;
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
+ MachineBasicBlock *MBB = &*I++;
+ MadeChange |= HoistCommonCodeInSuccs(MBB);
+ }
+
+ return MadeChange;
+}
+
+/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
+/// its 'true' successor.
+static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
+ MachineBasicBlock *TrueBB) {
+ for (MachineBasicBlock *SuccBB : BB->successors())
+ if (SuccBB != TrueBB)
+ return SuccBB;
+ return nullptr;
+}
+
+template <class Container>
+static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
+ Container &Set) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ Set.insert(*AI);
+ } else {
+ Set.insert(Reg);
+ }
+}
+
+/// findHoistingInsertPosAndDeps - Find the location to move common instructions
+/// in successors to. The location is usually just before the terminator,
+/// however if the terminator is a conditional branch and its previous
+/// instruction is the flag setting instruction, the previous instruction is
+/// the preferred location. This function also gathers uses and defs of the
+/// instructions from the insertion point to the end of the block. The data is
+/// used by HoistCommonCodeInSuccs to ensure safety.
+static
+MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI,
+ SmallSet<unsigned,4> &Uses,
+ SmallSet<unsigned,4> &Defs) {
+ MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
+ if (!TII->isUnpredicatedTerminator(*Loc))
+ return MBB->end();
+
+ for (const MachineOperand &MO : Loc->operands()) {
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isUse()) {
+ addRegAndItsAliases(Reg, TRI, Uses);
+ } else {
+ if (!MO.isDead())
+ // Don't try to hoist code in the rare case the terminator defines a
+ // register that is later used.
+ return MBB->end();
+
+ // If the terminator defines a register, make sure we don't hoist
+ // the instruction whose def might be clobbered by the terminator.
+ addRegAndItsAliases(Reg, TRI, Defs);
+ }
+ }
+
+ if (Uses.empty())
+ return Loc;
+ // If the terminator is the only instruction in the block and Uses is not
+ // empty (or we would have returned above), we can still safely hoist
+ // instructions just before the terminator as long as the Defs/Uses are not
+ // violated (which is checked in HoistCommonCodeInSuccs).
+ if (Loc == MBB->begin())
+ return Loc;
+
+ // The terminator is probably a conditional branch, try not to separate the
+ // branch from condition setting instruction.
+ MachineBasicBlock::iterator PI =
+ skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
+
+ bool IsDef = false;
+ for (const MachineOperand &MO : PI->operands()) {
+ // If PI has a regmask operand, it is probably a call. Separate away.
+ if (MO.isRegMask())
+ return Loc;
+ if (!MO.isReg() || MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (Uses.count(Reg)) {
+ IsDef = true;
+ break;
+ }
+ }
+ if (!IsDef)
+ // The condition setting instruction is not just before the conditional
+ // branch.
+ return Loc;
+
+ // Be conservative, don't insert instruction above something that may have
+ // side-effects. And since it's potentially bad to separate flag setting
+ // instruction from the conditional branch, just abort the optimization
+ // completely.
+ // Also avoid moving code above predicated instruction since it's hard to
+ // reason about register liveness with predicated instruction.
+ bool DontMoveAcrossStore = true;
+ if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
+ return MBB->end();
+
+ // Find out what registers are live. Note this routine is ignoring other live
+ // registers which are only used by instructions in successor blocks.
+ for (const MachineOperand &MO : PI->operands()) {
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isUse()) {
+ addRegAndItsAliases(Reg, TRI, Uses);
+ } else {
+ if (Uses.erase(Reg)) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
+ Uses.erase(*SubRegs); // Use sub-registers to be conservative
+ }
+ }
+ addRegAndItsAliases(Reg, TRI, Defs);
+ }
+ }
+
+ return PI;
+}
+
+bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
+ return false;
+
+ if (!FBB) FBB = findFalseBlock(MBB, TBB);
+ if (!FBB)
+ // Malformed bcc? True and false blocks are the same?
+ return false;
+
+ // Restrict the optimization to cases where MBB is the only predecessor,
+ // it is an obvious win.
+ if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
+ return false;
+
+ // Find a suitable position to hoist the common instructions to. Also figure
+ // out which registers are used or defined by instructions from the insertion
+ // point to the end of the block.
+ SmallSet<unsigned, 4> Uses, Defs;
+ MachineBasicBlock::iterator Loc =
+ findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
+ if (Loc == MBB->end())
+ return false;
+
+ bool HasDups = false;
+ SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
+ MachineBasicBlock::iterator TIB = TBB->begin();
+ MachineBasicBlock::iterator FIB = FBB->begin();
+ MachineBasicBlock::iterator TIE = TBB->end();
+ MachineBasicBlock::iterator FIE = FBB->end();
+ while (TIB != TIE && FIB != FIE) {
+ // Skip dbg_value instructions. These do not count.
+ TIB = skipDebugInstructionsForward(TIB, TIE);
+ FIB = skipDebugInstructionsForward(FIB, FIE);
+ if (TIB == TIE || FIB == FIE)
+ break;
+
+ if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
+ break;
+
+ if (TII->isPredicated(*TIB))
+ // Hard to reason about register liveness with predicated instruction.
+ break;
+
+ bool IsSafe = true;
+ for (MachineOperand &MO : TIB->operands()) {
+ // Don't attempt to hoist instructions with register masks.
+ if (MO.isRegMask()) {
+ IsSafe = false;
+ break;
+ }
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isDef()) {
+ if (Uses.count(Reg)) {
+ // Avoid clobbering a register that's used by the instruction at
+ // the point of insertion.
+ IsSafe = false;
+ break;
+ }
+
+ if (Defs.count(Reg) && !MO.isDead()) {
+ // Don't hoist the instruction if the def would be clobber by the
+ // instruction at the point insertion. FIXME: This is overly
+ // conservative. It should be possible to hoist the instructions
+ // in BB2 in the following example:
+ // BB1:
+ // r1, eflag = op1 r2, r3
+ // brcc eflag
+ //
+ // BB2:
+ // r1 = op2, ...
+ // = op3, killed r1
+ IsSafe = false;
+ break;
+ }
+ } else if (!ActiveDefsSet.count(Reg)) {
+ if (Defs.count(Reg)) {
+ // Use is defined by the instruction at the point of insertion.
+ IsSafe = false;
+ break;
+ }
+
+ if (MO.isKill() && Uses.count(Reg))
+ // Kills a register that's read by the instruction at the point of
+ // insertion. Remove the kill marker.
+ MO.setIsKill(false);
+ }
+ }
+ if (!IsSafe)
+ break;
+
+ bool DontMoveAcrossStore = true;
+ if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
+ break;
+
+ // Remove kills from ActiveDefsSet, these registers had short live ranges.
+ for (const MachineOperand &MO : TIB->operands()) {
+ if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (!AllDefsSet.count(Reg)) {
+ continue;
+ }
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ ActiveDefsSet.erase(*AI);
+ } else {
+ ActiveDefsSet.erase(Reg);
+ }
+ }
+
+ // Track local defs so we can update liveins.
+ for (const MachineOperand &MO : TIB->operands()) {
+ if (!MO.isReg() || !MO.isDef() || MO.isDead())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
+ addRegAndItsAliases(Reg, TRI, AllDefsSet);
+ }
+
+ HasDups = true;
+ ++TIB;
+ ++FIB;
+ }
+
+ if (!HasDups)
+ return false;
+
+ MBB->splice(Loc, TBB, TBB->begin(), TIB);
+ FBB->erase(FBB->begin(), FIB);
+
+ if (UpdateLiveIns) {
+ recomputeLiveIns(*TBB);
+ recomputeLiveIns(*FBB);
+ }
+
+ ++NumHoist;
+ return true;
+}