summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp472
1 files changed, 472 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
new file mode 100644
index 000000000000..14bc560a561c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
@@ -0,0 +1,472 @@
+//===- InterleavedAccessPass.cpp ------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Interleaved Access pass, which identifies
+// interleaved memory accesses and transforms them into target specific
+// intrinsics.
+//
+// An interleaved load reads data from memory into several vectors, with
+// DE-interleaving the data on a factor. An interleaved store writes several
+// vectors to memory with RE-interleaving the data on a factor.
+//
+// As interleaved accesses are difficult to identified in CodeGen (mainly
+// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
+// IR), we identify and transform them to intrinsics in this pass so the
+// intrinsics can be easily matched into target specific instructions later in
+// CodeGen.
+//
+// E.g. An interleaved load (Factor = 2):
+// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
+// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
+// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
+//
+// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
+// intrinsic in ARM backend.
+//
+// In X86, this can be further optimized into a set of target
+// specific loads followed by an optimized sequence of shuffles.
+//
+// E.g. An interleaved store (Factor = 3):
+// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
+// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
+// store <12 x i32> %i.vec, <12 x i32>* %ptr
+//
+// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
+// intrinsic in ARM backend.
+//
+// Similarly, a set of interleaved stores can be transformed into an optimized
+// sequence of shuffles followed by a set of target specific stores for X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "interleaved-access"
+
+static cl::opt<bool> LowerInterleavedAccesses(
+ "lower-interleaved-accesses",
+ cl::desc("Enable lowering interleaved accesses to intrinsics"),
+ cl::init(true), cl::Hidden);
+
+namespace {
+
+class InterleavedAccess : public FunctionPass {
+public:
+ static char ID;
+
+ InterleavedAccess() : FunctionPass(ID) {
+ initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "Interleaved Access Pass"; }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+private:
+ DominatorTree *DT = nullptr;
+ const TargetLowering *TLI = nullptr;
+
+ /// The maximum supported interleave factor.
+ unsigned MaxFactor;
+
+ /// Transform an interleaved load into target specific intrinsics.
+ bool lowerInterleavedLoad(LoadInst *LI,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Transform an interleaved store into target specific intrinsics.
+ bool lowerInterleavedStore(StoreInst *SI,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Returns true if the uses of an interleaved load by the
+ /// extractelement instructions in \p Extracts can be replaced by uses of the
+ /// shufflevector instructions in \p Shuffles instead. If so, the necessary
+ /// replacements are also performed.
+ bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
+ ArrayRef<ShuffleVectorInst *> Shuffles);
+};
+
+} // end anonymous namespace.
+
+char InterleavedAccess::ID = 0;
+
+INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
+ "Lower interleaved memory accesses to target specific intrinsics", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
+ "Lower interleaved memory accesses to target specific intrinsics", false,
+ false)
+
+FunctionPass *llvm::createInterleavedAccessPass() {
+ return new InterleavedAccess();
+}
+
+/// Check if the mask is a DE-interleave mask of the given factor
+/// \p Factor like:
+/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
+static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
+ unsigned &Index) {
+ // Check all potential start indices from 0 to (Factor - 1).
+ for (Index = 0; Index < Factor; Index++) {
+ unsigned i = 0;
+
+ // Check that elements are in ascending order by Factor. Ignore undef
+ // elements.
+ for (; i < Mask.size(); i++)
+ if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
+ break;
+
+ if (i == Mask.size())
+ return true;
+ }
+
+ return false;
+}
+
+/// Check if the mask is a DE-interleave mask for an interleaved load.
+///
+/// E.g. DE-interleave masks (Factor = 2) could be:
+/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
+/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
+static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
+ unsigned &Index, unsigned MaxFactor,
+ unsigned NumLoadElements) {
+ if (Mask.size() < 2)
+ return false;
+
+ // Check potential Factors.
+ for (Factor = 2; Factor <= MaxFactor; Factor++) {
+ // Make sure we don't produce a load wider than the input load.
+ if (Mask.size() * Factor > NumLoadElements)
+ return false;
+ if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
+ return true;
+ }
+
+ return false;
+}
+
+/// Check if the mask can be used in an interleaved store.
+//
+/// It checks for a more general pattern than the RE-interleave mask.
+/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
+/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
+/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
+///
+/// The particular case of an RE-interleave mask is:
+/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
+static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
+ unsigned MaxFactor, unsigned OpNumElts) {
+ unsigned NumElts = Mask.size();
+ if (NumElts < 4)
+ return false;
+
+ // Check potential Factors.
+ for (Factor = 2; Factor <= MaxFactor; Factor++) {
+ if (NumElts % Factor)
+ continue;
+
+ unsigned LaneLen = NumElts / Factor;
+ if (!isPowerOf2_32(LaneLen))
+ continue;
+
+ // Check whether each element matches the general interleaved rule.
+ // Ignore undef elements, as long as the defined elements match the rule.
+ // Outer loop processes all factors (x, y, z in the above example)
+ unsigned I = 0, J;
+ for (; I < Factor; I++) {
+ unsigned SavedLaneValue;
+ unsigned SavedNoUndefs = 0;
+
+ // Inner loop processes consecutive accesses (x, x+1... in the example)
+ for (J = 0; J < LaneLen - 1; J++) {
+ // Lane computes x's position in the Mask
+ unsigned Lane = J * Factor + I;
+ unsigned NextLane = Lane + Factor;
+ int LaneValue = Mask[Lane];
+ int NextLaneValue = Mask[NextLane];
+
+ // If both are defined, values must be sequential
+ if (LaneValue >= 0 && NextLaneValue >= 0 &&
+ LaneValue + 1 != NextLaneValue)
+ break;
+
+ // If the next value is undef, save the current one as reference
+ if (LaneValue >= 0 && NextLaneValue < 0) {
+ SavedLaneValue = LaneValue;
+ SavedNoUndefs = 1;
+ }
+
+ // Undefs are allowed, but defined elements must still be consecutive:
+ // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
+ // Verify this by storing the last non-undef followed by an undef
+ // Check that following non-undef masks are incremented with the
+ // corresponding distance.
+ if (SavedNoUndefs > 0 && LaneValue < 0) {
+ SavedNoUndefs++;
+ if (NextLaneValue >= 0 &&
+ SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
+ break;
+ }
+ }
+
+ if (J < LaneLen - 1)
+ break;
+
+ int StartMask = 0;
+ if (Mask[I] >= 0) {
+ // Check that the start of the I range (J=0) is greater than 0
+ StartMask = Mask[I];
+ } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
+ // StartMask defined by the last value in lane
+ StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
+ } else if (SavedNoUndefs > 0) {
+ // StartMask defined by some non-zero value in the j loop
+ StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
+ }
+ // else StartMask remains set to 0, i.e. all elements are undefs
+
+ if (StartMask < 0)
+ break;
+ // We must stay within the vectors; This case can happen with undefs.
+ if (StartMask + LaneLen > OpNumElts*2)
+ break;
+ }
+
+ // Found an interleaved mask of current factor.
+ if (I == Factor)
+ return true;
+ }
+
+ return false;
+}
+
+bool InterleavedAccess::lowerInterleavedLoad(
+ LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
+ if (!LI->isSimple())
+ return false;
+
+ SmallVector<ShuffleVectorInst *, 4> Shuffles;
+ SmallVector<ExtractElementInst *, 4> Extracts;
+
+ // Check if all users of this load are shufflevectors. If we encounter any
+ // users that are extractelement instructions, we save them to later check if
+ // they can be modifed to extract from one of the shufflevectors instead of
+ // the load.
+ for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
+ auto *Extract = dyn_cast<ExtractElementInst>(*UI);
+ if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
+ Extracts.push_back(Extract);
+ continue;
+ }
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
+ if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
+ return false;
+
+ Shuffles.push_back(SVI);
+ }
+
+ if (Shuffles.empty())
+ return false;
+
+ unsigned Factor, Index;
+
+ unsigned NumLoadElements = LI->getType()->getVectorNumElements();
+ // Check if the first shufflevector is DE-interleave shuffle.
+ if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
+ MaxFactor, NumLoadElements))
+ return false;
+
+ // Holds the corresponding index for each DE-interleave shuffle.
+ SmallVector<unsigned, 4> Indices;
+ Indices.push_back(Index);
+
+ Type *VecTy = Shuffles[0]->getType();
+
+ // Check if other shufflevectors are also DE-interleaved of the same type
+ // and factor as the first shufflevector.
+ for (unsigned i = 1; i < Shuffles.size(); i++) {
+ if (Shuffles[i]->getType() != VecTy)
+ return false;
+
+ if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
+ Index))
+ return false;
+
+ Indices.push_back(Index);
+ }
+
+ // Try and modify users of the load that are extractelement instructions to
+ // use the shufflevector instructions instead of the load.
+ if (!tryReplaceExtracts(Extracts, Shuffles))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
+
+ // Try to create target specific intrinsics to replace the load and shuffles.
+ if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
+ return false;
+
+ for (auto SVI : Shuffles)
+ DeadInsts.push_back(SVI);
+
+ DeadInsts.push_back(LI);
+ return true;
+}
+
+bool InterleavedAccess::tryReplaceExtracts(
+ ArrayRef<ExtractElementInst *> Extracts,
+ ArrayRef<ShuffleVectorInst *> Shuffles) {
+ // If there aren't any extractelement instructions to modify, there's nothing
+ // to do.
+ if (Extracts.empty())
+ return true;
+
+ // Maps extractelement instructions to vector-index pairs. The extractlement
+ // instructions will be modified to use the new vector and index operands.
+ DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
+
+ for (auto *Extract : Extracts) {
+ // The vector index that is extracted.
+ auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
+ auto Index = IndexOperand->getSExtValue();
+
+ // Look for a suitable shufflevector instruction. The goal is to modify the
+ // extractelement instruction (which uses an interleaved load) to use one
+ // of the shufflevector instructions instead of the load.
+ for (auto *Shuffle : Shuffles) {
+ // If the shufflevector instruction doesn't dominate the extract, we
+ // can't create a use of it.
+ if (!DT->dominates(Shuffle, Extract))
+ continue;
+
+ // Inspect the indices of the shufflevector instruction. If the shuffle
+ // selects the same index that is extracted, we can modify the
+ // extractelement instruction.
+ SmallVector<int, 4> Indices;
+ Shuffle->getShuffleMask(Indices);
+ for (unsigned I = 0; I < Indices.size(); ++I)
+ if (Indices[I] == Index) {
+ assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
+ "Vector operations do not match");
+ ReplacementMap[Extract] = std::make_pair(Shuffle, I);
+ break;
+ }
+
+ // If we found a suitable shufflevector instruction, stop looking.
+ if (ReplacementMap.count(Extract))
+ break;
+ }
+
+ // If we did not find a suitable shufflevector instruction, the
+ // extractelement instruction cannot be modified, so we must give up.
+ if (!ReplacementMap.count(Extract))
+ return false;
+ }
+
+ // Finally, perform the replacements.
+ IRBuilder<> Builder(Extracts[0]->getContext());
+ for (auto &Replacement : ReplacementMap) {
+ auto *Extract = Replacement.first;
+ auto *Vector = Replacement.second.first;
+ auto Index = Replacement.second.second;
+ Builder.SetInsertPoint(Extract);
+ Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
+ Extract->eraseFromParent();
+ }
+
+ return true;
+}
+
+bool InterleavedAccess::lowerInterleavedStore(
+ StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
+ if (!SI->isSimple())
+ return false;
+
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
+ if (!SVI || !SVI->hasOneUse())
+ return false;
+
+ // Check if the shufflevector is RE-interleave shuffle.
+ unsigned Factor;
+ unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
+ if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
+
+ // Try to create target specific intrinsics to replace the store and shuffle.
+ if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
+ return false;
+
+ // Already have a new target specific interleaved store. Erase the old store.
+ DeadInsts.push_back(SI);
+ DeadInsts.push_back(SVI);
+ return true;
+}
+
+bool InterleavedAccess::runOnFunction(Function &F) {
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC || !LowerInterleavedAccesses)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
+
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &TM = TPC->getTM<TargetMachine>();
+ TLI = TM.getSubtargetImpl(F)->getTargetLowering();
+ MaxFactor = TLI->getMaxSupportedInterleaveFactor();
+
+ // Holds dead instructions that will be erased later.
+ SmallVector<Instruction *, 32> DeadInsts;
+ bool Changed = false;
+
+ for (auto &I : instructions(F)) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I))
+ Changed |= lowerInterleavedLoad(LI, DeadInsts);
+
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ Changed |= lowerInterleavedStore(SI, DeadInsts);
+ }
+
+ for (auto I : DeadInsts)
+ I->eraseFromParent();
+
+ return Changed;
+}