diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp | 472 |
1 files changed, 472 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp new file mode 100644 index 000000000000..14bc560a561c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp @@ -0,0 +1,472 @@ +//===- InterleavedAccessPass.cpp ------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Interleaved Access pass, which identifies +// interleaved memory accesses and transforms them into target specific +// intrinsics. +// +// An interleaved load reads data from memory into several vectors, with +// DE-interleaving the data on a factor. An interleaved store writes several +// vectors to memory with RE-interleaving the data on a factor. +// +// As interleaved accesses are difficult to identified in CodeGen (mainly +// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector +// IR), we identify and transform them to intrinsics in this pass so the +// intrinsics can be easily matched into target specific instructions later in +// CodeGen. +// +// E.g. An interleaved load (Factor = 2): +// %wide.vec = load <8 x i32>, <8 x i32>* %ptr +// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> +// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> +// +// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 +// intrinsic in ARM backend. +// +// In X86, this can be further optimized into a set of target +// specific loads followed by an optimized sequence of shuffles. +// +// E.g. An interleaved store (Factor = 3): +// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, +// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> +// store <12 x i32> %i.vec, <12 x i32>* %ptr +// +// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 +// intrinsic in ARM backend. +// +// Similarly, a set of interleaved stores can be transformed into an optimized +// sequence of shuffles followed by a set of target specific stores for X86. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Type.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <cassert> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "interleaved-access" + +static cl::opt<bool> LowerInterleavedAccesses( + "lower-interleaved-accesses", + cl::desc("Enable lowering interleaved accesses to intrinsics"), + cl::init(true), cl::Hidden); + +namespace { + +class InterleavedAccess : public FunctionPass { +public: + static char ID; + + InterleavedAccess() : FunctionPass(ID) { + initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "Interleaved Access Pass"; } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + } + +private: + DominatorTree *DT = nullptr; + const TargetLowering *TLI = nullptr; + + /// The maximum supported interleave factor. + unsigned MaxFactor; + + /// Transform an interleaved load into target specific intrinsics. + bool lowerInterleavedLoad(LoadInst *LI, + SmallVector<Instruction *, 32> &DeadInsts); + + /// Transform an interleaved store into target specific intrinsics. + bool lowerInterleavedStore(StoreInst *SI, + SmallVector<Instruction *, 32> &DeadInsts); + + /// Returns true if the uses of an interleaved load by the + /// extractelement instructions in \p Extracts can be replaced by uses of the + /// shufflevector instructions in \p Shuffles instead. If so, the necessary + /// replacements are also performed. + bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts, + ArrayRef<ShuffleVectorInst *> Shuffles); +}; + +} // end anonymous namespace. + +char InterleavedAccess::ID = 0; + +INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, + "Lower interleaved memory accesses to target specific intrinsics", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, + "Lower interleaved memory accesses to target specific intrinsics", false, + false) + +FunctionPass *llvm::createInterleavedAccessPass() { + return new InterleavedAccess(); +} + +/// Check if the mask is a DE-interleave mask of the given factor +/// \p Factor like: +/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> +static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, + unsigned &Index) { + // Check all potential start indices from 0 to (Factor - 1). + for (Index = 0; Index < Factor; Index++) { + unsigned i = 0; + + // Check that elements are in ascending order by Factor. Ignore undef + // elements. + for (; i < Mask.size(); i++) + if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) + break; + + if (i == Mask.size()) + return true; + } + + return false; +} + +/// Check if the mask is a DE-interleave mask for an interleaved load. +/// +/// E.g. DE-interleave masks (Factor = 2) could be: +/// <0, 2, 4, 6> (mask of index 0 to extract even elements) +/// <1, 3, 5, 7> (mask of index 1 to extract odd elements) +static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, + unsigned &Index, unsigned MaxFactor, + unsigned NumLoadElements) { + if (Mask.size() < 2) + return false; + + // Check potential Factors. + for (Factor = 2; Factor <= MaxFactor; Factor++) { + // Make sure we don't produce a load wider than the input load. + if (Mask.size() * Factor > NumLoadElements) + return false; + if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) + return true; + } + + return false; +} + +/// Check if the mask can be used in an interleaved store. +// +/// It checks for a more general pattern than the RE-interleave mask. +/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> +/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> +/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> +/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> +/// +/// The particular case of an RE-interleave mask is: +/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> +/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> +static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, + unsigned MaxFactor, unsigned OpNumElts) { + unsigned NumElts = Mask.size(); + if (NumElts < 4) + return false; + + // Check potential Factors. + for (Factor = 2; Factor <= MaxFactor; Factor++) { + if (NumElts % Factor) + continue; + + unsigned LaneLen = NumElts / Factor; + if (!isPowerOf2_32(LaneLen)) + continue; + + // Check whether each element matches the general interleaved rule. + // Ignore undef elements, as long as the defined elements match the rule. + // Outer loop processes all factors (x, y, z in the above example) + unsigned I = 0, J; + for (; I < Factor; I++) { + unsigned SavedLaneValue; + unsigned SavedNoUndefs = 0; + + // Inner loop processes consecutive accesses (x, x+1... in the example) + for (J = 0; J < LaneLen - 1; J++) { + // Lane computes x's position in the Mask + unsigned Lane = J * Factor + I; + unsigned NextLane = Lane + Factor; + int LaneValue = Mask[Lane]; + int NextLaneValue = Mask[NextLane]; + + // If both are defined, values must be sequential + if (LaneValue >= 0 && NextLaneValue >= 0 && + LaneValue + 1 != NextLaneValue) + break; + + // If the next value is undef, save the current one as reference + if (LaneValue >= 0 && NextLaneValue < 0) { + SavedLaneValue = LaneValue; + SavedNoUndefs = 1; + } + + // Undefs are allowed, but defined elements must still be consecutive: + // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, .... + // Verify this by storing the last non-undef followed by an undef + // Check that following non-undef masks are incremented with the + // corresponding distance. + if (SavedNoUndefs > 0 && LaneValue < 0) { + SavedNoUndefs++; + if (NextLaneValue >= 0 && + SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue) + break; + } + } + + if (J < LaneLen - 1) + break; + + int StartMask = 0; + if (Mask[I] >= 0) { + // Check that the start of the I range (J=0) is greater than 0 + StartMask = Mask[I]; + } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) { + // StartMask defined by the last value in lane + StartMask = Mask[(LaneLen - 1) * Factor + I] - J; + } else if (SavedNoUndefs > 0) { + // StartMask defined by some non-zero value in the j loop + StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs); + } + // else StartMask remains set to 0, i.e. all elements are undefs + + if (StartMask < 0) + break; + // We must stay within the vectors; This case can happen with undefs. + if (StartMask + LaneLen > OpNumElts*2) + break; + } + + // Found an interleaved mask of current factor. + if (I == Factor) + return true; + } + + return false; +} + +bool InterleavedAccess::lowerInterleavedLoad( + LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { + if (!LI->isSimple()) + return false; + + SmallVector<ShuffleVectorInst *, 4> Shuffles; + SmallVector<ExtractElementInst *, 4> Extracts; + + // Check if all users of this load are shufflevectors. If we encounter any + // users that are extractelement instructions, we save them to later check if + // they can be modifed to extract from one of the shufflevectors instead of + // the load. + for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { + auto *Extract = dyn_cast<ExtractElementInst>(*UI); + if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) { + Extracts.push_back(Extract); + continue; + } + ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); + if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) + return false; + + Shuffles.push_back(SVI); + } + + if (Shuffles.empty()) + return false; + + unsigned Factor, Index; + + unsigned NumLoadElements = LI->getType()->getVectorNumElements(); + // Check if the first shufflevector is DE-interleave shuffle. + if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index, + MaxFactor, NumLoadElements)) + return false; + + // Holds the corresponding index for each DE-interleave shuffle. + SmallVector<unsigned, 4> Indices; + Indices.push_back(Index); + + Type *VecTy = Shuffles[0]->getType(); + + // Check if other shufflevectors are also DE-interleaved of the same type + // and factor as the first shufflevector. + for (unsigned i = 1; i < Shuffles.size(); i++) { + if (Shuffles[i]->getType() != VecTy) + return false; + + if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, + Index)) + return false; + + Indices.push_back(Index); + } + + // Try and modify users of the load that are extractelement instructions to + // use the shufflevector instructions instead of the load. + if (!tryReplaceExtracts(Extracts, Shuffles)) + return false; + + LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); + + // Try to create target specific intrinsics to replace the load and shuffles. + if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) + return false; + + for (auto SVI : Shuffles) + DeadInsts.push_back(SVI); + + DeadInsts.push_back(LI); + return true; +} + +bool InterleavedAccess::tryReplaceExtracts( + ArrayRef<ExtractElementInst *> Extracts, + ArrayRef<ShuffleVectorInst *> Shuffles) { + // If there aren't any extractelement instructions to modify, there's nothing + // to do. + if (Extracts.empty()) + return true; + + // Maps extractelement instructions to vector-index pairs. The extractlement + // instructions will be modified to use the new vector and index operands. + DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; + + for (auto *Extract : Extracts) { + // The vector index that is extracted. + auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand()); + auto Index = IndexOperand->getSExtValue(); + + // Look for a suitable shufflevector instruction. The goal is to modify the + // extractelement instruction (which uses an interleaved load) to use one + // of the shufflevector instructions instead of the load. + for (auto *Shuffle : Shuffles) { + // If the shufflevector instruction doesn't dominate the extract, we + // can't create a use of it. + if (!DT->dominates(Shuffle, Extract)) + continue; + + // Inspect the indices of the shufflevector instruction. If the shuffle + // selects the same index that is extracted, we can modify the + // extractelement instruction. + SmallVector<int, 4> Indices; + Shuffle->getShuffleMask(Indices); + for (unsigned I = 0; I < Indices.size(); ++I) + if (Indices[I] == Index) { + assert(Extract->getOperand(0) == Shuffle->getOperand(0) && + "Vector operations do not match"); + ReplacementMap[Extract] = std::make_pair(Shuffle, I); + break; + } + + // If we found a suitable shufflevector instruction, stop looking. + if (ReplacementMap.count(Extract)) + break; + } + + // If we did not find a suitable shufflevector instruction, the + // extractelement instruction cannot be modified, so we must give up. + if (!ReplacementMap.count(Extract)) + return false; + } + + // Finally, perform the replacements. + IRBuilder<> Builder(Extracts[0]->getContext()); + for (auto &Replacement : ReplacementMap) { + auto *Extract = Replacement.first; + auto *Vector = Replacement.second.first; + auto Index = Replacement.second.second; + Builder.SetInsertPoint(Extract); + Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index)); + Extract->eraseFromParent(); + } + + return true; +} + +bool InterleavedAccess::lowerInterleavedStore( + StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { + if (!SI->isSimple()) + return false; + + ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); + if (!SVI || !SVI->hasOneUse()) + return false; + + // Check if the shufflevector is RE-interleave shuffle. + unsigned Factor; + unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements(); + if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts)) + return false; + + LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); + + // Try to create target specific intrinsics to replace the store and shuffle. + if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) + return false; + + // Already have a new target specific interleaved store. Erase the old store. + DeadInsts.push_back(SI); + DeadInsts.push_back(SVI); + return true; +} + +bool InterleavedAccess::runOnFunction(Function &F) { + auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); + if (!TPC || !LowerInterleavedAccesses) + return false; + + LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); + + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &TM = TPC->getTM<TargetMachine>(); + TLI = TM.getSubtargetImpl(F)->getTargetLowering(); + MaxFactor = TLI->getMaxSupportedInterleaveFactor(); + + // Holds dead instructions that will be erased later. + SmallVector<Instruction *, 32> DeadInsts; + bool Changed = false; + + for (auto &I : instructions(F)) { + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) + Changed |= lowerInterleavedLoad(LI, DeadInsts); + + if (StoreInst *SI = dyn_cast<StoreInst>(&I)) + Changed |= lowerInterleavedStore(SI, DeadInsts); + } + + for (auto I : DeadInsts) + I->eraseFromParent(); + + return Changed; +} |