summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp2238
1 files changed, 2238 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp b/contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp
new file mode 100644
index 000000000000..af556e2c856e
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/IfConversion.cpp
@@ -0,0 +1,2238 @@
+//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the machine instruction level if-conversion pass, which
+// tries to convert conditional branches into predicated instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BranchFolding.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/LivePhysRegs.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "if-converter"
+
+// Hidden options for help debugging.
+static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
+static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
+static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
+static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
+ cl::init(false), cl::Hidden);
+static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
+ cl::init(true), cl::Hidden);
+
+STATISTIC(NumSimple, "Number of simple if-conversions performed");
+STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
+STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
+STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
+STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
+STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
+STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
+STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
+STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
+STATISTIC(NumDupBBs, "Number of duplicated blocks");
+STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
+
+namespace {
+
+ class IfConverter : public MachineFunctionPass {
+ enum IfcvtKind {
+ ICNotClassfied, // BB data valid, but not classified.
+ ICSimpleFalse, // Same as ICSimple, but on the false path.
+ ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
+ ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
+ ICTriangleRev, // Same as ICTriangle, but true path rev condition.
+ ICTriangleFalse, // Same as ICTriangle, but on the false path.
+ ICTriangle, // BB is entry of a triangle sub-CFG.
+ ICDiamond, // BB is entry of a diamond sub-CFG.
+ ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
+ // common tail that can be shared.
+ };
+
+ /// One per MachineBasicBlock, this is used to cache the result
+ /// if-conversion feasibility analysis. This includes results from
+ /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
+ /// classification, and common tail block of its successors (if it's a
+ /// diamond shape), its size, whether it's predicable, and whether any
+ /// instruction can clobber the 'would-be' predicate.
+ ///
+ /// IsDone - True if BB is not to be considered for ifcvt.
+ /// IsBeingAnalyzed - True if BB is currently being analyzed.
+ /// IsAnalyzed - True if BB has been analyzed (info is still valid).
+ /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
+ /// IsBrAnalyzable - True if analyzeBranch() returns false.
+ /// HasFallThrough - True if BB may fallthrough to the following BB.
+ /// IsUnpredicable - True if BB is known to be unpredicable.
+ /// ClobbersPred - True if BB could modify predicates (e.g. has
+ /// cmp, call, etc.)
+ /// NonPredSize - Number of non-predicated instructions.
+ /// ExtraCost - Extra cost for multi-cycle instructions.
+ /// ExtraCost2 - Some instructions are slower when predicated
+ /// BB - Corresponding MachineBasicBlock.
+ /// TrueBB / FalseBB- See analyzeBranch().
+ /// BrCond - Conditions for end of block conditional branches.
+ /// Predicate - Predicate used in the BB.
+ struct BBInfo {
+ bool IsDone : 1;
+ bool IsBeingAnalyzed : 1;
+ bool IsAnalyzed : 1;
+ bool IsEnqueued : 1;
+ bool IsBrAnalyzable : 1;
+ bool IsBrReversible : 1;
+ bool HasFallThrough : 1;
+ bool IsUnpredicable : 1;
+ bool CannotBeCopied : 1;
+ bool ClobbersPred : 1;
+ unsigned NonPredSize = 0;
+ unsigned ExtraCost = 0;
+ unsigned ExtraCost2 = 0;
+ MachineBasicBlock *BB = nullptr;
+ MachineBasicBlock *TrueBB = nullptr;
+ MachineBasicBlock *FalseBB = nullptr;
+ SmallVector<MachineOperand, 4> BrCond;
+ SmallVector<MachineOperand, 4> Predicate;
+
+ BBInfo() : IsDone(false), IsBeingAnalyzed(false),
+ IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
+ IsBrReversible(false), HasFallThrough(false),
+ IsUnpredicable(false), CannotBeCopied(false),
+ ClobbersPred(false) {}
+ };
+
+ /// Record information about pending if-conversions to attempt:
+ /// BBI - Corresponding BBInfo.
+ /// Kind - Type of block. See IfcvtKind.
+ /// NeedSubsumption - True if the to-be-predicated BB has already been
+ /// predicated.
+ /// NumDups - Number of instructions that would be duplicated due
+ /// to this if-conversion. (For diamonds, the number of
+ /// identical instructions at the beginnings of both
+ /// paths).
+ /// NumDups2 - For diamonds, the number of identical instructions
+ /// at the ends of both paths.
+ struct IfcvtToken {
+ BBInfo &BBI;
+ IfcvtKind Kind;
+ unsigned NumDups;
+ unsigned NumDups2;
+ bool NeedSubsumption : 1;
+ bool TClobbersPred : 1;
+ bool FClobbersPred : 1;
+
+ IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
+ bool tc = false, bool fc = false)
+ : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
+ TClobbersPred(tc), FClobbersPred(fc) {}
+ };
+
+ /// Results of if-conversion feasibility analysis indexed by basic block
+ /// number.
+ std::vector<BBInfo> BBAnalysis;
+ TargetSchedModel SchedModel;
+
+ const TargetLoweringBase *TLI;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineBranchProbabilityInfo *MBPI;
+ MachineRegisterInfo *MRI;
+
+ LivePhysRegs Redefs;
+
+ bool PreRegAlloc;
+ bool MadeChange;
+ int FnNum = -1;
+ std::function<bool(const MachineFunction &)> PredicateFtor;
+
+ public:
+ static char ID;
+
+ IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
+ : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
+ initializeIfConverterPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ private:
+ bool reverseBranchCondition(BBInfo &BBI) const;
+ bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
+ BranchProbability Prediction) const;
+ bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
+ bool FalseBranch, unsigned &Dups,
+ BranchProbability Prediction) const;
+ bool CountDuplicatedInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ unsigned &Dups1, unsigned &Dups2,
+ MachineBasicBlock &TBB, MachineBasicBlock &FBB,
+ bool SkipUnconditionalBranches) const;
+ bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
+ bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
+ void AnalyzeBranches(BBInfo &BBI);
+ void ScanInstructions(BBInfo &BBI,
+ MachineBasicBlock::iterator &Begin,
+ MachineBasicBlock::iterator &End,
+ bool BranchUnpredicable = false) const;
+ bool RescanInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ BBInfo &TrueBBI, BBInfo &FalseBBI) const;
+ void AnalyzeBlock(MachineBasicBlock &MBB,
+ std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
+ bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
+ bool isTriangle = false, bool RevBranch = false,
+ bool hasCommonTail = false);
+ void AnalyzeBlocks(MachineFunction &MF,
+ std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
+ void InvalidatePreds(MachineBasicBlock &MBB);
+ bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
+ bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
+ bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred,
+ bool RemoveBranch, bool MergeAddEdges);
+ bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbers, bool FClobbers);
+ bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbers, bool FClobbers);
+ void PredicateBlock(BBInfo &BBI,
+ MachineBasicBlock::iterator E,
+ SmallVectorImpl<MachineOperand> &Cond,
+ SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
+ void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool IgnoreBr = false);
+ void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
+
+ bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
+ unsigned Cycle, unsigned Extra,
+ BranchProbability Prediction) const {
+ return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
+ Prediction);
+ }
+
+ bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
+ unsigned TCycle, unsigned TExtra,
+ MachineBasicBlock &FBB,
+ unsigned FCycle, unsigned FExtra,
+ BranchProbability Prediction) const {
+ return TCycle > 0 && FCycle > 0 &&
+ TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
+ Prediction);
+ }
+
+ /// Returns true if Block ends without a terminator.
+ bool blockAlwaysFallThrough(BBInfo &BBI) const {
+ return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
+ }
+
+ /// Used to sort if-conversion candidates.
+ static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
+ const std::unique_ptr<IfcvtToken> &C2) {
+ int Incr1 = (C1->Kind == ICDiamond)
+ ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
+ int Incr2 = (C2->Kind == ICDiamond)
+ ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
+ if (Incr1 > Incr2)
+ return true;
+ else if (Incr1 == Incr2) {
+ // Favors subsumption.
+ if (!C1->NeedSubsumption && C2->NeedSubsumption)
+ return true;
+ else if (C1->NeedSubsumption == C2->NeedSubsumption) {
+ // Favors diamond over triangle, etc.
+ if ((unsigned)C1->Kind < (unsigned)C2->Kind)
+ return true;
+ else if (C1->Kind == C2->Kind)
+ return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
+ }
+ }
+ return false;
+ }
+ };
+
+} // end anonymous namespace
+
+char IfConverter::ID = 0;
+
+char &llvm::IfConverterID = IfConverter::ID;
+
+INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
+
+bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
+ return false;
+
+ const TargetSubtargetInfo &ST = MF.getSubtarget();
+ TLI = ST.getTargetLowering();
+ TII = ST.getInstrInfo();
+ TRI = ST.getRegisterInfo();
+ BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ MRI = &MF.getRegInfo();
+ SchedModel.init(&ST);
+
+ if (!TII) return false;
+
+ PreRegAlloc = MRI->isSSA();
+
+ bool BFChange = false;
+ if (!PreRegAlloc) {
+ // Tail merge tend to expose more if-conversion opportunities.
+ BranchFolder BF(true, false, MBFI, *MBPI);
+ BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
+ getAnalysisIfAvailable<MachineModuleInfo>());
+ }
+
+ LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
+ << MF.getName() << "\'");
+
+ if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
+ LLVM_DEBUG(dbgs() << " skipped\n");
+ return false;
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+
+ MF.RenumberBlocks();
+ BBAnalysis.resize(MF.getNumBlockIDs());
+
+ std::vector<std::unique_ptr<IfcvtToken>> Tokens;
+ MadeChange = false;
+ unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
+ NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
+ while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
+ // Do an initial analysis for each basic block and find all the potential
+ // candidates to perform if-conversion.
+ bool Change = false;
+ AnalyzeBlocks(MF, Tokens);
+ while (!Tokens.empty()) {
+ std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
+ Tokens.pop_back();
+ BBInfo &BBI = Token->BBI;
+ IfcvtKind Kind = Token->Kind;
+ unsigned NumDups = Token->NumDups;
+ unsigned NumDups2 = Token->NumDups2;
+
+ // If the block has been evicted out of the queue or it has already been
+ // marked dead (due to it being predicated), then skip it.
+ if (BBI.IsDone)
+ BBI.IsEnqueued = false;
+ if (!BBI.IsEnqueued)
+ continue;
+
+ BBI.IsEnqueued = false;
+
+ bool RetVal = false;
+ switch (Kind) {
+ default: llvm_unreachable("Unexpected!");
+ case ICSimple:
+ case ICSimpleFalse: {
+ bool isFalse = Kind == ICSimpleFalse;
+ if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
+ LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
+ << (Kind == ICSimpleFalse ? " false" : "")
+ << "): " << printMBBReference(*BBI.BB) << " ("
+ << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
+ : BBI.TrueBB->getNumber())
+ << ") ");
+ RetVal = IfConvertSimple(BBI, Kind);
+ LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ if (RetVal) {
+ if (isFalse) ++NumSimpleFalse;
+ else ++NumSimple;
+ }
+ break;
+ }
+ case ICTriangle:
+ case ICTriangleRev:
+ case ICTriangleFalse:
+ case ICTriangleFRev: {
+ bool isFalse = Kind == ICTriangleFalse;
+ bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
+ if (DisableTriangle && !isFalse && !isRev) break;
+ if (DisableTriangleR && !isFalse && isRev) break;
+ if (DisableTriangleF && isFalse && !isRev) break;
+ if (DisableTriangleFR && isFalse && isRev) break;
+ LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
+ if (isFalse)
+ LLVM_DEBUG(dbgs() << " false");
+ if (isRev)
+ LLVM_DEBUG(dbgs() << " rev");
+ LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
+ << " (T:" << BBI.TrueBB->getNumber()
+ << ",F:" << BBI.FalseBB->getNumber() << ") ");
+ RetVal = IfConvertTriangle(BBI, Kind);
+ LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ if (RetVal) {
+ if (isFalse) {
+ if (isRev) ++NumTriangleFRev;
+ else ++NumTriangleFalse;
+ } else {
+ if (isRev) ++NumTriangleRev;
+ else ++NumTriangle;
+ }
+ }
+ break;
+ }
+ case ICDiamond:
+ if (DisableDiamond) break;
+ LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
+ << " (T:" << BBI.TrueBB->getNumber()
+ << ",F:" << BBI.FalseBB->getNumber() << ") ");
+ RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
+ Token->TClobbersPred,
+ Token->FClobbersPred);
+ LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ if (RetVal) ++NumDiamonds;
+ break;
+ case ICForkedDiamond:
+ if (DisableForkedDiamond) break;
+ LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
+ << printMBBReference(*BBI.BB)
+ << " (T:" << BBI.TrueBB->getNumber()
+ << ",F:" << BBI.FalseBB->getNumber() << ") ");
+ RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
+ Token->TClobbersPred,
+ Token->FClobbersPred);
+ LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
+ if (RetVal) ++NumForkedDiamonds;
+ break;
+ }
+
+ if (RetVal && MRI->tracksLiveness())
+ recomputeLivenessFlags(*BBI.BB);
+
+ Change |= RetVal;
+
+ NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
+ NumTriangleFalse + NumTriangleFRev + NumDiamonds;
+ if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
+ break;
+ }
+
+ if (!Change)
+ break;
+ MadeChange |= Change;
+ }
+
+ Tokens.clear();
+ BBAnalysis.clear();
+
+ if (MadeChange && IfCvtBranchFold) {
+ BranchFolder BF(false, false, MBFI, *MBPI);
+ BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
+ getAnalysisIfAvailable<MachineModuleInfo>());
+ }
+
+ MadeChange |= BFChange;
+ return MadeChange;
+}
+
+/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
+static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
+ MachineBasicBlock *TrueBB) {
+ for (MachineBasicBlock *SuccBB : BB->successors()) {
+ if (SuccBB != TrueBB)
+ return SuccBB;
+ }
+ return nullptr;
+}
+
+/// Reverse the condition of the end of the block branch. Swap block's 'true'
+/// and 'false' successors.
+bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
+ DebugLoc dl; // FIXME: this is nowhere
+ if (!TII->reverseBranchCondition(BBI.BrCond)) {
+ TII->removeBranch(*BBI.BB);
+ TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
+ std::swap(BBI.TrueBB, BBI.FalseBB);
+ return true;
+ }
+ return false;
+}
+
+/// Returns the next block in the function blocks ordering. If it is the end,
+/// returns NULL.
+static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
+ MachineFunction::iterator I = MBB.getIterator();
+ MachineFunction::iterator E = MBB.getParent()->end();
+ if (++I == E)
+ return nullptr;
+ return &*I;
+}
+
+/// Returns true if the 'true' block (along with its predecessor) forms a valid
+/// simple shape for ifcvt. It also returns the number of instructions that the
+/// ifcvt would need to duplicate if performed in Dups.
+bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
+ BranchProbability Prediction) const {
+ Dups = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
+ return false;
+
+ if (TrueBBI.IsBrAnalyzable)
+ return false;
+
+ if (TrueBBI.BB->pred_size() > 1) {
+ if (TrueBBI.CannotBeCopied ||
+ !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
+ Prediction))
+ return false;
+ Dups = TrueBBI.NonPredSize;
+ }
+
+ return true;
+}
+
+/// Returns true if the 'true' and 'false' blocks (along with their common
+/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
+/// true, it checks if 'true' block's false branch branches to the 'false' block
+/// rather than the other way around. It also returns the number of instructions
+/// that the ifcvt would need to duplicate if performed in 'Dups'.
+bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
+ bool FalseBranch, unsigned &Dups,
+ BranchProbability Prediction) const {
+ Dups = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
+ return false;
+
+ if (TrueBBI.BB->pred_size() > 1) {
+ if (TrueBBI.CannotBeCopied)
+ return false;
+
+ unsigned Size = TrueBBI.NonPredSize;
+ if (TrueBBI.IsBrAnalyzable) {
+ if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
+ // Ends with an unconditional branch. It will be removed.
+ --Size;
+ else {
+ MachineBasicBlock *FExit = FalseBranch
+ ? TrueBBI.TrueBB : TrueBBI.FalseBB;
+ if (FExit)
+ // Require a conditional branch
+ ++Size;
+ }
+ }
+ if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
+ return false;
+ Dups = Size;
+ }
+
+ MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
+ if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
+ MachineFunction::iterator I = TrueBBI.BB->getIterator();
+ if (++I == TrueBBI.BB->getParent()->end())
+ return false;
+ TExit = &*I;
+ }
+ return TExit && TExit == FalseBBI.BB;
+}
+
+/// Count duplicated instructions and move the iterators to show where they
+/// are.
+/// @param TIB True Iterator Begin
+/// @param FIB False Iterator Begin
+/// These two iterators initially point to the first instruction of the two
+/// blocks, and finally point to the first non-shared instruction.
+/// @param TIE True Iterator End
+/// @param FIE False Iterator End
+/// These two iterators initially point to End() for the two blocks() and
+/// finally point to the first shared instruction in the tail.
+/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
+/// two blocks.
+/// @param Dups1 count of duplicated instructions at the beginning of the 2
+/// blocks.
+/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
+/// @param SkipUnconditionalBranches if true, Don't make sure that
+/// unconditional branches at the end of the blocks are the same. True is
+/// passed when the blocks are analyzable to allow for fallthrough to be
+/// handled.
+/// @return false if the shared portion prevents if conversion.
+bool IfConverter::CountDuplicatedInstructions(
+ MachineBasicBlock::iterator &TIB,
+ MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE,
+ MachineBasicBlock::iterator &FIE,
+ unsigned &Dups1, unsigned &Dups2,
+ MachineBasicBlock &TBB, MachineBasicBlock &FBB,
+ bool SkipUnconditionalBranches) const {
+ while (TIB != TIE && FIB != FIE) {
+ // Skip dbg_value instructions. These do not count.
+ TIB = skipDebugInstructionsForward(TIB, TIE);
+ FIB = skipDebugInstructionsForward(FIB, FIE);
+ if (TIB == TIE || FIB == FIE)
+ break;
+ if (!TIB->isIdenticalTo(*FIB))
+ break;
+ // A pred-clobbering instruction in the shared portion prevents
+ // if-conversion.
+ std::vector<MachineOperand> PredDefs;
+ if (TII->DefinesPredicate(*TIB, PredDefs))
+ return false;
+ // If we get all the way to the branch instructions, don't count them.
+ if (!TIB->isBranch())
+ ++Dups1;
+ ++TIB;
+ ++FIB;
+ }
+
+ // Check for already containing all of the block.
+ if (TIB == TIE || FIB == FIE)
+ return true;
+ // Now, in preparation for counting duplicate instructions at the ends of the
+ // blocks, switch to reverse_iterators. Note that getReverse() returns an
+ // iterator that points to the same instruction, unlike std::reverse_iterator.
+ // We have to do our own shifting so that we get the same range.
+ MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
+ MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
+ const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
+ const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
+
+ if (!TBB.succ_empty() || !FBB.succ_empty()) {
+ if (SkipUnconditionalBranches) {
+ while (RTIE != RTIB && RTIE->isUnconditionalBranch())
+ ++RTIE;
+ while (RFIE != RFIB && RFIE->isUnconditionalBranch())
+ ++RFIE;
+ }
+ }
+
+ // Count duplicate instructions at the ends of the blocks.
+ while (RTIE != RTIB && RFIE != RFIB) {
+ // Skip dbg_value instructions. These do not count.
+ // Note that these are reverse iterators going forward.
+ RTIE = skipDebugInstructionsForward(RTIE, RTIB);
+ RFIE = skipDebugInstructionsForward(RFIE, RFIB);
+ if (RTIE == RTIB || RFIE == RFIB)
+ break;
+ if (!RTIE->isIdenticalTo(*RFIE))
+ break;
+ // We have to verify that any branch instructions are the same, and then we
+ // don't count them toward the # of duplicate instructions.
+ if (!RTIE->isBranch())
+ ++Dups2;
+ ++RTIE;
+ ++RFIE;
+ }
+ TIE = std::next(RTIE.getReverse());
+ FIE = std::next(RFIE.getReverse());
+ return true;
+}
+
+/// RescanInstructions - Run ScanInstructions on a pair of blocks.
+/// @param TIB - True Iterator Begin, points to first non-shared instruction
+/// @param FIB - False Iterator Begin, points to first non-shared instruction
+/// @param TIE - True Iterator End, points past last non-shared instruction
+/// @param FIE - False Iterator End, points past last non-shared instruction
+/// @param TrueBBI - BBInfo to update for the true block.
+/// @param FalseBBI - BBInfo to update for the false block.
+/// @returns - false if either block cannot be predicated or if both blocks end
+/// with a predicate-clobbering instruction.
+bool IfConverter::RescanInstructions(
+ MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
+ MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
+ BBInfo &TrueBBI, BBInfo &FalseBBI) const {
+ bool BranchUnpredicable = true;
+ TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
+ ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
+ if (TrueBBI.IsUnpredicable)
+ return false;
+ ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
+ if (FalseBBI.IsUnpredicable)
+ return false;
+ if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
+ return false;
+ return true;
+}
+
+#ifndef NDEBUG
+static void verifySameBranchInstructions(
+ MachineBasicBlock *MBB1,
+ MachineBasicBlock *MBB2) {
+ const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
+ const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
+ MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
+ MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
+ while (E1 != B1 && E2 != B2) {
+ skipDebugInstructionsForward(E1, B1);
+ skipDebugInstructionsForward(E2, B2);
+ if (E1 == B1 && E2 == B2)
+ break;
+
+ if (E1 == B1) {
+ assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
+ break;
+ }
+ if (E2 == B2) {
+ assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
+ break;
+ }
+
+ if (E1->isBranch() || E2->isBranch())
+ assert(E1->isIdenticalTo(*E2) &&
+ "Branch mis-match, branch instructions don't match.");
+ else
+ break;
+ ++E1;
+ ++E2;
+ }
+}
+#endif
+
+/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
+/// with their common predecessor) form a diamond if a common tail block is
+/// extracted.
+/// While not strictly a diamond, this pattern would form a diamond if
+/// tail-merging had merged the shared tails.
+/// EBB
+/// _/ \_
+/// | |
+/// TBB FBB
+/// / \ / \
+/// FalseBB TrueBB FalseBB
+/// Currently only handles analyzable branches.
+/// Specifically excludes actual diamonds to avoid overlap.
+bool IfConverter::ValidForkedDiamond(
+ BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
+ Dups1 = Dups2 = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
+ FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
+ return false;
+
+ if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
+ return false;
+ // Don't IfConvert blocks that can't be folded into their predecessor.
+ if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
+ return false;
+
+ // This function is specifically looking for conditional tails, as
+ // unconditional tails are already handled by the standard diamond case.
+ if (TrueBBI.BrCond.size() == 0 ||
+ FalseBBI.BrCond.size() == 0)
+ return false;
+
+ MachineBasicBlock *TT = TrueBBI.TrueBB;
+ MachineBasicBlock *TF = TrueBBI.FalseBB;
+ MachineBasicBlock *FT = FalseBBI.TrueBB;
+ MachineBasicBlock *FF = FalseBBI.FalseBB;
+
+ if (!TT)
+ TT = getNextBlock(*TrueBBI.BB);
+ if (!TF)
+ TF = getNextBlock(*TrueBBI.BB);
+ if (!FT)
+ FT = getNextBlock(*FalseBBI.BB);
+ if (!FF)
+ FF = getNextBlock(*FalseBBI.BB);
+
+ if (!TT || !TF)
+ return false;
+
+ // Check successors. If they don't match, bail.
+ if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
+ return false;
+
+ bool FalseReversed = false;
+ if (TF == FT && TT == FF) {
+ // If the branches are opposing, but we can't reverse, don't do it.
+ if (!FalseBBI.IsBrReversible)
+ return false;
+ FalseReversed = true;
+ reverseBranchCondition(FalseBBI);
+ }
+ auto UnReverseOnExit = make_scope_exit([&]() {
+ if (FalseReversed)
+ reverseBranchCondition(FalseBBI);
+ });
+
+ // Count duplicate instructions at the beginning of the true and false blocks.
+ MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
+ MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
+ MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
+ if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
+ *TrueBBI.BB, *FalseBBI.BB,
+ /* SkipUnconditionalBranches */ true))
+ return false;
+
+ TrueBBICalc.BB = TrueBBI.BB;
+ FalseBBICalc.BB = FalseBBI.BB;
+ if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
+ return false;
+
+ // The size is used to decide whether to if-convert, and the shared portions
+ // are subtracted off. Because of the subtraction, we just use the size that
+ // was calculated by the original ScanInstructions, as it is correct.
+ TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
+ FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
+ return true;
+}
+
+/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
+/// with their common predecessor) forms a valid diamond shape for ifcvt.
+bool IfConverter::ValidDiamond(
+ BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned &Dups1, unsigned &Dups2,
+ BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
+ Dups1 = Dups2 = 0;
+ if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
+ FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
+ return false;
+
+ MachineBasicBlock *TT = TrueBBI.TrueBB;
+ MachineBasicBlock *FT = FalseBBI.TrueBB;
+
+ if (!TT && blockAlwaysFallThrough(TrueBBI))
+ TT = getNextBlock(*TrueBBI.BB);
+ if (!FT && blockAlwaysFallThrough(FalseBBI))
+ FT = getNextBlock(*FalseBBI.BB);
+ if (TT != FT)
+ return false;
+ if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
+ return false;
+ if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
+ return false;
+
+ // FIXME: Allow true block to have an early exit?
+ if (TrueBBI.FalseBB || FalseBBI.FalseBB)
+ return false;
+
+ // Count duplicate instructions at the beginning and end of the true and
+ // false blocks.
+ // Skip unconditional branches only if we are considering an analyzable
+ // diamond. Otherwise the branches must be the same.
+ bool SkipUnconditionalBranches =
+ TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
+ MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
+ MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
+ MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
+ if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
+ *TrueBBI.BB, *FalseBBI.BB,
+ SkipUnconditionalBranches))
+ return false;
+
+ TrueBBICalc.BB = TrueBBI.BB;
+ FalseBBICalc.BB = FalseBBI.BB;
+ if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
+ return false;
+ // The size is used to decide whether to if-convert, and the shared portions
+ // are subtracted off. Because of the subtraction, we just use the size that
+ // was calculated by the original ScanInstructions, as it is correct.
+ TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
+ FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
+ return true;
+}
+
+/// AnalyzeBranches - Look at the branches at the end of a block to determine if
+/// the block is predicable.
+void IfConverter::AnalyzeBranches(BBInfo &BBI) {
+ if (BBI.IsDone)
+ return;
+
+ BBI.TrueBB = BBI.FalseBB = nullptr;
+ BBI.BrCond.clear();
+ BBI.IsBrAnalyzable =
+ !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
+ if (!BBI.IsBrAnalyzable) {
+ BBI.TrueBB = nullptr;
+ BBI.FalseBB = nullptr;
+ BBI.BrCond.clear();
+ }
+
+ SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
+ BBI.IsBrReversible = (RevCond.size() == 0) ||
+ !TII->reverseBranchCondition(RevCond);
+ BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
+
+ if (BBI.BrCond.size()) {
+ // No false branch. This BB must end with a conditional branch and a
+ // fallthrough.
+ if (!BBI.FalseBB)
+ BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
+ if (!BBI.FalseBB) {
+ // Malformed bcc? True and false blocks are the same?
+ BBI.IsUnpredicable = true;
+ }
+ }
+}
+
+/// ScanInstructions - Scan all the instructions in the block to determine if
+/// the block is predicable. In most cases, that means all the instructions
+/// in the block are isPredicable(). Also checks if the block contains any
+/// instruction which can clobber a predicate (e.g. condition code register).
+/// If so, the block is not predicable unless it's the last instruction.
+void IfConverter::ScanInstructions(BBInfo &BBI,
+ MachineBasicBlock::iterator &Begin,
+ MachineBasicBlock::iterator &End,
+ bool BranchUnpredicable) const {
+ if (BBI.IsDone || BBI.IsUnpredicable)
+ return;
+
+ bool AlreadyPredicated = !BBI.Predicate.empty();
+
+ BBI.NonPredSize = 0;
+ BBI.ExtraCost = 0;
+ BBI.ExtraCost2 = 0;
+ BBI.ClobbersPred = false;
+ for (MachineInstr &MI : make_range(Begin, End)) {
+ if (MI.isDebugInstr())
+ continue;
+
+ // It's unsafe to duplicate convergent instructions in this context, so set
+ // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
+ // following CFG, which is subject to our "simple" transformation.
+ //
+ // BB0 // if (c1) goto BB1; else goto BB2;
+ // / \
+ // BB1 |
+ // | BB2 // if (c2) goto TBB; else goto FBB;
+ // | / |
+ // | / |
+ // TBB |
+ // | |
+ // | FBB
+ // |
+ // exit
+ //
+ // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
+ // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
+ // TBB contains a convergent instruction. This is safe iff doing so does
+ // not add a control-flow dependency to the convergent instruction -- i.e.,
+ // it's safe iff the set of control flows that leads us to the convergent
+ // instruction does not get smaller after the transformation.
+ //
+ // Originally we executed TBB if c1 || c2. After the transformation, there
+ // are two copies of TBB's instructions. We get to the first if c1, and we
+ // get to the second if !c1 && c2.
+ //
+ // There are clearly fewer ways to satisfy the condition "c1" than
+ // "c1 || c2". Since we've shrunk the set of control flows which lead to
+ // our convergent instruction, the transformation is unsafe.
+ if (MI.isNotDuplicable() || MI.isConvergent())
+ BBI.CannotBeCopied = true;
+
+ bool isPredicated = TII->isPredicated(MI);
+ bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
+
+ if (BranchUnpredicable && MI.isBranch()) {
+ BBI.IsUnpredicable = true;
+ return;
+ }
+
+ // A conditional branch is not predicable, but it may be eliminated.
+ if (isCondBr)
+ continue;
+
+ if (!isPredicated) {
+ BBI.NonPredSize++;
+ unsigned ExtraPredCost = TII->getPredicationCost(MI);
+ unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
+ if (NumCycles > 1)
+ BBI.ExtraCost += NumCycles-1;
+ BBI.ExtraCost2 += ExtraPredCost;
+ } else if (!AlreadyPredicated) {
+ // FIXME: This instruction is already predicated before the
+ // if-conversion pass. It's probably something like a conditional move.
+ // Mark this block unpredicable for now.
+ BBI.IsUnpredicable = true;
+ return;
+ }
+
+ if (BBI.ClobbersPred && !isPredicated) {
+ // Predicate modification instruction should end the block (except for
+ // already predicated instructions and end of block branches).
+ // Predicate may have been modified, the subsequent (currently)
+ // unpredicated instructions cannot be correctly predicated.
+ BBI.IsUnpredicable = true;
+ return;
+ }
+
+ // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
+ // still potentially predicable.
+ std::vector<MachineOperand> PredDefs;
+ if (TII->DefinesPredicate(MI, PredDefs))
+ BBI.ClobbersPred = true;
+
+ if (!TII->isPredicable(MI)) {
+ BBI.IsUnpredicable = true;
+ return;
+ }
+ }
+}
+
+/// Determine if the block is a suitable candidate to be predicated by the
+/// specified predicate.
+/// @param BBI BBInfo for the block to check
+/// @param Pred Predicate array for the branch that leads to BBI
+/// @param isTriangle true if the Analysis is for a triangle
+/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
+/// case
+/// @param hasCommonTail true if BBI shares a tail with a sibling block that
+/// contains any instruction that would make the block unpredicable.
+bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
+ SmallVectorImpl<MachineOperand> &Pred,
+ bool isTriangle, bool RevBranch,
+ bool hasCommonTail) {
+ // If the block is dead or unpredicable, then it cannot be predicated.
+ // Two blocks may share a common unpredicable tail, but this doesn't prevent
+ // them from being if-converted. The non-shared portion is assumed to have
+ // been checked
+ if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
+ return false;
+
+ // If it is already predicated but we couldn't analyze its terminator, the
+ // latter might fallthrough, but we can't determine where to.
+ // Conservatively avoid if-converting again.
+ if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
+ return false;
+
+ // If it is already predicated, check if the new predicate subsumes
+ // its predicate.
+ if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
+ return false;
+
+ if (!hasCommonTail && BBI.BrCond.size()) {
+ if (!isTriangle)
+ return false;
+
+ // Test predicate subsumption.
+ SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
+ SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
+ if (RevBranch) {
+ if (TII->reverseBranchCondition(Cond))
+ return false;
+ }
+ if (TII->reverseBranchCondition(RevPred) ||
+ !TII->SubsumesPredicate(Cond, RevPred))
+ return false;
+ }
+
+ return true;
+}
+
+/// Analyze the structure of the sub-CFG starting from the specified block.
+/// Record its successors and whether it looks like an if-conversion candidate.
+void IfConverter::AnalyzeBlock(
+ MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
+ struct BBState {
+ BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
+ MachineBasicBlock *MBB;
+
+ /// This flag is true if MBB's successors have been analyzed.
+ bool SuccsAnalyzed;
+ };
+
+ // Push MBB to the stack.
+ SmallVector<BBState, 16> BBStack(1, MBB);
+
+ while (!BBStack.empty()) {
+ BBState &State = BBStack.back();
+ MachineBasicBlock *BB = State.MBB;
+ BBInfo &BBI = BBAnalysis[BB->getNumber()];
+
+ if (!State.SuccsAnalyzed) {
+ if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
+ BBStack.pop_back();
+ continue;
+ }
+
+ BBI.BB = BB;
+ BBI.IsBeingAnalyzed = true;
+
+ AnalyzeBranches(BBI);
+ MachineBasicBlock::iterator Begin = BBI.BB->begin();
+ MachineBasicBlock::iterator End = BBI.BB->end();
+ ScanInstructions(BBI, Begin, End);
+
+ // Unanalyzable or ends with fallthrough or unconditional branch, or if is
+ // not considered for ifcvt anymore.
+ if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
+ BBI.IsBeingAnalyzed = false;
+ BBI.IsAnalyzed = true;
+ BBStack.pop_back();
+ continue;
+ }
+
+ // Do not ifcvt if either path is a back edge to the entry block.
+ if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
+ BBI.IsBeingAnalyzed = false;
+ BBI.IsAnalyzed = true;
+ BBStack.pop_back();
+ continue;
+ }
+
+ // Do not ifcvt if true and false fallthrough blocks are the same.
+ if (!BBI.FalseBB) {
+ BBI.IsBeingAnalyzed = false;
+ BBI.IsAnalyzed = true;
+ BBStack.pop_back();
+ continue;
+ }
+
+ // Push the False and True blocks to the stack.
+ State.SuccsAnalyzed = true;
+ BBStack.push_back(*BBI.FalseBB);
+ BBStack.push_back(*BBI.TrueBB);
+ continue;
+ }
+
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+
+ if (TrueBBI.IsDone && FalseBBI.IsDone) {
+ BBI.IsBeingAnalyzed = false;
+ BBI.IsAnalyzed = true;
+ BBStack.pop_back();
+ continue;
+ }
+
+ SmallVector<MachineOperand, 4>
+ RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
+ bool CanRevCond = !TII->reverseBranchCondition(RevCond);
+
+ unsigned Dups = 0;
+ unsigned Dups2 = 0;
+ bool TNeedSub = !TrueBBI.Predicate.empty();
+ bool FNeedSub = !FalseBBI.Predicate.empty();
+ bool Enqueued = false;
+
+ BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
+
+ if (CanRevCond) {
+ BBInfo TrueBBICalc, FalseBBICalc;
+ auto feasibleDiamond = [&]() {
+ bool MeetsSize = MeetIfcvtSizeLimit(
+ *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
+ TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
+ *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
+ FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
+ Prediction);
+ bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
+ /* IsTriangle */ false, /* RevCond */ false,
+ /* hasCommonTail */ true);
+ bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
+ /* IsTriangle */ false, /* RevCond */ false,
+ /* hasCommonTail */ true);
+ return MeetsSize && TrueFeasible && FalseFeasible;
+ };
+
+ if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
+ TrueBBICalc, FalseBBICalc)) {
+ if (feasibleDiamond()) {
+ // Diamond:
+ // EBB
+ // / \_
+ // | |
+ // TBB FBB
+ // \ /
+ // TailBB
+ // Note TailBB can be empty.
+ Tokens.push_back(llvm::make_unique<IfcvtToken>(
+ BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
+ (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
+ Enqueued = true;
+ }
+ } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
+ TrueBBICalc, FalseBBICalc)) {
+ if (feasibleDiamond()) {
+ // ForkedDiamond:
+ // if TBB and FBB have a common tail that includes their conditional
+ // branch instructions, then we can If Convert this pattern.
+ // EBB
+ // _/ \_
+ // | |
+ // TBB FBB
+ // / \ / \
+ // FalseBB TrueBB FalseBB
+ //
+ Tokens.push_back(llvm::make_unique<IfcvtToken>(
+ BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
+ (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
+ Enqueued = true;
+ }
+ }
+ }
+
+ if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
+ MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
+ TrueBBI.ExtraCost2, Prediction) &&
+ FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
+ // Triangle:
+ // EBB
+ // | \_
+ // | |
+ // | TBB
+ // | /
+ // FBB
+ Tokens.push_back(
+ llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
+ Enqueued = true;
+ }
+
+ if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
+ MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
+ TrueBBI.ExtraCost2, Prediction) &&
+ FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
+ Tokens.push_back(
+ llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
+ Enqueued = true;
+ }
+
+ if (ValidSimple(TrueBBI, Dups, Prediction) &&
+ MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
+ TrueBBI.ExtraCost2, Prediction) &&
+ FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
+ // Simple (split, no rejoin):
+ // EBB
+ // | \_
+ // | |
+ // | TBB---> exit
+ // |
+ // FBB
+ Tokens.push_back(
+ llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
+ Enqueued = true;
+ }
+
+ if (CanRevCond) {
+ // Try the other path...
+ if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
+ Prediction.getCompl()) &&
+ MeetIfcvtSizeLimit(*FalseBBI.BB,
+ FalseBBI.NonPredSize + FalseBBI.ExtraCost,
+ FalseBBI.ExtraCost2, Prediction.getCompl()) &&
+ FeasibilityAnalysis(FalseBBI, RevCond, true)) {
+ Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
+ FNeedSub, Dups));
+ Enqueued = true;
+ }
+
+ if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
+ Prediction.getCompl()) &&
+ MeetIfcvtSizeLimit(*FalseBBI.BB,
+ FalseBBI.NonPredSize + FalseBBI.ExtraCost,
+ FalseBBI.ExtraCost2, Prediction.getCompl()) &&
+ FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
+ Tokens.push_back(
+ llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
+ Enqueued = true;
+ }
+
+ if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
+ MeetIfcvtSizeLimit(*FalseBBI.BB,
+ FalseBBI.NonPredSize + FalseBBI.ExtraCost,
+ FalseBBI.ExtraCost2, Prediction.getCompl()) &&
+ FeasibilityAnalysis(FalseBBI, RevCond)) {
+ Tokens.push_back(
+ llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
+ Enqueued = true;
+ }
+ }
+
+ BBI.IsEnqueued = Enqueued;
+ BBI.IsBeingAnalyzed = false;
+ BBI.IsAnalyzed = true;
+ BBStack.pop_back();
+ }
+}
+
+/// Analyze all blocks and find entries for all if-conversion candidates.
+void IfConverter::AnalyzeBlocks(
+ MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
+ for (MachineBasicBlock &MBB : MF)
+ AnalyzeBlock(MBB, Tokens);
+
+ // Sort to favor more complex ifcvt scheme.
+ llvm::stable_sort(Tokens, IfcvtTokenCmp);
+}
+
+/// Returns true either if ToMBB is the next block after MBB or that all the
+/// intervening blocks are empty (given MBB can fall through to its next block).
+static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
+ MachineFunction::iterator PI = MBB.getIterator();
+ MachineFunction::iterator I = std::next(PI);
+ MachineFunction::iterator TI = ToMBB.getIterator();
+ MachineFunction::iterator E = MBB.getParent()->end();
+ while (I != TI) {
+ // Check isSuccessor to avoid case where the next block is empty, but
+ // it's not a successor.
+ if (I == E || !I->empty() || !PI->isSuccessor(&*I))
+ return false;
+ PI = I++;
+ }
+ // Finally see if the last I is indeed a successor to PI.
+ return PI->isSuccessor(&*I);
+}
+
+/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
+/// can be if-converted. If predecessor is already enqueued, dequeue it!
+void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
+ for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
+ BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
+ if (PBBI.IsDone || PBBI.BB == &MBB)
+ continue;
+ PBBI.IsAnalyzed = false;
+ PBBI.IsEnqueued = false;
+ }
+}
+
+/// Inserts an unconditional branch from \p MBB to \p ToMBB.
+static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
+ const TargetInstrInfo *TII) {
+ DebugLoc dl; // FIXME: this is nowhere
+ SmallVector<MachineOperand, 0> NoCond;
+ TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
+}
+
+/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
+/// values defined in MI which are also live/used by MI.
+static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
+ const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
+
+ // Before stepping forward past MI, remember which regs were live
+ // before MI. This is needed to set the Undef flag only when reg is
+ // dead.
+ SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
+ LiveBeforeMI.setUniverse(TRI->getNumRegs());
+ for (unsigned Reg : Redefs)
+ LiveBeforeMI.insert(Reg);
+
+ SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
+ Redefs.stepForward(MI, Clobbers);
+
+ // Now add the implicit uses for each of the clobbered values.
+ for (auto Clobber : Clobbers) {
+ // FIXME: Const cast here is nasty, but better than making StepForward
+ // take a mutable instruction instead of const.
+ unsigned Reg = Clobber.first;
+ MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
+ MachineInstr *OpMI = Op.getParent();
+ MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
+ if (Op.isRegMask()) {
+ // First handle regmasks. They clobber any entries in the mask which
+ // means that we need a def for those registers.
+ if (LiveBeforeMI.count(Reg))
+ MIB.addReg(Reg, RegState::Implicit);
+
+ // We also need to add an implicit def of this register for the later
+ // use to read from.
+ // For the register allocator to have allocated a register clobbered
+ // by the call which is used later, it must be the case that
+ // the call doesn't return.
+ MIB.addReg(Reg, RegState::Implicit | RegState::Define);
+ continue;
+ }
+ if (LiveBeforeMI.count(Reg))
+ MIB.addReg(Reg, RegState::Implicit);
+ else {
+ bool HasLiveSubReg = false;
+ for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
+ if (!LiveBeforeMI.count(*S))
+ continue;
+ HasLiveSubReg = true;
+ break;
+ }
+ if (HasLiveSubReg)
+ MIB.addReg(Reg, RegState::Implicit);
+ }
+ }
+}
+
+/// If convert a simple (split, no rejoin) sub-CFG.
+bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+ BBInfo *CvtBBI = &TrueBBI;
+ BBInfo *NextBBI = &FalseBBI;
+
+ SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
+ if (Kind == ICSimpleFalse)
+ std::swap(CvtBBI, NextBBI);
+
+ MachineBasicBlock &CvtMBB = *CvtBBI->BB;
+ MachineBasicBlock &NextMBB = *NextBBI->BB;
+ if (CvtBBI->IsDone ||
+ (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
+ // Something has changed. It's no longer safe to predicate this block.
+ BBI.IsAnalyzed = false;
+ CvtBBI->IsAnalyzed = false;
+ return false;
+ }
+
+ if (CvtMBB.hasAddressTaken())
+ // Conservatively abort if-conversion if BB's address is taken.
+ return false;
+
+ if (Kind == ICSimpleFalse)
+ if (TII->reverseBranchCondition(Cond))
+ llvm_unreachable("Unable to reverse branch condition!");
+
+ Redefs.init(*TRI);
+
+ if (MRI->tracksLiveness()) {
+ // Initialize liveins to the first BB. These are potentially redefined by
+ // predicated instructions.
+ Redefs.addLiveIns(CvtMBB);
+ Redefs.addLiveIns(NextMBB);
+ }
+
+ // Remove the branches from the entry so we can add the contents of the true
+ // block to it.
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
+
+ if (CvtMBB.pred_size() > 1) {
+ // Copy instructions in the true block, predicate them, and add them to
+ // the entry block.
+ CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
+
+ // Keep the CFG updated.
+ BBI.BB->removeSuccessor(&CvtMBB, true);
+ } else {
+ // Predicate the instructions in the true block.
+ PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
+
+ // Merge converted block into entry block. The BB to Cvt edge is removed
+ // by MergeBlocks.
+ MergeBlocks(BBI, *CvtBBI);
+ }
+
+ bool IterIfcvt = true;
+ if (!canFallThroughTo(*BBI.BB, NextMBB)) {
+ InsertUncondBranch(*BBI.BB, NextMBB, TII);
+ BBI.HasFallThrough = false;
+ // Now ifcvt'd block will look like this:
+ // BB:
+ // ...
+ // t, f = cmp
+ // if t op
+ // b BBf
+ //
+ // We cannot further ifcvt this block because the unconditional branch
+ // will have to be predicated on the new condition, that will not be
+ // available if cmp executes.
+ IterIfcvt = false;
+ }
+
+ // Update block info. BB can be iteratively if-converted.
+ if (!IterIfcvt)
+ BBI.IsDone = true;
+ InvalidatePreds(*BBI.BB);
+ CvtBBI->IsDone = true;
+
+ // FIXME: Must maintain LiveIns.
+ return true;
+}
+
+/// If convert a triangle sub-CFG.
+bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+ BBInfo *CvtBBI = &TrueBBI;
+ BBInfo *NextBBI = &FalseBBI;
+ DebugLoc dl; // FIXME: this is nowhere
+
+ SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
+ if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
+ std::swap(CvtBBI, NextBBI);
+
+ MachineBasicBlock &CvtMBB = *CvtBBI->BB;
+ MachineBasicBlock &NextMBB = *NextBBI->BB;
+ if (CvtBBI->IsDone ||
+ (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
+ // Something has changed. It's no longer safe to predicate this block.
+ BBI.IsAnalyzed = false;
+ CvtBBI->IsAnalyzed = false;
+ return false;
+ }
+
+ if (CvtMBB.hasAddressTaken())
+ // Conservatively abort if-conversion if BB's address is taken.
+ return false;
+
+ if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
+ if (TII->reverseBranchCondition(Cond))
+ llvm_unreachable("Unable to reverse branch condition!");
+
+ if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
+ if (reverseBranchCondition(*CvtBBI)) {
+ // BB has been changed, modify its predecessors (except for this
+ // one) so they don't get ifcvt'ed based on bad intel.
+ for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
+ if (PBB == BBI.BB)
+ continue;
+ BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
+ if (PBBI.IsEnqueued) {
+ PBBI.IsAnalyzed = false;
+ PBBI.IsEnqueued = false;
+ }
+ }
+ }
+ }
+
+ // Initialize liveins to the first BB. These are potentially redefined by
+ // predicated instructions.
+ Redefs.init(*TRI);
+ if (MRI->tracksLiveness()) {
+ Redefs.addLiveIns(CvtMBB);
+ Redefs.addLiveIns(NextMBB);
+ }
+
+ bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
+ BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
+
+ if (HasEarlyExit) {
+ // Get probabilities before modifying CvtMBB and BBI.BB.
+ CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
+ CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
+ BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
+ BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
+ }
+
+ // Remove the branches from the entry so we can add the contents of the true
+ // block to it.
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
+
+ if (CvtMBB.pred_size() > 1) {
+ // Copy instructions in the true block, predicate them, and add them to
+ // the entry block.
+ CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
+ } else {
+ // Predicate the 'true' block after removing its branch.
+ CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
+ PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
+
+ // Now merge the entry of the triangle with the true block.
+ MergeBlocks(BBI, *CvtBBI, false);
+ }
+
+ // Keep the CFG updated.
+ BBI.BB->removeSuccessor(&CvtMBB, true);
+
+ // If 'true' block has a 'false' successor, add an exit branch to it.
+ if (HasEarlyExit) {
+ SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
+ CvtBBI->BrCond.end());
+ if (TII->reverseBranchCondition(RevCond))
+ llvm_unreachable("Unable to reverse branch condition!");
+
+ // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
+ // NewNext = New_Prob(BBI.BB, NextMBB) =
+ // Prob(BBI.BB, NextMBB) +
+ // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
+ // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
+ // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
+ auto NewTrueBB = getNextBlock(*BBI.BB);
+ auto NewNext = BBNext + BBCvt * CvtNext;
+ auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
+ if (NewTrueBBIter != BBI.BB->succ_end())
+ BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
+
+ auto NewFalse = BBCvt * CvtFalse;
+ TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
+ BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
+ }
+
+ // Merge in the 'false' block if the 'false' block has no other
+ // predecessors. Otherwise, add an unconditional branch to 'false'.
+ bool FalseBBDead = false;
+ bool IterIfcvt = true;
+ bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
+ if (!isFallThrough) {
+ // Only merge them if the true block does not fallthrough to the false
+ // block. By not merging them, we make it possible to iteratively
+ // ifcvt the blocks.
+ if (!HasEarlyExit &&
+ NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
+ !NextMBB.hasAddressTaken()) {
+ MergeBlocks(BBI, *NextBBI);
+ FalseBBDead = true;
+ } else {
+ InsertUncondBranch(*BBI.BB, NextMBB, TII);
+ BBI.HasFallThrough = false;
+ }
+ // Mixed predicated and unpredicated code. This cannot be iteratively
+ // predicated.
+ IterIfcvt = false;
+ }
+
+ // Update block info. BB can be iteratively if-converted.
+ if (!IterIfcvt)
+ BBI.IsDone = true;
+ InvalidatePreds(*BBI.BB);
+ CvtBBI->IsDone = true;
+ if (FalseBBDead)
+ NextBBI->IsDone = true;
+
+ // FIXME: Must maintain LiveIns.
+ return true;
+}
+
+/// Common code shared between diamond conversions.
+/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
+/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
+/// and FalseBBI
+/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
+/// and \p FalseBBI
+/// \p RemoveBranch - Remove the common branch of the two blocks before
+/// predicating. Only false for unanalyzable fallthrough
+/// cases. The caller will replace the branch if necessary.
+/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
+/// unanalyzable fallthrough
+bool IfConverter::IfConvertDiamondCommon(
+ BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred,
+ bool RemoveBranch, bool MergeAddEdges) {
+
+ if (TrueBBI.IsDone || FalseBBI.IsDone ||
+ TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
+ // Something has changed. It's no longer safe to predicate these blocks.
+ BBI.IsAnalyzed = false;
+ TrueBBI.IsAnalyzed = false;
+ FalseBBI.IsAnalyzed = false;
+ return false;
+ }
+
+ if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
+ // Conservatively abort if-conversion if either BB has its address taken.
+ return false;
+
+ // Put the predicated instructions from the 'true' block before the
+ // instructions from the 'false' block, unless the true block would clobber
+ // the predicate, in which case, do the opposite.
+ BBInfo *BBI1 = &TrueBBI;
+ BBInfo *BBI2 = &FalseBBI;
+ SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
+ if (TII->reverseBranchCondition(RevCond))
+ llvm_unreachable("Unable to reverse branch condition!");
+ SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
+ SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
+
+ // Figure out the more profitable ordering.
+ bool DoSwap = false;
+ if (TClobbersPred && !FClobbersPred)
+ DoSwap = true;
+ else if (!TClobbersPred && !FClobbersPred) {
+ if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
+ DoSwap = true;
+ } else if (TClobbersPred && FClobbersPred)
+ llvm_unreachable("Predicate info cannot be clobbered by both sides.");
+ if (DoSwap) {
+ std::swap(BBI1, BBI2);
+ std::swap(Cond1, Cond2);
+ }
+
+ // Remove the conditional branch from entry to the blocks.
+ BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
+
+ MachineBasicBlock &MBB1 = *BBI1->BB;
+ MachineBasicBlock &MBB2 = *BBI2->BB;
+
+ // Initialize the Redefs:
+ // - BB2 live-in regs need implicit uses before being redefined by BB1
+ // instructions.
+ // - BB1 live-out regs need implicit uses before being redefined by BB2
+ // instructions. We start with BB1 live-ins so we have the live-out regs
+ // after tracking the BB1 instructions.
+ Redefs.init(*TRI);
+ if (MRI->tracksLiveness()) {
+ Redefs.addLiveIns(MBB1);
+ Redefs.addLiveIns(MBB2);
+ }
+
+ // Remove the duplicated instructions at the beginnings of both paths.
+ // Skip dbg_value instructions.
+ MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
+ MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
+ BBI1->NonPredSize -= NumDups1;
+ BBI2->NonPredSize -= NumDups1;
+
+ // Skip past the dups on each side separately since there may be
+ // differing dbg_value entries. NumDups1 can include a "return"
+ // instruction, if it's not marked as "branch".
+ for (unsigned i = 0; i < NumDups1; ++DI1) {
+ if (DI1 == MBB1.end())
+ break;
+ if (!DI1->isDebugInstr())
+ ++i;
+ }
+ while (NumDups1 != 0) {
+ ++DI2;
+ if (DI2 == MBB2.end())
+ break;
+ if (!DI2->isDebugInstr())
+ --NumDups1;
+ }
+
+ if (MRI->tracksLiveness()) {
+ for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
+ SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
+ Redefs.stepForward(MI, Dummy);
+ }
+ }
+
+ BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
+ MBB2.erase(MBB2.begin(), DI2);
+
+ // The branches have been checked to match, so it is safe to remove the
+ // branch in BB1 and rely on the copy in BB2. The complication is that
+ // the blocks may end with a return instruction, which may or may not
+ // be marked as "branch". If it's not, then it could be included in
+ // "dups1", leaving the blocks potentially empty after moving the common
+ // duplicates.
+#ifndef NDEBUG
+ // Unanalyzable branches must match exactly. Check that now.
+ if (!BBI1->IsBrAnalyzable)
+ verifySameBranchInstructions(&MBB1, &MBB2);
+#endif
+ // Remove duplicated instructions from the tail of MBB1: any branch
+ // instructions, and the common instructions counted by NumDups2.
+ DI1 = MBB1.end();
+ while (DI1 != MBB1.begin()) {
+ MachineBasicBlock::iterator Prev = std::prev(DI1);
+ if (!Prev->isBranch() && !Prev->isDebugInstr())
+ break;
+ DI1 = Prev;
+ }
+ for (unsigned i = 0; i != NumDups2; ) {
+ // NumDups2 only counted non-dbg_value instructions, so this won't
+ // run off the head of the list.
+ assert(DI1 != MBB1.begin());
+ --DI1;
+ // skip dbg_value instructions
+ if (!DI1->isDebugInstr())
+ ++i;
+ }
+ MBB1.erase(DI1, MBB1.end());
+
+ DI2 = BBI2->BB->end();
+ // The branches have been checked to match. Skip over the branch in the false
+ // block so that we don't try to predicate it.
+ if (RemoveBranch)
+ BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
+ else {
+ // Make DI2 point to the end of the range where the common "tail"
+ // instructions could be found.
+ while (DI2 != MBB2.begin()) {
+ MachineBasicBlock::iterator Prev = std::prev(DI2);
+ if (!Prev->isBranch() && !Prev->isDebugInstr())
+ break;
+ DI2 = Prev;
+ }
+ }
+ while (NumDups2 != 0) {
+ // NumDups2 only counted non-dbg_value instructions, so this won't
+ // run off the head of the list.
+ assert(DI2 != MBB2.begin());
+ --DI2;
+ // skip dbg_value instructions
+ if (!DI2->isDebugInstr())
+ --NumDups2;
+ }
+
+ // Remember which registers would later be defined by the false block.
+ // This allows us not to predicate instructions in the true block that would
+ // later be re-defined. That is, rather than
+ // subeq r0, r1, #1
+ // addne r0, r1, #1
+ // generate:
+ // sub r0, r1, #1
+ // addne r0, r1, #1
+ SmallSet<MCPhysReg, 4> RedefsByFalse;
+ SmallSet<MCPhysReg, 4> ExtUses;
+ if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
+ for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
+ if (FI.isDebugInstr())
+ continue;
+ SmallVector<MCPhysReg, 4> Defs;
+ for (const MachineOperand &MO : FI.operands()) {
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isDef()) {
+ Defs.push_back(Reg);
+ } else if (!RedefsByFalse.count(Reg)) {
+ // These are defined before ctrl flow reach the 'false' instructions.
+ // They cannot be modified by the 'true' instructions.
+ for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ ExtUses.insert(*SubRegs);
+ }
+ }
+
+ for (MCPhysReg Reg : Defs) {
+ if (!ExtUses.count(Reg)) {
+ for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ RedefsByFalse.insert(*SubRegs);
+ }
+ }
+ }
+ }
+
+ // Predicate the 'true' block.
+ PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
+
+ // After predicating BBI1, if there is a predicated terminator in BBI1 and
+ // a non-predicated in BBI2, then we don't want to predicate the one from
+ // BBI2. The reason is that if we merged these blocks, we would end up with
+ // two predicated terminators in the same block.
+ // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
+ // predicate them either. They were checked to be identical, and so the
+ // same branch would happen regardless of which path was taken.
+ if (!MBB2.empty() && (DI2 == MBB2.end())) {
+ MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
+ MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
+ bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
+ bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
+ if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
+ --DI2;
+ }
+
+ // Predicate the 'false' block.
+ PredicateBlock(*BBI2, DI2, *Cond2);
+
+ // Merge the true block into the entry of the diamond.
+ MergeBlocks(BBI, *BBI1, MergeAddEdges);
+ MergeBlocks(BBI, *BBI2, MergeAddEdges);
+ return true;
+}
+
+/// If convert an almost-diamond sub-CFG where the true
+/// and false blocks share a common tail.
+bool IfConverter::IfConvertForkedDiamond(
+ BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+
+ // Save the debug location for later.
+ DebugLoc dl;
+ MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
+ if (TIE != TrueBBI.BB->end())
+ dl = TIE->getDebugLoc();
+ // Removing branches from both blocks is safe, because we have already
+ // determined that both blocks have the same branch instructions. The branch
+ // will be added back at the end, unpredicated.
+ if (!IfConvertDiamondCommon(
+ BBI, TrueBBI, FalseBBI,
+ NumDups1, NumDups2,
+ TClobbersPred, FClobbersPred,
+ /* RemoveBranch */ true, /* MergeAddEdges */ true))
+ return false;
+
+ // Add back the branch.
+ // Debug location saved above when removing the branch from BBI2
+ TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
+ TrueBBI.BrCond, dl);
+
+ // Update block info.
+ BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
+ InvalidatePreds(*BBI.BB);
+
+ // FIXME: Must maintain LiveIns.
+ return true;
+}
+
+/// If convert a diamond sub-CFG.
+bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
+ unsigned NumDups1, unsigned NumDups2,
+ bool TClobbersPred, bool FClobbersPred) {
+ BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
+ BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
+ MachineBasicBlock *TailBB = TrueBBI.TrueBB;
+
+ // True block must fall through or end with an unanalyzable terminator.
+ if (!TailBB) {
+ if (blockAlwaysFallThrough(TrueBBI))
+ TailBB = FalseBBI.TrueBB;
+ assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
+ }
+
+ if (!IfConvertDiamondCommon(
+ BBI, TrueBBI, FalseBBI,
+ NumDups1, NumDups2,
+ TClobbersPred, FClobbersPred,
+ /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
+ /* MergeAddEdges */ TailBB == nullptr))
+ return false;
+
+ // If the if-converted block falls through or unconditionally branches into
+ // the tail block, and the tail block does not have other predecessors, then
+ // fold the tail block in as well. Otherwise, unless it falls through to the
+ // tail, add a unconditional branch to it.
+ if (TailBB) {
+ // We need to remove the edges to the true and false blocks manually since
+ // we didn't let IfConvertDiamondCommon update the CFG.
+ BBI.BB->removeSuccessor(TrueBBI.BB);
+ BBI.BB->removeSuccessor(FalseBBI.BB, true);
+
+ BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
+ bool CanMergeTail = !TailBBI.HasFallThrough &&
+ !TailBBI.BB->hasAddressTaken();
+ // The if-converted block can still have a predicated terminator
+ // (e.g. a predicated return). If that is the case, we cannot merge
+ // it with the tail block.
+ MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
+ if (TI != BBI.BB->end() && TII->isPredicated(*TI))
+ CanMergeTail = false;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
+ MergeBlocks(BBI, TailBBI);
+ TailBBI.IsDone = true;
+ } else {
+ BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
+ InsertUncondBranch(*BBI.BB, *TailBB, TII);
+ BBI.HasFallThrough = false;
+ }
+ }
+
+ // Update block info.
+ BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
+ InvalidatePreds(*BBI.BB);
+
+ // FIXME: Must maintain LiveIns.
+ return true;
+}
+
+static bool MaySpeculate(const MachineInstr &MI,
+ SmallSet<MCPhysReg, 4> &LaterRedefs) {
+ bool SawStore = true;
+ if (!MI.isSafeToMove(nullptr, SawStore))
+ return false;
+
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (MO.isDef() && !LaterRedefs.count(Reg))
+ return false;
+ }
+
+ return true;
+}
+
+/// Predicate instructions from the start of the block to the specified end with
+/// the specified condition.
+void IfConverter::PredicateBlock(BBInfo &BBI,
+ MachineBasicBlock::iterator E,
+ SmallVectorImpl<MachineOperand> &Cond,
+ SmallSet<MCPhysReg, 4> *LaterRedefs) {
+ bool AnyUnpred = false;
+ bool MaySpec = LaterRedefs != nullptr;
+ for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
+ if (I.isDebugInstr() || TII->isPredicated(I))
+ continue;
+ // It may be possible not to predicate an instruction if it's the 'true'
+ // side of a diamond and the 'false' side may re-define the instruction's
+ // defs.
+ if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
+ AnyUnpred = true;
+ continue;
+ }
+ // If any instruction is predicated, then every instruction after it must
+ // be predicated.
+ MaySpec = false;
+ if (!TII->PredicateInstruction(I, Cond)) {
+#ifndef NDEBUG
+ dbgs() << "Unable to predicate " << I << "!\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+
+ // If the predicated instruction now redefines a register as the result of
+ // if-conversion, add an implicit kill.
+ UpdatePredRedefs(I, Redefs);
+ }
+
+ BBI.Predicate.append(Cond.begin(), Cond.end());
+
+ BBI.IsAnalyzed = false;
+ BBI.NonPredSize = 0;
+
+ ++NumIfConvBBs;
+ if (AnyUnpred)
+ ++NumUnpred;
+}
+
+/// Copy and predicate instructions from source BB to the destination block.
+/// Skip end of block branches if IgnoreBr is true.
+void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool IgnoreBr) {
+ MachineFunction &MF = *ToBBI.BB->getParent();
+
+ MachineBasicBlock &FromMBB = *FromBBI.BB;
+ for (MachineInstr &I : FromMBB) {
+ // Do not copy the end of the block branches.
+ if (IgnoreBr && I.isBranch())
+ break;
+
+ MachineInstr *MI = MF.CloneMachineInstr(&I);
+ ToBBI.BB->insert(ToBBI.BB->end(), MI);
+ ToBBI.NonPredSize++;
+ unsigned ExtraPredCost = TII->getPredicationCost(I);
+ unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
+ if (NumCycles > 1)
+ ToBBI.ExtraCost += NumCycles-1;
+ ToBBI.ExtraCost2 += ExtraPredCost;
+
+ if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
+ if (!TII->PredicateInstruction(*MI, Cond)) {
+#ifndef NDEBUG
+ dbgs() << "Unable to predicate " << I << "!\n";
+#endif
+ llvm_unreachable(nullptr);
+ }
+ }
+
+ // If the predicated instruction now redefines a register as the result of
+ // if-conversion, add an implicit kill.
+ UpdatePredRedefs(*MI, Redefs);
+ }
+
+ if (!IgnoreBr) {
+ std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
+ FromMBB.succ_end());
+ MachineBasicBlock *NBB = getNextBlock(FromMBB);
+ MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
+
+ for (MachineBasicBlock *Succ : Succs) {
+ // Fallthrough edge can't be transferred.
+ if (Succ == FallThrough)
+ continue;
+ ToBBI.BB->addSuccessor(Succ);
+ }
+ }
+
+ ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
+ ToBBI.Predicate.append(Cond.begin(), Cond.end());
+
+ ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
+ ToBBI.IsAnalyzed = false;
+
+ ++NumDupBBs;
+}
+
+/// Move all instructions from FromBB to the end of ToBB. This will leave
+/// FromBB as an empty block, so remove all of its successor edges except for
+/// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
+/// being moved, add those successor edges to ToBBI and remove the old edge
+/// from ToBBI to FromBBI.
+void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
+ MachineBasicBlock &FromMBB = *FromBBI.BB;
+ assert(!FromMBB.hasAddressTaken() &&
+ "Removing a BB whose address is taken!");
+
+ // In case FromMBB contains terminators (e.g. return instruction),
+ // first move the non-terminator instructions, then the terminators.
+ MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
+ MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
+ ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
+
+ // If FromBB has non-predicated terminator we should copy it at the end.
+ if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
+ ToTI = ToBBI.BB->end();
+ ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
+
+ // Force normalizing the successors' probabilities of ToBBI.BB to convert all
+ // unknown probabilities into known ones.
+ // FIXME: This usage is too tricky and in the future we would like to
+ // eliminate all unknown probabilities in MBB.
+ if (ToBBI.IsBrAnalyzable)
+ ToBBI.BB->normalizeSuccProbs();
+
+ SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
+ FromMBB.succ_end());
+ MachineBasicBlock *NBB = getNextBlock(FromMBB);
+ MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
+ // The edge probability from ToBBI.BB to FromMBB, which is only needed when
+ // AddEdges is true and FromMBB is a successor of ToBBI.BB.
+ auto To2FromProb = BranchProbability::getZero();
+ if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
+ // Remove the old edge but remember the edge probability so we can calculate
+ // the correct weights on the new edges being added further down.
+ To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
+ ToBBI.BB->removeSuccessor(&FromMBB);
+ }
+
+ for (MachineBasicBlock *Succ : FromSuccs) {
+ // Fallthrough edge can't be transferred.
+ if (Succ == FallThrough)
+ continue;
+
+ auto NewProb = BranchProbability::getZero();
+ if (AddEdges) {
+ // Calculate the edge probability for the edge from ToBBI.BB to Succ,
+ // which is a portion of the edge probability from FromMBB to Succ. The
+ // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
+ // FromBBI is a successor of ToBBI.BB. See comment below for exception).
+ NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
+
+ // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
+ // only happens when if-converting a diamond CFG and FromMBB is the
+ // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
+ // could just use the probabilities on FromMBB's out-edges when adding
+ // new successors.
+ if (!To2FromProb.isZero())
+ NewProb *= To2FromProb;
+ }
+
+ FromMBB.removeSuccessor(Succ);
+
+ if (AddEdges) {
+ // If the edge from ToBBI.BB to Succ already exists, update the
+ // probability of this edge by adding NewProb to it. An example is shown
+ // below, in which A is ToBBI.BB and B is FromMBB. In this case we
+ // don't have to set C as A's successor as it already is. We only need to
+ // update the edge probability on A->C. Note that B will not be
+ // immediately removed from A's successors. It is possible that B->D is
+ // not removed either if D is a fallthrough of B. Later the edge A->D
+ // (generated here) and B->D will be combined into one edge. To maintain
+ // correct edge probability of this combined edge, we need to set the edge
+ // probability of A->B to zero, which is already done above. The edge
+ // probability on A->D is calculated by scaling the original probability
+ // on A->B by the probability of B->D.
+ //
+ // Before ifcvt: After ifcvt (assume B->D is kept):
+ //
+ // A A
+ // /| /|\
+ // / B / B|
+ // | /| | ||
+ // |/ | | |/
+ // C D C D
+ //
+ if (ToBBI.BB->isSuccessor(Succ))
+ ToBBI.BB->setSuccProbability(
+ find(ToBBI.BB->successors(), Succ),
+ MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
+ else
+ ToBBI.BB->addSuccessor(Succ, NewProb);
+ }
+ }
+
+ // Move the now empty FromMBB out of the way to the end of the function so
+ // it doesn't interfere with fallthrough checks done by canFallThroughTo().
+ MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
+ if (Last != &FromMBB)
+ FromMBB.moveAfter(Last);
+
+ // Normalize the probabilities of ToBBI.BB's successors with all adjustment
+ // we've done above.
+ if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
+ ToBBI.BB->normalizeSuccProbs();
+
+ ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
+ FromBBI.Predicate.clear();
+
+ ToBBI.NonPredSize += FromBBI.NonPredSize;
+ ToBBI.ExtraCost += FromBBI.ExtraCost;
+ ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
+ FromBBI.NonPredSize = 0;
+ FromBBI.ExtraCost = 0;
+ FromBBI.ExtraCost2 = 0;
+
+ ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
+ ToBBI.HasFallThrough = FromBBI.HasFallThrough;
+ ToBBI.IsAnalyzed = false;
+ FromBBI.IsAnalyzed = false;
+}
+
+FunctionPass *
+llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
+ return new IfConverter(std::move(Ftor));
+}